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Abstract

This study examined the spatial impacts of oil exploitation in Melut County, South Sudan, at six
points in time between 1999 and 2011. Qil is the most important source of revenue for the
South Sudanese government. The history of oil exploration and production in the area was
characterized by bloodshed, displacement and other grave human rights violations as it
unfolded against the backdrop of a vicious civil war. By means of geo-spatial techniques such
as remote sensing and GIS analysis, changes in land use for farming, population growth and
the expansion of oil fields were observed and the relationships between them was analyzed.
Six points in time — 1999, 2002, 2004, 2006, 2009, 2011 — were chosen to mine Landsat-5 and -
7 satellite data for features in order to map the state of the area and as a base for further
analysis. Two very high resolution scenes from 2004 and 2012 were also applied to explore
reported population growth in the town of Paloich. Three features were chosen to be
extracted and analyzed: cropland, oil well pads and roads. Feature extraction consisted of on-
screen digitization as well as classification approaches. With regard to the latter, pixel- and
object-based classification of land cover was performed as a base for further object-based
classification of cropland areas and oil well pads. While the land cover classifications reached
high levels of accuracy, the classification of cropland and oil well pads was challenging.
Digitized vector data was used instead for GIS analysis of the relationship and interplay
between features. Apart from a sharp decline in cropland areas between 1999 and 2002,
agricultural lands increased steadily over time and more than doubled in size. Oil infrastructure
grew enormously in size throughout the whole time series with 555 oil well pads identified in
2011, compared to a single one in 1999. GIS analysis revealed that causal connections between
the increase in all three types of features is likely but can ultimately not be assessed from
satellite data alone. Very high resolution imagery and especially ground-truth data is strongly
needed to further investigate the complex interplay between population growth, development
of infrastructure and land use changes. The results were presented in 19 maps, providing an

overall picture of the developments in the area of interest.
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1 Introduction

1 Introduction

South Sudan is the most oil-dependent country in the world. More than 98% of the state
budget is oil revenue (World Factbook, 2013). South Sudan is also the world’s youngest
country. A referendum in 2011 ended decades of bloody north-south conflict and sealed the
split from Sudan. The young nation faces massive problems. The country as a whole is
underdeveloped and suffers widespread poverty. A lack of infrastructure means that abundant
natural resources cannot be tapped. South Sudan’s fertile lands could feed “most of sub-

Saharan Africa” (Economist, 2013, p.33).

The development of the oil fields took place against the backdrop of Sudan’s second civil war
which lasted from 1983 to 2005. It was ended by the adoption of the Comprehensive Peace
Agreement (CPA) that foresaw a five-year period of autonomy for the south followed by a
referendum. The discovery of oil added a major economic component to the civil war and
deepened the divide between north and south. The central government in Khartoum tried to
achieve full control of the oil fields, a majority of which is located in the south. Thousands of
people were evicted from their homes in order to secure undisturbed development of the
fields. Villages were destroyed, people killed and thousands forcefully displaced. Others fled
the violence. Lands were confiscated. The areas around oil fields became no-go zones. Apart
from the bloodshed, oil field development led to big-scale environmental problems. Crop
patterns changed, poorly constructed roads led to drain blocks which caused draughts and
floods and polluted ponds pose a danger for humans and animals alike (BICC, 2013; ECOS
2006; ECOS 2009).

Since 2011, the Bonn International Center for Conversion (BICC) has been working on a project
named “Socio-economic repercussions of Chinese oil investments in South Sudan”. It aims at
analyzing the impacts of oil production in Melut and Maban Counties and their conflict-
provoking potentials. By conducting interviews with the local population as well as politicians
and oil managers, BICC researchers studied both positive and negative effects of oil production

(BICC, 2013).

This study aims at supporting the work of BICC by adding a geo-spatial component. Geo-spatial
technologies such as Remote Sensing and Geographical Information Systems (GIS) provide
powerful tools for the analysis of activities and their impacts on a landscape. Especially multi-
temporal satellite image analysis makes observation of features and associated changes

possible. By covering wide areas, remotely-sensed data enables the monitoring of vast
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territories to get an overall picture. This enhanced view backs the work done locally on specific

sites and incorporates it into an overall spatial framework.

The study provides an overview of oil-related developments in Melut County for the period
from 1999 to 2011. The object is to map human activity and to assess its impacts in the area of
interest. In order to document the development of the oil fields and impacts on their
surroundings, six points in time were chosen for comparison (see chapter 4 for details). The
study asks the following questions: What changes can be observed? What spatial connections
exist between those observed changes? Can they be explained with existing knowledge about

events related to oil production?

In order to answer the questions, a two-step approach is taken. First, feature extraction is
performed using various techniques. Second, the extracted features are being used to map the
state of the area of interest at the aforementioned points in time and to analyze the
relationships between them. Taken together, an overall picture of the situation and its

development over time emerges.

Prins Engineering, working for the European Coalition on Qil in Sudan (ECOS, 2006), compared
Landsat satellite data for the years 1999, 2000, 2001 and 2005 for parts of Melut County. The
author found changes in agricultural use, settlement patterns and hydrology which confirmed
findings gained through interviews conducted by ECOS in the area. While this study follows a
similar approach, it widens the scope with regard to the relationship between oil infrastructure
and land use change. Prins focused more on cropland pattern change only. Research on the
impacts of oil extraction on the Russian landscape using Landsat data has been conducted by
Sergey and Oganes (2009) and Aksyonov (2006). Even though they focus on oil spills which is
not of concern for this study, they also captured oil infrastructure from satellite data and
analyzed the possibilities and limits of doing so. Some of their findings were confirmed (see
chapter 4.1). Russia was also the focus for Hese and Schmullius (2009) who, amongst other
features, classified oil well pads from Landsat-5 data. A likewise approach was followed in this
study leading to similar results. Selg (2013) followed a similar approach by analyzing very high
resolution imagery. The author investigated object-based classification of oil infrastructure in

detail.

The subject of the thesis is applied GI-Science. It does not investigate a single specific
methodological problem in depth but shows how a variety of G| methods can be applied to
solve a problem. Those methods include data capture, pixel- and object-based image analysis,

GIS analysis and different forms of visualization.
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2 South Sudan

South Sudan is a land-locked country in east-central Africa. Its north-south extent reaches from
3.49°N to 12.25°N while it stretches from 23.44°E to 35.95°E in east-west direction, covering
an area of 644,329 km?. The northern and central part of the country is characterized by low
lying plains that rise to the highlands in the south where the country’s highest peak, Kinyeti,
3,187 m above sea level, can be found. A massive swamp named Sudd is located in the center
and is being fed by the White Nile, the main river crossing the country from south to north.

The climate is characterized by seasonal rainfall and hot temperatures (World Factbook, 2013).

Figure 1: South Sudan

Different types of low and high rainfall savanna cover a substantial part of South Sudan.
Woodlands are present in the south with some highland areas covered by montane vegetation

(Harrison and Jackson, 1958).
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South Sudan has a population of 11 million people from more than a dozen ethnic groups. It is
one of the world’s most underdeveloped countries with the majority of people living off
subsistence agriculture (World Factbook, 2013). Maternity mortality is the world’s highest with
2,054 per 100,000 births. With only 1% of the people having access to electricity, “’This place
makes Afghanistan look developed’” as the Economist (2013, p.33) quoted a foreign helper.
Even though South Sudan has abundant natural resources, the country is unable to exploit
them due to a lack of infrastructure. If the country was able to tap its vast resources, the state
could overcome its dependence on oil revenue which accounts for more than 98% of state

budget (World Factbook, 2013).

As an independent country, South Sudan came into being on July 09, 2011, as a result of a
referendum. An overwhelming majority of 98% of the electorate voted for secession and

sealed the split from Sudan (World Factbook, 2013).

Sudan itself gained independence from Britain in 1956. Two long civil wars dominate Sudan’s
post-independence history. The second conflict, raging from 1983 until 2005, when the final
North/South Comprehensive Peace Agreement (CPA) was signed, led to an estimated death
toll of more than 2 million. The peace agreement of 2005 included a five-year autonomy for
the South followed by a referendum on independence. The main reason for Sudan’s bloody
history in the 20" century was domination of non-Muslim, non-Arab southern Sudanese by
Muslim, Arab northern Sudanese in terms of politics and economics (World Factbook, 2013).
The main protagonists in the second civil war were the Government of Sudan and the Sudan
People’s Liberation Movement/Army (SPLM/A) which became the army of South Sudan after
independence. It struggled for a democratic and secular state and finally for independence.
Since secession, tensions persist between the two countries. On-going disputes concern oil
revenue sharing, transport fees for South Sudan’s use of Sudan’s export pipelines, the
unresolved status of the disputed region Abyei or the alleged South Sudanese backing of rebel

groups fighting the government in Khartoum (BICC, 2013; Bloomberg, 2013).
2.1 Oil in Sudan

Oil was found in 1978 by the American company Chevron with a second major discovery three
years later (ECOS, 2009, p.18). Chevron wanted to start oil production in the 1980s but
cancelled its engagement due to civil war related fighting in oil areas (Shankleman, 2011, p.2).
In 1993, small companies started to produce oil. In 1996 Sudan received large-scale investment

in its yet to fully develop oil industry when the China National Petroleum Corporation (CNPC)
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began to finance the development of oil fields and related infrastructure such as pipelines and
export terminals. Other Asian companies like the Malaysian-owned Petronas and the Indian-
owned Oil and Natural Gas Corporation Limited (ONGC) followed. Qil production began to
surge. From a modest 2,000 barrels per day in 1993, extraction increased to 490,000 barrels a
day in 2009. Sudan and South Sudan combined account for 0.6 percent of world oil production
(Shankleman, 2011, p.3). As soon as oil was discovered, the struggle for control of it began.
The division between the north and south of the country was widened by the fact that most of
the oil fields are located in the south. The conflict between north and south was fueled by an
important economic component. To achieve full control of the southern oil fields, the central
government, with the help of southern militias, forcefully displaced thousands of people from
the fields. “For over two decades, oil stood at the center of warfare. During the last years of
the war, when oil production started, the oil fields became the main battlegrounds.” (ECOS,
2009, p.29). Grave human rights violations were committed. To enable oil companies to
produce undisturbed, the local population was severely thinned out and a so called “cordon

sanitaire” was erected around the production facilities (ECOS, 2009, p.6).
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Figure 2: Oil concession areas in Sudan

The map was taken from ECOS (2007).
Since most of the oil fields are located in the south but the main infrastructure components —
pipelines, refineries, Red Sea export terminal — are situated in the north (Figure 2), sharing of
oil revenue was one of the key components in the CPA of 2005 (Shankleman, 2011, p.1). The
not yet fully demarcated border between the two countries also crosses some oil fields.
Disputes concerning transport fees for the use of Sudan’s pipelines for South Sudanese oil led
the government in Juba to unilaterally shut down oil production in early 2012. South Sudan
also captured the Heglig oil field in Sudan. Both sides settled the dispute in March 2013 with

oil production resuming in April and early May (BICC, 2013; Chicago Tribune, 2013).
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2.2 Area of Interest

The area of interest (AOI) is located in Upper Nile state, one of South Sudan’s ten states (Figure
3, Figure 4). It includes Melut County as well as parts of the counties Renk, Maban, Baliet,
Fashoda, Manyo and a very small area in the north-western corner that belongs to Sudan

(Figure 46). The size of the AOI is approx. 10,500 km? (104 km x 101 km).

Figure 3: Location of AOI (red square)

Figure 4: Counties of Upper Nile State
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Even though the AOI comprises parts of neighboring counties, Melut County is the focus area
of this study (please note that the northern top of Melut County is not part of the AOI (Figure
5). Reasons are given in chapter 3.4.1. Even though the county covers an area of 6,951 km?
(BICC, 2013, p.30), the actual size of the dataset containing Melut County’s borders measures
only 6,945.53 km?2. After subtraction of the northern top, which has a size of 26.97 km?,
6,918.56 km? remain. This is the number all calculations are based on in this study when
referring to Melut County. The difference to the number given by BICC is 32.44 km? which is

small enough to be neglected. The overall outcome of the study will not be affected.)

Melut County’s western border is formed by the White Nile. Seasonal streams, Khor in Arabic,
cross the area in east-western direction. Melut and its neighboring counties are part of a flat,
clay plain. During the rainy season which lasts from June to October, the southern and central
parts of the area get swampy (ECOS, 2006, p.7). November to May constitutes the dry season.
The climate is hot with annual mean temperatures between 26° and 28° Celsius. Annual mean
rainfall ranges between 600 and 800 mm (UNEP, 2007, p.40) (see chapter 5.6.1 for
precipitation data analysis). According to Harrison and Jackson (1958), the AOI is part of two
ecological zones: the north and center belong to “Low Rainfall Woodland Savannah”. This area
has been further characterized as being covered with “Acacia seyal-Balanites Savannah,
alternating with grass areas”. The south of the AOI is part of the larger “Flood Region” with

higher rainfall than the north.

According to the 2008 census, 49,242 persons live in Melut County. The census data is
generally regarded as underestimating the real number of inhabitants. The two major towns of
the county are Paloich and Melut with 16,215 and 14,554 inhabitants in 2008, respectively.
BICC (2013, pp.30-32) estimates the number of persons living in Melut County to be approx.
70,000 for mid-2013. Population seems to grow. The main ethnic group is the Dinka (BICC,
2013, pp.31-33). According to the 2008 census, 38% of Melut Counties inhabitants still live off
farming. The average size of cultivated land per household is 2 hectares. (SSNBS, 2010, p.88) In
the past, the majority of people lived off a combination of agricultural activities and
pastoralism. The main crops are millet and sorghum. Tapping of gum Arabic trees provides
another source of income. The land is used seasonally for a variety of activities and in different
ways. During the dry season, pastoralists migrate with their cattle to wet areas along the main
rivers where they live in temporary houses. At the beginning of the rainy season, those
temporary settlements are left again for migration back to dryer grazing areas. During the
rainy season, people work in rainfed agriculture on the higher planes. Some sub-sections of the

Dinka do not migrate at all but stay permanently near the river banks for fishing, hunting and
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agriculture. Some other people regard the wet season settlements as their primary homes

(BICC, 2013, p.33; ECOS, 2006, p.7; Prins, 2010, p.4).

These patterns of living were disturbed by oil exploitation. Research by Bol (2012 cited in BICC
2013, p.34) found that “oil-related activities disturbed and disrupted the life in more than two-
thirds (325) of 476 villages in Blocks 3 and 7.” (See Chapter 2.2.1 for more detail.)

Melut County is divided into seven payams, the second-lowest administration level in South
Sudan (BICC, 2013, p.30). The names of the payams are in some cases based on the main
settlement they contain but not in every case. The name in brackets indicates the main
settlement: Melut (Melut), Paloich (Paloich), Galdora (Galdora / Khor Adar in Arabic),
Thiangrial (Thiangrial), Wonamum (Athieng), Gomochok or Bimachuk (Pariak) and Panomdiet
(Panomdiet) (Petry, 2013c). See chapter 5.1 for some explanations regarding place names in

the area of interest.

2.2.1 Oil exploitation and conflict in Melut County

The AOI lies in concession blocks 3 and 7 (Figure 2, Figure 4). In 1981, the Adar Yale oil field in
Block 3 was discovered by Chevron (ECOS, 2009, p.18) but extraction was cancelled for security
reasons as explained above. Oil production in Adar Yale began in 1997. In 2003, Petrodar,
which exploits the oil fields in the AOI, announced major findings in block 7 and 3 with the
Paloich field being the most important one (ECOS, 2011, pp.19-20). Petrodar Operating
Company (PDOC) is a consortium of various Asian companies with CNPC and Petronas of
Malaysia being the members with the biggest share. Exploration of the Paloich field began in
2001. In 2006, the Melut Basin Pipeline was opened which runs from the Paloich and Adar Yael
oil fields in northern direction to Port Sudan. In the same year, full production started on the

Adar Yale and Paloich fields (BICC, 2013, p.20).

In order to create the aforementioned “cordon sanitaire” around the oil fields, the government
of Sudan forcefully displaced thousands of people in Melut and Maban Counties. Hundreds of
villages were affected by the construction of oil well pads, roads, ponds and other
infrastructure. Some villages vanished completely (ECOS, 2011, p.20; BICC, 2013, p.34). “The
wave of destruction peaked in 1999-2002, preceding and coinciding with the development of
the oil fields.” (ECOS, 2006, p.19). Sudanese troops, supported by Government-backed
southern Dinka militias, attacked villages, sometimes even using helicopter gunships or
bomber aircraft. At that point, the SPLA did not present a threat to the oil fields (ECOS, 2006,
p.19). In 2000-2001, 48 villages were allegedly destroyed (ECOS, 2006, p.14). Thousands of
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displaced people settled in towns such as Paloich and Melut. After the CPA was signed in 2005,
displaced people and refugees started to return in great numbers. Many found their villages
destroyed (ECOS, 2006, p.19). Apart from death and destruction, the development of the oil
fields caused environmental problems and changed socio-economic patterns of life (BICC,
2013, p.34). Environmental problems included drain blocks caused by poorly constructed roads
which disrupt the natural flow of water and lead to flooding in some areas with droughts in
others. These in turn caused changes in crop patterns (ECOS, 2006, p.22). Road construction
had a negative impact on agricultural production. The Petrodar pipeline prevented cattle from
crossing it (Wesselink, 2006, p.4). Ground water levels were reportedly falling in some areas.
Whether or not oil production was responsible remains unclear. Ponds for disposal of
“produced water”, a by-product of oil extraction, posed a risk to humans and animals alike.
Sometimes during the rainy season the pools (Figure 6) overflew, flooding the adjacent areas

with oil-polluted water (BICC, 2013, p.40, p.53).

Positive effects could also be observed. As by-products of oil field development, the
construction of roads, the increase of electricity supply and mobile coverage networks brought
benefits to an underdeveloped region (ECOS, 2006, p.22). Positive socio-economic change like

market integration took place, though yet on a very small scale only (BICC, 2013, p.35).
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3 Remote Sensing

This chapter introduces selected remote sensing concepts as well as the data that was used for

this study.
3.1 Classification

Apart from visual interpretation, which can be arduous but usually yields good results,
classification of satellite data is the most important way of obtaining information from
imagery. It is based on the categorization of pixels into classes according to different
characteristics they possess. Various approaches such as spectral pattern recognition, spatial
pattern recognition or temporal pattern recognition exist. For this study, one spectrally
oriented approach — supervised pixel-based classification — was applied. The above mentioned
techniques examine the characteristics of single pixels in a multi-dimensional feature space. A
different way of information-extraction starts with the idea of segmenting imagery into
homogenous objects consisting of single pixels. In a second step, these objects are classified
according to criteria such as color or shape, i.e. spectral and spatial characteristics. The
approach just described is called object-based classification or object-based image analysis

(OBIA) and has been applied in this study as well (Lillesand, 2008, pp.545-547; p.581).
3.1.1 Pixel-based classification

Various techniques exist to separate single pixels into classes according to spectral
characteristics with unsupervised and supervised classification being the most prominent ones.
Unsupervised classification aims at grouping pixels with similar spectral characteristics into
cluster. A variety of mathematical models, such as Maximum-Likelihood, Minimum-Distance-
to-Means or Parallelepiped, have been developed to realize this. Supervised classification
differs by utilizing training data to define classes before the actual classification process. While
unsupervised classification categorizes pixels on a purely mathematical base, supervised
classification uses training areas to numerically describe the spectral attributes of the classes
aimed at. The pixels will then be put into the class they most closely resemble according to a

mathematical model or algorithm (Lillesand, 2008, p.549; Albertz, 2007, pp.158-161).

The algorithm applied in this study is the Maximum-Likelihood approach. It is based on the
assumption that “the distribution of the cloud of points forming the category training data is
Gaussian (normally distributed)” (Lillesand, 2008, p.554). Lillesand (2008, p.554) calls this

assumption to be “generally reasonable for common spectral response distribution”. The
11
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algorithm then computes the probability of a pixel belonging to a specific class. Maximum-
Likelihood is considered to be computationally intensive but at the same time to yield good
results (Albertz, 2007, p.159). It is “the most widely used method for the classification of land
cover” (Frohn et al., 2009).

3.1.2 Object-based classification

According to Blaschke and Strobl (2001), “Human perception does not observe, nor do we
actually think in pixels”. Human beings perceive objects instead. As the spatial resolution of
satellite data continued to improve, the problem arose that objects of interest were no longer
represented by single pixels (Figure 6). Homogenous groups of an ever increasing number of
pixels represent real life objects. Single pixels in very high resolution satellite data usually
belong to the same class or object of interest (Blaschke and Strobl, 2001; Blaschke, 2010).
Pixel-based classification approaches did not take this into account nor did they consider
contextual information. OBIA offers means to overcome the shortcomings of traditional pixel-
based approaches. Before the actual classification process starts, segmentation is performed,
i.e. division of the image into homogenous and hopefully “semantically significant groups”
(Blaschke, 2010). Apart from possessing additional spectral information, e.g. minimum and
maximum as well as mean values, segments contain spatial information. That means they can
be addressed by spatial characteristics such as their size, shape or relationship to neighboring
objects which allows for a wide range of classification possibilities compared to single-value

pixels (Blaschke, 2010).

Even though OBIA was developed to cope with challenges posed by very high resolution
satellites such as IKONOS, GeoEye or QuickBird, object-based approaches have successfully
been applied to Landsat TM and ETM+ data. Frohn et al. (2009) mapped wetlands in Florida,
reaching a much higher overall/producer’s/user’s accuracy and kappa coefficients (see chapter
3.3) for the object-based classifications compared to the pixel-based maximum-likelihood
algorithm. Magalhaes et al. (2012) transferred Frohns method to classify wetlands in Brazil,
resulting in object-based classification outcomes that represented the shape and distribution
of the wetlands better than the classification results of a maximume-likelihood approach. The
opposite result — maximume-likelihood classification yielding better results than an object-
based one — was the finding of the approach of Dorren (Maier and Seijmonsbergen, 2003) in
order to map forests in a mountainous Austrian region with Landsat-5 TM data. Even though
the pixel-based classification reached a slightly higher level of accuracy, OBIA classification

provided better overall results as stated by local foresters.
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3.2 Indices

The information contained in single band pixel values is limited. Several methods have been
developed to mine satellite data for much more information. These techniques are based on
differences and ratios between bands. The resulting parameters are called indices. The

following four indices were applied.

The Normalized Difference Vegetation Index (NDVI) utilizes the fact that green vegetation
strongly correlates with reflectances in the infra-red spectral bands. Rouse et al. (1974)

monitored vegetation systems in the Great Plains of the United States and defined the NDVI as

NIR — RED
NIR + RED

with NIR and RED being the reflectances in the near-infrared and red spectral bands. The NDVI

has been applied and studied extensively.

Baret and Guyot, (1991) compared NDVI with other indices and reported reduced reliability in
sparsely vegetated areas, especially when soils appear very bright. To overcome these
shortcomings, vegetation indices that account for soil properties were developed such as the
Soil Adjusted Vegetation Index (SAVI) (Huete, 1988). SAVI was tested but finally not applied in
this study since it was found not to improve classification results. Qi et al. (1994) proposed a
Modified Soil Adjusted Vegetation Index (MSAVI). It is based on SAVI but modified to allow for
greater vegetation sensitivity which the authors define as the “‘vegetation signal’ to ‘soil noise’

ratio”. MSAVI was used in this study for object-based classification and is computed as

2NIR + 1 —/(2NIR + 1)2 — 8(NIR — RED)
2

with NIR and RED being the reflectances in the near-infrared and red spectral bands.

Bare Soil Index (BSI) and Burned Area Index (BAl) were also applied. BSI enhances “bare soil
areas, fallow lands and vegetation with marked background response” (Azizi, Najafi and

Sohrabi, 2008) and is computed as

(Mean NIR + Mean GREEN) — Mean RED
(Mean NIR + Mean GREEN) + Mean RED

with Mean representing the mean values of the corresponding spectral bands.
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Burned Area Index, which has been developed for Mediterranean areas, is very sensitive to

charcoal signals of burned areas. The index was defined by Martin in 1998 as

1
(0.1 — Mean RED)? + (0.06 — Mean NIR)?

with Mean representing the mean values of the corresponding spectral bands. Chuvieco
(Martin and Palacios, 2002) compared it to NDVI, SAVI and GEMI and found BAI to better
identify burned areas than any of the other indices. Though the Southern Sudanese landscape
differs significantly from Mediterranean lands, BAI led to very satisfying results in burned area

detection (see chapter 5.2 — 5.4).

3.3 Accuracy Assessment

In order to be able to judge the quality of a classification it is necessary to perform an accuracy
assessment. As Congalton (1991) put it: “It looks good is not a valid accuracy statement.””
Instead, ground truth data collection is necessary for a comparison with classification results
(Congalton, 1991). If ground truth data is not available, a second data source that is assumed
to be correct can be used as a reference data set instead. The standard way of presenting
classification results is the error matrix. While its rows contain the classification results, its
columns represent the reference data. An error matrix represents the relation between
classified and reference data. Table 5 — Table 8 show examples for matrices. Three statistical
measures can be derived from an error matrix: Overall accuracy, user’s accuracy and
producer’s accuracy. The first one, overall accuracy, is the sum of correctly classified pixels
divided by the total number of pixels in the matrix. User’s accuracy provides information about
errors of inclusion. To calculate it, the number of correctly classified pixels in a class is divided
by the total number of sample pixels from the same class. User’s accuracy is a measure of
commission. To give an example, a user’s accuracy of 60% for Wetland means that only 60% of
the areas called Wetland are actually Wetland (Congalton, 1991). By contrast, producer’s
accuracy indicates errors of exclusion, so called omission errors. The number of correctly
classified pixels in a class is divided by the total number of pixels of the same class as derived
from the reference data. Transferred to the Wetland example, a producer’s accuracy of 60%
means that the probability of a reference pixel being correctly classified is 60% for the Wetland

class (Congalton, 1991; Lillesand, 2008, pp.589-590).

Another important measure to evaluate the quality of a classification is Kappa. Kappa analysis

leads to a KHAT (k) statistic. The values for k usually range between 0 and 1 even though
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values between -1 and 1 are mathematically possible. It is a measure of the difference
between an observed classification and a random assignment of pixels. A kappa value of 0.87
indicates that a classification is 87% better than a classification based on chance. The lower the
kappa value, the more does an observed classification resemble a purely random one

(Lillesand, 2008, p.590).

3.4 Earth Observation Data

This chapter introduces the types of satellite data that were utilized in this study: Landsat-5
TM, Landsat-7 ETM+, QuickBird-2 and WorldView-2.

3.4.1 Landsat

The main data sources for this study were Landsat-5 TM and Landsat-7 ETM+ images (see
chapter 4). NASA started its Landsat program in the 1970s. The first satellite was launched in
1972. Many more followed with Landsat-8 being the most recent one. It was shot into space in
February 2013. Images were made available from June 2013 on. Landsat satellites are often
referred to as “work horses” due to the amount of imagery they capture and their longevity
which usually exceeds projected life span. The satellites’ near polar orbits are repetitive,
circular and sun-synchronous. Sun-synchronicity refers to the daily crossing of the equator at
the same time. The repetition rate, i.e. the time needed until one spot on the earth’s surface is
being flown over again, for both Landsat-5 and -7 is 16 days. One full orbit takes about 99
minutes. The satellites carry different instruments to capture images for a variety of
applications. The main difference between the Thematic Mapper (TM) instrument on-board of
Landsat-5 and Landsat-7’s Enhanced Thematic Mapper Plus (ETM+) instrument is the addition
of a panchromatic 15 m band for ETM+. Apart from that, the thermal band of Landsat-7 has a
finer resolution of 60 m compared with Landsat-5’s 120 m thermal band (USGS 2013b; Albertz,
2007; Lillesand, 2008). Table 1, which is based on Albertz (2007, p.243), provides an overview

regarding the satellites’ specifications.
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Landsat-5 TM

Landsat-7 ETM+

Year of launch 1984 1999

Altitude 705 km 705 km

Repetition rate 16 days 16 days

Swath width 185 km 185 km

Pixel resolution 30mx30m 30mx30m

Bands 1 0.45-0.52 pm 1 0.45-0.52 pm
2 0.52-0.60 um 2 0.52-0.60 pm

0.63-0.69 um 3 0.63-0.69 um

4 0.76-0.90 um 4 0.76-0.90 um
5 1.55-1.73 um 5 1.55-1.73 um

Thermal band 6 104-12.5um 6 10.4-12.5um

Panchromatic band 8 0.52-0.90 um (15 m x 15 m)

Table 1: Landsat satellite specifications

In May 2003, Landsat-7’s scan line corrector (SLC) failed which resulted in data gaps and pixel

duplications in the imagery. Various approaches to fill the gaps have been proposed (Lillesand,

2008, p.415).

The area of interest is completely covered by Landsat paths 173 and 172 of row 53 (Figure 5).

A very small area in the northern part of Melut County was left out since including it would

have resulted in using additional data from path 173 of row 52.

Figure 5: Extents of Landsat scenes
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As described above in the introductory chapter, a time series consisting of six points in time
was developed. The dates were chosen based on data availability as well as significance with
regard to events in the AOI. Chapter 4 examines this in detail. Two images were needed for
every point in time. Because of the SLC's failure in 2003, additional data (marked with an
asterisk in Table 2) was used for 2004 and 2006 to fill the gaps in the imagery. Table 2 provides
an overview. White and blue color was applied in the table for easy distinction between the six

points in time.

Sensor Path / Row Acquisition Date Resolution
Landsat 7 172 /053 29.11.1999 15 m (pansharpened)
Landsat 7 173 /053 06.12.1999 15 m (pansharpened)
Landsat 7 172 / 053 23.12.2002 15 m (pansharpened)
Landsat 7 173 /053 30.12.2002 15 m (pansharpened)
Landsat 7 172 /053 26.11.2004* 15 m (pansharpened)
Landsat 7 172 /053 12.12.2004 15 m (pansharpened)
Landsat 7 173 /053 03.12.2004* 15 m (pansharpened)
Landsat 7 173 /053 19.12.2004 15 m (pansharpened)
Landsat 7 172 / 053 18.12.2006 15 m (pansharpened)
Landsat 7 172 / 053 04.02.2007* 15 m (pansharpened)
Landsat 7 173 /053 25.12.2006 15 m (pansharpened)
Landsat 7 173 /053 10.01.2007* 15 m (pansharpened)
Landsat 5 172 /053 18.12.2009 30m
Landsat 5 173 /053 09.12.2009 30m
Landsat 5 172 / 053 06.01.2011 30 m
Landsat 5 173 /053 13.01.2011 30 m

Table 2: Used Landsata data

Landsat-5 data was available for 2009 and 2011 which were used to keep the number of

images that contain gaps, as in 2004 and 2006, to a minimum.

For pre-processing, a tasseled cap transformation was performed on all images using ERDAS
Imagine 2011. Kauth and Thomas (1976) developed a tasseled cap transformation for Landsat-
Multi Spectral Scanner (MSS) data to improve identification of agricultural crops. It is based on
the discovery of “data structures inherent to a particular sensor” (Crist, 1986) after which the
data is being rotated in order to establish a viewing perspective that allows for best
observation of those data structures. The transformation must be adjusted to each sensor. For
Landsat TM data, it results in a three-band feature space where the first band corresponds to
brightness, the second band corresponds to greenness and the third band is called wetness
and relates to soil and surface moisture (Lillesand, 2008, p.535). This applies for ETM+ data,
too. For this study, the third band was of great help to identify human-made structures with

very little or no surface moisture such as oil well pads.
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A second pre-processing step consisted of pan-sharpening of Landsat-7 data which includes a
panchromatic band with a resolution of 15 m. This band was merged with a layer stack of the
bands 1-2-3-4-5-7 to produce color images which in turn feature a resolution of 15 m instead
of 30 m (Lillesand, 2008, p.414). A variety of pan-sharpening techniques exist. Extensive testing
led to the employment of the Hyperspherical Color Space Resolution Merge algorithm

implemented in ERDAS Imagine 2011.

Atmospheric correction was not applied. Song et al. (2001) convincingly illustrated that
atmospheric correction is unnecessary for maximum likelihood classification of a single date
image with training data and testing data being from the same image. Although the authors
examined effects of atmospheric correction on Landsat TM data only, no atmospheric

correction was performed on the ETM+ images as well.

The 2002 and 2009 scenes were chosen for land cover classification. Subsets of them were
mosaicked to fit the AOI. A variety of techniques was proposed to fill the gaps in SLC-off
Landsat imagery such as interpolation of neighboring scan lines or the mosaicking of the
imagery with scenes from alternative acquisition days (Lillesand, 2008, p.419; USGS 2013c).
None of these methods was applied to fill gaps in the 2004 and 2006 images since the imagery
concerned was only used for manual on-screen vector digitization using ArcMap. In ArcMap,

the relevant images were simply displayed on top of alternative scenes (Table 2, asterisk).

3.5.1 Data: QuickBird-2 and WorldView-2

According to the classification of remotely-sensed data with regard to spectral resolution as
applied by the European Space Agency (ESA, 2013), Landsat-5 and -7 data belongs to the
category of High Resolution-2 (HR-2) imagery. This class features spectral resolutions between
10 m and 30 m. Satellite sensors with a much finer resolution exist. If the imagery’s resolution
is better than 1 m, it falls into the ESA category Very High Resolution-1 (VHR-1). QuickBird-2
and WorldView-2 with resolutions of 0.61 m and 0.5 m are examples for VHR-1 data. Both
satellites are commercial systems, operated by private companies. Their superior resolution
enables a wide range of earth observation applications (Figure 6). QuickBird-2 was launched in
2001 with WorldView-2 going into space in 2009. Because of their high resolution, swath width
is much smaller compared to Landsat: 18 km for QuickBird-2 and 16.4 km for WorldView-2
(Satellite Imaging Corporation, 2013; DigitalGlobe, 2013).
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Figure 6: Landsat-5 (30 m) vs. WorldView-2 (0.5 m)
Infrastructure of the Paloich oil field, from left to right: Pools for waste water disposal, field
processing facility, power plant

A QuickBird-2 scene, acquired on November 07, 2004, and a WorldView-2 scene from March
24, 2012 were used to map changes with regard to population in the town of Paloich. Ortho-

rectification and pan-sharpening on both images was performed in-house by DLR.
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4 Methodology

An overview of the final workflow is given below (Figure 7). The workflow consists of three
main steps: Feature extraction, feature analysis and visualization. Each workflow element is
being discussed in detail in the corresponding chapter. Feature extraction aims at creating a
database of features that serves two purposes. Mapping the state of the oil fields for every
point in time is one purpose. The second one is to use the features to analyze their spatial
connections and to explore interaction and relatedness between them. GIS techniques are
used for this step. The outcomes of the mapping and the analysis approach will then be

visualized to generate the overall picture as described in the introductory chapter of the study.

During the course of this study, the workflow concept was modified substantially. Original
plans were based on the assumption that the object-based classification of cropland and oil
well pads would yield satisfying results to use them for GIS analysis. As chapter 5 explains, this
was not the case. In the end only digitized features were used for further GIS analysis. The
same applies for initially planned change detection analysis between land cover classifications
which were found not to be meaningful and therefore discarded. Chapters 5.2 and 5.3 further
elaborate on this. In the end only two dates - 2002 and 2009 - were chosen for exemplary

object-based and pixel-based land cover classification.

Landsat data was chosen for two reasons. The first reason was its free availability. The second
reason was full coverage of the entire area of interest over the whole period of interest. Even
though very high resolution data would have been desirable to work with and would have
surely resulted in a higher level of accuracy regarding some results of this study, associated

costs prevented its use.

The six points in time were chosen based on events that occurred in the AOI as well as data
availability. Some dates were set from the beginning: 1999, 2002, 2004 and 2011. The first one
— 1999 — was of interest because it showed the state of the area before oil production started.
The second point in time — 2002 — supposedly not only showed the first stages of oil field
expansion but also the effects of the heavy fighting that took place between 1999 and 2002 as
explained in chapter 2.2.1. In the year 2004, displaced people and persons that had fled the
areas started to return to Melut County (BICC, 2013). The last date in the list — 2011 — was set
as an endpoint of the time series upon design of the study in mid-2012. The fact that early
2011 was the last time for which Landsat-5 imagery of the area of interest was available also

contributed to this decision. By choosing Landsat-5 images, working with a huge number of
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SLC-off Landsat-7 scenes was avoided. The two remaining dates in-between — 2006 and 2009 -

were then chosen by keeping the time interval of two to three years between dates.

Dry-season images were chosen. According to Action Against Hunger Southern Sudan (2008,
p.13), the period from late November until January is the time of harvest in Melut County.
Farmlands should therefore be identifiable whether or not they had already been harvested. If
they had not been harvested yet, they would probably be identifiable because of spectral
reflectances related to vegetation. After harvesting, they would contrast their surroundings in
terms of color and shape. Acquisition dates of late November and early December were aimed

at but could not in every case be ensured (see Table 2).
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4 Methodology

4.1 Visual interpretation and manual extraction

Based on visual inspection of a variety of Landsat scenes, three features were found to be

identifiable on 15 m and even 30 m resolution data: Cropland, roads and oil well pads.

Figure 47 shows examples of cropland, roads and oil well pads from the 2009 Landsat-5

scenes.

The feature class road covers a variety of features that are used for transport between
different places. They include paved and unpaved roads, simple tracks as well as routes
specifically built to connect oil well pads to the road network. The resolution of the satellite
imagery did not allow for a distinction between different types of roads. Due to their long and
narrow shape, roads were most often easily identifiable. A possible source of error was the
fact that small oil pipelines, which often connect oil well pads and other oil extracting
infrastructure, appeared very similar to roads. A comparison with very high resolution Google
Earth data showed that some small roads were not visible on Landsat data. Some minor roads

may therefore be missing.

Oil well pads are mostly unambiguous features. Measuring approx. 100 m in width and length,
they are used to drill for oil. For the first step of construction, “the surface area needs to be
cleansed of all vegetation and leveled in order to be prepared for drilling” (Selg, 2013, p. 37).
While the smaller features they often contain, e.g. the well head or the so called ring main unit
building, could not be identified on HR-2 imagery, the pad itself was in most cases recognizable
because of its white color and squared shape. Whether the well was a producing one at the
time of image acquisition could not be assessed from HR-2 data. Some pads serve purposes
like water injection. Because of their inseparability regarding use, all captured pads were
referred to as oil well pads. In the context of this study, the exact use of the pads was
irrelevant since only the fact that a man-made structure had been erected was of interest. In

Tasseled Cap Band 3, which indicates wetness, they stood out as very dark spots.

In this study the term cropland describes land that is used for agricultural purposes. It includes
small and big scale farming. Small scale farming comprises rainfed agriculture being done
without the help of motorized machinery. The plots of land that are cultivated this way are
quite small. Capturing this type of cropland on Landsat imagery was much more challenging
than capturing big fields where tractors are supposedly in use. Big scale farm lands have a

distinctive shape and compactness that sets them apart from their surroundings even when
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4 Methodology
the use of NDVI or MSAVI does not yield good results because of low vegetation cover in the

dry season. Figure 8 illustrates this with a subset of a Landsat-5 image.

Figure 8: Cropland
Band combination: Red: Band 4, Green: Band 3, Blue: Band 2
A lot of small scale farming takes place on the river banks and their immediate surroundings
(Prins, 2010, p.4). A good indicator for this type of farming is the proximity of settlements on
the river banks. As stated above in chapter 2.2, these settlements are located in more highly
situated areas which are not prone to flooding during the wet season. By overlaying
information on wetness (Tasseled Cap Band 3) with SRTM elevation data, potential settlement
locations were identified and checked against Google Earth data. Figure 9 shows an example.
The dark spot in the image on the left (red box, Landsat-5, Tasseled Cap Band 3) was identified
as a settlement with the help of Google Earth imagery as pictured on the right. Single huts are

visible.

Figure 9: Small settlement on river bank

Areas close to these settlements like the white ones on the right hand side in Figure 9 are

probably used for small scale farming. Prins (2010, p.7) classified any bright appearing area
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4 Methodology
with high reflectance along the river banks as cropland. Confirmation of those areas being
cropland was not possible because in most cases Google Earth did not provide very high
resolution imagery. In order to avoid capturing too many non-cropland areas as cropland, the
described areas along the river banks were not extracted. The possibility exists that too little
small-scale farm land was captured. In general, fallow fields could not be distinguished from
cultivated fields. Since no ground-truth data or reference images were available, the size of
captured cropland areas may differ from the actual size. It is assumed that a lot of small-scale
farm lands were not captured while over-capture of big scale farm lands is possible. The latter
is due to the aforementioned fact that separation between cultivated and fallow fields was not

possible.

For every single one of the six points in time, cropland, roads, and oil well pads were digitized
and stored in a file-geodatabase using ESRI ArcMap10.1. In case of ambiguity, Google Earth
data was used to check on certain features. Unfortunately very high resolution Google Earth
data was not available for the whole AOI. Misinterpretations may have occurred for every

feature class with a higher likelihood in case of cropland and roads compared to oil well pads.

A second set of Landsat imagery (Table 3), dating from the rain season or the end of it, was

used to assess the extracted data and to refine it.

Sensor Path / Row Acquisition Date Resolution
Landsat 7 172 /053 29.09.1999 15 m (pansharpened)
Landsat 7 173 /053 04.11.1999 15 m (pansharpened)
Landsat 7 172 / 053 04.10.2002 15 m (pansharpened)
Landsat 7 173 /053 27.10.2002 15 m (pansharpened)
Landsat 7 172 /053 25.10.2004 15 m (pansharpened)
Landsat 7 173 /053 16.10.2004 15 m (pansharpened)
Landsat 7 173 /053 01.11.2004 15 m (pansharpened)
Landsat 7 172 / 053 13.09.2006 15 m (pansharpened)
Landsat 7 172 / 053 06.10.2006 15 m (pansharpened)
Landsat 7 172 /053 16.11.2009 15 m (pansharpened)
Landsat 7 173 /053 07.11.2009 15 m (pansharpened)
Landsat 7 172 / 053 11.11.2010 15 m (pansharpened)
Landsat 7 173 /053 02.11.2010 15 m (pansharpened)

Table 3: Landsat imagery used for refinement of digitization

In their study on the environmental impact of the Russian oil and gas industry, Sergey and
Oganes (2009) showed that Landsat-TM and —ETM+ data can be applied to identify oil well
pads and roads. The authors evaluated the possibility to spot pipelines as “limited” (Sergey and
Oganes, 2009). This study confirms their findings. While the Petrodar pipeline, running from
the Paloich oil field in direction of the town of Renk, was identified, the pipeline from Adar to

Paloich was not.
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4 Methodology
Exploration patterns (Figure 46, Figure 47) were captured as additional features. They remain
after oil exploration activity stops and form giant grids of lines on the earth’s surface which are
also often referred to as “seismic lines”. Selg (2013, pp.16-17) describes the exploration
activities in detail. Field trips in 2013 by Petry (2013b) confirmed that exploration patterns
were still visible in the area between the Muleeta oil field (Figure 46) and the White Nile.
These patterns were not identified on the 2011 imagery which illustrates the limits of Landsat-

5 data.

4.2 Land cover classification

This chapter explains how the remote sensing methodologies as explained in chapters 3.1 - 3.3

were applied for land cover classification.

4.2.1 Definition of land cover classes

In order to define appropriate land cover classes, existing land cover data was examined.
Figure 65 and Figure 66 show land cover classes for six available data sets. One data set (CDE,
2008) was specifically designed for South Sudan. The rest covers at least several countries
(FAQ, 2003), the entire African continent (USGS, 2003a) or even the whole world (ESA, 2008;
Food Policy Research Institute, 2002; JRC, 2004). All land cover data sets are dominated by
various types of grasslands with sparse shrub cover, i.e. savanna, which is in accordance with
the findings of Harrison and Jackson (1958). Some data sets show a high level of detail, e.g.
FAO Africover and ESA Globcover. Since ground truth data was unavailable and very high
resolution imagery for reference purposes only partially available via Google Earth, a simple
classification schema on the basis of the CDE and USGS classes was adopted. After detailed
visual inspection and initial unsupervised classification tests, five land cover classes were
chosen: Water, Wetland (mostly river bank areas) and three subtypes of savanna. These
include densely vegetated savanna (Savanna-Dense), sparsely vegetated savanna (Savanna-
Sparse) and savanna areas which have been burned and not yet fully recovered (Burned Area).
Because of their dark greyish and blackish color, the latter areas were relatively easy to
identify. Pastoralists often set grazing areas on fire since they believe this will result in growth
of higher quality grass (Graewert, 2012). Sparsely and densely vegetated savanna differ in their
level of vegetation being present which can be assessed by using Landsat band 4 values and
indices. Other possible land cover classes like settlements, open soil or various sub-types of
savanna were dropped after initial classification attempts. Low resolution of the Landsat data
as well as the rather small size of the areas covered by some of those classes, e.g. open soil,

prevented their inclusion. The same applies for cropland which was not assigned a distinct land
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cover class but later classified separately on the basis of the savanna classes. Pixel-based
classification tests in order to classify cropland as a distinct land cover class resulted in poor
outcomes. The spectral characteristics of the cropland areas were too similar to those of
burned areas as well as sparsely vegetated and densely vegetated savanna. Spectral
information alone was not sufficient enough to satisfactorily classify cropland. Based on this
observation, OBIA was applied for classification of cropland. This way, spatial information like
the shape of the fields could be included. The approach of Prins (2010, p.7) which is based on
the assumption that every high-reflectance, i.e. bright, pixel indicates farming activities, was
rejected, since no ground-truth data or very high resolution imagery for verification of this

assumption was available.

4.2.2 Pixel-based classification

ERDAS Imagine 2011 was used to perform a supervised pixel-based classification on the 2002
and 2009 satellite scenes. Up to 40 training samples were selected for each class. Each sample
consisted of 25 pixels (5 x 5). Training samples were set using a band combination of 4-3-2.
Maximum likelihood, “the most common supervised classification method” (Richards and lJia,

1999, p.182), was employed as classification approach.

4.2.3 Object-based classification

The software Definiens eCognition was used to perform OBIA. A rule set was developed for the
2009 scenes, which was later modified to classify the 2002 mosaic. After initial multiresolution
segmentation (Baatz, 2000), objects were classified as Water, Wetland and Burned Area, using
thresholds for the Maximum difference, NDVI and Mean Green values (see Annex- Definiens
eCognition rule sets-R1 for details). Visual inspection showed that any of the yet unclassified
objects would fall into the classes Water or Wetland. A second cycle was necessary to classify
the remaining objects which would be assigned to the Burned Area, Savanna-Sparse and
Savanna-Dense class. A multiresolution segmentation was performed on the remaining
unclassified objects in order to obtain smaller objects. The scale parameter was thus reduced
from 10 as in the first cycle to a value of 5 for the second one. Shape and compactness values
of 0.1 and 0.5 were deemed feasible and therefore maintained. Remaining objects were
classified as Burned Areas with the help of the Burning Area Index. All of the yet unclassified
objects would qualify as either Savanna-Sparse or Savanna-Dense. The image did not show
natural breaks between those types of land cover but a wide and continuous range of infrared
values (Band 4) indicating vegetation. A threshold was finally set with the help of the MSAVI

index and brightness values, separating sparsely from densely vegetated savanna.
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The 2009 rule set was then modified to fit the needs of the 2002 15 m-mosaic (see Annex-
Definiens eCognition rule sets-R2 for details). Due to the difference in resolution, a single pixel
in the 2009 image is equivalent to four pixels in the 2002 image. The latter image contains
much more spectral information. The 2002 rule set reflects this by being more detailed than
the 2009 rule set. The higher level of detail was also based on the fact that even though the
image contains more pixels, the pixel’s spectral values for Green, Brightness, NDVI and MSAVI
were much more similar than in the 2009 image. Distinguishing visually between sparse and
dense savanna was found to be challenging. Complexity was added by the fact that partially
recovered burned areas and sparse vegetation differed only slightly in their spectral
characteristics. Areas that were considered densely vegetated due to their texture featured

very low NDVI and MSAVI values.

The basic structure of the 2002 set was not altered. It consists of two segmentation cycles,
refining the objects of interest. Water and Wetland were completely classified during the first
cycle but with different means compared to the 2009 set. The Bare Soil Index was applied to
classify Wetland. A basic Burned Area classification was performed as well during the first
cycle. The second cycle tried to classify the remaining objects which were much more similar in
their spectral characteristics than the 2009 objects. The adopted strategy was to subtract
objects that could be classified as either Burned Area or Savanna-Dense and to assign the rest
to the Savanna-Sparse class. As mentioned above, separating burned areas from sparse
vegetation was demanding. In the end, thresholds for NDVI-, MSAVI-, Burned Area Index-,
SWIR1-, SWIR2, and Brightness-values were set to define objects as either Burned Area or

Savanna-Dense.

4.2.4 Accuracy assessment

Chapter 3.3 emphasized the need for accuracy assessments to evaluate the quality of a
classification. Since ground truth and reference data sets were unavailable, each classification
was compared to the satellite image it was based on. A stratified random sampling approach
was chosen to perform the accuracy assessment for the four land cover classifications
described above. For each classification, a minimum of 50 sample points per class and a total
of 500 sample points were randomly selected. The number of sample points increased with
the total number of pixels per class, ranging from 50 in the least populated class (Water) to
more than 200 in the Savanna-Sparse class. This approach follows the procedures suggested by

Congalton (1991). ERDAS Imagine 2011 was used to perform the accuracy assessments.
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4.3 Object-based cropland classification

Based on the 2009 object-based land cover classification, a rule set was developed to classify
cropland for 2009. The need for an object-based classification of cropland compared to a pixel-
based approach has been justified in chapter 4.2.1. Table 4 shows the results of an overlay of
the digitized cropland areas for the year 2009 with the OBIA land cover classification of the
same year. Vector data derived from digitization was used as reference data for the
classification. The table shows that 70.55% of digitized cropland vectors fall into the Savanna-
Sparse category while another 16.09% were part of the Savanna-Dense class. Put together, the
two savanna classes contain more than 86% of all cropland. In order to obtain good enough
results quickly, a rule set was developed which excludes all Burned Area, Water, and Wetland

areas from further examination regarding cropland.

. Percentage of
Class Area in km? L.
digitized Cropland

Water 0 0

Wetland 0.13 0.03
Burned Area 57.83 13.33
Savanna-Dense 69.77 16.09
Savanna-Sparse 305.95 70.55

Table 4: Results of overlay of cropland on land cover classification

The rule set is shown in chapter 8.1 R3. It consists of three segmentation cycles. In the first
cycle, Wetland and Water was classified. A thematic layer, the digitized road network, was
introduced. It was later used in the third cycle for an exclusion of all objects further away than
250 pixels (7,500 m) from the road network. A GIS-based buffer analysis showed that 90.58%
of all digitized cropland areas were located within this buffer distance. The second
segmentation cycle refined the remaining objects and classified more objects as Burned Area.
In contrast to this, the third cycle started with a new multiresolution segmentation which
created bigger, not smaller objects. This was done by changing the scale parameter from 5 to
25. The reason for it was the fact that bigger objects in many cases very well represented
whole fields used for farming. Besides the scale parameter, the values for shape and
compactness were also altered to 0.6 and 0.2, to address the cropland’s specific
characteristics. After segmentation, a new class was used for the first time: Non-Cropland. Its
purpose was to store all areas that do not contain cropland. The Cropland class itself was later
filled with objects falling under a certain threshold of mean difference to red band values. At

the last stage, the Cropland class was refined by eliminating non-cropland from it. This was
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done with the help of the shape index — most cropland areas show a characteristic shape —and

the Bare Soil Index as well as the aforementioned distance to the road network.

Because of the poor quality of the classification’s results (See chapter 5.4), subsets were
created instead of classifying the whole satellite scene. The subsets cover an area of 625 km?
(25 km x 25 km) each. Figure 10 shows their location as well as the digitized cropland in blue
color. Subset A contains cropland areas that are easy to distinguish from their surroundings
because of color and shape when shown in band combination of 4-3-2. Some cropland areas
from subset B are much more difficult to identify due to their similarity in appearance with
burned areas and savanna. Figure 11 presents a detailed view with the cropland areas

highlighted by a blue colored boundary.

Figure 10: Subsets for cropland classification
Band combination: Red: Band 4, Green: Band 3, Blue: Band 2
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Figure 11: Detail view of Subset A (left) and B (right)
Band combination: Red: Band 4, Green: Band 3, Blue: Band 2

Rule sets for both subsets are presented in the Annex. For subset A, two segmentation cycles
sufficed. With the help of vegetation-related indices like NDVI and MSAVI, many non-cropland
areas were excluded. In the second cycle, geometrical characteristics like shape index,
asymmetry, roundness, and the relation between length and width of an object were used to
exclude non-cropland. The general approach was to exclude all obvious non-cropland areas in
a first step, after which the remaining unassigned objects were put in the cropland class.
During a final step, the cropland class was refined by eliminating non-cropland objects based
on a mixture of geometrical and spectral characteristics. This approach was also applied for
subset B, with the addition of a third cycle to create bigger objects as it was the case for the

cropland classification of the entire scene.

4.4 Object-based oil well pad classification

A rule set was developed to test if oil well pads could be classified on the 30 m Landsat-5 data
from 2009. Similar to the cropland classification, the road network was used as a thematic
layer. A buffer of 25 pixels — 750 m — was applied since a GIS analysis revealed that 94% of all
digitized oil wells in the 2009 image are situated in a maximum distance of 750 m to the road
network. As described above, oil well pads are squared in shape and of a certain size: 100 m x
100 m which corresponds to 3 pixels in length and width. To make use of this, geometrical
characteristics like area, rectangular fit, and the relation between length and width were
employed to select potential oil well pads. Apart from these queries, brightness values were

considered since oil well pads appear as very bright objects in a variety of band combinations.
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4.5 GIS-Analysis

For GlIS-analysis, digitized vector data of cropland areas, roads and oil well pads were used
instead of the classification results. Reasons for this approach are given below in chapters 5.4
and 5.5. In a first step, basic statistic overview data was calculated. This included the size of

cropland areas, road lengths and the number of oil well pads.

4.5.1 Cropland change analysis

In order to get a detailed insight into the development of cropland areas over time, the second
GlS-analysis step consisted of cropland change detection. In his classic 1989 paper on change
detection, Singh (1989) defined the technique as “the process of identifying differences in the
state of an object or phenomenon by observing it at different times”. While this definition and
its further elaboration referred to satellite images as raster data, the underlying idea of
highlighting differences and visualizing change can be applied to vector data as well. By
employing a variety of GIS operations based on overlaying different data layers, new vector
layer containing gained, lost and unchanged cropland areas were created. The steps listed
below were performed in ArcMap 10.1 using the relevant data sets for the change periods of
1999-2002, 2002-2004, 2004-2006, 2006-2009 and 2009-2011. (Pre-data refers to the earlier
data set of a certain change period, e.g. 2004, while post-data describes the later data set of

the same period, e.g. 2006. Italics mark ArcGIS-tools or —-commands.)

- Export pre-data one time and post-data twice from geodatabase to shape file-format

- Merge all cropland areas in one of the two exported post-data sets and rename the file
to *_merge.shp

- Add field to attribute table of the second post-data shape file named “Status” (Type:
Text) and rename the file to *_change_detection.shp

- Overlay pre-data above post-data (*_change_detection.shp) and split post-data using
the Split Polygons-tool

- Select by Location-query: Target features (post-data) are within the source layer
feature (pre-data)

- Populate selected features’ attribute field “Status” with “Unchanged”

- Switch selection and populate attribute “Status” with “New”

- Clip post-data (*_merge.shp) on pre-data using the Discard the area that intersects
option

- Append the remaining areas of pre-data to post-data (*_change_detection.shp) and

populate the “Status”-attribute with “Loss”
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- Find and delete sliver-polygons

- Re-calculate the polygon’s areas using Calculate geometry

The outcomes were visualized in maps (Chapter 8.2) and are being discussed below.

4.5.2 Correlation analysis between cropland and road network

In a third step, the relationship between different features was further investigated using
ArcGIS 10.1. The connection between the road network and cropland areas was of significant
interest since a lot of research literature (See chapter 2.2.1) states the negative effects of new
roads on existing cropland areas in Melut County. Positive effects would constitute new roads
making hitherto out-of-reach areas accessible. Three questions were asked: What is the
distance between cropland areas and the road network for every year? Does the construction
of new roads lead to the establishment of new cropland areas? Does the construction of new

roads lead to loss of existing cropland?

To answer the first question, a buffer analysis was performed. Six buffers comprising distances
of 500 m, 1,000 m, 2,500 m, 5,000 m, 10,000 m and 20,000 m were created for the entire road
networks of every year of interest. This was done with the help of the Multiple Ring Buffer-
tool. The buffers were used to split the cropland. To give an impression, Figure 12 uses bright
colors to highlight parts of cropland areas that are situated within the same buffer distance.
Bright green indicates areas that are between 1,000 m and 2,500 m away from the road
network which is visualized with red color. Light blue areas lie outside the outermost buffer
and are therefore more than 20,000 m away from any road. After splitting, the sizes of

corresponding areas were summed up. Results are discussed below.
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0 km

Figure 12: Multiple ring buffer and cropland (2011)

The second question concerns assumed positive effects of road construction. It needed to
consider a change period rather than a single point in time. To answer it, a strategy very similar
to the one just explained above was adopted. The same buffer distances were applied with the
major difference that those buffers were created two times. Firstly for pre-data (e.g. road
network as seen in 2004 for the 2004-2006 change period) and secondly for new roads (e.g.
roads present in 2006 but not yet present in 2004). Because of this approach, cropland areas

were split two times as well, using both buffer data sets.

The final question with regard to the cropland-road relationship asks whether or not existing
cropland is being destroyed by the construction of new roads. Construction activities might
swallow up lands previously used for farming. To investigate this, the buffer approach was
discarded. Instead, a visual analysis was performed by overlaying new roads (as explained

above) with lost cropland areas. This was done for all change periods, i.e. five times.
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4.5.3 Oil field development

In order to examine and visualize the development of the four oil fields in the AOI, a grid-based
approach was chosen. A cell-size of 1 km in width and length was applied for a grid covering
the whole area of interest. The resulting grid comprises 10,200 cells and can be seen in Figure
63. For each cell, the number of contained oil well pads was counted. This operation needed to
be performed six times to cover all points in time. It was done with the help of a spatial join
between the oil well pad feature class and the grid-file. A new field called “Count” was created
in the attribute table of the oil well pad feature class. It was populated with the value “1” for
each oil well pad. As a next step, the grid was joined to the oil well pad feature class by using
the Join data from another layer based on spatial location-option. After joining, the sum for
each grid cell was calculated and a new file with the number of oil well pads present in each
grid cell was created. This way, six grids were created that show the development of the oil
fields when visualized appropriately. For their visualization, the number of oil well pads each
cell contains was grouped into five classes: 0; 1; 2-3; 4-7; 8-10. This categorization was based
on the distribution of the 2011 data as Figure 13 shows (please note that Figure 13 does not
include grid cells with zero oil pads). No more than five classes were aimed at to ensure an
easy to grasp visual picture. With the class “0” already reserved for grid cells with no pads at
all, four classes remained to allocate data to. Grid cells containing a single oil well pad were
put into a class of their own since they constitute the overwhelming majority of cells. Values of
2 and 3 were grouped together, as were values 4 to 7. The rest formed a distinct class,

representing the grid cells with 9 and 10 oil well pads.

Figure 13: Histogram for 2011 oil well pads
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The rapid growth of oil well pads raised the question whether their expansion led to loss of
cropland areas. To answer this, a visual analysis similar to the one regarding new roads and
lost cropland was performed. Lost cropland areas were placed on top of a grid like the one
used for the oil field development analysis with the difference of showing cells with newly

constructed oil well pads only. This was done for all five change periods.

4.5.4 Miscellaneous

Another overlay analysis combined digitized pipeline and exploration patterns with lost

cropland areas.

Drain blocks were a source of changes in cropland patterns as stated by ECOS (2006, p.22).
Drain blocks arise when natural water flows are disrupted by poorly constructed man-made
structures. Tasseled Cap Band 3 data which indicates wetness was thus combined with lost

cropland areas to visually determine whether or not these phenomena can be observed.

Changes in land use are very likely related to changes in population. As BICC (2013, pp.30-32)
reports, the number of inhabitants in major towns of the AOI is growing. This can be attributed
to factors like the return of formerly displaced people or the so called pull-factor of the oil
industry. The latter describes the fact that people are attracted by the prospect of jobs in the
oil fields. In order to examine population growth, LandScan data was examined. Table 20
shows available LandScan population data. Unfortunately datasets for all years concerned
were not available. The 2010 dataset was used for the year of 2011 since those year’s images
were acquired in early January of 2011. Population data from the previous year was therefore

considered feasible to use.
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5 Results and Discussion

This chapter presents and discusses the results of the study in detail.

5.1 Mapping

The results of this study were visualized in 19 maps in A3 format. They are shown in the Annex,

reduced in size to fit an A4 page. The original size maps can be found on the accompanying CD.

The main reference map differs from the rest as it contains not only features that were
outcomes of satellite image analysis but information taken from additional data sources. These
features comprise oil field infrastructure like pipelines and the planned refinery near the town
of Thiangrial. They were taken from a map provided by Petry (2013e). The information shown
therein was collected during field trips in 2013. The majority of the concerned features such as

the pipeline connecting Adar and Paloich were not visible on Landsat imagery.

The main reference map also contains settlements that were taken from a variety of sources
such as GeoNames (2013), United Nations Sudan Information Working Group (UN Sudan
IMWG) (2011), United Nations Logistics Cluster Transport Map of Upper Nile State (2013) and
the aforementioned map of Petry. Names of villages found in maps and data sets differ
enormously. ECOS (2006, p.9) reported general unreliability of place names found in the
majority of available maps, whether of Soviet, UN or Swiss origin. This observation was
confirmed after consultation of a number of data sets such as the Swiss CDE maps, UN sources
like UN IMWG or GeoNames. The United Nations Logistics Cluster Transport Map of Upper Nile
State and the Petry map were considered to be the most accurate data sources since Petry

checked the majority of settlements during his field work.

Differences in names stem from the fact that for each place, names in Dinka, English, Arabic or
even more languages exist. Different translations between names contributed to differences in
spelling, too. Sudan’s history is being reflected in this. During the times of northern
dominance, Arab names were often used while after independence, re-naming set in (BICC,
2013, p.31). To give one example, spellings of the name of the town of Paloich include Palogue
(Arabic), Paloch, Palouch, Palough, Falouj, Paloic (ECOS, 2006, p.9). The GeoNames dataset

uses Paloich as well as Baloish.

Since the main reference map contains a high number of data sources, they were not listed on

the map itself.
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5.2 Land cover classification: 2009

The pixel-based land cover classification shows a high level of overall accuracy with a value of
85% (Table 5). The same applies for Kappa. Water and Wetland area classification was of high
quality with only a little misclassification between those classes. Misclassified pixels were
usually situated on the border between the White Nile and its river banks where some pixels
showed characteristics of both classes which were otherwise easy to separate. The producer’s
accuracy for Burned Area is slightly lower than the ones for Water and Wetland but still above
the threshold of 80%. Compared to the high user’s accuracy of the Burned Area class, this
means that not enough areas were classified as Burned Area. Those areas were misclassified as
Savanna-Sparse due to their very similar appearance in some places. Generally speaking, the
classification of areas as Savanna of either type — Dense and Sparse — was much more
challenging and less accurate compared with the other classes. This is being reflected by
relatively low accuracy values with the exception of producer’s accuracy for Savanna-Sparse.
Misclassifications occurred between the two types of Savanna. The reason has already been
mentioned in chapter 4.2.3: No natural or distinctive break between those classes exists with
regard to vegetation cover. Instead, a continuous, uninterrupted range of infrared values
indicates vegetation in the image. Decisions made concerning training site selection were not

being reproduced in every case during the accuracy assessment. Low accuracy values testify

this.
Water Wetland Burned A Savanna-D | Savanna-S Total
Water 50 0 0 0 0 50
Wetland 7 46 0 0 1 54
Burned A 0 0 109 1 3 113
Savanna-D 0 2 1 56 12 71
Savanna-S 0 0 24 24 164 212
Total 57 48 134 81 180 500
Producer's |  g7.71% 95.83% 81.34% 69.14% 91.11% overall
Accuracy
Accuracy:
User’s 100% 85.19% 96.46% 78.87% 77.36% 85.00%
Accuracy
Overall
Kappa 1 0.8361 0.9516 0.7479 0.6462 Kappa:
0.7978

Table 5: Results of accuracy assessment (2009 — Pixel)

The object-based classification of the same mosaic showed similar results for the Water,
Wetland and Burned Area classes and better results for the Savanna classes (Table 6). Overall
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accuracy and overall Kappa were improved as well. Between the Water and Wetland classes
minor misclassifications occurred. The number of Wetland areas that were misclassified as
Savanna-Dense rose in comparison to the pixel-based classification which resulted in a lower
producer’s accuracy. The above mentioned problems to separate Burned Area from Savanna-
Sparse areas occurred less often but were still present. The most important finding of the
object-based classification is the fact that the separation between the two types of Savanna
seems to succeed slightly better with an object-based approach. User’s accuracy values were
lifted above the 80% threshold for both types with Kappa rising from 0.7479 to 0.8025 for
densely vegetated Savanna. Nevertheless, the problem of class separation still persisted.
MSAVI values were used for class assignment in the rule set. Since the human eye cannot
visualize MSAVI values, an accuracy assessment using the satellite image the classification was
based on and band combinations of 4-3-2 did necessarily reveal the weaknesses of the

classification.

Water Wetland Burned A Savanna-D | Savanna-S Total
Water 45 4 0 0 1 50
Wetland 2 51 0 0 0 53
Burned A 0 0 105 1 10 116
Savanna-D 0 5 0 55 6 66
Savanna-S 0 1 17 22 175 215
Total 47 61 122 78 192 500
Producer’s | 95.74% 83.61% 86.07% 70.51% 91.15% overall
Accuracy
Accuracy:
User’s 90.00% 96.23% 90.52% 83.33% 81.40% 86.20%
Accuracy
Overall
Kappa 0.8896 0.9570 0.8746 0.8025 0.6980 Kappa:
0.8123

Table 6: Results of accuracy assessment (2009 — Object)

5.3 Land cover classification: 2002

Most of the results from the accuracy assessments for the 2009 scene applies to the 2002
image as well (Table 7, Table 8) and need no further explanation. These are the superiority of
the object-based classification in general, the reliable classification of Burned Area, Water and
Wetland areas and the problem of separation between the two types of savanna. Even the
overall accuracy and overall kappa values are very similar for each type of classification. What
differs though, are the exact classification results for the two savanna classes. The separation
between those classes was even more complex in comparison with the 2009 scene. This is due
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to the change in resolution of the image from 30 m to 15 m which leads to an increase in
spectral information and detail. A more defensive approach was employed which consisted of
assigning areas to Savanna-Sparse when in doubt. User’s and producer’s accuracy for this class
show a high level of reliability with the object-based classification’s kappa value being much
higher than the pixel-based one. The results for Savanna-Dense are worse compared to the
2009 classification. While the object-based classification boosted the producer’s accuracy from
78.95% to a very satisfying 93.33%, the user’s accuracy changed for the worse from the pixel-
to the object-based approach. A value of little more than 50% means that only half the pixels
in the Savanna-Dense class belong to this class in reality. The overwhelming majority of the
other half should have been classified as Savanna-Sparse. As mentioned above, MSAVI and

NDVI thresholds were not being visually recognized in a satisfactory manner during the

accuracy assessment.

Water Wetland Burned A Savanna-D | Savanna-S Total
Water 43 3 1 1 2 50
Wetland 5 46 0 3 0 54
Burned A 0 0 87 0 14 101
Savanna-D 0 2 6 45 21 74
Savanna-S 0 0 11 8 202 221
Total 48 51 105 57 239 500
Producer’s |  g9.58% 90.20% 82.86% 78.95% 84.52% overall
Accuracy
Accuracy:
User’s 86.00% 85.19% 86.14% 60.81% 91.40% 84.60%
Accuracy
Overall
Kappa 0.8451 0.8350 0.8245 0.5577 0.8353 Kappa:
0.7827

Table 7: Results of accuracy assessment (2002 — Pixel)
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Water Wetland Burned A Savanna-D | Savanna-S Total
Water 47 2 0 0 1 50
Wetland 0 51 0 1 1 53
Burned A 0 0 86 2 8 96
Savanna-D 0 4 1 42 34 81
Savanna-S 0 0 14 0 206 220
Total 47 57 101 45 250 500
Producer’s 100.00% 89.47% 85.15% 93.33% 82.40% Overall
Accuracy
Accuracy:
User’s 94.00% 96.23% 89.58% 51.85% 93.64% 86.40%
Accuracy
Overall
Kappa 0.9338 0.9574 0.8695 0.4709 0.8727 Kappa:
0.8071

Table 8: Results of accuracy assessment (2002 — Object)

The resulting maps (Chapter 8.2) show a very different picture for the two points in time
concerning land cover. The appearance of the area of interest changes for every date of
observation. This is caused by many factors, mainly fires which create what has been classified
as Burned Area. Different levels of rainfall and overall weather conditions contribute by
accounting for the state of vegetation. To perform change detection on the 2002 and 2009
images was found to be useless. It would have resulted in an overall change except for the
Water and Wetland areas. No meaningful information would have been extracted from it.
Change detection would have made sense if much more detailed land cover classes like
settlements or cropland had been classified. The reason why this had not been the case is
given in chapter 4.2.1. Nevertheless, the rule set for the object-based land cover classification

was used as a valuable base for cropland classification.

A second useful outcome was the finding of object-based classification performing slightly
better than pixel-based approaches. This is true for the overall accuracy and kappa accuracy.
For individual classes, the picture is a more complex one with some pixel-based classified land
cover classes showing the same or even a higher level of accuracy than the object-based
derived ones. Even though Landsat imagery is usually seen as data to be used with pixel-based
approaches, the data used in this study showed that OBIA methods can lead to good results

and may even outperform traditional pixel-based practices.

Accuracy would have reached a very high level if the separation between the two savanna

classes with regard to vegetation density had not been implemented at all.
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5.4 Cropland classification

7 a.

10 km

Figure 14: Object-based classification of cropland
Blue: Reference cropland areas, derived by digitization; Orange: Classified cropland areas
The results of the cropland classification as described in chapter 4.3 were considered
unfeasible for further use. Figure 14 clearly shows the mismatch between the classified and
digitized cropland areas. The reason for the poor results was the fact that the majority of
cropland areas was impossible to address directly via spectral or geometrical characteristics.
These characteristics, even though they are a reality, apply to too many non-cropland areas as
well. The similarity between cropland and similar-looking non-cropland areas was found to be
too high. This is illustrated by the huge number of orange colored areas in Figure 14 that are
not cropland. At the same time, some of the blue framed objects shown in the figure above do
not contain a single orange polygon. The idea to extract cropland from the entire AOI using a
single rule set was discarded. In order to test whether the object-based approach would yield

better results on a subset of the satellite image, two areas of interest were chosen and two
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subsets created. Figure 10 shows their positions. The results of the subset based cropland

classification are shown in Figure 15 and Figure 16.

Figure 15: Cropland classification - Subset A
Blue: Reference cropland areas, derived by digitization; Orange: Classified cropland areas

Figure 16: Cropland classification — Subset B
Blue: Reference cropland areas, derived by digitization; Orange: Classified cropland areas
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Percen f
Area that has (.e c ? tage o Percentage of
g digitized area g
. .. Classified been correctly : classified area that
Digitized ope which was .
Subset Area classified ipe is actually cropland
Area (Blue) Ly correctly classified . .
(Orange) (Orange within 5 in reality (User’s
(Producer’s
Blue) accuracy)
accuracy)
A 164.01 km? 134.83 km? 111.94 km? 68.25% 83.02%
B 82.16 km? 129.16 km? 56.70 km? 69.01% 43.90%

Table 9: Accuracy assessment for object-based cropland classification

A superficial glance at the statistics (Table 9) seems to give the impression that the results for
both subsets are very similar with 68.25% and 69.01% of the reference cropland areas
correctly classified (this corresponds to the producer’s accuracy). However, the last column of
the table shows the differences when it comes to the area classified as cropland that is actually
cropland in reality (this corresponds to the user’s accuracy). The classification for subset A
features a much higher accuracy than the one for subset B. Figure 15 and Figure 16 emphasize
this. A closer look reveals what types of areas were correctly classified and what types were
misclassified. Figure 17 shows on the left a well classified detail view of the image. The areas
correctly classified as cropland distinguish themselves from their surroundings because of high
values in the infrared band. At the same time, some cropland areas as identified by visual
image interpretation did appear very pale and greyish looking as shown in the red box. These
areas were not classified as cropland because they resembled too much non-cropland and

savanna-areas. Even their distinctive geometry did not enable reliable classification.

Figure 17: Subset A — Detail
Blue: Reference cropland areas, derived by digitization; Orange: Classified cropland areas
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As mentioned already above, subset B included a lot of areas that appeared too similar to non-
cropland in color, shape, and texture in order to successfully separate them. Figure 18 shows
what some of the misclassified areas looked like. The visually identified cropland appears

almost identical to burned areas or savanna which led to poor classification results.

Figure 18: Subset B — Detail
Blue: Reference cropland areas, derived by digitization; Orange: Classified cropland areas
As a result, subset-based cropland classification using an OBIA approach yielded much better
results on the given data than classification of the entire scene. Good results can be achieved
locally. However, some areas consist of features closely resembling each other regarding their
geometrical and spectral characteristics. The limits of object-based image analysis on 30 m-
resolution data were obvious. This is not in contrast to the statement made in chapter 5.3
about the applicability of OBIA for Landsat. The statement made above is true for the
classification of features that lack detail such as the land cover classes used in this study.
Sophisticated features with less obvious spectral differences and geometrical characteristics
that are similar to those of neighboring object ones are much more difficult to extract with
OBIA methods at the given scale of 30 m and even 15 m. Very high resolution is needed to

accomplish those tasks.

5.5 Oil well pad classification

As with the cropland classification, the oil well pad classification did not yield satisfying results
for the entire scene. Too many bright looking objects of approximately the same size populate

the scene for the oil well pads to be identifiable in every case. Even though locally the rule set
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led to accurate results (Figure 19), the overall picture is one of too many misclassifications as

can be seen in Table 10. Good use could be made of the rule set when used simply to identify

areas where oil well pads cluster. In a second step, such areas could then be examined with

very high resolution data. Selg (2013) investigated this in detail. A different approach could

start by dividing the whole AOI into subsets that would then be classified with the use of

distinct rule sets. Hese and Schmulius (2009) performed OBIA to extract oil well pads on

Landsat-5 data for Russia. They used a subset of approx. 16.5 km x 16.5 km but even then did

not fully succeed. Only parts of the oil well pads under investigation were correctly classified.

Splitting the AOI into small subsets like the ones used by Hese and Schmulius would result in

36 subsets, of which supposedly 33% - 50% would contain oil well pads. Working this way

would establish the need to modify a very high number of rule sets which is not easily feasible;

at least not for more than one point in time.

Percentage of digitized

Percentage of classified oil

. l.“'.'lmbe': of N'.JI.T'ber. of pads which were correctly | well pads that are actually
digitized oil well classified oil well o ) . . .
classified (Producer’s oil well pads in reality
pads pads )
accuracy) (User’s accuracy)
487 763 54.62% 34.86%

Table 10: Accuracy assessment for object-based oil well pad classification

1 km

Figure 19: Oil well pad classification — Detail view
Blue: Reference oil well pads, derived by digitization; Orange: Classified oil well pads
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As a consequence of the poor classification results for oil well pads and cropland areas, the
initial plan of using those results for further GIS analysis was abandoned. Instead, the vector

data, derived by visual interpretation and manual digitization, was used.

5.6 GIS-Analysis

5.6.1 Cropland change analysis

The amount of cropland as identified on the imagery was calculated. The results are shown
below as well as in Figure 52 — Figure 57. Table 11 gives an overview over the size of the areas
covered with cropland, changes in cropland as well as the percentage of cropland areas to the
total area. With regard to cropland, the term total area refers to the part of the AOI that lies
on the right of the White Nile. It comprises an area of 8,838.81 km2. On the left hand side of
the White Nile no cropland observation was performed. Please note that Table 11, Figure 20,
Figure 21 and Figure 22 present results for the entire AOI while Table 12 shows the results for

Melut County only.

Year Cropland in km? Changes in cropland Percentage of
areas cropland to total area
1999 167.71 1.90%
2002 37.92 -77.39% 0.43%
2004 112.05 195.49% 1.27%
2006 171.89 53.40% 1.94%
2009 433.67 152.30% 4.91%
2011 592.86 36.71% 6.71%

Table 11: Cropland statistics — Entire area of interest

Cropland in km?
700 -
592.86
600 -
500 - 433.67
400 -
300 -
200 - 167.71 171.89
112.05
100 - 37.92
0 T - T T T T
1999 2002 2004 2006 2009 2011

Figure 20: Cropland statistics — Entire area of interest
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Changes in cropland areas
250% -
195.49%
200% -
152.30%
150% -
100% -
53.40%
50% - 36.71%
0% T T . T T - 1
1 2 2002-2004 2004-2006 2006-2009 2009-2011
-50% -
-100% - -77.39%
Figure 21: Changes in cropland areas — Overview — Entire AOI
Cropland - Change detection: Areas in km?
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Figure 22: Changes in cropland areas — Detail — Entire AOI
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Year Cropland in km? Changes in cropland Percentage of
areas cropland to total area
1999 157.38 2.27%
2002 35.95 -77.16% 0.52%
2004 112.05 211.68% 1.62%
2006 165.37 47.59% 2.39%
2009 364.5 120.41% 5.27%
2011 463.67 27.21% 6.70%

Table 12: Cropland statistics — Melut County

Five change maps were produced (Figure 58 - Figure 62) to present the locations of the
changes in detail. The most important finding is the dramatic decrease of approx. -77% in
cropland from 1999 to 2002. Change map no. 1/5 shows that the overwhelming majority of
farm lands in the central part of the AOI disappeared. The period between 1999 and 2002 was
characterized by the most intense fighting the oil field areas had witnessed. Thousands of
people were forcefully displaced and fled their homes (ECOS, 2006, p.19). This seems to be the
main reason for the decrease in agricultural lands. The following period (2002-2004) saw a
strong recovery even though the cropland size of the year 1999 was not yet reached again.
New cropland areas appeared in similar areas where they had been present in 1999. Full
recovery was observed in 2006, when the amount of 1999 cropland was surpassed for the first
time in both the entire AOI and in Melut County only. Gains in cropland were made in the
south-eastern part of the AOI along the road between Paloich and Adar and around the town
of Galdora. Losses were detected along the new road running in south-western direction from
Galdora. The central areas around Paloich and east of Melut showed a lot of unchanged areas
as well as expansion in northern direction. Apart from the losses on the road from Galdora to
the south, there is a substantial area south-east of Paloich were cropland disappeared. The
second civil war ended in 2004. From then on, formerly displaced persons returned to Melut
County in great numbers (BICC, 2013). This could be a major reason for the increase in
cropland as observed between 2004 and 2006. The following period (2006-2009) was
characterized by major gains in farm lands. The corridor between Paloich and Melut was
almost completely covered with cropland which reflects the strong population growth in both
towns. South of the connecting road between both settlements appeared a new farming area
as well. In the upper north, north-east and east huge areas were turned into cropland. Losses
were visible west and north of Paloich but they were outnumbered by gains, especially East
and south-east of Paloich. For the first time, the figure for unchanged areas had moved up
from the bottom to the medium spot. It stayed there for the final period (2009-2011) but grew
enormously in size: From 87.55 km? in 2009 to 285.90 km? in 2011. Gains were made in the
southern and eastern parts of the AOIl. The majority of centrally located cropland areas

between the towns of Paloich and Melut remained unchanged or grew. Losses occurred all
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over the AOI in a relatively high number which was almost as big as the one for the 1999-2002

period.

Precipitation data was used to check if the decrease in cropland areas from 1999 to 2002 can
be linked to rainfall levels. The Global Precipitation Climatology Project (GPCP) provides global
merged rainfall datasets that can be downloaded from NASA Godard Earth Sciences Data and
Information Services Center (GPCP, 2013). GPCP combines satellite-based observations with
rain gauge station data to calculate monthly rainfall on a 2.5-degree global grid. For a period
from January 1999 to December 2010, monthly data for the AOI was summed up. Figure 23
shows that the level of rainfall indeed decreased from 1999 to 2002. Rainfall levels in 2004
were even lower while an increase in cropland area of 195.49% was observed (Figure 21) for
that period. Annual rainfall rose steadily to reach its peak in 2007. For the period from 1999 to
2010 the lowest rainfall level was recorded for the year 2009 when 433.67 km? of cropland
area were identified compared to 37.92 km? in 2002. While rainfall levels may have played a
role in the development of cropland areas, it seems highly unlikely that the sharp decline in
cropland areas from 1999 to 2002 can solely be attributed to weather conditions. Mass-
displacement and people fleeing from the violence of the civil war seem to be the more

important factor at work.
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Figure 23: Annual rainfall 1999 - 2010
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As a summary it is to be said that the ever increasing areas used for farming reflect the ever
increasing number of people living in the area of interest. Thousands of people returned after
the events of 2004/2005 and then again after independence when Sudan refused citizenship
for South Sudanese (BICC, 2013, p.32). The attraction posed by the oil fields should also be

accounted for.

When thinking about the massive growth in cropland areas one must keep in mind that the
findings result from visually interpreted Landsat data with a resolution that does not allow for
a detailed analysis of the state of the farm lands which were captured. Whether croplands
were cultivated, fallow or even given up on could not be established. No reference or ground-
truth data was available. Over-capture is a possibility and caution must be advised. This view is
supported by the findings of the South Sudan National Bureau for Statistics (2010, p. 93). The
statistical yearbook for Southern Sudan presents a number of 5,531 ha of harvested areas in
Melut County and 5,072 ha for Maban County. The first would amount to 55.31 km?2. For the
same year, 364.5 km? of cropland areas were identified on Landsat data. Even though the
statistical yearbook refers to this number as an estimation only, the gap cannot be explained
by this alone. More important seems to be the fact that it only accounts for harvested areas
while satellite data analysis included all cropland areas that were visible as such, regardless of
their status at the time of observation. Ground-truth data would have been needed for a strict

separation between different types of agricultural lands.

5.6.2 Correlation analysis between cropland and road network

The extension of the road network was a steady process. It expanded from approx. 190 km in
1999 to approx. 1085 km in 2011. For the last change period the increase was very small

compared to the previous years. Table 13, Figure 24 and Figure 25 present details.

Year Road length in km c::::ek(e:::il:‘e Road length in km | Road length change
(Entire AOI) AOI) (Melut County) (Melut County)

1999 190.432 185.948

2002 257.311 35.12% 226.23 21.66%

2004 44424 72.65% 369.693 63.41%

2006 658.208 48.16% 575.622 55.70%

2009 996.634 51.42% 872.366 51.55%

2011 1085.252 8.89% 960.983 10.16%

Table 13: Road network — statistics
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Figure 24: Road length — Entire AOI
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Figure 25: Changes in road length — Entire AOI

The relationship between cropland and road construction was investigated with three

questions in mind: What is the distance between cropland areas and the road network for

every year? Does the construction of new roads lead to the establishment of new cropland

areas? Does the construction of new roads lead to loss of existing cropland? The first question

was raised with Tobler’s (1970) first law of geography in mind: “Everything is related to

everything else, but near things are more related than distant things.” Figure 26 is to be read

like this: In the year 1999, approx. 25% of all existing cropland was situated within a 2,500 m-

buffer to the nearest road. To provide a second example: In the year 2004, approx. 80% of all

identified cropland was found to be within a 5,000 m-buffer around the road network.
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Percentage of cropland within a certain distance to road network
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Figure 26: Distance cropland - road network

When all six points in time are considered, the diagram shows that from 2004 on, cropland was
situated closer to the road network than before. The year 2006 tops the list. Almost 100% of
the 2006 cropland was located within 10,000 m of the road network. For the years 2009 and
2011, only 90% were located within this distance. The main reason for cropland being further
away from the roads in the years of 1999 and 2002 was simply the fact that there were little
roads at all. This comprises roads that were identified on 15 m Landsat data. Obviously some
sort of roads or tracks must have existed. Otherwise people would not have been able to
cultivate their lands which they did because cropland has been identified for these years. From
this followed the simple observation that with an increase in roads and cropland, the two
types of features tended to be located closer to each other. Whether cropland growth was
directly caused by transport network development could not be determined from the

statistics.

The second question — Does the construction of new roads lead to the establishment of new
cropland areas? — asks about positive effects of road development. To answer it, a buffer
analysis was performed as well. To avoid confusion, the results are shown in five tables instead

of a single one.
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2002: Percentage of new cropland located in a certain distance to the road network

Roads 1999

8.02

12.83

25.79

40.09

50.10

59.88

New roads 2002

3.43

6.96

18.76

26.65

33.39

50.61

Table 14: 2002 — New cropland / new roads

2004: Percentage of new cropland located in a certain distance to the road network

Roads 2002

9.11

20.10

39.81

53.92

81.37

87.59

New roads 2004

7.57

17.52

45.22

75.67

81.85

90.23

Table 15: 2004 — New cropland / new roads

2006: Percentage of new cropland located in a certain distance to the road network

Roads 2004

7.94

15.11

43.04

76.18

92.17

New roads 2006

11.12

24.49

56.19

84.10

95.14

95.79

Table 16: 2006 — New cropland / new roads

2009: Percentage of new cropland located in a certain distance to the road network

Roads 2006

11.12

2161

46.81

68.15

79.83

90.08

New roads 2009

8.76

19.14

48.27

76.97

84.03

90.32

Table 17: 2009 — New cropland / new roads

2011: Percentage of new cropland located in a certain distance to the road network

Roads 2009

19.28

30.51

54.70

77.98

88.37

92.74

New roads 2011

1.18

2.60

8.45

20.99

48.71

79.88

Table 18: 2011 — New cropland / new roads

For every change period, Table 14 to Table 18 shows the percentage of new cropland located

within a certain distance to the road network. The idea was to examine whether new cropland

areas were located closer to newly built roads instead of already existing ones. If that was the

case, one could argue that road construction might have made former inaccessible areas

accessible for farming. The tables are to be read like this: In 2006, 24.49% of new cropland was

located within a distance of 1,000 m to newly built roads while only 15.11% of new cropland

was located within distance of 1,000 m to previously existing roads, i.e. roads that were
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already present in 2004. If the value in the “New roads yyyy”-column is higher than the one in
the “Roads yyyy”-column, the new cropland was closer to the new roads than to the previously
existing ones. For 2002 this was not the case at all. In the year of 2004, new cropland was
closer situated to new roads than “old” ones for distances from 2,500 m on. The same
phenomena could be observed for 2006 with new cropland being closer to new roads than
existing ones from the smallest buffer distance on. In 2009 the situation resembled the year of
2004. The trend was reversed in 2011 when proximity to previously existing roads was much
higher than to new ones. Although important gains in new cropland were made in the
concerned change period, only a very small number of new roads were constructed. This
examination led to the same results as the observation of the general distances between
cropland and roads: Even though in some cases new cropland areas were located in closer
proximity to newly built roads and therefore may ultimately have been an outcome or side-
effect of road construction, this could not be assessed from satellite imagery and the resulting

statistics alone.

The third question, asking about possible negative effects of road construction, could have
been answered in the same way as the two previous ones by performing a buffer analysis.
Since these did not seem to yield clear results, the approach was not followed. Instead, a
purely visual inspection and interpretation of the relationship between cropland loss and road
development was undertaken. This way, the results of the distance analyses were reviewed as
well. For each change period, the following figures (Figure 27 — Figure 31) show new and lost

cropland as well as previously existing and new roads.
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Figure 27: 1999-2002 - Impacts of road construction

For the period of 1999-2002, no negative impacts of road construction are visible. Only little
road development can be observed. East of the town of Melut, small new cropland areas were
identified which lie next to a new road. Whether the two were connected is unknown as has

been discussed above but cannot be ruled out either.
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Figure 28: 2002-2004 - Impacts of road construction

Much more cropland was gained than lost from 2002 to 2004. Areas of loss were not located in
closer proximity to new roads than to previously existing roads. As stated above, some of the
new cropland areas laid closer to new roads than to previously existing roads for this period of
observation. This phenomena can be seen east of Paloich and in the corridor between Melut

and Paloich.
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Figure 29: 2004-2006 - Impacts of road construction

There is an area north-east of Galdora where a new road seems to cut through former farming
areas. At the same time, small new cropland areas appear around this new road. The same can
be said about the new major road from Galdora to the south where new and lost cropland can
equally be found. This is also true for areas around a new road east of Paloich where losses

and gains in cropland were identified.
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Figure 30: 2006-2009 - Impacts of road construction

More new roads appeared between 2006 and 2009 than during any other period. Figure 30
gives various examples of cropland losses and gains in close proximity to new roads. This is
especially the case in the area east of Paloich and in the far north-eastern corner of the map

where a causal connection between the new road and new cropland areas seems likely.
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Figure 31: 2009-2011 - Impacts of road construction

While the period from 2009 to 2011 exhibits almost as many lost cropland areas as the first
change period (1999-2002), the majority of the concerned areas is not closely located to newly

erected transport infrastructure.

As a general outcome of the visual inspection, it can be said that there is no straight answer to
the third question regarding the impact of road construction. Many examples for and against
the assumption that cropland areas were lost due to road construction were found. The same
is true for the more positive assumption of road networks opening up former inaccessible
areas. As shown above, some statistics and the GIS-based overlay of cropland areas with the
transport network suggest that this was partly the case. From satellite-based image analysis,
only a status quo picture can be derived. Even though some of the information gained from
image interpretation and statistics indicate a certain likelihood for or against specific

conclusions, other means of investigation are necessary to give definite answers. Image
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analysis is therefore a tool out of which important questions to ask arise but not a tool to

provide easy answers.

5.6.3 Oil field development

In the area of interest, the number of identified oil well pads rose from a single one in 1999 to
555 in 2011. Similar to the expansion of cropland areas and transport infrastructure, the oil

field development seemed to have slowed down from 2009 on.

Number of detected oil well pads
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Figure 32: Number of detected oil well pads
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Figure 33: Changes in oil well pads
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Year Number of oil well | Changes in oil well Nur:::: (ol\;:::l‘:le" Changes in oil well

pads (Entire AOI) pads (Entire AOI) pads (Melut County)
County)

1999 1 1

2002 13 1200% 3 200.00%

2004 130 900% 95 3066.67%

2006 269 106.92% 213 124.21%

2009 487 81.04% 400 87.79%

2011 555 13.96% 458 14.50%

Table 19: Oil field development

Figure 63 visualizes the expansion of the four oil fields. In 1999, only a single well pad in what
was to become the Paloich oil field could be seen. Three years later, the Adar Yale field had
expanded while the Paloich oil field had also grown in size. The picture changed as observed
on the 2004 images with a massive increase of oil well pads in the Paloich field and substantial
growth in Adar Yale. The Muleeta oil field north-west of Paloich was active as well. For the
following three points in time — 2006, 2009, 2011 — all fields expanded considerably. Another
new field, the Gumry oil field located between Adar Yale and Paloich, was identified in the

2006 imagery.

According to a report by the Nile Research Initiative (2013, p.37), the combined number of oil
well pads from all four oil fields was 601. Taking into account that parts of the Adar Yale field
are located outside the AOI and further expansion of the fields between 2011 and 2013 seems
likely, the number of 555 identified oil well pads for 2011 suggests a very high level of

accuracy.

Tiede and Lang (2010) suggested the use of 3D globe viewers such as Google Earth or NASA
World Wind for data visualization purposes. By “using the third dimension as an additional,
explicit carrier of information” (Tiede, 2010), scientific results can be placed in a spatial context
most people are familiar with. User engagement with and understanding of the data would be
greatly enhanced by being able to zoom, rotate and explore data on different scales. This way,
the limitations of traditional maps, whether analog or digital, can be overcome. To explore
these possibilities, ESRI ArcScene and Google Earth software were used to visualize the
development of the oil fields with the height of the grid blocks representing the number of oil
well pads. Colors are the same as in Figure 63. Figure 34 shows the Muleeta and Paloich fields
in 2009 as well as the bend of the White Nile between the towns of Melut and Kaka. Figure 35
presents a view from the north-east with the Paloich oil field in the foreground and the road to
Adar, leading to the fields of Gumry and Adar Yale, closing on the horizon. These two examples
show the potential and advantages of putting GIS analysis results in an easy-to-navigate

context, especially when compared with the static oil field development map (Figure 63).
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For reasons still unknown, visualization in ESRI ArcScene worked smoothly while the
conversion to Google Earth KML-files encountered massive problems. These have not been
resolved. Data conversion did only work for the oil field data representing the year 2009 while
all the other files did not work. Persistent trouble-shooting did not lead to satisfactory results

and was given finally up on. Further research into conversion problems is necessary.

Figure 34: Muleeta and Paloich oil fields
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Figure 35: Paloich to Adar

The results of the visual analysis to determine whether or not the expansion of the oil fields

led to losses of cropland areas are given below in Figure 36 to Figure 44.
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Figure 36: 1999-2002 — Impacts of oil field expansion

No spatial connection was observed between new oil well pads and changes in cropland areas

for the period of 1999-2002.
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Figure 37: 2002-2004 — Impacts of oil field expansion

Figure 37 shows that lost and gained cropland areas overlap grid cells containing new oil well
pads. It was assumed that new oil infrastructure supplants farm lands. Figure 38 shows a more
detailed view of the situation with the actual positions of the oil well pads visualized as black
dots. An example is given in the right part of Figure 38, supporting the above-mentioned
assumption. At the same time, new cropland areas emerged around new oil well pads. In fact,
for the change period under consideration, more examples were found for the latter

mentioned instance than for the suppression of croplands.
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1 km

Figure 38: 2002-2004 — Detail view

Figure 39: 2004-2006 — Impacts of oil field expansion

Examples for new and lost cropland on top of grid cells containing new oil well pads were

found for the change period 2004-2006. In the north-west of the area of interest, suppression

seems to have taken place.
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Figure 40: 2004-2006 — Detail view

Figure 41: Cropland close to oil well pad

Figure 41, taken from Google Earth, shows farm lands in close proximity to an oil well pad.
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Figure 42: 2006-2009 — Impacts of oil field expansion

Figure 42 and Figure 44 provide more examples for losses and gains of cropland areas that
seem to be connected to oil field expansion. Two examples from the period of 2006-2009 are

shown below in detail.
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Figure 43: 2006-2009 — Detail view
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Figure 44: 2009-2011 — Impacts of oil field expansion

The main conclusion from all those examples is the fact that oil field expansion simultaneously
accounts for the replacement of existing cropland and the creation of new farm lands. By
erecting oil well pads on former agricultural lands, cropland is being lost while at the same
time the possibility exists that the expansion of oil well pads and especially the associated
infrastructure like roads and tracks opens up new lands for cultivation. To verify this
assumption, the development of every single new cropland area and its connection with oil
field expansion would have to be examined in detail and on the ground. As has been stated
above about the connection between cropland areas and the road network, in this case,
remotely-sensed data and its derived products can only provide an “as is”-picture instead of

delivering unambiguous answers.

QOil field expansion was also the reason for the disappearance of villages. During field trips in

2013, Petry (2013a), together with locals, tried to find the locations of such villages south and
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south-east of the field processing facility in the Paloich oil field. In a small area measuring
approx. 40 km?2, as many as eight villages (Mareng, Lugul, Rodong, Katolok, Wunyongdeng,
Wengajok, Ageliu, Adhiau) were replaced by oil infrastructure (Petry, 2013d). The data used for
this study is of too coarse a resolution to investigate the fate of small villages which sometimes
consist only of a couple of huts. Very high resolution data is needed to document incidents like

the disappearance of small settlements.

5.6.4 Miscellaneous

With regard to the hypothesis about the Petrodar pipeline affecting cropland areas, a visual
investigation came to the conclusion that this cannot be confirmed for the area of interest by
image analysis methods and the given data. This does not mean that these effects did not take
place. They have been reported by affected people (Wesselink, 2006, p.3). The analysis simply
showed that these effects cannot be confirmed with the data used in this study. Very high

resolution imagery needs to be applied.

The same statement can be made about drain blocks. Some potential drain blocks were
identified on some of the images but evidence for a connection between drain blocks and
cropland was not found. Figure 45 shows what appears to be a drain block, caused by a road
(Landsat-5, acquisition date: 09.12.2009). The depicted Tasseled Cap Band 3 image represents
levels of wetness. The brighter one pixel appears, the wetter its corresponding piece of land on
the ground. Based on this, Figure 45 shows that the area on the right hand side of the road is

much dryer than the one on the left.

Figure 45: Potential drain block
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Analysis of LandScan population data for Melut County led to the results shown in Table 20

together with the corresponding cropland area sizes for Melut County.

Year Population Increase: in ki e Increase in cropland
population areas

2002 28700 35.95 km?

2004 36435 26.95 % 112.05 km? 211.68 %

2009 40554 11.31% 364.50 km? 225.30%

2010 63991 57.79 % 463.67km? 27.21%

Table 20: Population and cropland areas in Melut County

(Please note that Table 20 deals with the population and cropland areas of Melut County only
which is slightly smaller than the entire AOI. The reason is that census population data is based

on counties of South Sudan.)

LandScan data for the area of interest seems to be of poor quality. The 2008 census identified
49,242 people living in Melut County. The number seems to underestimate the actual size of
the population (BICC, 2013, p.30). LandScan registers only 39,715 inhabitants. A second, more
impressive example is the fact that according to BICC (2013, p.31) the town of Paloich was
home to 16,215 people in 2008. That year’s LandScan data set specifies a number of 319
people for Paloich and its close surroundings. Based on these findings, no further LandScan

data analysis was undertaken.

Very high resolution data as described in chapter 3.5.1 was used to investigate population
growth in the town of Paloich. This was done by digitizing single buildings (Figure 64). The
findings are in line with reports about massive population growth in Paloich. While 1161
buildings were captured on the 2004 image, the number more than doubled for 2012 with
2829 extracted buildings. The digitized features consist of a variety of buildings for residential,

commercial and agricultural use, such as houses, huts or sheds.
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6 Summary and Conclusion

At the beginning of this study, three questions were asked: What changes can be observed?
What spatial connections exist between those observed changes? Can they be explained with

existing knowledge concerning events in relation to oil production?

In order to answer those questions, the study was split into two parts: (1) Presentation and
discussion of the overall picture of developments in the AOI which was introduced in the first
chapter as the aim of the study and (2) final map products based on earth observation data
and GIS analysis. The first question can be answered straightforward. For the three features
under examination, the following observations were made: A significant decrease in cropland
areas occurred as observed on images dating from 1999 and 2002. More than 160 km? of
former farm lands were not used as such anymore. From this base, the size of cropland areas
rose steadily throughout the years. The level of 1999 was surpassed as identified on the 2006
image. A