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Abstract

In literature (Honkavirta, Perala, Ali-Loytty & Piche 2009), (Parodi, Lenz, Szabo, Hui, Horn,

Bamberger & Obradovic 2006), (Li, Wang, Lee, Dempster & Rizos 2005) and (Sen, Gümüsay,

Kavas & Bulucu 2008) lots of different approaches have been applied for modelling of electro-

magnetic field maps, for the purpose of WLAN (Wireless Local Area Network) positioning.

However, none of them considers coverage mapping based on dynamic WLAN measurements,

taking surrounding mobile objects’ positions into account. This research introduces a method

for reference measurement identification, out of dynamic field measurements, enabled by spatio-

temporal filter strategies. Furthermore, it proposes a spatial database model for processing and

storage of electro-magnetic field maps.

This is done by revision of theoretical concepts and methods on wireless network positioning

systems and field modelling approaches. Available data sources of static and dynamic character-

istic will be evaluated, modelled and analysed. On these groundwork of data, parametric and

probabilistic field modelling approaches have been implemented and qualified against a mea-

surement reference track. Thereby, it has turned out that Ordinary Kriging is best suitable for

electro-magnetic field modelling. The findings of this research constitutes an excellent basis for

spatio-temporal field modelling.
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Kurzfassung

In der Literatur (Honkavirta et al. 2009), (Parodi et al. 2006), (Li et al. 2005) und (Sen et al. 2008)

werden viele verschiedene Ansätze der elektromagnetischen Feldmodellierung zum Zwecke der

WLAN Positionierung aufgezeigt. Jedoch betrachtet keiner dieser Ansätze die in-situ Kartierung

aus dynamisch bezogenen Messwerten und beachtet dabei die Positionen umgebender mobiler

Objekte. Diese Forschungsarbeit führt eine Methode zur Extrahierung von Referenzmessungen

aus dynamischen Feldmessungen ein. Dabei wird eine raum-zeitliche Filterstrategie angewendet.

Hierfür werden zuerst theoretische Konzepte und Methoden zur Positionierung in drahtlosen

Netzwerken und Feldmodellierungsansätze aufgeführt. Zur Verfügung stehende dynamische und

statische Datensätze werden evaluiert, modelliert und analysiert. Auf dem Fundament dieser

Daten werden parametrische und statistische Ansätze zur Feldmodellierung implementiert und

gegen einen Spur von Referenzmessungen qualifiziert. Dabei stellt sich heraus, dass Ordinary

Kriging am besten geeignet ist, für die Modellierung der räumlichen Verteilung des elektro-magne-

tischen Feldes. Die Ergebnisse dieser Arbeit bilden eine exzellente Basis für die raum-zeitliche

Modellierung von Feldern.
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1. Introduction

1. Introduction

Continuous fields are mostly based on physical phenomena and in nature their constitution is very

often dependent on the variables of time and space. The modelling of such phenomena compound

several challenges: (i) An appropriate discretisation approach has to be selected, allowing efficient

numerical processing of the actual functional describable continuous phenomenon. (ii) Highly

organised data structures are necessary, for storage and processing of modelled field coverages.

(iii) In nature, ideally modelled field phenomena underlay the real-word of unforeseen physical

influence with inherent statical occurrence.

This problem statement applies to many physical real-world phenomena, as for instance acoustic

noise, optics and atomic or electro-magnetic radiation. On the latter will be focused in this thesis.

The continuous field modelling thematic has been given through the context of the Austrian FFG

(Research Promotion Agency) funded TAKE OFF project SESAAM (Geo-Spatially Enhanced

Situational Awareness for Airport Management) from March 2010 to July 2012. One research

target of SESAAM is the investigation of low-cost positioning methods for WLAN (Wireless Local

Area Network) positioning of objects, moving on aviation ground environments. For this purpose

the RSS (Received Signal Stregth) based fingerprinting WLAN positioning method has been

selected by the Technical University of Vienna research group Geodesy. This technology requires

a RM (Radio Map), modelling the electro-magnetic field coverage of available WLAN AP (Access

Point)s. The research of this thesis, under the umbrella of Z_GIS (Centre for GeoInformatics)

University Salzburg, should give major contribution to the electro-magnetic field modelling in

this research project, on which the actual WLAN positioning algorithm is based. As the research

on low-cost position technologies is one of the stated project targets (Bretz, Kapser & Roth 2011),

the implementation of computational tools and software have been done in freely available Open

Source environments.

The central research question of this thesis is already given by the title: “Modelling of Con-

tinuous Fields: Coverage Mapping Based on Dynamic In-situ WLAN Measurements”. Thereby,

the colon divides the theoretical overall topic from the empirical part of the thesis. However,

especially the latter part of the thesis title invites for more specific verbalisation of the research

questions. The “Coverage Mapping Based on Dynamic WLAN Measurements” should not be

confused with “Dynamic Coverage Mapping...”. The thesis does not focus on spatio-temporal

field modelling, rather in modelling of continuous fields out of a bulk of dynamically gathered

in-situ measurements. This leads to the following formulation of research questions:

• What modelling method is suitable for electro-magnetic fields in non-obstacle free environ-

ments?

© Johannes Kapser 1
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• Is it possible to estimate a static field map out of dynamic in-situ measurements?

• What data structure is capable for multi-layer field mapping?

This questions should be answered by this thesis at the end of the day.

The thesis project provides a massive data volume of recorded in-situ WLAN measurement

values, collected by MU (Mobile Unit)s, and aircraft positioning on the testbed area. Out of

these dynamic data sets, measurement reference values will be extracted on a spatio-temporal

rule set. These reference values should constitute the basis for relevant field modelling approaches.

For handling of data and analysis, a tailor-made data processing frame-work has been developed

and implemented accordingly.

This work is exclusively focused on modelling of continuous electro-magnetic fields, on the exam-

ple of WLAN positioning infrastructures and does not consider any signalling, location sensing,

position algorithmic or position display related topics. The thesis suggests theoretical methods,

abstract processes and applied techniques towards field modelling, however it does not provide

finalised electro-magnetic field maps for a kind of end solution.

The target audience of this thesis is everyone, who is interested in continuous field mapping with

the aid of GIS (Geographic Information System) related tools and geo-statistic theory. Especially

interested persons in electro-magnetic or physically similar distribution phenomena might be

benefit from that work. However, this thesis should be accessible without any background in

physical or electrical theories. As this thesis should constitute a sustainable groundwork for on-

going research of continuous field modelling, it might be relevant for each, who wants to expand

that work in the direction of spatio-temporal field modelling and/or geo-statistical simulation.

The thesis structured into this introduction, three core chapters and has been finalised by a

chapter about discussion and future directions. Additionally, a Research Methods Appendix is

attached to this work, as it should not disturb the thread of arguments through the core of this

thesis. A flow chart of the thesis’s main chapter is shown in figure 1.1. Each of the three main

chapters is depicted as functional block, extended by sections of first and second order.

After this Introduction, Theoretical Methods and Concepts basically focuses on the-

oretical fundamentals and literature review. Therein, Wireless Network Positioning Techniques

introduces theoretical concepts and principles of communication systems and the wireless commu-

nication channel. Moreover, it regards positioning systems from a system point of view. Methods

of Radio Map Generation does focus on the mathematically fundamental definition of the radio

map model and illuminates electro-magnetic field modelling approaches by literature review.

© Johannes Kapser 2
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Introduction

Data Sources, 

Modelling, and 

Analysis

Theoretical 

Methods and 

Concepts

Wireless Network 

Positioning Techniques

Methodes for Radio Map 

Generation

Field 

Modelling

Discussion and 

Future Directions

Data Sources

Data Modelling

Data Analysis

Parameter Model

Probabilistic Interpolation

Model Qualification

§ Principles and Concepts

§ Network Positioning Systems

§ Definition of the Radio Map

§ Field Modelling Approaches

§ Static Infrastructure Data

§ Dynamic Measurement Data

§ Data(base) Modelling

§ Data Integration

§ Spatio-Temporal Distribution

§ Measurement Reference Value 

Extraction

§ Model Implementation

§ Model Calibration

§ Data Distribution

§ Ordinary Kriging Interpolation

§ Measurement Reference Track

§ Model Evaluation

Figure 1.1.: Sequence of chapters and sections

After this theoretically based block, Data Sources, Modelling and Analysis reviews the

set-up material of this thesis project. This is done in three consecutive steps. First of all Data

Sources reviews available static infrastructure and dynamic measurement data sets, for the pur-

pose of static display of infrastructural data and measurement reference value extraction. Second,

the Data Modelling section proposes a suitable model for data modelling and integration. This

chapter ends by Data Analysis of dynamic data in terms of spatio-temporal distribution. On that

basis, a suitable process has been elaborated for measurement reference value extraction.

The last core chapter cares about Field Modelling, on the basis of up to this point elabo-

rated findings. It starts with implementation of a Parameter Model considering physical antenna
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characteristic in connection with the radial model based field modelling approach. After imple-

mentation, this model is calibrated by previous extracted measurement reference values. The

second approach illuminated in this section is the Probabilistic Interpolation. This realises Or-

dinary Kriging interpolation, based again on the measurement reference values. Additionally,

a second interpolation point basis is considered, compounded of samples of the elaborated pa-

rameter model and measurement reference values. All these field modelling approaches will be

analysed against a measurement reference track and compared against each other in the Model

Qualification part of this thesis.

This work finishes with a Discussion and Future Directions chapter.
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2. Theoretical Methods and Concepts

2. Theoretical Methods and Concepts

Theoretical methods and concepts are the key to each research and so to this thesis. They pro-

vide the fundamentals and current status of research, in the area of field modelling in reference

to electro-magnetic field modelling. This will be introduced, by a mixture of reviewing research

publications and standard literature in that field. Although this thesis is basically focused on

modelling of continuous fields, this chapter goes beyond purely revising this regarding literature.

It takes the concepts and physical boundaries of WLAN (Wireless Local Area Network) position-

ing into account, in order to get familiar with related terms and technology limitations. This is

regarded as crucial basic knowledge, for following up later field modelling concepts of this thesis.

However, the main focus is laid on field modelling concepts, or in other words: “Methods for

Radio Map Generation”.

Wireless network positioning techniques will be elaborated fist of all. Thereby, principles and con-

cepts of communication systems in general will be introduced, focusing on the physical constitu-

tion and possibly interfering effects of the wireless communication channel. This will be followed

by an introduction to network positioning systems, elaborating the core components of that sys-

tem with their technological concepts behind. After this communication systems based overview,

methods for radio map generation will be discussed. This starts by a mathematical definition of

a possible radio map system structure and goes over to physical field modelling approaches. The

latter part is subdivided into deterministic and probabilistic modelling approaches.

2.1. Wireless Network Positioning Techniques

Networked communication systems constitute the foundation of wireless network positioning.

Basically, they provide a infrastructure for the purpose wireless positioning or geolocation de-

termination. In the case of wireless network positioning, the infrastructure is primarily used for

communication of data. This is due to the fact that wireless positioning is mostly used in in-

door and campus environments, where given WLAN infrastructure is utilised for a variety of

IT-Services (Honkavirta et al. 2009),(Parodi et al. 2006).

The concepts of positioning are on the forefront of this section. However, in order to get access

to the idea later on in this thesis, first of all electro-physical grass roots will be revised. This will

be done by guidance through a basic model of communication systems, whereas the focus is laid

on the communication channel. It will not get into much detail, though a basic understanding of

radio propagation effects is crucial to obtain the later on introduced methods of electro-magnetic

field modelling. Besides that, different network positioning topologies, its functional architecture
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and inherent components from a system point of view will be elaborated. On the basis of a generic

functional positioning system architecture, a basic illustration of the components’ function will

be given. It starts at different available positioning technology, goes further about positioning

metrics and algorithms to positioning storage and display strategies.

2.1.1. Principles and Concepts

The science of communication systems is a complex field and fills scores of books, university

courses’ curriculum and scientific journals. The very basic understanding of a communication

system and its underlying fundamentals should be shown on its basic elements, depicted in

figure 2.1 from Haykin (2001).

Transmitter

Channel

Receiver
User of 

Information

Source of 

Information
Message 

signal

Transmitted 

Signal

Received 

Signal

Estimate of 

message signal

Communication  System

Figure 2.1.: Basic elements of a communication system

The basic principle of a communication system is the transmission of information, or messages,

from a Source of Information to the User of Information. In telecommunication for instance four

major source of information are employed: speech, music, pictures and computer data, whereas

the latter one is relevant for WLAN communication. For the purpose of information transmission,

the source of information is now inserted as a message signal to the communication system. The

communication system itself includes three major components:

• The Transmitter encodes the source of information, independent of its corresponding infor-

mation, appropriate for the consecutive communication channel. In the example of WLAN

communication, a AP (Access Point) constitutes the transmitter of the communication

system. The transmitted power P0 is a crucial parameter of the transmitter.

• The Channel of a communication system is simplified spoken the connection line or space

between transmitter and receiver. Two basic groups of channels can be distinguished: chan-

nels based on free propagation and those on guided propagation. Guided propagation chan-

nels are in most cases telephone cable, coaxial cable and optical fibre wave guides. Free

propagation channels are wireless broadcast, mobile radio and satellite channels. Each of

these channels in both groups can be parametrised in terms of bandwidth and transmission
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loss. Additionally, the group of free propagation channels induces interfering multipath and

diffraction propagation effects.

• The communication system’s Receiver detect the incoming signal and decodes the original

bits of information. The decoding process of the signal is statistical in nature, as the in-

coming signal is often interfered by a variety of physical effects. The major performance

parameter of receivers is the sensitivity, counted as the SNR (Signal-to-Noise Ratio) at the

receiver input as the ratio of the average received signal power to the average noise power,

both measured at the same point. The SNR is often expressed in decibels (dB), defined as

10 times the logarithm (to base 10) of the power ratio. Finally, the receiver forwards an

estimate of the message signal to the user of information.

The two primary resources in communication systems are channel bandwidth and transmitted

power. Channel bandwidth in general is defined as the band of frequencies allocated for the

transmission of the message signal and is measured in Herz (Hz). This means in turns, the

broader the channel bandwidth, the more information can be transmitted at the same time.

Transmitted power is the average power of the signal and determines the coverage of wireless

communication systems (Haykin 2001).

The transmitted power P0 of a communication system is a crucial parameter in wireless network

positioning, as it defines implicitly the spatial availability of positioning in such systems. For

the coverage in wireless systems a required minimum SNRr on the receiver side is necessary to

establish a reliable communication link.

The SNRr in non-logarithmic form can be expressed as Pr/N0, where Pr denotes the average

received signal power and N0 the average noise power both counted on the receiver side. That

points out, the lower the N0, the internal noise flour of the receiver, the higher the SNRr. Amongst

others N0 is a function of the receiver quality, which has to be considered at the consumer tech-

nology domain of WLAN devices (Carr 2000). Though, the most influencing value of the SNRr

is the received power Pr. In wireless free propagation channels, the received signal power Pr at a

certain point of time is mainly a function of distance to the signal transmitter. This is expressed

by the Friis free-space equation:

Pr = PtGtGr

(

λ

4πd

)2

[W] (2.1)

Pt denotes the transmitted power, Gt, Gr the power gain of transmitting and receiving antenna

and λ the wave length, λ = c0/f , of the transmitted carrier frequency f and the speed of light c0.

For link budget calculation and ease of use, based on equation 2.1, the path loss PL, representing

the signal attenuation between transmitter and receiver signal power in decibels, can be expressed

as,

PL = 10 log10

(

Pt

Pr

)

[db] (2.2)
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From the substitution of equation 2.1 into 2.2 follows,

PL = −10 log10(GtGr) + 10 log10

(

4πd

λ

)2

[db] (2.3)

The latter part of equation 2.3 is called the free-space loss, excluding the parametric influences

of transmitting and receiving antenna. For the case of omni-directional antenna characteristic

and constant carrier frequency f , these terms can be summarised as constant C. This leads to

the most basic form of a propagation model, purely dependent on the distance d,

Pr(d) = 10 log10(Pt) + 10 log10(d)2 + C [dbW]

where C = 10 log10

(

4π

λ

)2

− 10 log10(GtGr) [db]
(2.4)

Finally, the spatial coverage of a wireless communication system is mainly a concept of required

minimum SNRr at the receiver. That parameter is directly connected with its inherent spatially

dependent value of Pr(d). The spatial distribution of the received power Pr might be modelled on

the basis of equation 2.4, between the communication system’s transmitter and receiver station.

Since the spatial modelling of Pr is a major concept of this thesis, lets have a closer look on

interfering effects of the wireless communication channel.

In ideal multipath-free environments, a electro-magnetic wave propagates on the direct path from

the transmitting to the receiving antenna. This is an ideal consideration which might be found

under lab conditions. In real world however, each natural or artificial object, as buildings or

vehicles, located between source and sink of wireless communication, reflect the electro-magnetic

wave (Skolnik 1990). Figure 2.2 shows exemplarily the multipath effect in WLAN outdoor envi-

ronments between an AP and MU (Mobile Unit).
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AP (source)

MU (sink)

path A

path B

path C

path D

path E

Figure 2.2.: Multipath effect in outdoor environments

Basically, figure 2.2 shows besides the direct path A only an exemplary subset of reflection

options. Each line represents the direction of the Poynting vector of the electro-magnetic field,

corresponding to the radiated sinusoidal plane wave. That vector points the direction of the

propagating wave, while oscillating in magnitude and represents the rate of energy flow per unit

area (Haykin 2001). In figure 2.2 the originally radiated signal is reflected by ground (path B),

a surrounding building (path D) and an airplane (path C ). A further part of the energy is even

radiated in free space, without reflecting back to the signal sink. Thereby, each single signal path

is attenuated differently. The signal attenuation is caused on the following physical considerations:

(i) the travel distance of the electromagnetic wave, as shown in 2.4, and (ii) different material

properties of the reflecting plane due to their corresponding dielectric constant (Skolnik 1990).

Moreover, different surface materials induce different scattering effects at the reflecting plane’s

surface, as shown by (Il-Suek, Sewoong, Jae-Woo & Young Joong 2007). This in turns, attenuates

the deflected signal further, as according to the law of energy conversation only a certain part of

the scattered signal arrives at the receiver side.

The effect of multipath on the receiver side can be descriptively shown in the time domain.

For that each sinusoidal signal path of the above introduced example is modelled in phase shift

and amplitude. This can be done by the well known equation of a sinusoidal waveform, y(t) =

A sin(2πf + Φ), with the signal frequency f and phase Φ. For simulation of the introduced
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example1 in figure 2.2 above, f is selected to 2.4 GHz, according to the WLAN ISM (Industrial

Scientific and Medical) band. The signal amplitude A is normalised on the direct propagation

amplitude of path A. Hence, A of path B is due to reflection and extended travel distance weaker

than the signal of path A. So does the amplitude of signal path C and D. The phase of signal

path A, B, C and D depends on the signal’s travel distance and wave length λ, counting 12.5cm

at 2.4 GHz2. In this mind experiment, the phase is randomly selected to ΦA=0, ΦB=1/3π, ΦC=π

and ΦD=1/10π. At the receiver side all incoming signals will be accumulated to one resulting

component in phase and amplitude.
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Figure 2.3.: Simulated multipath effect in an outdoor environment for sinusoidal signals

Figure 2.3 shows on the one hand the simulated signal paths A to D and on the other the re-

sulting sum of all signal paths at the receiver side. At this parameter selection multipath has a

constructive effect on the signal, as the resulting amplitude is higher than the direct path A’s

amplitude. However, in worst case the overall signal is eliminated completely due to adverse

phase shifts in different signal paths.

The multipath propagation effect is influenced by different physical effects, like wave propaga-

tion mechanisms, reflection, diffraction and scattering. This makes it highly complex to model

multipath effects of the communication channel.

1Please note that all parameter values of the simulation are selected corresponding to physical conditions, however

do not base on empirical parameter research
2At laboratory conditions in vacuum, where the velocity corresponds to the speed of light c0
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The illumination of the basic model of communication systems has shown, the field strength of

radiated electro-magnetic waves, carrying the information signal in WLAN communication, is

a continuously distributed magnitude in space. The signal strength must reach a certain value

above the receiver sensitivity threshold, in order to establish a reliable communication link. The

area where this link is available, known as the concept of coverage, might be modelled straight

forward under multipath free lab conditions. The effect of multipath, however constraints the

way of deterministic electro-magnetic field modelling due to its inherent complexity.

2.1.2. Network Positioning Systems

The term Positioning system is introduced at this stage of the thesis as the angle of view on

wireless communication systems is shifted. It turns from the pure electrical and physical point

of view to a more positioning affine perspective on wireless networks.

Positioning is basically a rather general term and summarises the identification of an object’s real-

world geographic location. The position identification is either done actively by positioning of an

technology device or passively by e.g. primary radar or ultrasonic technology (Skolnik 1990). Per

se, positioning is not limited to certain technologies and might be even a solution of compounded

positioning technologies (Groves 2008). A positioning system is an active position technology

and consists of at least two spatially separated hardware components. The first location sensing

unit measures received signals, radiated from the second signal transmitting component. Vossiek,

Wiebking, Gulden, Weighardt & Hoffmann (2003) classifies local positioning systems in terms

of their topology. Thereby, the main distinction is made between self- and remote-positioning

systems. Whereas in self-positioning the location sensing unit is mobile, in remote-positioning

systems the location sensing part is done by locally fixed receiver stations. Vossiek et al. (2003)

introduces further indirect remote- and self-positioning approaches, where measured data will

be transferred back to the opposite unit for the purpose of information, display or position

computation.

This more general considerations of positioning systems will be regarded in the following section,

in terms of their functional architecture, while focusing on networked systems.

From an architectural point of view, network positioning systems can be segmented into signalling

infrastructure, location sensing, position algorithm and position display & storage components.

Though, each component is not necessarily a closed hardware component. This is a more func-

tional view on the system, where each component is neither fixed on a certain hardware or

software component nor no its spatial distribution. Figure 2.4 depicts the functional architecture

of a network positioning system in general. All these components are chained and deliver a cer-

tain signalling or information input to consecutive blocks. It covers the most general case, that

multiple positioning technologies provide their measured variable to one position algorithm.

© Johannes Kapser 11



Modelling of Continuous Fields:

Coverage Mapping Based on Dynamic In-situ WLAN Measurements

2. Theoretical Methods and Concepts

Location 

Sensing

Position 

Algorithm

Position 

Storage 

& 

Display

Eradiated 

RF-Signal
Signalling 

Infrastructure

Measured 

Variable

Location

i.e. (x,y,z)

Location Metrics:

· ToA

· AoA

· RSS

· ...

· Triangulation 

Deterministic  and 

Probablistic

· Pattern Recognition 

(Fingerprinting) 

Deterministic  and 

Probablistic

Technologies:

· NB

· WB

· UWB

· ...

· Mobile or 

Stationary GIS

· Web Client

· (Geo -) Database

Server

· ...

AP_1

AP_2

AP_N

Location 

Sensing

Signalling 

Infrastructure

Figure 2.4.: Functional architecture of a network positioning system

Let’s have a closer look on the function of each single block of that architecture.

Signalling Infrastructure

The signalling infrastructure constitutes the skeleton of a positioning system. Thus, it defines

the positioning technology and its inherent potential in system coverage, availability and preci-

sion. A well known example for such an infrastructure is the GPS (Global Positioning System)

(Groves 2008), where the earth surrounding satellites establish the signalling infrastructure for

positioning on earth, water and sky.

In wireless network positioning system however, the signalling infrastructure is established by

WLAN AP or different technology dependent transceivers, surrounding the area of position-

ing. Basically, the positioning technologies in such systems can be divided into NB (Narrow

Band), WB (Wide-Band) and UWB (Ultra Wide-Band) signalling systems (Pahlavan, Xinrong &

Makela 2002). This classification is based on the occupied signal bandwidth, used for positioning

related measurements. NB systems, as all GNSS (Global Navigation Satellite System) systems,

measure mainly the phase difference between transmitted and received signal for ToA (Time of

Arrival) computation. They occupy around 20MHz in bandwidth.WB systems apply the same

principle of ToA measurements, however under utilisation of more bandwidth, around 150MHz,

and complex modulation techniques as for instance DSSS (Direct-Sequence Spread Spectrum)

(Pahlavan et al. 2002) or FMCW (Frequency-Modulated Continuoues Wave) modulation (Roehr,

Gulden & Vossiek 2007) more robust signalling is achieved for use in multipath environments.

UWB techniques exploit up to 1GHz in bandwidth and allow the most precise measurement

in ToA positioning. Due to its robustness against multipath its the ideal positioning technique
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for indoor environments. In brief, the higher the signal’s bandwidth the more precise the signal

timing, as shown by (Waldmann, Weigel & Gulden 2008), and therefore at the end of the day

the positioning.

Although on market are many network based positioning technologies available, the decision for

a certain technology is often a trade-off between position accuracy, deployment costs and already

available infrastructure.

Location Sensing

The location sensing part of the system receives first of all the radiated RF-signal from the sig-

nalling infrastructure. Depending on the inherent position system’s metric it extracts the input

variables for the positioning algorithm. In the case of self-positioning systems the location sensing

is part of the MU, as depicted in figure 2.4. In remote-positioning systems it is vice-versa.

The location metrics can be classified into three different measurement principles: propagation

based, AoA (Angle of Arraival) and RSS (Received Signal Stregth). Propagation based systems

can be further sub-classified into ToA, RToF (Round-trip Time-of-Flight) and TDoA (Time Dif-

ference of Arrival) systems. While in ToA and RToF systems the travel time of the signal is

used for range measurements, in so called TDoA systems the metric is based on the difference

of signal travel time between MU and APs (Vossiek et al. 2003). The measured variable includes

accordingly either travel times or differential times. In AoA systems the relative angle of bear-

ing between two stations is measured. This is usually achieved by using directional antennas or

antenna arrays (Niculescu & Badri 2003). In that method the bearing angle between MU and

the surrounding infrastructure stations constitutes the measured variable. Positioning in RSS

systems is based on the propagation loss of signals radiated by each AP. The MU simply mea-

sures the signal strength to each detectable AP and forwards that information to the positioning

algorithm.

For AoA or propagation based sending metrics, highly specified technology is necessary to en-

able accurate angle and time measurements in wireless networking infrastructures. For these

positioning method existing standardised off-the-shelf technology is not yet available. Amongst

all metrics, RSS is the easiest adaptable to already existing WLAN communication infrastruc-

tures, as it does neither claim additional hardware implementation nor acquisition effort. This

is because most off-the-shelf WLAN communication interfaces support power measurement per

se.

Position Algorithm

The position algorithm constitutes the core of a positioning system. It receives all measured vari-

ables of the location sensing units and processes the position solution, which could be forwarded

to consecutive system components. In networked infrastructures the position algorithm can be

either located together with the location sensing component on the same hardware device or on

a separate hardware component within the network.

Triangulation is used for position computation of AoA and propagation based metrics. The de-

terministic triangulation approach is based on geometric triangulation methods, where the signal
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geometry and the spatial constellation of navigation transmitters around the MU, plays a pri-

mary role in position accuracy (Mansfeld 2004). Due to estimation of errors in inaccurate ToA

measurements, the deterministic triangulation techniques provide a spatial uncertainty of the

position solution, known as DOP (Dilution of Precision) concept, rather than a fixed position.

To overcome that issue, a variety of probabilistic position algorithms have been developed, pro-

viding an estimate of location coordinates as fix position (Pahlavan et al. 2002). RSS metrics

use pattern recognition techniques, also known under the concept of fingerprinting, for position

determination. For that technique a priori measurements of the electromagnetic field distribution

for each AP has to be applied in the area of interest. On that “field-map” spatial correlation to

the measured field-strength values is achieved by the deterministic nearest neighbour approach

(Honkavirta et al. 2009), yielding into the position solution. For enhancing the position solu-

tion, more complex probabilistic methods using Bayesian filtering implemented as Particle filter

(Widyawan, Klepal & Pesch 2007) for fixing the position.

In RSS metrics the choice of the position algorithm does considerably influence the accuracy

of the later position solution. In challenging areas regarding interference effects on the commu-

nication channel, e.g. by multipath influences, the position algorithm has to compensate these.

While in outdoor environments deterministic approaches often fulfils that purpose, indoor en-

vironments claim for complex probabilistic algorithm models to meet strong requirements in

position accuracy.

Position Display and Storage

The position display unit constitutes the HMI (Human Machine Interface) of a positioning sys-

tem. It directly receives the finally processed geographical position as coordinate tuple from the

position algorithm or an intermediate storage component. Display and storage component can

be physically divided onto different network entities or merged on the same machine or software

system. In some cases no display unit exists, if positions are exclusively used for process based

analysis, as for instance in the case of package tracking systems in logistics.

Position storage systems can be different in their characteristics. Often, in order to achieve

networking flexibility, the storage system is a web-server database combination. For security

purpose, standardised security services of the web-server can be utilised. As database a con-

ventional DBMS (Database Management System) can be utilised, with or without geo-spatial

extension, as for instance PostGIS or Oracle Spatial. This might be utilised as well as basis for a

distributed Web GIS (Geographic Information System) solution on top of the DBMS server. The

display component in networked environments could be a light weight thin-client browser based

web-application, retrieving positions regularly from a DBMS or application server, as shown by

Fu & Sun (2010). Either it can be designed as a thick-client, where positions are directly stored

underneath the display client application. In both cases, thin- and thick-client applications, the

physical display device can be shaped as mobile or stationary platform. Another possibility for

displaying positions is the direct use of a GIS, where tracked positions can be displayed and

analysed in the time and space domain (Press & Environmental Systems Research 2004). The

GIS can be either shaped as client/server or standalone and desktop or mobile application.
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Although, GIS is moving towards the field of real-time data analysis and display, the impression

of the author is, it has not yet achieved the break through in this domain. There is high po-

tential in the application of spatio-temporal analysis capability, on conventional positioning and

tracking systems (Miller & Bridwell 2008).

The above highlighted considerations on network positioning systems have given an overview on a

bunch of positioning technologies and their generic functional architecture. Nonetheless, many of

them are not yet available as standardised off-the-shelf products. Closed environments envisaged

for positioning of devices, vehicles or even people, often already apply available communication

networks of the IEEE 802.11x standard family, generally known as WLAN; this is for example the

case in airport environments (Bretz et al. 2011). In such environments, positioning technologies

based on WLAN is preferred, as it sustainably saves installation and investment effort on the

positioning infrastructure as well as the location sensing side.

2.2. Methods for Radio Map Generation

A centralised object in WLAN positioning by fingerprinting constitutes the RM (Radio Map).

The RM holds the information of electro-magnetic field strength distribution over the entire area,

where positioning should be made available. On the basis of RM information, the positioning

algorithm computes the actual position of active MUs by correlation of measured field strength

of the sensor and modelled field strength in the RM. Thus, the precision of the radio map model

is essential for the accuracy in positioning.

This subsection gives first a few basic definitions about the constitution and mathematical de-

scription of the RM model. Then, it goes over to field modelling approaches. These are initially

based on deterministic field modelling and empirical field measurements and later on deter-

ministic and probabilistic interpolation methods. Deterministic modelling starts with the fairly

simple approach of radial field modelling and goes over to the ray tracing, multi wall model and

dominant path model. On the interpolation side, the deterministic inverse distance weight and

spline methods will be covered. For probabilistic interpolation Kriging methods will be shortly

revised.

2.2.1. Definition of the Radio Map

The RM model constitutes the groundwork of RSS positioning and builds the foundation of

the entire RM generation process. Though, first of all it has to be defined in its mathematical

dimension. That RM model is independent of field modelling approaches, discussed later on in

this section.

Basically the RM describes the representation of a continuous field phenomenon, the electro-

magnetic field strength. Surrounding APs of the signalling infrastructure radiate that signals.

Each AP generate its own electrical field, thus multiple radio maps exists for a single positioning
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infrastructure. The continuous field model can be either represented by a set of mathematical

functions or a discrete representation, sampled from the continuous field phenomenon. The latter

one can be stored in a matrix of spatially regularly distributed values. Thereby, each cell of the

matrix refers to a geographical location. For the ease of use in terms of the expected field

complexity, map manipulation and fast value accessibility the discrete model is selected for

further considerations.

Mathematically, each sampling point xij and thus matrix element is defined as a tuple:

xij = (rssij , θij) (2.5)

where rssij is the radio signal strength and θij represents a universal parameter for additional use

during the location estimation phase. This could be for instances used for the vehicles orientation

in north, east, south or west direction, influencing the radio signal strength in fingerprinting as

stated by Dempster, Binghao & Quader (2008). The sample point xij is now regarded as vector

þxij = (rssk
ij , θk

ij) k ∈ 1 . . . q (2.6)

where each element k of the vector þxij corresponds to the radio field of a dedicated access point

APk at a maximum count of q APs. All that vectors are part of the radio map, defined by the

matrix X:

X = (þxij) i ∈ 1 . . . m, j ∈ 1 . . . n (2.7)

Thereby, each element of matrix X represents a sample of the q-dimensional radio map and refers

to a geographical position by row i and column count j respectively. Note that each sample point

þxij is generated at the centre of a matrix cell in X. Figure 2.5 points out the multi-dimensional

character of the RM matrix X.
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Figure 2.5.: Mathematical definition of q-dimensional radio map

Each layer in that matrix represents a radio map dedicated to an AP. Even more than one map

layer per AP is feasible, in the case if parameter θ is used for the MUs’ orientation.

Finally, after this pure mathematical definition of the radio map, it might be also regarded as a

coverage of the electro-magnetic field strength in space. Each coverage cell has got its geographical

coordinate, in its defined geographic reference system, with certain spatial extent. That spatial

extent of the raster cell is generally known under the term coverage resolution, often measured in

meter. This resolution implicitly defines the sampling width of the discretisation process of the

continuous field phenomena - the radio signal strength in space. The following subsection gives

an overview on possible modelling processes of the continuous field phenomenon.

2.2.2. Field Modelling Approaches

In order to establish a (radio) map of a continuous field phenomenon, the modelling process of

the field have to be conducted first. For that a bunch of different approaches exist. In scope of

this thesis, an overview on a few approaches, identified in the literature (Honkavirta et al. 2009),

(Parodi et al. 2006), (Li et al. 2005) and (Sen et al. 2008) as most relevant for radio map

modelling, will be given.

For the purpose of structure, the identified modelling methods are first of all classified into

their basic mathematical description: deterministic and probabilistic. A graphical outline of that

classification is depicted in figure 2.6.
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Figure 2.6.: Radio map modelling approaches

The deterministic branch covers the radio model, MWM (Multi Wall Model), ray tracing and

DPM (Direct Path Model) model. The deterministic interpolation methods spline and IDW

(Inverse Distance Weight) in the context of continuous field modelling are regarded as semi-

deterministic modelling approaches; since these methods are based on empirical a priori field

measurement samples. The probabilistic branch covers ANN (Artificial Neural Network)s and

the Kriging interpolation method, whereas ANNs are not regarded further in scope of this thesis.

While in deterministic models all variables are exclusively dependent on uniquely determined

parameters, in probabilistic models the parameters are described by probability distributions.

Though, basically, the ANN and Kriging based models are as well regarded as semi-probabilistic

modelling approaches as they are again based on field measurements.

Let’s discover in more detail the currently regarded modelling approaches.

Radial Model

The radial model is the most straight forward field modelling approach based on parameter. The

radial symmetry in electro-magnetic field distribution, as shown in subsection 2.1.1 Principles

and Concepts, is utilised to model the continuous field between APs and MU. For that purpose

equation 2.4 is taken to compute the field distribution. For the case that the transmitted power

Pt of the access points is not known, Parodi et al. (2006) suggests for initialisation each AP

measures the RSS to N − 1 neighbouring APs and determine Pt by least square fit. In the case

of position reference points, this could be even done directly by MUs’ RSS measurements.

In positioning environments highly influenced by multipath effects, as for instance indoor envi-

ronments, the radial model is very approximate, compared to the real field distribution (Parodi

et al. 2006).

MWM Model
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The MWM considers the influence of walls to the RSS on the direct path between AP and MU.

Basically, that approach is based on the radial model equation 2.4:

Pr(d) = 10 log10(Pt) + 10 log10(d)2 + C +
∑

WAF [dbW] (2.8)

WAF (Wall Attenuation Factor) is a parameter dependent on physical characteristics of walls,

intersecting on the direct propagation path. This parameter is dependent on the thickness of walls

and its dielectric properties. Furthermore, the orientation of walls in reference to the direct prop-

agation path plays a crucial role in the MWM, as it implicitly defines the path’s length through

the wall. All that parameter influences have to be considered in the WAF. The summation sym-

bol in equation 2.8 formulates the possibility that more than one wall might be intersected on

the direct propagation path. In order to determine the WAF parameter in indoor environments,

a BIM (Building Information Model) could be utilised to obtain orientation, physical character-

istics and thickness. For further information on BIMs please see (Schlueter & Thesseling 2009).

The main drawback of the MWM is that it only considers the direct path between AP and the

point of interest on the map. This path does not necessarily correspond to the strongest influence

of field strength at the point of interest.

Ray Tracing Model

The ray tracing model is based on ray-optical propagation modelling. In that approach all pos-

sibilities of optical ray propagation between AP and MU are taken into account. Basically, this

model is in accordance with multipath signal considerations discussed in subsection 2.1.1 Prin-

ciples and Concepts. In 3D environments, each propagation path reflected by ground, walls,

natural or artificial obstacles have to be considered. As shown by Il-Suek et al. (2007) each re-

flection causes different ray scattering and diffraction, dependent on physical material constants

and surface roughness. Additionally, the ray tracing model considers signal attenuation through

walls of the MWM. Although, nowadays 3D vector models of buildings in the context of BIMs

provide high accuracy, they often lack in surface material definition, leading to significant errors

in optical ray-modelling (Wölfle, Wahl, Wertz, Wildbolz & Landstorfer 2005). For instance at a

frequency of 5GHz at the upper ISM band for WLAN communication, a wavelength of 6cm is

given. This would claim a BIM accuracy in the sub-centimetre range, to provide reasonable RSS

model accuracy.

All that considerations result consequently in massive modelling and processing effort. To over-

come the computational burdens of the ray tracing model, the DPM will be introduced next.

DPM Model

The DPM lies between both models, the MWM and ray tracing model. Wölfle et al. (2005)

states that in most cases 2 or 3 dominant rays of the ray tracing model are contributing to more

than 95% of the overall energy, at a dedicated point on the radio map. The DPM meets the

requirements of a radio map model, that is independent of each mirco detail of an underlaying

BIM, while focusing on dominant propagation paths only, to reduce computational effort. For
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determination of the dominant path between AP and MU located in different rooms, Wölfle &

Landstorfer (1998) presents a algorithm, utilising a building’s inherent topology of neighbouring

rooms, walls and other building elements. The algorithm determins the dominant path by util-

ising an a-priori processed room-structure tree. This tree might be dereived from a BIM. Based

on that tree, out of the neighouring room information the dominanat path is given. In the case

that AP and MU are located in the same room, though hided around a corner where no LoS

(Line of Sight) condition is given, a topology tree of convex corners of a room helps to finde the

dominant path. This algorithm for determination of dominant paths can lead to more than one

solution. Finally, the solution with lowest attenuation along the path is selected.

The approach of DPM is mainly considered for indoor field modelling. Though, this approach

could be applied for outdoor positioning environments, where several natural and artificial ob-

stacles are located within or around the positioning field.

A comparative summary of previous discussed modelling techniques is given in figure 2.7. This

should be considered as conceptual sketch only, as the geometrical proportions of propagation

paths are methodologically chosen.

AP

MU

room 1 room 2 room 3

open garage

MWM

DPM

ray tracing

outdoor

obstacle

Figure 2.7.: Map modelling approaches based on BIM information

For a clear arrangement of the concepts behind that models the techniques are depicted in 2D

space. Though, all methods are assignable to 3D space. Where the ray tracing model takes all

reflecting propagation paths into accout, the DPM focuses on the dominant path component.

The MWM exclusively considers the direct path between AP and MU. If there is a LoS between

AP and MU, all WAF in equation 2.8 are zero and the MWM corresponds to the radial model.
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The semi-deterministic modelling approaches are based on empirical a-priori measurements dur-

ing the so called training phase in wireless network positioning. This phase could be seen as a

system calibration phase of the radio map generation process. For that, geographically known

RP (Reference Points) should be available for measuring the calibration samples. Out of that

samples, measurement values can be processed for each RP, constituting the basis for interpola-

tion.

Deterministic interpolation methods can be considered as two different groups: local and global

interpolation techniques. Whereas local methods only consider a certain amount of measurement

points in the neighbourhood of the prediction point, global methods take the entire data set

into account. Furthermore, deterministic interpolation techniques can be either exact, where the

resulting surface passes through the measurement points, or approximative, where points on the

interpolation surface are different to the data set.

IDW

The IDW interpolation method is exact and points of the interpolation surface are determined on

the extent of similarity. IDW is based on the assumption, things that are close together are more

alike than others far apart. This is achieved by a distance weighted interpolation function:

Ẑ(x0) =
N

∑

i=1

ωi(x0)Z(xi) (2.9)

Ẑ(x0) is the predicted value of the interpolation surface for the location x0. For the predicted

value, N measurement points xi of the data set Z are considered. ωi is the weight function of

the predicted values defined as following:

ωi(x0) = d−p(x0, xi) /
N

∑

i=1

d−p(x0, xi), where
N

∑

i=1

ωi(x0) = 1 (2.10)

d(x0, x) is the geometrical distance between interpolation value and measurement value. The sum

of N weight factors needed for computation of Ẑ(x0) is equal to one due to the normalisation of

ωi(x0). The power p of the distance influences the weight of neighbouring measurement to the

predicted value. The higher p, the less the influence of measurement values in far distance to

the predicted value x0. The optimal p value is found at the minimum of the root-mean-square

prediction value, that is calculated from cross-validation (Johnston & Institute 2004).

Spline

Spline is another interpolation technique. It is assigned to the group of radial basis functions and

is an exact interpolation technique, where the prediction surface must include each measurement

value. Spline uses mathematical functions that minimise the overall curvature of the surface. This

functions are based on the assumption, that the approximation surface should pass on the one

hand data points and on the other be as smooth as possible (Mitasova, Mitas, Brown, Gerdes,

Kosinovsky & Baker 1995). The term spline comes originally from the flexible spline devices used
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by shipbuilders to draw smooth shapes.

Basically, there are two spline methods: regularized and tension. In the regularized technique

values of the approximation surface are smooth and gradually changing and may be outside the

interval of the sample data range. The tension method generates a less smooth surface, where

the stiffness is controlled according to the physical character of the modelled phenomenon.

The basic problem can be stated in d-dimensional space as follow:

S(x(j)) = z(j), j = 1, . . . , N. (2.11)

The function S(x) of the interpolation surface at N discrete measured points

x(j) = (x
(j)
1 , x

(j)
2 , . . . , x

(j)
d ) is equal to the studied phenomenon z(j). Now a interpolation function

S(x) has to be found that fulfils the condition

‖S(x)‖ = minimum. (2.12)

The unique solution of that problem is stated in (Mitasova & Mitas 1988) by

S(x) = T (x) +
N

∑

j=1

λjR(x, x(j)), (2.13)

where

T (x) =
M
∑

l=1

alfl(x)) (2.14)

and fl(x) is a set of linearly independent functions which have zero SS (Smooth Seminorm) so

that

‖fl(x)‖ = 0, l = 1, . . . , M. (2.15)

The trend function T (x) is dependent on the option selected for spline interpolation. The gen-

erating function GF (Generating Function) R(x, y) for the general d-dimensional case is given

by

R(x, xj) =
∑

α

g∗

α(x)g∗

α(xj)

‖gα‖2 (2.16)

where

‖a‖ =
d

∑

m=1

αm, (2.17)

denoting a multiindex α = (α1, α2, . . . , αd) with non-negative integer components. The function

g(x) is given, where the constraint of smoothness is applied to the interpolation. The coefficients

λ can be found by the solution of a linear set of equations.
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This general formulation of the interpolation problem is now adjusted to the above introduced

techniques of regularized spline and spline with tension in the two dimensional space.

For the regularized option the trend function is

T (x) = a1 + a2x1 + a3x2, (2.18)

where the coefficients a can be found by the solution of the linear set of equations.

R(r) =
1

2π

{

r2

4

[

ln

(

r

2τ

)

+ cE − 1

]

+ τ2
[

K0

(

r

τ

)

+ cE + ln

(

r

2π

)]

}

, d = 2 (2.19)

r is the distance from the point x to xj , defined over r = [(x1 −xj
1)2 +(x2 −xj

2)2)]
1

2 for d = 2. The

weight parameter τ defines the weight of the third derivatives of the surface g(x) in the curvature

minimization expression. The third derivative of g(x) is a measure of smoothness, implying small

weight changes to the interpolation function in close neighbourhood of data points only. K0 is

the modified Bessel function of zeroth order and cE = 0.577215... is the Euler constant.

For the tension option the trend function is given by

T (x) = a1 (2.20)

and

R(r) = −
1

2πϕ2

[

ln

(

rϕ

2

)

+ cE + K0(rϕ)

]

, d = 2. (2.21)

In spline with tension, ϕ is the weight parameter for tension. This weight parameter determines

the influence of the first derivative of g(x) in the surface minimization. The parameter ϕ influences

the character of the interpolation from a simple spline (ϕ → 0) to a rubber-sheet surface(ϕ →

∞).

For sufficiently large data sets, spline interpolation allows segment based processing (Mitasova

& Mitas 1993). This claims an interpolation function with local behaviour. In global spline in-

terpolation the computational effort is proportional to N3 where N is the maximum count of

interpolation values. Mitasova & Mitas (1993) propose an algorithm that reduce the computa-

tional effort to N by segment based interpolation.

Kriging

Kriging is a geostatistical interpolation method producing an interpolation surface, incorporating

the statistical properties of the measured data. Besides the resulting prediction surface, the

Kriging techniques produce an error surface, indicating the statistical residuals of the predictions.

The Kriging process is divided into two main tasks, the quantification of spatial structure of data

and producing of a prediction. In the structural quantification, known as variography, a spatially

dependent model is fitted to the data. For the prediction of unknown values at specific location,

Kriging utilises that spatial model, the spatial data configuration and the values of measured

data around the prediction location. The configuration describes spatial autocorrelation amongst
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measured points around the prediction location. Dependent on the fitted model, Kriging is either

an exact or inexact interpolator. If the regression model in variography starts at the origin of the

coordinate system the Kriging prediction is exact. That means the error in measurement data is

zero.

The basic idea of Kriging is expressed according to Isaaks & Srivastava (1990) by a simple

mathematical formular:

Z(s) = µ(s) + ǫ(s) (2.22)

The variable of interest Z at location s represents the prediction surface. It is composed of a

deterministic trend µ(s) and random, autocorrelated errors from ǫ(s) (Johnston & Institute 2004).

The trend µ will not predict perfectly. For that case the assumption is made that ǫ is randomly

distributed and expected to be zero in average. Further, the autocorrelation between ǫ(s) and

ǫ(s +þh) is not dependent on the actual location s but on the vector shift h in a certain distance

and direction.

Basically, Kriging distinguishes different methods where the most prominent and relevant for

continuous field modelling will be shortly revised:

• In Ordinary Kriging µ(s) is a unknown constant m. It is hypothetically constant over the

entire observation area and therefore sensitive against trends in the sample data set.

• In Simple Kriging µ(s) is again constant, however the assumption is made that m is a known

parameter. Thus, the values of ǫ(s) are also exactly known. This allows better estimation of

autocorrelation in ǫ(s). µ(s) might be based on a physical model were the trend is known.

• In Universal Kriging the trend variable µ(s) can be arbitrarily modelled. If in explorative

data analysis a global trend is found e.g. by regression, this trend can be eliminated from

the measurement data set. After removing the trend, conceptually the autocorrelation is

now modelled from the random errors ǫ(s).

• Co-Kriging is a multi-variant extension of the revised Kriging methods, where several

variables are taken into account. Thereby, the autocorrelation of the main variable Z1

is regarded as well as cross-correlations between Z1 and all other variables Zn in order to

achieve better predictions.

The more theoretical and mathematical background on Kriging is now shown on the example

of Ordinary Kriging. In literature, Ordinary Kriging is associated with the acronym B.L.U.E

for “best linear unbiased estimator”(Isaaks & Srivastava 1990). It is “best” because it aims at

minimizing σ̃2
R, the variance of errors. The process is linear because its estimates are weight

linear combination of the available measurement data. “Unbiased” since the mean residual or
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error is tried to have equal to 0. In Ordinary Kriging the estimated value Ẑ(s) is a weight linear

combination of the random variables Z(s) at the available measurement locations:

Ẑ(s0) =
n

∑

i=1

ωiZ(si)

where
n

∑

i=1

ωi = 1,

(2.23)

The fact that the sum of ω is equal to 1 is based on the constrained of the unbiasedness condition,

that the sum of ǫ(s) is equal to 0. For any solution of estimated locations, the model is a stationary

random function, implying that the separation of random variables depends only on the distance

and not on their location. As we do not know the constant µ in this approach and thus the

estimator of ǫ, the original problem is transferred into a corresponding model problem. This is

the minimization of the modelled error variance σ̃2
R (Isaaks & Srivastava 1990).

In Kriging, the minimum estimation error is produced in order to determine the optimal weights.

Minimizing the function of the error variance, as shown in detail by (Isaaks & Srivastava 1990),

yield in the following equation:

n
∑

j=1

ωjγij + λ = γi0 ∀ i = 1, . . . , n, (2.24)

where γij expresses the estimated covariation between the measurement data set of the interpo-

lation and γi0 the estimated covariation between prediction value ẑ(s) and measurement value

z(s). The Lagrange parameter λ is used to obtain an unconstrained minimization problem of σ̃2
R,

that the sum of weights ωi is equal to 1. Equation 2.24 shows that the weight ω is a function

of the spatial correlation amongst the neighbouring measurement values of the predicted value,

as well as the correlation between measurement values and the predicted value. This considers

that redundant information of neighbouring measurements, known as measurement clusters, is

eliminated by giving less weight in the estimation.

Equations 2.24 can be written as a system of equations in matrix notation as

Γ · Ω = D















γ11 · · · γ1n 1
...

. . .
...

...

γn1 · · · γnn 1

1 · · · 1 0
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ω1
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ωn

λ















=















γ10

...

γn0

1















(2.25)

By the rules of linear algebra the system can be solved for the weights ω:

Ω = Γ−1 · D (2.26)

The correlation values γ are known estimators that are modelled by a semivariogram function.

The semivariogram model is determined during the statistical process of EDA (Exploratory Data
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Analysis). According to the first law of geography from Waldo Tobler, that near things are more

related than distant things, the variance of data values increases with distance. This statisti-

cal variances E[(Zi − Zj)2] across the measurement samples will be constructed in the empirical

semivariogram. Analytical regression of the empirical data delivers the theoretical semivariogram,

modelling the estimated variance over the geometrical distance between considered points in the

test area. That functional model is the basis for the computation of all covariances γ in the

Kriging process.

A further strength of Kriging is that every prediction on the interpolation surface has a corre-

sponding Kriging standard deviation:

σ2
R =

n
∑

i=1

ωiγi0 + λ (2.27)

Kriging is a method to model spatial distributions by statistical distance rather than geometrical

distance e.g. as kown from IDW interpolation. The inherent statistical process of Kriging allows

de-clustering of the available dataset in terms of information redundancy. The utilisation of a

model of spatial continuity, describing the statistical distance of the spatial data set configuration,

allows flexibility during the process of EDA. That yields into a flexible estimation procedure to

a qualitative prediction surface of the observed phenomenon.

This section has given the basic mathematical definition of a multi dimensional RM. A variety

of deterministic and probabilistic methods have been highlighted for continuous field modelling

based either on parameter models or empirical measurement.

Conclusions

The illuminated principles and concepts of this chapter have given a first introductory overview

on the wide topic of electro-magnetic field modelling. Although it is not the core of this thesis

and does not correspond to basic research questions, the revision of wireless network position

techniques has pointed out the advantages of RSS positioning against others. For given WLAN

infrastructure with present multipath initiating obstacles, in the area of low cost off-the-shelf

technology, RSS positioning is still the only reasonable solution. However, this positioning ap-

proach needs a carefully modelled RM, which will be further investigated in this thesis. For that

modelling, many approaches have been found in literature. In conclusion of this section either an

extended parametric radial field model or the probabilistic Kriging interpolation approach seems

to be the most promising to follow up in the on-going research. As they are global modelling

techniques, they could be best suitable as a solid groundwork for coverage mapping of electro-

magnetic field phenomena. However, first the available data sources, their modelling and analysis

will be considered in the upcoming chapter.
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3. Data Sources, Modelling, and Analysis

The term "data" plays a dominant role in GIS (Geographic Information System) and constitutes

the foundation of any spatial analysis, statistics or display of geographically related information.

This is supported by Goodchild (1992b)’s originally proposed GIS research agenda, where data

collection and measurement, data capture, data modelling and theories of spatial data and data

structures, algorithms, and processes are part of. The fact that four of eight agenda points take

care about data issues, points out the significance of data within the research framework of GIS.

The availability of data in spatial coverage, quality, and distribution in the time-space domain

plays a crucial role, for further on applied modelling strategies and methods. Therefore, the

following chapter is exclusively dedicated to data sources, modelling, and analysis.

The first data source section is divided into static infrastructure and dynamic measurement

data. It figures out the origin of different data sets, their inherent structure and necessary pre-

processing for the following steps of data modelling and integration. In data modelling a object

relational data structure is proposed, for seamless integration into a database. This constitutes

the groundwork for the integration of data; along the way intensive processing for the purpose

of data interpolation and correlation will be reflected. This chapter ends by spatio-temporal

analysis of dynamic data sets and propose filter mechanisms for extraction of measurement

reference values.

3.1. Data Sources

All data sources used for field modelling in scope of this thesis, have been provided out of

the project context of SESAAM (Geo-Spatially Enhanced Situational Awareness for Airport

Management) (Bretz et al. 2011), hosted by Z_GIS University of Salzburg. In this project all

data sources for the purpose of WLAN (Wireless Local Area Network) field modelling are spatially

limited to a testbed area, spatially delimited by the main apron area of the Airport Salzburg.

The available data have different characteristics in dimension, space and time scale, accuracy and

their origin or data source. This section gives an overview on available spatial and non-spatial

data for the purpose of geographical orientation and field modelling, around and inside of the

testbed area.

In order to obtain a clear arrangement of data and corresponding sources this section is divided

into two main parts: static infrastructural data and dynamic measurement data. While the first

one deals with vectorised infrastructural GIS data and WLAN AP (Access Point) parameters of
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the positioning infrastructure, the latter cares about measurement data of the electro-magnetic

field phenomena.

3.1.1. Static Infrastructure Data

Static infrastructure data covers on the one hand spatial GIS vector data sets and on the other

positioning infrastructure specific non-spatial parameters. In this thesis project, static data is

defined as data that vary neither in spatial nor in time domain. The use case diagram in figure

3.1 shows the available data sets and their data provider or data source respectively.

Airport Facility Management

Infrastructure Data

infra_plan.dwg

ap_position.xls

dwg -> shp

conversion
infra_plan.shp

ant_pattern.jpg

Geo-DBMS

Antenna Manufacturer

digitizing ant_pattern.xls

shp -> DBMS

xls -> DBMS

UTM zone 33N

EPSG:32633

MGI / Austria GK M31

EPSG:31258

WGS84

EPSG:4326

reprojection and

xls -> DBMS

Figure 3.1.: Use case diagram for infrastructural data; boxes coloured in light grey indicate spatial data
sets

The airport facility management provides the infrastructure plan in DWG (Drawing) file format,

to the SESAAM project. Basically, the DWG file format has its origin in the CAD (Computer

Aided Design) domain, where it acts as the standard exchange format for the AutoCAD suite and

was licensed by Autodesk inc. in 1982. The DWG format is capable to store two and three dimen-

sional drawings and metadata (Gopi 2010). The infra_plan.dwg file contains two dimensional

polyline vector data, over the entire airport infrastructure and is geo-referenced to the Cartesian

MGI (Military Geographic Institute) Austria BMN (Bundesmeldenetz) M31 Gauß Krüger coor-

dinate system, referenced as EPSG (European Petroleum Survey Group)-Code 31258.

In order to pace from the CAD to the GIS domain, the DWG file is converted into the SHP

(Shape) file format, acting as (mostly) open quasi standard data exchange format in the GIS

world, developed and regulated by ESRI inc. (ESRI 1998). Two reasons exists for the conversion
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into the SHP file format; (i) the conversion allows reprojection of spatial data into the target-

ing spatial reference system, which is in the available case WGS84 UTM (Universal Transverse

Mercator) zone 33N EPSG-Code 32633. This saves unnecessary processing costs due to on the

fly projection of spatial datasets in GIS systems. (ii) most geo-databases provide SHP-file data

loader, as for instance Oracle’s 11G or PostGIS 2.0, to insert spatial data sets and their attribu-

tive information to a dedicated databases. This is done in the next step as depicted in figure 3.1.

The reason for choosing UTM as geographical base reference system is the fact that in scope

of SESAAM, all aviation specific positioning information has to be based on the same reference

ellipsoid WGS84. Furthermore, a Cartesian reference system is most convenient for geometrical

computations, as done in the following chapter 4 Field Modelling.

The metadata structure of the original infra_plan.dwg file is shown in the following table 3.1:

attribute data type

Entity char

Layer char

Color int

Linetype char

Elevation int

LineWt int

RefName char

BEZ char

HOEHE float

Shape_Leng float

Table 3.1.: Metadata structure of the spatial infrastructure data set of Salzburg Airport

The attributive metadata information of the DWG file shows rather CAD related than GIS

relevant information as for instance color, linetype or line width. During the SHP-file conversion,

geometry related information e.g. linetype or shape length is stored explicitly or implicitly within

the geometry. Other information like color or line width is not needed for the purpose of pure

geometry storage in the geo-database and can be defined separately in a GIS viewer. Hence, the

target SHP-file carries only the Layer information as relevant attributive information.

Another data set, provided by the Salzburg Airport Facility Management, is the location of

WLAN AP around the main apron of Salzburg Airport, as depicted in figure 3.1. The three-

dimensional AP positions are relevant for later upcoming research on field modelling approaches

in scope of this thesis. For field modelling, the exact position and spatial orientation of the an-

tenna’s phase-centre is relevant rather than the AP position itself. The AP position was originally

measured by a hand-held GPS (Global Positioning System) receiver and afterwards precisely geo-

referenced with aid of a desktop-GIS. Thus, the resulting excel file holds spatial point information

in WGS84 coordinates.

The structure of the ap_positions.xls excel sheet, including point geometries and metadata

of APs, is shown in following table 3.2:
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attribute data type

X coordinate float

Y coordinate float

Height float

Antenna_az float

AP_MAC character

Table 3.2.: File structure of the AP data set of Salzburg Airport

The first three items in table 3.2 describe the AP’s spatial position in X, Y and Z in WGS84 co-

ordinates. The antenna_az attribute represents the horizontal orientation of the antenna phase-

centre in reference to geographical north. AP_MAC attribute describes the physical MAC (Media

Access Control) address of the AP radio interface and constitutes a unique identifier for the

networking segment. This address enables the exact matching between received WLAN signals

or messages and their transmission source.

Both spatial data sets, infra_plan.shp and ap_positions.xls are loaded to a GeoDBMS

(Geographical Database Management System), while the latter one is reprojected first into the

UTM reference system. For now, the GeoDBMS will be considered as "black-box" system. The

structure of the database model will be considered in the upcoming section, while details about

the conceptual loader framework, algorithms and implementation will be given in chapter 6.2

Processing Framework Architecture.

An overview on the final spatial static infrastructure dataset can be gathered from figure 3.2.

Figure 3.2.: Overview on spatial static infrastructure data, in QGIS
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The overview on spatial static infrastructure data is delimited to the main apron area, constitut-

ing the testbed area. As depicted in figure 3.2 the main apron is delimited by a polygon shape

in light grey and covers an area of ∼108280 m2 or 10.828 ha. A detailed layer description of the

infrastructure plan will not be considered further, as the static infrastructure data acts merely

for general orientation.

The ap_position layer includes the AP positions, depicted by green triangles. Note that the hor-

izontal orientation of these triangles indicates the boreside direction of the AP antenna, defined

by the antenna_az parameter (cp. table 3.2). Thereby, the sharp angle of the triangle points

at antenna boreside direction, towards the test-bed area. The influence of the antenna boreside

direction together with its pattern will be discussed soon. The APs as part of the communication

infrastructure literally surround the main apron for the purpose of WLAN coverage.

The last item of static infrastructure data is the AP antenna pattern, delivered by the antenna’s

technical specification (Systems 2005). This is usually provided by the antenna manufacturer.

Basically, the antenna pattern describes the characteristic of radiated field intensity, as a function

of polar direction in reference to the boreside direction as shown in figure 3.3. It is measured

in dBi and presents the antenna gain in relation to an isotropic radiator, radiating the same

intensity in all directions. This antenna characteristic is valid under far field condition, where

distance R ≥ 2D2/λ and D is the largest dimension of the radiating antenna’s aperture (Haykin

2001). The antenna pattern is usually measured in E-plane and H-plane, in accordance with the

electromagnetic field theory (Haykin 2001). Therein, E- and H-vector of the electro-magnetic

wave are standing perpendicular to each other and their cross product indicates the propagation

direction.
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Figure 3.3.: Antenna pattern Cisco Aironet 9.5-dBi Patch Antenna (AIR-ANT5195P-R) in H-plane

Per definition, the H-plane is horizontally aligned and therefore relevant for two dimensional

propagation intensity across the testbed. For that the assumption is made that antenna’s vertical

influence of field propagation is negligible, which is legitimate since the vertical antenna offset of

few meters is minor in relation to horizontal test-bed dimensions of several hundred meters.

The plotted antenna characteristic of the available patch antenna in figure 3.3 shows, that the

coverage area of the antenna is focused on the area in boreside direction at an angle of aperture of

approximately 90◦. The antenna has got an antenna gain of 9.5 dB. In other words, the antenna

gain of 9.5 dBi means that the radiated field intensity in boreside direction is 8.91 times higher

in relation to an isotropic radiator.

The antenna pattern is only available in printed format as jpeg-picture, hence is has to be digitised

first as already shown in the use case diagram in figure 3.1. For the purpose of digitalisation the

antenna pattern is equidistantly segmented in 3◦ steps as shown in figure 3.3. Since all relevant

AP antennas around the testbed have been directly aligned towards the testbed (cp. figure 3.2),

the antenna pattern +/- 90◦ around the antenna’s boreside direction has been digitised only.

For each of the constructed segments, the antenna gain is captured manually to the excel file

ant_pattern.xls. That excel file is again loaded to the GeoDBMS in prearrangement to further

processing.

The illumination of static infrastructure data in this section has shown, diverse spatial and non-

spatial data have been provided within the project context. This data can be either utilised

for field modelling or simply for display and orientation purpose. For re-usability of the data-

© Johannes Kapser 32



Modelling of Continuous Fields:

Coverage Mapping Based on Dynamic In-situ WLAN Measurements

3. Data Sources, Modelling, and Analysis

framework the data integration process has been neatly drawn. Next the focus will be laid on

description and integration of dynamic measurement data.

3.1.2. Dynamic Measurement Data

Dynamic measurement data comprise all available data with inherent dynamic characteristic

either in time, space or the combination of both domains. It covers purely non-spatial WLAN

measurement data on the one hand, MU (Mobile Unit) and aircraft positioning data on the

other. Figure 3.4 shows the use case diagram to the process of data delivery and conversion.

ADS-B Positioner

Measurement Data

measurement.txt

positions.txt

Geo-DBMS

WGS84

EPSG:4326

reprojection    

data -> DBMS

pre-filtering and

txt -> DBMS

NMEA protocol

parsing

MU Operator

aircraft_positions

UTM zone 33N

EPSG:32633

pre-filtering and

data -> DBMS

Figure 3.4.: Use case diagram for measurement data; boxes coloured in light grey indicate spatial data
sets

Let’s start with a detailed consideration of the measurement data as such. This non-spatial data

set is delivered by the MU operator, Technical University of Vienna research group Geodesy,

and project partner in context of SESAAM. The MUs are basically flight operation and logistic

support vehicles, permanently moving on the main apron of Salzburg Airport and testbed area.

On selected vehicles a WLAN interface plus antenna and EGNOS (European Geostationary

Navigation Overlay Service) capable GPS receiver have been installed. While EGNOS allows

more precise differential GPS positioning. These MUs permanently acquire the signal strength of

surrounding WLAN APs in reach and record their geographic position via GPS. It is to emphasis

that data recoding rates of WLAN and GPS interfaces are different and direct synchronisation
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between both data streams is not given. However, the clocks of both interfaces have been obtained

the same time base and running synchronous.

The incoming measurement data have basically the following file structure, available as comma

separated string format:

attribute data type

WLAN-adapter ID integer

status flag boolean

timestamp timestamp

AP MAC address character

channel integer

signal strength integer

package type character

SSID character

Table 3.3.: File structure of the measurement data set of MUs

The WLAN-adapter ID acts as a unique identifier of the WLAN interface and as such as unique

identifier for certain vehicles. The status flag indicates the validity of the WLAN message and

has to be considered in further processing. The timestamp counts time and date and enables

synchronisation of measurements and positions later on. AP MAC address helps for the identifi-

cation of the WLAN data package or signal source. The MAC address can be easily correlated

with the AP name. Channel indicates the selected WLAN channel for package transmission.

The signal strength constitutes the core message of this block and carries the received signal

power of the incoming signal, measured by the WLAN interface. That power is measured in

whole-number dB steps. Package type indicates the WLAN protocol package type and SSID

(Service Set Identification) is used for identification of the WLAN setup.

Following, the measurement.txt file is loaded into the GeoDBMS as shown in figure 3.4. How-

ever, in advance the data set is filtered in order to save database storage. The filter is focused

on status flag and package type. All data blocks have been loaded to the GeoDBMS where its

status flag is "vaild" and package type is set to "BEACON". The beacon message is periodically

transmitted by APs and announces the availability of a WLAN network. As the Beacon frame

includes a fixed count of data fields, defined by the IEEE 802.11x standard, this message type is

ideally suited for power measurements.

The second part of dynamic measurement data includes the positions of MUs. This continu-

ously recorded GPS EGNOS positions produce consequently a spatial data set, referenced in a

geographic coordinate system with WGS84 datum. The position.txt file is provided by the

MU operator and holds recorded NMEA (National Marine Electronics Association)1 protocol

messages from the GPS receiver. This messages are encoded in GPGST and PUBX sentence

format, both available each full second. While the GPGST sentences provides GPS pseudorange

noise statistics, the PUBX is a proprietary sentence format from the GPS receiver manufacturer

1www.nmea.org
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uBlox, holding the position solution data (ublox 2008).

For each position fix a GPGST and PUBX sentences is provided. Thus, both NMEA protocol

sentences have been parsed and composed to one message format as shown in the following table

3.4:

attribute data type

timestamp timestamp

lat float

lon float

alt_ref float

nav_stat character

hacc float

vacc float

speed_og float

course_og float

hdop float

vdop float

tdop float

rms_dev_pseudo float

lat_dev_pseudo float

lon_dev_pseudo float

Table 3.4.: Including NMEA protocol data of GPGST and PUBX sentences

The timestamp holds the UTC (Coordinated Universal Time) time of the position fix and helps

for correlation of positions and measurement values later on. The position is given in geographic

latitude (lat) and longitude (lon) coordinates in degrees and minutes. Alt_ref indicates the

altitude above the datum ellipsoid WGS84. The naviagion status is given by nav_stat and

hacc and vacc indicates the horizontal and vertical accuracy estimate of the GPS position fix in

meters. Speed and course over ground is given by speed_og and course_og in km\h and degrees.

The DOP (Dilution of Precision) value is described in horizontal, vertical and time by hdop,

vdop and tdop. All these data is originally encoded into the PUBX sentences. Rms_dev_pseudo,

lat_dev_pseudo and lon_dev_pseudo are differential GPS specific standard deviations in ranges

and position out of the GPGST sentences format.

After message parsing, positions are reprojected into Cartesian UTM coordinates and loaded into

the GeoDBMS. Details about parsing, reprojection and database loading can be find in section

6.2.3 MU Data Feeder Application.

The aircraft positioning data is again provided by the project context of SESAAM. Therein,

the position of aircraft carrying ADS-B (Automatic Dependent Surveillance Broadcast) enabled

transponders have been collected by an ADS-B receiver. This enables aircraft tracking around

the airport and especially on the main apron, constituting the project’s testbed area.

The aircraft position data is basically transmitted from the ADS-B receiver in Eurocontrol’s

ASTERIX2 cat 21 encoding standard for the purpose of aircraft surveillance data exchange. This

2http://www.eurocontrol.int/services/asterix
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protocol format is parsed and stored into an external database. The available aircraft_position

data set is simply a copy of the stored ADS-B data frames, where each frame has got the following

structure:

attribute data type

mode3a_code character

flightno character

data_source_ident_id integer

target_add character

timestamp datetime

proc_pos_cart_x float

proc_pos_cart_y float

proc_pos_z float

cat integer

position geometry

Table 3.5.: File structure of the aircraft_position data set

The mode3a_code is an aviation specific identification code with an address range of 84. This

code is still used for aircraft identification, however due to its minor address range replaced by

24-bit SSR (Secondary Surveillance Radar) Mode S addresses. The flightno is transmitted by

the SSR Mode S Message and includes the ICAO (International Civil Aviation Organization)

flight identification call sign. This field is consequently used as unique aircraft identifier within

the context of this thesis. The data_source_ident_id is a unique ADS-B receiver station iden-

tifier and is utilised in distributed surveillance systems. This however is not applicable on the

locally delimited scale of this project. The timestamp is again in UTC timeformat and allows

the correlation to other positioning information. Proc_pos_cart_x and proc_pos_cart_y car-

ries the already reprojected geometric UTM zone 33N aircraft position in plain text. Proc_pos_z

carries the aircraft’s altitude and will be used for position filtering later on. The cat field indi-

cates the ASTERIX protocol category, applicable if different positioning sensors would be used

simultaneously. The position holds a GeoDBMS specific geometry format, allowing a simple

database insert by a copy instruction.

As already mentioned, the aircraft position data set can be simply inserted into the GeoDBMS

by a copy instruction. However in advance, it is spatially filtered to the extend of main apron area

on ground. Otherwise, all aircraft positions would be taken into account at a radius of approx.

50 km around the airport.

The introduction of dynamic measurement data shows, although WLAN measurement and GPS

position data have been delivered from the same data source, the MU processing unit, there is

no direct correlation available between both data sets. However, the timestamps of both data

sets are synchronised. For that purpose a correlation strategy in time domain has to be found,

in order to connect measurement data to spatial information. That method will be elaborated in

the upcoming section.
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Concluding, the data source section has shown that different spatial and non-spatial data have

been made available for the target of electro-magnetic field modelling. Static infrastructure data

is employed, for the purpose of topological orientation and geo-referencing. Non-spatial static

data about the antenna characteristic is provided for electro-magnetic field modelling later on.

Dynamic spatio-temporal GPS positioning and WLAN measurement data acquired by mobile

sensors have been provided as well. All that data is integrated into a GeoDBMS for the advance

of clear data organisation and further data processing/mining capabilities. The topic of data

integration and modelling will be deliberately outlined in the upcoming section.

3.2. Data Modelling

A central question the in handling of spatial and non-spatial data is their modelling. From a

GIS point of view the term data model is considered as the mathematical representation of geo-

graphic objects either in discrete or continuous form. Typical mathematical models meeting that

requirements are vector models for continuous and cell matrix models for discrete representation.

The term "data modelling" however describes the process behind. Goodchild (1992a) defines data

modelling as following:

Data modelling is defined as the process of discretizing spatial variation, but may be

confused with issues of data structure, and driven by available software, rather than

by concern for accurate representation.

Despite Goodchild’s strict confinement of the term "data modelling", this section covers data(base)

modelling and data integration. While the first one deals with modelling of data within a object

relational geo-database, the latter considers data integration, including the processing steps of

data filtering, interpolation and correlation between spatial data and attributive information.

3.2.1. Data(base) Modelling

In context of the project frame, a massive load of data has been made available by continuously

recorded WLAN measurement and GPS positioning values. Moreover, data is provided from

different sources and domains, as shown in the previous chapter. In order to reflect the relation-

ship of data to real world objects and model the spatial and non-spatial relationships between

them, the object relational data modelling paradigm is applied. A modelling paradigm is per-se

independent of any software related data structure or implementation platform. Though, for the

implementation of the data model a object relational GeoDBMS is selected due to following

points:

• A object relational geo-database enables seamless integration of the proposed object rela-

tional modelling paradigm.
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• Databases allow scalability in terms of storage and processing capacities and have thus the

capability to store the available load of data.

• Databases offer internal mechanisms to check data integrity.

• Available spatial data types allow discretising of real world geographical objects.

Summarized, these strengths of a GeoDBMS helps in handling the available load of data in a

structured and reliable way.

The data modelling approach of available static and dynamic, spatial and non-spatial data is

presented in figure 3.5 as object relational data model. All of previously in section 3.1 introduced

data are loaded to that model, settling within the GeoDBMS. The model itself is structured

into five logical groups, implemented as different schemas in the database model, orientated

on thematically different data sources. Each group holds relevant data for inherent objects,

representing real world objects.
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Figure 3.5.: Object relational data model

Let’s start with infrastructure group. It holds the classes infra_plan, testbed_area and AP.

The first class infra_plan represents objects of the infrastructure plan, as introduced in the pre-

vious section, by its spatial geometry (geom). Since that plan has information purpose only, in
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the context of electro-magnetic field modelling, it has not been further integrated in the data

model yet. However, it is suggested that in future relevant infrastructure objects for field mod-

elling purpose, should be integrated into the model, based on that class. The testbed_area class

describes the spatial extend of the testbed area by a polygon shape (geom). In context of the

project that area is delimited to the main apron of Salzburg Airport (cp. figure 3.2), though that

model allows the extension to multiple testbed areas. Each testbed area is related to a subset of

WLAN APs, enabling WLAN availability in these areas. The ap class describes available APs as

part of the positioning infrastructure by an unique MAC address of the radio interface, name,

antenna orientation, antenna type and position as point geometry. The antenna type is modelled

in the antenna group.

The antenna group holds all antenna related data and includes exclusively non-spatial data.

The antenna class describes the antenna type. For each antenna type digitised antenna raw

data exists, as already discussed above in section 3.1. Within the data integration process,

elaborated in the upcoming section, these data will be interpolated further and loaded to the

antenna_interp_data class. This class is consequently again referenced to the antenna class.

Although, within the context of this thesis only one antenna type is used, that modelling ap-

proach allows high flexibility for extension of additional antenna types.

The mu_data group holds all dynamic MU related data. Each MU or sensor platform object is

basically described by the mu class. Measurement and position data, acquired by different sen-

sors, are directly related to its sensor platform. The mu_measurement class hold each WLAN

field strength measurement with its timestamp, channel, measured power value, SSID and MAC

address. Thereby, the MAC address enables the matching between received WLAN-signal and

physical AP. Thus, in that model mu_measurement and ap class are connected over the AP_MAC

address. The mu_position class holds positioning related information for each position object,

as previously discussed in section 3.1; whereas, each position is modelled as point geometry

(geom). As no direct synchronisation between positioning and WLAN measurement exists, the

mu_position class is exclusively related to the mu class. The correlation of positions and WLAN

measurements is done in the time domain and will be elaborated in the upcoming data inte-

gration section. The correlation process results in an interpolated position for each single mea-

surement object, described by the interp_position class. That is consequently related to the

mu_measurement class about its RID and again related to the mu class.

The rm group holds the RM (Radio Map) as result of the field modelling process. It describes the

RM as spatial raster data set over the extent of a certain testbed area. The rm_data class holds

the spatial raster dataset, including a raster of multiple channels for each AP, and the testbed

area identifier. As each RM is related to a testbed area, a direct relation between testbed_area

class and rm_data class is established. Note that one RM might be compound of multiple raster

tiles, justifying multiple objects per testbed area. The assignment between raster channels and

APs is modelled by the rm_meta_data class. Each object of this class records the raster channel

matching to a certain WLAN AP. Consequently, the rm_meta_data class is related to both, the

rm_data and ap class.

Finally, the ads_b data set represents the spatially filtered aircraft positions to the extend of the
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testbed area. This information will be exclusively used as validity criterion for MU measurements

later on. Therefore, interpolation on the aircraft’s track will not be applied to this data set.

The data model shows what complex relationships between real world objects exists and how

they can be transferred onto a model. That generic object relational model constitutes the basis

for data integration into a GeoDBMS. Basically, the model already implicitly presents given

cardinalities by already stated primary/foreign key notations. The given model comply with the

logical database design, as tables and relations are already given by its class definition. For more

details about the integration platform please have a look at 6 Research Methods Appendix.

3.2.2. Data Integration

Although according to previously discussed processes all raw data has been made available in

the GeoDBMS, figured out by use cases in section 3.1, the previously introduced data model has

not been entirely filled yet. The intention of the following section is to close the gap between

available raw data from different sources and thereof derived interpolated or timely correlated

data. To approach that target, first a general overview on how to obtain interpolated data out of

available raw data is given. Next, it goes into more detail about the actual interpolation methods

applied, starting with spline interpolation of the antenna pattern. Following, the parametric spline

interpolation method for MU positions will be elaborated. After the interpolation of positions

the correlation strategy in the time domain between positions and WLAN measurement values

will be shown.

interpolated_data

Geo-DBMS

INSERT

interpolated data

data processing

(Interpolation,

Correlation...)

SELECT raw data

WHERE...

raw_data

Data Integration

Figure 3.6.: UML use case diagram of the data integration process
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The general process of data integration is depicted by a use case diagram in figure 3.6. Please note

that in the upper part of that diagram the three use cases are stated outside of the GeoDBMS,

in order to obtain more processing flexibility during the prototyping phase. However, this use

cases could be integrated to the GeoDBMS either by internal functional database processes.

AT the use case diagram, available raw data from different data sources is firstly selected from

the GeoDBMS. Thereby, database internal filter mechanisms enables pre-filtering of raw data,

formulated by the "WHERE" clause in the SQL "SELECT" statement. After data has been

retrieved from database, data processing is conducted. This includes interpolation, correlation

and other methods depending on the targeting integration strategy. After the processing has

finished, data is again inserted into the database, this time into the interpolated data section.

Antenna Pattern Integration

Firstly, let’s have a look on the integration process of the antenna pattern. As already mentioned

in previous section 3.1, digitised antenna gain values of the antenna pattern have been made

available in the database. These values are equally distributed over a range from -90◦ to +90◦ at

steps of 3◦. In order to obtain a finer resolution of power gain values in polar direction, they have

to be interpolated accordingly. For that purpose the deterministic spline interpolation method,

as amongst others introduced in section 2.2.2, for the one-dimensional case is applied. Spline

interpolation was selected (i) having an exact interpolation result, including all interpolation

points and (ii) in order to allow segment wise interpolation, reducing computation effort at high

counts of interpolation points.

Let’s shortly revise the mathematical background of spline functions for the example of a cubic

spline, according to (Späth 1995). A function f(x) is given by discrete count of sampling points

xi(i = 1, ..., n) and their basic values fi = f(xi).

The functional description of the interval between two sampling points is interpolated by a

polynomial of the third degree:

Pi(x) = fi + bi(x − xi) + ci(x − xi)
2 + di(x − xi)

3; x ∈ [xi, xi+1], i = 1, ..., n − 1 (3.1)

The interpolation function Pi(x) must be twice continuously differentiable at the interval bound-

ary:

Pi(xi + 1) = fi + 1 , i = 1, ..., n − 1;

Ṗi(xi + 1) = Ṗi+1(xi + 1)

P̈i(xi + 1) = P̈i+1(xi + 1) , i = 1, ..., n − 2.

(3.2)
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The polynominal coefficients can be solved accordingly by following equations for

ci:

c1 = f̈i/2; cn = f̈n/2

hi−1ci−1 + 2(hi−1 + hi)ci+hici+1 =
3(fi+1 − fi)

hi
−

3(fi − fi−1)

hi−1
i = 2, ..., n − 1.

where hi = xi+1 − xi

(3.3)

bi:

bi =
fi+1 − fi

hi
−

hi(ci+1 + 2ci)

3
i = 1, ..., n − 1. (3.4)

di:

di =
ci+1 − ci

3hi
i = 1, ..., n − 1. (3.5)

The coefficients of equation 3.3 can be expressed as system of three linear equations, that can

be solved e.g. by Gaussian elimination. Thereafter, bi and di can be solved according equations

3.4 and 3.5.

For the applicable case the most commonly used basis spline (B-spline) is applied. For compu-

tation of the actual one-dimensional spline curve, Python wrapped Fortran routines splrep3 and

splev4 of Fitpack were utilsed.

3http://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.splrep.html#scipy.

interpolate.splrep
4http://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.splev.html#scipy.

interpolate.splev
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Figure 3.7.: Spline interpolation of the antenna pattern

Figure 3.7 shows the interpolation results of a cubic spline (k=3) and a spline with a order of k=5

at a resolution of 0.1◦. The "true" values represent the originally digitised interpolation points.

The detail window of the interpolation result shows, the natural spline results in a smoother, less

oscillating curve than at a spline order of five. Thus, the interpolation order is selected thereafter

to three for the natural spline. Details about exact parametrisation of the interpolation algorithm

can be gathered from A Annex 1.

Measurement Data Integration

The integration of already available GPS positioning and WLAN measurement data does raise

the main question about the correlation strategy of these data sets. Figure 3.8 presents both

data sets in their domain; positioning data are distributed over X/Y coordinate in space and

measurement data m1, m2, ..., mn are fixed in time. As all vehicle movements in altitude are

constraint to the apron’s surface, the Z coordinate delivered by GPS is not considered. Though,

position data carry inherent time information from the GPS position fix, that can be utilised for

later correlation of both data sets over time.
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Figure 3.8.: Schematic spatial distribution of recorded positioning, on the left hand, and measurement
data, on the right hand side

Note that the GPS position fix is done on discrete points in time t0, t1, ..., tn at an interval of

1 second. Depending on the vehicle’s motion profile the positions are more or less separated in

space, as depicted in figure 3.8 where the vehicle’s velocity on the begin of the track is higher

than at the end. The dashed line in figure 3.8 left hand side indicates the true track of the vehicle.

In preparation to correlation of positions and measurements over time an interpolation of po-

sitions in two dimensional space is applied. A finer resolution of discrete tracking points allows

more accurate correlation between positions and measurement values over time.

For interpolation of a n-dimensional curve, parametric spline interpolation is selected again due

to above stated reasons of exact interpolation and segment wise computation capability. There-

fore, the GPS track has to be as regarded as parametric curve. This curve r(τ) should now be

interpolated segment wise by spline interpolation polynomials Pi(τ). At this approach each com-

ponent of the curve coordinate is interpolated by a spline function. For each sampling point, or

GPS position respectively, of the curve r(τ) the position vector þxi is known at sampling points

τi (i = 1, .., n). For cubic interpolation follows:

r(τ) = þPi(τ) = þxi +þbi(τ − τi) + þci(τ − τi)
2 + þdi(τ − τi)

3; τ ∈ [τi, τi+1], i = 1, ..., n − 1 (3.6)

where the parameter τ can be considered as continuous curve parameter. Equation 3.6 has

basically the same form as equation 3.1 for one-dimensional interpolation. It can be solved by

equations 3.3, 3.4 and 3.5 for vectorised polynomial coefficients for the case of open curves, as

applicable for GPS track interpolation. For computation of the actual two-dimensional basis
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spline polyominals, again Python wrapped Fortran routines splprep5 and splev of Fitpack were

utilised.

For interpolation of the position track a bunch of data per mobile unit is available. Each MU

records 3600 positions per hour, yielding in 43.000 positions in 12 hours. This would generate

massive processing effort for continuous interpolation over the entire 43.000 position fixes per

half a day. Moreover, in the applied interpolation libraries no possibility was found to adjust the

outer left and right boundary conditions of the spline polynomials. In order to overcome that

issue, a moving window strategy for segment wise interpolation is applied.

moving direction

w 

i i+wi+int(w/2)

i+int(w/2)+1

Figure 3.9.: Moving window strategy for segment wise spline interpolation

Figure 3.9 shows the formal definition of the moving window. The index i for each interpola-

tion node is running from i = 0, ..., n and the window width w = 3, 5, 7, ..., n if n is uneven,

otherwise w = 3, 5, 7, ..., n − 1. All included points of the window are used for one interpolation

cycle, whereas only the centralised segment of the window (cp. figure 3.9 grey shadowed zone)

is regarded for the interpolation result. The centralised segment is defined by its boundaries

i + int(w/2) on the left and i + int(w/2) + 1 on the right hand side for i ≥ int(w/2). For

i < int(w/2) the left hand boundary is defined by i and the right hand side by i + 1. Note that

the int() function cuts off the decimal values from divisions.

Figure 3.10 shows exemplarily the result of the defined moving window interpolation process of

seven segment wise interpolation steps, from i = 0, 1, ...6 at a window width of 7 segments.

5http://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.splprep.html#scipy.

interpolate.splprep
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1 2 3

4 5 6

7

Figure 3.10.: Exemplary moving window interpolation process from step 1 to 7

Note that at the beginning of the moving window process the interpolation segment has not been

centred yet. If index i is greater than 3 the window starts to move. It has shown that a window

width of 7 is sufficient to obtain a smooth interpolation of the position track. The segmented

overall result of that process is summarised in figure 3.10 at the bottom line. The result shows a

smooth curve, where the first derivation of neighbouring segments have identical values.

The continuous interpolation parameter τ in that process is configured from τ = 0, 1, ...25000,

resulting in 25001 interpolated points within the frame of the interpolation window. As the

parameter τ implicitly represents the distance between two neighbouring points of the discretised
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interpolation polynominal, the maximum count of τ is a measure of the bin size. In the example

of τmax = 25000 at a continuous speed of 200km/h, that would yield in sampling point separation

of approx. 1.5cm.

For correlation between the interpolated track of GPS positions and the WLAN measurements,

the interpolated track is transformed into the time domain. This is done segment wise by firstly

computing the arc length s of a line segment from τmin to τmax. In discrete representation this

is fulfilled by following equation:

s =
τmax−1

∑

τ=τmin

∥

∥

∥

þP (τ + 1) − þP (τ)
∥

∥

∥

2
(3.7)

Form the GPS position fix interval it is known, one interpolation segment reclines within a fixed

time interval of 1 sec. Hence, for each discretised point of the interpolation polynomial a time

representation is given, simply by the linear relation between segment length s and individual

path length of discretised polynomial points. Note at this simplified approach the moving object’s

change in acceleration within the one second interval is not considered. However, it is implicitly

taken into account for each segment of the correlation process as the segment separation changes

at positive or negative acceleration.

On the basis of two vectors, WLAN measurements and interpolated position track data, both in

the time domain, a simple nearest neighbour matching is done for correlation of measurements

and spatial information. Figure 3.11 shows an exemplary result of this correlation process, based

on the segment wise interpolation process discussed above.
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Figure 3.11.: Correlation of measurement values and position track

Each cross on the track indicates the spatial representation of a correlated WLAN measurement

to a registered AP of the positioning infrastructure.

The correlation process is applied for the available GPS positioning data and WLAN measure-

ments, yielding into approx. 220.000 position/measurement tupels for one vehicle per day.

Figure 3.12 shows the result of the correlation process for one AP over the testbed area at

Salzburg Airport. The result includes 57.097 spatial point datasets for one vehicle over a times-

pan of approx. 14 hours. The point cloud shows a densely covered testbed area, with limitation

on the lower right corner, where the antenna pattern has low gain (cp. figure 3.7), thus the MU

is going out of the AP’s WLAN coverage.

The detail view in figure 3.12 shows that measurement values are sometimes clustered in spatial

distribution. This is the case when the MU stops and holds its position for a certain amount of

time. This sort of clusters would allow averaging over space, time and measurement domain in

order to obtain more accurate reference values for further field modelling purpose.
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Figure 3.12.: Spatial WLAN measurements to AP mast6a at main apron of Salzburg Airport

This section has shown that data integration of non-spatial and spatial data generates rather

much effort in data handling, processing and storage. By means of interpolation, a big pile of

data has been made available, constituting the groundwork for field modelling. This raises the

question:"What data is actually applicable or useful for field modelling?" This should be answered

in the upcoming section, where the focus is laid on explorative data analysis.

3.3. Data Analysis

Isaaks & Srivastava (1989) states: “One of the things that distinguishes earth science data sets

from most others is that the data belongs to some location in space.” This is definitely appli-

cable for the case of available georeferenced measurement data of MUs and aircraft positions,

although the task of electro-magnetic field modelling is not related to earth science in a broader

sense. Another aspect is given by the time-variant characteristic of the sampled electro-physical

phenomenon, that each data sample belongs additionally to certain point in time. The main

characteristic of time-variant systems is that the system’s output depends exclusively on time.

This however is not the case in the electro-magnetic field modelling, as the field distribution is

dependent on location as well. This would give the overall phenomenon a spatio-temporal char-

acteristic.

The toolbox of spatial (geo)statistics provides a bunch of methods for the spatial description
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of data sets. This section will explore the available measurement and position data in spatio-

temporal scale. The main target of this section is the exploration of data in terms of spatio-

temporal distribution. Moreover, it introduces a spatio-temporal buffer method for isolation of

measurement reference values.

3.3.1. Spatio-Temporal Distribution

Currently, through figure 3.12 in section 3.2.2 Measurement Data Integration, we have already

obtained a first impression of the spatial distribution of interpolated measurement positions.

This measurement track was recorded on a time window of approx. 18 hours. However, the in-

tensive data volume and small scale of spatial distribution, clustering of measurement values is

hard to analyse. This raises intuitively the question:“How does the distribution look like on a

spatio-temporal scale?”

In order to find an answer to that questions the open source software SGeMS (Standford Geo-

statistical Modeling Software)6 was utilised to explore the collected data in a three dimensions:

X, Y, and time. SGeMS was selected at this stage as it allows easy access to multidimensional

data exploration, wherein most of the available GIS software systems are still lacking behind.

6http://sgems.sourceforge.net/old/index.html
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Figure 3.13.: Spatio-temporal distribution of measurement and aircraft postitions

Figure 3.13 shows the spatio-temporal distribution in a time-space cube, where the z coordinate

denotes time of the MU’s georeferenced WLAN measurement data in grey and aircraft position

coloured in blue. The blue colour simply indicates a continuous index of aircraft positions and

helps to distinguish between measurement data and aircraft positions. The recording of the

presented data set was done by one MU on 1st of February 2012, over a period of 18 hours from

3:58h to 22:23h UTC. Both data sets are spatially delimited by the testbed area; the WLAN

data set counts 234806 points, whereas the aircraft positions count 4064 data tuples. This is

due to the fact of higher data acquisition rates of the WLAN measurement unit and higher

movement frequency of the MU in relation to aircraft. Note that not all aircraft are enabled to

broadcast their position in ADS-B. This depends on aircraft’s status of avionic technology and

the activation of ADS-B message broadcast on ground.

The data overview in figure 3.13 shows that positions are not equally distributed over time and

space. This depends on characteristic routings of aircraft and MU in time and space. In the case

of the MU the unit stops recording measurement data approx. 15 min. after ignition stop by the

driver. At the outer boundaries in x-y dimension the MU track is sometimes interrupted. This is

caused by the spatial join of testbed area and position data. Data outside the testbed area are

not considered in this analysis.
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The distribution of WLAN measurements over time is plotted as histogram in figure 3.14, with

general statistical parameter of the data set on the right hand side.

Figure 3.14.: Histogram of WLAN measurement data

The histogram depicts the entire time frame of the data set recordings about approx. 18 hours.

The histogram as such and the median of 15279, cutting the precentile at 50%, shows that major

recording activity of the MU takes place in the first third of the time frame. In this context the

recording activity is not necessarily equal to movment activity, as position recording is solely

dependent on ignition activity. The upper boundary of the timeframe’s first third is approx. at

9:48h UTC.

© Johannes Kapser 53



Modelling of Continuous Fields:

Coverage Mapping Based on Dynamic In-situ WLAN Measurements

3. Data Sources, Modelling, and Analysis

Figure 3.15.: Histogram of aircraft postitions

In contrast to the MU recording activity, figure 3.15 shows the histogram of aircraft positioning

within the testbed area. Note that this graph represents the positioning activity of all ADS-B

equipped aircraft on the main apron. The median at 29853 in relation to lower quantile at 10578

and upper at 45254 shows, the aircraft positioning activity is more equally distributed over time

than the MU’s recoding activity. The frequency of aircraft position activity in figure 3.15 on

the left is low, in comparison to the MU graph. This is (i) due to the lower position recording

rate of ADS-B of approx. 1s, whereas the WLAN interface provides up to 15 measurements

per second, (ii) aircraft positions are not interpolated to higher recording rates as necessary at

MU measurements and (iii) that not all aircraft are equipped with ADS-B capable positioning

technology. However, commercial aircraft are generally equipped with ADS-B capable transpon-

ders. This means that especially aircraft positions of general and private aviation have not been

acquired.

The expected overlap of MU data and aircraft positions in time is shown by comparison of both

histograms, depicted in figure 3.14 and 3.15. Thus, spatial closeness between MU measurement

positions and aircraft can be assumed. This assumption has to be considered at further inves-

tigations, as interfering multipath influences on WLAN measurements caused by aircraft metal

wings and fuselage will be expected. Next, a strategy will be elaborated extracting measurement

cluster values out of recorded measurement data.
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3.3.2. Measurement Reference Value Extraction

In general, measurement data of WLAN field strengths recoded by consumer electronics tends

to be noisy. This is (i) due to low measurement resolutions, laying in the available data at 1

dB and (ii) the time-variant characteristic of the overall system. As introduced in section 2.1.1

Principles and Concepts, electro magnetic fields underlay the physical phenomenon of multipath.

This is valid for static and dynamic environments, where for the latter the effect is also known

as signal fading. Consequently, in the case that measurements take place in close neighbourhood

to a taxing aircraft, the measurement value could change dramatically over time.

In order to overcome or at least to reduce that issue, measurement values will be averaged over

time at a fixed location. Thereby, measurement values are taken into account where a certain

distance criterion to aircraft is given. At this first approach, the assumption is made that recorded

field strength is independent on small aircraft and apron vehicles. This is due to the fact that at

current state only position data of commercial aircraft have beev made available. For further field

modelling approaches precise reference values of field strengths have to be taken into account.

The main task of the following subsection is the extraction of that reference values, out of the

bunch of recorded measurement values.

Basically, for the generation of field strength reference values several measurement values have

to be considered at fixed location. Over these measurement values the actual measured power

value can be averaged over time, resulting in a more precise field strength reference value. In

order to obtain measurement values at fixed location, a filtering process was elaborated enabling

spatio-temporal cluster detection.

Due to the enormous size of available measurement data (234806 within 18 hours!) an overall

cluster analysis is not practicable in terms of computational effort. To overcome that issue,

a simple filter strategy on the MU’s ground speed, delivered by the on-board GPS receiver,

is applied. Additionally, the positions’s DOP value was considered, in order to consider reliable

positions only. Figure 3.16 points out the measurement cluster generation process as implemented

in scope of this thesis.
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Filter mu_position where HDOP < 1.5 

and speed_og < 0.1 m/s 

Filter cluster boundaries in 

time (start-/stop-time)

Select mu_measurement 

values for detected clusters

Calculate cluster parameter 

Avg_position, avg_power,  

sigma_xy, sigma_power, 

value_count

2D + t Buffer intersection 

with aircraft positions

Figure 3.16.: Measurement cluster generation process

The process starts with filtering the available measurement values by speed over ground and

HDOP. Thereby, the maximum ground speed is adjusted to 0.1 m/s in order to consider noise

effects in ground speed computation by the GPS receiver. Next, the filter algorithm divides the

selected measurement values in clusters, based on a special timing criterion. Thereby, all non-

moving measurement values are clustered, which are separated less than a certain amount of

time. For the actual clustering process the time gap was selected to 3 seconds in order to reduce

the sensitivity on recording gaps in available position values. Thus, the process determines for

each cluster a start and stop time. On the basis of start and stop time, the interpolated position

measurement values of MUs will be selected.
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Figure 3.17.: Cross section of time space buffer concept

In the following step the selected position measurement values will be filtered, if close spatio-

temporal relationship to aircraft positions does not exist. This is required, as aircraft and MU are

moving in space and time. In order to achieve that, a three-dimensional buffer was constructed

around each interpolated MU position, as depicted in figure 3.17. Around the actual MUP os a

radius r was constructed in the space domain and a buffer hight of ∆t was selected in the time

axis. This results in a flat cylinder buffer shape, allocated in time and space. This buffer is now

intersected with available aircraft positions. If intersection occurs, the MUP os is not considered

further for the cluster calculations. In the actual filtering, the buffer radius r was selected to 100m,

resulting in 92,61 dB signal attenuation at loss-free signal reflection, determined by equation 2.3

at a total signal path of 200m. The buffer hight ∆t was adjusted to 2 seconds, in order to

guarantee intersection to aircraft at a position acquisition rate of 1 Hz.

After cluster creation and filtering, the actual cluster parameters can be determined. In this case,

value count, average power of the received signal and standard deviation σxy in xy direction and

for the received signal power σP is computed. The standard deviation sigma is determined by

following equation:

σ =

√

√

√

√

1

N

N
∑

i=1

(xi − µ)2 where µ =
1

N

N
∑

i=1

xi. (3.8)

N denotes the number of measurements per cluster and xi the discrete cluster measurement

values. The process ends finally with these five resulting cluster parameters.

The computational result of the above described process yields in a count of 184 clusters over

234806 measurement values and a recording time of 18 hours. Figure 3.18 shows the exemplary

result of the cluster generation process for AP mast6a. Note that the circle diameter of the

cluster symbol correlates with processed parameter σP , the standard deviation of power mea-

surement values. Therefore, the lower the diameter of the cluster circle, the more precise the

power measurement in terms of variance.
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Figure 3.18.: Spatial distribution of cluster generation process result for AP mast 6A

The spatial distribution of cluster location is concentrated on the east and west boundary of the

main apron. This depends on the moving profile and typical holding positions of the MU.

A summary on the statistics of calculated cluster parameter is shown in table 3.6.

parameter min max mean median

σP 0 4.1751 1.3594 1.2359

σxy 0 66.50 1.3143 0.4034

count 1 5885 278.51 39.0

Table 3.6.: Cluster parameter statistics of AP mast6a

A standard deviation minimum of 0 occurs if either all measurements have the same value or

the cluster count is equal to one. Note that σxy maximum of 66.50 is a typical statistical outlier.

This is emphasised by the median parameter of 0.4034, separating the higher and the lower half

of the sample.

Generally, it is to discover that standard variation σxy and decreases and σP increases with higher

value count of the cluster. This might be occurred on higher influence of multipath effects to

WLAN power measurements. The longer the recording of measurement values at a static position

at the main apron takes, the higher the probability of signal fading and multipath effects, caused

by passing by vehicles.
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For that reason a second filter was implemented, focusing spatially on the inner test-bed area,

depicted in figure 3.18 as underlying polygon in dark grey. Furthermore, it takes the measurement

clusters’ standard deviation of power and position into account. In this filter for σP a maximum

value of 1.5 is accepted, a maximum value of 0.3 for σxy and a minimum cluster count of 5

measurements per cluster.

parameter min max mean median

σP 0 1.496 1.034 0.999

σxy 0.023 0.226 0.123 0.112

count 5 144 34 18

Table 3.7.: Cluster parameter statistics AP mast6a of final measurement reference values

The results of the final filtering in table 3.7 shows, the cluster’s maximum standard deviation

σP and σxy could be fairly reduced. This filtering result counts now 24 clusters and acts as a

reasonable basis in size and precision for further model calibration purpose.

Figure 3.19.: Final measurement reference value distribution for AP mast 6A

Figure 3.19 shows the processing result of the final measurement reference value extraction

process, spatially delimited to the actual testbed area, the main apron of Airport Salzburg.
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The process of measurement reference value extraction has shown that cluster extraction is a

possible method to condense huge data sets. However, it is always a trade-off between processing

effort and choice of filter parameter. The consideration of aircraft positions has shown a minor

influence on the filtering process, as to less MU clusters (2!) were affected by intersection of the

defined spatio-temporal filter criterion. This might be justified by low density of available aircraft

positions. A higher density of available aircraft positions, even if small aircraft and mobile units

would be considered, would increase the scientific evidence of this research.

Conclusions

The thesis project involves many different data sources of either static or dynamic nature, in time

and/or space domain. For structuring of these data, an appropriate data model is essential. This

chapter has proposed a object relational data model, aggregating dynamic and static data in a

generic way. That constitutes the groundwork for further on-going processing and research of this

and other projects, related to field modelling in general. The two dimensional interpolation of

dynamic positioning data, has opened a strategy for correlation of position data with attributive

electro-magnetic field strength information. Without that solution, dynamic data from different

and not synchronised sensors platforms could not have been merged together. This is actually a

very common problem in data acquisition of multiple, not synchronised data sources, as it is often

the case e.g. in sensor networks or meshed geo-applications. The spatio-temporal characteristic

of available dynamic data sources has been shown by analysis. On that basis a three-dimensional

buffer concept was introduced in the time-space domain, for separation of positioning categories.

These all together, have been resulted in a process definition for measurement reference value

extraction. This process definition has laid the basis for algorithmic implementation, allowing

automised computation of measurement reference values. Nevertheless, a higher density of avail-

able aircraft positions would have led to more representative result of this analysis.

The next chapter of this thesis builds upon these measurement reference values, with different

field modelling approaches and utilises the introduced data model for RM processing.
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4. Field Modelling

As the thematic part of the thesis title, “Modelling of Continuous Fields”, already states; field

modelling is one of the central questions of this research. In connection to WLAN (Wireless

Local Area Network) infrastructures, this raises the question: What field model is robust enough

to cope with the highly sensible electro-magnetic field? This chapter tries to give an answer by

implementation and analysis of deterministic, probabilistic and combined modelling approaches.

First of all, the parameter model is shortly revised, followed by the implementation of an ex-

tended radial model approach, considering antenna characteristics. The second part deals with

the implementation of probabilistic models, based on geo-statistical Ordinary Kriging interpo-

lation. Therein, a new concept of mixing the implemented parameter model with probabilistic

interpolation will be analysed. This chapter closes by qualification of implemented modelling

methods against a reference track compound of field measurements.

4.1. Parameter Model

In the introduction to modelling approaches in section 2.2 Methods for Radio Map Generation a

series of deterministic electro-magnetic models as the radial model, MWM (Multi Wall Model)

model, ray tracing model and DPM (Direct Path Model) model have been introduced. All that

models have been considered as parameter based, whereas the latter three are mostly utilised in

in-door positioning environments; thereby, accurate infrastructural building information is nec-

essarily required. This research elaborates a extended radial modelling approach, taking beyond

fairly simple isotropic radiation the directivity characteristic of applied patch antennas into ac-

count. That results in an ideal electro-magnetic field distribution model for obstacle free outdoor

environments, constituting the basis for additional model calibration.

First, the conceptual implementation of the parameter model is introduced, in accordance to

the available antenna pattern. That illuminates the modelling approach, resulting in a first pre-

liminary RM (Radio Map), available as geo-referenced raster data set. The second part of this

section proposes an empirical method for model calibration within the testbed.

4.1.1. Model Implementation

The radial model is based on the radial symmetry in electro-magnetic field distribution. Thereby,

the assumption is made that the field strength of an isotropic radiator is exclusively dependent on

the distance d between receiver and transmitter antenna, at a given wave length λ, (Haykin 2001).
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Atmospheric influences have not been further considered in that approach, as they have minor

influence at close receiver transmitter distances. The concept of path loss models the physical

key concept of the radial model and is given by equation 4.1, already derived in section 2.1.1

Principles and Concepts.

PL(d) = −10 log10(GtGr) + 10 log10

(

4πd

λ

)2

[db] (4.1)

A model based on that equation implies omnidirectional receiver and transmitter antenna charac-

teristic. Otherwise, the antenna’s gain directivity has to be taken in to account. This is the case in

the given testbed scenario, where highly directional antennas have been installed. Consequently,

equation 4.1 has to be adjusted:

PL(d, δ) = −10 log10(Gt(δ)Gr) + 10 log10

(

4πd

λ

)2

[db] (4.2)

The function Gt(δ) describes the transmitter’s antenna directivity in dependence of the angle δ

in reference to the antenna’s boreside direction. The course of that function is given by previously

processed antenna directivity data, in section 3.2.2 Data Modelling. The receiver antenna gain

Gr remains constant due to omnidirectional antenna characteristic.

On basis of the model equation 4.2 a preliminary RM will be implemented. The RM itself is

represented by a multi-channel raster coverage, as already discussed in section 2.2.1 Definition

of the Radio Map. Thereby, each raster cell of the n-dimensional RM matrix X corresponds to

a discrete sampling vector þxij = (rssij
k) of the field model. Thus, the RM is compounded of

k “layers”, one for each AP (Access Point) of the testbed’s communication infrastructure. The

parameter θk
ij of the generic RM model, introduced in section 2.2.1 Definition of the Radio Map

by equation 2.6, is not applicable for the implementation of this parameter model approach and

therefore eliminated.
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Figure 4.1.: Geometrical relationships for RM computation

The geometrical relationships for RM creation are depicted in figure 4.1. For each column i and

row j of the raster matrix coverage X, the field model is iteratively sampled for k APs. In order to

start the computation process, the location and horizontal orientation of the AP antenna has to

be retrieved from the DBMS (Database Management System). This is given by the geographical

position AP k and the antenna boreside direction Θ in reference to geographical north. In the

following iterative computation process the vector þd is determined for each raster cell centre

xk
ij :

þd = xk
ij − AP k (4.3)

The Euclidian norm ||þd||2 gives the geometrical distance d between raster cell xk
ij and the antenna

phase centre. Out of that result the PL (Path Loss) could be computed by equation 4.1, without

taking the antenna characteristic into account.

For consideration of the antenna characteristic Gt(δ), the angle ϕ in reference to geographic

north has to be determined first. This is archived by:

ϕ = tan−1(dx/dy) ∀ x ≥ 0 ∧ y ≥ 0

ϕ = tan−1(dx/dy) + 180◦ ∀ y < 0

ϕ = tan−1(dx/dy) + 360◦ ∀ x < 0 ∧ y ≥ 0

(4.4)
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In this case, the arctangent is calculated by x/y in order to determine the angle ϕ in reference to

geographic north. On that basis the corresponding angle δ for antenna gain determination can

be computed accordingly:

δ = Θ − ϕ (4.5)

With the resulting values of the variables d and δ the field model can be computed by equation

4.2 over the testbed area, for each of the available APs.

For the resulting raster coverage a 16-bit, six channel raster space is allocated in the spatial

DBMS. This allows to store of a six layer RM with a numerical quantisation of 216 steps per cell

value. For the prototype RM a cell value resolution of 0.01 dB was selected, yielding into at a

value range from 0 to 655.35 dB.

Figure 4.2 and 4.3 shows the exemplary raster coverage result of path loss computation over the

testbed area. For the purpose of fast computation, a fairly coarse raster cell size of 3m x 3m

was selected, however sufficient for discovery of the modelled phenomenon. Additionally, in the

process of model computation, a spatial filter criterion was introduced, computing only values

within the testbed area. Consequently, the resulting raster coverage is shaped according to the

testbed area.

The resulting map of the electro-magnetic field distribution, according to the applied path loss

modelling, shows the significant influence of the antenna directivity on the field distribution. The

field distribution’s characteristic is far beyond a radial symmetry around the antenna’s phase

centre. The main and side lobe influences of the antenna pattern in figure 4.1 are explicitly

recognisable in the field distribution. The comparison of figure 4.2 and 4.3 shows, the applied

antenna is basically more suitable for horizontal narrow directed than broad field coverage.
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Figure 4.2.: RM of APs MAST2A on the left and MAST6A on the right hand side

Figure 4.3.: RM of APs MASTSUED on the left and VORFELDSUED on the right hand side
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Although the modelled raster coverages present the path loss, they do not reflect the physically

received signal strength at the MU (Mobile Unit)’s receiver side. This is due to the fact of un-

known transmitted power of APs, receiver antenna gain and attenuation of the receiver insertion

network. In order to obtain a signal strength surface of the received power, the model has to be

calibrated with reference measurement values. This will be elaborated in the upcoming section,

model calibration.

4.1.2. Model Calibration

The focus of this section is laid on the calibration of the previously composed parameter model

of electro-magnetic field distribution. The introduced calibration process is based on measure-

ment reference values, which has been gathered in section 3.3.2 Measurement Reference Value

Extraction. The main target of this section is the extraction of a constant field model calibration

parameter out of processed measurement reference values. Consequently, the calibration parame-

ter has to be located in the power domain. For that the signal strength value pavg of measurement

reference values will be utilised, referring to the overall average power of a measurement cluster.

The calibration process is compounded of several stages. Right at the beginning the power delta

∆p between the RM field model and the measurement reference values has to be determined at

their dedicated reference value location. This is simply realised by raster value point requests

at the geographical position of measurement reference values. Consecutively, the average power

value pavg(x, y) is subtracted from the gathered RM value rssij . Applying that process, again to

the example of AP mast6a, this yields in 24 values of ∆p. Note that RM values rssij are discrete

raster values, whereas pavg(x, y) are vectorised and regarded as continuous in the space domain.

The failure imposed by the discrete raster data set is dependent on the raster cell size, however

that issue will not be further investigated within the scope of this thesis.

This raises the question of how to obtain a unique calibration parameter, out of several ∆p

values, for the above determined electro-magnetic field model. This calibration parameter should

meet the best suitable calibration of the field model in the power domain. In order to tackle that

goal, least square approximation for overdetermined systems is applied, originally introduced

by Carl Friedrich Gauß (Bjõrck 1996). That approach corresponds to the maximum likelihood

criterion if the errors of the experiment are normally distributed. The linear model that should

be approximated in this calculation is fairly simple the calibration parameter a. This parameter

should be best fitted, which is the case if the sum of squared residuals, the error function E(f),

is minimum:

E(fi, a) =
N

∑

i=0

(∆pi − a)2 (4.6)

Note that in this case the function f represents the discrete delta values ∆pi. In order to obtain

the solution of |E(fi, a)|min this problem is solved numerically.

Additionally, a weighted criterion is considered, depending on the count ci of originally underlying

measurement values per cluster. This allows a direct proportional weighting of measurement
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reference values as a function of cluster impact. For that function E(fi, a) is supplemented by

the weight wi:

E(fi, a, wi) =
N

∑

i=0

(∆pi − a)2wi (4.7)

where

wi =
ci

∑

ci
(4.8)

The graphical plot of the numerically solved error function E(fi, a, wi) is shown in figure 4.4.

Note that both functions are normalised within the depicted range from 10 to 30 dB.

Figure 4.4.: Numerical solution of error function E(fi, a)

The numerically exact solution for |E(f)|min is 20.891 dB for E(fi, a, wi) and 20.924 dB for

E(fi, a). In this processing example of AP mast6a, there exists only a minor deviation in the

difference of both error function minimums. Nevertheless, the absolute minimum of the weighted

error function, 20.891 dB, is considered as resulting offset parameter a of the approximation

process.

The final result of the calibrated RM for mast6a is shown in figure 4.5. The RM represents the

estimated signal attenuation at certain location in dB, which correlates to the negative path loss

value. Furthermore, figure 4.5 shows positive deviation of reference measurement values to the

calibrated RM coloured in green and negative deviations in red. It shows inside the region of the

antenna main lobe, deviations of the RM are mainly negative and outside positive. This indicates

that the antenna directivity is significantly lower in practical applications than specified by its

data sheet.
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Figure 4.5.: Calibrated radio map of AP mast6a with deviations to reference measurements

The modelling approach of the parameter model has shown that the result is highly dependent

on the quality of the underlying antenna pattern. The applied antenna pattern provided by the

antenna manufacturer does by nature not consider the installation environment. This however

affects the resulting antenna characteristic significantly. The applied least square approximation

method for RM model calibration does not regard that effect. In order to consider that influence,

it is recommended to calibrate the antenna pattern as well. Further research on a method for

in-situ calibration of the antenna pattern would significantly enhance that modelling approach.

4.2. Probabilistic Interpolation

The last section about calibration of the parametric field model has taught that the ideally

computed field model deviates partially a lot from the actual reference measurement clusters’

values. This is based on the fact that we have globally shifted the field model in its power axis,

approximated best for reference measurements across the testbed area. In order to overcome that

limitation of the model’s inflexibility, the probabilistic Ordinary Kriging interpolation method is
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applied in this section.

This will be done in two different approaches. At first, the Ordinary Kriging method is exclusively

applied to measurement reference values. On a second approach, the same interpolation technique

is applied to interpolation points compound of measurement reference values mixed with values

of the calibrated parameter model of the previous section. This measure should reduce expected

oscillations on the surface boundaries. Following, both variants will be illuminated in terms of

data exploration, interpolation and error surfaces. In this case, the applied approach to both

variants will be discussed in parallel, in order to obtain the direct comparison.

4.2.1. Data Distribution

The entire interpolation point basis is shown in figure 4.6 by black crosses. While interpolation

points based on measurement reference values are highlighted in yellow. The processing of the

measurement reference values has been already explicitly described in section 3.3.2 Measurement

Reference Value Extraction.

Figure 4.6.: Interpolation point distribution of measurement reference values (highlighted in yellow) and
artificial boundary points
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Without explicitly applied point pattern analysis it is recognisable; the cluster centroids are not

randomly distributed over the testbed area as clearly shown in figure 4.6. The sample data set

is spatially clustered around the upper right part of the testbed area next to AP mast6a. This is

mainly dependent on the moving pattern of the WLAN sensor and varies over time. In order to

overcome the expected bad influence of clustering on the boundaries of the interpolation surface,

two interpolation approaches will be applied. Whereas the first interpolation approach exclu-

sively uses the measurement reference points, for the second boundary values of the calibrated

parameter model, will be incorporated. These boundary values are equally distanced by approx.

25m on the border of the testbed area.

Next, the explorative data analysis will be proceeded by comparison of the second order trend

analysis function of both interpolation approaches. The trend analysis functions shown in figure

4.7 were processed with ESRI’s ArcGIS Geostatistical Analyst1 toolbox. Both trend functions

show in common the same tendency of the electro-magnetic field distribution. The field strength

declines outgoing from the radiation source AP mast6a in the upper right corner. Additionally,

the expected antenna directivity characteristic can be recognised in both figures. This can be

derived from the unsymmetrical field characteristic towards the right hand boundary of the trend

function, where the field strength declines. Both trend functions compared to each other show,

the antenna boreside direction is slightly different. The measurement cluster trend function points

more towards geographic south than the other. Moreover, at the testbed area boundaries, the

trend function of the measurement cluster parameter model combination counts lower values.

This is due to the influence of the calibrated parameter model, where far from the power source

distanced locations are rated lower in terms of field strength.

Figure 4.7.: Second order trend surface for measurement cluster centroids (left hand side) and with sup-
plemented boundary points (right hand side)

1http://www.esri.com/software/arcgis/extensions/geostatistical
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For the analysis of spatial variance within both datasets, the semivariance is modelled in figure

4.8.

Figure 4.8.: SemiVariogram of measurement cluster centroids (at the top) and with supplemented bound-
ary points (at the bottom)

For the semivariogram the parameter were chosen according to the following rule-of-thumb:

1

2
dmax = lagsize · lagnum (4.9)

The maximum distance dmax between points inside the testbed area is measured to approx. 600

m. As local variances should be considered in these variogram analysis the lagsize parameter

was adjusted to 10 m and the lagnum to 30 accordingly. For the actual semivariogram model

the exponential type was chosen, fitting best for electromagnetic field strength models according
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to (Konak 2010), as power of electromagnetic waves attenuates significantly within the first few

meters. According to (Konak 2010) the exponential model is defined as,

γ(h) = C0 + (C1 − C0)exp

(

1 −
3h

R

)

(4.10)

where C0 is the nugget effect, C1 is the sill parameter and R is the range parameter. At distances

beyond R correlation between two points is not any more significant. The nugget effect represents

variability at very low distances including measurement errors and other noise parameters. The

sill parameter represents the maximum value of the semivariogram model, which is approached

asymptotically at exponential models.

The actual semivariogram model parameter values of both interpolation sources are shown in

table 4.1.

interpolation source C0 C1 R

measurement reference points 1.829 41.697 71.327

mensurement reference and param. model points 5.048 54.673 87.096

Table 4.1.: Parameter of the exponential semivariogram model

The direct comparison of both models show that measurement reference values as interpolation

basis yield in less nugget effect, maximum model variance and range. This is due to the addition-

ally implied effect of spatial autocorrelation at the calibrated field model. As this model is based

on the inherent cubic propagation function of electro-magnetic fields, higher variance between

value pairs is given at far distance.

In general, it is to notice that interpolation points derived from measurement reference clusters

are not equally distributed over the testbed area. One reason for that is the comparatively low

data acquisition time of approx. 16.5 hours. Moreover, the applied data aggregation strategy,

reducing the effect of temporal variance in field strength measurements, reduces the number of

available interpolation points enormously. This effect could be either reduced by expanding the

WLAN data acquisition time or by increasing the number of mobile WLAN sensors, without

changing the data aggregation strategy.

4.2.2. Ordinary Kriging Interpolation

Based on both previously discussed interpolation data sources, Ordinary Kriging interpolation

and its corresponding error surfaces will be illuminated in this section. The theoretical back-

ground to the following applied Ordinary Kriging interpolation has been revised in section 2.2.2

Field Modelling Approaches.

The interpolation is based on the exponential model parameters in each case of interpolation data

sources, as elaborated in previous section 4.2.1 Data Distribution. In both cases trend elimination

is applied of the second order trend surface, as shown in the previous section. Figure 4.9 shows
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the Ordinary is applied interpolation surface of both interpolation data sources next to each

other.

Figure 4.9.: Ordinary Kriging interpolation surfaces over cluster centroids (left hand side) and with sup-
plemented boundary points (right hand side)

The left hand side of figure 4.9 shows the interpolation result exclusively calculated over mea-

surement cluster centroids. In this surface the antenna directivity is clearly recognisable. The

radiation source centre can be allocated well and fits with the known radiation location of mast

6a. Due to the spatially clustered distribution of interpolation points, the quality of the interpo-

lation surface across the testbed is different. At locations with reasonable density of interpolation

points, as in the near distance of AP mast6a, the surface shows a rather homogeneous charac-

teristic. The antenna main lobe directivity is met quite well in this area. At far distance from

the radiation source, especially on the testbed boundary, where density of interpolation points

is low, discontinuities within the interpolation surface occur.

This is different in the result of interpolation, taking measurement reference and parameter model

points into account, shown on the right hand side of figure 4.9. In this case, the boundary of

the interpolation surface is strained to the calibrated parameter model values. This affects the

interpolation result on the testbed boundary, resulting in a more homogeneous surface boundary

distribution. On the other hand, it does negatively affect the antenna’s directivity and main lobe

shape nearby the radiation source, where high density of measurement reference values is given.

Furthermore, the interpolation surface is strained down to lower signal values than actually mea-

sured on the lower right corner of the testbed area. This shows the direct comparison of both

interpolation surfaces.
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The corresponding error surfaces to that interpolation are shown in figure 4.10. As due to the

nature of interpolation on clustered point distributions already expected, the error surface counts

high values where density of interpolation points is low.

Figure 4.10.: Ordinary Kriging error surfaces over cluster centroids (left hand side) and with supplemented
boundary points (right hand side)

The error surface shows that in the case of measurement reference value interpolation, the error

of interpolation is lower at locations where reasonable density of interpolation points is given.

However, the overall error seems to be lower at the alternative interpolation case, taking the

parameter model values into account.

Note that this consideration should not be regarded as an absolute qualification of the interpo-

lated radio map, as this would require the assumption that all interpolation points rely on the

same acquisition technique and equivalent data source respectively.

The resulting Ordinary Kriging interpolation surfaces of this section show different character-

istics in terms of continuity and boundary behaviour. As both underlying interpolation sources

are partially established from different source and accuracy, the Kriging error surface or statis-

tical cross validation techniques would not be meaningful in terms of accuracy estimation and

qualification of the produced radio map. Therefore, the upcoming section approaches the issue

of surface qualification empirically, by cross validation with reference track measurements.
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4.3. Model Qualification

This chapter about field modelling discusses basically three methods of field modelling: (i) the

calibrated parameter model approach, (ii) Ordinary Kriging applied on measurement reference

values and (iii) Ordinary Kriging applied on interpolation points compounded of measurement

reference and calibrated parameter model values. All of these approaches have obtained partially

different or combined data sources, with different characteristics of inherent acquisition errors.

However, basic laws of statistics do not allow to compare applied error or cross validation results

with different underlying failure distribution amongst each other.

In order to come across that issue of comparing all three modelling approaches in terms of quality,

the way of empirical validation by reference track measurements is taken. For that purpose, at

first a single reference track of electrical field strength measurements to AP mast6a is isolated out

of the interpolated WLAN measurements, elaborted in section 3.2.2 Data Integration. Second, the

actual model evaluation by empirical validation of modelling approaches against the measurement

reference is conducted. In this analysis pure statistical parameters and spatial distribution of

model deviation will be compounded.

4.3.1. Measurement Reference Track

Due to the fact that this thesis does only consider an exemplary field modelling approach based

on WLAN measurements to AP mast6a, consequently the spatial location of the measurement

reference track has to be adjusted according to the geographical location of mast6a. Figure 4.11

shows the selection of extracted measurement values out of the interpolated WLAN measure-

ments.
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Figure 4.11.: Measurement reference track of geo-referenced WLAN measurement values to mast6a

These timely variant organised electrical field strength measurement values, based on records of

the MU movements to AP mast6a, constitutes the measurement reference track. Due to con-

straints in the spatial availability of the WLAN signal to AP mast6a, the measurement reference

track is located in the northern part of the testbed area, where consistent signal availability is

given. This signal availability is essential for position determination algorithms, based on the

final radio map, which is however out of the thesis’s scope.

This measurement reference track will be utilised next, in order to qualify the previously intro-

duced field strength models against empirical measurements.

4.3.2. Model Evaluation

As last step of the model qualification, each of the introduced modelling approaches is qualified

against the previously discussed measurement reference track. For that, the gathered measure-

ment track will be statistically compared to the locally corresponding field strength values of

different field models. This will result in an absolute empirical qualification of the applied field

models against the recorded reference measurement track.
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In order to obtain a more differentiated basis for model qualification, the testbed area was di-

vided into three sub-areas A, B and C. This allocation is basically done in reference to (i) the

geographical location of the AP and (ii) the antenna’s field directivity characteristic. These sub-

areas divide the testbed in a main-lobe area (Area B), in reference to antenna AP mast6a, and

two side-lobe areas (Area A, Area C). The main-lobe area in this case is configured to ±40◦ in ref-

erence to the antenna main lobe direction. This is basically derived from the antenna’s H-pattern

3-dB beamwidth of 50◦, as stated in (Systems 2005), with an additional margin of 15◦ in each

direction. The sub-areas define on the one hand areas of higher or lower field strength intensity

and on the other areas underlying different influences by surrounding buildings. These buildings

can have major contribution to multipath influences on the WLAN field stregth as discussed in

section 2.1.1 Principles and Concepts. While the measurement reference track is influenced most

by surrounding buildings inside of Area A, Area C is least affected. The geographical location of

these areas is shown in figure 4.11.

The measurement reference track in figure 4.11 shows basically the power deviation ∆p(x, y)

between the different field modelling approaches and recorded measurements. This was easily

achieved by a spatial join of the RM data sets with the measurement track. Consecutively,

the field strength component of the measurement reference value pmeas.(x, y) was subtracted by

the power value pRMn
(x, y) of the applicable RM, where the subscript n denotes the different

models:

∆p(x, y) = pmeas.(x, y) − pRMn
(x, y) (4.11)

This spatial power difference ∆p(x, y) was determined for all modelling approaches and encoded

in colours as shown in figure 4.11.

© Johannes Kapser 77



Modelling of Continuous Fields:

Coverage Mapping Based on Dynamic In-situ WLAN Measurements

4. Field Modelling

Figure 4.12.: Measurement track vs. field models; (i) upper left cal. parameter model, (ii) bottom left Ord.
Kriging model, (iii) bottom right Ord. Kriging param. model
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As the a visual interpretation of the power deviation is hard to quantify, it is additionally un-

derpinned by statistical analysis for each of the different field models. Thereby, each analysis is

done over the different exploration areas A, B and C as well as for the test-bed area as a whole.

For the statistical analysis the maximal positive and negative deviation of ∆p, the mean value

and the standard deviation is taken into account. The mean value µ in combination with the

standard deviation σ gives a measure of quality, as σ shows how much variation exists around

the average. For the mathematical definition of these statistical parameter please see equation

3.8 in section 3.3.2 Measurement Reference Value Extraction.

The following qualification will take spatial and statistical explorations into account. First the

areal analysis for each model will be discussed before considering the overall analysis.

The spatial distribution of ∆p in figure 4.12 compared amongst all models show, the calibrated

parameter model has the biggest deviation on the very upper end of the track, where the multi-

path effect by surrounding buildings come into account. In contrast, the Ordinary Kriging model

and Ordinary Kriging parameter model shows significantly better performance in that region.

Near the border to Area B, the Ordinary Kriging approaches seems to meet the physical phenom-

ena slightly better as well. The statistical figures out of table 4.2 underline these observations.

Although the calibrated parameter model has got the lowest mean value, the high variation of

∆p relativise this advantage.

Cal. Param Model Ord. Kriging Ord. Kriging + Param. Model

∆pmin -9.00 -8.60 -3.17

∆pmax 9.65 9.46 9.34

µ 4.3021 4.5361 4.3866

σ 4.5482 3.4536 3.1496

Table 4.2.: Statistical analysis of Area A

In the main lobe area of the reference track, Area B, we can distinguish in figure 4.12 between the

near field and the far field of the antenna. In the near field area the calibrated parameter model

shows a rather positive result with small variation and low deviation from the measurement

reference track. The Ordinary Kriging model meets the measurement track partially even better,

however with slightly higher variance on the near field boundary areas. The Ordinary Kriging

parameter approach affiliates the negative influences of both models and counts high variations

on the boundary areas with high deviations inside the centre of the near field. In the far field

centre area, the calibrated parameter model significantly over-estimates the electro-magnetic

field, whereas the Ordinary Kriging models show the opposite phenomena. Nevertheless, the

calibrated parameter model meets the reality of the field phenomena rather well at the boundary

areas of the far field. All this observations can be underlined by the result of statistical analysis

in table 4.3. While the calibrated parameter model shows positive mean and low variance values,

the Ordinary Kriging approaches count negative mean and high variance values.
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Cal. Param Model Ord. Kriging Ord. Kriging + Param. Model

∆pmin -9.10 -9.85 -9.80

∆pmax 9.95 8.68 9.87

µ 3.6961 -3.3377 -3.1735

σ 3.3334 4.4714 4.8735

Table 4.3.: Statistical analysis of Area B

In Area C, the side lobe area in the south side of the test-bed, the calibrated parameter model in

figure 4.12 shows high variation in model deviation close to the northern boundary of Area C. In

the south-eastern part of the measurement reference track, that model clearly underestimates the

electro-magnetic field. In this area the Ordinary Kriging approach succeeds with lowest deviation

from the electro-magnetic field. The Ordinary Kriging parameter model tends to underestimate

the electro-magnetic field as well in this area. This interpretation is again underlined by the

statistical analysis results in table 4.4. All three models have got a negative mean value, as they

are underestimating the electro-magnetic field. Ordinary Kriging shows the lowest deviation,

however combined with high variation.

Cal. Param Model Ord. Kriging Ord. Kriging + Param. Model

∆pmin -9.23 -8.48 -9.90

∆pmax 8.20 7.96 8.80

µ -1.7243 -1.3466 -3.4877

σ 3.9102 4.2824 3.6228

Table 4.4.: Statistical analysis of Area C

After visual interpretation and statistical analysis of different testbed sectors, table 4.5 gives

the statistical values of the entire testbed area. Therein, the calibrated parameter model shows

the best performance in terms of absolute deviation from the measurement data set in combina-

tion with lowest variance. Both Ordinary Kriging approaches clearly underestimate the electro-

magnetic field with higher variation in field deviation.

Cal. Param Model Ord. Kriging Ord. Kriging + Param. Model

∆pmin -9.23 -9.85 -9.90

∆pmax 9.95 9.90 9.87

µ 1.4059 -1.8218 -2.6791

σ 4.6029 4.8153 4.7509

Table 4.5.: Overall statistics of field models

Despite of the statistical overall results, the areal analysis above has shown that each model

has strengths and weaknesses in certain areas against different influences. This shows that the

evaluation of field models cannot simply strapped down statistical overall analysis. In order to

take the areal analysis into account a result matrix, shown in table 4.6, has been determined. That

matrix summarises the areal assessment over considered field models for each of the analysed

areas.
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Cal. Param Model Ord. Kriging Ord. Kriging + Param. Model

Area A − − − + + +

Area B + + − + − −

Area C − + + + − −

Result − + + + − −

Table 4.6.: Result matrix of the visual and statistical areal analysis

The final result of the visual and statistical areal analysis shows, Ordinary Kriging applied

exclusively on measurement reference points seems to be the best model approach. This is mostly

due to the overall robustness of Ordinary Kriging towards the boundaries of area A and C. In

Area A the influence of multipath come into account and in Area C Ordinary Kriging allows to

compensate fine field discontinuities best. Especially, in Area C the influence of the calibrated

parameter model deteriorates the Ordinary Kriging parameter model by underestimating these

field discontinuities. The pure parameter model shows good performance within the main lobe

Area A, however, obviously does not take physical influences on the electrical field into account.

Conclusions

In this chapter different modelling approaches have implemented and qualified against a mea-

surement reference track. Thereby, each model has shown its strengths and weaknesses. The

parameter model shows still potential in optimising the calibration process by extending it onto

the AP antenna pattern. Basically, the introduced modelling approach and implemented frame-

work is convertible to lots of physical propagation of electro-magnetic characteristic, e.g. sound

or light. The combination of parametric and probabilistic modelling approach did not succeed as

expected. This is due to the special testbed constitution, where buildings on the boundary imply

multipath effects. That effects relativise the originally as advantage considered boundary strap-

down of the calibrated parameter model. For higher density of interpolation points, the Ordinary

Kriging interpolation applied on measurement reference points is considered as the best method

for electro-magnetic field modelling. This is mostly due to consideration of multipath effects.

However, for higher interpolation point density either longer data acquisition time is needed or

more WLAN sensors, attached to MUs.
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5. Discussion and Future Directions

This research has proposed a methodological way how to model physical coverages based on dy-

namic in-situ WLAN (Wireless Local Area Network) measurements. It has introduced theoretical

methods and concepts on wireless positioning techniques and has been mainly reviewed methods

for radio map generation and field modelling. The set-up materials to this research were inten-

sively discovered and grouped into static and dynamic data sets. In this turn, a object relational

data model was proposed for the available set-up material as well as for processed data sets,

as for instance the multi-channel RM (Radio Map) raster coverage. This data model has been

integrated into a spatial database, turning out as absolutely necessary for handing and analysis

of the available volume of data. On the basis of available raw data, substantial processes have

been defined, for data interpolation, correlation and extraction of measurement reference values

in the spatio-temporal domain. These data structure and processes have been constituted the

groundwork for implementation and analysis of deterministic and probabilistic field modelling

approaches. Thereby, a radial parameter model has been implemented, considering the physi-

cal antenna characteristic. Further, the Ordinary Kriging interpolation has been implemented,

based on measurement reference values on the on hand and a mixture of radial parameter model

samples and measurement reference values on the other. The implemented models have been

qualified by visual and statistical areal analysis against a measurement reference track.

Eventually after this short summary, the main findings will be discussed by picking up the initially

stated research questions in the introduction to this thesis.

• What modelling method is suitable for electro-magnetic fields in non-obstacle free environ-

ments?

The findings of the last core chapter have shown, Ordinary Kriging based on interpolation points

of measurement reference values has the potential to model electro-magnetic fields in non-obstacle

free environments, on a global scale, without considering field effects caused by mobile obstacles.

This is mostly due to the fact that physical effects of multipath, caused by static obstacles, can be

considered. However, this approach depends (i) on the quality of measurement reference values

and (ii) the interpolation point density of this data set. Unfortunately, both criterion were only

partially given in scope of this thesis project. The results of field modelling could be enhanced, by

taking more aircraft positions and positions of smaller aircraft during the measurement reference

value extraction process into account. Furthermore, an extension of the recording time-frame

would increase the density of measurement reference values and thus the quality of the RM as a

whole.
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5. Discussion and Future Directions

At the current status of the project SESAAM (Geo-Spatially Enhanced Situational Awareness for

Airport Management), ASTERIX cat 20 aircraft positions have been made available, gathered

by MLAT (Multi-Lateration) technology (Bretz et al. 2011). This allows a higher density of large

and even small aircraft positions and would significantly contribute to the enhancement of this

modelling approach.

• Is it possible to estimate a static field map out of dynamic in-situ measurements?

The elaboration of the measurement reference extraction process has introduced a strategy in the

spatio-temporal domain, for filtering field disturbing mobile objects. This approach allows the

consideration of interference free field measurements. Yes, the theoretical process exists, for static

field map estimation out of dynamic in-situ measurements. This however, is again dependent on

the proportion of positioned objects inside the area of interest. The more objects, that have been

made available by their positions, the better the result of static field estimation.

• What data structure is capable for multi-layer field mapping?

The findings of data modelling, together with the actual implementation of the object relational

data model, inside a spatial database, have shown, this approach is perfectly suitable for the

application of multi-layer field mapping. Especially, the provided geo-referenced spatial data

type raster is ideally suited for the multi dimensional layer requirement of the RM. This allows

the allocation of separate layers for each WLAN AP (Access Point)s within the same dataset.

The export of the RM in GeoTIFF format has helped for seamless display of the radio map in

GIS (Geographic Information System) software. Furthermore, the application of spatial indexing

allows fast access on data within the RM. This allows for future use, to provide the RM to other

interfaces, e.g. the position algorithm, in time critical applications. The decision for utilising a

GeoDBMS (Geographical Database Management System) instead of file based data access, has

shown further advantages in terms of scalability and the sustainability of the overall solution in

general.

This research provides a sustainable groundwork for modelling of continuous fields. Although it

has not given a solution to dynamic field mapping, considering spatio-temporal field influences

e.g. of mobile objects, it constitutes the basis for that. This point should be regarded from a data

structure and management point of view, as well as for future implementation of field modelling

approaches. Once the static field model is in place, immune against interfering influences by

probabilistic effects, such as moving objects; the spatio-temporal influences could be modelled

on top. And this points out the author’s recommended direction of future research in this area.

This framework would allow the extraction of field influences caused by mobile objects. Once

that influences are known, they could be modellised and incorporated in a spatio-temporal field

model. This could be done by means of geo-statistical simulation, depending on mobile objects’

positions. On that basis a dynamic field map could be provided, e.g. to a positioning algorithm,

in near real time by a generic web-service.
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6. Research Methods Appendix

This research methods appendix constitutes a consciously appended chapter to this thesis. It dis-

closes applied software architectures and implemented software packages, laying the groundwork

for this thesis research. Although the realisation of these components has bind major effort of the

thesis project, their discussion within previous chapters would have disturbed the development

of the main argument.

This appendix does focus on generic software structure and concepts. Although dedicated soft-

ware components and distributors will be explicitly called, the developed concept behind is

independent of platform or programming language.

The following presented software concepts and implementations have been developed inside of

the thesis project. The focus of the implemented software was exclusively laid on rapid proto-

typing for evaluation and validation purpose of the thesis research. It does not fulfil the demand

of professional software products in terms of documentation and robustness.

6.1. Operating System and Software Component Architecture

The careful selection of a suitable operating system and software component architecture is a

crucial point of nearly each research project, related to geo-processing and spatial analysis. The

flexibility of such an architecture can decide about success or breakdown of an on-going and

naturally growing project. The following section gives comprehensively an overview on utilised

tools and architectures, from an operating system and software point of view.

Virtual machines provide several advantages for software development in terms of resource man-

agement, transferability and system encapsulation. Thus, the VM (Virtual Machine) technology

constitutes an ideal software platform for the thesis project. Figure 6.1 provides a first overview

on the interaction of virtual machine and native operating platform. The virtual machine with

Linux Ubuntu 10.04 LTE operating system, running on Oracle’s Virtual Box1 software, is em-

bedded within the Windows 7 platform on the physical machine.

1https://www.virtualbox.org/
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PostGIS 2.0 SVN Version

Linux Ubuntu 10.04 LTS 

Python DBMS Interface

Python App. A Python App. B Python App. N

Windows Operating Platform

Python 2.6 Processing Framework

QGIS Desktop GIS 
SGeMS Geostat. 

Modelling SW

VM SW Oracle Virtual Box

Figure 6.1.: GIS framework and operating system architecture

The core processing framework for data handling, analysis and storage was implemented within

the Linux based VM environment. The main reason for choosing Linux as development platform

was the seamless availability of binary database sources. This was necessary to work with the

latest Open Source PostGIS 2.0 SVN DBMS (Database Management System) version, which had

not been available as pre-build version yet, at the project phase of software development. For

this project PostGIS 2.0 provides the necessary raster file capability in the world of Open Source

DBMS.

As interface to available data sources, e.g. text or excel files, different applications for data pars-

ing, processing and feeding were written in Python 2.6. The programming language Python was

selected, as it provides a broad range of programming libraries e.g. for database connectivity,

mathematical processing, plotting and much more. Furthermore, Python as powerful script-

ing language is ideally suitable for rapid prototyping of applications. Basically, within the thesis

project, an application package was created for each thematically coherent processing task. These

application packages are itemised in figure 6.1 as Python App. A to N.

On the host operating system the QGIS2 desktop GIS system is utilized for viewing raster and

2http://www.qgis.org/
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vector data, storing centralized within in DBMS. The communication between desktop GIS and

DBMS is done over TCP/IP connection through the virtual machine, as known from distributed

network applications. Additionally, SGeMS3 is provided for advanced 3D data exploration pur-

pose and spatial statistics. SGeMS communicates through an integrated Python interface with

the DBMS via physical TCP/IP connection.

After this short introduction of the operating system and software component architecture, next

the components of the processing framework will be illuminated.

6.2. Processing Framework Architecture

The processing framework is basically divided into four main application packages, realised in

the programming language Python. These packages could be considered as thematically grouped

toolboxes, supporting the research of this thesis:

• Antenna Interpolation application

• Position Feeder application

• MU (Mobile Unit) Data Feeder application

• Radial Field Model application

All packages together constitute the major development effort of this thesis project. The following

section gives a brief introduction to function and architecture of each application package. This

will be accomplished by UML (Unified Modeling Language) class diagrams to each package. For

more detailed information of programming structure and applied algorithms, the programming

code to each application package is attached to this thesis, accessible by ANNEX A to D.

6.2.1. Antenna Interpolation Application

The antenna interpolation application supports the interpolation process of the WLAN (Wireless

Local Area Network) AP (Access Point) antenna, as theoretically examined in section 3.2.2 Data

Integration.

This package includes two main application classes: Interpol_raw_data and load_raw_data.

Both applications utilise the DB_antenna_interface as accessible interface towards the un-

derlying database schema, elaborated in section 3.2.1 Data(base) Modelling. The UML class

diagram in figure 6.2 shows the functional connections amongst the major components of this

package.

3http://sgems.sourceforge.net/
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-_init_(self)()
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-

Interpol_raw_data

-_init_(self)()

+load_xls_data(self)()

-

load_raw_data
-_init_(self)()

+load_data_bunch(self, data)()

+load_one_row (self , index )()

+select_data ( self )()

+delete_table_raw_data ( self )()

+delete_table_interp_data ( self )()

-

DB_antenna_interface

-_init_(self)()

-_init_logger(self)()

+connect ( self )()

+disconnect ( self )()

+commit(self)()

+get_schema ( self )()

-

Pg_Interface

«uses»

«uses»

Config File

Excel File

Figure 6.2.: UML class diagram of the antenna interpolation application package

The load_raw_data class allows to parse the excel file, including digitised antenna pattern

values, and inserts the raw data values into the database. Thereby, the DB_interpolation

_interface addresses the data flow between database and application. For the data insertion

process necessary parameters as e.g. excel file filename and file location will be selected from the

config file. After the interpolation raw data has been made available in the database, next the

actual interpolation process can be initiated.

This process is implemented in the Interpol_raw_data class. First of all, it retrieves the inter-

polation points from the database through the DB_interpolation_interface class. After all

interpolation points have been loaded into the main memory, the interpolation will be processed.

Finally, the interpolation result is inserted again into the database.

For detailed implementation of the antenna interpolation application’s object oriented program-

ming structure and algorithms, please find the programming code in A ANNEX 1.

6.2.2. AP Position Feeder Application

The AP position feeder application is a database feeder for geographical positions and metadata

of WLAN APs. This application is necessary as APs’ geographical positions and metadata has
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been externally provided. They had been collected by GNSS position measurements and were

consecutively provided in excel file data structure as described in section 3.1.1 Static Infrastruc-

ture Data.

The application package includes the AP_position_feeder as main class. This utilises the

DB_ap_position_interface as interface to the database as shown in figure 6.3.

-_init_(self)()

+load_xls_data(self)()

-

AP_position_feeder

-_init_(self)()

+load_data_bunch(self, data)()

+load_one_row (self , index )()

+delete_table_raw_data ( self )()

-_conv_cart(self, lon, lat)()

-

DB_ap_posiiton_interface

-_init_(self)()

-_init_logger(self)()

+connect ( self )()

+disconnect ( self )()

+commit(self)()

+get_schema ( self )()

-

Pg_Interface

«uses»
Config File

Excel File

Figure 6.3.: UML class diagram of the AP position feeder application package

The functional design of the AP position feeder application is rather similar to the database insert

process, described in the antenna interpolation application section above. The AP_position

_feeder class reads in the excel file, including AP data, and insert it into the project’s database

via the DB_ap_position_interface. Additionally, an on-the-fly reprojection of geographical

WGS84 positions into the UTM (Universal Transverse Mercator) reference system is conducted.

For that process configurable parameters have been again provided by the config file.

For detailed implementation of the AP position feeder’s object oriented programming structure

and algorithms, please find the programming code in B ANNEX 2.

6.2.3. MU Data Feeder Application

The MU data feeder application package comprises a comprehensive collection for handing and

analysis of MU WLAN measurement and positioning data of MUs and aircraft. A detailed de-

scription of data structure and the process behind can be find in section 3.1.2 Dynamic Mea-

surement Data.

The package is compound of the following main classes: Mu_cluster_analysis, Mu_data

_position_feeder, Aircraft_position _feeder, Mu_data_measure_feeder and Mu
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_data_interpolation. All of these classes utilises Mu_data_interface as interface to the

project database schema. The UML class diagram in figure 6.4 shows the functional connections

of all package components.

-_init_(self)()

-

Aircraft_position_feeder

-_init_(self)()

+cluster_analysis ( self )()

+compose_cluster ( self )()
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-
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Config File
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+reset_cluster_flag ( self )()
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-
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-

Mu_data_interpolation

-_init_(self)()

+load_pos_data ( self )()

-

Mu_data_measure_feeder

-_init_(self)()

+load_pos_data ( self )()

-

Mu_data_position_feeder

aircraft_position.txt

MU_GPS_position.txt

«uses»

«uses»

«uses»

«uses»

MU_measurements.

txt

«uses»

Figure 6.4.: UML class diagram of the MU data feeder application package

The application package includes the three database feeder applications Mu_data_position

_feeder, Aircraft_position_feeder and Mu_data_measure_feeder. These allow the

first step of inserting positioning and measurement data into the database. For this process ex-

ternally delivered text files, acting as data container, will be parsed by these application classes

and relevant data is inserted into the database.

After positioning and measurement data have been made available in the database, Mu_data

_interpolation conducts the interpolation of MU positions and correlates them to WLAN mea-

surements over time. The theoretical aspects behind that concept has been elaborated in section

3.2.2 Data Integration. For this process the interpolation of MU’s positioning data is conducted

first and written back to the database. In a second step the interpolated positioning data is
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selected from the database, together with WLAN measurement data, and the correlation of both

data sets over time is applied. This results in a georeferenced WLAN measurement track.

Finally, the Mu_cluster_analysis class allows cluster analysis on the georeferenced WLAN

measurement track. The detailed description and theoretical background of this process has been

elaborated in section 3.3.2 Measurement Reference Value Extraction.

For detailed implementation of the MU data feeder’s object oriented programming structure and

algorithms, please find the programming code in C ANNEX 3.

6.2.4. Radial Field Model Application

The the radial field model application constitutes the algorithmic implementation of the deter-

ministic radial field parameter model, as theoretically described in section 4.1 Parameter Model.

The application package itself is divided into two main classes: Radial_field_model and Re-

gression_Analysis. Both classes utilise a shared Radial_model_interface class as interface

to the underlying database. Figure 6.5 shows the functional connection amongst different com-

ponents of the radial field model application package.
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Figure 6.5.: UML class diagram of the radial field model application package

The Radial_field_model class is basically the implementation of the radial field computation

for different APs of the testbed area. It computes consecutively for each AP a spatial electro-

magnetic field distribution in consideration of their physical antenna characteristic and spatial

orientation. This results in a separate RM (Radio Map) raster layer for each AP, while each

layer is inserted into the database. For that process necessary control parameters, e.g. raster

dimension, are accessible through the config file.

After the RM has been processed and made available in the spatial database, the Regres-

sion_Analysis class is in charge for the RM calibration process by regression analysis. The
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detailed theoretical approach of that calibration is described in section 4.1.2 Model Calibration.

Basically, this application retrieves measurement reference values from the database upon which

the calibration offset is determined by regression analysis. This offset is mathematically added

onto the RM and results in a calibrated radio map.

For detailed implementation of the radial field model’s object oriented programming structure

and algorithms, please find the programming code in D ANNEX 4.
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Interpolate_antenna_raw_data.py

1 import xlrd , logging , psycopg2

2 from ConfigParser import ConfigParser

3 from db_antenna_interface import Db_antenna_interface

4 import numpy as np

5 import matplotlib . pyplot as plt

6 from scipy import interpolate

7

8

9 CONFIGFILE = " antenna_interp .conf"

10

11 class Interpol_raw_data ():

12

13 def __init__ (self):

14 config = ConfigParser ()

15 config .read( CONFIGFILE )

16

17 self. db_param = {’host ’: config .get(’pg_parameter ’, ’DB_HOST ’), ’db ’:

config .get(’pg_parameter ’, ’DB_DB ’), ’user ’: config .get(’pg_parameter

’, ’DB_USER ’), ’password ’: config .get(’pg_parameter ’, ’DB_PWD ’), ’

schema ’: config .get(’pg_parameter ’, ’DB_SCHEMA ’), ’force_schema ’:

True , ’table_insert ’: config .get(’pg_parameter ’, ’DB_TABLE_INTER ’),’

table_select ’: config .get(’pg_parameter ’, ’DB_TABLE_RAW ’)}

18 self. db_scale_factor = float( config .get(’plot_scale ’,’db_plot_scale ’))

19 self.gain = float( config .get(’plot_scale ’,’gain ’))

20 self. sampling_width = float( config .get(’plot_scale ’,’sampling_width ’))

21

22 self. _logger = logging . getLogger (self. __class__ . __name__ )

23 self. _logger . setLevel ( logging .INFO)

24 formatter = logging . Formatter ("%( asctime )s -%( levelname )s- @ %( name) -11s

: %( message )s")

25 ch = logging . StreamHandler ()

26 ch. setFormatter ( formatter )

27 self. _logger . addHandler (ch)

28

29 self.db = Db_antenna_interface (self. db_param )

30

31 self.db. select_data ()
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32

33 self. interpolation ()

34

35 self.db. delete_table_interp_data ()

36 self.db. load_data_bunch (self. data_interp )

37

38

39 def interpolation (self):

40 x = np.zeros(self.db.data. __len__ ())

41 y = np.zeros(self.db.data. __len__ ())

42

43 for i in range (0, self.db.data. __len__ ()):

44 x[i] = self.db.data[i][0]

45 y[i] = self.db.data[i][1]

46

47 # Scaling in dB

48 y = (y -100)/self. db_scale_factor +self.gain

49

50 # Interpolation

51 tck = interpolate . splrep (x,y,s=0)

52 tck_ = interpolate . splrep (x,y,s=0,k=5)

53 xnew = np. arange ( -90 ,+90 , self. sampling_width )

54 ynew = interpolate .splev(xnew ,tck ,der =0)

55 ynew_ = interpolate .splev(xnew ,tck_ ,der =0)

56

57 #save interpolated results to array

58 self. data_interp = []

59

60 for i in range (0, ynew. __len__ ()):

61 self. data_interp . append (( xnew[i],ynew[i]))

62

63 # Plotting

64 plt. figure ()

65 plt.plot(x,y,’x’,xnew ,ynew ,’b’,xnew ,ynew_ ,’--’)

66

67 plt. legend ([ ’True ’,’Spline k=3 ’, ’Spline k=5 ’], prop ={"size" :10})

68 plt. xlabel (" Azimuth angle [deg]")

69 plt. ylabel (" Antenna gain [dBi]")

70 plt.grid(True)

71

72 plt.show ()

73

74 if __name__ == " __main__ ":

75 Interpol_raw_data ()
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Load_antenna_raw_data.py

1 import xlrd , logging , psycopg2

2 from ConfigParser import ConfigParser

3 from db_antenna_interface import Db_antenna_interface

4

5 CONFIGFILE = " antenna_interp .conf"

6

7 class Load_raw_data ():

8

9 def __init__ (self):

10 config = ConfigParser ()

11 config .read( CONFIGFILE )

12 self. XLS_FILENAME = config .get(’xls_parameter ’, ’XLS_FILENAME ’)

13 self. db_param = {’host ’: config .get(’pg_parameter ’, ’DB_HOST ’), ’db ’:

config .get(’pg_parameter ’, ’DB_DB ’), ’user ’: config .get(’pg_parameter

’, ’DB_USER ’), ’password ’: config .get(’pg_parameter ’, ’DB_PWD ’), ’

schema ’: config .get(’pg_parameter ’, ’DB_SCHEMA ’), ’force_schema ’:

True ,’table_select ’: config .get(’pg_parameter ’, ’DB_TABLE_RAW ’), ’

table_insert ’: config .get(’pg_parameter ’, ’DB_TABLE_RAW ’)}

14

15 self. _logger = logging . getLogger (self. __class__ . __name__ )

16 self. _logger . setLevel ( logging .INFO)

17 formatter = logging . Formatter ("%( asctime )s -%( levelname )s- @ %( name) -11s

: %( message )s")

18 ch = logging . StreamHandler ()

19 ch. setFormatter ( formatter )

20 self. _logger . addHandler (ch)

21

22 self. load_xls_data ()

23

24 loader = Db_antenna_interface (self. db_param )

25 loader . delete_table_raw_data ()

26 loader . load_data_bunch (self.data)

27

28 def load_xls_data (self):

29 self. _logger .info(" ----- Start Antenna_interp skript ! -----")

30 self. _logger .info(" Fetch Data from EXCEL sheet")

31

32 wb = xlrd. open_workbook (self. XLS_FILENAME )

33 sheets = wb. sheet_names ()

34 sh = wb. sheet_by_name ( sheets [0])

35

36 self.data = []

37

38 for rownum in range (0,sh.nrows):

39 self.data. append (sh. row_values ( rownum ))
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40

41 print self.data

42

43 if __name__ == " __main__ ":

44 Load_raw_data ()
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DB_antenna_interface.py

1 import xlrd , logging , psycopg2

2 from PostgresInterf import Pg_Interface

3 from ConfigParser import ConfigParser

4

5 CONFIGFILE = " antenna_interp .conf"

6

7 class Db_antenna_interface ( Pg_Interface ):

8

9 def __init__ (self , db_param ):

10 self. db_param = db_param

11 Pg_Interface . __init__ (self , db_param )

12

13 def load_data_bunch (self ,data):

14 self.data = data

15

16 for index in range (0, self.data. __len__ ()):

17 self. load_one_row (index)

18

19 self. commit ()

20

21 def load_one_row (self ,index):

22 print "Load row ", index ,"to ", self. get_schema (),".", self. db_param [’

table_insert ’]

23 cur = self. _connection . cursor ()

24 cur. execute (" INSERT INTO {0}.{1} (degree , power_value ) VALUES ({2} ,{3})".

format (

25 self. get_schema (),

26 self. db_param [’table_insert ’

],

27 self.data[index ][0] ,

28 self.data[index ][1]

29 ))

30

31 def select_data (self):

32 cur = self. _connection . cursor ()

33 cur. execute (" SELECT * FROM {0}.{1} ". format (

34 self. get_schema (),

35 self. db_param [’table_select ’

],

36 ))

37

38 self.data = []

39

40 for i in cur:

41 self.data. append ((i[1],i[2]))
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42

43 def delete_table_raw_data (self):

44 cur = self. _connection . cursor ()

45 cur. execute (" DELETE FROM {0}.{1} ". format (

46 self. get_schema (),

47 self. db_param [’table_select ’

],

48 ))

49

50 def delete_table_interp_data (self):

51 cur = self. _connection . cursor ()

52 cur. execute (" DELETE FROM {0}.{1} ". format (

53 self. get_schema (),

54 self. db_param [’table_insert ’

],

55 ))
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PostgresInterf.py

1 import logging

2 import psycopg2

3

4 class Pg_Interface ():

5

6 def __init__ (self , db_param ):

7 self. _db_param = db_param

8 self. _init_logger ()

9

10 self. connect ()

11

12 def _init_logger (self):

13 self. _logger = logging . getLogger (self. __class__ . __name__ )

14 self. _logger . setLevel ( logging .INFO)

15 formatter = logging . Formatter ("%( asctime )s -%( levelname )s- @ %( name) -11s

: %( message )s")

16 ch = logging . StreamHandler ()

17 ch. setFormatter ( formatter )

18 self. _logger . addHandler (ch)

19

20 def connect (self):

21 self. _connection = psycopg2 . connect ("host =’{0}’ dbname =’{1}’ user = ’{2} ’\

22 password =’{3}’". format (

23 self. _db_param [’host ’],

24 self. _db_param [’db’],

25 self. _db_param [’user ’],

26 self. _db_param [’password ’]))

27

28 self. _logger .info(" Successfully connected to {0}.". format (

29 self. _db_param [’host ’]))

30

31 def disconnect (self):

32 self. _connection .close ()

33 self. _logger .info("{0} Successfully closed .". format (

34 self. _db_param [’host ’]))

35

36 def commit (self):

37 self. _connection . commit ()

38 self. _logger .info(" Database commited ")

39

40 def get_schema (self):

41 return self. _db_param [’schema ’]
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AP_position_feeder.py

1 import xlrd , logging , psycopg2

2 from ConfigParser import ConfigParser

3 from db_ap_position_interface import Db_ap_position_interface

4

5 CONFIGFILE = " ap_position .conf"

6

7 class Ap_position_feeder ():

8

9 def __init__ (self):

10 config = ConfigParser ()

11 config .read( CONFIGFILE )

12 self. XLS_FILENAME = config .get(’xls_parameter ’, ’XLS_FILENAME ’)

13 self. db_param = {’host ’: config .get(’pg_parameter ’, ’DB_HOST ’), ’db ’:

config .get(’pg_parameter ’, ’DB_DB ’), ’user ’: config .get(’pg_parameter

’, ’DB_USER ’), ’password ’: config .get(’pg_parameter ’, ’DB_PWD ’), ’

schema ’: config .get(’pg_parameter ’, ’DB_SCHEMA ’), ’force_schema ’:

True ,’table_insert ’: config .get(’pg_parameter ’, ’DB_TABLE_POS ’)}

14

15 self. _logger = logging . getLogger (self. __class__ . __name__ )

16 self. _logger . setLevel ( logging .INFO)

17 formatter = logging . Formatter ("%( asctime )s -%( levelname )s- @ %( name) -11s

: %( message )s")

18 ch = logging . StreamHandler ()

19 ch. setFormatter ( formatter )

20 self. _logger . addHandler (ch)

21

22 self. load_xls_data ()

23

24 loader = Db_ap_position_interface (self. db_param )

25 loader . delete_table_raw_data ()

26 loader . load_data_bunch (self.data)

27

28

29 def load_xls_data (self):

30

31 self. _logger .info(" ----- AP_position_feeder skript ! -----")

32 self. _logger .info(" Fetch Data from EXCEL sheet")
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33

34 wb = xlrd. open_workbook (self. XLS_FILENAME )

35 sheets = wb. sheet_names ()

36 sh = wb. sheet_by_name ( sheets [0])

37

38 self.data = []

39

40 for rownum in range (0,sh.nrows):

41 self.data. append (sh. row_values ( rownum ))

42

43 print self.data

44

45 if __name__ == " __main__ ":

46 Ap_position_feeder ()
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DB_ap_position_interface.py

1 import xlrd , logging , psycopg2

2 from PostgresInterf import Pg_Interface

3 from ConfigParser import ConfigParser

4 from pyproj import Proj

5

6 CONFIGFILE = " antenna_interp .conf"

7

8 class Db_ap_position_interface ( Pg_Interface ):

9

10 def __init__ (self , db_param ):

11 self. db_param = db_param

12 Pg_Interface . __init__ (self , db_param )

13

14

15 def load_data_bunch (self ,data):

16 self.data = data

17

18 for index in range (0, self.data. __len__ ()):

19 self. load_one_row (index)

20

21 self. commit ()

22

23 def load_one_row (self ,index):

24 cur = self. _connection . cursor ()

25

26 position = self. _conv_cart (self.data[index ][1] , self.data[index ][0])

27 print position

28

29 cur. execute (" INSERT INTO {0}.{1} (x, y, z, antenna_az , name , ap_mac ,

position ) VALUES ({2} ,{3} ,{4} ,{5} , ’{6} ’ , ’{7} ’ , ST_GeomFromEWKT (’SRID

=32633; POINT ({8} {9} {10}) ’))". format (

30 self. get_schema (),

31 self. db_param [’table_insert ’

],

32 self.data[index ][0] ,

33 self.data[index ][1] ,

34 self.data[index ][2] ,

35 self.data[index ][3] ,

36 self.data[index ][4] ,

37 self.data[index ][5] ,

38 position [0],

39 position [1],

40 self.data[index ][2]

41 ))

42
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43 def delete_table_raw_data (self):

44 cur = self. _connection . cursor ()

45 cur. execute (" DELETE FROM {0}.{1} ". format (

46 self. get_schema (),

47 self. db_param [’table_insert ’

],

48 ))

49

50 def _conv_cart (self , lon , lat):

51 p = Proj(proj=’utm ’,zone =33, ellps=’WGS84 ’)

52 return p(lon ,lat)
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Aircraft_position_feeder.py

1 import xlrd , logging , psycopg2

2 from datetime import timedelta

3 from ConfigParser import ConfigParser

4 from mu_data_interface import Mu_data_interface

5 import numpy as np

6

7 CONFIGFILE = " Mu_data_feeder .conf"

8

9 class Aircraft_position_feeder ():

10

11 def __init__ (self):

12 config = ConfigParser ()

13 config .read( CONFIGFILE )

14 self. FILENAME = config .get(’input_file ’, ’FILE_NAME ’)

15 self. FILEPATH = config .get(’input_file ’, ’FILE_PATH ’)+self. FILENAME

16 self. db_param = {’host ’: config .get(’pg_parameter ’, ’DB_HOST ’), ’db ’:

config .get(’pg_parameter ’, ’DB_DB ’), ’user ’: config .get(’pg_parameter

’, ’DB_USER ’), ’password ’: config .get(’pg_parameter ’, ’DB_PWD ’), ’

schema ’: config .get(’pg_parameter ’, ’DB_SCHEMA ’), ’force_schema ’:

True ,’table_interp ’: config .get(’pg_parameter ’, ’DB_TABLE_INTER_POS ’),

’table_select ’: config .get(’pg_parameter ’, ’DB_TABLE_POSITION ’), ’

table_update ’: config .get(’pg_parameter ’, ’DB_TABLE_INTER_POS ’), ’

table_insert ’: config .get(’pg_parameter ’,’DB_CLUSTER ’)}

17 self. file_date = self. FILENAME [0:8]. split(’_’)

18 self. file_date = "20"+self. file_date [0]+"-"+self. file_date [1]+"-"+self.

file_date [2]

19 print self. file_date

20

21 self. _logger = logging . getLogger (self. __class__ . __name__ )

22 self. _logger . setLevel ( logging .INFO)

23 formatter = logging . Formatter ("%( asctime )s -%( levelname )s- @ %( name) -11s

: %( message )s")

24 ch = logging . StreamHandler ()

25 ch. setFormatter ( formatter )

26 self. _logger . addHandler (ch)

27

28 self.db = Mu_data_interface (self. db_param )
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29

30 self.db. delete_aircraft_positions ()

31

32 self.data = self.db. select_external_positions ()

33 print self.data [0]

34 self.db. insert_aircraft_pos (self.data)

35

36 if __name__ == " __main__ ":

37 Aircraft_position_feeder ()
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MU_cluster_analysis.py

1 import xlrd , logging , psycopg2

2 from datetime import timedelta

3 from ConfigParser import ConfigParser

4 from mu_data_interface import Mu_data_interface

5 import numpy as np

6

7 CONFIGFILE = " Mu_data_feeder .conf"

8

9 class Mu_cluster_analysis ():

10

11 def __init__ (self):

12 config = ConfigParser ()

13 config .read( CONFIGFILE )

14 self. FILENAME = config .get(’input_file ’, ’FILE_NAME ’)

15 self. FILEPATH = config .get(’input_file ’, ’FILE_PATH ’)+self. FILENAME

16 self. db_param = {’host ’: config .get(’pg_parameter ’, ’DB_HOST ’), ’db ’:

config .get(’pg_parameter ’, ’DB_DB ’), ’user ’: config .get(’pg_parameter

’, ’DB_USER ’), ’password ’: config .get(’pg_parameter ’, ’DB_PWD ’), ’

schema ’: config .get(’pg_parameter ’, ’DB_SCHEMA ’), ’force_schema ’:

True ,’table_interp ’: config .get(’pg_parameter ’, ’DB_TABLE_INTER_POS ’),

’table_select ’: config .get(’pg_parameter ’, ’DB_TABLE_POSITION ’), ’

table_update ’: config .get(’pg_parameter ’, ’DB_TABLE_INTER_POS ’), ’

table_insert ’: config .get(’pg_parameter ’,’DB_CLUSTER ’), ’mac ’: config .

get(’pg_parameter ’,’MAC ’)}

17

18 self. _logger = logging . getLogger (self. __class__ . __name__ )

19 self. _logger . setLevel ( logging .INFO)

20 formatter = logging . Formatter ("%( asctime )s -%( levelname )s- @ %( name) -11s

: %( message )s")

21 ch = logging . StreamHandler ()

22 ch. setFormatter ( formatter )

23 self. _logger . addHandler (ch)

24

25 self.db = Mu_data_interface (self. db_param )

26 self.data = self.db. select_data_cluster (0.1)

27 self. data_aircraft = self.db. select_data_aircraft ()

28

29 self. cluster_analysis ()

30 self. _logger .info(" Cluster Count: {0}". format (self. cluster . __len__ ()))

31

32 self.db. reset_cluster_flag ()

33 self.db. delete_table_cluster_data ()

34 self. compose_cluster ()

35

36 def cluster_analysis (self):
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37 print "Data from select on speed query :", self.data. __len__ ()

38 self. cluster = []

39 delta_max = timedelta ( seconds =3)

40 temp = -1

41 for i in range (0, self.data. __len__ ()):

42 if i != 0:

43 if self.data[i][2] - self.data[i -1][2] >= delta_max :

44 self. cluster . append ([ self.data[temp +1][2] , self.data[i

-1][2]])

45 temp = i-1

46

47 def compose_cluster (self):

48 for i in range (0, self. cluster . __len__ ()):

49 print self. cluster [i][0] , self. cluster [i][1]

50 temp = self.db. select_data_interp_cluster (self. cluster [i][0] , self.

cluster [i][1] , self. db_param [’mac ’])

51

52 # Check if cluster points closely distanced to aircrafts !

53

54 print " Checking distance to aircraft ..."

55 outliers = []

56 for j in range (0, temp. __len__ ()):

57 for pos_aircraft in self. data_aircraft :

58 if temp[j][4] <= pos_aircraft [1]+ timedelta ( seconds =1) and

temp[j][4] > pos_aircraft [1]- timedelta ( seconds =1):

59 pos_xy_aircraft = np.array ([ pos_aircraft [2], pos_aircraft

[3]])

60 pos_xy_mu = np.array ([ temp[j][2] , temp[j ][3]])

61 dist = pos_xy_aircraft - pos_xy_mu

62 if np. linalg .norm(dist) <= 100:

63 outliers . append (j)

64 break

65

66 print " outliers :", outliers

67 for k in range (0, outliers . __len__ ()):

68 del temp[k]

69

70 self.db. update_measurements (i+1, temp)

71

72 cluster_data = self. calculate_cluster (temp)

73 if cluster_data [0] != 0:

74 self.db. insert_cluster (i+1, cluster_data , self. cluster [i][0] ,

self. cluster [i][1])

75

76 print "ID = :", i+1

77

78 def calculate_cluster (self , tupels ):

79 power = []

80 x_y = []

81 x = []

© Johannes Kapser 110



Modelling of Continuous Fields:

Coverage Mapping Based on Dynamic In-situ WLAN Measurements

C. Annex 3

82 y = []

83 for i in tupels :

84 power. append (i[1])

85 x. append (i[2])

86 y. append (i[3])

87

88 np_power = np. asarray (power)

89

90 np_x = np. asarray (x)

91 np_y = np. asarray (y)

92

93 return [ np_power . __len__ (), np.mean( np_power ), np.std( np_power ),

94 np.mean(np_x), np.std(np_x), np.mean(np_y),np.std(y), np.sqrt(np

.std(np_x)**2+ np.std(np_y)**2)]

95

96 if __name__ == " __main__ ":

97 Mu_cluster_analysis ()
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MU_data_interface.py

1 import logging , psycopg2

2 from datetime import date

3 from datetime import time

4 from PostgresInterf import Pg_Interface

5 from pyproj import Proj

6

7 class Mu_data_interface ( Pg_Interface ):

8

9 def __init__ (self , db_param ):

10 self. db_param = db_param

11 Pg_Interface . __init__ (self , db_param )

12

13

14 def load_data_bunch (self ,data , date):

15 self.data = data

16 self.date = date

17

18 for index in range (0, self.data. __len__ ()):

19 self. load_one_row (index)

20

21 self. commit ()

22

23 def load_one_row (self ,index):

24 cur = self. _connection . cursor ()

25

26 cur. execute (" INSERT INTO {0}.{1} (mu_id , timestamp , mac , channel , power ,

ssid)\

27 VALUES ({2} , ’{3} ’ , ’{4} ’ ,{5} ,{6} , ’{7} ’)". format (

28 self. get_schema (),

29 self. db_param [’table_insert ’],

30 self.data[index ][0] ,

31 self.data[index ][2] ,

32 self.data[index ][3]. lstrip (’ ’),

33 self.data[index ][4]. lstrip (’ ’),

34 self.data[index ][5]. lstrip (’ ’),

35 self.data[index ][7]. lstrip (’ ’). rstrip (’\n’)

36 ))

37

38 def select_data (self):

39 cur = self. _connection . cursor ()

40 cur. execute (" SELECT * FROM {0}.{1} ". format (

41 self. get_schema (),

42 self. db_param [’table_select ’],

43 ))

44
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45 self.data = []

46

47 for i in cur:

48 self.data. append ((i[1],i[2]))

49

50 def select_filtered_measurements (self , timestamp_low , timestamp_high ):

51 cur = self. _connection . cursor ()

52

53 cur. execute (" SELECT * FROM {0}.{1} WHERE timestamp >= ’{2}’ AND

timestamp <= ’{3}’". format (

54 self. get_schema (),

55 self. db_param [’table_measurements ’],

56 timestamp_low ,

57 timestamp_high

58 ))

59

60 self.data = []

61

62 for i in cur:

63 self.data. append ((i[0],i[2]))

64 return self.data

65

66

67 def delete_table_raw_data (self):

68 cur = self. _connection . cursor ()

69 cur. execute (" DELETE FROM {0}.{1} ". format (

70 self. get_schema (),

71 self. db_param [’table_select ’],

72 ))

73

74 def delete_table_cluster_data (self):

75 self. delete_table_interp_data ()

76

77 def delete_table_interp_data (self):

78 cur = self. _connection . cursor ()

79 cur. execute (" DELETE FROM {0}.{1} ". format (

80 self. get_schema (),

81 self. db_param [’table_insert ’],

82 ))

83

84 def delete_table_mu_position (self):

85 cur = self. _connection . cursor ()

86 cur. execute (" DELETE FROM {0}.{1} ". format (

87 self. get_schema (),

88 self. db_param [’table_insert ’],

89 ))

90

91 def select_position_data (self):

92 cur = self. _connection . cursor ()
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93 cur. execute (" SELECT ST_X( position ), ST_Y( position ), speed_og , course_og

, timestamp , hacc FROM {0}.{1} where hdop < {2}". format (

94 self. get_schema (),

95 self. db_param [’table_select ’],

96 2

97 ))

98

99 self.data = []

100

101 for i in cur:

102 self.data. append (i)

103

104 return self.data

105

106 def insert_interp_positions (self ,data):

107 self.data = data

108

109 for index in range (0, self.data [0]. __len__ ()):

110 self. insert_interp_position (index)

111

112 self. commit ()

113

114 def insert_interp_position (self ,index):

115 cur = self. _connection . cursor ()

116

117 cur. execute (" INSERT INTO {0}.{1} ( rid_mu_measurement , position )\

118 VALUES ({2} , ST_GeomFromEWKT (’SRID =32633; POINT ({3} {4} {5})

’))". format (

119 self. get_schema (),

120 self. db_param [’table_insert ’],

121 self.data [0][ index ][0] ,

122 self.data [0][ index ][1][0] ,

123 self.data [0][ index ][1][1] ,

124 500

125 ))

126

127 def load_data_bunch_pos (self ,data , date , mu_id):

128 self.data = data

129 self.date = date

130

131 for index in range (0, self.data. __len__ ()):

132 self. load_one_row_pos (index , date , mu_id)

133

134 self. commit ()

135

136 def load_one_row_pos (self ,index ,date , mu_id):

137 cur = self. _connection . cursor ()

138 x, y = self. _conv_cart (str(float(self.data[index ][4][0:3]) +float(self.

data[index ][4][3:11]) *100/60/100) , str(float(self.data[index

][2][0:2]) +float(self.data[index ][2][2:11]) *100/60/100) )
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139 lon , lat = str(float(self.data[index ][4][0:3]) +float(self.data[index

][4][3:11]) *100/60/100) , str(float(self.data[index ][2][0:2]) +float(

self.data[index ][2][2:11]) *100/60/100)

140 cur. execute (" INSERT INTO {0}.{1} (mu_id , timestamp , lat , lon , alt_ref ,

nav_stat , hacc , vacc , speed_og , course_og , hdop , vdop , tdop , position

)\

141 VALUES

({2} , ’{3} ’ ,{4} ,{5} ,{6} , ’{7} ’ ,{8} ,{9} ,{10} ,{11} ,{12} ,{13} ,{14} ,

ST_GeomFromEWKT (’SRID =32633; POINT ({15} {16} {6}) ’))".

format (

142 self. get_schema (),

143 self. db_param [’table_insert ’],

144 mu_id ,

145 date+" "+self.data[index ][1][0:2]+ ":"+self.data[

index ][1][2:4]+ ":"+self.data[index ][1][4:9] ,

146 lat , lon ,

147 self.data[ index ][6] ,

148 self.data[ index ][7] ,

149 self.data[ index ][8] ,

150 self.data[ index ][9] ,

151 self.data[ index ][10] ,

152 self.data[ index ][11] ,

153 self.data[ index ][14] ,

154 self.data[ index ][15] ,

155 self.data[ index ][16] ,

156 x, y

157 ))

158

159 def select_data_cluster (self , speed_max ):

160 cur = self. _connection . cursor ()

161 cur. execute (" SELECT * FROM {0}.{1} WHERE speed_og <= {2} and hdop < 4".

format (

162 self. get_schema (),

163 self. db_param [’table_select ’],

164 speed_max

165 ))

166

167 self.data = []

168

169 for i in cur:

170 self.data. append (i)

171

172 return self.data

173

174 def select_data_interp_cluster (self , t_min , t_max , mac):

175 cur = self. _connection . cursor ()

176 cur. execute (" SELECT rid , power , ST_X( position ), ST_Y( position ),

timestamp , mac FROM {0}.{1} WHERE timestamp >= ’{2}’ and timestamp <=

’{3}’ and mac = ’{4}’". format (

177 self. get_schema (),
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178 self. db_param [’table_interp ’],

179 t_min ,

180 t_max ,

181 mac

182 ))

183

184 self.data = []

185

186 for i in cur:

187 self.data. append (i)

188

189 return self.data

190

191 def select_data_aircraft (self):

192 cur = self. _connection . cursor ()

193 cur. execute (" SELECT rid , timestamp , ST_X( position ), ST_Y( position ) FROM

{0}.{1} ". format (

194 self. get_schema (),

195 ’aircraft_position_testbed ’

196 ))

197

198 self.data = []

199

200 for i in cur:

201 self.data. append (i)

202

203 return self.data

204

205 def update_measurements (self , cluster_id , index_array ):

206 cur = self. _connection . cursor ()

207

208 for element in index_array :

209 cur. execute (" UPDATE {0}.{1} SET cluster_id = {2} WHERE rid = {3}".

format (

210 self. get_schema (),

211 self. db_param [’table_update ’],

212 cluster_id ,

213 element [0]

214 ))

215

216 self. commit ()

217

218 def insert_cluster (self , id , data , t_min , t_max):

219 cur = self. _connection . cursor ()

220

221 cur. execute (" INSERT INTO {0}.{1} (cluster_id , count , power_avg ,

time_start , time_end , sigma_power , sigma_x , sigma_y , sigma_xy ,

position )\
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222 VALUES ({2} , {3}, {4}, ’{5}’, ’{6}’, {7}, {8}, {9}, {10} ,

ST_GeomFromEWKT (’SRID =32633; POINT ({11} {12} {13}) ’))".

format (

223 self. get_schema (),

224 self. db_param [’table_insert ’],

225 id ,

226 ata [0],

227 data [1],

228 t_min ,

229 t_max ,

230 data [2],

231 data [4],

232 data [6],

233 data [7],

234 data [3],

235 data [5],

236 500

237 ))

238

239 self. commit ()

240

241 def reset_cluster_flag (self):

242 cur = self. _connection . cursor ()

243

244 cur. execute (" UPDATE {0}.{1} SET cluster_id = 0". format (

245 self. get_schema (),

246 self. db_param [’table_update ’]

247 ))

248

249 self. commit ()

250

251 def delete_aircraft_positions (self):

252 cur = self. _connection . cursor ()

253 cur. execute (" DELETE FROM {0}.{1} ". format (

254 self. get_schema (),

255 ’aircraft_position ’,

256 ))

257

258 self. commit ()

259

260 def select_external_positions (self):

261 cur = self. _connection . cursor ()

262 cur. execute (" SELECT position_id , proc_date , timestamp , flightno ,

proc_pos_cart_x , proc_pos_cart_y , proc_pos_z FROM {0}.{1} WHERE cat =

21". format (

263 self. get_schema (),

264 ’external_position ’

265 ))

266

267 self.data = []
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268

269 for i in cur:

270 self.data. append (i)

271

272 return self.data

273

274 def insert_aircraft_pos (self ,data):

275 self.data = data

276

277 for index in range (0, self.data. __len__ ()):

278 self. insert_aircraft_row (index)

279

280 self. commit ()

281

282 def insert_aircraft_row (self ,index):

283 cur = self. _connection . cursor ()

284

285 cur. execute (" INSERT INTO {0}.{1} (rid , timestamp , flightno , position )\

286 VALUES ({2} , ’{3} ’ , ’{4} ’ , ST_GeomFromEWKT (’SRID =32633; POINT

({5} {6} {7}) ’))". format (

287 self. get_schema (),

288 ’aircraft_position ’,

289 self.data[index ][0] ,

290 date. isoformat (self.data[index ][1])+" "+time.

isoformat (self.data[index ][2]) ,

291 self.data[index ][3] ,

292 self.data[index ][4] ,

293 self.data[index ][5] ,

294 self.data[index ][6]

295 ))

296

297 def _conv_cart (self , lon , lat):

298 p = Proj(proj=’utm ’,zone =33, ellps=’WGS84 ’)

299 return p(lon ,lat)
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MU_data_interpolation.py

1 import xlrd , logging , psycopg2 , datetime

2 from ConfigParser import ConfigParser

3 from mu_data_interface import Mu_data_interface

4 import numpy as np

5 import matplotlib . pyplot as plt

6 from scipy import interpolate

7

8 CONFIGFILE = " Mu_data_feeder .conf"

9

10 class Mu_data_interpolation ():

11

12 def __init__ (self):

13 config = ConfigParser ()

14 config .read( CONFIGFILE )

15 self. FILENAME = config .get(’input_file ’, ’FILE_NAME ’)

16 self. FILEPATH = config .get(’input_file ’, ’FILE_PATH ’)+self. FILENAME

17 self. db_param = {’host ’: config .get(’pg_parameter ’, ’DB_HOST ’), ’db ’:

config .get(’pg_parameter ’, ’DB_DB ’), ’user ’: config .get(’pg_parameter

’, ’DB_USER ’), ’password ’: config .get(’pg_parameter ’, ’DB_PWD ’), ’

schema ’: config .get(’pg_parameter ’, ’DB_SCHEMA ’), ’force_schema ’:

True ,’table_measurements ’: config .get(’pg_parameter ’, ’

DB_TABLE_MEASUREMENT ’),’table_select ’: config .get(’pg_parameter ’, ’

DB_TABLE_POSITION ’), ’table_interp_pos ’: config .get(’pg_parameter ’,’

DB_TABLE_INTER_POS ’)}

18

19 self. _logger = logging . getLogger (self. __class__ . __name__ )

20 self. _logger . setLevel ( logging .INFO)

21 formatter = logging . Formatter ("%( asctime )s -%( levelname )s- @ %( name) -11s

: %( message )s")

22 ch = logging . StreamHandler ()

23 ch. setFormatter ( formatter )

24 self. _logger . addHandler (ch)

25

26 self.db = Mu_data_interface (self. db_param )

27

28 self. position_raw_data = self.db. select_position_data ()

29

30 self. interpolate_positions ()

31

32 self. correlate_meas_pos ()

33

34 self. plot_correlation_result ()

35

36 def interpolate_positions (self):

37 self. interpolation_result = []
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38

39 # input data set pre - filtering

40 filtered_position_data = []

41

42 for i in range (0, self. position_raw_data . __len__ ()):

43 if i == 0:

44 filtered_position_data . append (self. position_raw_data [i])

45 else:

46 if self. position_raw_data [i][0] != self. position_raw_data [i

-1][0] and self. position_raw_data [i][1] != self.

position_raw_data [i -1][1]:

47 filtered_position_data . append (self. position_raw_data [i])

48

49 # Window interpolation

50

51 window_w = 7

52 window_c = int( window_w /2)

53

54 for i in range (0, 7):# filtered_position_data . __len__ ()):

55 if i < window_c :

56 self. interpolation_result . append (self. interpolate (0, window_w , i

, filtered_position_data ))

57 else:

58 self. interpolation_result . append (self. interpolate (i-window_c ,

window_w , window_c , filtered_position_data ))

59 self. line_integral (i)

60

61 def interpolate (self , window_b , window_w , window_c , pos_data ):

62 print "window_b , window_w , window_c :", window_b , window_w , window_c

63 res_interp = 0.01

64

65 x = np.zeros( window_w +1)

66 y = np.zeros( window_w +1)

67 v = np.zeros( window_w +1)

68

69 for i in range( window_b ,window_b + window_w +1):

70 x[i- window_b ] = pos_data [i][0]

71 y[i- window_b ] = pos_data [i][1]

72 v[i- window_b ] = pos_data [i][2]

73

74 # Interpolation position

75 tck ,u = interpolate . splprep ([x,y],s=0)

76

77 unew = np. linspace (0 ,1 ,25000)

78 out = interpolate .splev(unew ,tck ,der =0)

79

80 # Search for Segment in out

81 index_start = 0

82 index_end = 0

83
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84 for i in range (0, out [0]. __len__ ()):

85 if abs(np. linalg .norm(out [0][i]-x[ window_c ])) < 0.001 and abs(np.

linalg .norm(out [1][i]-y[ window_c ])) < 0.001:

86 index_start = i

87 elif abs(np. linalg .norm(out [0][i]-x[ window_c +1])) < 0.001 and abs(np

. linalg .norm(out [1][i]-y[ window_c +1])) < 0.001:

88 index_end = i

89

90 if index_end == 0:

91 print("Index end not found , interpolation step presumably not big

enought !")

92 return

93

94 print

95 print " Interp_section Index: ", index_start , index_end

96

97 # Interpolation velocity

98 t = np. arange (0, u. __len__ () ,1)

99 t_new = np. arange (0, u. __len__ (), res_interp )

100

101 tck_v = interpolate . splrep (t,v, s=1)

102 out_v = interpolate .splev(t_new ,tck_v ,der =0)

103

104 # Plotting

105 """

106 plt. figure ()

107 plt.plot(t, v, ’x’, t_new , out_v)

108

109 plt. title (’ Spline interpolation antenna h- plane pattern ’)

110 plt.show ()

111 """

112

113 """

114 plt. figure ()

115 plt.plot(x,y,’x’,out [0], out[1],’--’,out [0][ index_start : index_end ],out

[1][ index_start : index_end ])

116 plt. legend ([’ Position fix ’,’Spline k=3’, ’Spline segment ’])

117 plt. xlabel ("x [m]")

118 plt. ylabel ("y [m]")

119

120 plt.show ()

121 """

122

123 return [ pos_data [ window_b + window_c ][4] , pos_data [ window_b + window_c +1][4] ,

out [0][ index_start : index_end ],out [1][ index_start : index_end ], out_v[

index_start : index_end ]]

124

125 def line_integral (self , i):

126 line_sum = 0

127 line_seg = []
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128

129 for k in range (0, self. interpolation_result [i][2]. __len__ ()):

130 if k != 0:

131 x_1 = np.array ([ self. interpolation_result [i][2][k-1], self.

interpolation_result [i][3][k -1]])

132 x_2 = np.array ([ self. interpolation_result [i][2][k], self.

interpolation_result [i][3][k]])

133 line_sum += np. linalg .norm(x_2 - x_1)

134 line_seg . append ( line_sum )

135

136 self. interpolation_result [i]. append ( line_seg )

137

138 def correlate_meas_pos (self):

139 self. result_correlation = []

140 for segment in self. interpolation_result :

141

142 if str( segment [1]- segment [0]) != " 0:00:01 ":

143 self. _logger . warning (" Interpolation Segment is wider than 1 sec ,

it is {0} !!!". format ( segment [1]- segment [0]))

144 else:

145

146 timestamp_low = segment [0]

147 timestamp_high = segment [1]

148

149 print timestamp_low , timestamp_high

150

151 measurements = self.db. select_filtered_measurements (

timestamp_low , timestamp_high )

152

153 total_sum_seg = segment [5][( segment [5]. __len__ () -1)]

154

155 # Correlation

156 index_pos_array = []

157 for element in measurements :

158 sec = element [1]. microsecond /1000000.0

159

160 dist = total_sum_seg *sec

161 for k in range (0, segment [5]. __len__ ()):

162 if k != 0:

163 if segment [5][k -1] <= dist and segment [5][k] > dist:

# search for appropriate interval

164 if abs(dist - segment [5][k -1]) < abs(dist - segment

[5][k]):

165 index_pos = k-1

166 else:

167 index_pos = k

168 index_pos_array . append ([ element [0] ,( segment [2][

index_pos ], segment [3][ index_pos ])]) #

RID_measurement , (x,y)

169 self. result_correlation . append ( index_pos_array )
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170

171 def plot_correlation_result (self):

172 x_interp_pos = []

173 y_interp_pos = []

174

175 for i in range (0, self. result_correlation . __len__ ()):

176 for tupel in self. result_correlation [i]:

177 x_interp_pos . append (tupel [1][0])

178 y_interp_pos . append (tupel [1][1])

179

180 plt. figure ()

181 plt.plot( x_interp_pos , y_interp_pos , ’x’,

182 self. interpolation_result [0][2] , self. interpolation_result

[0][3] ,

183 self. interpolation_result [1][2] , self. interpolation_result

[1][3] ,

184 self. interpolation_result [2][2] , self. interpolation_result

[2][3] ,

185 self. interpolation_result [3][2] , self. interpolation_result

[3][3] ,

186 self. interpolation_result [4][2] , self. interpolation_result

[4][3] ,#,self. interpolation_result [1][2] , self.

interpolation_result [1][3])

187 self. interpolation_result [5][2] , self. interpolation_result

[5][3] ,

188 self. interpolation_result [6][2] , self. interpolation_result [6][3]

189

190 )

191 plt. legend ([ ’WLAN_Measurement ’,’Segment_1 ’,’Segment_2 ’, ’Segment_3 ’,’

Segment_4 ’,’Segment_5 ’,’Segment_6 ’,’Segment_7 ’], prop ={"size":10})

192 plt. xlabel ("x [m]")

193 plt. ylabel ("y [m]")

194 plt.show ()

195

196 if __name__ == " __main__ ":

197 Mu_data_interpolation ()
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MU_data_measure_feeder.py

1 import xlrd , logging , psycopg2

2 from ConfigParser import ConfigParser

3 from mu_data_interface import Mu_data_interface

4

5 CONFIGFILE = " Mu_data_feeder .conf"

6

7 class Mu_data_measure_feeder ():

8

9 def __init__ (self):

10 config = ConfigParser ()

11 config .read( CONFIGFILE )

12 self. FILENAME = config .get(’input_file ’, ’FILE_NAME ’)

13 self. FILEPATH = config .get(’input_file ’, ’FILE_PATH ’)+self. FILENAME

14 self. db_param = {’host ’: config .get(’pg_parameter ’, ’DB_HOST ’), ’db ’:

config .get(’pg_parameter ’, ’DB_DB ’), ’user ’: config .get(’pg_parameter

’, ’DB_USER ’), ’password ’: config .get(’pg_parameter ’, ’DB_PWD ’), ’

schema ’: config .get(’pg_parameter ’, ’DB_SCHEMA ’), ’force_schema ’:

True ,’table_insert ’: config .get(’pg_parameter ’, ’DB_TABLE_MEASUREMENT ’

)}

15 self. file_date = self. FILENAME [0:8]. split(’_’)

16 self. file_date = "20"+self. file_date [0]+"-"+self. file_date [1]+"-"+self.

file_date [2]

17

18 self. _logger = logging . getLogger (self. __class__ . __name__ )

19 self. _logger . setLevel ( logging .INFO)

20 formatter = logging . Formatter ("%( asctime )s -%( levelname )s- @ %( name) -11s

: %( message )s")

21 ch = logging . StreamHandler ()

22 ch. setFormatter ( formatter )

23 self. _logger . addHandler (ch)

24

25 self. load_pos_data ()

26

27 loader = Mu_data_interface (self. db_param )

28

29 loader . delete_table_mu_position ()

30 loader . load_data_bunch (self.file_data , self. file_date )

31

32 def load_pos_data (self):

33 # 1st fetch data from txt File

34

35 self. _logger .info(" ----- Start Mu_data_measure_feeder skript ! -----")

36 self. _logger .info(" Fetch Data from TXT File")

37

38 fh = open(self.FILEPATH ,’r’)
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39

40 self. file_data = []

41

42 for line in fh:

43 temp = line.split(’;’)

44 if temp. __len__ () == 8:

45 if temp [1] != "0" and temp [6] == " M/ BEACON ":

46 self. file_data . append (temp)

47

48 self. _logger .info(" Fetch Data from TXT File finished !")

49

50 if __name__ == " __main__ ":

51 Mu_data_measure_feeder ()
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MU_data_position_feeder.py

1 import xlrd , logging , psycopg2

2 from ConfigParser import ConfigParser

3 from mu_data_interface import Mu_data_interface

4

5 CONFIGFILE = " Mu_data_feeder .conf"

6

7 class Mu_data_position_feeder ():

8

9 def __init__ (self):

10 config = ConfigParser ()

11 config .read( CONFIGFILE )

12 self. FILENAME = config .get(’input_file ’, ’FILE_NAME ’)

13 self. FILEPATH = config .get(’input_file ’, ’FILE_PATH ’)+self. FILENAME

14 self. db_param = {’host ’: config .get(’pg_parameter ’, ’DB_HOST ’), ’db ’:

config .get(’pg_parameter ’, ’DB_DB ’), ’user ’: config .get(’pg_parameter

’, ’DB_USER ’), ’password ’: config .get(’pg_parameter ’, ’DB_PWD ’), ’

schema ’: config .get(’pg_parameter ’, ’DB_SCHEMA ’), ’force_schema ’:

True ,’table_insert ’: config .get(’pg_parameter ’, ’DB_TABLE_POSITION ’)}

15 self. file_date = self. FILENAME [0:8]. split(’_’)

16 self. file_date = "20"+self. file_date [0]+"-"+self. file_date [1]+"-"+self.

file_date [2]

17 print self. file_date

18

19 self. _logger = logging . getLogger (self. __class__ . __name__ )

20 self. _logger . setLevel ( logging .INFO)

21 formatter = logging . Formatter ("%( asctime )s -%( levelname )s- @ %( name) -11s

: %( message )s")

22 ch = logging . StreamHandler ()

23 ch. setFormatter ( formatter )

24 self. _logger . addHandler (ch)

25

26 self. load_pos_data ()

27

28 loader = Mu_data_interface (self. db_param )

29

30 loader . load_data_bunch_pos (self.file_data , self.file_date , 0)

31

32 def load_pos_data (self):

33 # 1st fetch data from txt File

34

35 self. _logger .info(" ----- Start Mu_data_position_feeder skript ! -----")

36 self. _logger .info(" Fetch Data from TXT File")

37

38 fh = open(self.FILEPATH ,’r’)

39
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40 self. file_data = []

41 data = []

42

43 for line in fh:

44 temp = line.split(’,’)

45 if temp [0] != " $GPTXT ":

46 data. append (temp)

47 print "data. __len__ () :", data. __len__ ()

48

49 for i in range (0, data. __len__ () /2):

50 if data[i *2][1] == data[i *2+1][2]:

51 self. file_data . append (data[i *2+1][1:21]+ data[i *2][1:9])

52

53 if __name__ == " __main__ ":

54 Mu_data_position_feeder ()
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Radial_field_model.py

1 import logging , psycopg2

2 from ConfigParser import ConfigParser

3 from radial_model_interface import Radial_model_interface

4 import numpy as np

5

6 CONFIGFILE = " Mu_data_feeder .conf"

7

8 class Radial_field_model ():

9

10 def __init__ (self):

11 config = ConfigParser ()

12 config .read( CONFIGFILE )

13

14 self. db_param = {’host ’: config .get(’pg_parameter ’, ’DB_HOST ’), ’db ’:

config .get(’pg_parameter ’, ’DB_DB ’),

15 ’user ’: config .get(’pg_parameter ’, ’DB_USER ’), ’

password ’: config .get(’pg_parameter ’, ’DB_PWD ’),

16 ’schema ’: config .get(’pg_parameter ’, ’DB_SCHEMA ’), ’

force_schema ’: True ,

17 ’table_raster ’: config .get(’pg_parameter ’, ’

DB_TABLE_RASTER ’),

18 ’schema_antenna ’: config .get(’pg_parameter ’, ’

DB_SCHEMA_AP ’)}

19

20 self. band_list = config .get(’rm_bands ’,’AP_NAMES ’).split(’ ’)

21

22 self. offset_og = config .get(’mu ’, ’OFFSET_OG ’)

23

24 self. _logger = logging . getLogger (self. __class__ . __name__ )

25 self. _logger . setLevel ( logging .INFO)

26 formatter = logging . Formatter ("%( asctime )s -%( levelname )s- @ %( name) -11s

: %( message )s")

27 ch = logging . StreamHandler ()

28 ch. setFormatter ( formatter )

29 self. _logger . addHandler (ch)

30

31 self.db = Radial_model_interface (self. db_param )
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32

33 self.db. create_raster (349992 , 5294800 , 1, 1, self. band_list . __len__ ())

34

35 self.db. select_raster_meta ()

36 self. antenna_interp_data = self.db. select_interp_data ()

37 self. antenna_interp_data_res = self. antenna_interp_data . __len__ () /180

38

39 self. ap_position = self.db. select_ap_position ()

40 self. ap_np_position = []

41 self.ap_az = []

42 self. band_name_list = []

43

44 for ap in self. ap_position :

45 if ap [4]. strip(" ") in self. band_list :

46 self. band_name_list . append (ap [4]. strip(" "))

47 self. ap_np_position . append (np.array ([ float(ap [0]) ,float(ap [1]) ,

float(ap [2]) ]))

48 self.ap_az. append (ap [3])

49

50 print " ap_np_positions : ", self. ap_np_position [0]

51 print " ap_az : ", self.ap_az [0]

52

53 for k in range (0, self. ap_np_position . __len__ ()):

54 #Loop for processing of each RM_Band for configured AP_Positions

55 self. _logger .info("AP "+self. band_name_list [k]+" will be processed !"

)

56 for i in range (0, self.db. raster_meta . __len__ ()):

57 #Loop for processing of each raster tile

58 self. compute_radial_model (self.db. raster_meta [i], self.

ap_np_position [k], self.ap_az[k])

59 self.db. insert_raster (self.rm , k+1, self.db. raster_meta [i][0])

60

61 # print out of band list

62

63 no = 0

64 print "Band List :"

65 print " ----------------------------------------"

66 for band in self. band_name_list :

67 no +=1

68 print no , band

69

70 def compute_radial_model (self ,rm_meta , ap_pos , ap_az):

71 print " rm_meta ", rm_meta

72 upperleftx = 1

73 upperlefty = 2

74 width = 3

75 height = 4

76 scalex = 5

77 scaley = 6

78 numbands = 10
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79 offsetx = rm_meta [ scalex ]/2

80 offsety = -rm_meta [ scaley ]/2

81

82 self.rm = []

83

84 for k in range(int( rm_meta [ upperlefty ]),int( rm_meta [ height ]* rm_meta [

scaley ]+ rm_meta [ upperlefty ]), int( rm_meta [ scaley ])):

85 self.rm. append ([])

86 for i in range(int( rm_meta [ upperleftx ]),int( rm_meta [width ]* rm_meta [

scalex ]+ rm_meta [ upperleftx ]), int( rm_meta [ scalex ])):

87 self.rm[int ((k- rm_meta [ upperlefty ])/ rm_meta [ scaley ])]. append (

self. radial_function ( offsetx +i, offsety +k, self.offset_og ,

ap_pos , ap_az))

88

89 def radial_function (self , x, y, z, ap_pos , ap_az):

90 g_t = 1

91 g_r = 1

92 f_c = 5.8

93 lambda_wlan = 30/ f_c *0.01

94

95 mu = np.array ([ float(x), float(y), float(z)])

96 ap = ap_pos

97 d = np. linalg .norm ((mu -ap))

98

99 ant_gain = self. ant_gain_determin (mu -ap , ap_az)

100

101 if ant_gain != 99:

102 PL = (- ant_gain - 10* np.log10(g_r)+10* np.log10 (((4* np.pi*d)/

lambda_wlan )**2))*100

103 else:

104 PL = 0

105 return PL

106

107 def ant_gain_determin (self ,d, ap_az):

108 theta_min = round(ap_az ,1) - 90

109 if theta_min < 0:

110 theta_min = theta_min + 360

111 elif theta_min > 360:

112 theta_min = theta_min - 360

113

114 theta_max = theta_min + 180

115 if theta_max < 0:

116 theta_max = theta_max + 360

117 elif theta_max > 360:

118 theta_max = theta_max - 360

119

120 x = d[0]

121 y = d[1]

122

123 if x >= 0 and y >= 0:
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124 phi = np. rad2deg (np. arctan (x/y))

125 elif x >= 0 and y < 0 :

126 phi = np. rad2deg (np. arctan (x/y)) + 180

127 elif x < 0 and y < 0:

128 phi = 180 + np. rad2deg (np. arctan (x/y))

129 elif x < 0 and y >= 0:

130 phi = np. rad2deg (np. arctan (x/y)) + 360

131

132 if theta_min <= 180:

133 if theta_min <= phi and phi <= theta_max :

134 return self. antenna_interp_data [int ((phi - theta_min )*self.

antenna_interp_data_res )][1]

135

136 else:

137 return 99

138 else:

139 theta_min = theta_min - 360

140 if phi > 180:

141 phi -= 360

142 if theta_min <= phi and phi <= theta_max :

143

144 return self. antenna_interp_data [int ((phi - theta_min )*self.

antenna_interp_data_res )][1]

145

146 else:

147 print "x, y, phi:", x, y, phi

148 print theta_min -180 , phi +180 , theta_max +180

149 return 99

150

151 if __name__ == " __main__ ":

152 Radial_field_model ()
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RM_regression_analysis.py

1 import xlrd , logging , psycopg2 , math

2 from datetime import timedelta

3 from ConfigParser import ConfigParser

4 from radial_model_interface import Radial_model_interface

5 import numpy as np

6 import matplotlib . pyplot as plt

7

8 CONFIGFILE = " Mu_data_feeder .conf"

9

10 class Rm_regression_analysis ():

11

12 def __init__ (self):

13 config = ConfigParser ()

14 config .read( CONFIGFILE )

15 self. db_param = {’host ’: config .get(’pg_parameter ’, ’DB_HOST ’), ’db ’:

config .get(’pg_parameter ’, ’DB_DB ’), ’user ’: config .get(’pg_parameter

’, ’DB_USER ’), ’password ’: config .get(’pg_parameter ’, ’DB_PWD ’), ’

schema ’: config .get(’pg_parameter ’, ’DB_SCHEMA ’), ’force_schema ’:

True , ’ref_cluster ’: config .get(’pg_parameter ’,’DB_CLUSTER ’), ’

table_raster ’: config .get(’pg_parameter ’,’DB_TABLE_RASTER ’)}

16

17 self. _logger = logging . getLogger (self. __class__ . __name__ )

18 self. _logger . setLevel ( logging .INFO)

19 formatter = logging . Formatter ("%( asctime )s -%( levelname )s- @ %( name) -11s

: %( message )s")

20 ch = logging . StreamHandler ()

21 ch. setFormatter ( formatter )

22 self. _logger . addHandler (ch)

23

24 self.db = Radial_model_interface (self. db_param )

25 self. cluster_ref_data = self.db. select_cluster_ref_data ()

26 print self. cluster_ref_data

27 self. map_values = self.db. select_map_values (self. cluster_ref_data , 1)

28 print self. map_values

29

30 self. calculate_offset ()

31 self. calculate_delta ()

32

33 def calculate_offset (self):

34 diff = []

35 for i in range (0, self. cluster_ref_data . __len__ ()):

36 diff. append (self. cluster_ref_data [i][0] - self. map_values [i]* -1)

37

38 print diff

39
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40 xnew = np. arange (10 ,30 ,0.01)

41 y = []

42 y_w = []

43

44 e_sum = 0

45 e_sum_w = 0

46 sum_w = 0

47

48 for u in self. cluster_ref_data :

49 sum_w += u [1]*1.0

50

51 print sum_w

52

53 for a in xnew:

54

55 for i in range (0, diff. __len__ ()):

56 e_sum += (diff[i] - a)**2

57 e_sum_w += ((( diff[i] - a)**2) *( self. cluster_ref_data [i ][1]))/

sum_w

58 y. append (e_sum)

59 y_w. append (( e_sum_w ))

60 e_sum = 0

61 e_sum_w = 0

62

63 ynew = np.array(y)

64 ynew_w = np.array(y_w)

65

66 ynew = ynew/np.max(ynew)

67 ynew_w = ynew_w /np.max( ynew_w )

68

69 print " Result not weighted :", np.min(ynew)

70 print " Result weighted :", np.min( ynew_w )

71

72 plt. figure ()

73 plt.plot(xnew , ynew , ’--’, xnew , ynew_w )

74

75 plt. legend ([ ’E(f)’, ’E(f), weighted ’], prop ={"size":10})

76 plt. xlabel (" Offset Parameter a [dB]")

77 plt. ylabel ("E(f(a))")

78 plt.grid(True)

79

80 def calculate_delta (self):

81 self. min_weight = 20.924

82

83 diff = []

84 for i in range (0, self. cluster_ref_data . __len__ ()):

85 diff. append (self. cluster_ref_data [i][0] - self. map_values [i]*-1- self.

min_weight )

86

87 self.db. update_cluster_delta (self. cluster_ref_data , diff)
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88

89

90 if __name__ == " __main__ ":

91 Rm_regression_analysis ()
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DB_radial_model_interface

1 import logging , psycopg2

2 from PostgresInterf import Pg_Interface

3 from pyproj import Proj

4

5 class Radial_model_interface ( Pg_Interface ):

6

7 def __init__ (self , db_param ):

8 self. db_param = db_param

9 Pg_Interface . __init__ (self , db_param )

10

11 def load_data_bunch (self ,data , date):

12 self.data = data

13 self.date = date

14

15 for index in range (0, self.data. __len__ ()):

16 self. load_one_row (index)

17

18 self. commit ()

19

20 def load_one_row (self ,index):

21 cur = self. _connection . cursor ()

22

23 cur. execute (" INSERT INTO {0}.{1} (mu_id , timestamp , mac , channel , power ,

ssid) VALUES ({2} , ’{3} ’ , ’{4} ’ ,{5} ,{6} , ’{7} ’)". format (

24 self. get_schema (),

25 self. db_param [’table_insert ’],

26 self.data[index ][0] ,

27 self.data[index ][2] ,

28 self.data[index ][3]. lstrip (’ ’),

29 self.data[index ][4]. lstrip (’ ’),

30 self.data[index ][5]. lstrip (’ ’),

31 self.data[index ][7]. lstrip (’ ’). rstrip (’\n’)

32 ))

33

34 def select_raster_meta (self):

35 cur = self. _connection . cursor ()

36

37 cur. execute (" SELECT rid , (foo.md).* FROM ( SELECT rid , ST_MetaData (rast)

As md FROM {0}.{1}) As foo". format (

38 self. get_schema (),

39 self. db_param [’table_raster ’]

40 ))

41 self. raster_meta =[]

42

43 for i in cur:
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44 self. raster_meta . append (i)

45

46 def select_ap_position (self):

47 cur = self. _connection . cursor ()

48

49 cur. execute (" SELECT ST_X( position ), ST_Y( position ), ST_Z( position ),

antenna_az , name FROM antenna . ap_position ")

50 self. ap_meta =[]

51

52 for i in cur:

53 self. ap_meta . append (i)

54 return self. ap_meta

55

56 def select_interp_data (self):

57 cur = self. _connection . cursor ()

58

59 cur. execute (" SELECT degree , power_value FROM antenna . antenna_interp_data

")

60 self. interp_data =[]

61

62 for i in cur:

63 self. interp_data . append (i)

64 return self. interp_data

65

66 def insert_raster (self , rm_data , band , rid):

67

68 cur = self. _connection . cursor ()

69

70 cur. execute (" SELECT rid , ST_NumBands (rast) As numbands FROM {0}.{1} ".

format (

71 self. get_schema (),

72 self. db_param [’table_raster ’]

73 ))

74

75 self. raster_bands =[]

76

77 for i in cur:

78 self. raster_bands . append (i)

79

80 print "[rid , bands] :", self. raster_bands

81

82 if self. raster_bands [0][1] < band:

83 count_missing_bands = band - self. raster_bands [0][1]

84 for i in range (0, count_missing_bands ):

85 cur. execute (" SELECT rid , ST_NumBands (rast) As numbands FROM

{0}.{1} ". format (

86 self. get_schema (),

87 self. db_param [’table_raster ’]

88 ))

89
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90 for row in range (0, rm_data . __len__ ()):

91 print "row number :", row

92 for column in range (0, rm_data [row ]. __len__ ()):

93 if self. inside_testbed ( column +1, row +1):

94 self. insert_pixel ( column +1, row +1, rm_data [row ][ column ],band

, rid)

95

96 self. commit ()

97

98 def insert_pixel (self ,x,y, pixel_value , band , rid):

99

100 cur = self. _connection . cursor ()

101

102 cur. execute (" UPDATE {0}.{1} SET rast = ST_SetValue (rast ,{2} ,{3} ,{4} ,{5})

WHERE rid = {6}". format (

103 self. get_schema (),

104 self. db_param [’table_raster ’],

105 band , x, y,int( pixel_value ),rid

106 ))

107

108 def inside_testbed (self ,x, y):

109 x = self. raster_meta [0][1]+ (x * self. raster_meta [0][5]) - self.

raster_meta [0][5]

110 y = self. raster_meta [0][2]+ (y * self. raster_meta [0][6]) - self.

raster_meta [0][6]

111

112 # print "x, y :", x, y

113 cur = self. _connection . cursor ()

114 cur. execute (" SELECT ST_INTERSECTS ( ST_GEOMFROMTEXT (’Point ({0} {1}) ’,

32633) , ( SELECT the_geom FROM Infrastructure . testbed_area WHERE gid =

1))". format (

115 x,y

116 ))

117

118 for i in cur:

119 result = i

120

121 return result [0]

122

123 def select_data (self):

124 cur = self. _connection . cursor ()

125 cur. execute (" SELECT * FROM {0}.{1} ". format (

126 self. get_schema (),

127 self. db_param [’table_select ’],

128 ))

129

130 self.data = []

131

132 for i in cur:

133 self.data. append ((i[1],i[2]))
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134

135 def create_raster (self , lower_x , lower_y , no_tile_x , no_tile_y , no_bands ):

136 cur = self. _connection . cursor ()

137

138 factor = 6

139

140 tile_size_x = 77* factor / no_tile_x

141 tile_size_y = 92* factor / no_tile_y

142

143 raster_res = 6/ factor

144

145 cur. execute (" SELECT DropRasterTable ( ’{0} ’ , ’{1} ’)". format (

146 self. get_schema (),

147 self. db_param [’table_raster ’],

148 ))

149

150 cur. execute (" create table {0}.{1} (rid serial , constraint

antenna_intp_pk PRIMARY KEY(rid))". format (

151 self. get_schema (),

152 self. db_param [’table_raster ’],

153 ))

154

155 cur. execute (" SELECT AddRasterColumn (’{0}’, ’{1}’, ’rast ’, 32633 , ARRAY

[’16 BUI ’,’16BUI ’,’16BUI ’,’16BUI ’], false , true , ’{3}’,

{2} ,{2} ,100 ,100 , null);". format (

156 self. get_schema (),

157 self. db_param [’table_raster ’],

158 raster_res ,

159 ’{0 ,0 ,0 ,0} ’

160 ))

161

162 for x in range (0, no_tile_x ):

163 for y in range (0, no_tile_y ):

164 cur. execute (" INSERT INTO {0}.{1} (rast) VALUES (

ST_MakeEmptyRaster ({4} , {6}, {2}, {3}, {5}, {5}, 0, 0, 32633)

) RETURNING rid". format (

165 self. get_schema (),

166 self. db_param [’table_raster ’],

167 lower_x +( tile_size_x *x),

168 lower_y +( tile_size_y *y),

169 tile_size_x ,

170 raster_res ,

171 tile_size_y

172 ))

173

174 rid = cur. fetchone () [0]

175 for i in range (0, no_bands ):

176 cur. execute (" UPDATE {0}.{1} SET rast = ST_AddBand (rast ,’16

BUI ’) WHERE rid = {2}". format (

177 self. get_schema (),
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178 self. db_param [’table_raster ’],

179 rid

180 ))

181

182 def select_cluster_ref_data (self):

183 cur = self. _connection . cursor ()

184 self. cluster_data =[]

185 cur. execute (" SELECT power_avg , count , cluster_id FROM mu_data .{0}".

format (self. db_param [’ref_cluster ’]))

186

187 for i in cur:

188 self. cluster_data . append ((i[0],i[1],i[2]))

189 return self. cluster_data

190

191 def select_map_values (self , cluster_ref_data , band):

192 cur = self. _connection . cursor ()

193

194 map_values = []

195 for entry in cluster_ref_data :

196

197 cur. execute (" SELECT ST_Value (rast , {2}, ( SELECT position FROM

mu_data . cluster_mast6a_testbed WHERE cluster_id = {3}))FROM

{0}.{1} ". format (self. get_schema (),

198 self. db_param [’table_raster ’],

199 band ,

200 entry [2]

201 ))

202

203 for i in cur:

204 map_values . append (i [0]/100)

205

206 return map_values

207

208 def update_cluster_delta (self , cluster_data , diff):

209 cur = self. _connection . cursor ()

210

211 for i in range (0, cluster_data . __len__ ()):

212 cur. execute (" UPDATE mu_data . cluster_data_mast6a SET delta_to_map =

{1} WHERE cluster_id = {2}". format (

213 self. get_schema (),

214 diff[i],

215 cluster_data [i][2]

216 ))

217

218 self. commit ()
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