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Kurzfassung 

Städtische Gebiete sind durch eine Vielzahl verschiedenster Materialien 

gekennzeichnet. In diesem Kontext haben sich hyperspektrale Datensätze für die 

Klassifikation von urbanen Materialien bewährt. In dieser Arbeit wird mit Hilfe eines 

hyperspektralen Datensatzes eine detaillierte Karte von Dachmaterialien erstellt. 

Zwei pixel-basierte Klassifikatoren werden miteinander verglichen. Dies ist zum einen 

der Spectral Angle Mapper, der gut geeignet ist um urbane Gebiete zu klassifizieren, 

weil er als insensitiv gegenüber Beleuchtungsunterschieden gilt, die gerade im urbanen 

Raum groß sein können. Zum anderen werden Support Vector Machines verwendet. 

Dies ist ein nicht-statistischer Klassifikator, der die Klassengrenzen durch Trennebenen 

bestimmt. Da er gut geeignet ist für hoch-dimensionale Datensätze und kleine 

Trainingsbiete, Bedingungen, die in dieser Studie erfüllt sind, wurde er ausgewählt. 

Eine binäre Dachmaske aus Laserscanner-Daten wird benutzt um Gebäude von Boden 

zu unterscheiden. Damit soll die Verwechslung zwischen Materialien aus dem 

Bodenbereich und denen auf Dächern vermieden werden. Dieses Vorgehen wird durch 

Einbinden der Dachneigung ergänzt. Es wurden zwei Masken, die eine für geneigte, die 

andere für flache Dachoberflächen aus einem pixel-basierten Neigungsdatensatz aus 

Laserscanner-Daten hergeleitet. Der Gedanke dahinter ist, dass einige Materialien 

ähnliche Spektralkurven aufweisen und daher im Klassifikationsprozess schwer zu 

unterscheiden sind. Dies sind oft Materialen mit niedriger Reflexion und keinen 

nennenswerten Absorptionsbanden, die aber auf Dächern mit unterschiedlicher Neigung 

vorkommen.  Da es sich während der Arbeit herausgestellt hat, dass die Laserscanning-

Maske einige Fehler in den Neigungswerten enthielt, wurden die Klassifikationen mit 

einer manuell-erstellten Maske erneut durchgeführt. Es konnte gezeigt werden, dass 

durch die Einführung von Dachneigung die Verwechslung von Materialen, z.B. von 

Schiefer und Bitumen-Dachpappe, reduziert und die Gesamtgenauigkeit der 

Klassifikation damit verbessert werden kann. Der Vergleich zwischen den beiden 

Klassifikationsmethoden wird zum einen visuell, als auch quantitativ mit Hilfe von 

Konfusionsmatrizen durchgeführt. Beide Klassifikatoren erwiesen sich als gut geeignet 

um Dachmaterialen zu klassifizieren. Der Spectral Angle Mapper hat dabei im 

Vergleich mit den Support Vecotr Machines die besten Resultate erzielt, sowohl für die 

Klassifikation mit, als auch ohne Dachneigung.   
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Abstract 

The urban environment is characterised by a variety of different surface materials. In 

this context, hyperspectral datasets have proved well suited for urban material mapping. 

In this study, a detailed map of roof materials is created using a hyperspectral dataset 

from the HyMap sensor.   

Two pixel-based classifiers are used for this task and their results compared. Spectral 

Angle Mapper, the first classification method, is well suited for the classification of 

urban areas because of its insensibility to illumination changes, which are high for 

urban areas. Support Vector Machines are the second classification method used. It is 

also a non-statistical classifier which determines separating planes between the classes 

and has been proved to work well with high-dimensional datasets and small training 

classes, both conditions being fulfilled in this study.   

A binary roof mask created from laserscanning data is used to distinguish buildings 

from non-buildings to reduce the confusion between materials on the ground and on the 

roofs. This approach is extended by a second step in which inclination information of 

the roofs is incorporated in the process. Two masks, one for flat roofs, the other for 

inclined roofs from a pixel-based inclination dataset are derived from laserscanning 

data. The idea behind this is, that some materials show similar reflectance curves and 

are therefore hard to distinguish in the classification process. These are materials with 

low reflectance and no distinct absorpotion features, but which occur on roofs with 

different inclination. As the laserscanning mask showed some errors in inclination 

values, the classifications were repeated with manual inclination masks. When 

introducing inclination, it can be shown that the confusion e.g. between slate and 

bitumen roofs, can be reduced and thus the overall accuracy improved.  

The comparison between the two classification approaches, as well as between the 

results for the classification with and without roof inclination is done visually and 

quantitatively with confusion matrices. Both classifiers have proved suitable for the 

classification of roof materials. The Spectral Angle Mapper provided the best 

classification results in comparison with Support Vector Machines for the classification 

with and without roof inclination. 
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1 Introduction 

Imaging Spectrometry or hyperspectral imaging as it is also termed (Goetz, et al. 1985), 

started in the late 1970s to early 1980s. It is concerned with the measurement and 

analysis of reflectance spectra collected in many small, contiguous spectral bands 

(Goetz, 2009). Since then, imaging spectrometry has proved useful in a range of 

applications. The earliest studies focussed on geology, and have since demonstrated to 

be an effective means for the mapping of minerals, rocks and soils (Crowley, 1993; Van 

der Meer, 1996; Chabrillat, et al. 2002). Hyperspectral data have also been used in 

ecological and vegetation studies, e.g. for the mapping on a species level (McMorrow, 

et al., 2004; Xiao, et al., 2004; Middleton, et al., 2009). Spectrometry has not only been 

applied for natural materials, but also for man-made materials in an urban environment. 

There are studies focussing on the spectral curves of urban materials, for example the 

build-up of spectral libraries (Ben-Dor, et al. 2001; Herold, et al., 2004), or the analysis 

of the spectral reflectance curve (Moreira & Galvao, 2010; Heiden, et al., 2007; Van der 

Meer, 2004), as well as factors influencing the appearance of urban features, such as 

different illumination and sensor viewing-angles (Meister, et al., 2000; Schiefer, Hostert 

and Damm, 2006; Lacherade, et al., 2005). 

In this study, roof surfaces in the city of Karlsruhe, Germany, are mapped using 

different classifiers. Before classification is performed, the reflectance curves of 

different roof surfaces and the factors influencing them are analysed. The knowledge of 

roof surfaces, their materials and distribution in a city can be of great value for a range 

of applications like studies of the urban heat island effect. One parameter of this effect, 

i.e. the phenomenon that urban areas have higher temperatures than their surrounding 

rural areas, is the surface albedo in the city (Taha, 1997). A large quantity of this is 

contributed by roofs, as the roof temperature is determined in large parts by the heat 

emission into space (Berdahl and Bretz, 1997). As a second example, a study on the 

deposition of contaminants in urban areas from roof water run-off has shown the 

usefulness of roof classification for the input into models describing the deposition of 

contaminants in urban areas. (Weidner, et al. 2005). 

 



1 Introduction  2 

 

This study’s main task is the assessement of the ability of two different pixel-based 

classifiers to map roof surfaces: Spectral Angle Mapper (SAM) and Support Vector 

Machines (SVM).  The high number of bands in hyperspectral imagery has led to the 

development of different classification techniques other than the traditional methods of 

supervised classification such as the Maximum-Likelihood algorithm, which is not 

suited without reducing dimensionality first. Therefore, classifiers were developed 

which are able to deal with the high dimensionality of hyperspectral data. Various 

classifiers have been used in connection with hyperspectral data such as spectral 

unmixing (Roessner, et al., 2001), artificial neural networks (Subramanian, et al. 1997) 

or decision trees (Mather & Pal, 2003; Wang & Li, 2008), to name but a few. The 

classifier SAM was chosen because it has proved to be insensitive to illumination 

effects and is therefore well suited for the urban environment where large variations in 

illumination occur (Hostert, 2010). It has been used e.g. in a study to map the surface 

mineralogy of a region in Israel (Ben-Dor & Kruse, 1995), for the mapping of semi-arid 

landscapes (Yuhas, et al., 1002), but also in urban environments for the mapping of roof 

materials to assess their vulnerability for hailstorms (Bhaskaran, et al., 2001). In both 

cases SAM gave good classification results.  

SVM is a more recent classifier that has been reported to give better classification 

accuracies than other classifiers. Huang, et al., (2002) compared the performance of 

SVM, Decision Tree classifier, Artificial Neural Networks and Maximum Likelihood 

for land cover classification with a multi-spectral dataset of Landsat TM. Dixon & 

Cancade (2008) compared Neural Networks and SVM for land-use classification also 

using Landsat TM. And Pal & Mather (2004) assessed SVM for the classification of 

land cover in comparison with Maximium Likelihood and Artificial Neural Networks 

using a DAIS hyperspectral dataset. A higher level of classification accuracy was 

achieved for the classification with SVM, even with hyperspectral datasets. Therefore, 

SVM was chosen as second classifier for this comparison to assess the accuracy in the 

classification of roof surfaces. 

Various studies in the urban environment have also used height information, e.g. digital 

elevation data, to enhance classification by reducing spectral confusion between urban 

land cover types (Herold & Roberts, 2010). This way, a third dimension is introduced to 

the study. Gamba & Houshmand (2000) used AVIRIS and IFSAR data for a 3D profile 
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reconstruction of buildings. The hyperspectral data were used to differentiate between 

vegetated and non-vegetated surfaces, thus improving the building reconstruction. 

Greiwe, et al. (2004) used segment-based fusion of high spatial and high spectral 

resolution image data (digital orthophoto, HyMap hyperspectral data and a DEM from 

airborne photography) to classify an urban environment. A similar approach of one part 

of this study is the survey of Madhok & Landgrebe (1999) who fused HYDICE 

hyperspetral data and a DEM obtained from airborne photography. They identified and 

delineated building roof-tops, thereby using the hyperspectral data for the identification 

and the height information to discriminate roof and ground. In a study by Lemp & 

Weidner (2005), inclination information on roofs from a laserscanning dataset was 

included in a segment-based classification process of roof surfaces using the same 

hyperspectral data. They proved that the incorporation of inclination information leads 

to an improvement of accuracy. While they used a segment-based classification 

approach, this study assesses two pixel-based methods to see whether the accuracy can 

be improved for SAM and SVM results as well by incorporating the inclination of roofs.  

This leads to the following topics and questions of this case study which shall be 

answered:  

• A detailed analysis of the spectral signatures of roof types in the hyperspectral 

image will be given, including the collection of various roof surfaces apparent in 

the HyMap dataset. 

• Classification of roof surfaces on a subset of the HyMap dataset of Karlsruhe is 

performed using the Spectral Angle Mapper classifier and Support Vector 

Machines. The classification results will be assessed. Which classifier leads to 

the best classification result?  

• Roof inclination information of laserscanning data is incorporated in the 

classification process. Can this approach improve the accuracy of the 

classification results? 

 

For data preparation and the classification of Spectral Angle Mapper, the software 

ENVI 4.7 (Environment for Visualisation of Images) by ITT VIS was used. For the 

SVM classification, the package “libSVM” was applied which can be used within 
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ENVI. The development of the reference dataset and the validation of results was 

performed with the software ArcGIS 9.3.1 by ESRI. 

This study is structured as follows: In the first chapter, an introduction to imaging 

spectrometry is given explaining its fundamentals, and the challenges of urban surface 

classification on the basis of hyperspectral datasets are analysed. In addition, the 

theoretical concepts of the two classifiers SAM and SVM are illustrated. The next 

chapter deals with the description of the methods, from data preparation to the 

implementation of the classifications and the validation methods used. In addition, the 

set-up of the reference dataset for accuracy assessment is described, including the 

description of the reflectance of roof surfaces in the image.  In chapter 4, the 

classification results are presented and analysed by visual and quantitative comparison 

with the reference dataset using confusion matrices. Finally, a conclusion of the study is 

given and an outlook to further possible studies provided. 
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2 Fundamentals  

The chapter provides information on the fundamentals of passive remote sensing which 

are relevant for understanding the principles behind hyperspectral spectrometry. In the 

following, the characteristics of urban landscapes are discussed. The chapter finishes 

with the concepts of the classification of hyperspectral data and the two classifiers 

assessed in this study. 

2.1 Fundamentals of imaging spectrometry  

Hyperspectral spectrometers allow for the discrimination of features using their distinct 

absorption and reflection characteristics. They are termed “hyper”spectral because they 

contain many contiguous bands (often up to 200 bands) in which they record the 

object’s reflectance across the electromagnetic spectrum. The basic physical and 

radiometric properties of spectrometry will be explained in the following paragraphs to 

understand how the reflectance of objects can be measured and how information on 

objects can be derived from it. Unless otherwise cited, these principles of Remote 

Sensing are taken from textbooks by Lillesand and Kiefer (1994), Mather (1996) and 

Campbell (1996). 

2.1.1 Electromagnetic radiation 

In passive optical Remote Sensing, the source of emitted electromagnetic radiation is 

the Sun. The amount of radiation reflected depends on the properties of the objects on 

the ground. Active Remote Sensing uses radiated energy to derive information from the 

Earth (e.g. radar and laserscanning systems). The concept of laserscanning used in this 

study to derive information on the geometric properties of the roofs, is described in 

chapter 3.2.2. 

Electromagnetic radiation that is emitted from the sun, travels at the speed of light, 

passes through the atmosphere and is reflected by the Earth’s surface. It is composed of 

a range of wavelengths. The wavelength ranges are displayed in Table 1 . Wavelength is 

usually measured in micrometers (µm) or nanometer (nm).  
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range wavelength (µm) 

Visible range (VIS)  

 Blue 0.4 – 0.5 

 green 0.5 – 0.6 

 red 0.6 – 0.7 

Near-infrared (NIR) 0.7 – 1.3 

Short-wave infrared 

(SWIR) 

1.3 – 3.0 

  

Table 1: The wavelength bands of electromagnetic 

radiation  

(source: Lillesand & Kiefer, 1994) 

       

2.1.2 Interactions with the atmosphere 

On the way through the atmosphere, radiation is influenced by atmospheric gases and 

particles causing absorption and scattering effects which mainly influence the intensity 

and direction of electromagnetic radiation within the atmosphere. 

Scattering is the result of interactions between electromagnetic radiation and gas 

molecules or particles in the atmosphere. The radiation that is scattered from these 

particles or molecules is redirected or deflected from its path. There are two different 

scattering mechanisms: Raleigh-scattering is caused by particles with diameters that are 

small relative to the wavelength of radiation and is therefore wavelength dependent. 

Raleigh-scattering is inversely proportional to the fourth power of the wavelength, 

which means that it influences shorter wavelengths more than longer wavelengths. Mie-

scattering is caused by larger particles (e.g. water vapour, dust or pollen) in the 

atmosphere and it influences the wavelengths with the same size as the particle itself. 

Non-selective scattering is produced by particles which are larger than the wavelengths, 

such as large water droplets. All wavelengths are affected equally, generating a sort of 

haze to the image.  

The atmosphere also absorbs electromagnetic radiation. Responsible for this are gases 

like water vapour, carbon dioxide, ozone or aerosols which absorb radiation in specific 

regions of the electromagnetic spectrum. The major water vapour absorption bands are 

at around 0.94µm, 1.14µm, 1.38µm and 1.88µm, the oxygen band at around 0.76µm 

and carbon dioxide bands near 2.01µm and 2.08µm (Van der Meer, 2001). Other traze 
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gases like ozone, are included as well as they also produce absorption bands in the range 

of 0.4µm to 2.5µm. The spectral regions which are not subject to strong absorption and 

where transmission of radiation is high, are termed “atmospheric windows” (see Figure 

1). In these windows enough radiation is reflected to be effectively recorded by a 

sensor. This is why imaging spectrometers are specifically designed to use these 

windows. 

 

Figure 1: Atmospheric windows (source: Lillesand & Kiefer, 1994) 

 

2.1.3 Surface material reflectance 

As described above, radiation incident on the Earth is reflected, absorbed or transmitted. 

The interrelationship between these interactions can be formulated as follows (energy 

balance equation): 

EI (�) = ER(�)+ EA(�) + ET(�)    (1) 

Where EI is the incident energy, ER the reflectance, EA the absorbance and ET the 

transmittance. All energy components are a function of wavelength �. The reflectance is 

thus: ER(�) = EI (�) – (EA(�) + ET(�))    (2) 

The characteristics and nature of objects can be inferred from the spectral response. This 

is possible because each material has a characteristic manner of interacting with the 

incident radiation. This is the fundamental concept behind spectrometry and the analysis 

of spectral reflectance curves of target materials or objects. However, the spectral 

response of a target not only depends on its properties but also on factors like solar 

azimuth, solar elevation angle and sensor characteristics. 

The hyperspectral sensor records the energy emitted from a target, but as the solar 

irradiance interacts with the atmsophere, the recorded signal is contaminated. The 
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energy that is recorded by the sensor, is called at-sensor-radiance. Figure 2 displays the 

components of the measured at-sensor-radiance. It is the sum of radiance reflected from 

the surface (IS), radiation scattered in the atmosphere which reaches the sensor without 

reaching the surface first (IO) and diffuse radiation which is directed to the surface, then 

the atmosphere, then to the sensor (ID). The components are wavelength (�) dependent.   

This can be written as: 

I = IS(�) + IO(�) + ID(�)     (3) 

While IS varies with different factors like the surface properties (roughness, texture), 

and orientation of the object to the sensor, IO is nearly constant. ID varies with the 

surface but is relatively small. One special case and an important factor in urban areas, 

is shadow. The radiance reflected from the surface IS is null because no direct solar 

radiation reaches these areas, but some brightness is still derived from ID resulting in 

low reflectance of shadowed areas.  

 
Figure 2: Principle components of at-sensor-radiance. 

IS = reflected surface radiation, IO = atmospheric radiance, ID = 

diffuse radiance 

 

The amount of radiation recorded is thus dependent on properties of the surface, solar 

characteristics and the atmosphere. For spectrometry, the radiance values need to be 

converted to apparent reflectance, and atmospheric effects need to be corrected for. This 

is done by simulating the influence of the solar characteristics and the atmosphere and 

by applying certain algorithms. The resulting reflectance is the proportion between 

emitted to incident radiance.  



2 Fundamtentals  9 

 

 

After removing the atmospheric influences, the reflectance signal is ideally only 

influenced by the properties of the surface material (Van der Meer, 2001). Every 

material has certain specific reflectance properties due to the composition of its atoms 

and molecules. Depending on the material, the emitted energy is reduced in certain 

wavelengths due to the interaction of photons of the electromagnetic radiation in the 

crystal lattice. For the shorter wavelengths, these interactions are due to the change of 

energy state of electrons, for longer wavelengths, due to the excitement of certain 

oscillation states. The attentuation of certain wavelengths is visible as absorption bands 

in the spectral curves of an object. Figure 3 displays the typical spectral reflectance 

curves for vegetation, bare soil and water. Vegetation shows the highest reflectance with 

3 main deep absorption features and a very distinct spectral curve. Bare soil is an 

example of a more uniform spectral curve with few and only small absorption bands. 

Water has a very low reflectance in the blue part of the electromagnetic spectrum. The 

energy is nearly fully absorbed in the infrared wavelengths. 

 
Figure 3: Spectral reflectance curves for vegetation, bare soil and water 

 

To analyse the spectral properties of materials, spectral libraries which includ many 

reflectance spectra, can be built from field or laboratory measurements or from the 

hyperspectral image. Examples for spectral libraries are the USGS Spectroscopy Lab 

Spectral library (Clark, et al., 1993)  or the Aster spectral library (Baldridge, et al., 

2008) containing natural and man-made materials. For urban studies, spectral libraries 
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were also built (Herold, et al., 2004; Ben-Dor, Levin & Saaroni, 2001; Heiden, et al., 

2007). 

Examplarily, the reflectance spectrum of roofing copper is displayed in Figure 4, along 

with the same material spectrum from a multispectral system to emphasize the strength 

of a hyperspectral spectrometer for material mapping. It can be seen that the 

hyperspectral reflectance curve carries more information content and delivers a more 

detailed reflectance curve for the material than the reflectance curve of the same 

material recorded by Landsat TM with only a few bands. Characteristic absorption 

bands can be seen in the hyperspectral curve where they are not visible in the 

multispectral reflectance curve. This makes it possible for spectrometers to not only 

distinguish object classes like vegetation, water or build-up area, but different materials.  

The challenges to distinguish materials in an urban environment together with spectral 

curves of roof materials contained in this study, are explained in the next chapter. 

 

Figure 4: Reflectance spectrum of roofing copper  

as it would be recorded by hyperspectral data (solid line) and by Landsat TM 

(dashed line). The Landsat bands are displayed in orange. 
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2.2 Challenges of urban surface classification 

The urban environment is characterized by various types of different materials, natural 

and man-made, which lead to very heterogeneous reflecting surfaces. A variety of 

different building sizes, roof geometries and roads can be found, as well as vegetated 

areas in form of parks, street trees or gardens and recreational zones. This multitude of 

materials provides a challenge for urban mapping. 

Generally, material mapping can be done using the reflectance signature of objects. The 

reflectance curve is strongly dependent on surface materials and their material 

composition, but it can also be influenced by other factors. These factors and the general 

characteristics of urban areas, which are encountered when classifying hyperspectral 

images, are described in the following chapter. 

Urban areas show a strong change in different surface materials in a small space. A 

spatial resolution of finer than 5m for urban case studies is recommended (Small, 2003). 

However, the resolution still makes it very likely that the pixels of a hyperspectral 

image include more than one object or material and are therefore mixed pixels 

containing spectral information of different materials. In this study, roof surfaces shall 

be mapped with a hyperspectral image of 4m spatial resolution. Figure 5 shows a detail 

of the campus area and adjacent residential expanses. The different roof sizes are clearly 

distinguishable. In the residential area, the buildings are directly adjacing and the 

borders of roofs can not be easily made out with the 4m resolution of the hyperspectral 

image. The campus area has larger buildings and therefore large roof areas. However, 

the roofs themselves are not uniform but contain additional roof structures like 

chimneys, roof windows or ventilation tubes (Figure 6) . This means that great care has 

to be taken when selecting representative training areas for the different roof surfaces. 

Another factor is the amount of shadow which is very high in urban areas and presents 

a problem as in most cases the spectral signature of a shadowed material does not 

resemble the material signature anymore. Figure 7 displays the effect of shadow on a 

spectral signature of a gravel roof. Some brightness is still derived from diffuse 

radiation in shadowed areas but reflectance is low. The shadowed roof also shows a 

different shape of the spectral curve compared to an illuminated gravel roof.  
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Figure 5: Differences in building sizes 

Large roofs on the campus ground in the Northern part of the image; small, heterogeneous roof 

types of the residential area South of the campus (true colour composite of HyMap image left, 

aerial photo right; size of detail appr. 390m x 370m) 

 

       
Figure 6: Examples of roof structures  

(true colour composite of HyMap image on the left, aerial photo on the right, respectively)  

  

 

Figure 7: Shadow and its influence on the spectral signature of a gravel roof 

Left: Shadow in HyMap image (marked with white circle). Middle: same detail from aerial photo; 

Right: spectral signature of illuminated and shadowed gravel roof 

 

Related to the problem of shadow in urban areas are the different solar illumination 

conditions in combination with the viewing-angle of the sensor and their influence on 
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a) Influence of different illumination conditions b) Similar spectral signatures of roof surfaces 

  

c) Similar spectral signatures of materials on 

the roof and ground (bitumen) 

d) Similar spectral signatures of roof surfaces 

(fired clay)  

 
 

e) High within-class variability f) Roofs with low reflectance  

 

 

g) Reflectance of a roof surface of different age  

Figure 8: Graphs of different reflectance curves extracted from the HyMap image 
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the reflectance of urban objects. The brightness of the reflectance changes, as can be 

seen in Figure 8a for a tiled roof where one roof area is facing the sun, the other is 

averted from it. The absorption features do not change in this case. Therefore, the 

geometry of a roof and the location of the building in the image also play a role in the 

reflectance. Some materials like glass and metal roofs occasionally show specular 

reflectance which changes the spectral signature of a material and, as in the example of 

Figure 8a for an aluminium roof, also exceed the sensor capabilities. A classification of 

this kind of roof might therefore prove difficult.  

Urban areas are also characterized by objects of the same basic material, thus showing 

similar spectral reflectance curves. These can be objects of identical utilization like 

roofs shown in Figure 8b. Both roof surfaces contain the same basic material which is 

natural stone, crushed to gravel or in the form of stone slabs. Due to the similarity of 

materials they also show similar reflectance curves. The same effect can be seen for 

objects of different uses as in Figure 8c and d for roof as well as ground materials. The 

bitumen felt of a roof and asphalt on the road show similar spectral characteristics, 

especially in the visible part of the electromagnetic spectrum. Their reflectance is low 

(around 12%) and their reflectance curves have relatively uniform shapes. Both surface 

materials contain bitumen, a residue from the destillation of oil (Wormuth, Dierks and 

Fleischmann, 2007). Further examples are red roofing tiles and red paving stone. They 

are made from fired clay and show a dinstinct absorption feature at 0.85 µm and a small 

reflectance peak in the visible range at 0.78µm.  

Some spectral signatures of urban surfaces possess distinct absorption bands that cannot 

be found in other features, thereby making them easier recognizable by classifiers. On 

the other hand there are surfaces which do not show spectral variations of large degrees. 

Signatures showing a near constant and low reflectance without broad absorption 

features and therefore may easily be confused with shadow (Figure 8f).  

Finally, surfaces of the same material can show spectral modifications due to different 

age, condition and coating. The influence of age is shown in Figure 8g. Displayed are 

two spectral samples of red roofing tiles, one from an older roof, the other from a 

younger one. It can be seen that the reflectance curve of the older material changed, 

losing the distinct absorption band at 0.87µm (absorption due to iron oxide) which 
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would be typical of fired clay. Additionally, the young roofing tile still shows a rise in 

reflectance in the SWIR associated with the loss of water during the firing process 

which is not lower for older tiles. For aged gravel or stone slab roofs the overgrowth 

with lichen or grass is typical. This would also change reflectance. All these influences 

lead to a high within-class variability, as is shown in Figure 8e for red roofing tiles. 

All the described factors typical for spectrometry of urban areas might lead to some 

confusion between classes of roof materials. To avoid at least the confusion between 

similar materials on the roof and on the ground, a roof mask is used in this study. The 

HyMap image is clipped so that only the roofs are displayed which are then used for 

classification. However, similar reflectance curves of roof materials might still 

complicate classification (see chapter 3). 

 

2.3 Classification concepts 

There are many possible classification methods in literature which are used for the 

mapping of landcover. The choice of classifier can depend on different factors such as 

the dataset used, the level of detail to be mapped and the characteristics of the thematic 

classes.  

The traditional supervised classification methods for multispectral data are multivariate 

statistical classifiers like e.g. Maximum Likelihood. Each pixel represents a point in n-

dimensional feature space (n being the number of bands). Its location depens on its 

spectral reflectance in each band. Points close together in feature space would be 

assigned to the same class. Maximum Likelihood calculates the probability that a given 

point in feature space belongs to a specific class. It requires that certain statistical 

characteristics of each class like mean and covariance matrix are derived from training 

classes. The problem for statistical classifiers in high-dimensional feature space is that 

the number or trainings samples is relatively small compared to the number of features, 

which can lead to singular covariance matrices when the number of training samples is 

below one more than the number of features.  
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The higher the number of features the more parameters need to be estimated. This is 

called the Hughes phenomenon which states that classification acccuracy declines as the 

number of features increases, because the reliability of estimates of statistical 

parameters decreases (Landgrebe, 1999; Mather & Koch, 2011, Pal & Mather, 2005). 

Therefore, statistical classifiers can only be used when dimensionality of hyperspectral 

data is reduced first.  

Some classifiers for hyperspectral data make use of the physical information of the 

spectrum, comparing absorption features to known class spectra. They are termed 

“spectral matching methods”. Some of these methods assign whole pixels to a class like 

Spectral Feature Fitting (SFF), Spectral Information Divergence (SID) or Spectral 

Angle Mapper (SAM). In SFF, the depth of absorption features and the shape of the 

spectral curve are compared to target reflectance curves. SID matches pixels to 

reference spectra using divergence measures and SAM compares the angle between 

pixels vectors and target vectors and assigns the pixel to the class to which it has the 

smallest angle. Different kind of matching approaches are sub-pixels methods like 

spectral unmixing. They are based on the concept that an image pixel is a mixed pixel, 

meaning that the spectrum of an image represents different materials and is the result of 

a linear combination of the spectra of all materials (termed “endmembers”) inside that 

pixel. This idea is illustrated in Figure 9. Methods for this are e.g. Linear Spectral 

Unmixing which maps the abundances of endmember within each pixel from the pixel’s 

spectrum. For this approach all image endmembers need to be known. A method where 

this is not the case, is e.g. Matched Filtering (partial unmixing). 

 
Figure 9: Concept of mixed pixels  

(source: modified after Weidner & Brand, 2005, p.27) 
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Another group of classifiers are non-parametric approaches. Examples of these are 

Support Vector Machines or Artificial Neural Networks (ANN). Neural Networks build 

set of linked processing units to solve a classification problem. The network is 

improved by iteratively classifying the training areas and training the model. Support 

Vector Machines delineate linearly non-separable classes directly in feature space by 

fitting a plane between class boundaries. 

Out of these possible classifiers two were selected for this study which classify whole 

pixels. SAM represents the spectral matching approach. This approach is interesting 

because it does not require much computational time and can work with the full 

hyperspectral  dataset. The non-parametric SVM approach was selected because it 

achieved high classification accuracies in various studies. The concepts of both 

classifiers are presented in the next chapter.   

2.3.1 Spectral Angle Mapper 

The Spectral Angle Mapper maps the spectral similarity of image spectra to reference 

spectra using data which were corrected from radiance to apparent reflectance, thus 

correcting for atmospheric effects. The spectral similarity is determined by calculating 

the spectral angle between the reference spectra and each image spectra. Thereby, the 

spectra are treated as vectors in n-dimensional space (n is given by the number of 

bands). The smallest angle to a reference spectrum denotes the class that this image 

spectrum is assigned to.  

The advantage of this method is that it is considered as being insensitive to different 

illumination conditions of an object or albedo effects (Kruse, et al., 1993). These effects 

are e.g. caused by shade or inclined roofs. All possible illumination conditions are 

treated equally. Darker, poorly illuminated pixels will be situated closer to the origin 

(shorter vectors) than well illuminated pixels in the image (longer vectors). But the 

angle distance to the vector of the reference spectrum will stay the same. This means 

that the same material under different illumination conditions will most likely be 

classified in the same class. 

Figure 10 gives a 2-dimensional example with one reference spectrum and one 

unknown image spectrum. Each spectrum is represented as a point in this 2-D 
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scatterplot. The lines connecting each point with the origin are the vectors. Only the 

angle � between the two vectors is considered for the assignment, not the length of the 

vectors. The smaller the angle, the better it matches the reference spectrum. 

 
Figure 10: Plot of a reference spectrum and test spectrum for a two-

band image (source: Kruse, et al., 2003, p.157). 

 

The similarity of an image test spectrum t to a reference spectrum r is determined by 

     (4) 

which can also be written as 

    (5) 

with nb being the number of bands (Kruse et al. 1993). 

 

2.3.2 Support Vector Machines 

Support Vector Machines (SVM) are derived from the field of machine learning theory 

and are a set of algorithms. They have already been successfully applied by several 

authors like Huang, et al., (2002) and Waske et al. (2009). It is a relatively recent 

classifier although already introduced in the early 1970s (Mather & Tso, 2009). 

SVM is a non-parametric classifier which does not assume certain statistical class 

distributions and is therefore well suited for the high-dimensional hyperspectral dataset. 
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Additionally, SVM classifiers have been shown to be robust with small training areas 

sizes (Melgani & Bruzzone, 2004; Pal & Mather, 2006; Foody & Mathur, 2004). 

SVM separates two classes by fitting an optimal separating plane (hyperplane) to 

training data in an n-dimensional feature space. SVM does not use all the training data 

pixels to find the hyperplane, but only the pixels of a class which lie closest to the pixels 

of the other class. These are the support vectors. If classes are not linearly separable, the 

input data are mapped to a higher dimensional space by a kernel function. This enables 

the fitting of a linear hyperplane and thus the separability of the classes. In the 

following paragraphs, the SVM concept is explained. This is only a concise explanation 

of the primary concept of SVM. If not otherwise stated the definitions were derived 

from Mather & Tso (2009), Pal & Mather (2004) and Bennett & Campbell (2000). For 

more detailed information, especially the mathemical side of SVM, refer to Burges 

(1998) and Ivanciuc (2007). 

The linearly separable case 

For two classes, the SVM will locate a separating hyperplane maximising the distance 

from each class to the hyperplane. The data points that are closest to the plane, are used 

to measure the distance. They are called support vectors. The number of support vectors 

is therefore relatively small as they are only the points close to the boundary.  

If there are two linearly separable classes, the training data with n number of samples is 

represented by {xi , yi }, i = 1....,n 

where x � Rn (n-dimensional vector) and y � {-1,+1} (class label). 

xi is the observed feature in a d-dimensional space and yi the label for training case i 

The label is therfore either class 1 (-1) or class 2 (+1). 

The classes are said to be linearly separable if a vector w and a scalar b can be defined.  

This gives: 

w � xi + b � +1   for all y = +1    (6) 

w � xi + b � -1  for all y = -1   (7) 

The two equations can be combined to  

yi(w � xi + b) -1 � 0     (8) 
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The aim is to search for an optimal hyperplane which divides the data into two classes 

in such a way that all the points with the same label are on the same side of the plane 

(see Figure 11). The distance of the closest points to the plane in each class should be as 

large as possible. If such a hyperplane is found, the classes are linearly separable. 

However, theoretically many planes like this can exists. Therefore, the optimal 

hyperplane is searched which is the one which leaves a margin as large as possible 

between the classes. To find the plane furthest away from the set of points, the margin 

between the support planes for each class can be maximised. This means that the margin 

between the two planes is � = 2 / ||w||
2
. Maximising the margin is equal to minimising  

       (9)   

The minimisation procedure uses Lagrange multiplies and quadratic programming 

optimisation methods. For an explanation of this please refer to the literature mentioned 

at the beginning of this chapter. 

If singular data points that belong to one class of the training data (i.e. class +1) is 

located amongst the data cloud of the other class (i.e. class -1), then this is “a non-

separable case”. To solve this problem, a slack variable �i , i = 1....n is introduced into 

the equation, this means the distance to the “correct” side of the classification (soft-

margin C-SVM approach). Any point falling on the wrong side of the hyperplane is 

considered an error (see Figure 12). Erroneous classifications of the training data are 

allowed but are punished with the slack variable �i. The influence of any single point is 

thus lessened. The slack variable has the value 0 for correct classifications and > 0 for 

wrongly assigned points.  

The goal is to maximise the margin while minimising the error. Therefore, a penalty 

parameter C is introduced. It is a weight for the amount of errors. If the parameter C is 

large, then less errors are tolerated and the margin is small, whereas a small value for C 

allows more errors and permits a larger margin. C therefore is a trade-off between 

maximising the margin and penalising the training errors (Janz, et al., 2007). 
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This changes the equation in (9) to: 

   (10) 

subject to yi(w � xi + b) -1 + 	 i � 0 

	 � 0 	 = 1…..,n   

 

 

Figure 11: The classification 

hyperplane  

It defines one region for class +1 

and  one region for class -1. 

(Source: modified after Ivanciuc 

2007, p. 304) 

 
Figure 12: Classification of the non-separable case.  

The support vectors are marked in red circles (source: 

modified after Plaza, et al. 2009, p. S112) 

Non-linear separable case 

If a hyperplane cannot be defined by linear equations, the method can be extended to 

also solve non-linear cases. This is done by mapping the training dataset to a higher 

dimensional feature space. The data is transformed to a higher dimensional space in 

such a way that makes it possible to find a linear hyperplane.  

X is mapped into feature space A(x) 

A(x): R
u1

 � R 
u2

 

where R
u1

 is the original feature space and R
u2

 is the higher feature space. 
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In the higher dimensional feature space, the separating hyperplane between the classes 

can be found. As the computation of the function A(x) is computationally very 

demanding, SVM uses kernels: for certain mappings of A, the inner product of the 

mapped points can be evaluated by using a kernel function K: 

A (xi) �  A(xj) = K (xi,xj)     (11) 

Different functions of kernels are available from which a user can choose, e.g. Linear 

Kernel, Polynomial Kernel, Radial Basis Function Kernel (RBF) and Sigmoid Kernel. 

The RBF kernel is used in this study because it is implemented in imageSVM which is 

used for the SVM classification. For an explanation of the kernels, please refer to 

Ivanciuc (2007). 

The workflow for the non-linear separable case therefore looks like this:  

a) Transformation of the training data set in n-dimensional space (enlargement of 

dimensionality) 

b) Calculation of the linear hyperplane  

c) Back-transformation to original feature space 

Parameter determination 

As can be seen from the explanation so far, the main challenge of SVM is to select 

suitable parameters which train the SVM well so that classification accuracy is high. 

Cross-validation is used to find the optimal parameters for every training step during a 

parameter search. The workflow is such that the training data are divided into a user-

defined number of subsets. If a 5-fold cross-validation is chosen, then the data are 

divided into 5 subsets of equal size. 4 subsets are trained, the 5
th

 is classified. This is 

done 5 times until every subset has once been classified. As a result, the cross-

validation probability “CV” is returned (the percentage of training samples that are 

correctly classified).  

For the SVM classification with the RBF-kernel, there are two parameters to be 

searched: � and C. A grid search is done to determine the possible parameter pairs of � 

and C values and test it. The parameter pair that produces the best cross-validation 

accuracy, is then selected for classification. 
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Multiclass classification 

So far, only the two-class problem has been addressed. In remote sensing, however, 

there are usually multiclass-problems to be solved because more than just two classes 

exist in the image that is to be classified. The solution for the SVM is to train a series of 

SVMs. There are several options:  

a) one against the rest: if there are n classes, n SVMs need to be trained. The whole 

trainings dataset is used for this (one class being tested against the rest) and each 

pixel either labeled +1 or -1 (depending on whether it is assigned to the searched 

class +1 or not) 

b) one against one: this is a pairwise comparison: For every pair of possible classes 

one SVM is trained. If there are n classes this would result in n (n-1)/2 runs. 

After every run, it is memorised in which class this pixel would fall. Every pixel 

is then assigned to that class in which is was assigned most often leaving no 

unclassified pixels.  

The option “one against one” is implemented in the software package imageSVM and 

therefore used in this study. 
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3 Methodology 

The chapter describes the methods used for this study to prepare and derive the 

classification results, including the description of the study area and data basis. Next, 

the setup of the reference dataset is explained. In the last part of this chapter the study 

workflow is described, from the preprocessing of the datasets to the classifications 

themselves and the validation concept of the results. 

3.1  Study Area 

The study area is situated in the city of Karlsruhe, in South-West Germany (49° 0' 37" 

N, 8° 24' 17" E). Karlsruhe was planned and built in the 18th century as an absolutist 

city with the palace in the centre. From the palace, streets are running away radially. 

The study area is the main campus of the KIT (Karlruhe Institute of Technology) which 

is situated to the East of the the palace and to the North of the city centre. To the South 

and East, the campus is framed by residential buildings in block development. The 

study area is approximately 1 km x 0.6 km in size and comprises the main campus area 

including neighbouring residential building blocks (see Figure 13  ).  

 

Figure 13: HyMap true colour composite of the study area and its location in Karlsruhe 

 

Buildings on the campus show a mixture of different roof materials of various ages and 

conditions, as well as different roof types, ranging from residential-like houses with 

inclined tile and slate roofs to flat-roofed buildings with gravel or stone plate cover, and 

industrial-like buildings with different metal roofs. The buildings on the campus area 
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are usually larger than residential buildings. This is advantageous as the HyMap data 

have a geometric resolution of 4m. The larger the roof, the more pure “roof”-pixels are 

to be expected. Therefore, the size of the roofs together with the variety of roof 

materials in a relatively confined space, as well as the accessability of some roofs make 

it thus an ideal study area.  

3.2 Data basis 

The material mapping of roofs was done on the basis of a hyperspectral dataset from the 

HyMap sensor. Additional data in the form of a binary roof mask and a dataset with 

roof inclination from a laserscanning dataset was incorporated in the processing. For the 

identification of training areas, aerial imagery of the main campus area was available. 

The datasets are described in detail below. 

3.2.1 The HyMap sensor 

The hyperspectral data used for this study was acquired in July 2003 with the HyMap 

sensor during the HyEurope campaign organized by the DLR (German Aerospace 

Center). 

The HyMap sensor (Hyperspectral Mapper) is an airborne spectrometer which has been 

developed by Integrated Spectronics, Baulkham Hills, Australia, for commercial use 

around the world. It consists of 128 bands in a nearly contiguous wavelength spectrum 

from 0.44 µm to 2.5 µm. The sensor shows a good signal to noise ratio (> 500:1) and 

image quality which is why it is used in many different types of applications like 

geological and mineralogical mapping and environmental studies (Cocks, et al., 1998; 

Hyvista, 2011). 

It is an optomechanical system with a rotating mirror recording the reflected radiation in 

512 lines. The reflected radiation is recorded in 4 detectors at different wavelength 

ranges. For later correction, the yaw, pitch and roll effects of the plane are recorded and 

the integrated GPS (Global Positioning System) allows for the correction of image 

distortions (Cocks, et al., 1998). The system parameters are listed in Table 2. Table 3 

describes the the spectral configuration of the HyMap sensor. 
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 The dataset of this study was acquired on July 19, 2003, at  09.03 CEST (Central 

European Summer Time) with a solar zenith angle of 41.1° and a solar azimuth angle of 

119.6°. The spatial resolution which was achieved with a flight altitude of 2017 m, was 

4 m x 4 m (see Table 4). Pre-processing of the dataset was done at the DLR including 

the atmospheric correction and geocorrection of the dataset. For the atmospheric 

correction the algorithm ATCOR4 was used. 

 Table 2: System parameters of HyMap (source: HyVista, 2011) 

Platform airborne 

Sensor type Opto-mechanical 

FOV (Field of View) 61.3 ° (512 pixel) 

IFOV (instantaneous FOV) 2.5 mrad along track 

2.0 mrad actross track 

GIFOV (ground instantaneous FOV) 3 – 10 m 

Number of bands 128 

Radiometric resolution 16bit 
  

 Table 3: Spectral configuration of HyMap (source: HyVista, 2011) 

Modules Spectral range  

(µm) 

Average spectral 

sampling interval 

Number 

of bands 

VIS 0.45 – 0.89  15 nm 32 

NIR 0.89 – 1.35 15 nm 32 

SWIR1 1.40 – 1.80  13 nm 32 

SWIR2 1.95 – 2.48 17 nm 32 
  

 Table 4: Acquisition information of the HyMap scene 

Acquisition date 19.07.2003 

Acquisition time 09:03 am CEST 

Average flight altitude 2017 m  

Latitude  49°0’02’’ N 

Longitude 8°39’59’’ E 

Solar zenith angle 41.1° 

Solar azimuth 119.6° 

Spatial resolution 4m x 4m 

 

For the geocorrection, a digital surface model (DSM) from the laserscanning dataset 

provided by the IPF was used. Further information on the DSM can be found in chapter 

3.2.2. The data were also converted from radiance to apparent reflectance. During pre-

processing, 2 bands where removed from the dataset  resulting in 126 final bands.  
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3.2.2 Laserscanning data 

Information on roofs and the slope of the roofs was available from the IPF in the form 

of a roof mask from a laserscanning DSM (Digital Surface Model) and a dataset with 

slope information in percent per pixel. In the following, a general introduction to the 

underlying laserscanning dataset is given and the two images derived from this dataset 

are presented.   

Laserscanning is a remote sensing method where an object is recorded from pointwise 

distance measurements. It is an active method where laser pulses with a specific 

wavelength are emitted from the system and the reflectad signal is recorded. 

Laserscanning sensors are mounted on aircrafts or helicopters. The emitted laser pulse 

forms a footprint on the ground shaped like an ellipse. This footprint is the unit area 

from which the reflected signal is recorded. The first pulse only records the uppermost 

parts of an object, e.g. the top of a tree or the roof of a building. With the last pulse, 

only the lowest part of the footprint is observed, this is for example the ground below a 

tree if the signal was able to penetrate the leaf canopy (Vögtle & Steinle, 2005).  

The laserscanning data for the DSM used was acquired in March 2002 with the 

TopoSys II system. The opto-electronic laserscanning system is operated by TopoSys 

Company in Ravensburg, Germany. For the generation of the DSM at the IPF, first 

pulse and last pulse data were used. The data were acquired in a spectral range of 

1560nm. Conversion was done to 1m x 1m pixels instead of using the original point 

clouds to facilitate the use in different software packages (Lemp & Weidner, 2004). A 

binary building mask was then derived from the DSM that discriminates between 

buildings and ground. A second dataset with the inclination of the roofs in percent per 

pixel was also calculated and available for this study.  

3.2.3 Aerial imagery 

Aerial imagery was acquired during a survey flight for the VLW (Amt für Vermessung, 

Liegenschaften, Wohnen) Karlsruhe in spring 2001 with an analogous standard aerial 

camera, a Zeiss RMK Top 15. The main campus area is covered by two aerial 

photographs. They have a scale of 1:4000 (see also Table 5).   Figure 14 gives a detail 

of the aerial photograph. 
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Table 5: Acquisition information for the aerial imagery 

 

Camera Zeiss RMK Top 15 

Acquisition data 01.04.2001 

Acquisition time 11.50 am - 1:30 pm CEST 

Altitude 2400 ft above sea level 

Scale 1:4000  

 
 

Figure 14: Detail from aerial photo.  

The image detail has about the size of 

180 m x 180 m. 

 

3.3 Reference data 

Reference data were acquired for several reasons. First of all, to gain knowledge about 

the roof surface materials present in the image and to be able to choose correct and 

representative training areas. Secondly, reference data are needed for the accuracy 

assessment of the classification results.  

For this study, a vector reference dataset of the campus roof materials was created. The 

roof materials were determined by interpretation of aerial images, as well as by visual 

inspection and ground truth during several field checks. Additionally, a cross-check 

with the literature was made by comparing spectral reflectance curves of roof materials 

described in the literature with the reflectance curves of the roof materials in the study 

area. In the next chapter, the roof materials in the image and their spectral 

characteristics are described. This is followed by the acutal set-up of the reference 

dataset in ArcGIS 9.3. 

3.3.1 Spectral characteristics of the roof materials 

In general, the reflectance of an object is related to its physical condition (e.g. particle 

size) and its chemical composition. Some materials therefore show distinct absorption 

bands in their spectra. These are caused by electronic and vibrational processes occuring  

due to interaction with the solar photons. Electronic processes are mostly responsible 

for absorption in the VIS and NIR region and vibrational processes between the 
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molecules or in the crystal lattice for absorption mainly in the SWIR (Clark 1999; Hunt, 

1977).  

In the study area, 11 different roof classes were distinguished. These are: red roofing 

tiles, slate, stone slab, gravel, bitumen, aluminium, copper, zinc, vegetation and two 

different metals (metal 1 and 2). For these two metals, the material could not be 

determined but as they are spectrally unique, they were included as separate classes in 

the reference dataset.  Figure 15 shows representative spectral curves for all classes.  

  

 

 

Figure 15: Roof spectra in the study area 

 

The signature of red roofing tiles shows several absorption features in the wavelength 

of 0.52µm, 0.67µm and 0.87µm. The absorption feature at 0.87µm is particularly 

strong, the other two absorption bands are smaller. The general shape of the curve 

shows an ascent to NIR and SWIR, with maximum reflectance (around 60%) in SWIR. 

Tiles contain clay minerals, quartz and ferric oxide. The iron-bearing minerals like 

Fe2O3 are the cause for the absorption bands. During production, tiles are fired a process 

which leads to an increase in reflectance (Heiden et al, 2001).  



3 Methodology  30 

 

 

Gravel and stone slab roofs have very similar spectral signatures dominated by their 

mineral ocomposition. They show no deep, distinct absorption features in their spectral 

curves and have rather low reflectance.  The reflectance of stone slab lies in the range of 

5-25%, the reflectance of gravel being in the same range. The spectral curve, in general, 

is ascending from the visible to the near-infrared part of the spectrum before descending 

again. Absorption bands in the SWIR at 2.2µm and 2.35µm from silicates and hydro-

carbonates (Herold, et al., 2004). There are small absorption bands in the VIS and NIR 

which can be attributed to iron oxides.  

Bitumen has the lowest reflectance of the represented classes. The reflectance ranges 

between 10-15%. There are no distinct absorption features, only some small absorption 

bands in the SWIR above 2µm which can be attributed to hydrocarbons (Cloutis, 1989). 

In the image, bitumen shows slightly different reflectance in the VIS due to different 

materials that are included on the bitumen felt like sand or crushed slate. 

Slate does not show any distinct absorption features and its reflectance ranges lies 

between 10-20%. Like bitumen, gravel and stone slab it also shows a reflectance curve 

that ascends to about 1.6µm and descends again. 

Most metal roofs in the image are made of aluminium. It is generally characterized by 

high reflectance of more than 50%. It has a small peak in the visible at 0.67µm and a 

characteristic absorption band at 0.84µm. Other small absorption bands can be seen at 

0.57µm and 0.63µm. The reflectance ascends to the NIR and SWIR where it shows a 

peak. 

Zinc has its reflectance peak in the VIS at 0.52µm. It produces a slowly descending 

curve to a distinct absorption feature at 1.02µm. Generally, the reflectance is highest in 

the SWIR. Zinc has a general low reflectance ranging beetween 8-20%. From official 

sources like the building department of the KIT, it could not be determined with 

certainty what certain metal roofs actually consisted of. Therefore, reflectance curves of 

the metal buildings were gathered and compared to reflectance curves of spectral 

libraries (Heiden, et al., 2007, Baldridge, et al., 2008). This showed that the metal roofs 

with the absorption feature at 1.02µm was zinc, the one with the absorption feature at 

0.84µm was aluminium. The roofs in the reference dataset were labelled according to 

these findings.  
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Copper has a very distinct peak of reflectance in the VIS at 0.55µm. This means that 

the material has already oxidised. Copper without patina has its peak in the orange and 

red part of the electromagnetic spectrum. There is a steep descent of reflectance to a 

broad absorption band around 0.73µm before the reflectance ascends again towards the 

SWIR. Copper shows medium brightness with reflectance between 10-30%. 

As mentioned at the beginning of this chapter, there were two metal roof whose material 

could not be determined with certainty. In this study they are therefore called “metal 1” 

and “metal 2”. Metal 1 shows a distinct absorption feature at 0.57µm, a smaller one at 

0.85µm and in the SWIR at 2.27µm, as well as a peak in the visible at 0.57µm. The 

general reflectance curve after the first absorptin band is rather flat with a constant 

reflectance range.  

Metal 2 has a peak at nearly the same location, at 0.52µm, but displays an absorption 

band at 0.66µm and 0.84µm in addition to another one between 1.14µm and 1.2µm 

there is another small absorption band. The shape of the curve is falling. 

Vegetation in this context are trees in the vicinity of buildings, partly obscuring the 

roofs (because not all trees could be removed from the roof mask, see chapter 3.4.1) or 

green roofs. The reflectance of vegetation shows a peak in the visible at 0.55µm due to 

chlorphyll which absorbs radiation strongly in the blue and red part of the 

electromagnetic spectrum but not so much in the green part. There is a very steep ascent 

of reflectance to the NIR (the so-called “red-edge”. The high reflectance in the NIR is 

due to multiple scattering of the reflexion in the interior of the plant (Albertz, 2009).  

3.3.2 Development of the reference dataset 

Because the roof materials in the campus area could be well determined, it was decided 

to use the full information available, i.e. nearly all roofs on the campus, instead only of 

few random control areas. 

For the creation of the reference dataset, the ArcGIS 9.3.1 software was used. The 

binary building mask, mentioned in chapter 0, was vectorised. Some buildings were 

geometrically edited to include borders between roof materials. Afterwards, the class 

labels were added in form of attributes to the dataset. The HyMap dataset and the aerial 

imagery were used as reference for this task.  
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Figure 16 shows the HyMap dataset and the reference dataset overlain. The reference 

dataset is displayed in yellow. It can be seen that some buildings or parts of building 

were excluded from the dataset: it only contains buildings which belong to the main 

campus area where the material could be clearly identified. The residential buildings in 

the lower left corner of the figure, to the Southwest and South of the campus, were not 

included. For some buildings, it could not be determined with certainty which roof 

materials they were covered with. Therefore, these buildings or parts of buildings were 

left out of the reference dataset. Among these were two buildings with a partial saw-

tooth roof (i.e. flat roof with superimposed pitched roofs) covered by a mixture of a 

corrugated steel roof and glass, a small building mostly covered by overhanging trees 

and a building site (a future auditorium). The reference dataset finally consisted of 60 

buildings and building complexes. 

For some buildings, the roof mask derived from laserscanning data does not delineate 

the roofs precisely. Occasionally, parts of buildings like terraces, courtyards or 

marquees are also included in the roof mask because they are raised. For the reference 

datasets these parts of a building were also excluded. The resulting dataset with roof 

materials is shown in Figure 17 . 

 
Figure 16: Reference dataset (yellow) with hyperspectral colour composite image in the 

background 
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Figure 17: Vector reference dataset with roof surface materials 

 

3.4 Workflow of processing steps 

3.4.1 Preparation of data 

In this chapter the general workflow of the study will be explained starting with the first 

processing steps, to the selection of the training and control areas for the classification 

and finally the different classification methods.  

For several reasons, the main campus area was chosen as study area: first of all, many  

different roofing materials can be found on the campus ground, ranging from typical 

housing roofs like slate and red tile to different metal roofs which are typical for 

industrial buildings. This provides an overview of the kinds of roofing materials that 

can be found in the city of Karlsruhe and other cities in the South of Germany. 

Secondly, it is advantageous that the roofs are relatively large and thus facilitate 

classification as less mixed pixels are to be expected.  
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Removal of “bad bands” 

As a first step in the preparation of the HyMap data, thee dataset was investigated for 

bands with a high level of noise in the signal (so called “bad bands”). Signal refers to 

the information content that is received at the sensor, noise means variations in the 

signal that are not related to image brightness. It occurrs due to variations in the 

performance of the system (Mather, 1996; Campbell, 1996). Ideally, after radiometric 

correction (calibration and atmospheric correction), the reflectance values represent 

only the signal on the ground. However, a certain level of noise may remain in the 

signal which cannot be removed by radiometric correction. If noise is high, relative to 

the signal, the image band does not reliably represent the feature of interest.  

The 126 bands of the dataset were therefore investigated for their signal-to-noise ratio 

(SNR) to be able to remove bands with low SNR. The homogeneous area method was 

used for this task (Smith & Curran, 1996). The SNR is derived from small regions in the 

image, which are assumed to be homogeneous, to estimate the noise. The idea behind 

this is that homogeneous regions in the image do not show variations in their signal. 

Thus, every variation in the signal can therefore be attributed to noise. The SNR is 

calculated by dividing the mean of the pixel responses in the region (= the signal) by the 

standard deviation of the pixel responses in the region (= noise) (Smith & Curran, 

1996). It can be written as 

      (12)   

where µ = average of the signal in an image region, B = standard deviation of the signal. 
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Figure 18: Signal-to-noise ratio of a patch of grass 
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Examplarily, the SNR of a grass patch (containing 37 pixels) is shown in Figure 18. 

There are two major drops of the SNR curve. This is the case in the range of band 63 to 

66 (at 1.419µm – 1.447 µm) and band 95 (at 1.951 µm). Additionally, band 1 (at 

0.438µm) also shows low SNR. This corresponds to the first or last bands of the sensor 

modules. As the SNR is lowest, these bands were excluded from the dataset so that 120 

bands remain out of 126. 

Masking of the HyMap dataset 

The study should not be undertaken on the full image size, therefore the image was 

clipped to the size of the study area. As explained in chapter 2.2 there are materials on 

the ground and on roofs that are spectrally similar like e.g. roofing bitumen and road 

asphalt. Therefore, the roof mask was applied to the hyperspectral dataset to exclude 

any objects that are not building roofs. The steps are explained in the following 

paragraphs. 

The building mask from the laserscanning data was clipped to an area of appr. 1000m x 

600 m, comprising the main campus area and surrounding buildings. This was also done 

for the original hyperspectral dataset (see Figure 19, the campus ground itself is marked 

in yellow). 

 

 

Figure 19: Hyperspectral dataset (band combination 15/9/3) with the main campus area marked in 

yellow (left). Enlarged detail (right) 

 

The initial roof mask was further processed to create the final roof mask with which the 

classifications should be undertaken. Figure 20 shows the orignal roof mask that was 

availabe. As there were still a lot of artifacts which were not roofs, e.g. trees or walls, 

these artifacts were eliminated from the dataset. The elimiation was done manually. To 
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receive information concerning vegetation (e.g. trees) was situated in the image which 

had to be removed, the NDVI (Normalized Difference Vegetation Index) was calculated 

from the clipped hyperspectral dataset and all pixel with NDVI > 0.5 were displayed. 

The NDVI is an indicator of live vegetation. It is calculated by dividing the difference 

of the reflectance in the NIR and red part of the electromagnetic spectrum by the sum of 

NIR and Red. The result is a number between -1.0 and +1.0, where +1 indicates 

vegetation presence. 

In Figure 21 the pixels with NDVI > 0.5 are marked in green. Especially at the left 

upper part of the image (palace gardens), trees can be seen. By comparison with the 

aerial image, the pixel with unwanted vegetation were subtracted from the roof mask. 

This step was done manually because possible vegetation on roofs should be kept in the 

final hyperspectral dataset. The resulting dataset of the final roof mask in displayed in 

Figure 22. Before the roof mask was applied to the hyperspectral dataset, the HyMap 

data were resampled from 4m x 4m to 1m x 1m using nearest-neighbour interpolation to 

 

  

Figure 20: Initial binary building mask 

including non-building objects 

Figure 21: Hyperspectral dataset with pixel 

NDVI > 0.5 marked in green.  

 

Figure 22: Final roof mask  
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have the same pixel size as the laserscanning dataset from which the roof mask was 

derived. Tests had already been undertaken at the IPF on the effects of different 

interpolation concluded that no significant differences between the datasets with 

bilinear, cubic and nearest-neighbour interpolation were found and thus used nearest-

neighbour interpolation. Therefore, this approach was used in this study as well.  

Before the roof mask was applied to the hyperspectral dataset, the HyMap data were 

resampled from 4m x 4m to 1m x 1m using nearest-neighbour interpolation to have the 

same pixel size as the laserscanning dataset from which the roof mask was derived. 

Tests had already been undertaken at the IPF on the effects of different interpolation 

methods using the same hyperspectral dataset (Lemp & Weidner, 2004). They 

concluded that no significant differences  between the datasets with bilinear, cubic and 

nearest-neighbour interpolation were found and thus used nearest-neighbour 

interpolation. Therefore, this approach was used in this study as well.  

Finally, the roof mask was applied to the hyperspectral dataset and the HyMap dataset 

clipped to yield the final dataset with which the classification methods were processed 

(see Figure 23).  

Figure 23: Final hyperspectral dataset with roof mask applied (hyperspectral band combination 

15/9/3).  
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Processing of roof slope masks 

As has already been stated in chapter 1, one expectation is that the classification of the 

hyperspectral dataset is improved by integration of roof slope information in the 

classification. Therefore, two masks of flat roofs and inclined roofs were created. As 

described in chapter 0, a dataset with the roof inclination in percent per pixel was 

available from the IPF. A mask for flat roofs and one for inclined roofs was derived 

from this dataset. The workflow is explained in the following paragraphs. 

What is actually termed a flat roof and what an inclined roof? What is the threshold that 

discriminates them? According to the norm DIN 18531 (DIN, 2008), roof slope is 

defined as the incline of the pane of a roof against the horizonal.  It is measured in 

percent % or in degree ° (defined as the angle between the pane of a roof and the 

horizontal). Different definitions exist for the maximum angle for flat roofs. For the 

construction of roof sealings, the DIN 18531 (DIN, 2008) distinguishes two groups of 

flat roofs: group I of up to 5° of incline, group II beetween 5-9° of incline. Another 

definition takes the incline into account for which it is possible to tile a roof. Flat roofs 

cannot technically be covered with an imbricated covering like tiles. The lowest 

achievable incline with roof tiles is 11° (Wormuth, et al., 2007; Grütze, 2007). As the 

main task of the slope mask is to differentiate between inclined red roofing tiles and 

slate roofs on one side and flat gravel, stone slab or bitumen roofs on the other side, the 

definition of the minium angle for inclined roofs was taken (that is 11°) as threshold, 

which means that angles of 10° or below define flat roofs in this study.   

The available slope dataset gives the incline in percent. 10° of incline correspond to 

17,63 %. Thus, all pixels below this threshold are labelled as “flat”, all pixels above as 

“inclined.  Figure 24 shows the resulting map of flat and inclined roofs in the study 

area. 
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Figure 24: classified map of flat and inclined roofs  

 

 

  

Mask of flat roofs. Flat roofs displayed 

in black 

Mask of inclined roofs. Inclined roofs 

displayed in black. 

Figure 25: Final masks of flat and inclined roofs 

To create the final masks used in the classifications, the pixels of flat roofs were clipped 

with the building mask containing only buildings in the study area (as was described 

above, non-buildings had been manually removed). The same was done for pixels of 

inclined roofs. The resulting masks can be seen in Figure 25. 
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3.4.2 Selection of training areas 

Training areas are groups of pixels or material spectra that are used as representative 

classes in classifications which are used to train the classifier.  The selection of the 

training areas for this study was done user-defined from the hyperspectral image with 

the building mask. Generally, care was taken to select training areas which are 

representative for the study area and as homogeneous as possible.  

It was determined from the reference dataset that the following roof materials are 

present in the image: red roofing brick tiles, slate, stoneplate, gravel, bitumen, 

aluminium, copper, zinc, vegetation and two different metals (metal 1 and 2) for which 

no name of the material could be determined but which are spectrally unique.  

The training areas were manually selected in the software ENVI 4.7. ENVI lets the user 

specify the training areas in form of regions of interest (ROI). These ROIs can then be 

converted to spectral libraries. For each material at least one ROI in the form of 

rectangular polygons with several pixels was defined. Some materials required the 

definition of a second or third ROI due to their variations in colour, age and 

illumination. With the ROIs, it was tried to represent the different characteristics of the 

materials. For example for red roofing tiles, three ROIs were selected, each representing 

a different characteristic of the material: bright red tiles, relatively young; older, more 

weathered red tiles and dark red tiles. Attention was given to select the ROIs as 

homogeneous as possible, meaning that they should not include other roof structures 

like chimneys, roof windows and different materials. However, because of the original 

spatial resolution of the hyperspectral data of 4 m and because of the nature of the roofs, 

most of the ROIs contain boundaries and thus mixed pixels. Therefore, in reality the 

ROIs contain a mixture of purer pixels, which most purely represent the roof materials, 

and of mixed pixels. Figure 26 shows the ROIs for the different roof materials in the 

image. Table 6 gives an overview of the ROIs in numerical form. 

From the ROIs, a spectral library of roof materials was compiled containting the mean 

of the spectra of the ROIs for every class. The result are 20 classes for the study area 

which represent 11 roof materials. Figure 27 displays the resulting spectral curves of the 

training areas. 
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Figure 26: Location of training areas of the roof materials  

 
Table 6: Characteristics of the training areas 

Roofing material ROI Number of 

pixels 

slate  70 slate  

slate bright 75 

red tile bright 52 

red tile weathered 62 

roofing tile 

red tile dark 55 

stone slab 1 63 stone slab 

stone slab 2 56 

gravel 1 64 

mineral 

gravel 

gravel 2 72 

zinc 1 77 zinc 

zinc 2 39 

aluminium  63 aluminium 

aluminium bright 60 

copper bright 63 copper 

copper dark 68 

metal 1 metal 1 68 

metals 

metal 2 metal 2 65 

bitumen 1 72 organic roofing felt 

(bitumen) bitumen 2 75 

vegetation vegetation vegetation 28 
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Figure 27: Spectral reflectance curves of all training areas (mean of the pixel values per area) 

 

The spectral library was used as input of the training vectors to the SAM classification. 

For the SVM classifier, a class image is required as input for the training classes. A 

class image is an ENVI classification image where ROIs were converted (ITT VIS, 

2009). 

3.4.3 Workflow of image classification 

Pixel-based classification was performed using Spectral Angle Mapper and Support 

Vector Machines. The theory of the classification algorithms was already explained in 

chapter 2.3. The detailed analysis of the classification results including parameter search 

for the classifiers will be described in the next chapter (chapter 4 - Results). The 

following paragraphs list the steps performed to obtain the classification results.  

Spectral Angle Mapper 

The Spectral Angle Mapper classifier of the software ENVI 4.7 was used for 

classification. For the determination of the spectral similarity between a training 

spectrum and an image spectrum, a maximum angle threshold in radians can be entered. 

This angle is the maximum acceptable angle between a training vector and the pixel 
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vector. Pixels with an angle larger than the specified maximum angle threshold are not 

classified (unclassified pixels) (ITT VIS, 2009).  

Several options for using the maximum angle threshold are available in ENVI: the user 

can determine one angle threshold for all classes. The second option is to define an 

angle for each class, thereby being able to assign different thresholds for different 

classes. The output of the SAM classification is the classified image and a set of rule 

images. Rule images represent the spectral angle in radians between each training 

spectrum and each image pixel (ITT VIS, 2009). One rule image is delivered for each 

training class. The lower the spectral angles in the rule image, the better the match is to 

the training spectra. The rule images were used in return to improve the training areas. 

To determine the final training classes which proofed to classify the image best, an 

iteration of classification and improvement of the training areas was done. 

With the final training area, the classifications of the HyMap data were performed. To 

find the best angle threshold, classifications with several angle thresholds were tested.  

After each classification, the 20 classes were condensed to the final 11 classes. No 

further post-classification was done. A flowchart of the processing steps can be found in 

Figure 28. 

 

Figure 28: Flowchart of SAM classification  

Support Vector Machine 

For the Support Vector Machine classifier, the tool imageSVM, a non-commercial 

product from the Geometics Lab of the Humboldt-Universität zu Berlin, was used (van 

der Linden, et al., 2009). imageSVM is a tool for the support vector machine 

classification programmed in IDL. It can therefore be incorporated in the ENVI/IDL 

environment. For the training of the SVM, imageSVM uses LIBSVM by Chih-Chung 



3 Methodology  44 

 

 

Chang and Chih-Jen Lin. LIBSVM is an open-source tool for support vector 

classification, regression and distribution. For an introduction on LIBSVM see Chang & 

Lin (2011). 

SVM is also integrated in the software ENVI itself as one of several other classification 

tools. However, after an analysis of the possibilities of choosing the parameters for 

classification, it became apparent that the parameters in ENVI can only be entered user-

defined without any knowledge if these are actually the best parameters for the 

classification. The search of the optimal parameters would therefore be more trial and 

error. In imageSVM however, the parameters can be searched using cross-validation, 

thereby providing a high probability of finding the best possible parameters for the 

support vector classifier. 

To be able to compare the performance of the SVM and SAM classifier, the same 

training areas were used for both classifiers.   

ImageSMV uses a two-step approach whereby the classifier is parameterised first. The 

parameters are then used for the classification. But before the parameter search can be 

done, the hyperspectral dataset needs to be scaled first. The scaling is necessary to 

provide suitable values for the parameterisation of the classifier. The pixel values in the 

image are scaled between 0 and 1. Several options for scaling are available. For this 

study, the linear scaling was chosen based on the statistics of all bands. This option is 

also the recommended one for  single spectal datasets (van der Linden, et al., 2009). The 

other option is to scale each band based on individual band statistics.  

Next, the support vector classifier needs to be parameterised. imageSVM uses the 

Gaussian radial basis function kernel (RBF kernel). The user needs to specify a kernel 

parameter g (=�) (this controls the width of the kernel) and the regularization parameter 

C. The ideal parameters g and C for a classification depend on class distribution in 

feature space and the data range, and is different from one dataset to the other. The 

software provides the possibility to enter ranges of parameters and to test pairs of g and 

C to find the parameters with the best performance using a grid search (cross-

validation). As was described in chapter 2.3.2, this is a common strategy for testing the 

best values for the two parameters. For the cross-validation, a standard and advanced 

option can be chosen. The classification was done for both options. In the advanced 
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option the user enters the range of the cross-validation search, as well as the number of 

folds. The classification for this study was done with different parameters and these 

results were then compared. A flowchart in Figure 29 shows the steps of the workflow. 

 

Figure 29: Flowchart of SVM classification.  

Incorporation of slope into classification 

As the question should be answered if the incorporation of slope information in the 

classification improves the classification result and thus proves useful for the 

classification of roof materials, both classifiers were tested by adding slope information 

to the classification. As the slope dataset and hyperspectral dataset have a different 

value range, the classification was done with a two-step approach, using the binary roof 

masks (flat and inclined) described in chapter 3.4.1. 

Figure 30 displays the workflow: The hyperspectral dataset was clipped with the flat 

roof mask and with the inclined roof mask resulting in two input datasets for the SAM 

and SVM classifier. Next, the training data was divided up into materials for inclined 

roofs (slate and tiles) and materials for flat roofs (stone slab, gravel and bitumen). Some 

materials are not restricted to flat or inclined roofs and are therefore included in both 

training area datasets. These were all metal roofs and vegetation. The reason for 

vegetation to be included for flat and inclinded roofs is, that in the case of trees still 

inside the mask area, it can not be determined whether the pixel would fall in the flat or 

inclined category. Green roofs are naturally only to be expected in the flat category. 

Finally, these two images were classified. To receive one final classification image, the 

two classification results with flat and inclined roofs need to be combined again. This 

was done using band math with the expression  (band 1 • 10) + (band 2 • 200) . The 
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constants were introduced to receive different class values for all classes and thus still 

being able to distinguish the sub-classes. This resulted in a grey scale image, not an 

image of type “classification” which is needed for further post-classification in ENVI. 

To obtain a classifiaciton image with the final class values (class values 1 to 11 

corresponding to the different materials) as is the case for the classification without 

inclination information, ROIs were therefore created containing all pixels of the same 

class value. These were then exported to a classimage und finally, the classes were 

combined again to contain the 11 classes of roof materials. The result is a classification 

image in which each roof pixel was classified with a training class corresponding to its 

inclination.  

 

Figure 30: Flowchart of classification workflow with roof inclination   

3.4.4 Validation concept  

Validation of the classification results is done in two ways: visually by comparing the 

different classification images and qualitatively by accuracy assessment. Below, a 

description of the accuracy assessment concept and workflow is given. The results are 

then analysed in chapter 4.  
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The goal of accuracy assessment is to assess the reliability of the results and to give 

information about the quality of the resulting roof material maps.  

In this study, the qualitative assessment of the classification results is done on the basis 

of the campus reference dataset described in chapter 3.3.2. A confusion matrix is 

calculated for every classification result. A confusion matrix is a table where reference 

data are related to the corresponding pixel value (thematic class) of the classified image.  

ArcGIS 9.3 is used for the comparison of the classification results and the reference 

dataset. Before the reference dataset can be used for accuracy assessment, however, the 

training areas need to be geometrically clipped from it. This is necessary because the 

areas that were used to train the classifier should not be used for testing the result. 

Training and testing on the same dataset would result in overestimation of the 

classification accuracy (Congalton, 1991). Figure 31 shows a detail of the reference 

dataset with the clipped regions of the training areas are.  

 

Figure 31: Detail of the reference dataset with the training areas clipped. 

 The clipped areas are marked with a black circle  

For the validation in ArcGIS, the classification results are exported from ENVI into the 

format ‘Geotiff’, to be able to be displayed in the GIS software. The classification 

results are then converted to points by the tool  ‘raster to point’: each cell in the input 

raster dataset is converted to a point in the output feature. The point is created in the 

centre of the cell it represents, with an attribute containing the pixel value, i.e. the 

thematic class (ESRI, 2009). Next, the resulting point features are geometrically 

intersected with the polygons of the reference dataset. The result is a point shapefile 
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which contains the features which overlap in both layers, including the attributes (i.e. 

classes) of both layers. This means that if the point centre of a pixel is inside a polygon 

of the reference dataset, then it is included in the accuracy assessment. A model for this 

workflow was created using the Model Builder in ArcGIS. The model is displayed in 

Figure 32. With this result, the class values of the classification result can be compared 

to the class values of the reference dataset. The data table of the resulting dataset is thus 

queried to fill the table of the confusion matrix in Excel.  

 

Figure 32: Model in ArcGIS for the calculation of the data basis for the confusion matrix  

The final result is a confusion matrix for each classification result. Several measures can 

be derived from a confusion matrix table which make a statement about the accuracy of 

the classified image. They are explained below (Congalton, 1991):  

The producer’s accuracy answers the question how well a certain class can be classified. 

The probability of a reference pixel being correctly classified can be derived from this 

percentage.  

Producer’s accuracy =  total number of correct pixels in a class                   

   total number of reference pixels of that class 

The result shows the proportion of pixels in reality which were classified as another 

class (error of omission). 

The probability that a pixel which was classified in the image actually represents that 

thematic class on the ground, is termed user’s acccuracy. It provides information on the 

reliability of a classification and is calculated in the following way: 

User’s accuracy =   total number of correct pixels in a class 

   total number of pixels classified in that class 
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This gives the error of comission, i.e. the proportion of pixels falsely assigned to 

another class.  

The overall accuracy of a classification can also be derived from the confusion matrix 

Showing the percentage of correctly classified pixels to the overall number of pixels.  

The Kappa coefficient is an additional measure of agreement describing the correlation 

between the classifcation result and the reference data with values between 0 (rarely 

below 0) (i.e. all agreement between the reference data and the classification result are 

by chance) and 1 (i.e. there are no chance agreements between the reference data and 

the classification result). It is calculated  

 (Congalton, 1991) (13) 

r  = number of rows in the matrix 

xii  = number of pixels in row i and column i 

xi+  = total of all pixels in a row (classification) 

x+i  = total of all pixels in a column (reference data) 

N  = total number of pixels in the matrix 

 

The fact has to be taken into consideration is, that when validating the classification 

results using reference data, it is assumed that the reference data are representative for 

the whole study area as well as being a correct and accurate representation of reality. 

This would mean that differences between reference data and classification result are 

errors in the classification result, not in the reference data. This might, however, not 

always be true, as the reference data might not be completely accurate (Congalton, 

1991, Foody, 2002). However, validation using reference data is well established 

(Foody, 2002) and is therefore also used for this study. 
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4 Results 

The classification results are analysed both visually and quantitatively with confusion 

matrices. First, the results of the classification without roof inclination are presented, 

followed by the classifications with roof inclination. The classified images of all 

reviewed results can be found in the Appendix A along with statistics (Appendix B) 

and confusion matrices (Appendix C). Where it is applicable for the analysis, some 

detail of the classification result will also be presented in the text.  

4.1 Classification results without roof inclination 

4.1.1 SAM  

Parameter search 

As described above, several classifications were tested using different angles of SAM. 

The angle is a threshold stating how many pixels stay unclassified (maximum 

acceptable angle between vectors). A classification with an angle 0.1 rad left more than 

25% of all pixels unclassified. An angle of 0.3 rad left only appr. 1.2% of pixels 

unclassified. However, these unclassified pixels concentrated on a few buildings 

meaning that some buildings were underrepresented. The angle of 0.5 rad proved best 

from a visual and statistical point of view with no pixels unclassified.  

Additionally, SAM was performed with different angles for each class. For determining 

the angles, the rule images were used and several different angles for each class were 

determined. Examplarily, the angles of one attempt are shown (Table 7). This 

classification for example showed an overclassification of vegetation and many 

pixellated roofs for aluminium and slate. 

However, the classification with different angles did not improve the accuracy but 

actually always showed overclassification of some material. Therefore, angle 0.5 rad 

was chosen for further analysis.  
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 Table 7 : Angles used in the SAM classification  

with detail from resulting classification. Classes are combined (legend Figure 33) 

class angle (in rad) class angle (in rad) 

stone slab 1 0,07 gravel 2 0,08 

stone slab 2 0,07 bitumen 1 0,11 

copper 1 0,16 metal 1 0,14 

copper 2 0,12 aluminium 1 0,16 

vegetation  0,6 aluminium 2 0,16 

slate 0,05 metal 2 0,19 

red tile bright 0,15 red tile dark 0,15 

red tile weathered 0,19 bitumen 2 0,15 

slate bright 0,1 zinc 1 0,2 

gravel 1 0,06 zinc 2 0,1 

 

 

The results with an angle of 0.1 and 0.3 rad and with different angles are not further 

explained here. All further discussion of results is done on the final angle of 0.5 rad. 

Analysis 

SAM is a pixel-based classifier. As can be expected, the classification result with an 

angle of 0.5 rad is pixellated. A clear difference can be seen in the classification 

between the larger campus roofs and the small residential roofs in the South and 

Southwest of the image. In general, the campus roofs are more homogeneously 

classified whereas the small roofs lead to a very blurred image. The visual observations 

are generally done on the campus roofs because for this part of the image, the reference 

dataset was created for, and the roof materials are therefore well known.  
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Tiled roofs are generally quite well classified, not only on the campus but also on 

residential buildings. However, some pixels at the border of the roof are classified as 

stone slab. As could be seen from the analysis of the reflectance curve of tiles (see 

chapter 3.3.1), typical absorption bands are shown, which leads to a good classification 

with SAM. Gravel and stone slab are often confused, meaning that visually there is a 

strong mix-up between gravel and stone slab. As their material composition is similar, 

thus are their reflectance curves (Figure 8b), which explains the strong mix-up. The 

general material on a gravel or stone slab roof, however, is recognized (Figure 33a). The 

largest amount of confounded gravel pixels is on the stone slab roofs. One major 

difficulty is the mapping of shadowed materials. Figure 33c shows a gravel roof which 

was well classified by SAM (see also Figure 7 as comparison). SAM is considered 

relatively insensitive to illumination effects, and thus proves strong in this point. The 

slate roofs are also not classified very well. In some parts, where the reflectance curves 

are similar across the roof, the classification is good. But on slate roofs, the different 

illumination has a strong effect. This can be seen in the upper left part of the image 

(roof of the Eastern wing of the palace), which is covered with slate. 

 

 

 

 

a) Stone slab roofs with 

erroneous gravel pixels (left), 

gravel roof with some stone slab 

pixels (right) 

b) Slate roof: the Northern 

roof area was classified as 

bitumen 

c) Shadowed areas on the gravel 

roof are classified well. Some 

patches of stone slab instead of 

gravel where the main part of 

the shadow lies.  

  

Please refer to this 

legend for all figures of 

classification maps 

which are to follow 

Figure 33: SAM classification examples (angle 0.5 rad) 
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With SAM, however, it is classified as gravel. Another example is the roof in Figure 

33b). The Southern part (brighter) is classified as slate, the northern part as bitumen. 

The reflectance curves of slate and bitumen are very similar (Figure 8f) and thus making 

the confusion of these materials more likely. Bitumen presents itself overmapped and 

turns up in small patches on many roofs. Vegetation is also recognized well, either for 

the remaining trees in the image as well as for some green roofs. 

Copper is classified very well, as is metal 1. Metal 2 is also well recognized on the 

relevant roofs, however, the saw-tooth roofs for which no training area was determined, 

are classified in this class. Therefore this class is overmapped.  

Aluminium does not classify well with the SAM with an angle of 0.5 rad. There are 

many wrong pixels on the aluminium roofs (Figure 34a). This can best be seen on the 

large aluminium building in the centre where the western part of the building is strongly 

confused with slate and some bitumen. The reason for this confusion is reflectance 

exceeding the sensor capacities, and therefore the aluminium signature is not 

 

 

a) Aluminium roof (yellow) with many wrongly classified pixels on the west side of 

the roof due to spectral reflectance that exceeds sensor capabilites. Resulting 

spectral curves on the left 

  

b) Detail of SAM classification with an angle of 0.5 rad (left) and an angle of 0.1 rad 

(right). Even when the angle is very small, pixels are already classified as copper 

(orange) instead of aluminium (yellow). 

Figure 34: Wrong classification of pixels on aluminium roofs (SAM, angle 0.5 rad). 

For the legend, refer to figure 32 
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recognizable anymore. A second building with large misclassifications is in the right 

part of the classification image. This is an aluminium roof  that is in part correctly 

classified as aluminium, in some cases wrongly as copper. The spectral curves of 

aluminium and copper are not alike, not even when the reflectance is above sensor 

capacities as is the case on the Southern roof area classified as copper. When comparing 

this result with the classification of SAM with a small angle of 0.1 rad (Figure 34b), it 

can be seen that some pixels are already assigned to copper. This means that the two 

classes are very close in feature space. 

4.1.2 SVM 

Parameter search 

To determine the best set of parameters for the RBF-kernel (i.e. � and C), a grid-search 

with internal cross validation was calculated in imageSVM in an iterative process, 

starting with a coarse range (large steps) and further refining the search with smaller 

steps to save computational time (Hsu et al., 2009). For this, several searches were done 

with different search ranges for the grid-search. The grid-search was done in a range of 

� = 2
-15 

– 2
5
 (= 0.000000953 – 256) 

C = 2
-10 

– 2
20

 (= 0.03125 – 262144) 

with 5 CV-folds meaning that the training dataset is divided into 5 equal parts and each 

part in turn is classified once.  

This resulted in a 99.9198% CV-accuracy (cross-validation accuracy, i.e. the percentage 

of cases that were correctly classified) with 108 support vectors (SV). The following 

parameters were found: � = 2
-13

 (=0,000122) and C = 2
20

 (=1048576) (model 1). 

Another search range was also done and resulted in different parameters. The search 

range was: 

� = 2
-20

 – 2
8
 (= 0.000000953 – 256) 

C = 2
-5

 – 2
20

 (= 0,03125 – 262144) 
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With 134 SV and a CV-accuracy of 99.9198% this resulted in the values � = 2
-12

  

(=0,000244) and C = 2
17

  (=131072) (model 2). 

During the search, several parameter pairs of � and C were returned that had the same 

training data accuracy of 99.9198% (highest accuracy achieved). Two of them were 

mentioned above. This means that there are several models which could be used for 

classification. The value of � controls the width of the RBF kernel. If � is small, then 

each support vector has a large sphere of influence on the other points. The greater � is, 

the higher the risk of overfitting because only the training data are correctly assigned. 

Figure 35 shows an example of overfitting where, with the same hyperspectral dataset, a 

large value of � was chosen for classification. Therefore, in a case where the CV 

accuracy is the same, the risk of overfitting is minimised when the model with the 

smallest � value is chosen. Therefore model 1 was used for further classification. 

 

Figure 35:  Example of overfitting of the training data.  

Detail of the SVM classification with the parameter pair: �  = 2 
40

, C = 

1000. The training data (displayed in different colours) are correctly 

classified, the rest of the pixels are assigned to one class only (red colour) 

Analysis 

The SVM classification result also shows a pixellated appearance as this is also a pixel-

based classifier. The mix-up between bitumen and slate is very strong in the image. It 

is not confined to smaller patches, but bitumen pixels occur on nearly every slate roof in 

large numbers (see Figure 36a). In this detail, it can be seen that bitumen is very 

overmapped, whereas the tile roof and aluminium roof in the building block are well 

recognized. It can be seen that the classification of aluminium is much better. The roofs 
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do not appear pixellated but quite homogeneous. Especially the complicated roof on the 

right part of the image is classified extremely well (Figure 36b). 

     

a) Slate roof (purple) with many clusters of wrongly classified bitumen pixels (green). 

SVM classification left, reference right 

 
 

b) Aluminium roof (yellow). SVM classification left 

Figure 36: SVM classification examples 

 

Vegetation, however, is hardly recognized not even the trees next to buildings that 

remained in the image from the buiding mask. 

The gravel roofs classify quite weakly. Especially in the Eastern part of the image, 

many parts of gravel roofs were classified as bitumen and stone slab, and some even as 

slate. And the shadowed parts of the gravel roof shown in Figure 33c are classified as 

bitumen. Shadowed parts therefore, did not classify well with SVM. 

For the SVM classification it can be said from the visual analysis that aluminium 

classifies well, as does stone slab and tiles. Gravel, however, is not correctly recognized 

in most cases. Bitumen and slate are overmapped and very often confounded. There are 

two complete roofs  that are classified as slate but are actually bitumen. 
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4.1.3 Visual Comparison 

First, a visual comparison of the two classification results was done. It is apparent that 

both results have some roofs that are very homogeneously classified but the majority of 

roofs is very pixellated. Aluminium is well recognized with SMV. The classification 

result appears not pixellated for this class. The two buildings that SAM partly confused 

with copper, are very homogeneous for the SVM classification (Figure 37a). Stone slab 

is also visually better classified with SVM. There are still some wrong pixels but less 

than in the SAM classification. However, one roof in the North of the image was 

classified completely wrong: as bitumen instead of stone slab. SAM, on the other hand, 

recognized this roof very well. 

The difference between the two results is most evident for the shadowed gravel roof. 

Figure 37b contrasts the two examples, where SAM classifies some less illuminated 

pixels as stone slab but the rest of the roof on this building correctly as gravel, SVM 

does allocate mainly bitumen to these shadowed parts. The building appears much more 

pixellated than in the SAM result. It can be said that SVM does not deal well with 

shadowed areas. As the shadowed areas show low reflectance, the SVM classifier 

assigns these pixels to classes with the lowest reflectance without distinct absorption 

bands. These are the classes bitumen and slate. A training area was not introduced for 

shadowed parts of the image, which might have improved the classification for SVM. 

However, that way it is obvious that the SAM result shows a very good classification of 

shadowed areas.  

The metals zinc and metal 1, as well as tiles were classified relatively uniform in both 

results. Copper looks slightly over-represented with pixels classified as copper on roofs 

of other material. 

Something that stands out is that for both classifications there are buildings where the 

borders of the roofs are misclassified while the roof tops are correctly assigned. Figure 

38 shows some examples. This is most likely due to the fact that the pixels at the 

borders of the roofs show a spectral mixture of the roof material and ground surface, 

especially as the hyperspectral data have a spatial resolution of 4m. This is even more 

pronounced for the SVM than for the SAM result. With the wrongly classified roof 

border pixels, it can be made out where the mask has cut the original dataset. 
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a) SAM result for aluminum roof (left) and SVM result for aluminium roof (right). SVM classifies 

aluminium correctly and very homogeneously 

   

Reference SAM result SVM result 

b) Comparison of shadowed gravel roof  

Figure 37: Visual comparison of SAM and SVM classification of selected roofs  

 

 
 

 

  

SAM result SVM result 

Figure 38: Example of wrongly classified roof border pixels.  

Example of tile roofs in the upper row, example of a copper roof below. 
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There is one building that is very wrongly classified by both SAM and SVM (see Figure 

39). It shows the difference that the illumination and the reflectance curve makes. It is a 

relatively flat aluminium roof (only slight inclination). On the west side, the reflectance 

of aluminium was correctly recognized. On the east side, the response exceeds the 

sensor’s capabilities. The curve is very flat and therefore resembles the curve of slate or 

bitumen again (not considering the intensity of reflectance). Thus, SAM classifies these 

pixels as slate. SVM, on the other hand, classifies this upper part of the building 

correctly. The lower part of the building is again shadowed by another building, leading 

to the classification of this part of the building as metal 2, slate or gravel in both results. 

 

Figure 39: Different reflectance signatures of an aluminium roof leading to 

wrong class assignment 
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4.1.4 Quantitative comparison 

The quantitative comparison was done using confusion matrices. They were calculated 

for all classification results discussed here. The confusion matrices and the statistics can 

be found in Appendix B and C.  

SAM shows an overall accuracy of 70.48% with a kappa index of 0.64, showing a 

substantial agreement. With 59.06%, the overall accuracy of SVM is about 10% lower 

than that of SAM, the kappa index of 0.52 indicating a moderate level of agreement 

(Table 8).  

 Table 8 : Overall accuracy for SAM and SVM result 

classifier 
Overall-

Accuracy (%) 
Kappa-

Coefficient 
Average producer’s 

accuracy (%) 
Average user’s 
accuracy (%) 

SAM  70.48 0.64 69.72 61.31 

SVM  59.06 0.52 60.38 60.29 

 

SAM has the highest procducer’s accuracy for metal 1 (92.72%), tile (88.72%) and also 

gravel (78.00%) (see Table 9 for accuracies for every class with SAM and SVM 

classification). They also have similarly high user’s accuracies. This shows that these 

classes were classified well. There are several classes which have high user’s accuracy, 

like aluminium with about 89% but much lower producer’s accuracy (appr. 54%) 

indicating that only about half the pixels of the reference area were classified correctly.  

Slate is another example which has low user’s accuracy (appr.47%) but 20% higher 

producer’s accuracy. It is overmapped, mostly at the expense of aluminium. On the 

other hand, with 77% producers accuracy copper classifies moderatly well but is 

confused with aluminium. Only about 42% of pixels called “copper” are actually 

copper. The ratio is similar for bitumen, vegetation and metal 2 which classify with 

around 60% producer’s accuracy but have extremely low user’s accuracies. The low 

user’s accuracies of some classes are the reason for the average user’s accuracy of 61% 

which is 8% lower than the producer’s accuracy (see Table 8). 

The distribution of the percentages of classes is different for SAM and SVM (see 

Appendix B, statistics for complete classification results). SAM has about 28% gravel 

compared to 15% for SVM. This can be explained by the large number of pixels that 

were not mapped on the shadowed gravel roof. Bitumen is proportionally higher in the 
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SVM classification (appr. 17%) than in the SAM classification (appr. 12%). This 

confirms the visual analysis where bitumen seems very prominent in the image of SVM.  

SVM, although having a lower overall accuracy, recognizes aluminium pixels in a more 

reliable way than SAM. Aluminium has a moderately high producer’s accuracy of appr. 

71%, but the reliability that an aluminium pixel actually is aluminium is above 90%. 

Gravel and stone slab both have low producer’s accuracies, stone slab even an equally 

low user’s accuracy of appr. 50%. It can be seen that there is a lot of confusion between 

the classes gravel, stone slab, slate and bitumen, which leads to an extremely low 

accuracy of appr. 30%, respectively 13% for slate and bitumen. Average producer’s and 

user’s accuracies lie at about 60%.  

 Table 9 : Producer’s accuracy of the classes for SAM and SVM 

Positive difference between SAM and SVM is marked in bold letters (i.e. SVM classified better) 

 Producer’s accuracy (in %) User’s accuracy (in %) 

Classes SAM SVM 
Difference 
SVM-SAM 

SAM SVM 
Difference 
SVM-SAM 

Copper 77.10 71.19 -5.91 42.39 70.01 27.62 

Tile 88.72 75.26 -13.46 95.96 96.64 0.68 

Stone slab 56.86 54.90 -1.96 69.22 50.22 -19.00 

Zinc 67.12 58.61 -8.51 97.35 89.05 -8.30 

Slate 67.58 68.01 0.43 47.59 29.59 -18.00 

Gravel 78.00 43.64 -34.36 76.41 29.59 -6.09 

Bitumen 59.54 37.83 -21.71 31.59 13.30 -18.29 

Metal 1 92.72 82.63 -10.09 81.70 92.75 11.05 

Aluminium 54.63 71.48 16.85 89.54 91.27 1.73 

Vegetation 60.97 19.17 -41.8 19.57 39.90 20.33 

Metal 2 63.71 81.45 17.74 

 

23.10 20.14 -2.96 

 

From the accuracies it can be seen that SAM gave better results in producer’s accuracy 

and was better in 8 of 11 classes. SVM shows significantly higher accuracy for 

aluminium and metal 2 there. In user’s accuracy, there is only an improvement for SAM 

in 6 from 11 classes. For 5 classes, mainly copper, metal 1 and vegetation, SVM 

significantly improved the accuracy. By contrast, stone slab, slate and bitumen where 

better classified with SAM on the whole. The problem with SVM classification is the 

high confusion between gravel, bitumen and slate which was also evident from the 

visible comparison. Compared with the statistic of the reference dataset (see Appendix 

B), slate was very much overmapped (more than double the amount of pixels) for SVM 
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(appr. 15% instead of 6%). With SAM overmapping happened mainly in the classes 

slate and bitumen which showed about 3% more percentage than the reference dataset. 

On the other hand, aluminium was undermapped. 

4.2 Classification results with roof inclination 

Another question which should be answered in this study is whether the incorporation 

of roof inclination in the classification process of SVM and SAM improves the 

classification accuracy. Theoretically, the accuracy should be improved because some 

materials only occur on inclined roofs, others only on flat roofs. Thus the mix-up of 

these materials should be less pronounced, if not disappear. In the classification results 

without inclination information it has become evident that the materials bitumen and 

slate are mixed-up, as well as gravel and slate. The confusion between gravel and stone-

slab or bitumen cannot be solved with this method because both materials are found on 

flat roofs. 

4.2.1 SAM  

Analysis 

As described in chapter 3.4.3, the classification was split. First the inclined roofs, then 

the flat roofs were classified with the corresponding training areas. Some different 

values (single values for all classes) were again tested but again the angle 0.5 rad proved 

to give the best result visually and so this result was kept for further analysis. 

Differences can be seen in the results of SAM with and without roof inclination. There 

is an improvement in the classification of slate roofs which means that it is not mixed-

up anymore with bitumen. It also contains less pixels of other classes (Figure 40). 

Aluminium also shows some less wrongly classified pixels on the aluminium roofs. 

There is not much visual change, though, in the classification of copper, gravel and 

stone slab. The reason for this might be that copper is included in both mask and 

therefore would not profit from inclination information, and gravel and stone slab have 

hardly been confused with inclined roof materials in the first SAM classification.   
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Some degradation in classification can also be noticed. First, it can be seen that some 

inclined roofs are “framed” by flat pixels (Figure 41a). For these pixels, SAM assigns 

the class “stone slab”. This is explained by the fact that the inclination mask at the 

border of some inclined roofs like tiles consists of “steep” inclination parts (=roofs) and 

flat part (= ground) which results in an inclination below 11° and thus in the labelleling 

as “flat”. It is peculiar that some roofs which classified well in the first classification 

without roof inclination are now mixed-up with stone-slab. This was analysed and the 

reason is that the inclination mask is erroneous in these parts. It accounts roofs as flat 

roofs where there are inclined roofs. The Figure 41b displays some buildings with these 

effects (with and without inclination), along with the inclination mask in these parts. 

These two features proves that the mapping of roof materials responds to the 

inclination, so much so that errors of the inclination masks are added to the 

classification. 

It can be summarized that visually this classification looks more homegenous than the 

one without inclination information. However, the parts of buildings which were 

wrongly classified, because the inclination mask is wrong in these cases, lowers the 

classification accuracy. 

 

 

 
Improvement of the classficiation of slate (purple) by the incorporation of inclination information. 

Left, SAM without inclination, right SAM with inclination 

 

Figure 40: Improvement of the classification due to inclination  
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a) Border pixels of stone slab (blue) on tile roofs (red) on the left side. Corresponding detail of flat 

roof mask right. The flat pixels in the mask frame the inclined roof. 

 
Some building parts that are inclined (marked with circle) are classified as flat. Example of a slate 

roof (1) and a tile roof (2) which are classified as gravel (1) and stone slab (2). 

 
Tile roof, mostly correctly classified without inclination, is classified as stone slab in those parts that 

are labelled “flat” in the inclination mask 

b) Effect of errors in roof mask 

Figure 41: Effects of inclination mask on the classification 

4.2.2 SVM 

Parameter search 

The SVM classification was also done separately for inclined roofs and for flat roofs 

with the separated training areas. The processing steps were, to use the previously 

scaled original image (that was used for the SVM classification without inclination 

information) and mask the roofs accordingly. It is important to use the same scaled 
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image to make the results comparable. Then a parameter search was done for each 

dataset with the same flat/inclined training areas as for SAM. The grid search was done 

for the following range of � an C: 

C = 2
-15

 to 2 
40

 

� = 2
-32

 to 2 
32

 

For inclined roofs the parameter search yield the following values, using 41 support 

vectors: � = 23.2831 and C = 30000, but giving only 47% accuracy in cross-validation. 

The grid search for flat roofs gave 100% CV accuracy and the parameters were � = 

0.00048 and C = 32768 with 100 SV.  

The question was why the CV accuracy is so low for inclined roofs and no other search 

for parameters helped to improve this value. The reason is that not all training areas that 

are theoretically valid for inclined roofs lie on top of a roof in the mask of inclined 

roofs. This was not a problem for the SAM classification because ENVI allows the 

input of training areas in the form of a spectral libraries for SAM, but imageSVM only 

uses classimage created from ROIs. After the parameter search, it became evident that 

some ROIs that should occur in both inclination masks actually only existed for the 

mask of flat roofs. Therefore, the training areas were reduced for the inclined roofs to 

only contain training areas for tile, slate, copper and zinc. 

With the reduced training areas the grid-search for inclined roofs was run again, with 

the same search range. This improved the CV accuracy significantly. The resulting 

parameters were � = 0.00048 and C = 32768 using 217 support vectors. 

After parameter search, the two classifications were processed and the results combined 

to yield the final classified image. 

Analysis 

For the classes stone slab, gravel, tiles, metal 1 and metal 2 no significant change can be 

seen compared to the classification without inclination. Some improvement can be seen 

for bitumen roofs: there are several buildings which were formerly classified wrongly, 

mostly as slate, which are now correctly classified. Figure 42 shows an example of a 

bitumen roof. 
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SVM classification without 

inclination: the bitumen roofs  

are classified as slate  

SVM classification with 

inclination: The bitumen roofs 

are correctly classified 

Detail from the reference 

dataset (bitumen = green, 

slate = purple) 

Figure 42: Comparison of a detail of the classification with and without inclination. 

The same problem as described for the SAM result with inclination information can also 

be seen for the SVM result: the erroneous inclination masks for some buildings lead to 

an assignement of pixels to the wrong class. Additionally, the shadowed areas are still 

wrongly classified, but the class has changed. Zinc is over-represented because some 

part of slate roofs are now classified as zinc. The shadowed part of the above mentioned 

gravel building, which was formerly classified as bitumen, is now largely classified as 

zinc. 

4.2.3 Improvement of slope mask 

In order to find out whether there was no significant improvement when inclination 

information was used for the classification because the hypothesis is wrong or because 

the errors in the inclination are responsible for this, a manual inclination mask was 

created. This was used as a kind of cross check to be able to assess the result of the 

classification with inclination and to find out whether inclination really does improve 

classification accuracy. 

The manual inclination mask was created by adding the slope information “flat” or 

“inclined” to the reference vector dataset and afterwards converting the data to raster to 

create two masks in ENVI. The manual masks are displayed in Figure 43. 
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Manual roof mask with inclined roofs Manual roof mask with flat roofs 

Figure 43: Manual inclination mask 

With these masks, the hyperspectral image was again clipped for the SAM 

classification. The same was done for SVM, using the scaled hyperspectral image 

instead. The classification of SAM and SVM was repeated. For SAM, the angle of 0.5 

rad was used again, for SVM a new parameter search was done with the same training 

areas as described for the first try minus copper 2 on the flat roofs because the training 

area was outside the image created by the mask. The grid-search resulted in the 

parameters � = 2
-11

 (=0.00048) and C = 2
14

  (=16384) for flat roofs and � = 2
-11

 

(=0.00048) and C = 2
15

  (=32768) for inclined roofs.  

4.2.4 Visual Comparison 

The visual comparison is described for the results of the classification with inclination 

of the two classifiers and for each classification result with and without inclination to 

find out whether the classification could be improved.  

First, the SAM classifications with the original inclination dataset and the manually 

created dataset are compared. It can be seen that the “border” problem is solved 

indicating that the inclination information has an impact on classification. The 

classification of the inclined roofs that were originally termed as “flat” by the 

inclination mask, are correctly classified again. This was to be expected after the 

inclination was corrected.  

The SVM classifications with the manually calculated inclination and the orignal 

dataset do not differ much. However, as SVM was also influenced by the errors in the 

inclination mask, the building parts confused as “flat” were again classified correctly.  
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The problem with the aluminium roofs, which were classified in the southern roof area 

as “copper” (Figure 37a) in the SAM classification remains the same for the SAM 

classification with the manual inclination mask. SVM still does classify this roof well. 

The aluminium roof that was described in Figure 39 was also not improved by the 

inclination information. This slope is an inclined roof and the mix-up with slate 

remains. The SVM result is better in this respect. The problem with the shadowed 

gravel roof for the SVM classification, however, is also still apparent. 

It can thus be observed that the corrected inclination does lead to an improvement of the 

classification results, both for SAM and SVM. The classifications are less pixellated, 

the roofs are clearer and more homogeneously assigned to their class. The problems 

with low reflectance materials that are on flat roofs, i.e. bitumen and gravel, of course 

remain.  

4.2.5 Quantitative comparison 

The quantitative comparison was done between the classifications without inclination 

and the classifications with the original inclination masks, as well as the ones with the 

corrected manual inclination mask. The confusion matrices and the statistics can be 

found in Appendix B and C. Please refer to Table 11 and Table 12 for the discussed 

accuracies. 

For the SAM classification an improvement in overall accuracy can be seen for the 

classification with the manual inclination masks which lies at about 4.5%. The Kappa 

index also increased by 0.06 to 0.70 (see Table 11). The producer’s and user’s 

accuracies for all classes are compared for the classifications with inclination, the ones 

with the original inclination mask and the one with the manual inclination mask (see 

Table 12).  For SAM, the improvement was greatest for slate which gained about 20% 

in producer’s and 26% in user’s accuracy. User’s accuracy for bitumen and stone slab 

was improved by about 7%. For three classes, vegetation, metal and zinc the accuracy 

stayed the same. It can be observed that producer’s accuracy improved for all classes. In 

user’s accuracy, however, 5 out of 11 classes showed a degradation in accuracy which 

was highest for zinc (-5.24%). 
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Table 10 : Overall accuracy for SAM and SVM result in comparison with and without inclination 

information for the roofs 

classification 
Overall 

accuracy (%) 
Kappa-

Coefficient 

Average 
producer’s 

accuracy (%) 

Average 
user’s 

accuracy (%) 

SAM  70.48 0.64 69,72 61,31 

SAM slope original 70.05 0.64 70,67 60,46 

SAM slope manual 74.95 0.70 74,44 63,98 

SVM  59.06 0.52 60,38 60,29 

SVM slope original 59.12 0.52 62,86 54,61 

SVM slope manual 63.83 0.58 66,90 63,55 

 

This general improvement cannot be seen for the classification with the original pixel-

based inclination masks. The errors in classification that were observed during the 

visual analysis are also reflected in the confusion matrix. For many classes, accuracy 

actually dropped a little. The same tendency can be seen for the SVM classifications: 

the improvement of accuracy cannot be observed for the classification with the original 

inclination mask. Basically, overall accuracy stays basically the same, as does the 

Kappa index. For the classification with the manual mask, accuracy increases just like 

for SAM by 4.77% to 63.83%. The Kappa index also rises to 0.58%. The accuracy of 

the classes was improved. Copper, zinc and slate gained more than 10% in user’s 

accuracy, and apart from copper and aluminium, producer’s accuracy also improved. 

This was very much the case for bitumen and slate which improved by appr. 36% and 

28% respectively. Slate shows an improvement in user’s accuracy almost equally 

distinct as with the producer’s accuracy.  

It can be observed that the producer’s and user’s accuracies for SAM and SVM 

increased about 4% for both classifications with the manual inclination mask. When 

looking at the statistics compared with the reference areas (Appendix B), it can be seen 

that for SAM, bitumen is still overmapped, as is vegetation, and aluminium 

undermapped by appr. 4%. Other percentages changed slightly as well but not 

significantly. For SVM, a very distinct undermapping of gravel occurred. Instead of the 

appr. 30% of the refernce areas, the SVM classification with manual mask only assignes 

appr. 20%. Bitumen, on the other hand, is severely overmapped by 10%. 
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Table 11 : Comparison by class of producer’s accuracy (in %) (with and without inclination) 

Positive difference between the classification without inclination and with manual inclination mask 

(“slope manual”) is marked in bold letters 

 
 

Table 12: Comparison by class of user’s accuracy (in %) (with and without inclination). 
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Generally, it can be concluded that in the case of the pixel-based inclination mask from 

laserscanning data, the introduction of inclination did not lead to improvements in the 

overall accuracy compared to the classification without inclination. The expected 

improvement can only be reached with the manual mask where the errors of the pixel-

based one were corrected for. 
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5 Summary and conclusions  

In this chapter, the results of the study are summarized and assessed. An outlook is 

given to show in which direction future work could lie.   

In this study, the ability of roof material mapping with hyperspectral data was assessed. 

Analyses of the spectral reflectance curves of various urban materials was given, with 

special stress on roof surfaces. It was shown that roof surfaces like copper, tiles, 

aluminium or zinc show distinct absorption features where others have a very uniform 

reflectance curve. This leads to problems in classification because simlar reflecance 

curves are hard to distinguish. To remove the confusion between roof and ground 

surfaces, a roof mask was applied to the hyperspectral dataset to being able to 

concentrate on the roofs. With this dataset, two classification methods, Spectral Angle 

Mapper (SAM) and Support Vector Machines (SVM), were compared.  

The other hypothesis of this study was that the incorporation of roof inclination should 

improve the classification result. For the example of slate this would mean that it can be 

better classified when roof inclination is considered, because the corresponding 

materials, with which slate might be mixed-up, exist on flat roofs. For this task, two 

binary masks were applied on the hyperspectral dataset, which were derived from the 

laserscanning dataset, and two classifications were performed with the “flat” and the 

“inclined” hyperspetral dataset. It was found that accuracy of the classification results 

for both classifiers did not improve. It could be determined that the reason for this was 

the erronous inclination dataset where parts of inclined roofs were labelled as flat and 

vice versa. However, with the classification results it could be shown that a correlation 

exists between inclination and classification accuracy of some classes because in the 

case of tiled roofs for example, which were classfied well with SAM and SVM in the 

first attempt without inclination, the accuracy was decreased when the inclination 

dataset was introduced to classification. To test this proposition, a manual inclination 

mask was created with which the classifications were repeated. The classification 

accuracy of the SAM and SVM result were increased by about 4.5%. The increase in 

accuracy for slate was thereby most significant with more than 20% in user’s and 

producer’s accuracy for both methods. 
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Contrary to other studies, which compared SVM to other classifiers like Decision Trees, 

Artificial Neural Networks, Spectral Angle Mapper or Maximum Likelihood and which 

found that SVM performed better or at least equally well (Huang, et al., 2002; Foody & 

Mathur 2004; Melgani & Bruzzone, 2004; Pal & Mather, 2004), this could not be found 

in this study. The comparisons in literature were done using multispectral but also 

hyperspectral data for the classification of land-cover maps, with classes like vegetation, 

built-up, water, etc.. With the more detailed level of material mapping of roofs in this 

study, Spectral Angle Mapper, however, outperformed the Support Vector Machine 

classifier. The SAM result gave an overall accuracy of 70.48%, that is about 11% higher 

than the SVM result (59.06%). When inclination was included (the manual corrected 

masks), then the overall accuracy was increased to 74.95% for SAM and  63.83% for 

SVM. SAM, in general shows higher user’s and producer’s accuracy for most classes. 

The great strength of the SAM was the ability to distinguish shadowed areas better than 

SVM could. With SAM, most pixels in the shadowed area were classified correctly, the 

wrongly assigned pixels jsut small compared to SVM which had a large number or 

wrongly assigned pixels due to this reason. SAM, however, encountered severe 

problems when reflectance was exceeding sensor capabilites. SVM proved more stable 

in this point, which could be seen in the case of aluminium for which SVM delivered a 

user’s accuracy of over 90%.   

This study showed, that both classifiers are suited to map roof surfaces. Further work in 

this respect could be done by testing different SVM parameters to obtain better 

classification results or to evaluate if different training areas, especially the 

incorporation of a shadow class, does improve the accuracy of SVM. Parameterwise, 

the performance of SVM with a kernel based on the spectral angle instead of the 

Euclidean Distance (i.e. the RBF-kernel) could be evaluated, which is in literature 

reported as being scale invariant contrary to Euclidean distance (Fauvel, et al., 2006).  

Due to the variation in illumination, this might be advantageous for urban studies. The 

results could be compared to results with the RBF-kernel to see if the better 

performance of the Spectral Angle Mapper can be transferred to the Support Vector 

Machine approach.  
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For both classification methods, it might be interesting to evaluate the classification 

results when not a binary mask for roof and ground, or for flat and inclined roofs is 

used, but when the laserscanning dataset is directly included in the hyperspectral 

dataset. It could be added as an additional image band. To be able to do this, the 

hyperspectral dataset and the laserscanning band need to be scaled first to derive 

feasable results.  

This study has also pointed out how important the quality of datasets is in the 

classification process. The laserscanning dataset of roof inclination, which was pixel-

based, showed some wrong values for inclination and this led to misclassifications. The 

classification results might be further improved by not using a binary roof mask but 

derive roof segments derived from the laserscanning dataset, which are then classified 

with SAM and SVM. This might improve accuracy and the pixellated appearance of the 

classification results because it levels out some roof structures and thus the roofs might 

be classified more homogeneously. 
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A. Classification results 
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B. Statistics of classification results 

 Statistics of all classification results (sum of pixels and percentage per class): 
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Statistics of all classification results in reference to the reference areas: 
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C. Confusion matrices of classification results 
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