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Abstract

In many fields of application it is crucial to keep track of the changes occurring

to objects in the real world in the particular domain. The division of a cadastral

parcel in the sector of land administration is an example of such change. Even

after the division, resulting in two or more successors, it is important to know how

the original parcel looked like and when it existed. If such “historical” information

is to be retained in a database, particular concepts have to be applied to allow for

this.

Within the scope of this thesis a prototype of a history extension to the Open

Source database management system PostgreSQL / PostGIS was implemented.

The aim was to provide support for an automated maintenance of valid time

and the related history, with valid time being the time when a fact happens or

becomes true in the real world (Jensen et al., 1994). It was assumed that in many

domains valid time is of greater interest than transaction time, i.e. the time when

an information becomes known to the system (Jensen et al., 1994). The challenge

was to implement the functionality required for maintenance of a history entirely

on the database server. This way no modification of the client application would be

necessary. Furthermore the valid-time period of a feature was to be stored as line,

taking into consideration that time can be represented as geometry (Künzel, 2008;

ISO, 2002b). Hence, the spatial functions of PostGIS could be used to perform

temporal analysis.

With regard to time-oriented statements in databases three types can be dif-

ferentiated: current (now), sequenced (at each instant of time) and non-sequenced

ones (ignoring time) (Snodgrass, 2000). Sequenced statements are the most use-

ful ones but also most complex to express in SQL. A sequenced update actually

requires five SQL statements while a sequenced deletion requires four. Within the

extension support for sequenced statements was implemented. Sequenced state-

ments cover current statements implicitly. Given a temporal table the standard

SQL PRIMARY KEY construct cannot be used any longer. A sequenced primary
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key is required, one that applies at each instant of time. Such key must be ensured

and implemented by a sequenced constraint. The same concept applies to foreign

keys and referential integrity. Thus, a sequenced foreign key is necessary, again

ensured by a constraint.

Converting an existing user table without temporal support to a temporal table

required some crucial modifications of that table. First any existing primary or

foreign key constraint was dropped. Next a column of type geometry was added

to the table to record the valid-time period of the rows. After that the table was

renamed and a view created on the table which was given the original name of

the table. The view was made “updatable” by creating an INSERT, UDPATE

and DELETE rule on it. Within each rule the actual SQL statements required for

a sequenced modification (five for an update, four for a deletion and one for an

insertion) are executed on the underlying table. Furthermore, triggers were created

on the table that ensure the sequenced primary and foreign key(s). Besides that,

a number of supportive database procedures were implemented that are required

e.g. to convert time to geometry and vice versa. The entire changes necessary

to make a table temporal, are basically hidden from the client. The client still

finds the user table under the same name (although its actually a view), and also

original primary and foreign key(s) are retained (implemented as sequenced keys).

The only obvious change for the client application is the need to set the period of

applicability (by calling a single database procedure) before performing a database

operation. Once set, this period serves as a filter for all subsequent queries and

modifications on the user table. The client application continues working with the

database the way it did as without temporal support but behind the “scenes” a

full history of the data is maintained.



Kurzfassung

In vielen Anwendungsgebieten ist es von Bedeutung Veränderungen die an Ob-

jekten der realen Welt geschehen, zurückverfolgen zu können. Die Teilung eines

Flurstücks im Bereich Land Administration ist ein Beispiel für solch eine Veränderung.

Selbst nach der Teilung, die in zwei oder mehr Folgeflurstücke resultiert, ist es

wichtig zu wissen, wie das ursprüngliche Flurstück aussah und wann es existiert

hat. Wenn solche Informationen in einer Datenbank fortgeführt werden sollen,

müssen besondere Konzepte (für temporale Datenhaltung) berücksichtigt werden,

die dies erlauben.

Im Rahmen dieser Masterarbeit wurde der Prototyp eines Historie-Moduls für

das Open Source Datenbankmanagementsystem PostgreSQL/PostGIS entwickelt.

Ziel war es dabei, die automatisierte Fortführung von Gültigkeitszeit und einer

entsprechenden Historie zu ermöglichen, wobei mit Gültigkeitszeit die Zeit gemeint

ist, zu der eine Veränderung an einem Objekt in der realen Welt stattfindet (Jensen

et al., 1994). Es wurde angenommen, dass in vielen Anwendungsgebieten die

Gültigkeitszeit eine grössere Rolle spielt als die Transaktionszeit, d.h. die Zeit zu

der eine Information in der Datenbank erfasst wird (Jensen et al., 1994). Die Her-

ausforderung war es, die für die Führung der Historie erforderliche Funktionalität

komplett im Datenbankserver zu implementieren. Damit würde keine spezielle

Anpassung einer Client-Anwendung erforderlich werden. Unter Berücksichtigung

der Tatsache, dass Zeit als Geometrie dargestellt werden kann, war es vorgese-

hen, dass die Gültigkeitszeitspanne von Objekten als Liniengeometrie repräsentiert

wird (Künzel, 2008; ISO, 2002b). So könnten die raumbezogenen Funktionen des

PostGIS-Moduls verwendet werden, um temporale Analysen durchzuführen.

In Bezug auf temporale Anweisungen in Datenbanken kann zwischen drei Arten

unterschieden werden: aktuelle (jetzt), sequentielle (zu jedem Zeitpunkt) und

nicht-sequentielle (Zeit wird ignoriert). Sequentielle Anweisungen sind am zweck-

dienlichsten aber auch am schwierigsten in SQL auszudrücken. Eine sequentielle

Aktualisierung erfordert effektiv fünf SQL Anweisungen während eine sequen-

v



vi

tielle Löschung vier Anweisungen erfordert. Das Historie-Modul wurde für die

Unterstützung sequentieller Anweisungen entwickelt. Sequentielle Anweisungen

beinhalten aktuelle Anweisungen implizit. In einer Tabelle mit Unterstützung für

Gültigkeitszeit kann das SQL PRIMARY KEY Konstrukt nicht länger verwendet

werden. Ein sequentieller Primärschlüssel ist erforderlich, d.h. ein Schlüssel, der zu

jedem Zeitpunkt ein Schlüssel ist. Solch ein Schlüssel muss durch eine sequentielle

Integritätsbedingung gewährleistet werden. Das gleiche Konzept gilt für Fremd-

schlüssel und referentielle Integrität. Ein sequentieller Fremdschlüssel ist erforder-

lich und wird wieder durch eine sequentielle Integritätsbedingung gewährleistet.

Die Konvertierung einer bestehenden Anwendertabelle ohne Unterstützung für

temporale Datenhaltung in eine Tabelle mit entsprechender Unterstützung er-

forderte einige tiefgreifende Änderungen an der Tabelle. Zuerst mussten sämtliche

bestehenden Integritätsbedingungen für Primär- und Fremdschlüssel entfernt wer-

den. Danach wurde eine neue Spalte vom Datentyp “geometry” hinzugefügt,

die zur Erfassung der Gültigkeitszeitspanne von Objekten benötigt wird. An-

schliessend wurde die Tabelle umbenannt und eine Ansicht (View) auf die Tabelle

erstellt, die den ursprünglichen Namen der Tabelle erhielt. Diese Ansicht wurde

aktualisierbar gemacht, indem entsprechende INSERT-, UPDATE- und DELETE-

Regeln (Rules) für die Ansicht erzeugt wurden. In jeder Regel werden die eigentlichen

SQL Anweisungen, die für eine sequentielle Modifikation notwendig sind, auf der

der Ansicht zugrunde liegenden Tabelle ausgeführt (fünf für eine Aktualisierung,

vier für eine Löschung und eine für eine Einfüge-Operation). Weiterhin wurden für

die Tabelle Trigger erstellt, um die sequentiellen Primär- und Fremdschlüssel zu

gewährleisten. Zusätzlich sind eine Reihe von Hilfsprozeduren für die Datenbank

entwickelt worden, z.B. um Zeit in Geometrie zu konvertieren und umgekehrt.

Die Änderungen, die an einer Tabelle notwendig sind um temporale Datenhal-

tung zu ermöglichen, sind für die Client-Anwendung weitgehend unsichtbar. Die

Client-Anwendung kann die Anwendertabelle weiterhin unter dem gleichen Na-

men ansprechen (auch wenn eigentlich die Ansicht angesprochen wird) und auch

die ursprünglichen Primär- und Fremdschlüssel bleiben erhalten (sind aber als

sequentielle Schlüssel implementiert). Die einzig offensichtliche Änderung für die

Client-Anwendung ist die Notwendigkeit, den Anwendungszeitraum (Period of Ap-

plicability) für temporale Anweisungen zu setzen, bevor eine Datenbank-Operation

ausgeführt wird. Dies geschieht durch den Aufruf einer einzigen Datenbankproze-

dur. Einmal gesetzt, ist der Anwendungszeitraum ein Filter für alle nachfolgen-

den Abfragen und Änderungen von Daten in der Anwendertabelle. Die Client-
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Anwendung nutzt die Datenbank in der gleichen Art und Weise wie zuvor (d.h.

zum Zeitpunkt ohne Unterstützung für temporale Datenhaltung), im Hintergrund

wird aber eine komplette Historie geführt und gewährleistet.
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Chapter 1

Introduction

1.1 Motivation

In many fields of application it is crucial to keep track (maintain a history) of

the changes occurring to objects in the real world. The division of a cadastral

parcel in the domain of land administration is an example of such change. Even

after the division, resulting in two or more successors, it is important to know

how the original parcel looked like and when it was existing. If such “historical”

information is to be retained in a database, particular concepts have to be applied

to allow for this.

In databases where history of information is not considered explicitly, it is usu-

ally assumed that the stored data are the currently valid ones. A change occurring

on an object in the real world would lead to an update of the related information

in the database and simply replace the information previously available on that

object. Thus, history is nonexistent.

The aim of this thesis is to develop an extension to the Open Source database

management system (DBMS) PostgreSQL/PostGIS that enables users to maintain

a history of the data (and thus, the modelled reality). The idea and challenge is

to implement the functionality for maintaining history entirely on the database

server. Hence, little or no modification of the client application is required in

regard to the maintenance of history. The extension will be implemented using

database functionality as triggers, stored procedures, etc.

The topic of the thesis is highly related to the requirements from practice. Its

focus is rather on implementation of a history extension than on a pure study and

analysis of the subject history. Geometry is closely related to time and history

1
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in the context of this thesis. The reasons for this are twofold. Firstly, the thesis

focuses on maintenance of history in the domain of land administration. This

inherently involves spatial information, i.e. information that usually has a geometry

component. Secondly, time will be stored as geometry in the database since it can

be represented as such. This concept is explained in detail in the work of Künzel

(2008) and in the ISO standard 19108 (ISO, 2002b). By representing time as

geometry, spatial functions and operators can be applied to time. These functions

and operators are already available with the PostGIS extension to PostgreSQL.

The assumption is that advanced analysis of time, which will be required for the

implementation of the history extension can be facilitated by using the PostGIS

capabilities.

1.2 Hypothesis

In many cases a customized client application is required for an automated main-

tenance of valid time and data history. The database is often used as a simple

data store with its full capabilities not exploited.

Within this thesis it is expected that support for an automated maintenance

of valid time and history can be implemented entirely on the database server.

No modification or customization of the client software is required. Valid time is

stored as geometry and only spatial operators and functions are required to test

for temporal relationships.

1.3 Historical Versioning

This section briefly describes the concepts which are applied to implement the his-

tory extension. These concepts are explained in detail in the subsequent chapters

of this document.

1.3.1 Basics

The history that can be maintained with the extension will consider valid time

only, i.e. the time when a fact became true in the modelled reality (Jensen et al.,

1994). According to the classification of Worboys (1993) such database would be

a historic database. The extension will also allow storing information whose valid



CHAPTER 1. INTRODUCTION 3

time starts in the future although it will not support branching of time, e.g. to

simulate various what-if scenarios.

Objects stored in the database are called features henceforth. Features are an

abstraction of real world phenomena (e.g. of a parcel or building). The valid-time

span of a feature is defined by two events, begin and end. The events occur because

of a change happening to the feature. In regard to the temporal data type the

time span is a period while the events are of type instant. An interval scale will

be used to measure time as it can be used to describe both, ordering of values and

distances between values. The distance depends on the granularity which is used

to measure time and which is defined by the chronon, i.e. the shortest interval used

as measure for a period and for the definition of scale intervals (Ott and Swiaczny,

2001).

Time and space are similar in a way that both have geometry and topology.

A point in time occupies a position that can be identified in relation to a tem-

poral reference system. Distance can be measured. Unlike space, however, time

has a single dimension (ISO, 2002b). Within this thesis instants in time will be

represented as point geometry while periods will be represented as lines.

Between features a temporal association can exist called feature succession.

Feature succession is the replacement of one set of feature instances by another

set of feature instances. The replacement implies that the life spans (valid time)

of the feature instances in the first set come to an end at the instant when the life

spans of feature instances in the second set begin (ISO, 2002b). The division of a

cadastral parcel resulting in two new parcels is an example of feature succession.

Feature succession shall be supported by the history extension.

1.3.2 Implementation

With the extension to the database, historical information will be retained by

applying tuple-level versioning. Thus, historical information will be kept as addi-

tional tupels (rows) in the according table(s). Usually the period of validity for

a row would be stored by appending two timestamp columns to each table for

which history shall be maintained. One column would specify when a row became

valid and one would specify when the row stopped being valid. Considering the

similarity of space and time, the period of validity will be represented and stored

as geometry, in particular as a line, with the history extension. Testing the rela-

tionship between two periods of validity can be done using the spatial relationship
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functions as overlaps, within, etc. which are provided with the PostGIS extension

to PostgreSQL.

When working with temporal databases three basic kinds of time-oriented

statements exist; current (now), sequenced (at each instant of time) and non-

sequenced (ignoring time) (Snodgrass, 2000). Out of the three, sequenced state-

ments are the most natural and useful ones but also most difficult to express in

SQL. With sequenced statements a logical deletion would actually result in an

INSERT, two UPDATE and a DELETE statement while a logical update would

result in two INSERT and three UPDATE statements. When adding time support

to a table the original primary key must be changed, a temporal primary key is

required. This inherently affects also referential integrity if a table is referenced

by or referencing another table. To express temporal keys and ensure referential

integrity, a number of constraints have to be applied to the involved tables.

The history extension will implement support for sequenced statements. All

this shall be hidden from any client application that would just send a SELECT,

INSERT, UPDATE or DELETE command as with a non-temporal database. The

extension will make extensive use of triggers, views and rules as the main function-

alities to implement support for valid time in the database. The table for which

support for valid time is to be added will be renamed and a view created with the

original name of the table (Figure 1.1).

Figure 1.1: Modified database schema

Rules will be generated to make the view “updatable”, allowing for insertions,



CHAPTER 1. INTRODUCTION 5

updates and deletions. Within the rules the actual statements that are required

for a sequenced modification would be executed (four for a deletion, five for an up-

date). Temporal keys and referential integrity will be ensured via triggers applied

to the table. The main steps to add (automated) valid time support to a table are

these:

1. Add a column of type geometry to record the valid time period of features.

2. Drop the original primary key constraint and, if applicable, foreign key con-

straint.

3. Rename the table.

4. Create a view on the table, given the original name of the table.

5. Create rules on the view for INSERT, UPDATE and DELETE.

6. Create triggers on the table to ensure the temporal primary key and, if

applicable, referential integrity.

These steps are required for this particular implementation of a history ex-

tension to PostgreSQL. Different steps might be necessary with other database

management systems and implementations for valid-time support.

1.4 Expected Results

The result of the work carried out in the context of this thesis shall be a prototype

for a history extension to PostgreSQL/PostGIS DBMS. This extension will support

sequenced modifications (covering insertions, updates and deletions), taking into

account also referential integrity between temporal tables. Feature succession as

e.g. the division of a cadastral parcel, will be supported. The extension will store

the valid-time period of features as geometry and will make use of spatial functions

and operators for the entire required temporal analysis.

1.5 Issues Not Covered

Since time is stored as geometry within the history extension, performance issues

might come up when carrying out extensive temporal analysis via spatial functions

and operators on a vast amount of data. On the other hand, a valid-time period is
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stored as a simple line consisting of two vertices only, and indices are created for

time as geometry to increase the speed of operations. Hence, performance issues

might be negligible. Nevertheless, no particular performance test will be carried

out in the context of this thesis.

This thesis is about historical versioning, not to be confused with just ver-

sioning which is a term commonly used for concurrent versioning. Concurrent

versioning is a concept allowing multiple users to work on the same data simul-

taneously by creating a version of the data for each user. These versions can be

merged later on again taking into account certain strategies.

1.6 Audience

This thesis addresses anybody who would like or is required to implement or main-

tain a historic database. It could be of interest for those who have no possibility to

modify/customize their client application to add valid-time support accordingly.

The thesis provides a prototype implementation which could serve as an idea or

base for the development of a production system. As valid time is stored as geom-

etry it is assumed that someone who would like to implement a similar extension,

uses a DBMS with a spatial extension.

1.7 Structure of Thesis

Following this chapter, fundamentals of time are discussed. The similarity of space

and time is considered and the representation of time as geometry is inherently

analysed.

Chapter 3 discusses time in databases covering data types for temporal support,

time-oriented statements, temporal keys and referential integrity as well as classi-

fications of temporal databases. Two sample applications for temporal support in

databases are looked into in Chapter 4.

In Chapter 5 particular functionalities of the PostgreSQL DBMS and its spa-

tial extension PostGIS are examined, which are applied to implement the history

extension. Chapters 6 and 7 cover concept and implementation of the actual pro-

totype of the history extension.

The findings of the thesis and an outlook are discussed in Chapter 8.
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Chapter 2

Fundamentals of Time

This chapter discusses some of the fundamentals of time that are required for a

full understanding of the subsequent sections of this document.

While there are numerous religious and philosophical points of view in regard

to what is time, there are two main perspectives of time in physics. From the

Newtonian perspective, time is considered as an independent dimension (i.e. in-

dependent from space). Einstein introduced the relativistic perspective in which

space and time are perceived as interdependent and inseparable.

In the context of this thesis, time is looked at from the Newtonian perspec-

tive and considered as an independent dimension. Nevertheless, there is a lot of

similarity between space and time, e.g. both, space and time are continuous and

infinite dimensions. To store time as discrete and finite data in a database its

complexity must be reduced. Some concepts are provided within this chapter.

2.1 Definitions

Within this thesis the following definitions apply.

chronon the smallest interval used as a measure for a period and for the definition

of the scale intervals used to define the time of an event on the time axis

(Ott and Swiaczny, 2001)

event action which occurs at an instant (ISO, 2002b)

feature abstraction of real world phenomena (ISO, 2002a)

8
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granularity of time the level of precision and uncertainty with which time can

be depicted; depends on the smallest chronon / granule applied (Ott and

Swiaczny, 2001)

granule the same as a chronon

interval scale scale with an arbitrary origin which can be used to describe both

ordering of values and distances between values (ISO, 2002b)

life span period during which something exists (ISO, 2002b)

ordinal scale scale which provides a basis for measuring only the relative position

of an object (ISO, 2002b)

2.2 Time as Dimension

In ISO (2002b) it is stated that “Time is a dimension analogous to any of the

spatial dimensions. Like space, time has geometry and topology. A point in time

occupies a position that can be identified in relation to a temporal reference system.

Distance can be measured. Unlike space, however, time has a single dimension —

temporal reference systems are analogous to the linear referencing systems that

are used to describe spatial position for some kinds of applications. Although time

has an absolute directionality — movement in time is always forward — time can

be measured in two directions.”

This concept of time as a linear dimension is also supported by the taxonomic

model of Frank (1998). If time is treated as a linear dimension, a consecutive

development on the time axis is implied with no point in time occurring more than

once. Furthermore, Frank describes that time can be treated as cyclic dimension

and hence, has reoccurring character (“every week”, “every Monday”, etc.).

Time can be measured on ordinal and interval scales. An ordinal scale provides

information only about relative position in time, which might be sufficient for

certain fields of application as geology or archaeology. An interval scale supports

both, the ordering of values and the measurement of distances between them.
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2.3 Temporal Data Types

2.3.1 Instants

Considering time as a linear dimension, an instant is an anchored location on the

time line. An instant occurs once, and then is forever in the past (Snodgrass,

2000). June 11, 2009 at 2:00 a.m. would be an example for an instant.

Geometry of an instant According to ISO (2002b) an instant is a temporal

object in general and a 0-dimensional geometric primitive that represents position

in time, in particular. In the latter an instant is equivalent to a point in space.

The number of dimensions is based on the Simple Feature Access Specification

of the Open Geospatial Consortium (OGC) in which a point is considered as

0-dimensional, a line as 1-dimensional and a polygon as 2-dimensional (OGC,

2006a). The instant as a temporal object has one attribute position which defines

the position of the instant in relation to a temporal reference system.

2.3.2 Intervals

An interval is an unanchored contiguous portion of the time line and in that is a

duration. An interval is relative in contrast to an instant, being absolute. Adding

an interval to an instant will result in another instant. Inherently, the distance

between two instants is an interval. Intervals have a direction. An interval can

be positive or negative, indicating a shift to the future or to the past (Snodgrass,

2000). “Two months” is an example for an interval.

In the context of ISO (2002b) an interval is a data type (“TM Duration”) used

for describing length or distance in the temporal dimension.

2.3.3 Periods

A period is an anchored duration of the time line. To express that a fact in

the database is true over a duration of time, a period is associated with that

fact. A period is commonly represented by a pair of instants, usually of identical

granularity. Even with a pair of instants various representations of a period are

possible (Snodgrass, 2000). As an example the period from February 1, 2000 until

June 30, 2000 is shown (both dates shall be included in the period):
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Closed-closed period: The delimiting instants are in the period. Denoted with

square brackets e.g. [DATE ’2000-02-01’, DATE ’2000-06-30’]

Closed-open period: The second instant represents the granule immediately fol-

lowing the last granule of the period. Denoted with a square and a round

bracket e.g. [DATE ’2000-02-01’, DATE ’2000-07-01’)

Open-open period: Both delimiting instants are excluded from the period. De-

noted with round brackets e.g. [DATE ’2000-01-31’, DATE ’2000-07-01’]

Open-closed period: The first instant represents the granule immediately prece-

dent to the first granule of the period. Denoted with a round and a square

bracket e.g. (DATE ’2000-01-31’, DATE ’2000-06-30’]

Periods could as well be represented by providing a starting date and an interval

e.g. (DATE ’2000-02-01’, INTERVAL ’25’ DAY). Combinations are possible again.

The preferred representation of a period is the closed-open one. It avoids the need

for the “<=” operator when doing comparison and the need to add one granule

(“+ 1”) whenever a period is constructed from a date and an interval.

Geometry of a period According to the definition in ISO (2002b) a period is a

temporal object in general and a 1-dimensional geometric primitive that represents

extent in time, in particular. In the latter a period is equivalent to a curve in

space. Like a curve, it is an open interval bounded by beginning and end points

(instants), and has length (duration). Its location in time is described by the

temporal positions of the instants at which it begins and ends (Figure 2.1); its

duration equals the temporal distance between those two temporal positions.

As a constraint the temporal position of the beginning of a period must be

less/earlier than the temporal position of the end of the period.

2.4 Relative Position

In certain situations it is more relevant determining the relative position of two

temporal objects (instants or periods) to each other than knowing their absolute

position on the time line. Thirteen relative temporal relationships have been iden-

tified by Allen (1983) and are described in the next section.

Within OGC (2006a) topological spatial relationships are defined that can oc-

cur between two geometric objects. Since spatial and temporal objects are very
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Figure 2.1: Temporal geometric primitives (ISO, 2002b, p.9)

similar in that they have both, geometry and topology, it can be assumed that

there is some analogy also among the temporal and spatial relationships. The

identified analogies are described in Section 2.4.3.

2.4.1 Temporal Relationships

Between one instant (a) and another one (b) only three relationships can occur.

The description of the relationships is based on the definition of the temporal

objects TM Instant and TM Period as shown in Figure 2.1.

• a Before b ⇔ a Before−1 b ⇔ b After a if a.position < b.position

• a Equals b ⇔ b Equals a if a.position = b.position

• a After b ⇔ a After−1 b ⇔ b Before a if a.position > b.position

Between one period a and another period b thirteen relationships can occur as

described here and shown in Figure 2.2 (period a in red color, period b in blue

color).

• a Before b⇔ a Before−1 b⇔ b After a if a.end.position < b.begin.position

• a Meets b⇔ a Meets−1 b⇔ b MetBy a if a.end.position = b.begin.position
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Figure 2.2: Temporal relationships between two periods

• a Overlaps b ⇔ a Overlaps−1 b ⇔ b OverlappedBy a if a.begin.position <

b.begin.positionAND a.end.position > b.begin.positionAND a.end.position <

b.end.position

• a Begins b⇔ aBegins−1 b⇔ b BegunBy a if a.begin.position = b.begin.position

AND a.end.position < b.end.position

• a BegunBy b⇔ aBegunBy−1 b⇔ b Begins a if a.begin.position = b.begin.position

AND a.end.position > b.end.position

• a During b⇔ aDuring−1 b⇔ b Contains a if a.begin.position > b.begin.position

AND a.end.position < b.end.position

• a Contains b⇔ a Contains−1 b⇔ b During a if a.begin.position < b.begin.position

AND a.end.position > b.end.position

• a Equals b ⇔ b Equals a if a.begin.position = other.begin.position AND

a.end.position = b.end.position

• a OverlappedBy b⇔ aOverlappedBy−1 b⇔ b Overlaps a if a.begin.position >

b.begin.positionAND a.begin.position < b.end.positionAND a.end.position >

b.end.position

• a Ends b⇔ a Ends−1 b⇔ b EndedBy a if a.begin.position > b.begin.position

AND a.end.position = b.end.position
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• a EndedBy b⇔ a EndedBy−1 b⇔ b Ends a if a.begin.position < b.begin.position

AND a.end.position = b.end.position

• a MetBy b⇔ a MetBy−1 b⇔ b Meets a if a.begin.position = b.end.position

• a After b ⇔ a After−1 b ⇔ b Before a if a.begin.position > b.end.position

Five relationships are defined between an instant and a period but are not

explicitly described here. In the context of this thesis the relationships between

two periods are considered as most relevant since the valid time or life span of

features in the database will be described by a period.

There is a number of operations that can be applied to two periods, each

operation resulting in one new period. These operations are Extend, Difference,

Intersection and Union. Figure 2.3 depicts the four operations and their results.

The length of a period can be calculated by subtracting the first delimiting instant

from the second one. This would result in an interval.

Figure 2.3: Period operations (Snodgrass, 2000, p.96)

2.4.2 Spatial Relationships

Spatial relationships between two geometric objects can be described and tested

with the Dimensionally Extended Nine-Intersection Model (DE-9IM). Within this

model each geometric object a is defined by its interior I(a), boundary B(a) and
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exterior E(a). A function dim(x) is assumed that returns the maximum dimension

(-1, 0, 1, or 2) of the geometric objects in x, with a numeric value of -1 correspond-

ing to dim(�). The intersection of any two of I(a), B(a) and E(a) can result in a set

of geometric objects, x, of mixed dimension. The results can be shown in a matrix

(Figure 2.4), the dimensionally extended nine-intersection matrix (DE-9IM).

Figure 2.4: The DE-9IM (OGC, 2006a, p.35)

On two geometric objects, a spatial relationship predicate can be expressed as

a formula that takes as input a pattern matrix representing the set of acceptable

values for the DE-9IM for the two geometric objects. If the spatial relationship

between the two geometric objects corresponds to one of the acceptable values as

represented by the pattern matrix, then the predicate returns TRUE. For each cell

of the matrix there are six possible values. These values and their meanings are

as shown in Figure 2.5.

Figure 2.5: Cell values for the DE-9IM (OGC, 2006a, p.36)

The matrix can be represented as a list of nine characters in row major order.

If a and b were two line geometries, a matrix of ’1********’ could be used to test if

the interior of the two lines intersect; a Relate (b, ’1********’) shall return TRUE

in this case.

Named spatial relationships based on the DE-9IM Using the matrix and

the Relate predicate allows for a very fine tuned testing of spatial relationships.

Nevertheless, the matrix is not the most natural way to express a spatial rela-

tionship between two geometric objects. Because of that, the most common rela-
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tionships to be tested for have been named. The following list shows the named

relationships and the related intersection matrix. With the aim to test the rela-

tionship between two periods (representable as lines) in particular, the matrix is

provided for the relationships between two lines:

• a Overlaps b ⇔ a Relate (b, ’1*T***T**’)

• a Within b ⇔ a Relate (b, ’T*F**F***’)

• a Contains b ⇔ b Within a

• a ContainsProperly b ⇔ a Relate (b, ’TTT******’)

• a Disjoint b ⇔ a Relate (b, ’FF*FF****’)

• a Intersects b ⇔ ! a Disjoint b

• a Equals b ⇔ a Relate (b, ’TFFFTFFFT’)

• a CoveredBy b ⇔ a Relate (b, ’T*F**F***’)

• a Covers b ⇔ b CoveredBy a

• a Crosses b ⇔ a Relate (b, ’0********’)

• a Touches b ⇔ [ a Relate (b, ’FT*******’) ∨ a Relate (b, ’F**T*****’) ∨ a

Relate (b, ’F***T****’) ]

The matrix is the same for the Within and CoveredBy relationships when

testing two lines. However, it will be different when testing these relationships

between e.g. a line and a polygon.

Similar to the constructive operations (Difference, Intersection and Union) for

temporal objects, methods are defined for spatial objects. Applied to two lines,

they will lead to the same result as shown in Figure 2.3. A method Length is defined

for geometries of type curve (with a line just being a special type of curve).

2.4.3 Analogy of Temporal and Spatial Relationships

Because space and time have geometry and topology, it is assumed that there is

some analogy also between the spatial and temporal relationships. However, there

is one crucial difference in that the spatial relationships do not consider any kind

of order or direction of the compared objects in space. Hence, when testing for
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temporal relationships with spatial methods, some additional condition will be

required. An attempt has been made to express the thirteen possible temporal

relationships between two periods a and b by appropriate spatial methods. This

implies that a period is represented as line geometry with its X minima defined as

Xmin and its X maxima defined as Xmax. The results are as follows:

• a Before b ⇔ Xmax(a) < Xmin(b)

• a Meets b ⇔ Xmax(a) = Xmin(b)

• a Overlaps b ⇔ a Overlaps b AND Xmin(a) < Xmin(b)

• a Begins b ⇔ Xmin(a) = Xmin(b) AND Xmax(a) < Xmax(b)

• a BegunBy b ⇔ Xmin(a) = Xmin(b) AND Xmax(a) > Xmax(b)

• a During b ⇔ b ContainsProperly a

• a Contains b ⇔ a ContainsProperly b

• a Equals b ⇔ a Equals b

• a OverlappedBy b ⇔ a Overlaps b AND Xmin(a) > Xmin(b)

• a Ends b ⇔ Xmin(a) > Xmin(b) AND Xmax(a) = Xmax(b)

• a EndedBy b ⇔ Xmin(a) < Xmin(b) AND Xmax(a) = Xmax(b)

• a MetBy b ⇔ Xmin(a) = Xmax(b)

• a After b ⇔ Xmin(a) > Xmax(b)

Only the temporal relationships During, Contains and Equals can be expressed

by a named spatial relationship alone. This is because the order of the two periods

on the time axis is not relevant in these relationships. In all other relationships

Xmin and Xmax are required to determine the order of two periods on the time axis.

Künzel (2008) suggests in his work to compare the distance of the two periods to

the origin of the relating reference system, using the spatial method Distance. The

period with the smaller distance to the origin would occur before the other one on

the time axis. This approach implies that no period can occur before the origin of

the reference system. Otherwise the approach will fail as the distance is calculated

as absolute value.
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If the order of the temporal objects on the time axis is relevant, the methods

for testing spatial relationships might not be most appropriate as shown before.

However, they might be used well in other cases. In Figure 2.2 the possible tem-

poral relationships between two periods are shown. To identify all blue periods

that share at least one granule with the red period (e.g. to find all features af-

fected by a certain time span), nine temporal relationships have to be tested for

((c)–(k)). Using the dimensionally extended nine-intersection matrix in this case

would simplify the test. A matrix of ’1********’ would cover all nine cases.

2.5 Temporal Reference Systems

A temporal position is measured relative to a temporal reference system. Three

types of temporal reference systems are defined in ISO (2002b), calendar and clocks,

ordinal reference system and temporal coordinate system. The conceptual model

for temporal reference systems is depicted in Figure 2.6.

Figure 2.6: Temporal reference systems (ISO, 2002b, p.17)

2.5.1 Calendars and Clocks

Both, calendars and clocks are based on an interval scale. A Calendar is a discrete

reference system providing a granularity of one day. By including clocks a temporal

resolution greater than a day can be achieved. A clock must be used together

with a calendar to provide a complete description of a temporal position within a
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particular day. Calendars are related to one or more calendar eras with each era

defined by be a reference date and event. Calendar years are numbered relative to

this reference date.

2.5.2 Ordinal Reference System

An ordinal reference system is based on an ordinal scale. Only the relative position

of temporal objects can be measured on such scale. Because of that an ordinal

reference system is used in domains where relative position in time is known more

precisely than duration e.g. in geology or archaeology. The order of events in time

can be determined but the exact duration between two events cannot. An ordinal

reference system consists of one or more ordinal eras; each defined by a name and,

if known, by a begin date and end date.

2.5.3 Temporal Coordinate System

A temporal coordinate system is based on an interval scale and thus allows de-

scribing the order of temporal objects, as well as measuring duration (distance)

between them. A temporal coordinate system is defined by date and time of the

scale’s origin and an interval, which is the smallest unit of measure in this coor-

dinate system. The interval determines the temporal granularity, and hence, the

precision with which time can be measured. The origin shall be specified in the

Gregorian calendar with time of day in Coordinated Universal Time (UTC). The

temporal coordinate system is the most relevant of the three types of temporal

reference systems in the context of this thesis since it is the key to representing

time as geometry.

By expressing the distance between a specific instant in time and the origin

of the coordinate system as as a multiple of the defined interval for that system,

a temporal coordinate is created. In regard to this concept ISO (2002b) defines

two supportive methods that are shown in the conceptual model for the temporal

coordinate system (Figure 2.7) and are specified as follows:

• transformDateTime(dateTime: DateTime):TM Coordinate accepts a Date-

Time value and transforms it into a temporal coordinate.

• transformCoord(c value: TM Coordinate):DateTime accepts a temporal co-

ordinate and transforms it into a DateTime value.
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Figure 2.7: Temporal coordinate system (ISO, 2002b, p.19)

TM Coordinate is a data type with two attributes, indeterminatePosition and

coordinateValue (Figure 2.8). The latter attribute is of type Number and holds

the actual distance from the scale origin. Given a scale origin of date ’2000-01-01’

and an interval of ’day’, the coordinateValue of an instant with date ’2000-01-08’

would be 7.

Figure 2.8: Data type TM Coordinate (ISO, 2002b, p.22)

2.6 Other Aspects

2.6.1 Branching of Time

There is the concept of branching time, according to which more than one time

line can lead from present to past or future (Figure 2.9).

This concept would allow to represent multiple realities over time and to create

various what-if scenarios. Support for branching of time in a database is rather

difficult to implement since having multiple versions of one feature at the same

time would violate basic concepts of keys and uniqueness.
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Figure 2.9: Bidirectional branching of time (Ott and Swiaczny, 2001, p.58)

2.6.2 Feature Succession

Feature succession is a type of temporal feature association, describing the fact

where one set of features is replaced by another set of features. The life span of

features in the first set ends at the instant when the life span of features in the sec-

ond set begins. There is a temporal and spatial aspect in feature succession as the

involved features occupy the same location at different times and in a particular

order (ISO, 2002b). There are three kinds of feature associations, division, substi-

tution and fusion. Splitting a cadastral parcel is an example of feature division,

merging two parcels into one is a fusion.

Succession associations among features can be derived using their temporal

and spatial relationships.



Chapter 3

Time in Databases

3.1 Support for Temporal Data Types

In Section 2.3 three kinds of temporal data types were described, Instant, Interval

and Period. This section briefly examines their implementation in a database

management system.

3.1.1 Instants

According to the SQL-92 standard, these data types should be implemented in a

DBMS to represent an instant:

Date to store the year, month and day of an instant. The granule is a day.

Time to store the time of the day as hours, minutes and seconds. Most DBMS

also support fractions of a second. The Time type can be with or without

time zone.

TimeStamp to represent year, month and day together with the time of the day

as hours, minutes and seconds. As with the Time type, optional support for

the fractions of a second is possible. The TimeStamp can be with or without

time zone.

Most existing database management systems support all of these types, at least

if they claim to conform with the SQL-92 standard.

22
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3.1.2 Intervals

The INTERVAL type is provided to support the handling of intervals. It can hold

and be constructed from years, months, days, hours, minutes and seconds, and,

optionally, fractions of a second. To restrict the set of fields used by the DBMS

internally to store an interval, options as YEAR TO MONTH, DAY TO HOUR

can be provided by the user when an interval is constructed.

3.1.3 Periods

Because periods are not provided in the SQL-92 standard, a particular data type

is not implemented in most DBMS. However, a custom type to hold a period could

be easily created, using the temporal data types supported by the DBMS. Listing

3.1 shows one way to create a Period type.� �
CREATE TYPE per iod AS (

validFrom timestamp with time zone ,

v a l i d T i l l timestamp with time zone

) ;� �
Listing 3.1: Creating a Period data type

3.2 Kinds of Time

When maintaining temporal information in a database, three types of time can be

differentiated, valid time, transaction time and user defined time. Only support

for valid time and/or transaction time makes a database temporal.

3.2.1 Transaction Time

Transaction time is the time when a fact becomes current in the database and

can be retrieved (Jensen et al., 1994). If a table has transaction time support, it

captures the history of its changing state and hence can be reconstructed as of a

previous date. That also implies that from such transaction-time state table rows

can never be deleted physically, only logically (Snodgrass, 2000).
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3.2.2 Valid Time

Valid time is the time when a fact became true in reality (Jensen et al., 1994).

Because of that it is often called event time or world time, too. Supporting valid

time in the database allows recording the history of the modelled reality. A table

with valid-time support records states, that is facts, that are true over a period of

time (Snodgrass, 2000).

Valid time can never be later than transaction time if only events are considered

that really happened. The situation is different when future events are stored

as well, e.g. to simulate a what-if scenario. In a real time system valid time

and transaction time would be identical. However, in practice events are usually

stored some time after they occurred. The interrelation between valid time and

transaction time is shown in Figure 3.1.

Figure 3.1: Interrelation between valid time and transaction time (Ott and

Swiaczny, 2001, p.70)

3.2.3 User-Defined Time

If a table has a column of a temporal data type and this column does not indicate

when other columns were valid or when a fact was stored or modified in the
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database, this column is a user-defined time column. It is a column as any other

column, but happens to be of a temporal data type. A column recording the

birthday of a person would be an example for user-defined time.

3.2.4 Classification of Temporal Databases

According to the support available for valid time and/or transaction time, a

database can be classified as shown in Table 3.1.

no support for trans-

action time

support for transaction

time

no support for valid

time
static rollback

support for valid time historic bi-temporal

Table 3.1: Classification of temporal databases (Worboys, 1994, p.28)

A static database has no temporal support at all. It stores only the information

currently valid. Old data will simply be overwritten by new data. A bi-temporal

database, storing valid time and transaction time, is most powerful. It allows to

present the modelled reality for any given point in time as well as to find out when

a fact became known to the database. This is very useful in the cases where facts

are not recorded in the order in which they occur in reality.

3.3 Version Management

Version management in the context of this work describes how to keep a record

of the various versions (historical, current and future ones) that might exist for a

feature. A version is caused by an event happening to a real world phenomenon,

represented by a feature in the database. In most cases it is historical versioning

that is applied, meaning that versions are kept from the past up to now. Depending

on the particular implementation, it might also be permitted to record versions

with a valid time beginning in the future, e.g. to simulate a what-if scenario or to

store a fact ahead of time that is known to happen.

Versioning discussed in the context of this work shall not be confused with

concurrent versioning. Concurrent versioning is a technique applied to permit

multiple users/clients to work with the same data at the same time and over a
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longer period of time without conflicting with each other. Without concurrent

versioning a dataset would have to be locked explicitly, permitting exactly one

client to apply changes, with read access only for any other client. Concurrent

versioning is basically implemented by creating a separate copy (a “version”) of

the original data for each client. Once all changes are applied to a version, the

version will be merged with the original data, taking into account certain rules to

solve conflicts that might occur in that moment.

Version management as looked at in this document can occur on four lev-

els: database, relation, tuple and attribute. With each level, data redundancy

decreases.

Database level This is probably the most archaic type of versioning. A snap-

shot of the entire database is created each time a change occurs. The data redun-

dancy is inherently enormous. This kind of versioning might only be reasonable in

a field of application where changes rarely occur (e.g. in geology) and if they occur,

preferably multiple ones at the same time. Database-level versioning applied to

a domain with frequent changes might become very inconvenient since creating a

snapshot of the entire database will take time and affect the performance of the

database if it is running during that time. The situation becomes even worse if

the database needs to be shut down every time a snapshot is created.

Relation level With this type of versioning a snapshot is created of the tables

only in which a change occurred. Although data redundancy would be less than

with database-level versioning, it is still considerable. Again, relation-level ver-

sioning might be suitable if many changes occur to the same table at the same

time.

Tuple level Only a snapshot of the row that experienced a change is created.

To record the valid time, two timestamp columns for begin and end of the period

are added to the table. Tuple-level versioning is probably the most common type

implemented in systems, because it represents a good compromise between appli-

cability and data redundancy. The topics discussed in the subsequent sections of

this chapter (temporal keys and time-oriented statements) all relate to tuple-level

versioning.
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Attribute level Only the attributes that changed are included in the snapshot.

Although this level of versioning is perfect in regard to data redundancy (there is

no redundancy), it requires a very particular database schema. Because of that,

attribute-level versioning is not found very often in existing systems.

3.4 Temporal Keys

3.4.1 Candidate Keys and Functional Dependency

Most of the existing database management systems are based on the Relational

Model formulated and proposed by E. F. Codd in 1969. Given a number of value

domains D1, D2, ..., Dn that must contain atomic values only, a relation R is, ac-

cording to this model, defined as a subset of the Cartesian product of the n domains

(Kemper and Eickler, 2001): R ⊆ D1 × · · · ×Dn

A relation is implemented as a table with the table columns/attributes rep-

resenting the domains. Between the sets of attributes in a relation a functional

dependency can exist. With α representing one set of attributes and β repre-

senting another set of attributes in R, α functionally determines β (α → β) if,

and only if one value of β is associated with precisely one value of α. Thus, β

is functionally dependent on α. A candidate key is a minimal set of attributes

that functionally determine all of the attributes in a relation. An example is

given in Table 3.2. From all the attributes only personNr would be a candidate

key, since it is the only attribute that functionally determines all other attributes,

{personNr} → {surname, name, birthday}.

personNr surname name birthday

32 Wagner Michael 1974-11-21

78 Wagner Alexander 1979-01-04

212 Lottes Horst 1931-02-13

439 Schmidt Michael 1931-02-13

Table 3.2: personNr as candidate key

To ensure that a candidate key is not violated by a table entry, the SQL

PRIMARY KEY construct can be used. It checks that the entries in one or more

columns forming the candidate key are unique and not empty (“null”).
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3.4.2 Sequenced Primary Key

Unfortunately the PRIMARY KEY construct is not adequate for a temporal

database, in particular one with valid-time support. Table 3.3 shows a valid-

time state table containing information about land use plots. Besides the id and

type of land use, the table holds the id of the parcel this plot is related to, and

the plot’s valid time (validFrom, validTill). The valid time is represented by a

closed-open period.

landuseId landuseType parcel validFrom validTill

112 Forest 200/2 1995-01-01 2002-08-01

112 Agriculture 200/2 2002-04-01 2004-02-01

Table 3.3: Extract of table landuse

This table basically states that land use plot 112 exists twice at the same time

(for four months) which in reality cannot occur. Although the valid time must

be somehow taken into account in the table’s primary key, none of the following

primary key constraints would prevent the shown deficiency:� �
ALTER TABLE landuse ADD PRIMARY KEY ( landuseId , validFrom ) ;

ALTER TABLE landuse ADD PRIMARY KEY ( landuseId , v a l i d T i l l ) ;

ALTER TABLE landuse ADD PRIMARY KEY ( landuseId , validFrom ,

v a l i d T i l l ) ;� �
Listing 3.2: Attempting to create a temporal key

What is required is a sequenced primary key. Such key is implemented through

a sequenced constraint. A sequenced constraint is one that is applied indepen-

dently at each point in time (Snodgrass, 2000). A sequenced constraint for table

landuse could be specified in SQL as follows:� �
CREATE ASSERTION seq pr imary key

CHECK (NOT EXISTS ( SELECT ∗
FROM landuse AS lu1 WHERE 1 < (SELECT COUNT( landuseId )

FROM landuse AS lu2 WHERE Iu1 . landuseId = I2 . landuseId

AND Iu1 . validFrom < Iu2 . v a l i d T i l l

AND Iu2 . validFrom < Iu1 . v a l i d T i l l ) )

AND NOT EXISTS ( SELECT ∗ FROM landuse AS lu

WHERE lu . landuseId IS NULL) ) ;
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� �
Listing 3.3: Expressing a sequenced primary key (adapted from Snodgrass (2000,

p.118))

This constraint actually checks if the valid time periods of any land use plots

with the same landuseId overlap.

3.4.3 Duplicates

Snodgrass (2000) identified four kinds of duplicates that can occur in a table with

valid time support:

Value equivalence The first kind is value equivalence which occurs if the non-

timestamp columns of two or more rows are identical. Value equivalence can be

prevented by using the SQL UNIQUE constraint on the non-timestamp columns.

For the table landuse the constraint looks like this:� �
CREATE TABLE landuse (

. . .

UNIQUE( landuseId , landuseType , p a r c e l )

) ;� �
Listing 3.4: Preventing value equivalence

There are also cases that might require to allow for value equivalence. E.g.

the same land use plot could be of type Forest for several years, later on of type

Agriculture and at some point again of type Forest.

Sequenced duplicates Two rows are sequenced duplicates if they are duplicates

at some instant. Sequenced duplicates are prevented with a sequenced constraint.

For the table landuse the constraint in Listing 3.3 can be applied without any

modification.

Current duplicates Two rows are current duplicates if they are sequenced du-

plicates at the current instant. Current duplicates are prevented implicitly by

preventing sequenced duplicates.
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Non-sequenced duplicates Two rows are non-sequenced duplicates if the val-

ues of all columns are identical. Non-sequenced duplicates are prevented implicitly

by preventing value equivalence and/or sequenced duplicates.

3.4.4 Referential Integrity

If the candidate key of one relation is used as an attribute in another relation, it

is called a Foreign Key. Let R and S be two relations and κ the primary key of

R. In this case is α ⊂ S a foreign key if for all tuples s ∈ S applies (Kemper and

Eickler, 2001):

• s.α contains either no null values or only values different from null.

• If s.α contains values different from null, a tuple r ∈ R must exist with

s.α = r.κ

Referential integrity is established if these conditions are met. How referen-

tial integrity is expressed and ensured depends on whether the referencing and

referenced tables are temporal tables. Four cases were identified by Snodgrass

(2000):

Neither table is temporal In such case standard SQL constructs are adequate.

If the landuse table had no valid time support and shall reference a table parcel via

an attribute named parcel, an SQL statement as follows could be used to declare

this attribute as foreign key:� �
CREATE TABLE landuse (

. . .

p a r c e l varchar (10) REFERENCES parce l ,

. . .

) ;� �
Listing 3.5: Creating a foreign key

Only the referencing table is temporal If only the table landuse were tem-

poral, the same SQL statement as above applies.
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Both tables are temporal A sequenced foreign key is required in the case that

both tables are temporal, and is expressed as an assertion or SQL constraint. A

sequenced constraint always covers a current constraint implicitly (as a current

constraint is just a special case of a sequenced constraint). The key is a sequenced

foreign key if, for all rows r in the referencing table,

• there is a row with that key value valid in the referenced table when r started,

• there is a row with that key value valid in the referenced table when r

stopped,

• and there are no gaps when there are no rows in the referenced table, during

r ’s period of validity, that have that key value (Snodgrass, 2000).

Assuming a relation parcel with a schema as shown in Table 3.4, a sequenced

foreign key for table landuse could be expressed with the SQL in Listing 3.6.

parcelId legalSize description validFrom validTill

200/2 560.40 XXX 1994-01-01 2002-08-01

312 1735.80 YYY 2006-04-01 2009-02-01

Table 3.4: Extract of table parcel

� �
CREATE ASSERTION s e q f o r e i g n k e y

CHECK (NOT EXISTS (

SELECT ∗ FROM landuse AS Iu

WHERE NOT EXISTS (

SELECT ∗ FROM p a r c e l AS p

WHERE lu . p a r c e l = p . p a r c e l I d

AND p . validFrom <= lu . validFrom

AND lu . validFrom < p . v a l i d T i l l )

OR NOT EXISTS (

SELECT ∗ FROM p a r c e l AS p

WHERE lu . p a r c e l = p . p a r c e l I d

AND p . validFrom < lu . v a l i d T i l l

AND lu . v a l i d T i l l <= p . v a l i d T i l l )

OR EXISTS (

SELECT ∗ FROM p a r c e l AS p

WHERE lu . p a r c e l = p . p a r c e l I d
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AND lu . validFrom < p . v a l i d T i l l

AND p . v a l i d T i l l < lu . v a l i d T i l l

AND NOT EXISTS (

SELECT ∗ FROM p a r c e l AS p2

WHERE p2 . p a r c e l I d = p . p a r c e l I d

AND p2 . validFrom <= p . v a l i d T i l l

AND p . v a l i d T i l l < p2 . v a l i d T i l l ) ) ) ) ;� �
Listing 3.6: Creating a sequenced foreign key (adapted from Snodgrass (2000,

p.128))

In Chapter 6 it will be shown how this rather big statement can be simplified

by representing the valid-time period of parcels and land use plots as geometry

and using spatial functions to express the sequenced foreign key.

Only the referenced table is temporal If parcel were a temporal table and

landuse were not, the foreign key could be expressed as follows:� �
CREATE ASSERTION c u r r e n t f o r e i g n k e y

CHECK (NOT EXISTS (

SELECT ∗
FROM landuse AS lu

WHERE NOT EXISTS (

SELECT ∗
FROM p a r c e l AS p

WHERE lu . p a r c e l = p . p a r c e l I d

AND p . v a l i d T i l l = DATE ’ 9999−12−31 ’ ) ) ) ;� �
Listing 3.7: Creating a current foreign key (adapted from Snodgrass (2000, p.130))

This construct implies three facts:

1. Table parcel contains no rows that start in the future.

2. A value of “9999-12-31” in validTill of table parcel indicates the rows that

are currently valid.

3. The non-temporal table landuse records current data only.
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3.5 Time-Oriented Statements

The statements discussed in this section include query statements (SELECT) as

well as statements to modify data (INSERT, UPDATE, DELETE). SELECT, IN-

SERT, UPDATE and DELETE are the most relevant statements of the Data Ma-

nipulation Language (DML). In relation to valid-time state tables these statements

can be of kind current (now), sequenced (at each instant of time) or non-sequenced

(ignoring time) (Snodgrass, 2000). The SELECT statement will be looked at very

briefly only since it is not as relevant in the context of this thesis and the history

extension as the statements to modify data. In regard to the other statements

their sequenced version will be examined in particular. The sequenced version is

the most useful of the time-oriented statements, the most complex one to express,

and covers the current version of the statements implicitly.

With the temporal statements described in this section, it is assumed that

all information (historical, current and possible future one) is kept in one table.

There is also a concept called temporal partitioning according to which the current

information is stored in one table and historical one in another table. Current

queries and insertions would be quite simple but future data cannot be stored

applying this concept. Temporal partitioning is not further discussed here.

3.5.1 SELECT

To find out the land use plots that are true now, a query as follows could be used:� �
SELECT landuseId , landuseType , p a r c e l

FROM landuse WHERE v a l i d T i l l = DATE ’ 9999−12−31 ’ ;� �
Listing 3.8: Extracting the current state

Again, this query implies that no future data is stored in landuse and that the

date “9999-12-31” in validTill indicates rows currently valid. To find out the land

use plots at any point in time, the query in Listing 3.9 can be used. Here data

valid on March 1, 2009 shall be retrieved.� �
SELECT landuseId , landuseType , p a r c e l

FROM landuse WHERE validFrom <= DATE ’ 2009−03−01 ’

AND DATE ’ 2009−03−01 ’ < v a l i d T i l l ;� �
Listing 3.9: Extracting the state at any time
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A similar construct could be used to retrieve the rows valid during a certain

period of time.

A non-sequenced query would simply ignore the temporal nature of a table,

e.g.:� �
SELECT ∗ FROM landuse ;� �

Listing 3.10: Non-sequenced query

3.5.2 INSERT

In a sequenced insertion the period of applicability is provided by the client, e.g.:� �
INSERT INTO landuse VALUES ( ’ 112 ’ , ’ Forest ’ , ’ 200/2 ’ ,

DATE ’ 2006−01−03 ’ , DATE ’ 2008−05−12 ’ ) ;� �
Listing 3.11: Sequenced insertion

Care must be taken to ensure the temporal key and referential integrity during

a sequenced insertion. Thus, as described by Snodgrass (2000), a row is only

inserted:

• if no duplicate exists during the period of applicability,

• and if there is a row in the referenced table at the start of the period of

applicability,

• and if there is a row at the end of the period of applicability,

• and if there are no gaps during the period of applicability.

The first issue is covered by a sequenced primary key as shown in Listing 3.3.

The last three points (referential integrity) are covered by a sequenced foreign key

as in Listing 3.6.

3.5.3 UPDATE

As defined by Snodgrass (2000), “A sequenced update is the temporal analog of

a nontemporal update, with a specified period of applicability...“. Implementing

a sequenced update requires five statements, two INSERTs and three UPDATEs.

These statements reflect the four ways the valid-time period of a row can intersect

with the period of applicability. The meaning of the term intersect in this context

is that the two periods share at least one granule of time.
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Figure 3.2: Steps of a sequenced update

This is what each of the five statements does (Snodgrass, 2000):

• Insert the old values from the start date to the beginning of the period of

applicability.

• Insert the old values from the end of the period of applicability to the end

date.

• Update the explicit columns of rows that overlap the period of applicability.

• Update the start date to begin at the beginning of the period of applicability

of rows that overlap the period of applicability.

• Update the end date to end at the end of the period of applicability of rows

that overlap the period of applicability.

The statements must be executed in exactly the order as listed. Figure 3.2

shows the result of each single statement. The period of applicability is shown in

red color. The four cases of how the valid-time period initially intersects with the
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period of applicability are shown in blue, green, yellow and grey color. The result

of the first UPDATE statement remains the same in regard to the valid time since

this UPDATE modifies only the non-timestamp columns of the table. Because of

that the result of the first UPDATE is not explicitly shown, in fact it is still the

result of the second INSERT.

Care must be taken if the updated table references another table. In this case

the foreign key constraint in Listing 3.6 applies. An update of the referenced table

does not affect the referencing table if its primary key is not updatable. Otherwise

Listing 3.6 applies again.

A non-sequenced update treats the valid time columns as any other column

and can modify them in an arbitrary way. Because of that non-sequenced updates

(as well as deletions) should be avoided if sequenced constraints are present.

3.5.4 DELETE

A sequenced deletion is implemented by four statements, an INSERT, two UP-

DATEs and a DELETE (Snodgrass, 2000):

• Insert the old values from the end of the period of applicability to the end

of the period of validity of the original row.

• Update the end date to end at the beginning of the period of applicability.

• Update the start date to begin at the end of the period of applicability.

• Delete entirely rows that are covered by the period of applicability.

As with a sequenced update, the statements are required to take into account

the four cases of how a row’s valid-time period might intersect the period of ap-

plicability. The order of the statements matters. Figure 3.3 depicts the result of

each of the four statements.

A sequenced deletion on a referenced table could cause a gap, violating a foreign

key in the referencing table. To prevent this, a sequenced foreign key constraint

(Listing 3.6) must be applied. Both, sequenced updates and sequenced deletions

might temporary violate the sequenced primary key because rows will overlap in

their valid time during the execution of the five and four statements, respectively.

This is caused by the INSERT statements (required for the “blue” rows) and can be

seen in Figures 3.2 and 3.3. To prevent the update or deletion from being cancelled,
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Figure 3.3: Steps of a sequenced deletion

the primary key constraint must be declared as “DEFERRABLE INITIALLY

DEFERRED”. In this case the constraint will not be applied after each statement,

but only at the end of the transaction within which the statements are executed.
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Implementation Samples

In this chapter two examples for the implementation of temporal support in

databases are discussed briefly.

4.1 Oracle Workspace Manager 11g

The Oracle Workspace Manager is a feature of the Oracle database management

system. It is a PL / SQL (PL: Procedural Language) package that version-enables

user tables (Oracle, 2007). The package consists of a number of database proce-

dures, data types and operators that support not only versioning but also valid time

and transaction time. In that sense an Oracle database used with the Workspace

Manager is a real bi-temporal database. Versioning in the context of Workspace

Manager is the capability to maintain multiple versions of the same data simul-

taneously by isolating them in so called workspaces. Workspaces are virtual only,

the data itself still is kept in the version-enabled table. One of the main benefits

of Workspace Manager is that users can work independently in their workspaces,

without conflicting or affecting the production version of the data or data in other

workspaces. Besides that, multiple what-if scenarios could be created, each sce-

nario in its own workspace. Hence, branching of time is possible since various

workspaces can hold scenarios that cover the same period of time.

When a table is version-enabled, the table is renamed and a view created on

that table, given the original table name. INSTEAD OF triggers are created on

the view that ensure that all INSERTs, UPDATEs and DELETEs executed on

the view are applied to the underlying table. Metadata columns are added to the

table to allow multiple version of a row with the same user-defined primary key to
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exist in the database. Existing referential integrity is ensured. Thus, to a client

application the database schema still looks the same, no changes are required at

the client’s side. Besides the view just described, a number of supportive tables

and views are created by Workspace Manager. This number varies, depending on

whether support for valid time and/or transaction time is requested when a table

is version-enabled. The unit of versioning is a row/tuple. This relates in a way

to Section 3.3 where tuple-level versioning was described as a concept that is well

applicable while data redundancy is negligible.

Listing 4.1 shows how a table is version-enabled in Oracle Workspace Manager

(Oracle, 2008).� �
EXECUTE DBMSWM. EnableVers ioning ( ’ landuse ’ ,

’VIEW WO OVERWRITE’ , FALSE, TRUE) ;� �
Listing 4.1: Version-enabling a table

The first argument in the EnableVersioning(...) procedure is the name of the

table to be version-enabled. The second one enables support for transaction time

in this particular sample, while the last argument enables support for valid time.

If valid time support is enabled for a table, the user sets the valid time in his

session context before executing any query or modification statement. To do this,

Workspace Manager provides a procedure shown in Listing 4.2. The valid time (in

fact the period of applicability) set this way, acts as filter on all subsequent queries

or modifications. In regard to valid time, workspace manager supports sequenced

queries and modifications, i.e. at each instant in time covering the past, now and

the future.� �
EXECUTE DBMSWM. SetValidTime (TO DATE( ’ 01−01−1900 ’ ,

’MM−DD−YYYY’ ) , TO DATE( ’ 01−01−9999 ’ , ’MM−DD−YYYY’ ) ) ;� �
Listing 4.2: Setting the period of applicability

For the actual workspace management numerous procedures are available to

create, goto, remove, merge, compress or rollback workspaces. Workspace manage-

ment is beyond the scope of this thesis and not further discussed. Overall, Oracle

Workspace Manager is with its support for concurrent versioning, transaction time

and valid time, one of the most sophisticated implementations of temporal support

in databases.
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4.2 PostgreSQL Time Travel

Time Travel is a small extension to PostgreSQL enabling support for transaction

time in user tables. To enable transaction time support, two columns of type

abstime (timestamp-like) must be added to the user table to hold the create and

retire time of the rows. Furthermore a trigger must be created that fires before

every INSERT, UPDATE and DELETE of a row from this table. This trigger will

execute a function timetravel() that is provided with the extension and that will

take care of a behaviour as follows:

• If a row is inserted, its create timestamp is set to the current instant, the

retire timestamp is set to ’infinity’.

• If a row is updated, the retire timestamp of the row containing the old data

is set to the current instant and a new row is inserted, holding the new

data. This row’s create timestamp is set to the current instant and its retire

timestamp set to ’infinity’.

• Deleting a row will only cause the retire timestamp of the row set to the

current instant. The row will not be deleted from the table physically.

• Once the retire timestamp of a row has been set to a date and time different

from ’infinity’, the row cannot be modified anymore.

Looking at this concept it is obvious that tuple-level versioning is applied again.



Chapter 5

PostgreSQL and PostGIS

This chapter provides a brief introduction to the Open Source database manage-

ment system PostgreSQL and its spatial extension PostGIS. The focus is on those

capabilities and functionality that will be used to implement the history extension.

5.1 PostgreSQL 8.4.1

PostgreSQL can, without any doubt, be described as the most advanced Open

Source DBMS currently available. PostgreSQL is a object-relational DBMS and

supports crucial database features, among them:

• Complex queries

• Referential integrity

• Views

• Triggers

• Transactions

• Multi-version concurrency control

• Cursors

• Sequences

• Various authentication schemas

Furthermore it can be extended by a user in many ways, e.g. by adding new:
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• Data types

• Functions

• Operators

• Index methods

• Procedural languages

The current official manual contains 2119 pages (The PostgreSQL Global De-

velopment Group, 2009), the number giving a hint of the comprehensiveness of

PostgreSQL.

5.1.1 Support for Temporal Data Types

PostgreSQL supports instants with three data types:

• timestamp with time zone (and without)

• time with time zone (and without)

• date

To represent intervals a data type interval is provided. No special support is

available for periods. However, a custom data type to hold a period can easily be

created as shown in Listing 3.1. A number of constructors, functions and operators

are available for each of the data types. In PostgreSQL a special value infinity is

defined, representing a timestamp later than all other timestamps. This value is

very useful and can be applied to declare a row as currently valid by setting its

valid-time end to infinity. Hence, a special date as ’9999-12-31’ is not required

anymore. PostgreSQL uses the Julian calendar for all date/time calculations but

with the assumption that a calendar year has a length of 365.2425 days, as in the

Gregorian calendar. Thus, the precise Gregorian year (as very close to the solar

calendar) is used together with the large range of the Julian calendar, reaching

from 4713 BC to far in the future.
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5.1.2 Views

PostgreSQL supports views as part of its Data Definition Language (DDL). A

view is a kind of virtual table allowing different “views” on data from one or more

physical tables. Besides viewing data from the physical tables, data could even

be modified if views are used in combination with rules. The SQL statement in

Listing 5.1 will create a view that will show only current land use plots. It is

assumed again that date ’9999-12-31’ indicates the rows currently valid.� �
CREATE VIEW c u r r e n t l a n d u s e p l o t s AS

SELECT landuseId , landuseType , p a r c e l FROM

landuse WHERE v a l i d T i l l = DATE ’ 9999−12−31 ’ ;� �
Listing 5.1: Creating a view

5.1.3 Triggers

A trigger is a specification that will cause a particular function to be executed if a

certain operation is performed on a table. Triggers are supported in PostgreSQL

and can be defined to execute before or after any INSERT, UPDATE or DELETE

operation. Whether triggers are fired before or after an operation, affects the

visibility of the changes caused by the operation. Triggers can either fire once per

each modified row or once per SQL statement.

Besides “before” and “after” as the moment when a trigger fires, the SQL

standard defines also INSTEAD OF triggers. Such triggers are used to perform

an operation different from the original operation (“instead of”) that caused the

trigger to fire. INSTEAD OF triggers are not (yet) supported in PostgreSQL but

rules can be used to simulate this functionality. In PostgreSQL, triggers have

to be used instead of assertions and complex table constraints since those SQL

constructs are not (yet) supported.

Listing 5.2 creates a trigger that is fired after each deletion of a row from table

landuse. When fired the trigger will execute a function named xxx().� �
CREATE TRIGGER t e s t t r i g g e r

AFTER DELETE ON landuse

FOR EACH ROW EXECUTE PROCEDURE xxx ( ) ;� �
Listing 5.2: Creating a trigger
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5.1.4 Rules

Rules permit defining an additional or alternative action to be performed when a

SELECT, INSERT, UPDATE or DELETE operation is applied to a table or view.

This way a rule could be used to simulate an INSTEAD OF trigger. It can also be

used to create an updatable view by replacing the INSERT, UPDATE or DELETE

operation applied to the view with an appropriate operation on the relating table.

The rule in Listing 5.3 will prevent rows from being deleted from table landuse

and show a message instead.� �
CREATE RULE p r e v e n t d e l e t i o n AS

ON DELETE TO landuse DO INSTEAD

(

SELECT showMessage ( ’ De l e t i on not permitted ! ’ ) ;

) ;� �
Listing 5.3: Creating a rule

5.1.5 PL/pgSQL

PL/pgSQL is a loadable procedural language for PostgreSQL (“loadable” into the

database server). It can be used to:

1. create functions and trigger procedures,

2. add control structures to the SQL language,

3. and perform complex computations.

The functions and procedures written in PL/pgSQL are stored inside the

database server (“stored procedures”). Once stored, they can be used as any

built-in function. In the rule in Listing 5.3 it is shown how such function (showMes-

sage(text)) is used.

5.2 PostGIS 1.4.0

PostGIS is the spatial extension to PostgreSQL, providing support for the storage

of geometry and advanced GIS analysis in the database (Refractions Research,

2009). It complies with the Simple Feature Access Specification (SQL option) of
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the OGC (OGC, 2006b). PostGIS provides a special data type geometry and a

number of functions and operators for:

• creating geometry,

• accessing geometry,

• editing geometry,

• testing spatial relationships,

• processing geometry

• and linear referencing.

5.2.1 Creating Geometry

Geometry can be created from its representation as Well Know Text (WKT) which

is a human readable format to describe geometry. Furthermore geometry can be

constructed from the Well Known Binary (WKB) format. The statement in Listing

5.4 creates a line geometry from WKT, consisting of two vertexes.� �
SELECT ST GeomFromText( ’LINESTRING(5 10 , 15 20) ’ , −1) ;� �

Listing 5.4: Creating a line from WKT

5.2.2 Accessing Geometry

Various functions are available to access the components of a geometry, among

them:

ST StartPoint(geometry):Point that returns the first point of a LINESTRING

geometry as POINT geometry

ST EndPoint(geometry):Point that returns the last point of a LINESTRING

geometry as POINT geometry

ST XMin(geometry):Double that returns the X minima of a bounding box or

a geometry

ST XMax(geometry):Double that returns the X maxima of a bounding box

or a geometry

The two latter functions are PostGIS specific and not defined in the Simple

Feature Access Specification of the OGC.
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5.2.3 Testing Spatial Relationships

Spatial operators The spatial operators in PostGIS test the spatial relationship

of the bounding boxes of two geometries. All bounding box operators will make use

of a spatial index if available for the geometries. Using the bounding box operator

together with the actual spatial relationship function (e.g. ST Relate(...)) can

speed up the query. In the example in Listing 5.5 the “&&” operator is used that

will return ’TRUE’ if the bounding boxes of the two lines intersect.� �
SELECT ST GeomFromText( ’LINESTRING(5 10 , 15 20) ’ , −1) &&

ST GeomFromText( ’LINESTRING(25 3 , 11 7) ’ , −1) ;� �
Listing 5.5: Using the “&&” operator

Spatial relationship functions PostGIS supports all the functions to test

named spatial relationships as defined in OGC (2006a). These are:

• ST Contains(geometry a, geometry b):boolean

• ST Within(geometry a, geometry b):boolean

• ST Intersects(geometry a, geometry b):boolean

• ST Equals(geometry a, geometry b):boolean

• ST Disjoint(geometry a, geometry b):boolean

• ST Crosses(geometry a, geometry b):boolean

• ST Overlaps(geometry a, geometry b):boolean

• ST Touches(geometry a, geometry b):boolean

• ST Relate(geometry a, geometry b, text intersectionPatternMatrix):boolean

The functions return TRUE if the tested relationship exists, otherwise they

return FALSE.

Additionally PostGIS provides the following functions:

• ST Covers(geometry a, geometry b):boolean

• ST CoveredBy(geometry a, geometry b):boolean
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• ST ContainsProperly(geometry a, geometry b):boolean

• ST Relate(geometry a, geometry b):text

The last function will return the intersection pattern matrix that describes the

spatial relationship between the two provided geometries. The relating intersection

matrices for all named spatial relationships can be found in Section 2.4.2.

5.2.4 Geometry Processing

In regard to geometry processing, PostGIS supports all functions as defined in

OGC (2006a), among them:

• ST Difference(geometry a, geometry b):geometry

• ST Union(geometry a, geometry b):geometry

• ST Intersection(geometry a, geometry b):geometry



Part II

Implementation of a Prototype
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Chapter 6

Concept

Temporal support in databases is required in many fields of application. In most

cases it is support for valid time that is needed since the moment when a change

occurred in reality is more relevant than the moment when an information was

entered in the system. However, there are certainly situations when transaction-

time support is as crucial as support for valid time, e.g. if the instant when an

information was entered or modified in the system has legal implications. The

implementation of a prototypical history extension in the context of this thesis

will provide support for valid time only. Although named history extension it will

also allow for recording of information whose valid time begins in the future. In this

regard, sequenced statements (i.e. at each instant of time) will be fully supported.

The term history extension is related to the classification of Worboys (1994) who

categorized databases with only valid-time support as historic databases. In fact,

the capability to keep track of the history of data is in most cases much more

relevant than recording future data.

Concerning the type of version management in the extension, tuple-level ver-

sioning will be applied. The valid-time period of a feature will be stored as a line

in a column of data type geometry. Instead of the line two timestamp columns

could have been used as well to record begin and end of the valid-time period.

However, part of the concept is to make use of the spatial analysis capabilities of

PostGIS when working with time, assuming that certain kinds of temporal analysis

are facilitated this way.
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6.1 Scope of Work

The history extension will be implemented by making use of database functional-

ities as procedures, rules and triggers. The procedures will cover the conversion

between time and geometry as well as setting and retrieving the period of ap-

plicability for queries and modifications. The rules are required to execute the

actual sequenced insertions, updates and deletions while the triggers will ensure

sequenced primary keys and referential integrity.

Two existing sample tables parcel and landuse will be converted to add support

for valid time. The required conversion steps for a table are as follows:

1. Add a column of type geometry (line in particular) to record the valid-time

period of features.

2. Drop the original primary key constraint and, if applicable, foreign key con-

straint.

3. Rename the table.

4. Create a view on the table, given the original name of the table.

5. Create rules on the view that implement a sequenced INSERT, UPDATE

and DELETE.

6. Create triggers on the table to ensure sequenced primary key and, if appli-

cable, referential integrity.

Finally the extension will be tested with the two sample tables by applying

various modifications (insertions, updates and deletions) covering past, current

and future ones. An example of feature succession will be shown by dividing a

parcel. Using the spatial and temporal relationships among parcels the lineage of

a particular parcel will be determined.

6.2 Conversion between Time and Geometry

The definition of a temporal coordinate system is provided in ISO (2002b). A

discussion and interpretation of this concept can be found in Section 2.5.3 of this

thesis. The principle of how to convert time to geometry is explained there, too.

According to this principle, the temporal coordinate (C) for an instant of time is
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created by expressing the distance between this instant (I) and the origin (O) of

the coordinate system as as a multiple of the defined scale interval (i) for that

system: C = (I −O)[i]. The scale interval can be ’second’, ’minute’, ’hour’, ’day’,

etc. Figure 6.1 depicts this principle. Given a period defined by two instants of

date ’2005-01-08’ and ’2005-01-13’, an origin of the temporal coordinate system

defined by date ’2005-01-01’ and a scale interval of ’day’, the temporal coordinates

of the two instants are 7 and 12. With a scale interval of ’hour’, the temporal

coordinates were 168 and 288.

Figure 6.1: Temporal Coordinates

Vice versa, knowing the origin of the temporal coordinate system, its scale

interval and a temporal coordinate in this system, the instant for that temporal

coordinate can be calculated as I = O + C[i].

6.3 Sequenced Modifications

As described in the Sections 3.5.3 and 3.5.4, a sequenced update requires five SQL

statements while a sequenced deletion requires four SQL statements. The number

of statements is necessary to cover the four ways of how a feature’s valid-time

period can intersect with the period of applicability. This section goes through

each of the five and four statements, respectively and describes how the spatial

relationship functions will be used to detect the rows that are targeted by each

statement. It is assumed that the period of applicability (PA) as well as the period

of validity (PV) of each row are represented by line geometries.

6.3.1 Update

In Figure 6.2 the rows affected by each of the five statements are marked in blue

color.
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Figure 6.2: Target rows for sequenced update (in blue)

1st INSERT Insert the old values from the start date to the beginning of the

period of applicability. To detect these rows a test is done as follows:� �
. . .WHERE. . . PV && PA AND ST Relate (PV, PA, ’ 1∗∗∗∗∗∗∗∗ ’ )

AND ST XMin(PV) < ST XMin(PA) ;� �
Listing 6.1: Finding the target rows of 1st INSERT

The operator “&&” is used to verify if the bounding boxes of the two geometries

intersect. Only then, the next condition (ST Relate(...)) will be tested. The

intersection pattern matrix ’1********’ will test if the interior of PV and the

interior of PA intersect, i.e. the periods share at least one granule of time. To

eliminate the rows overlapping the end of the PA an additional test is required

that compares the X minima of both periods.
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2nd INSERT Insert the old values from the end of the period of applicability to

the end date. The target rows of this statement are detected as follows:� �
. . .WHERE. . . PV && PA AND ST Relate (PV, PA, ’ 1∗∗∗∗∗∗∗∗ ’ )

AND ST XMax(PV) > ST XMax(PA) ;� �
Listing 6.2: Finding the target rows of 2nd INSERT

1st UPDATE Update the explicit columns of rows that overlap the period of

applicability. The target rows of this statement are detected as follows:� �
. . .WHERE. . . PV && PA AND ST Relate (PV, PA, ’ 1∗∗∗∗∗∗∗∗ ’ ) ;� �

Listing 6.3: Finding the target rows of 1st UPDATE

This test will select all rows whose period of validity shares at least one granule

of time with the period of applicability.

2nd UPDATE Update the start date to begin at the beginning of the period of

applicability of rows that overlap the period of applicability. The target rows of

this statement are detected as follows:� �
. . .WHERE. . . PV && PA AND ST Relate (PV, PA, ’ 1∗∗∗∗∗∗∗∗ ’ )

AND ST XMin(PV) < ST XMin(PA) ;� �
Listing 6.4: Finding the target rows of 2nd UPDATE

3rd UPDATE Update the end date to end at the end of the period of appli-

cability of rows that overlap the period of applicability. The target rows of this

statement are detected as follows:� �
. . .WHERE. . . PV && PA AND ST Relate (PV, PA, ’ 1∗∗∗∗∗∗∗∗ ’ )

AND ST XMax(PV) > ST XMax(PA) ;� �
Listing 6.5: Finding the target rows of 3rd UPDATE

6.3.2 Deletion

Again, the rows affected by each of the four statements required for a sequenced

deletion are marked in blue color.
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Figure 6.3: Target rows for sequenced deletion (in blue)

INSERT Insert the old values from the end of the period of applicability to the

end of the period of validity of the original row. The target rows of this statement

are detected as follows:� �
. . .WHERE. . . ST ContainsProperly (PV, PA) ;� �

Listing 6.6: Finding the target rows of INSERT

The function ST ContainsProperly(...) tests if interior and boundary of the

line representing the period of applicability are within the interior of the line

representing the row’s period of validity.

1st UPDATE Update the end date to end at the beginning of the period of

applicability. The target rows of this statement are detected as follows:� �
. . .WHERE. . . PV && PA AND ST Relate (PV, PA, ’ 1∗∗∗∗∗∗∗∗ ’ )

AND ST XMin(PV) < ST XMin(PA) ;� �
Listing 6.7: Finding the target rows of 1st UPDATE

2nd UPDATE Update the start date to begin at the end of the period of appli-

cability. The target rows of this statement are detected as follows:
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� �
. . .WHERE. . . ST Overlaps (PV, PA) ;� �

Listing 6.8: Finding the target rows of 2nd UPDATE

DELETE Delete entirely rows that are covered by the period of applicability.

The target rows of this statement are detected as follows:� �
. . .WHERE. . . ST Within (PV, PA) ;� �

Listing 6.9: Finding the target rows of DELETE

6.4 Temporal Keys and Referential Integrity

Primary Key By definition a sequenced primary key is one that applies at each

point in time. Hence, no sequenced duplicates (Section 3.4.3) are allowed. To

verify this condition using spatial relationship functions, a statement as in Listing

6.10 can be used.� �
SELECT COUNT(∗ ) FROM landuse a WHERE EXISTS

(SELECT ∗ FROM landuse b WHERE

a . va l id t ime && b . validTime AND

ST Relate ( a . va l idt ime , b . va l idt ime , ’ 1∗∗∗∗∗∗∗∗ ’ ) AND

a . landuseId = b . landuseId AND a != b) ;� �
Listing 6.10: Testing for primary key violations

This statement counts the number of rows that represent the same feature but

overlap each other. A number greater than 0 indicates that such rows exist and

the sequenced primary key is violated. This sample is to show the principle. In

practice this check has to be done before a new row is actually inserted in the

table.

Referential Integrity If two temporal tables are involved in a relationship and

thus one of the two tables references the other one, a sequenced foreign key must

be applied to establish referential integrity. To recall the definition of Snodgrass

(2000), a key is a sequenced foreign key if, for all rows r in the referencing table,

• there is a row with that key value valid in the referenced table when r started,
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• there is a row with that key value valid in the referenced table when r stopped,

• and there are no gaps when there are no rows in the referenced table, during

r’s period of validity, that have that key value.

Figure 6.4: Foreign key violations (case (a)–(d))

Figure 6.4 shows in red color the period of validity of a land use plot to be

inserted in the database. This land use plot shall reference an existing parcel that

has a period of validity shown in blue color. Of the six cases presented, only e)

and f) fulfil the definition of the sequenced foreign key as given above. Cases a)–d)

violate the sequenced foreign key by either missing rows at the beginning / end

or by gaps. From Figure 6.4 also the principle to verify the sequenced foreign

key conditions by spatial analysis functions can be derived: Only if the spatial

Difference between the period of validity of the land use plot and the valid-time

period of the parcel is an empty geometry the sequenced foreign key is valid. The

Difference will be an empty geometry only if the valid-time period of the parcel

fully covers the valid-time period of the land use plot. Whenever the Difference is

a non-empty geometry (shown as grey arrows in the figure), the sequenced foreign

key is violated.

An SQL statement as follows can be used to test the foreign key conditions.

Compared to the sequenced foreign key constraint provided in Listing 3.6, this

one is simple but sufficient. If the statement returns a number greater than 0, the

sequenced foreign key is violated. Again, in practice this test should be run before

the new row is actually inserted. The ST Union(...) function is used to join the

valid-time periods of the parcel as it would be required for case f) in Figure 6.4.
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This must be done before the spatial difference between the valid-time period of

the land use plot and the parcel is determined.� �
SELECT COUNT(∗ ) FROM landuse lu WHERE lu . p a r c e l = ’ 18/2 ’

AND NOT ST IsEmpty ( ST Di f f e r ence ( lu . va l idt ime ,

(SELECT ST Union (p . va l id t ime )

FROM p a r c e l p WHERE p . p a r c e l I d = lu . p a r c e l ) ) ) ;� �
Listing 6.11: Testing for foreign key violations

6.5 Period of Applicability

Within the history extension the period of applicability (the “global” valid time)

must be set before any query or modification statement is executed. A conformable

procedure will be provided. Once the period of applicability is set, it serves as a

filter for all subsequent queries and modification statements. The client application

never needs to provide the valid-time period in the SQL statements explicitly. In

fact, even if the application did so, the time would simply be ignored and the

period of applicability used instead.

6.6 Data Model

A conceptual data model was created in UML (Unified Modelling Language) and

depicts the two feature classes that will be implemented as tables and be used to

test the history extension (Figure 6.5). The classes as shown in the model have

no temporal support yet. Both classes represent spatial features indicated by the

geometry property. The relationship modelled between the two feature classes will

be implemented by a foreign key constraint on table landuse.

Figure 6.5: Conceptual Data Model



Chapter 7

Implementation

This chapter goes through the steps required for the implementation of the history

extension. Besides the triggers, rules and views, a number of database procedures

had to be written, but only the most important ones among them will be discussed

here. Many of the procedures are of supportive character only and are used from

within other procedures.

7.1 Assumptions

A number of assumptions were required for the implementation of the history

extension:

• The valid-time period of features is stored as line geometry.

• If the valid-time period of a feature is provided by two timestamps, the

closed-open representation of the period shall be used.

• ’infinity’ is the latest possible instant but will be represented as date ’9999-

12-31’ when time is converted to geometry. If instants later than ’9999-12-31’

are provided, they will be set to ’9999-12-31’ implicitly.

• Branching of time is not supported.

• The primary key of a feature cannot be modified. This implies that new

features (meaning features with a new ID) can only be created by an INSERT

statement.

• The existing user tables have no temporal support initially.

58
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• PostgreSQL 8.4.1 and PostGIS 1.4.0 are being used.

7.2 Tables

Tables in the context of the history extension are categorized in metadata tables

and user tables. Metadata tables hold information explicitly required by the ex-

tension, while user tables record the information of a certain domain or field of

application.

7.2.1 Metadata Tables

Three metadata tables are required by the extension: tm coordinatesystem, tm config

and tm validtime.

tm coordinatesystem This table records temporal coordinate systems, each

defined by an ID, the origin of the system provided as an instant in the Grego-

rian calendar and UTC, and an interval which can currently be of type ’second’,

’minute’, ’hour’ or ’day’ (Table 7.1). This table should be granted write access

only for administrators. If the origin or interval of a temporal coordinate system

is changed while there are user tables that already hold valid time, unexpected

results will occur.

tcsid origin interval

1 1800-01-01 00:00:00+00 second

2 2000-05-01 00:00:00+00 day

3 1910-10-23 00:00:00+00 hour

Table 7.1: tm coordinatesystem

tm config This table (Table 7.2) can hold various configuration parameters of

the extension, but only one parameter is currently defined: tcsid, which is the ID

of the temporal coordinate system to be used and refers to tcsid as defined in table

tm coordinatesystem.

tm validtime This is the table to record the period of applicability (or “global”

valid time) that is set by each database user. The period of applicability is defined
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parameter value

tcsid 2

Table 7.2: tm config

per user since two users might require a different period of applicability when

querying or modifying data.

userName validFrom validTill

wagner 1995-01-01 00:00:00+00 infinity

schmieder 2000-01-01 00:00:00+00 2007-01-01 00:00:00+00

Table 7.3: tm validtime

7.2.2 User Tables

Based on the conceptual data model defined in Section 6.6, two user tables par-

cel and landuse were created to record the application data. The required SQL

statements are shown in the Listings 7.1 and 7.2.� �
CREATE TABLE p a r c e l (

f i d s e r i a l unique not null , −−only r e q u i r e d f o r the GIS

p a r c e l I d varchar (10) primary key ,

l e g a l S i z e decimal ,

d e s c r i p t i o n text

) ;

SELECT AddGeometryColumn( ’ ’ , ’ p a r c e l ’ , ’ geometry ’ ,

32634 , ’POLYGON’ , 2) ;

CREATE INDEX s p a t i a l i d x p a r c e l g e o m e t r y ON

p a r c e l USING GIST ( geometry ) ;� �
Listing 7.1: Creating the parcel table

Both tables are not yet temporal tables, support for valid time will be added

in a later step. It can be observed that the column parcel is a foreign key in table

landuse. This must be taken into account by a sequenced foreign key constraint

when adding temporal support to the tables later on.

Either table has a column of type geometry since parcels and land use plots are

considered as spatial objects. Both tables have also a column fid with a UNIQUE
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constraint. This column was added only to satisfy the GIS client application. Many

GIS clients expect a unique attribute of type Integer to be used as primary key

internally. Serial is an auto-incrementing integer type available in PostgreSQL.� �
CREATE TABLE landuse (

f i d s e r i a l unique not null , −−only r e q u i r e d f o r the GIS

l anduseId varchar (10) primary key ,

landuseType varchar (20) ,

d e s c r i p t i o n text ,

p a r c e l varchar (10) r e f e r e n c e s p a r c e l ( p a r c e l I d )

) ;

SELECT AddGeometryColumn( ’ ’ , ’ landuse ’ , ’ geometry ’ ,

32634 , ’POLYGON’ , 2) ;

CREATE INDEX s p a t i a l i d x l a n d u s e g e o m e t r y ON

landuse USING GIST ( geometry ) ;� �
Listing 7.2: Creating the landuse table

7.3 Temporal Procedures

In this section the database procedures that were written for temporal support

are described. The first two procedures transformDateTime(...) and transform-

Coord(...) are based on the definition of a temporal coordinate system and its

methods as defined in ISO (2002b). The listings for all procedures can be found

in Appendix A to this thesis.

transformDateTime(timestamp with time zone):tm coordinate The pro-

cedure converts an instant of time to a temporal coordinate based on the principle

described in Section 6.2 of this thesis. TM Coordinate is a data type defined in ISO

(2002b) that consists of two attributes indeterminatePosition and coordinateValue.

Providing a value for the first attribute is optional, while it is mandatory for the

second one. TM Coordinate was created as a custom data type in PostgreSQL

with the statements as shown in Listing 7.3.� �
CREATE TYPE tm indeterminateValue

AS ENUM ( ’unknown ’ , ’now ’ , ’ b e f o r e ’ , ’ a f t e r ’ ) ;

CREATE TYPE tm coord inate AS (
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inde t e rmina t ePos i t i on tm indeterminateValue ,

coord inateValue in t8 ) ;� �
Listing 7.3: Creating a data type tm coordinate

The procedure itself is shown in Listing A.1 in the appendix to this document.

The procedure queries the table tm config to find the temporal coordinate sys-

tem currently set. It then queries table tm coordinatesystem to retrieve origin and

interval defined for that system. Given those two parameters the temporal coor-

dinate tm coordinate is calculated for the provided instant of time and returned

by the procedure.

transformCoord(tm coordinate):timestamp with time zone Given a tem-

poral coordinate the procedure will convert it to an instant of time. The pro-

cedure retrieves the parameters required for the conversion, origin and inter-

val of the temporal coordinate system from the related tables tm config and

tm coordinatesystem. The procedure can be found in Listing A.2 in the appendix

to this document.

lineFromTimeHelper(timestamp with time zone, timestamp with time

zone):geometry Provided with two instants of time, the procedure will create

a line geometry, representing a period of time. To construct the actual line, the

Well Known Text format (WKT) is used. The procedure makes use of procedure

transformDateTime(...) internally. It can be found in Listing A.3.

Further procedures Most of the following procedures are in some way based

on the procedures previously described:

setPA(timestamp with time zone, timestamp with time zone) sets the pe-

riod of applicability per database user. It will be stored in the metadata table

tm validtime together with the name of the database user. This is the only

procedure to be used by a client application directly (Listing A.4).

paFrom():timestamp with time zone returns the instant of the begin of the

period of applicability (Listing A.5).

paTill():timestamp with time zone returns the instant of the end of the pe-

riod of applicability (Listing A.6).



CHAPTER 7. IMPLEMENTATION 63

lineFromPA():geometry returns a line representing the period of applicability

(Listing A.7).

lineFromTime(timestamp with tz, timestamp with tz):geometry creates

a line from two instants of time. Should be used instead of lineFromTime-

Helper(...) but uses that procedure internally (Listing A.8).

validFrom(geometry):timestamp with time zone provided with a line ge-

ometry representing a period of time, the procedure will return the instant

of the begin of that period (Listing A.9).

validTill(geometry):timestamp with time zone provided with a line geom-

etry representing a period of time, the procedure will return the instant of

the end of that period (Listing A.10).

7.4 Conversion of User Tables

Since the assumption was made that existing user tables have no temporal support

initially, valid-time support has to be added at some point later. Given the table

landuse, Listing 7.4 shows the initial steps to convert it to a table with temporal

support. All subsequent steps are explained for table landuse but can be applied

in the same way to table parcel. If there is any difference, it will be mentioned

explicitly.� �
1 SELECT AddGeometryColumn( ’ ’ , ’ landuse ’ , ’ va l id t ime ’ , −1, ’

LINESTRING ’ , 2) ;

2 CREATE INDEX s p a t i a l i d x l a n d u s e v a l i d t i m e ON landuse USING

GIST ( va l id t ime ) ;

3 ALTER TABLE landuse DROP CONSTRAINT landuse pkey ;

4 ALTER TABLE landuse DROP CONSTRAINT l a n d u s e p a r c e l f k e y ;

5 ALTER TABLE landuse RENAME to landuse vt ;

6 UPDATE l anduse vt SET va l id t ime = lineFromTime (

CURRENTTIMESTAMP, ’ i n f i n i t y ’ ) ;

7 ALTER TABLE l anduse vt ALTER COLUMN l anduseId SET NOT NULL;

8 ALTER TABLE l anduse vt ALTER COLUMN va l id t ime SET NOT NULL;� �
Listing 7.4: Initial table modification
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In line 1 a new attribute validtime of type geometry (line) is added to the

table to record the valid-time period of land use plots. In line 2 a spatial index is

created for the new attribute. In lines 3 and 4, the original primary and foreign

key constraints are dropped. In line 5 the table is renamed (given the suffix vt for

valid time) and in line 6 the valid time of all rows is set to last from the current

instant to infinity. As a result all rows are current. In lines 7 and 8 a NOT

NULL constraint is set for the attributes landuseId and validtime. Excluding the

statement in line 4, the same steps can be applied to table parcel. Table parcel has

no foreign key and, thus, no foreign key constraint must be dropped.

7.4.1 Creating a View

As next step a view is created on the table and it is given the original name of the

table. The SQL statement looks as follows:� �
CREATE OR REPLACE VIEW landuse AS

SELECT f i d , landuseId , landuseType , d e s c r i p t i on , parce l ,

geometry , validFrom ( va l id t ime ) AS validFrom ,

v a l i d T i l l ( va l id t ime ) AS v a l i d T i l l FROM l anduse vt WHERE

va l id t ime && lineFromPA ( ) AND

ST Relate ( va l idt ime , lineFromPA ( ) , ’ 1∗∗∗∗∗∗∗∗ ’ ) ;� �
Listing 7.5: Creating a view

There are several things to be observed in this view. Begin and end of the

valid-time period are provided as timestamps in the view. That makes sense since

a client application cannot make use of the valid-time period if provided as line

geometry. The procedures validFrom(...) and validTill(...) are used to retrieve

the timestamps from the geometry. The view is created using a WHERE clause.

Because of this clause, the view will select only those rows that overlap with the

period of applicability. Within the limits of the period of applicability a client can

execute further time-based queries using the timestamp attributes validFrom and

validTill available with the view.

7.4.2 Rules and Sequenced Modifications

Given the landuse view just created, the client cannot yet make any modifications

to the data. Rules are required to create the illusion of an updatable view. Within
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these rules, the SQL statements required for a sequenced insertion, update or

deletion will be executed on the underlying table landuse vt.

Insertion Listing 7.6 shows how the INSERT rule is created on the landuse view.

This rule defines that if an INSERT command is applied to the landuse view, a

sequenced insertion will be executed on table landuse vt instead. The valid-time

period for the new row is the period of applicability which is returned by the

procedure lineFromPA(). NEW is a special variable available within an INSERT

rule that references the new row to be inserted.� �
CREATE OR REPLACE RULE i n s e r t l a n d u s e r u l e AS

ON INSERT TO landuse DO INSTEAD

(

INSERT INTO l anduse vt ( landuseId , landuseType ,

d e s c r i p t i o n , parce l , geometry , va l id t ime ) VALUES

(NEW. landuseId , NEW. landuseType , NEW.

d e s c r i p t i o n , NEW. parce l , NEW. geometry ,

lineFromPA ( ) ) ;

) ;� �
Listing 7.6: Creating an INSERT rule

Update The UPDATE rule for the landuse view is created using the statements

in Listing 7.7. Within the rule five statements are executed on the underlying table.

These are the five statements (two INSERTs and three UPDATEs) required for

a sequenced update as described in Sections 3.5.3 and 6.3.1. Discussed in the

mentioned sections is what each statement does in particular, as well as how the

target rows of the statement are detected using spatial functions. Within the rule

NEW is a variable referencing the new row being updated, while OLD refers to

the existing row.� �
CREATE OR REPLACE RULE updat e l andus e ru l e AS

ON UPDATE TO landuse DO INSTEAD

(

INSERT INTO l anduse vt ( landuseId , landuseType ,

d e s c r i p t i o n , parce l , geometry , validTime ) SELECT

landuseId , landuseType , d e s c r i p t i o n , parce l ,

geometry , lineFromTime ( validFrom ( validTime ) ,
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paFrom ( ) ) FROM l anduse vt WHERE l anduseId = OLD.

landuseId AND validTime && lineFromPA ( ) AND

ST Relate ( validTime , lineFromPA ( ) , ’ 1∗∗∗∗∗∗∗∗ ’ )

AND ST XMin( validTime ) < ST XMin( lineFromPA ( ) )

AND l anduse vt . va l id t ime = l ine f romt ime (OLD.

val idfrom , OLD. v a l i d t i l l ) ;

INSERT INTO l anduse vt ( landuseId , landuseType ,

d e s c r i p t i o n , parce l , geometry , validTime ) SELECT

landuseId , landuseType , d e s c r i p t i o n , parce l ,

geometry , lineFromTime ( p a T i l l ( ) , v a l i d T i l l (

val idTime ) ) FROM l anduse vt WHERE l anduseId =

OLD. landuseId AND validTime && lineFromPA ( ) AND

ST Relate ( validTime , lineFromPA ( ) , ’ 1∗∗∗∗∗∗∗∗ ’ )

AND ST XMax( validTime ) > ST XMax( lineFromPA ( ) )

AND l anduse vt . va l id t ime = l ine f romt ime (OLD.

val idfrom , OLD. v a l i d t i l l ) ;

UPDATE l anduse vt SET l anduseId = NEW. landuseId ,

landuseType = NEW. landuseType , d e s c r i p t i o n = NEW

. de s c r i p t i o n , p a r c e l = NEW. parce l , geometry =

NEW. geometry WHERE l anduseId = OLD. landuseId AND

validTime && lineFromPA ( ) AND ST Relate (

validTime , lineFromPA ( ) , ’ 1∗∗∗∗∗∗∗∗ ’ ) ;

UPDATE l anduse vt SET validTime = lineFromTime (

paFrom ( ) , v a l i d T i l l ( val idTime ) ) WHERE l anduseId

= NEW. landuseId AND validTime && lineFromPA ( )

AND ST Relate ( validTime , lineFromPA ( ) , ’

1∗∗∗∗∗∗∗∗ ’ ) AND ST XMin( validTime ) < ST XMin(

lineFromPA ( ) ) ;

UPDATE l anduse vt SET validTime = lineFromTime (

validFrom ( validTime ) , p a T i l l ( ) ) WHERE l anduseId

= NEW. landuseId AND validTime && lineFromPA ( )

AND ST Relate ( validTime , lineFromPA ( ) , ’
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1∗∗∗∗∗∗∗∗ ’ ) AND ST XMax( validTime ) > ST XMax(

lineFromPA ( ) ) ;

) ;� �
Listing 7.7: Creating an UPDATE rule

Deletion A sequenced deletion requires four statements, an INSERT, two UP-

DATEs and a DELETE. These statements are executed within a DELETE rule

that is created on the landuse view (Listing 7.8). Discussed in Sections 3.5.4 and

6.3.2 is the meaning of each statement, as well as how the target rows of the

statement are detected. Within the rule OLD references the row to be deleted.� �
CREATE OR REPLACE RULE d e l e t e l a n d u s e r u l e AS

ON DELETE TO landuse DO INSTEAD

(

INSERT INTO l anduse vt ( landuseId , landuseType ,

d e s c r i p t i o n , parce l , geometry , validTime ) SELECT

landuseId , landuseType , d e s c r i p t i o n , parce l ,

geometry , lineFromTime ( p a T i l l ( ) , v a l i d T i l l (

val idTime ) ) FROM l anduse vt WHERE l anduseId =

OLD. landuseId AND ST ContainsProperly ( validTime ,

lineFromPA ( ) ) ;

UPDATE l anduse vt SET validTime = lineFromTime (

validFrom ( validTime ) , paFrom ( ) ) WHERE l anduseId

= OLD. landuseId AND validTime && lineFromPA ( )

AND ST XMin( validTime ) < ST XMin( lineFromPA ( ) ) ;

UPDATE l anduse vt SET validTime = lineFromTime (

p a T i l l ( ) , v a l i d T i l l ( val idTime ) ) WHERE l anduseId

= OLD. landuseId AND ST Overlaps ( validTime ,

lineFromPA ( ) ) ;

DELETE FROM l anduse vt WHERE l anduseId = OLD.

landuseId AND ST Within ( validTime , lineFromPA ( ) )

;

) ;
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� �
Listing 7.8: Creating a DELETE rule

7.4.3 Triggers, Keys and Referential Integrity

Ensuring the sequenced primary key SQL Assertions and complex table

constraints are not supported by PostgreSQL. Hence, a trigger must be used to

ensure the sequenced primary key for table landuse vt. This trigger must be fired

before a row is actually inserted or updated in landuse vt. When the trigger fires,

it executes the trigger procedure that is shown in Listing 7.9.� �
1 CREATE OR REPLACE FUNCTION seq pkey landuse ( )

2 RETURNS trigger AS

3 $BODY$

4 DECLARE

5 v count in t4 ;

6 BEGIN

7

8 IF (TG OP = ’UPDATE’ ) THEN

9 IF (NEW. landuseId != OLD. landuseId ) THEN

10 RAISE EXCEPTION ’ Cannot modify

primary key va lue s f o r t a b l e s

with va l id−time support ! ’ ;

11 ELSE

12 RETURN NEW;

13 END IF ;

14 END IF ;

15

16 IF (NOT ST Within (NEW. validTime , lineFromPA ( ) ) )

THEN

17 RETURN NEW;

18 END IF ;

19

20 SELECT count (∗ ) FROM l anduse vt p WHERE p . landuseId

= NEW. landuseId AND p . validTime && NEW.

validTime AND ST Relate (p . va l idt ime , NEW.

val idt ime , ’ 1∗∗∗∗∗∗∗∗ ’ ) INTO v count ;
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21

22 IF ( v count > 0) THEN

23 RAISE EXCEPTION ’ Sequenced primary key

v i o l a t e d ! ’ ;

24 END IF ;

25

26 RETURN NEW;

27

28 END;

29 $BODY$

30 LANGUAGE ’ p lpg sq l ’ VOLATILE

31 COST 100 ;� �
Listing 7.9: Trigger procedure ensuring the sequenced primary key

As with the rules, within a trigger procedure the existing row to be updated

or deleted is referred to by the OLD variable, while the new row to be updated

or inserted is referenced by NEW. In lines 8–14 it is checked that a row update

does not change the primary key since this is currently not supported by the

extension. Lines 16–18 ensure that a row insertion caused by a sequenced update

or deletion does not undergo the test for overlapping since it would (temporary)

fail the test and the operation would be cancelled. However, a row insertion caused

by an INSERT command of the client is tested in lines 20–24. Should this row

overlap any existing row with the same landuseId, a warning will be shown and

the insertion will be cancelled. The principle of this (spatial) test is discussed in

Section 6.4.

Ensuring the sequenced foreign key A second trigger is fired before an in-

sertion or update on table landuse vt, ensuring the sequenced foreign key. The

related trigger procedure is shown in Listing 7.10.� �
1 CREATE OR REPLACE FUNCTION s e q f k e y l a n d u s e ( )

2 RETURNS trigger AS

3 $BODY$

4 DECLARE

5 v count in t4 ;

6 v gap geometry ;

7 BEGIN
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8

9 IF (NEW. p a r c e l IS NULL) THEN

10 RAISE EXCEPTION ’<parce l> cannot be n u l l ! ’ ;

11 END IF ;

12

13 IF (NOT ST Within (NEW. validTime , lineFromPA ( ) ) )

THEN

14 RETURN NEW;

15 END IF ;

16

17 SELECT count (∗ ) FROM p a r c e l v t INTO v count WHERE

p a r c e l I d = NEW. p a r c e l ;

18

19 IF ( v count = 0) THEN

20 RAISE EXCEPTION ’No p a r c e l with ID <%>

e x i s t i n g ! ’ , NEW. p a r c e l ;

21 END IF ;

22

23 SELECT ST Di f f e r ence (NEW. val idt ime , (SELECT

s t un i on ( va l id t ime ) FROM p a r c e l v t WHERE

p a r c e l I d = NEW. p a r c e l ) ) INTO v gap ;

24

25 IF (NOT ST IsEmpty ( v gap ) ) THEN

26 RAISE EXCEPTION ’ Sequenced f o r e i g n key

v i o l a t e d ! Parce l <%>, to be r e f e r e n c e d

by land use p l o t <%> must at l e a s t be

v a l i d durr ing the same per iod ! ’ , NEW.

parce l , NEW. landuseId ;

27 END IF ;

28

29 RETURN NEW;

30

31 END;

32 $BODY$

33 LANGUAGE ’ p lpg sq l ’ VOLATILE

34 COST 100 ;
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� �
Listing 7.10: Trigger procedure ensuring the sequenced foreign key (a)

This trigger checks various conditions. Lines 9–11 verify that the foreign key

in table landuse vt actually contains a value. Each land use plot must reference

exactly one parcel. In case a foreign key value is provided, lines 17–21 take care

that a parcel with that key exists. Lines 23–27 test that the referenced parcel

exists for the whole life time (valid time) of the inserted or updated land use plot.

Again, the testing principle is explained in Section 6.4.

Unfortunately this trigger is not sufficient to ensure the sequenced foreign key

in table landuse vt. The key can still be violated by a sequenced deletion on

the referenced table (parcel vt). It could even be violated by a sequenced update

on that table if primary keys were allowed to change. Hence, another trigger is

required, but on table parcel vt this time. This trigger fires after an update or

deletion on parcel vt and executes the procedure in Listing 7.11. It is crucial that

this trigger fires AFTER the update or deletion. Otherwise the changes to be

verified will not be visible to the test statement yet. The test that is done within

this trigger is similar to the one in the previous trigger.� �
CREATE OR REPLACE FUNCTION s e q f k e y l a n d u s e r e v ( )

RETURNS trigger AS

$BODY$

DECLARE

v landuse RECORD;

BEGIN

SELECT ∗ FROM l anduse vt l INTO v landuse WHERE l .

p a r c e l = OLD. p a r c e l I d AND NOT ST IsEmpty (

ST Di f f e r ence ( l . va l idt ime , (SELECT s t un i on (p .

va l id t ime ) FROM p a r c e l v t p WHERE p . p a r c e l I d =

OLD. p a r c e l I d ) ) ) ;

IF FOUND THEN

RAISE EXCEPTION ’ Sequenced f o r e i g n key

v i o l a t e d ! Parce l <%> i s r e f e r e n c e d by

land use p l o t <%> and must at l e a s t be
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v a l i d during the same per iod ! ’ , OLD.

parce l Id , v landuse . landuseId ;

END IF ;

RETURN NULL;

END;

$BODY$

LANGUAGE ’ p lpg sq l ’ VOLATILE

COST 100 ;� �
Listing 7.11: Trigger procedure ensuring the sequenced foreign key (b)

To summarize what has been discussed so far; on either table a trigger is

required that ensures the primary key of that table. Furthermore a second trigger

is required, again on both tables, ensuring only the sequenced foreign key in table

landuse vt. With the triggers created, the conversion of the tables is complete—the

tables are temporal tables with support for an automated maintenance of history.

7.5 Testing the Extension

Two fictive scenarios from the domain of land administration are used to test the

extension. The results are shown in psql, a command-line client for PostgreSQL. To

demonstrate the extension’s support for sequenced modifications (at each instant

of time), the tests are done using future data as well. Before creating any data,

the temporal coordinate system must be set properly. For the test a system with

an origin of date ’1900-01-01 00:00:00+00’ and an interval of ’second’ will be used.

The system is created and set as follows:� �
INSERT INTO tm coordinateSystem VALUES (5 , ’ 1900−01−01

00:00:00+00 ’ , ’ second ’ ) ;

UPDATE tm conf ig SET value = ’ 5 ’ WHERE parameter = ’ t c s i d ’ ;� �
Listing 7.12: Setting the temporal coordinate system
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7.5.1 Example 1

A scenario as depicted in Figure 7.1 is used. The scenario shows some cadas-

tral parcels that will experience various mutations over time. These mutations

include feature succession (in particular two divisions and one fusion), i.e. one set

of parcels will be replaced by another set of parcels as occurring in cases b)–d).

Only sequenced insertions and deletions are required to implement the example.

Sequenced updates and referential integrity are covered by Example 2.

Figure 7.1: Test Scenario – Example 1

Case a) Either parcel starts becoming valid on May 12, 2002. The period of

applicability must be set accordingly and two insertions executed. The required

statements are shown in Listing 7.13. If only one instant of time is provided to

the setPA(...) procedure, it is assumed as the begin of the period of applicability.

The end of the period will be set to ’infinity’ in this case.
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� �
select setPA ( ’ 2002−05−12 ’ ) ;

insert into p a r c e l ( parce l Id , d e s c r i p t i o n , geometry ) values

( ’ 10/2 ’ , ’ Case a ’ , ST GeomFromText( ’POLYGON((100 200 ,

100 400 , 300 400 , 300 200 , 100 200) ) ’ , 32634) ) ;

insert into p a r c e l ( parce l Id , d e s c r i p t i o n , geometry ) values

( ’ 27 ’ , ’ Case a ’ , ST GeomFromText( ’POLYGON((300 200 , 300

400 , 500 400 , 500 200 , 300 200) ) ’ , 32634) ) ;� �
Listing 7.13: Example 1 – Case A

Case b) On October 25, 2004 parcels ’10/3’ and ’10/4’ become “alive” as a

result of the division of parcel ’10/2’. Thus, a feature succession occurs. Parcel

’10/2’ will be deleted and two new parcels created instead. The related statements

can be found in Listing 7.14. Parcel ’10/2’ will not be deleted physically from the

database but its valid-time end will be set accordingly. All results will be shown

shortly.� �
select setPA ( ’ 2004−10−25 ’ ) ;

delete from p a r c e l where p a r c e l I d = ’ 10/2 ’ ;

insert into p a r c e l ( parce l Id , d e s c r i p t i o n , geometry ) values

( ’ 10/3 ’ , ’ Case b ’ , ST GeomFromText( ’POLYGON((100 200 ,

100 400 , 200 400 , 200 200 , 100 200) ) ’ , 32634) ) ;

insert into p a r c e l ( parce l Id , d e s c r i p t i o n , geometry ) values

( ’ 10/4 ’ , ’ Case b ’ , ST GeomFromText( ’POLYGON((200 200 ,

200 400 , 300 400 , 300 200 , 200 200) ) ’ , 32634) ) ;� �
Listing 7.14: Example 1 – Case B

Case c) Parcels ’27/1’ and ’27/2’ become alive on July 11, 2007 as a result of the

division of parcel ’27’. Again, a sequenced deletion and two insertions are required

(Listing 7.15).� �
select setPA ( ’ 2007−07−11 ’ ) ;

delete from p a r c e l where p a r c e l I d = ’ 27 ’ ;

insert into p a r c e l ( parce l Id , d e s c r i p t i o n , geometry ) values

( ’ 27/1 ’ , ’ Case c ’ , ST GeomFromText( ’POLYGON((300 200 ,

300 400 , 400 400 , 400 200 , 300 200) ) ’ , 32634) ) ;
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insert into p a r c e l ( parce l Id , d e s c r i p t i o n , geometry ) values

( ’ 27/2 ’ , ’ Case c ’ , ST GeomFromText( ’POLYGON((400 200 ,

400 400 , 500 400 , 500 200 , 400 200) ) ’ , 32634) ) ;� �
Listing 7.15: Example 1 – Case C

Case d) Finally, parcel ’31’ is created on December 24, 2012 as a result of the

fusion of parcels ’10/4’ and ’27/1’. This requires two deletions and one insertion

(Listing 7.16).� �
select setPA ( ’ 2012−12−24 ’ ) ;

delete from p a r c e l where p a r c e l I d = ’ 10/4 ’ ;

delete from p a r c e l where p a r c e l I d = ’ 27/1 ’ ;

insert into p a r c e l ( parce l Id , d e s c r i p t i o n , geometry ) values

( ’ 31 ’ , ’ Case d ’ , ST GeomFromText( ’POLYGON((200 200 , 200

400 , 400 400 , 400 200 , 200 200) ) ’ , 32634) ) ;� �
Listing 7.16: Example 1 – Case D

The resulting parcel table is shown in Figure 7.2. The parcels are ordered by the

begin of their valid time. To be able to list all parcels from the example, the period

of applicability has to be set to an instant equal to or before the first mutation.

For a better readability the geometry column of the parcels is not shown.

Temporal and spatial relationships among features can now be used to deter-

mine their lineage. To find all predecessors of parcel ’31’ after November 1, 2004

the statements as follows can be applied:� �
select setPA ( ’ 2004−11−01 ’ ) ;

select b . parce l Id , b . d e s c r i p t i o n , b . validFrom , b . v a l i d T i l l

from p a r c e l a , p a r c e l b where a . p a r c e l I d = ’ 31 ’ and

s t r e l a t e ( a . geometry , b . geometry , ’ 2∗∗∗∗∗∗∗∗ ’ ) and a !=

b order by validFrom ;� �
Listing 7.17: Example 1 – Lineage

The result is shown in Figure 7.3. The additional condition a != b is required to

exclude parcel ’31’ itself from the result list.
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Figure 7.2: Example 1 – Result

7.5.2 Example 2

Figure 7.4 shows the scenario for Example 2. Information about a land use plot

(ID ’13’) became known. The plot is located on parcel ’31’ and of type ’Forest’.

At some point later the forest is cut and the plot used for ’Agriculture’. Again

later, the land of the plot is required for a north-south road. This example covers

sequenced insertions, updates and referential integrity.

Case a To create the plot a sequenced insertion is required. The plot is known

to become valid on November 20, 2012. The plot has a foreign key which is the ID

of parcel ’31’. An initial attempt to insert the plot will fail as parcel ’31’ does not

exist yet at that time and the foreign key would be violated. Thus, the plot’s valid-

time begin will be set to December 24 only (the day the parcel becomes valid).

The required statements are as follows, while the results are shown in Figure 7.5.� �
select setPA ( ’ 2012−11−20 ’ ) ;

−− next s ta tement w i l l f a i l

insert into landuse ( landuseId , landuseType , parce l ,

geometry ) values ( ’ 13 ’ , ’ Forest ’ , ’ 31 ’ , ST GeomFromText( ’

POLYGON((330 200 , 330 400 , 400 400 , 400 200 , 330 200) ) ’ ,

32634) ) ;
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Figure 7.3: Lineage of parcel ’31’

select setPA ( ’ 2012−12−24 ’ ) ;

−− next s ta tement w i l l work

insert into landuse ( landuseId , landuseType , parce l ,

geometry ) values ( ’ 13 ’ , ’ Forest ’ , ’ 31 ’ , ST GeomFromText( ’

POLYGON((330 200 , 330 400 , 400 400 , 400 200 , 330 200) ) ’ ,

32634) ) ;� �
Listing 7.18: Example 2 – Case A

Case b Beginning on May 2, 2017 the plot will be used for agricultural purposes.

This requires a sequenced update as follows:� �
select setPA ( ’ 2015−05−02 ’ ) ;

update landuse set landuseType = ’ Agr i cu l tu r e ’ where

l anduseId = ’ 13 ’ ;� �
Listing 7.19: Example 2 – Case B

Case c Another change occurs on June 6, 2020 when the plot starts being used

for a road. Again, a sequenced update is required:� �
select setPA ( ’ 2020−06−06 ’ ) ;
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Figure 7.4: Test Scenario – Example 2

update landuse set landuseType = ’Road ’ where l anduseId = ’

13 ’ ;� �
Listing 7.20: Example 2 – Case C

The resulting landuse table with the three cases implemented is shown in Fig-

ure 7.6. The geometry column was excluded again for the purpose of a better

readability.

Finally the effectiveness of the sequenced foreign key constraint is tested once

more. Assuming that the valid time of parcel ’31’ ends on February 1, 2022, an

attempt is made to execute a sequenced deletion accordingly:� �
select setPA ( ’ 2022−02−01 ’ ) ;

delete from p a r c e l where p a r c e l I d = ’ 31 ’ ;� �
Listing 7.21: Example 2 – Deletion attempt

This attempt will fail as the parcel is still referenced by land use plot ’13’ (Figure

7.7).
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Figure 7.5: Example 2 – Failed, and successful insertion attempt

Figure 7.6: Example 2 – Result
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Figure 7.7: Deletion attempt on parcel ’31’



Chapter 8

Conclusion

8.1 Findings

The aim of this thesis was to implement a prototype of an extension to Post-

greSQL/PostGIS allowing for an automated maintenance of valid time and the

related history. The implementation was to be performed entirely on the database

server, making the modification of any client application unnecessary. Under such

implementation, the valid time of features was to be stored as geometry.

Observing the results achieved, they come close to the original goal and prove

that the required functionality can be provided solely by the database server.

Thus, a client application can express the changes to the data in its domain in

a “natural” way without the need of complex time-oriented SQL statements. A

single procedure (setPA(’2006-03-01’, ’infinity’)) is required to be called by the

client to set the period of applicability for all subsequent queries and modifications.

Everything else is handled by the database server. To implement the required

functionality, some crucial modifications had to be made to the existing database

schema. They included the creation of database procedures and a number of

triggers, rules and views on the existing user tables. If referential integrity was

established in the original schema, it had to be ensured also in the schema with

temporal support. For the prototype the user tables were manually converted to

tables with temporal support. That was feasible since only two tables were used.

However, in case of a vast database schema with many user tables, procedure which

performs the necessary conversion in an automated way would be required. This

procedure would be provided only with the name of the user table to be converted

e.g. addValidTimeSupport(’parcel’).

81
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Given that the valid-time period of features is stored as geometry, the entire

temporal analysis required for the implementation of the extension is performed

using solely spatial functions, which works without any restrictions. The functions

include relationship functions as well as creative operations as difference, union,

etc. However, there is no obvious benefit from treating time as geometry, at least

not in the context of this thesis. There are situations in which a temporal condition

can be tested easier by using a spatial function, while there are others where a

native temporal function or operator might be more appropriate.

Problem which occurs while testing the extension is the fact that most (GIS)

client applications require either a PRIMARY KEY or a UNIQUE constraint on

some column of the user table. If such constraint cannot be found, the applications

refuse to work with the table. A temporal primary key is ensured via a sequenced

constraint—thus, a PRIMARY KEY constraint as such does not exist anymore. A

combined UNIQUE constraint could be created on the original key column and the

valid-time column. It would satisfy the client application in some cases, but would

not be sufficient to ensure the temporal primary key (the sequenced constraint is

still required).

Another obstacle is the fact that in most GIS applications the splitting of

a polygon (as required for a parcel division) will result in an UPDATE and an

INSERT command. Since the original polygon is replaced by two (or more) new

polygons, it would only be natural that the original polygon is removed by a

DELETE command and not simply be updated to become one of the new polygons.

The history extension expects a deletion and two insertions for the described case.

It will not function correctly otherwise. This is related to the current restriction

that temporal primary keys cannot be updated. it is on the other hand arguable

whether a key should be updatable considering that it is the unique identifier of a

feature (for a life time?).

8.2 Open Issues

The history extension is a prototype only. In order for it to be used in a pro-

duction system it will have to be extended and tested thoroughly to determine if

all temporal situations which might occur in a domain or field of application are

covered. It is usually the special cases that present obstacles. As mentioned in the

previous section, a supportive procedure (e.g. addValidTimeSupport(tableName

varchar(30))) would be very helpful if a vast number of user tables need to be
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converted to become temporal. Behind the “scenes” this procedure has to re-

trieve information from a number of PostgreSQL’s metadata views and tables to

determine the schema of the particular user table (i.e. what columns, constraints,

primary and foreign keys, etc.). It can then create the views, triggers and rules on

the user table that are required for temporal support and that were only manually

added in the prototype.

So far, the extension was tested using only a small amount of data. It might

be worthwhile to analyse how the extension performs (particularly the spatial

functions) with hundreds of thousands of rows in a table. On the other hand, the

line geometry representing the valid-time period is very simple and a spatial index

has been created on that column. Thus, performance might not really be an issue.

As described in Section 7.4.2, the five and four statements, respectively that

are required for a sequenced update and deletion are executed within a rule. If

a rule is applied, information about the number of affected rows will stem only

from the last statement that is executed within that rule. This information is not

very useful for the client. It would be much better if a summary of the number

of rows affected by all statements is returned to the client—which would require

a customized procedure.

In certain situations a sequenced insertion or update might result in a table as

follows:

landuseId landuseType parcel validFrom validTill

112 Forest 200/2 1995-01-01 2002-08-01

112 Agriculture 200/2 2002-08-01 2004-02-01

112 Agriculture 200/2 2004-02-01 2007-05-11

112 Agriculture 200/2 2007-05-11 2013-02-01

112 Road 200/2 2013-02-01 infinity

Table 8.1: A case for coalescing

Rows 2–4 are value-equivalent as they have identical values in their non-timestamp

columns. A coalescing algorithm could be applied to reduce the number of rows

by merging the periods of validity of these value-equivalent rows. Coalescing is

currently not implemented in the prototype and would require a special database

procedure. Coalescing applied to the table above would result in Table 8.2.
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landuseId landuseType parcel validFrom validTill

112 Forest 200/2 1995-01-01 2002-08-01

112 Agriculture 200/2 2002-08-01 2013-02-01

112 Road 200/2 2013-02-01 infinity

Table 8.2: Result of coalescing

8.3 Outlook

Considering the issues discussed in the previous section, extending and improving

the prototype in order to make it more useful and applicable is reasonable. The

issue that had not been mentioned so far is support for transaction time. If this

could be added to the existing implementation at some point, the result would be

a real bi-temporal database.



Appendix A

Database Procedures

All procedures that were written in the context of the history extension can be

found in this chapter.� �
CREATE OR REPLACE FUNCTION trans formdatet ime (timestamp with

time zone )

RETURNS tm coord inate AS

$BODY$

DECLARE

v date t ime in a l i a s f o r $1 ;

v datet ime timestamp with time zone ;

v o r i g i n timestamp with time zone ;

v i n t e r v a l tm in t e rva l ;

v days in t8 ;

v hours in t8 ;

v min in t8 ;

v s e c in t8 ;

v coo rd ina t e tm coord inate ;

BEGIN

IF ( v dat e t ime in IS NULL) THEN

RAISE EXCEPTION ’The provided timestamp

must not be n u l l ! ’ ;

END IF ;

SELECT o r i g i n FROM tm coordinateSystem INTO

85
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v o r i g i n WHERE t c s i d = (SELECT value : : i n t 4 FROM

tm conf ig WHERE parameter = ’ t c s i d ’ ) ;

IF NOT FOUND THEN

RAISE EXCEPTION ’No time coord inate system

provided ; check t a b l e s <

tm coordinatesystem> and <tm conf ig >! ’ ;

END IF ;

SELECT interval FROM tm coordinateSystem INTO

v i n t e r v a l WHERE t c s i d = (SELECT value : : i n t 4

FROM tm conf ig WHERE parameter = ’ t c s i d ’ ) ;

IF NOT FOUND THEN

RAISE EXCEPTION ’No time coord inate system

provided ; check t a b l e s <

tm coordinatesystem> and <tm conf ig >! ’ ;

END IF ;

−− remove m i l l i s e c o n d s s i n c e ’ second ’ i s the

s m a l l e s t i n t e r v a l / chronon / granu le

v datet ime := date t runc ( ’ second ’ , v da t e t ime in ) ;

v days := extract (day from ( v datet ime − v o r i g i n )

) ;

IF ( v i n t e r v a l = ’ day ’ ) THEN

v coo rd ina t e := ROW( null , v days ) ;

r e turn v coo rd ina t e ;

END IF ;

v hours := extract (hour from ( v datet ime −
v o r i g i n ) ) ;

IF ( v i n t e r v a l = ’ hour ’ ) THEN



APPENDIX A. DATABASE PROCEDURES 87

v coo rd ina t e := ROW( null , v days ∗24 +

v hours ) ;

r e turn v coo rd ina t e ;

END IF ;

v min := extract (minute from ( v datet ime −
v o r i g i n ) ) ;

IF ( v i n t e r v a l = ’ minute ’ ) THEN

v coo rd ina t e := ROW( null , ( v days ∗24∗60) +

( v hours ∗60) + v min ) ;

r e turn v coo rd ina t e ;

END IF ;

v s e c := extract ( second from ( v datet ime −
v o r i g i n ) ) ;

v coo rd ina t e := ROW( null , ( v days ∗24∗60∗60) + (

v hours ∗60∗60) + ( v min ∗60) + v se c ) ;

r e turn v coo rd ina t e ;

END; $BODY$

LANGUAGE ’ p lpg sq l ’ VOLATILE

COST 100 ;� �
Listing A.1: transformDateTime(timestamp with time zone):tm coordinate� �

CREATE OR REPLACE FUNCTION transformCoord ( tm coord inate )

RETURNS timestamp with time zone AS

$BODY$

DECLARE

v coo rd ina t e a l i a s f o r $1 ;

v o r i g i n timestamp with time zone ;

v i n t e r v a l tm in t e rva l ;

v datet ime timestamp with time zone ;

v hours in t8 ;

v minutes in t8 ;
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v seconds in t8 ;

BEGIN

IF ( v coo rd ina t e i s null ) THEN

RAISE EXCEPTION ’ Provide a v a l i d time

coord inate ! ’ ;

END IF ;

SELECT o r i g i n FROM tm coordinateSystem INTO

v o r i g i n WHERE t c s i d = (SELECT value : : i n t 4 FROM

tm conf ig WHERE parameter = ’ t c s i d ’ ) ;

IF NOT FOUND THEN

RAISE EXCEPTION ’No time coord inate system

provided ; check t a b l e s <

tm coordindatesystem> and <tm conf ig >! ’ ;

END IF ;

SELECT interval FROM tm coordinateSystem INTO

v i n t e r v a l WHERE t c s i d = (SELECT value : : i n t 4

FROM tm conf ig WHERE parameter = ’ t c s i d ’ ) ;

IF NOT FOUND THEN

RAISE EXCEPTION ’No time coord inate system

provided ; check t a b l e s <

tm coordindatesystem> and <tm conf ig >! ’ ;

END IF ;

−−I n t e r v a l s are c o n s t r u c t e d from hours , minutes and

seconds on ly . When us ing ’ days ’ a wrong r e s u l t

might occur because

−−across d a y l i g h t sav ing time changes , an i n t e r v a l

1 d a y does not n e c e s s a r i l y e q u a l an

i n t e r v a l 2 4 h o u r s .

CASE v i n t e r v a l

WHEN ’ day ’ THEN
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v hours := v coo rd ina t e .

coord inateValue ∗ 24 ;

EXECUTE ’SELECT ’ | | q u o t e l i t e r a l (

v o r i g i n ) | | ’ : : timestamp with

time zone + INTERVAL ’ | |
q u o t e l i t e r a l ( ’PT ’ | | v hours : :

t ex t | | ’H ’ ) INTO v datet ime ;

WHEN ’ hour ’ THEN

v hours := v coo rd ina t e .

coord inateValue ;

EXECUTE ’SELECT ’ | | q u o t e l i t e r a l (

v o r i g i n ) | | ’ : : timestamp with

time zone + INTERVAL ’ | |
q u o t e l i t e r a l ( ’PT ’ | | v hours : :

t ex t | | ’H ’ ) INTO v datet ime ;

WHEN ’ minute ’ THEN

v hours := v coo rd ina t e .

coord inateValue / 60 ;

v minutes := v coo rd ina t e .

coord inateValue % 60 ;

EXECUTE ’SELECT ’ | | q u o t e l i t e r a l (

v o r i g i n ) | | ’ : : timestamp with

time zone + INTERVAL ’ | |
q u o t e l i t e r a l ( ’PT ’ | | v hours : :

t ex t | | ’H ’ | | v minutes : : t ex t

| | ’M’ ) INTO v datet ime ;

ELSE −− second

v hours := v coo rd ina t e .

coord inateValue / (60∗60) ;

v minutes := v coo rd ina t e .

coord inateValue % (60∗60) / 60 ;

v seconds := v coo rd ina t e .

coord inateValue % 60 ;

EXECUTE ’SELECT ’ | | q u o t e l i t e r a l (

v o r i g i n ) | | ’ : : timestamp with

time zone + INTERVAL ’ | |
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q u o t e l i t e r a l ( ’PT ’ | | v hours : :

t ex t | | ’H ’ | | v minutes : : t ex t

| | ’M’ | | v seconds : : t ex t | | ’ S ’

) INTO v datet ime ;

END CASE;

−−RAISE NOTICE ’ Resu l t : %’ , q u o t e l i t e r a l ( ’PT’ | |
v hours : : t e x t | | ’H’ | | v minutes : : t e x t | | ’M’

| | v seconds : : t e x t | | ’S ’ ) ;

IF ( v datet ime >= ’9999−12−31 00:00:00+00 ’ ) THEN

v datet ime := ’ i n f i n i t y ’ ;

END IF ;

r e turn v datet ime ;

END; $BODY$

LANGUAGE ’ p lpg sq l ’ VOLATILE

COST 100 ;� �
Listing A.2: transformCoord(tm coordinate):timestamp with time zone� �

CREATE OR REPLACE FUNCTION lineFromTimeHelper (timestamp

with time zone , timestamp with time zone )

RETURNS geometry AS

$BODY$

DECLARE

v from a l i a s f o r $1 ;

v t i l l a l i a s f o r $2 ;

v geom text t ext ;

v coo rd ina t e tm coord inate ;

BEGIN

v coo rd ina t e := transformDateTime ( v from ) ;

v geom text := ’LINESTRING( ’ | | v coo rd ina t e .

coord inateValue : : t ex t | | ’ 0 , ’ ;

v coo rd ina t e := transformDateTime ( v t i l l ) ;
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v geom text := v geom text | | v coo rd ina t e .

coord inateValue : : t ex t | | ’ 0) ’ ;

r e turn GeomFromText( v geom text , −1) ;

END; $BODY$

LANGUAGE ’ p lpg sq l ’ VOLATILE

COST 100 ;� �
Listing A.3: lineFromTimeHelper(timestamp with tz, timestamp with tz)� �

CREATE OR REPLACE FUNCTION setPA (timestamp with time zone

default null , timestamp with time zone default null )

RETURNS void AS

$BODY$

DECLARE

v f rom in a l i a s f o r $1 ;

v t i l l i n a l i a s f o r $2 ;

v from timestamp with time zone ;

v t i l l timestamp with time zone ;

v count in t4 ;

BEGIN

v from := v f rom in ;

v t i l l := v t i l l i n ;

IF ( v from >= ’9999−12−31 00:00:00+00 ’ ) THEN

RAISE EXCEPTION ’ validFrom has to be e a l i e r

than <9999−12−31 00:00:00+00> ! ’ ;

END IF ;

IF ( v from >= v t i l l ) THEN

RAISE EXCEPTION ’ v a l i d T i l l has to be

g r e a t e r than validFrom ! ’ ;

END IF ;
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IF ( v t i l l >= ’9999−12−31 00:00:00+00 ’ AND v t i l l

<> ’ i n f i n i t y ’ ) THEN

v t i l l := ’ i n f i n i t y ’ ;

RAISE NOTICE ’ v a l i d T i l l has been s e t to <

i n f i n i t y >! ’ ;

END IF ;

SELECT COUNT(∗ ) FROM tm val idt ime INTO v count

WHERE userName = user ;

IF ( v count = 0) THEN

INSERT INTO tm val idt ime VALUES( user ,

v from , v t i l l ) ;

ELSE

UPDATE tm val idt ime SET validFrom = v from ,

v a l i d T i l l = v t i l l WHERE userName =

user ;

END IF ;

END; $BODY$

LANGUAGE ’ p lpg sq l ’ VOLATILE

COST 100 ;� �
Listing A.4: setPA(timestamp with tz, timestamp with tz)� �

CREATE OR REPLACE FUNCTION paFrom ( )

RETURNS timestamp with time zone AS

$BODY$

BEGIN

return getValidTimestamp (1) ;

END; $BODY$

LANGUAGE ’ p lpg sq l ’ VOLATILE

COST 100 ;� �
Listing A.5: paFrom():timestamp with time zone
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� �
CREATE OR REPLACE FUNCTION p a T i l l ( )

RETURNS timestamp with time zone AS

$BODY$

BEGIN

return getValidTimestamp (2) ;

END; $BODY$

LANGUAGE ’ p lpg sq l ’ VOLATILE

COST 100 ;� �
Listing A.6: paTill():timestamp with time zone� �

CREATE OR REPLACE FUNCTION lineFromPA ( )

RETURNS geometry AS

$BODY$

DECLARE

v from timestamp with time zone ;

v t i l l timestamp with time zone ;

BEGIN

v from := paFrom ( ) ;

v t i l l := p a T i l l ( ) ;

IF ( v t i l l = ’ i n f i n i t y ’ ) THEN

v t i l l := ’ 9999−12−31 00:00:00+00 ’ ;

END IF ;

r e turn lineFromTimeHelper ( v from , v t i l l ) ;

END; $BODY$

LANGUAGE ’ p lpg sq l ’ VOLATILE

COST 100 ;� �
Listing A.7: lineFromPA():geometry� �
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CREATE OR REPLACE FUNCTION lineFromTime (timestamp with time

zone , timestamp with time zone )

RETURNS geometry AS

$BODY$

DECLARE

v f rom in a l i a s f o r $1 ;

v t i l l i n a l i a s f o r $2 ;

v from timestamp with time zone ;

v t i l l timestamp with time zone ;

BEGIN

v from := v f rom in ;

v t i l l := v t i l l i n ;

IF ( v from IS NULL AND v t i l l IS NOT NULL) THEN

RAISE EXCEPTION ’ validFrom must not be n u l l

! ’ ;

END IF ;

IF ( v from >= ’9999−12−31 00:00:00+00 ’ ) THEN

RAISE EXCEPTION ’ validFrom has to be

sma l l e r than <9999−12−31 00:00:00+00> ! ’ ;

END IF ;

IF ( v from >= v t i l l ) THEN

RAISE EXCEPTION ’ v a l i d T i l l has to be

g r e a t e r than validFrom ! ’ ;

END IF ;

IF ( v from IS NULL) THEN

v from := paFrom ( ) ;

END IF ;

IF ( v t i l l IS NULL) THEN

v t i l l = p a T i l l ( ) ;

IF ( v t i l l = ’ i n f i n i t y ’ ) THEN
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v t i l l := ’ 9999−12−31 00:00:00+00 ’ ;

END IF ;

ELSE

IF ( v t i l l = ’ i n f i n i t y ’ OR v t i l l >= ’

9999−12−31 00:00:00+00 ’ ) THEN

v t i l l := ’ 9999−12−31 00:00:00+00 ’ ;

END IF ;

END IF ;

r e turn lineFromTimeHelper ( v from , v t i l l ) ;

END; $BODY$

LANGUAGE ’ p lpg sq l ’ VOLATILE

COST 100 ;� �
Listing A.8: lineFromTime(timestamp with tz, timestamp with tz):geometry� �

CREATE OR REPLACE FUNCTION validFrom ( geometry )

RETURNS timestamp with time zone AS

$BODY$

DECLARE

v va l i d t ime a l i a s f o r $1 ;

v coo rd ina t e tm coord inate ;

BEGIN

v coo rd ina t e := ROW( null , s t x ( s t s t a r t p o i n t (

v va l i d t ime ) ) : : b i g i n t ) ;

r e turn trans formcoord ( v coo rd ina t e ) ;

END; $BODY$

LANGUAGE ’ p lpg sq l ’ VOLATILE

COST 100 ;� �
Listing A.9: validFrom(geometry):timestamp with time zone� �

CREATE OR REPLACE FUNCTION v a l i d T i l l ( geometry )

RETURNS timestamp with time zone AS

$BODY$
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DECLARE

v va l i d t ime a l i a s f o r $1 ;

v coo rd ina t e tm coord inate ;

BEGIN

v coo rd ina t e := ROW( null , s t x ( s t endpo in t (

v va l i d t ime ) ) : : b i g i n t ) ;

r e turn trans formcoord ( v coo rd ina t e ) ;

END; $BODY$

LANGUAGE ’ p lpg sq l ’ VOLATILE

COST 100 ;� �
Listing A.10: validTill(geometry):timestamp with time zone

getValidTimestamp(int4):timestamp with time zone� �
CREATE OR REPLACE FUNCTION getValidTimestamp ( in t4 )

RETURNS timestamp with time zone AS

$BODY$

DECLARE

v type a l i a s f o r $1 ;

v timestamp timestamp with time zone := null ;

v i n t e r v a l tm in t e rva l ;

BEGIN

SELECT interval FROM tm coordinateSystem INTO

v i n t e r v a l WHERE t c s i d = (SELECT value : : i n t 4

FROM tm conf ig WHERE parameter = ’ t c s i d ’ ) ;

IF NOT FOUND THEN

RAISE EXCEPTION ’No time coord inate system

provided ; check t a b l e s <

tm coordindatesystem> and <tm conf ig >! ’ ;

END IF ;

IF ( v type = 1) THEN −− validFrom
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SELECT validFrom FROM tm val idt ime INTO

v timestamp WHERE userName = user ;

IF ( v timestamp IS NULL) THEN

v timestamp := CURRENTTIMESTAMP;

END IF ;

ELSE −−v a l i d T i l l

SELECT v a l i d T i l l FROM tm val idt ime INTO

v timestamp WHERE userName = user ;

IF ( v timestamp IS NULL) THEN

v timestamp := ’ i n f i n i t y ’ ;

END IF ;

END IF ;

r e turn v timestamp ;

END; $BODY$

LANGUAGE ’ p lpg sq l ’ VOLATILE

COST 100 ;� �
Listing A.11: getValidTimestamp(int4):timestamp with time zone
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