
Master Thesis

im Rahmen des Universitätslehrganges

„Geographical Information Science & Systems“

(UNIGIS MSc) am Zentrum für GeoInformatik (Z_GIS)

der Paris Lodron-Universität Salzburg

zum Thema

AN APPROACH TO GEOCODING

BASED ON

VOLUNTEERED SPATIAL DATA

vorgelegt von

Dipl. Wirt.-Inf. (FH) Christof Amelunxen
U1336, UNIGIS MSc Jahrgang 2007

Zur Erlangung des Grades
“Master of Science (Geographical Information Science & Systems) – MSc (GIS)”

Gutachter:

Ao. Univ. Prof. Dr. Josef Strobl

Paderborn, 19. Juni 2009

Acknowledgements

First of all I would like to thank Prof. Dr. Alexander Zipf, head of the Re-
search Group Cartography, University of Bonn, and Pascal Neis, head developer
of OpenRouteService and member of the research group, for giving me the op-
portunity to work in this interesting field of research. Their constructive feedback
and constant support was of invaluable importance to the success of the work
presented with this thesis.

Next I would like to thank Prof. Dr. Strobl, head of the Centre for Geomatics
(Z_GIS), University of Salzburg, and all members of the UNIGIS team for their
support during the time of the masters program of which the completion of this
thesis represents the final step.

Last but not least I would like to thank my family and friends, who had to tolerate
two and a half years of permant shortage of my free time, reaching its climax with
the work on this thesis.

Statement of Originality

I hereby certify that the content of this thesis is the result of my own work. This
thesis has not been submitted for any degree or other purposes, neither in whole
nor in part. To the best of my knowledge and belief, it contains no ideas, tech-
niques, quotations or any other material from the work of other people unless
acknowledged in accordance with standard referencing practices.

Paderborn, June 19, 2009

Christof Amelunxen

Abstract

Background: The automated process of assigning geographic coordinates to tex-
tual descriptions of a place, generally referred to as geocoding, plays an important
role in various fields of geographic information technologies. It is a fundamental
requirement for spatial analysis of address datasets and has e.g. been used for
analyses of health records or crime incidents for a long time already. The recent
progress of location based services like route planning applications has further
augmented the demand for geocoding services. However, the process of geocod-
ing relies on the availability of a reference dataset against which addresses can
be matched, but the collection and maintenance of appropriate spatial data is the
traditional domain of official surveying offices or commercial companies. Hence
there are only very few publicly available geocoding services which can be used
free of charge, and those which exist are usually limited to a specific country or
even smaller units. Furthermore, no freely available geocoding service offering
house number-level precision has yet been implemented based on volunteered
geographic data. The objective of this thesis was thus to explore the suitability of
freely available spatial data, collected through collaborative volunteered effort,
for its use as a reference dataset for a geocoding service.

Approach: The OpenStreetMap project has been selected as the data source for
this research as it provides an impressively extensive database originating from
collaborative volunteered effort and the exponential growth of the project data
since its start in 2004 is very promising. The first task of the work presented was
thus to analyze the data provided by the project and to develop an appropriate
process to transform the data in a format usable for geocoding purposes. The
next task has then been the actual design and implementation of the geocoding
application. The geocoder has been integrated into the OpenRouteService project,
providing a framework compliant to the OpenGIS Location Service (OpenLS) spec-
ifications. A major objective of the work was further to evaluate the possibilities
to compensate incomplete data (namely house number positions) by probability

based approaches to locate house number positions, supported by official house
numbering guidelines for the study area of Northrhine-Westfalia, Germany.

Results: The success of the implementation has been evaluated using the stan-
dard geocoding quality key figures match rate and positional accuracy. The match
rate, defined as the percentage of requests returning a correct match, has been
found to be 86% on municipal level requests (sample size n = 334), 60% on street
level requests (n = 1000) and 1% (n = 1000) on house number level requests
for randomly chosen addresses within the study area. The average positional er-
ror for house number level requests (determined by comparing the results to the
real positions of the buildings as provided by the surveying office for the study
area) has been found to be 175 meters, with a 90th percentile of 370m. The posi-
tional accuracy nevertheless strongly depends on the source data, as whenever
exact house number positions were available in the OpenStreetMap data, the
average positional error was reduced to merely 13 meters. A comparison with
the accuracy provided by the geocoding service offered by GoogleTM showed that
whenever house number data was available, the positional error was significantly
lower than Google’s and about equal when interpolation between two known
house numbers was possible. Additionally, the probability based approaches, de-
veloped to approximate unknown house number positions, were indeed found
to be capable of significantly improving geocoding accuracy.

Conclusion: The findings of the conducted research are able to serve as a proof
of concept for the usage of volunteered spatial data as a reference dataset for
geocoding services. The inherent inconsistencies present in the OpenStreetMap
data however required substantial concessions in terms of referential integrity
and the positional accuracy to be expected is strongly dependend on the availabil-
ity of house number data, although means to partially compensate incomplete
data have been successfully developed. The result of this work is already used in
production as the geocoding engine for various research projects, of which Open-
RouteService1 and OSM-3D2 presumably are the most prominent.

1available at: http://www.openrouteservice.org/
2available at: http://www.osm-3d.org/

iv

Contents

Acknowledgements i

Statement of Originality ii

Abstract iii

Contents v

List of Figures x

List of Tables xii

List of Listings xiii

Glossary xv

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Scope . 3

1.4 Approach and Methodology . 3

1.5 Expected Results . 4

1.6 Target Audience . 4

1.7 Structure of the Thesis . 4

2 Geocoding Basics 6

2.1 What is Geocoding? . 6

2.2 The Use of Geocoding . 7

3 Research Basis 9

3.1 OpenStreetMap . 9

3.1.1 Project Description . 9

3.1.2 Software Components . 11

3.1.3 Data Model . 12

3.1.3.1 Nodes . 14

3.1.3.2 Ways . 14

3.1.3.3 Relations . 15

3.1.4 Data Interfaces . 16

3.1.4.1 Direct Access . 16

3.1.4.2 Database Exports 16

3.1.4.3 Rendered Maps . 17

3.1.5 Usage Examples . 17

3.1.6 Licensing . 18

3.2 OpenGIS Location Services (OpenLS) 19

3.2.1 Core Compontents . 19

3.2.2 Location Utility Service . 19

3.2.2.1 Use Cases . 20

3.2.2.2 Abstract Data Types 21

3.2.2.3 Request and Response Parameters 21

3.2.2.4 Example Requests and Responses 22

3.3 OpenRouteService . 22

3.3.1 Overview . 22

3.3.2 OpenStreetMap Data Integration 24

vi

3.3.3 The Geocoder Component . 24

3.4 PostgreSQL Database Management System 25

3.4.1 Overview . 25

3.4.2 PL/pgSQL procedural database language 26

3.4.3 The PostGIS Extension . 26

4 Analysis and Methodology 28

4.1 Reference Dataset . 28

4.1.1 Completeness and Accuracy 28

4.1.2 Suitability of OSM Data Model for Geocoding 30

4.1.3 Proposed Data Model . 31

4.1.4 Data Integration . 33

4.2 Designing The Geocoding Process 34

4.2.1 Parsing . 34

4.2.2 Matching . 37

4.2.3 Locating . 38

4.3 Use Cases . 38

4.4 House Numbering . 40

4.4.1 Historical Overview . 40

4.4.2 House Numbering Systems 41

4.4.3 Using Existing Data . 42

4.4.3.1 House Number Data in OpenStreetMap 42

4.4.3.2 Exact Match . 45

4.4.3.3 Interpolation . 46

4.4.4 Probability Based Approach 46

4.4.4.1 Parameters needed for the Calculation 47

4.4.4.2 Hypotheses for Educated Guesses 49

vii

5 Implementation 51

5.1 Development Environment . 51

5.2 Building the Reference Dataset . 51

5.2.1 Database . 51

5.2.2 Data Model . 52

5.2.3 Data Integration . 53

5.3 Programming the Interfaces . 54

5.3.1 Geocode Result Format . 54

5.3.2 Freetext Search . 55

5.3.2.1 Cleaning and Segmenting 56

5.3.2.2 Determining Street/City Relations 56

5.3.2.3 Approximate String Matching 57

5.3.2.4 Locating the Geocode Result 57

5.3.3 Structured Search . 59

5.3.4 Reverse Geocoding . 61

5.4 Locating House Numbers . 61

5.4.1 Exact Match . 61

5.4.2 Interpolation . 62

5.4.3 Probability Based Approaches 64

5.4.3.1 Guessing Directions 64

5.4.3.2 Guessing Distances 67

6 Evaluation 72

6.1 Match Rate . 72

6.1.1 Importance of the match rate 72

6.1.2 Examining the match rate . 73

6.2 Positional Accuracy of House Number Requests 74

6.2.1 Overall Average Accuracy . 75

viii

6.2.2 Accuracy Using Existing Data 75

6.2.3 Accuracy using Probability Based Approaches 77

6.2.4 Comparison with Google Maps 79

7 Summary 82

7.1 Conclusions . 82

7.2 Outlook . 84

A Figures 86

B Listings 92

C Bibliography 104

ix

List of Figures

3.1 The five steps to making a map . 10

3.2 OpenStreetMap components overview 12

3.3 OpenStreetMap data primitives and their relations 13

3.4 Example use case diagram for OpenGIS Location Services 20

3.5 Components of OpenRouteService 23

4.1 OpenStreetMap database statistics 29

4.2 Relation between entities of the reference dataset in Germany . . . 32

4.3 The data integration process . 34

4.4 Segmenting freeform search texts . 35

4.5 Splitting freeform search text by blanks problem 36

4.6 Use Case diagram for the ORS geocoding component 39

4.7 Examples of street numbering systems 42

4.8 The corner lot problem . 48

4.9 Calculating appromaximate house number positions along a street 48

5.1 OpenRouteService Geocoder Architecture 55

5.2 Retrieving the centerpoint for non-trivial street geometries 60

5.3 Example of house number interpolation between two known
house numbers . 63

5.4 Determining street direction related to city center 65

5.5 Correlation between street length and house number distance . . . 69

5.6 Correlation between street length and corner lot offset 70

6.1 Effectiveness of street relation to city center approach 80

6.2 Positional errors in OpenRouteService and GoogleMaps geocod-
ing when house number data available in OSM 81

7.1 Requests sent to the ORS geocoder from 12/2008 to 04/2009 85

7.2 Requests including house numbers sent to the ORS geocoder from
12/2008 to 04/2009 . 85

A.1 Implementation of the data integration process 86

A.2 City center of Baghdad as shown by Google Maps and Open-
StreetMap . 87

A.3 Flow chart for freetext_search function 88

A.4 Determining street/city relations (flow chart) 89

A.5 Determining streets radial to the city center of Münster 90

A.6 Determining streets radial to the city center of Gelsenkirchen 90

A.7 Determining streets radial to the city center of Gelsenkirchen using
Google Maps centerpoint . 91

xi

List of Tables

4.1 Usage of the Karlsruhe Schema in Europe 45

5.1 Transforming street ranks to integer values for comparison 66

5.2 Relation between landuse and house number distance 68

5.3 Correlation between street length and house number distance . . . 69

6.1 Match rate of municipal level requests 73

6.2 Match rate of street level requests . 74

6.3 Match rate of house number level requests 74

6.4 Overall average of geocoding accuracy 75

6.5 Positional accuracy for exact house number matches 76

6.6 Positional accuracy using interpolation between two known house
numbers . 76

6.7 Positional accuracy using interpolation lines 77

6.8 Positional accuracy of probability based approaches 77

6.9 Effectiveness of street relation to city center approach for different
cities . 78

6.10 Effectiveness of street relation to city center approach for Gelsenkirchen
when using Google Maps city centerpoint 79

6.11 Geocoding accuracy comparison of ORS to Google Maps for dif-
ferent house number locating approaches 80

List of Listings

3.1 XML example of a point object in the OpenStreetMap database . . . 14

3.2 XML example of a line object in the OpenStreetMap database . . . 15

3.3 XML example of a polygon object in the OpenStreetMap database . 15

3.4 XML example of a relation object in the OpenStreetMap database . 16

3.5 Example URL used to retrieve a tile generated by mapnik renderer 17

4.1 Assigning house numbers to nodes using the Karlsruhe Schema . . 43

4.2 Assigning house numbers to buildings using the Karlsruhe Schema 44

4.3 Defining interpolation lines using the Karlsruhe Schema 44

4.4 Assigning street information to house number nodes 45

5.1 SQL: creating the geocode result data type 55

5.2 Extracting house numbers using regular expressions 56

5.3 Example of similarity match function 57

5.4 Usage of geocode_quality parameter in geocode resultset 58

5.5 Example usage of struct_search function 60

5.6 Example usage of function get_housenumber_of_street() 62

5.7 Retrieving exact house number locations with freetext_search() . . 62

5.8 Retrieving interpolated house number locations using the function
freetext_search() . 63

6.1 Sample geocode request to Google Maps API 79

B.1 Example geocode request using a freeform address 92

B.2 Example geocode response . 93

B.3 Example reverse geocode request . 94

B.4 Example reverse geocode response 95

B.5 Reverse geocoding function written in PL/pgSQL 96

B.6 Retrieving all segments of a street and returning the centerpoint . . 99

B.7 UNIX commands to create the database 102

B.8 Google Maps geocode result in XML format 103

xiv

Glossary

AJP Apache Java Protocol

API Application Programming Interface

DBMS Database Management System

DML Data Manipulation Language

ERD Entity Relationship Diagram

GIS Geographical Information System

GPS Global Positioning System

HTTP HyperText Transfer Protocol

LBS Location Based Services

MLP Mobile Location Protocol

OGC Open Geospatial Consortium

ORS OpenRouteService

OSM OpenStreetMap

RDBMS Relational Database Management System

SQL Structured Query Language

TIGER US census Topographically Integrated Geographic Encoding and
Reference System

URL Uniform Resource Locator

VGI Volunteered Geographic Information

WFS Web Feature Service

WMS Web Map Service

XML eXtensible Markup Language

1 Introduction

“Volunteered Geographic Information (VGI) has the potential to be a
significant source of geographers’ understanding of the surface of the
Earth.”

Goodchild (2007a, p.14)

1.1 Motivation

Goodchild (2007a) proposed the term Volunteered Geographic Information (VGI) for
a phenomena which has significantly altered the world of geographic information
science: geographic information generated by collaborative volunteered effort.

Until recently, the generation, maintenance and distribution of geographic infor-
mation has been solely the domain of either official land surveying offices or com-
mercial companies, but, with only very few exceptions, not of volunteers. This
was presumably mainly due to the immense costs related to the actual surveying
and maintenance and the lack of possibilities to effectively share and distribute
the collected spatial data.

However, this has recently changed, for the two following reasons3:

1. The dramatically reduced costs along with the enhanced usability of mod-
ern satellite navigation handheld devices have enabled a mass of people to
collect geographic data with ease of use and in precision levels which had
formerly been simply beyond reach for private persons.

2. The progress of the internet from a formerly “read-only media” to the “web
2.0” participatory approach has made collaborative efforts to generate and
share content of various kinds very common.

3based on suggestions by Goodchild (2007b)

1 Introduction

Among a broad list of projects dealing with user generated geographic informa-
tion, OpenStreetMap is one of the most promising. Its primary goal is to generate
a free map of the world (OpenStreetMap, 2009) through volunteered effort. Nev-
ertheless, although the generation of maps still is the focus of the project, the col-
lected spatial data is made publicly available and may be used for other purposes
as well. OpenRouteService4 e.g. is an example of a project which has successfully
implemented a routing service based on OpenStreetMap data.

The focus of this work however is to explore the suitability of OpenStreetMap
data for the purpose of geocoding, simplified as the conversion of textual address
information into point coordinates and vice versa5. Geocoding forms an essential
requirement of various spatial applications6, yet there are only very few pub-
licly available geocoding services which can be used free of charge, because they
mostly depend on proprietary spatial data and besides are usually limited to
a specific country or even smaller units, too. Furthermore, no freely available
geocoding service offering house number-level precision has ever been imple-
mented based on volunteered geographic data.

If a working geocoding service could successfully be built based on Open-
StreetMap data, this would be a substantial advance in the improvement and
progression of a wide range of projects, based in the field of volunteered geo-
graphic information.

1.2 Objectives

The main objective of this thesis is to design, implement and evaluate a geocoding
service based on volunteered spatial data. This includes the following challenges:

• Analysis of the base data concerning its suitability for geocoding purposes.

• Design and development of data models and transformation algorithms.

• Design and implementation of the geocoding process.

• Development of means to compensate incomplete base data using proba-
bility based approximation approaches.

• Evaluation of the geocoder in terms of accuracy and completeness.
4http://www.openrouteservice.org/
5a detailed definition of the term geocoding will be given in chapter 2
6see section 2.2 for examples

2

1 Introduction

1.3 Scope

Although the methodological part of this work is supposed to generate generally
valid methods and concepts, the study area for the implementational part will
be focused on the federal territory of Germany. The methods and concepts pre-
sented may nevertheless just as well be adopted by subsequent research projects
investigating different study areas.

1.4 Approach and Methodology

The approach and methodology chosen to accomplish the objectives stated can
be described as follows:

At first, the general suitability of the OpenStreetMap data for geocoding purposes
will be evaluated with respect to its data model, relational integrity and complete-
ness. Based on this analysis the proposed data model for the geocoder’s reference
dataset will be designed and an appropriate data transformation and integration
process will be developed following the concepts presented by Han and Kamber
(2006) and Rahm and Do (2000).

This will be followed by the definition and analysis of use cases to be provided
by the geocoding service. The actual processing of the geocoding use cases will
be designed following standard geocoding practices as described by Goldberg
(2008), Davis et al. (2003), Borkar et al. (2001) and Christen and Churches (2005).

The treatment of incomplete house number data will receive special attention.
In order to compensate missing house number data in OpenStreetMap, different
probability based approaches will be developed in order to effectively approxi-
mate house number locations. This includes the analysis of house numbering sys-
tems in general and research concerning habits and regulations for house number
assignment within the study area in order to construct and evaluate hypotheses
for the approximation of house number locations. This part will mainly be based
on the work of Goldberg (2008), Ratcliffe (2001) and Bakshi et al. (2004).

The quality of the geocoder, implemented according to the concepts and guide-
lines developed before, will finally be measured using the standard key figures
match rate and positional accuracy as described by Cayo and Talbot (2003) and addi-

3

1 Introduction

tionally by comparing the positional accuracy measured to a commercial geocod-
ing service provided by GoogleTM.

1.5 Expected Results

The work presented should give answers to the following questions:

1. Is it possible to build a working geocoding service based on the volunteered
spatial data provided by the OpenStreetMap project?

2. Is it possible to effectively compensate incomplete spatial data (particularly
house number locations) using probability based approaches?

3. Which completeness and accuracy level can be achieved by a geocoder
based on volunteered spatial data and how do these figures compare to
commercial geocoding services?

1.6 Target Audience

The target audience addressed with this thesis is everybody interested in. . .

• the general potential of volunteered geographic information

• the specific potential of the OpenStreetMap project as a basis for geocoding
purposes

• general solutions to the challenges and tasks faced when implementing
geocoding services

• probability based approaches to approximate house number positions

• the research field of geocoding in general

1.7 Structure of the Thesis

The thesis is divided into the following chapters:

Geocoding Basics Introducing the term geocoding and giving an overview
of common use cases for geocoding services.

4

1 Introduction

Research Basis Providing an overview of the basic technologies and
fields of research which the work presented in this
thesis is based on.

Analysis and Methodology Analysing tasks and challenges involved in imple-
menting the geocoder and developing methodolog-
ical approaches to solve them in order to provide a
conceptual guideline for the implementation phase.

Implementation Describing the implementation of the geocoder,
based on the fundamental concepts and technolo-
gies presented and according to the guidelines de-
veloped in the analysis phase.

Evaluation Measuring the success of the implementation using
standard geocoding quality key figures and by com-
parison against a commercial geocoding service.

Summary Summarizing the conclusions to be drawn from
the results of the work presented in this thesis and
proposing an outlook for further research.

5

2 Geocoding Basics

This chapter provides a definition of the term geocoding and gives an overview
of common use cases for geocoding services.

2.1 What is Geocoding?

People have always been used to associate real world objects with geographical
places by using verbal descriptions of locations. These descriptions are either ex-
pressed as a spatial relation to some other, already known location (“the Center
for Geoinformatics at Salzburg University is located south of the city center”) or
defined by a postal address referencing an entity of a publicly known street ad-
dress database (“the Center for Geoinformatics at Salzburg University is located
at Hellbrunnerstraße 34”).

Verbal geographical references are well understood and interpreted by people but
are useless for any type of spatial analyses, which require the object’s coordinates
in a spatial reference system instead (i.e. it needs to be georeferenced). Furthermore,
verbal descriptions of a place are not deterministic and prown to errors, require
secondary knowledge to be interpreted correctly and can change over time as
pointed out by Wiezoreck et al. (2004).

The process of transforming a textual description of a place to coordinates in
a given spatial reference system is generally called “geocoding”, although the
definition and usage of the term varies in scientific literature. Some authors
limit the scope of input data to postal addresses (Bakshi et al., 2004; Behr et al.,
2008; Cayo and Talbot, 2003), whereas others widen the scope to include named
places (Davis et al., 2003) or even arbitrary textual representations of a place
(Pouliquen et al., 2004; Goldberg, 2008).

The output of the geocoding process can have multiple formats, too. In most cases
the output is a coordinate pair (Zandbergen, 2007b; Ratcliffe, 2004; Davis et al.,

2 Geocoding Basics

2003) but it may as well be of a more complex shape like lines or polygons,
depending on the type of object to be georeferenced and the intended use
(Wiezoreck et al., 2004).

Considering the ambiguous use in literature, Goldberg (2008, p.5) arguably gives
the most generic definition of the term geocoding by describing it as being. . .

“the act of transforming aspatial locationally descriptive text into a
valid spatial representation using a predefined process”

Additionally, the term reverse geocoding is commonly used to describe the op-
posing process of transforming a coordinate pair into a locally descriptive text
(Brownstein et al., 2005).

The service which actually does the geocoding is called a geocoder. The geocoder
requires a reference dataset7 containing known geographic features to determine
the geographic reference matching the textual reference of the place. The compre-
hensiveness and accuracy of this reference dataset is one of the most important
factors determining the overall quality of the geocoding results (e.g. shown by
Ratcliffe (2001), Grubesic and Murray (2004) and Waldner et al. (2005)).

2.2 The Use of Geocoding

A literature research showed that the concept of geocoding as an automated pro-
cess of transforming textual address data into geographical coordinates, in order
to spatially analyze the collected data, has already been addressed in 1970 by
the U.S. Census Use Study introducing the DIME Geocoding System (Farnsworth,
1970).

Among the first uses of geocoding has been the spatial analysis of health records,
e.g. analyzing cancer registry data (Rushton et al., 2006, p.16) in order to detect
spatial patterns in cancer distributions. The analysis of health data is still one
of the main uses of geocoding (Cayo and Talbot, 2003; Krieger et al., 2005) and a
great deal of the scientific literature addressing the field of geocoding has been
published in the context of health science.

Another field where geocoding has been used for a long time already with
increasing importance is crime analysis, as pointed out by Harris (1999) and

7also known as “geographic base file” (Grubesic and Murray, 2004)

7

2 Geocoding Basics

Ratcliffe (2004). Harris (1999, p.98) states that “Geocoding is vitally important
for crime mapping since it is the most commonly used way of getting crime or
crime-related data into a GIS8”.

Other examples of geocoding usage scenarios include the spatial analysis of cus-
tomer databases, urban planning and development, market research or emer-
gency services.

Nevertheless, in the last couple of years arguably the most driving factor in the
field of geocoding has been the constant advance of Location Based Services (LBS)
like online route planning services e.g. This has lead to a significant increase in
the amount of services requiring a geocoding component serving as an interface
between the user, who is used to verbal descriptions of a place, and the spatial
application, which needs geographically valid references instead.

8GIS: Geographical Information System

8

3 Research Basis

This chapter provides an overview of the basic technologies and fields of research
which the work presented in this thesis is based on.

3.1 OpenStreetMap

3.1.1 Project Description

The OpenStreetMap project (OSM) was founded in August 2004 at the Univer-
sity College London (UCL) by Steve Coast as a collaborative effort of volunteers,
who contribute spatial data to a common database. The following quote from the
OpenStreetMap project website9 provides a summary of the project’s intention
(OpenStreetMap, 2009):

“OpenStreetMap is a project aimed squarely at creating and provid-
ing free geographic data such as street maps to anyone who wants
them. The project was started because most maps you think of as free
actually have legal or technical restrictions on their use, holding back
people from using them in creative, productive or unexpected ways.”

The main difference to other publicly available online mapping services like
Google MapsTM10 is that both the collected spatial data and the maps derivated
from this data are free to use for everybody. Furthermore, everybody can use the
spatial data to build their own maps from it and use those maps for their own
projects, websites, illustrations etc. Google MapsTM has severe restrictions on the
usage of the service instead (see Google Maps (2009)) and the raw spatial data

9http://www.openstreetmap.org/
10http://maps.google.com/

3 Research Basis

itself is not available to the public at all because it is the property of commer-
cial mapping companies like Navteq11 or TeleAtlas12 as clearly stated in the terms
and conditions of Google Maps (2009). Hence it is also impossible to build own
elaborate services like route planners or geocoders upon these services.

OpenStreetMap follows the “wiki-concept” instead, which most people are famil-
iar with due to the success of the online encyclopedia Wikipedia13. The concept
basically means that every user is allowed to add, modify and delete content as
he or she likes. All users together serve as a regulatory instance in this system as
they are able to review and correctify or even undo the operations committed by
others.

The spatial data itself is gathered from different sources but mainly contributed
by users tracking points using GPS14 handheld devices and later uploading the
collected data to the OpenStreetMap database. Once uploaded the data can be
edited and labeled via a set of specially developed editing tools. Figure 3.1 visu-
alizes the single steps of the whole process.

Figure 3.1: The five steps to making a map
Source: OpenStreetMap Beginner’s Guide:

http://wiki.openstreetmap.org/wiki/Beginners’_Guide
last accessed: March 22nd, 2009

Most of the mapping is done by single persons, collecting the data on their own,
but in 2006 a social event called “mapping party” had been introduced, where a
group of people met to collaboratively map a predefined area. Perkins and Dodge
(2008) have shown the potentials and weaknesses of this approach by joining a
mapping party held in Manchester, UK in May 2006 and analyzing the results
afterwards.
11http://www.navteq.com/
12http://www.teleatlas.com
13http://www.wikipedia.de/
14GPS: Global Positioning System

10

3 Research Basis

Other sources of spatial data include public-domain datasets like the TIGER street
data offered by the US Census Bureau, which is converted as needed and inte-
grated into the OpenStreetMap database, as well as available copyright-less or
donated satellite images15 and maps.

3.1.2 Software Components

The OpenStreetMap project consists of five main software components:

Database used to store the data objects.

Interfaces provide access to the database’s contents.

Editors are used by the project members to upload and edit data.

Renderers generate maps from the database’s contents.

Frontends provide access to the maps generated by the renderers.

The database system used to store the data is a MySQL16 relational database man-
agement system17. Several interfaces provide access to this database, which will
be discussed in section 3.1.4. The data itself is uploaded and edited by the project
members via a set of specially developed editors18.

Renderers19 are software components which generate map images using objects
retrieved from the database and those maps are then presented to the public by
appropriate frontends. For performance reasons the maps are normally pregen-
erated as images in different scales, called tiles, which are made available via
HTTP20 from a set of tile servers. Theses tiles are again retrieved and assembled to
a complete map of the area which is to be shown by the frontends.

The main frontend is the project’s website21 which is not only used to present the
maps but additionally offers an online editor22 as well as user interaction features
like registering new users or login and logout.
15YahooTM e.g. granted OSM the right to use their satellite images
16http://www.mysql.com/
17status as of March 28th, 2009
18a list of available editors is available at http://wiki.openstreetmap.org/wiki/Editor

(last accessed: March28th, 2009)
19a list of available renderers is available at http://wiki.openstreetmap.org/wiki/Rendering

(last accessed: March28th, 2009)
20HTTP: Hypertext Transfer Protocol
21http://www.openstreetmap.org/
22the Potlatch editor, for a description see http://wiki.openstreetmap.org/wiki/Potlatch

(last accessed: March28th, 2009

11

3 Research Basis

Figure 3.2 shows an overview of the project’s components published on the Open-
StreetMap website.

Figure 3.2: OpenStreetMap components overview
Source: http://wiki.openstreetmap.org/wiki/Image:OSM_Components.png

last accessed: March 28th, 2009

3.1.3 Data Model

The data model of OpenStreetMap is kept very simple. It consists of only three
different object classes called data primitives (OpenStreetMap, 2009):

Node A point feature represented by a latitude/longitude coordinate pair.

Way A line feature represented by two or more connected nodes.

Relation A set of primitives which are grouped together to form an abstract
data structure.

Figure 3.3 on the following page gives an overview of the data primitives and
their relations as defined in the OpenStreetMap data model.

Each of the data primitives is given a set of attributes. The following attributes
are used by each of the three primitives to store internal data:

12

3 Research Basis

id The internal identifier for an object, generated automatically when
an object is created, and which must be unique within its object
class (node, way or relation).

user The user who contributed the object.

timestamp Time of last modification.

visibility If set to ’false’ the object is logically deleted but still accessibly when
specifically addressed.

In addition to these attributes the objects may contain a set of tags. These are
key/value pairs describing “what the object is”. There are no technical restric-
tions on the selection of tags added to a given object but there is an increasing list
of well-known and recommended tags and values which the users are strongly
encouraged (but not forced) to use23. The whole set of valid objects, their at-
tributes and relations is defined in a Document Type Definition (DTD).24

23a description of the most commonly used tags and their intended meaning is available at
http://wiki.openstreetmap.org/wiki/Map_Features (last accessed: March 25th, 2009)

24available at http://wiki.openstreetmap.org/index.php/OSM_Protocol_Version_0.5/DTD
(last accessed: March 26th, 2009)

Figure 3.3: OpenStreetMap data primitives and their relations
Source: own assembly based on OpenStreetMap (2009)

13

3 Research Basis

At time of writing the OpenStreetMap database consists of approx. 325 million
nodes, 26 million ways and 88,000 relations (OpenStreetMapStats, 2009).

3.1.3.1 Nodes

Nodes are the most basic data type in the OpenStreetMap database represent-
ing a single point on the earth’s surface referenced by a lat/lon coordinate pair.
Nodes are either used as vertices for line objects or have a meaning on their own,
defined by appropriate tags. Listing 3.1 shows a point feature extracted from the
OpenStreetMap database in XML25 format which is defining the center of the city
of Salzburg26. This point is given a meaning by its tags place and name.

<node id="34964314" lat="47.8001948" lon="13.0410636">
<tag k="name" v="Salzburg"/>
<tag k="place" v="city"/>

</node>

Listing 3.1: XML example of a point object in the OpenStreetMap database

3.1.3.2 Ways

A way is a collection of connected nodes forming a linestring. The most common
use for this data type is the definition of street segments but it is as well used to
store any other real world entity which can be represented as a line, like railways,
rivers, borders, etc. Listing 3.2 on the following page shows an example of a
segment of the street “Hellbrunner Straße” in Salzburg27. The vertices of the line
segment are defined by nested <nd>-elements referencing the nodes storing the
actual coordinates.

If a linestring forms a closed ring (i.e. a line of at least three nodes of which the
first and the last are identical) the object is considered a polygon and thus rep-
resenting an area. This is used to model landuse or buildings e.g. Listing 3.3 on
the next page shows an example of a building object extracted from the Open-
StreetMap database.

25XML: Extensible Markup Language
26irrelevant attributes removed for clarity
27irrelevant attributes removed for clarity

14

3 Research Basis

3.1.3.3 Relations

Relations define logical connections between two or more objects (nodes, ways
or other relations) which share a common role. It is most commonly used to
combine line segments (ways) in order to model a route object such as a special
bicycle path but it may as well be used to combine a set of buildings which repre-
sent a logical unit, e.g. a university campus. The members of a relation are refer-
enced by a list of <member>-elements nested inside. Listing 3.4 on the following
page shows an example of a relation object extracted from the OpenStreetMap
database, representing the route of a local train service and thus containing line
segments as members.

<way id="23253405">
<nd ref="20967534"/>
<nd ref="245562416"/>
<nd ref="245562417"/>
<nd ref="248144729"/>
<nd ref="276158449"/>
<nd ref="245562418"/>
<nd ref="245562419"/>
<nd ref="245562420"/>
<nd ref="251625231"/>
<nd ref="251625234"/>
<nd ref="251625235"/>
<tag k="highway" v="residential"/>
<tag k="name" v="Hellbrunner Straße"/>

</way>

Listing 3.2: XML example of a line object in the OpenStreetMap database

<way id="30514144">
<nd ref="336827617"/>
<nd ref="336827620"/>
<nd ref="336827623"/>
<nd ref="336827626"/>
<nd ref="336827617"/>
<tag k="name" v="Universität Salzburg Naturwissenschaftliche

Fakultät"/>
<tag k="area" v="yes"/>
<tag k="building" v="yes"/>

</way>

Listing 3.3: XML example of a polygon object in the OpenStreetMap database

15

3 Research Basis

3.1.4 Data Interfaces

There are three different types of interfaces used to access and work with the data
collected by the OpenStreetMap project.

• directly accessing the database

• using XML export files extracted from the database

• using the maps generated by the renderers

3.1.4.1 Direct Access

The OpenStreetMap database ist directly accessible via an API28 built upon
HTTP29. To access the interface, clients establish an HTTP connection to the
server and then send regular HTTP commands (GET, PUT, POST and DELETE)
to retrieve or modify database objects. The actual payload (“the data”) is ex-
changed in XML format via HTTP request and response bodies. This whole
process is defined in the OSM Protocol30 which will not be discussed in detail
here.

3.1.4.2 Database Exports

OpenStreetMap offers a weekly updated export of all objects stored in the
database as a single file in XML format called planet file31. At time of writing
28API: Application Programming Interface
29the specification of HTTP is published in IETF: The Internet Engineering Task Force (1999)
30current version of the protocol is 0.5 (as of March 28th, 2009), see OSMProtocol (2009)
31available at: http://planet.openstreetmap.org/

(last accessed: March 27th, 2009)

<relation id="67041">
<member type="way" ref="22954540" role=""/>
<member type="way" ref="30039116" role=""/>
<member type="way" ref="30103534" role=""/>
<tag k="name" v="S1"/>
<tag k="route" v="rail"/>
<tag k="type" v="route"/>
<tag k="operator" v="Salzburger Lokalbahn"/>

</relation>

Listing 3.4: XML example of a relation object in the OpenStreetMap database

16

3 Research Basis

this file contained more than 150 gigabytes of raw XML data. It is mainly used to
import the data (either in whole or in part) into another database used by projects
based on OpenStreetMap.

In addition to the planet file OpenStreetMap offers daily updated differential files
containing only the updates made since a given point in time. These can be used
to update derivated databases which had initially been created from a planet file.

Apart from that, some external organisations and companies offer local extracts
from the planet file. The German company Geofabrik e.g. offers extracts down to
first level administrative boundaries for the scope of Europe which can be down-
loaded from their website for free32.

3.1.4.3 Rendered Maps

If the raw data itself is not needed, the content of the database can be accessed
by retrieving the maps pregenerated by the renderers. The maps generated by
the most commonly used Mapnik renderer e.g. are available via specifically con-
structed HTTP requests including a lat/lon coordinate pair and a zoom level33.
Listing 3.5 shows an example URL used to retrieve a tile of the city center of
Salzburg at zoom level 1534.

http://tile.openstreetmap.org/15/17571/11417.png

Listing 3.5: Example URL used to retrieve a tile generated by mapnik renderer

3.1.5 Usage Examples

Apart from the OpenStreetMap website itself, which primarily offers an online
mapping service, there is a constantly increasing number of projects incorporat-
ing components of the OpenStreetMap project for various kinds of applications

32available at: http://download.geofabrik.de/osm/
(last accessed: March 27th, 2009)

33Mapnik offers zoom levels ranging from 0 (whole world) to 18
34a detailed description of the contruction of appropriate URLs is available at:

http://wiki.openstreetmap.org/wiki/Slippy_map_tilenames
(last accessed: March 28th, 2009)

17

3 Research Basis

and services, ranging from merely including generated maps into their website
to complex spatial applications like online route planning services.

An example for a service using OpenStreetMap data to generate special purpose
maps is OpenCyleMap35, providing maps specifically designed for bicyclists. Oth-
ers even use the data to create printed maps, like a map of the city of Freiburg
which has been generated to provide a handout for a conference36.

Other projects use OpenStreetMap data to create elaborate spatial applications
way beyond map making, like routing services (e.g. OpenRouteService37 and Your-
Navigation38) or even 3D visualization services as developed by OSM-3D Ger-
many39.

3.1.6 Licensing

The data generated by the OpenStreetMap project is licensed under the terms of
the Creative Commons Attribution-Share Alike License40 as of version 2.0. This license
allows to freely share, copy, distribute and transmit the data as well as remixing41

and using it for other projects under the following conditions (Creative Commons,
2009):

• the originator of the data has to be clearly named

• the redistribution of data derivated from the original data has to be licensed
under terms conforming to this license

• the license itself has to be provided and notices of the license included in
the original data must not be removed

35service available at: http://www.opencyclemap.org/
(last accessed: March 28th, 2009)

36available at: http://www.remote.org/frederik/tmp/freiburg-stadtplan.zip
(last accessed: March 29th, 2009)

37http://www.openrouteservice.org/
38http://www.yournavigation.org/
39http://www.osm-3d.org/
40available at: http://creativecommons.org/licenses/by-sa/2.0/

(last accessed: March 27th, 2009)
41modifying the data or transforming it into a different format

18

3 Research Basis

3.2 OpenGIS Location Services (OpenLS)

The OpenGIS Location Services (OpenLS) is a framework published by the Open
Geospatial Consortium (OGC) proposing a standardized set of interfaces, protocols
and data types for implementations of Location Based Services (LBS). The main
goal of this initiative, which was founded in 2000, is to improve interoperability
between Location Based Services by providing developers with a common spec-
ification. The most current version at time of writing (1.2) has been published in
September 2008 (OGC, 2008). Contributors to this standard include leading com-
panies on the GIS market, e.g. Autodesk, ESRI42, MapInfo and Intergraph, which
demonstrates their interest in this standard.

3.2.1 Core Compontents

The framework defines five core components (OGC, 2008):

Part 1: Directory Service Provides an online directory to find a specific
place, product or service.

Part 2: Gateway Service Provides an interface through which the posi-
tion of a mobile device can be determined from
the network provider following the Mobile Lo-
cation Protocol Specification (MLP, 2001).

Part 3: Location Utility Service Provides a geocoding and reverse geocoding
service.

Part 4: Presentation Service Rendering geographic information for display
on a mobile terminal.

Part 5: Route Service Providing route planning functions.

3.2.2 Location Utility Service

The Location Utility Service defines the geocoder component of the OpenLS specifi-
cation and will thus be given a closer look as it will form the basis for the geocoder

42ESRI: Environmental Systems Research Institute, Inc
http://www.esri.com

19

3 Research Basis

to be implemented within the scope of this thesis. The specification defines the
following main tasks of the component as (OGC, 2008, pp.19):

• to determine a geographic position given a place name, street address or
postal code (geocoding)

• to return a complete, normalized description of the place (normalization)

• to determine a complete, normalized decription of a place oder address
given a geographic position (reverse geocoding)

3.2.2.1 Use Cases

Figure 3.4 shows a use case diagram explaining the role of the Location Utility
Service component in different kinds of spatial requests to a service incorporating
the OpenGIS Location Services specifications.

Figure 3.4: Example use case diagram for OpenGIS Location Services
Source: own assembly based on OGC (2008)

20

3 Research Basis

3.2.2.2 Abstract Data Types

Requests and responses within a OpenGIS Location Service are exchanged via XML
over HTTP following an XML schema defined for that purpose43.The actual spa-
tial data is encapsulated in Abstract Data Types (ADTs) nested inside the XML
requests and responses. These are well-known data types defined in a separate
XML schema (see ADT.xsd on pp.49 in OGC (2008)44). The following ADTs are
important to know about in the context of the Location Utility Component:

Address ADT Contains an address information for a geographic place,
normally consisting of a street address, a municipal,
country and a postal code.

Area of Interest ADT Defines an area of interest for a location request as a cir-
cle, bounding box or polygon. No matches outside of this
area will be returned.

Position ADT The description of a geographic position (a point geome-
try).

3.2.2.3 Request and Response Parameters

The OpenGIS Location Services specification defines a set of parameters, which
each request and response to and from the Location Service component may or
must include (OGC, 2008, pp.20):

A geocode request must include a list of one or more addresses as Address ADTs
which may be unstructured free form, partial or complete addresses.

A geocode response must include a list of normalized addresses as Address ADTs
including point geometries matching the requested address. It may as well pro-
vide a GeocodeMatchCode providing information about the accuracy of the match
defined by a float value ranging from 0 to 1 and a MatchCode describing the algo-
rithm used to find the match.

A reverse geocode request must include the point to be transformed into an ad-
dress as a Position ADT and may as well include information about the area of

43schema available at: http://schemas.opengis.net/ols/1.2.0/LocationUtilityService.xsd
(last accessed: March 29th, 2009)

44also available at: http://schemas.opengis.net/ols/1.2.0/ADT.xsd
(last accessed: March 29th, 2009)

21

3 Research Basis

interest as an Area of Interest ADT and the preferred type of address returned
(street, postalcode, point of interest, etc.). If no preference is given the default is
to return the nearest street address.

A reverse geocode response must include a list of normalized addresses and the
exact location of each address as a point geometry. It may as well include the
distance from the requested point to the point found. The list of addresses must
be sorted by their distance to the requested point.

3.2.2.4 Example Requests and Responses

For a more practial explanation of the Location Utility Service some examples of
valid responses and requests will be given. Listing B.1 on page 92 shows a valid
geocode request containing a freeform address search. The matching response
containing the geocode result is shown in listing B.2 on page 93. Listing B.3 on
page 94 shows a valid reverse geocode request and listing B.4 on page 95 shows
its result.

3.3 OpenRouteService

3.3.1 Overview

OpenRouteService is an online route planning service conforming to the Route Service
component of the OpenGIS Location Services specification. It not only provides
route planning features but implements the Locating Utility Service component
used for geocoding purposes, as well as the Directory Service for point-of-interest
directed searches. The service has been designed and implemented within the
scope of a master thesis45 written at the University of Applied Sciences Mainz
by Pascal Neis46 and is now maintained and further developed by the Research
Group Cartography, University of Bonn, lead by Prof. Dr. Alexander Zipf47.

Apart from the HTTP/XML-based interfaces defined in the OpenGIS Location Ser-
vices it provides a web-based user interface48, serving as an easy to use frontend

45“Location Based Services mit OpenStreetMap Daten”, see Neis (2008)
46preliminary work has been done in the scope of a diploma thesis (Neis, 2006)
47Pascal Neis is a member of the research group and still the main developer of the project
48http://www.openrouteservice.org/

22

3 Research Basis

for users to access the route planning and geocoding functions, e.g. online map-
ping of geocode results and routes. As shown in figure 3.5 ORS makes as well
use of WFS/WMS49 Geoservers and includes existing rendering engines from the
OpenStreetMap project for the actual presentation of the maps.

Figure 3.5: Components of OpenRouteService
Source: http://wiki.openstreetmap.org/images/6/66/ORS_Components.png

(last accessed: April 22nd, 2009)

The capabilities of the routing component include:

• car navigation by fastest or shortest route

• bicycle routing

• pedestrian routing

• inclusion of intermediate stops

• definition of avoid areas50 for route calculations, which are a prerequisite for
emergency routing purposes (define flood areas, etc.)

49WFS/WMS: Web Feature Service / Web Map Service
50areas which must not be intersected by the route

23

3 Research Basis

• accessibility analysis51

• realtime integration of traffic news (limited to specific areas)

• generation of driving instructions (“turn left at...”)

The specialty of OpenRouteService compared to other publicly available services
with similar capabilities is that it can be called “three times open” (Neis and Zipf,
2008), as it is based on. . .

• open standards as defined in the OpenGIS Location Services

• open source software, e.g. PostgreSQL Database Management System

• open geographical data derivated from the OpenStreetMap project

3.3.2 OpenStreetMap Data Integration

As mentioned before, OpenRouteService is primarily based on spatial data gen-
erated by the OpenStreetMap project. For this purpose, weekly XML exports of
OSM data (as shown in section 3.1.4.2) are preprocessed by custom Java programs
which parse and filter the export datafiles, extract the relevant geographic data
and finally insert them into appropriate tables in a PostgreSQL/PostGIS database
(see figure 3.5 on the previous page). The whole process has been developed and
described by Neis (2008) and will not be discussed in detail here.

3.3.3 The Geocoder Component

OpenRouteService already included a basic geocoder component before the work
presented in this thesis had begun. It was already conforming to the Location
Utility Service as described in section 3.2.2 and primarily used by the web frontend
to locate start and end points for routing calculations but also directly accessible
via an HTTP/XML interface.

The major drawbacks of this early implementation were the following:

• no possibility to search for house numbers

• no approximate string matching features, hence only “perfect equality
match or nothing”

51giving answers to the question: “what can be reached from a specific point within a given
amount of time?”

24

3 Research Basis

• no attribute relaxation techniques included, hence “either all attributes
match or no result is returned”

• randomly selected points for a street are given as result instead of center-
point

• unfavourable modeling of the reference dataset

• poor performance

3.4 PostgreSQL Database Management System

3.4.1 Overview

PostgreSQL is an open source object-relational database management system, re-
leased under the BSD license52 which makes it free to use for any purpose. Its
development started in 1986 under the project name Postgres at the University of
California at Berkeley (UCB) as a followup project to the Ingres database man-
agement system (hence the name “Postgres”, meaning “post ingres”). It has later
beed renamed to Postgres95 and finally to PostgreSQL53. Since 1996 the software
is maintained and developed outside of the UCB as an open source project with
volunteered distributions ranging from single programmers to large corporations
from all over the world.

PostgreSQL claims to strongly conform to the standards for the SQL database
language as defined by the American National Standards Institute (ANSI)54 in 1992
and 1999 respectively55 and provides a rich list of advanced database features
such as56. . .

• views and triggers

• stored procedures using its own procedural language PL/pgSQL as well as
many native programming languages such as C, Perl, Java, Ruby, Python,
etc.

52available at: http://www.postgresql.org/about/licence
(last accessed: April 15th, 2009)

53historical informations taken from: http://www.postgresql.org/about/history
(last accessed: April 15th, 2009)

54http://www.ansi.org/
55also known as SQL-92 and SQL:1999
56for detailed explanations of the features listed see PostgreSQL (2008)

25

3 Research Basis

• database replication

• point-in-time recovery

• online backups

• storage of binary objects like images, audio files, etc.

• advanced indexing technologies like Generalized Search Trees (GIST) and
Generalized Inverted Indexes (GIN)

• query rewriting using a rules system

3.4.2 PL/pgSQL procedural database language

PostgreSQL, just like almost any commonly used database management system,
features its own procedural database language called PL/pgSQL (PostgreSQL,
2008, pp.721). It is very similar to other widely used procedural database lan-
guages like e.g. Oracle’s PL/SQL. PL/pgSQL features a wide range of standard
programming language elements such as variables, control structures (loops, con-
ditions, etc.), functions or error handling57.

3.4.3 The PostGIS Extension

PostGIS is an extension to the PostgreSQL database management system, adding
the possibility to store and analyze geographic objects in the database. It is devel-
oped by Refractions Research Inc58 as a research project and is made freely avail-
able for any use under the terms of the GNU Public License59. PostGIS follows the
OpenGIS “Simple Features Specification for SQL” and has been certified by the OGC
as being compliant to the OpenGIS Simple Features Specification for SQL, Version 1.1,
Types and Functions Alternative60.

The PostgreSQL/PostGIS combination serves as a popular alternative to com-
mercial spatially enabled database management systems like e.g. Oracle Spatial

57the complete list of features including example programs is included in PostgreSQL (2008)
58http://www.refractions.net/
59see Free Software Foundation (1991)
60certificate available at http://postgis.refractions.net/files/opengis-certification.png

(last accessed: April 15th, 2009)

26

3 Research Basis

and is used in various kinds of projects ranging from commercial applications
and services to research projects61.

Additionaly, PostGIS is natively supported by almost all open source Geographical
Information Systems (GIS) e.g. including Quantum GIS62 and gvSIG63. The support
for PostgreSQL/PostGIS databases among commercial GIS solutions however is
significantly lower. They mostly require middleware components such as a Web
Feature Service serving as an interface or separately licensed add-on products to
gain access to the spatial objects stored inside the database. As an example, ESRI’s
popular ArcGIS suite offers no native support for direct PostgreSQL access al-
though independently developed commercial interfaces like the zigGIS plugin
by Obtuse Software LLC64 are filling this gap65.

61a list of case studies is available at http://postgis.refractions.net/documentation/casestudies/
(last accessed: April 16th, 2009)

62http://www.qgis.com/
63http://www.gvsig.gva.es/
64http://pub.obtusesoft.com/
65beginning with version 9.3 of ArcGIS Server, ESRI included native support for access to Post-

greSQL/PostGIS spatial databases via their ArcSDE database interface (see ESRI (2008))

27

4 Analysis and Methodology

In this chapter the tasks and challenges involved in implementing the geocoder
will be analyzed and appropriate methodical approaches to them will be devel-
oped. The result will be a methodical guideline for the implementation phase
addressed in chapter 5.

4.1 Reference Dataset

As pointed out by Ratcliffe (2001), Grubesic and Murray (2004) and Waldner et al.
(2005), the reference dataset is a very important (if not the most important) com-
ponent of a geocoder, as it directly influences the overall quality of the geocoding
results in terms of coverage and accuracy. In this section the general suitability
of the OSM data for geocoding purposes will be discussed and necessary prepro-
cessing steps to integrate the data into an appropriate reference dataset will be
developed.

4.1.1 Completeness and Accuracy

The amount of spatial data collected by the project’s contributors is already im-
pressive and constantly growing in size and coverage. At the time of writing
the project database consisted of 325,210,959 individual nodes and 26,181,088
linestrings collected by 101,934 registered users66. Figure 4.1 shows the develop-
ment of GPS track points collected and the number of project members registered
since August 2005.

Recent research performed by Haklay (2008), comparing the completeness and
accuracy of the OpenStreetMap data to official Ordnance Survey datasets in

66taken from OpenStreetMapStats (2009)

4 Analysis and Methodology

the UK, showed that the average distance between two similar objects in the
databases is only 6 meters (and thus close to the maximum precision level avail-
able using conventional GPS handheld devices) while it took only four years to
collect about 29% of the area of England. Haklay (2008, p.24) however points out
that the quality of the data is very inconsistent and can vary significantly.

Considering that commercial online mapping services such as Google MapsTM

depend on proprietary data licensed by commercial mapping companies like
Navteq, OpenStreetMap often has significant advantages in terms of actuality
(changes can be implemented within minutes) but especially in terms of com-
pleteness in areas which are not well covered by commercial providers. An im-
pressive example of this point can be observed by comparing the map for a part of
the city of Baghdad from Google MapsTM to OpenStreetMap as shown in figure A.2
on page 87. Both maps show the same randomly selected area within the center
of Baghdad at identical zoom levels, yet OpenStreetMap’s version is way more

Figure 4.1: OpenStreetMap database statistics
Source: http://wiki.openstreetmap.org/wiki/Statistics

last accessed: March 22nd, 2009

29

4 Analysis and Methodology

detailed than the one offered by Google MapsTM.

It is nevertheless difficult to measure the overall completeness and coverage of the
OpenStreetMap data because there is no general definition of what “complete”
means in this context as it depends heavily on the intended use of the data. As an
example, the dataset for a given area lacking information about footpaths may be
perfectly suitable for a car navigation system while at the same time useless for
pedestrian routing.

4.1.2 Suitability of OSM Data Model for Geocoding

Looking at the data model of OpenStreetMap as described in section 3.1.3 it be-
comes clear that it was not designed to serve as a reference dataset for a geocoder
in the first place but simply to generate maps. The following inherent structural
deficits of the OpenStreetMap data model have to be considered when imple-
menting the geocoder:

The meaning of an object is determined by its tags only

There is no distinction between a city, a building, a vertex of a street line or even
a postbox in terms of its object type. All of these real world entities are rep-
resented by a node. Their meaning is instead determined by appropriate tags,
e.g. the tags place=city and name=Salzburg mark a node as the center of a city
named “Salzburg” whereas a node with the tag amenity=postbox refers to a post-
box.

To make it even worse, similar entities of the real world may be stored using
different object types, e.g. a building may be represented as a node (defining its
centroid only) or using a closed way (defining the actual structure of the building
as a polygon67).

There is no structural relation between objects belonging together

Apart from using the object type relation (which is not widely used) there are
no structural relations between objects which should logically be considered as

67the building may even be represented by multiple, unrelated closed ways, each representing a
part of the building

30

4 Analysis and Methodology

belonging together. A street, for example, may consist of multiple, not directly
connected line strings, each represented by a way object in the database. However,
the obviously strong relation of these line strings (“they are forming a street!”) is
not inherently represented in the data model.

The same problem arises when trying to determine hierarchical dependencies
between entities, e.g. determining the city a street belongs to or determining the
street a building belongs to, etc. This is not a problem when mapping those enti-
ties, because their logical relation can be determined by their spatial relation on the
map (when looking at a map, it is mostly sufficient to “see” that a given build-
ing is ”near“ a street), but nevertheless a major problem when trying to build a
geocoder which needs to reliably assign the building to a street.

Administrative boundaries

There still is an ongoing discussion among the OSM community members about
how administrative borders or areas should preferrably be stored68, and (partly
because of this) the mapping of borders is still not complete. This makes it partic-
ularly hard to assign an object to an administrative unit, e.g. to assign a German
city to its federal state or even to its country. Additionally, areas marking postal
codes, which play an important role in the addressing system of many countries,
are not included at all.

For the scope of this thesis it has thus been decided to integrate additional ge-
ographic data which may be replaced by OSM data later. The additional data
used is the sample data for Europe from ESRI’s product ArcGIS Desktop 9.1 which
includes vector data representing postal code areas for the scope of Germany as
well as administrative borders for all European countries including 1st level ad-
ministrative units such as federal states (ESRI, 2005).

4.1.3 Proposed Data Model

The design of the data model used for the reference dataset is primarily deter-
mined by the list of attributes a user should be allowed to use as search terms.
The following attributes have been selected to represent a general model of how

68see discussion at: http://wiki.openstreetmap.org/wiki/Talk:Relation:boundary
(Last accessed: April 19th, 2009)

31

4 Analysis and Methodology

addresses may be constructed and these should form the basis of the data model
for the reference dataset to be implemented:

• Country

• Country Subdivison (e.g. states in the USA, cantons in switzerland, etc.)

• Postal Code

• Municipal

• Municipal Subdivision (e.g. districts of a city)

• Street

• House Number

Taking into account the differences between countries in their addressing schemes
(e.g. some countries do not have postal codes, some have multiple or no country
subdivisions, etc.) this list shall only form the basic attributes which may be part
of an address and should therefore be represented in the reference dataset model
without being strictly required for a given place oder address. It is merely a list
of attributes which “may be used as a search term for the geocoding process”.
Figure 4.2 shows an example relation diagram for the addressing scheme used in
Germany (which will be the primary study area in the implementation phase).

Figure 4.2: Relation between entities of the reference dataset in Germany
Source: own assenbly

32

4 Analysis and Methodology

4.1.4 Data Integration

As shown in the previous section, the OpenStreetMap data ist not directly usable
as a reference dataset but has to be filtered and transformed for that purpose. The
general steps necessary for this task are69:

Extraction The data has to be extracted from its original source.

Reduction Filtering out the relevant parts of the data.

Cleaning Correcting errors in the source data.

Standardization Standardization of attribute values.

Aggregation Joining data sources (if more than one is used).

Semantic Transformation Transforming the data to the schema in the target
database.

Loading Inserting the data into the target database.

The extraction step depends heavily on the format of the input data. In case
of OSM weekly XML dumps, an XML-parser has to be implemented using pro-
gramming languages capable of string processing like C, Perl or Java. Reduction
in terms of OSM means to filter out all objects and attributes which are not nec-
essary for geocoding purposes. If waterways e.g. are not declared as valid results
of the geocoding, all line strings referencing them can be left out.

Cleaning in this case includes the correction of syntactical or typographic errors,
e.g. multiple blank spaces that should be reduced to a single blank, removal of
illegal characters, etc., as well as the detection of inconsistencies and logical errors
as far as possible.

The data has to be standardized as well, e.g. multiple spellings or typings of
a similar logical value have to be consolidated (“Hellbrunnerstraße” vs. ”Hell-
brunnerstr.“ etc.).

If more than one data source is used, they may have to be joined and aggregated,
too. Before the final insertion into the reference dataset they may as well have to
be semantically transformed to fit the target scheme of the reference dataset first.

Figure 4.3 on the following page shows the consecutive steps, which form the
process of data integration.

69based on suggestions by Han and Kamber (2006) and Rahm and Do (2000)

33

4 Analysis and Methodology

4.2 Designing The Geocoding Process

In this section the geocoding process to be implemented will be designed. A
geocoding process basically consists of three steps:

1. Parsing the input data.

2. Searching for matching objects in the reference dataset.

3. Generating a geographic reference in the required output format.

Davis et al. (2003) name these steps the parsing, matching and locating phase.

4.2.1 Parsing

In this phase the input data is transformed into a standardized form which may
later be used during the matching phase. It consists of three steps:

1. Segmentation

2. Cleaning

3. Standardisation

Segmentation

If the input data contains an unstructured text like a complete address in raw
format (e.g. “Hellbrunnerstraße 34 Salzburg Österreich”) it has to be segmented
first, i.e. split into separate logical components. The segments have then to be
assigned to appropriate attributes of the reference data, in the example given
before this would be street name, house number, municipal and country. Depending
on the input data this task can be very challenging and a great deal of literature

Figure 4.3: The data integration process
Source: own assembly

34

4 Analysis and Methodology

has been written focusing this problem by using different approaches including
complex probabilistic algorithms like Hidden Markov Models (Christen and Zhu,
2002; Borkar et al., 2001).

Figure 4.4 illustrates the process in a simplified version.

Figure 4.4: Segmenting freeform search texts
Source: own assembly

Both the splitting and the assigning contains challenges which must be solved in
the implementation. For usability improvement, the user should be allowed to
either use commas (preferred way) or blanks as field separators for the freetext
search. The blank as a field separator however can lead to complicated issues if a
single logical component of the search term (e.g. a street name) contains blanks
itself. This problem is illustrated in figure 4.5 on the following page and must be
dealt with in the implementation.

The assignment of the single components of the search term to matching attributes
in the reference dataset should be done by a combination of the following ap-
proaches (based on Goldberg (2008)):

lexical analysis Search text components are assigned to attributes of the refer-
ence dataset by lexical analysis of the text using string match-
ing patterns. A 2-digit number e.g. is most certainly referring
to a house number, whereas a 5-digit number (in Germany)
can only be a postal code, strings ending with “str.” are most
certainly referring to a street name, etc.

35

4 Analysis and Methodology

lookup table All components which can not be assigned to an attribute be-
cause of their lexical structure should be tested against the
reference dataset, i.e. if for a given string a matching munic-
ipal in the reference dataset exists, it is likely that this is the
“city component” of the search term, and so on.

Cleaning

Apart from segmenting the input data a cleaning algorithm is used to remove
invalid or unnecessary characters from the input text if necessary. This algorithm
may as well incorporate logical restrictions to eliminate invalid data such as in-
valid postal zipcodes, invalid combinations of characters etc. as addressed by
Christen and Zhu (2002).

Standardization

The last step is the standardization phase which is mainly used to convert mul-
tiple textual representations of the same logical content into the format which is
used in the reference data, e.g. abbreviations for street types (“Str.” vs. “Straße”
or “Ave” vs. “Avenue“).

Figure 4.5: Splitting freeform search text by blanks problem
Source: own assembly

36

4 Analysis and Methodology

4.2.2 Matching

In this phase the best matching geographic feature in the reference dataset is re-
trieved. Goldberg (2008, p.71) as well as Christen and Churches (2005) classify
the algorithms to match geographic features into two main categories:

deterministic: a perfect matching feature in the reference dataset is found

probabilistic: no perfect matching feature is found but one or more features
match with a certain probability

The deterministic approach minimizes the geocoding errors as only perfect
matching features are considered but it considerably limits the match rate70 of the
geocoding process and is sensitive to misspellings or typing errors in the input
text or reference dataset.

In practice this often leads to an iterative approach in which the requirements for
a match are constantly relaxed until a matching feature is found, e.g. if the search
for a given city, street and house number returns no match in the next step only
city and street is used and so on. Goldberg (2008, p.71) calls this method Attribute
Relaxation.

The probabilistic approaches use statistical models instead to find matching fea-
tures in the reference dataset and rely on rather complex mathematical algorithms
which will not all be discussed in detail here.

A widely used example of probabilitic feature matching is approximate string
matching. In this case string matching functions are used which determine the
probability that two strings “mean” the same, although they do not match per-
fectly on a per-character basis. Goldberg (2008, p.80) calls this essence-level equiv-
alence.

An introduction to basic principles and techniques used in the field of approxi-
mate string matching as well as examples of different implementations have been
presented by Navarro (2001). Snae (2007) explains the most common matching
algorithms and compares them concerning their accuracy under different con-
ditions. Christen (2006) and Lait and Randell (1996) have compared common
matching algorithms with emphasis on name matching.

For the geocoder to be implemented, matching should preferrably be done by a
deterministic approach followed by probabilistic approaches (if no match found).
70the percentage of geocoding requests which return a result (Cayo and Talbot, 2003)

37

4 Analysis and Methodology

Futhermore, attribute relaxation techniques should be integrated to improve the
match rate.

4.2.3 Locating

If the matching phase returned an appropriate object of the reference dataset, this
result has then to be turned into a valid geocoding result.

This may be trivial, e.g. if the point coordinates of a specific address have been
searched for (”Hellbrunnerstraße 34 Salzburg“) and a point object referencing
exactly this address has been found. In this case the coordinates of the reference
object could simply be used as the geocoding result.

If the matching object in the reference dataset is a polygon instead, the point
coordinates have to be determined first, e.g. by calculating the centroid of the
polygon (Dearwent et al., 2001).

If no exact match has been found in the reference dataset, the whole process be-
comes considerably more complex. In these cases interpolation techniques may
be used to determine the approximate location of the searched object. A great
deal of research has already been conducted, addressing various questions in
this complex field (Davis et al., 2003; Zandbergen, 2007b; Wiezoreck et al., 2004;
Bakshi et al., 2004) and solving this particular problem will be one of the major
challenges in the implementational part of this thesis.

For the geocoder to be implemented, whenever a point object matching the
searched address could be found in the reference dataset (e.g. a point reference
to a city center), the geocoder should simply return the exact coordinates of that
object. If a street is searched for, the point coordinates to be returned have to
be calculated by determining the middle of the street (which may turn out to be
rather complicated if the street consists of multiple unconnected segments). The
same holds true if a request for a particular house number matches a building
stored as a polygon.

4.3 Use Cases

Three different interfaces, each representing a particular use case of the geocoder,
have to be implemented:

38

4 Analysis and Methodology

Freeform Text An arbitrary textual description of an address is sent to
the geocoder and a normalized address including an X/Y
coordinate pair is returned.

Structured Text A list of of search texts, each representing a specific at-
tribute of an entity in the reference dataset, is sent to the
geocoder and a normalized address including an X/Y co-
ordinate pair is returned.

Reverse Geocoding An X/Y coordinate pair is sent to the geocoder and a nor-
malized address is returned.

Figure 4.6 visualizes theses use cases and shows their connection to the standard
steps involved in the geocoding process as discussed in section 4.2.

Figure 4.6: Use Case diagram for the ORS geocoding component
Source: own assembly

Each of the three use cases should return a geocode result consisting of. . .

• a normalized address of the matched object in the reference dataset

• a coordinate pair defining the match location

• the complete geometry of the match

• an indicator defining the quality of the match

39

4 Analysis and Methodology

4.4 House Numbering

The geocoding of addresses including house numbers includes specific chal-
lenges, which will be separately addressed in this section.

4.4.1 Historical Overview

As a European citizen living in an urban area, it is hard to imagine everyday life
without street names and house numbers. The street name / house number referenc-
ing system to identify buildings and places is vital to many different applications
such as sending mail or urban navigation but it is also the reference system used
to define people’s home locations. In Germany e.g. the home address is vital to
administrative services ranging from tax collection to welfare. Thus it is not solely
used to identify places and buildings but as a means of personal identification71.

The main driving force for the development of a street name / house number ad-
dressing scheme is urbanization. For people living in rural communities below a
certain size, it was just not necessary to assign a specific address to a place, be-
cause everybody living in the village just “knew” where everbody else’s houses
and public places were. Another driving force are administrative purposes, gen-
erating the need for non-local people to identify houses via an address such as
tax collection, census or military service draft.

The first general street naming and house numbering systems in Europe have
thus been established in the developing urban areas of centrally managed Eu-
ropean civilizations. According to Tantner (2006) and Farvacque-Vitkovic et al.
(2005) the first efforts to systematic addressing (although initially limited to spe-
cific areas) in Europe have been made in the 18th century, e.g. in Madrid in 1750,
Trieste in 1754 or in London 1762. Since 1768 provincial cities were also included
in the addressing system in France. In 1799 the Prussian king Friedrich Wilhelm
III ordered the systematic house numbering of Berlin and in 1857 the kingdom of
Hannover established the law that every building in its dominion had to be given
a house number (Königlich Hannoversches Ministerium des Inneren, 1857).

71this is further demonstrated by the fact that the German identification card (the “Person-
alausweis”) includes the person’s home address)

40

4 Analysis and Methodology

4.4.2 House Numbering Systems

Although most developed regions in Europe and elsewhere in the world devel-
oped some sort of addressing scheme for buildings, the schemes themselves or
more specifically their underlying algorithms and ordering systems can be sig-
nificantly different even throughout a single country. However, a basic principle
shared between any of them can be found:

• a building is given an identifier, mostly an (alpha-)numerical value

• each building is further assigned to a higher level administrative unit

• the identifier is unique among all buildings assigned to the same adminis-
trative unit

In most cases, especially in Europe, the administrative units are streets, but it may
as well be a block (e.g. used in the German city of Mannheim72) or an informal
rural settlement. The schemes defining how the identifiers are generated and
assigned are even more diverse. In most European areas buildings are assigned
to a street and numbered in ascending order from the defined starting point of
the street, where one side of the street has odd numbers and the other side has
even numbers73.

In other areas, e.g. parts of Berlin, a system was established which numbers the
buildings along a street sequentially from a starting point on one side of the street
and continuing the numbering on the other side back to the beginning of the
street (the “horseshoe” or “U-shaped” approach). In more planned cities, like
most of the cities in the USA e.g., buildings are often not just sequentially num-
bered, but the house number itself contains information about the distance from
a reference point74 (either a defined starting point of the street or a central point
from which the street is divided into north/south or east/west sections). This
system is called metric numbering75 and may be combined with an odd/even rule
to determine the side of the street. Figure 4.7 on the following page visualizes
examples of these numbering systems.

72see Tantner (2006)
73Farvacque-Vitkovic et al. (2005, p.149) calls these schemes sequential alternating numbering sys-

tems
74for an example of this scheme see Fonda-Bonardi (1994), describing the numbering system used

in Los Angeles
75see Farvacque-Vitkovic et al. (2005, p.148)

41

4 Analysis and Methodology

Apart from these approaches to house numbering there are schemes in use which
(from a systematical point of view) seem very odd. In most parts of Japan e.g.,
houses are not assigned to streets but to a “neighborhood” or block, and house
numbers are sequentially assigned according to the construction date of the build-
ing (Farvacque-Vitkovic et al., 2005, p.9). As a result, house numbers do not con-
tain any spatial reference at all, hence they are useless for navigational purposes
or spatial analyses. Farvacque-Vitkovic et al. (2005) satirically states that the eas-
iest way to find a particular house number in Japan “is thus to go to the nearest
police station, as the Japanese themselves do” (Farvacque-Vitkovic et al., 2005,
p.9). A similar system, assigning buildings to parcels rather than streets, is used
in Korea (see Kim (2001) for an explanation).

4.4.3 Using Existing Data

4.4.3.1 House Number Data in OpenStreetMap

Until the beginning of 2008 no house number data had been integrated to Open-
StreetMap at all. This was partly due to the lack of a commonly agreed scheme
defining how to map house number information. Several propopals had been
suggested by OpenStreetMap community members76 but neither of them has of-
ficially been approved. However, one particular proposal has now become a de-

76a list of proposals and arguments is available at: http://wiki.openstreetmap.org/
index.php?title=Proposed_features/House_numbers (last accessed: April 19th,
2009)

Figure 4.7: Examples of street numbering systems
Source: own assembly

42

http://wiki.openstreetmap.org/index.php?title=Proposed_features/House_numbers
http://wiki.openstreetmap.org/index.php?title=Proposed_features/House_numbers

4 Analysis and Methodology

facto standard because a group of mappers started using it to map house numbers
and over time other users just adopted it77. The proposal is called the “Karlsruhe
Schema” and has first been published as a wiki page in April 200878.

The basic working principles of this scheme are:

• Single house numbers can be attached to nodes or buildings (represented
by closed ways).

• A range of house numbers along a street can be defined via ways called
“interpolation lines” starting and ending at a node which includes a house
number.

The house number itself is assigned using the tag addr:house number.

Single House Numbers

Listing 4.1 shows a node containing a house number conforming to the Karlsruhe
Schema whereas listing 4.2 on the following page is an example of a house number
assigned to a building.

<node id="123" lat="47.7659168508311" lon="13.058013414565503">
<tag k="addr:housenumber" v="34" />

</node>

Listing 4.1: Assigning house numbers to nodes using the Karlsruhe Schema

Range of House Numbers

Interpolation lines are used to construct an imaginary way along which interpola-
tion of intermediate house numbers between two known house numbers should
take place. It is defined by the tag addr:interpolation. Its value is one of
odd, even, all or alphabetic, defining the type of house numbers to be interpolated.
Listing 4.3 on the next page shows an example of an interpolation line.

77this process of “standardization by acceptance” is quite common for OSM (and many other
community-driven projects as well)

78the current version of the wiki page is available at: http://wiki.openstreetmap.org/
wiki/Proposed_features/House_numbers/Karlsruhe_Schema (last accessed: April
16th, 2009)

43

http://wiki.openstreetmap.org/wiki/Proposed_features/House_numbers/Karlsruhe_Schema
http://wiki.openstreetmap.org/wiki/Proposed_features/House_numbers/Karlsruhe_Schema

4 Analysis and Methodology

Which street does a house number belong to?

The examples shown before did not include any information about which street
the named house numbers actually belong to. In these cases the street is deter-
mined by selecting the nearest street relative to the given node oder building but
the corresponding street may as well be assigned using the tag addr:street.
Listing 4.4 on the following page shows an example of a node including house
number and street information. It is also possible to assign a house number node
or building to a street using a dedicated relation object but this practice has not

<way id="30514144">
<nd ref="336827617"/>
<nd ref="336827620"/>
<nd ref="336827623"/>
<nd ref="336827626"/>
<nd ref="336827617"/>
<tag k="name" v="Universität Salzburg Naturwissenschaftliche

Fakultät"/>
<tag k="area" v="yes"/>
<tag k="building" v="yes"/>
<tag k="addr:housenumber" value="34"/>

</way>

Listing 4.2: Assigning house numbers to buildings using the Karlsruhe Schema

<node id="1" lat="47.7971145" lon="13.0535358">
<tag k="addr:housenumber" v="30" />

</node>

<node id="2" lat="47.7969243" lon="13.0539049"/>

<node id="3" lat="47.7967801" lon="13.0541624">
<tag k="addr:housenumber" v="40" />

</node>

<way id="123">
<nd ref="1"/>
<nd ref="2"/>
<nd ref="3"/>
<tag k="addr:interpolation" v="even"/>

</way>

Listing 4.3: Defining interpolation lines using the Karlsruhe Schema

44

4 Analysis and Methodology

been adopted by the community (despite from a data modeling point of view
being the better solution).

<way id="30514144">
<nd ref="336827617"/>
<nd ref="336827620"/>
<nd ref="336827623"/>
<nd ref="336827626"/>
<nd ref="336827617"/>
<tag k="name" v="Universität Salzburg Naturwissenschaftliche

Fakultät"/>
<tag k="area" v="yes"/>
<tag k="building" v="yes"/>
<tag k="addr:housenumber" value="34"/>
<tag k="addr:street" value="Hellbrunnerstraße"/>

</way>

Listing 4.4: Assigning street information to house number nodes

Usage of the Karlsruhe Schema

As stated before, the Karlsruhe Schema has been adopted by the majority of the
community members and is nowadays by far the most commonly used way to
store house number information (especially in Europe). Table 4.1 shows the us-
age of different parts of the Karlsruhe Schema in Europe as of April 14th 2009,
according to TagWatch (2009).

Usage Type Number of objects
nodes/buildings including addr:housenumber 2,735,368
nodes/buildings including addr:street 2,711,030
interpolation lines defined by addr:interpolation 21,936
house number/street association via relations 2,037

Table 4.1: Usage of the Karlsruhe Schema in Europe

4.4.3.2 Exact Match

If a geocode request for an address including a house number is sent to the
geocoder and this particular house number has been inserted in the Open-
StreetMap data using the Karlsruhe Schema, the exact position of the node

45

4 Analysis and Methodology

should be returned as result. If the house number is attached to a building
polygon, the centroid of the polygon should be calculated and returned as result
instead (Dearwent et al., 2001).

4.4.3.3 Interpolation

The interpolation lines of the Karlsruhe Schema have to be integrated into the ref-
erence dataset so that requests for house numbers along these lines are properly
interpreted by the geocoder. Additionally, the following hypothesis should be
tested in order to improve the geocode results:

“When the positions of house numbers A and B along a given street
are known and a geocode request for a house number X, which lies
numerically between A and B, is sent to the geocoder, is it reasonable
to determine house number X via interpolation although this assump-
tion is not explicitly supported by an interpolation line?”

4.4.4 Probability Based Approach

Assuming a geocode request (either freeform or structured text) includes a house
number whereas the reference dataset contains no house number information
for that street at all, most geocoders would presumably simply ignore the house
number information and return the center of the corresponding street as a result.
Because house number data in OpenStreetMap is still rare and inhomogeneously
distributed (some areas are almost completely mapped whereas others contain no
house number data at all) one specific challenge of this work was to find out, if the
location of a house number along a given street can be effectively approximated
by probability based approaches. In other words, the question to be answered is:

Is it possible to effectively approximate the position of a house number
along a given street in the absence of any house number data?

The term “effectively” in this case is meant in the sense of “better than simply re-
turning the center position of the street”. As shown in section 4.4.2, house num-
bering systems can differ significantly, hence the following hypotheses will be
limited to the most commonly used system in Europe, the sequential alternating

46

4 Analysis and Methodology

system (see figure 4.7 on page 42). Due to the availability of a dataset includ-
ing house number data from its official surveying agency, the study area will be
further limited to the federal state Northrhine-Westfalia in Germany.

4.4.4.1 Parameters needed for the Calculation

To guess the location of house numbers assigned according to the sequential alter-
nating system the following parameters have to be estimated:

1. What is the average distance between two house numbers?

2. What is the offset of the first house from the beginning of the street?

3. On which end of the street does the numbering start?

The first two of these parameters should be determined by spatial analyses of
known reference datasets including house numbers. Additionally, different fac-
tors which might possibly influence these values should be statistically tested for
correlations in order to improve the approximation results.

If the direction of a street has been determined and the average distance d be-
tween house numbers is known, the position p of house number x could be cal-
culated as. . .

p = d+ (x+ x (mod 2)− 2) ∗ d

. . . assuming that the distance from the starting point of the street to the position
of the first house equals half the distance between two houses, i.e the distance
between two house numbers given an alternating sequential house numbering
schema.

But this is not adequate, because of what Goldberg (2008, p.88) calls the “corner
lot problem”79. The calculation above assumes that each building located next
to a street is assigned to this street but this assumption may not hold true when
investigating the first building along a street. The problem is visualized in fig-
ure 4.8 on the next page. House “B” may be assigned to street “Y”, which would
imply that it is the first house on this street, but it may as well be assigned to
street “X”, in which case house “A” would be the first house on street “Y”.

The average offset from the street’s starting point has thus to be determined sep-
arately by statistical analysis of a given reference dataset for the study area. If

79It has likewise been address by Bakshi et al. (2004)

47

4 Analysis and Methodology

the average distance between house numbers d and the offset o is known, the ap-
proximate position p of the building with house number x along a given street
can then be calculated as:

p = o+ (x+ x (mod 2)− 2) ∗ d

Figure 4.9 visualizes the calculation of a house number position along a street.

It is important to mention that this only holds true for streets forming a simple
linestring, i.e. the street does not consist of multiple non-connected segments and
each segment apart from the first and the last segment is connected on both sides
to exactly one other segment. As stated before, it further assumes an alternating
sequential numbering system.

In order to guess the direction of a street, official guidelines on house numbering
available for the study area (Northrhine-Westfalia) have been consulted. In 1979,
the North Rhine-Westfalian Association of Cities (“Städtetag NRW”) has published

Figure 4.8: The corner lot problem
Source: own assembly based on Bakshi et al. (2004)

Figure 4.9: Calculating appromaximate house number positions along a street
Source: own assembly

48

4 Analysis and Methodology

a guideline on how to assign house numbers to buildings (see Städtetag NRW
(1979)) containing the following passages:

1. The numbering system should be sequential alternating with odd numbers
on the left and even numbers on the right side of the street (see section 5.1.1
of Städtetag NRW (1979)).

2. Numbering should normally start at the end of the street, which is closer to
the city center (see section 5.1.3 of Städtetag NRW (1979)).

3. In dead-end streets, numbering should start at the end connected to another
street (see section 5.1.3 of Städtetag NRW (1979)).

4. In developing areas, numbering should start at the connection to the main
road (see section 5.1.3 of Städtetag NRW (1979)).

If the direction of the street, and the side, on which the searched building is lo-
cated, are known, its approximate position may be considered not exactly on the
street centerline, but with a certain offset80 left or right to the street. Ratcliffe
(2001) has shown that the value of this offset is hard to guess due to varying
street widths and building positions relative to the street, so it has been decided
to initially just calculate a point along the street centerline.

4.4.4.2 Hypotheses for Educated Guesses

Based on the guidelines for the order of numbering, the following hypotheses
have been constructed and should therefore be tested using statistical methods:

1. If only one of the end points of a street is connected to another street, the
street starts at this point.

2. If a street proceeds away from the city center in a radial direction, the street
starts at the end closest to the city center.

3. If a street is on one end connected to a street of a higher rank as it is on the
other end, the street starts at the end connected to the higher level street.

Additionally, the following hypotheses have been constructed to test influences
on the calculation’s parameters by analysis of correlations:

80Goldberg (2008, p.84) calls this a “dropback”

49

4 Analysis and Methodology

1. The average distance of houses along a street correlates with the street’s
distance to the city center (built-up areas may become less dense as they
proceed away from the city center).

2. The average distance between houses along a street correlates with the
length of the street (longer streets are more likely to contain “gaps” with no
buildings).

3. The average distance between houses along a street correlates with the
number of surrounding streets (bigger lots in less urban areas).

4. The average distance between houses along a street depends on the sur-
rounding landuse (houses in residential areas are closer than in industrial
areas).

5. The average offset of the first house along a street to the start point of the
street correlates with the street’s length.

50

5 Implementation

This chapter describes the implementation of the geocoder, based on the funda-
mental concepts and technologies presented in chapters 2 and 3 and according to
the guidelines developed in chapter 4.

5.1 Development Environment

The geocoder is an essential part of OpenRouteService and the preliminary imple-
mentation described in section 3.3.3 had already been in production when the
work presented in this thesis had begun. The development has thus been shifted
to a completely separated development environment consisting of. . .

• A SuSE NovellTM Linux Enterprise Server 10 running on a VMwareTM Vir-
tual Machine platform (2.26 GHz CPU / 2 GB RAM)

• A PostgreSQL 8.3.3 database management system including PostGIS 1.3.3
spatial extension

The outcomes (software and data) of the development have been periodically
integrated into OpenRouteService and tested for both function and performance.

5.2 Building the Reference Dataset

5.2.1 Database

A PostgreSQL DBMS81 (version 8.3.3) has been installed on a SuSE NovellTM Linux
Enterprise Server 10 operating system and the PostGIS extension as of version
1.3.3 has been added. Additionally, a database user osm and a database named

81see section 3.4

5 Implementation

osm has been created and support for the PL/pgSQL language and the module
pg_trgm (providing approximate string matching features) has been added to
the database. Listing B.7 on page 102 shows the commands called82.

5.2.2 Data Model

The analysis of the OSM data model with respect to the suitability for geocoding
purposes revealed significant disadvantages. For the reasons shown in section
4.1.2 it is, in its current form, not possible to derive a consistent relational struc-
ture from it, which would however be necessary to construct a data model as pro-
posed in section 4.1.3. It has thus been decided to implement a data model, which
is, from a scientific data modeling point of view, inconsistent and inherently re-
dundant, but nevertheless suitable for the practical purpose of geocoding.

It was decided to initially implement only the three following data types:

• Municipals (Points)

• Streets (Linestrings)

• House Numbers (Points)

The data types are represented in the PostgreSQL database as tables with each
row storing an entity of the corresponding data type. The linkage between those
data objects is not enforced in the data model, just as it is not enforced in the
OSM data model, but has to be generated dynamically in the matching phase of
the geocoding process instead.

The additional data such as administrative borders and postal codes are stored
as attributes of the three objects, e.g. the street table contains the columns
municipal, postcode, etc. In order to provide referential integrity and to
avoid redundancies it would normally be necessary to construct separate tables
postcode etc. and proper relations between objects using foreign key constructs,
but it has been decided to clone the data model used in the OSM data instead, be-
cause there simply are no such relations in the OSM data, hence they can not be
implemented in the derivated database.

Whenever a street or a city, which does not contain information about its assign-
ment to administrative units, is transferred to the reference dataset, administra-
tive units are added from ESRI’s data (see section 4.1.2). It is important to mention
82irrelevant details of the installation left out for clarity

52

5 Implementation

that this is only supposed to serve as a temporary workaround until appropriate
data is available from OSM and that the data is not necessary for the purpose of
geocoding cities, streets and house numbers but solely for the purpose of geocod-
ing using postal codes and administrative borders.

5.2.3 Data Integration

Data integration is the process of generating the reference dataset. As described
in section 4.1.4 the process consists of different steps, whose implementation will
now be described:

Extraction

The data is extracted from a planet file OSM dump in XML format using scripts
written in the Perl programming language.

Reduction

Only those objects referring to municipals, streets or house numbers are filtered
out.

Cleaning

The data is cleaned in different ways, e.g. multiple blanks are trimmed to a single
blank, punctuation characters are removed, etc.

Standardization

The data is standardized, i.e. multiple spellings of the same logical meaning are
standardized to a common variant. As an example, every occurance of the string
“str.” at the end of a word is expanded to “straße” and so on.

Aggregation

In order to assign cities and streets to their administrative units such as postal
codes, country subdivisions etc., data from the ESRI dataset is being added to the
objects.

Semantic transformation

The data is semantically transformed in order to fit to the logical database schema
embodied in the reference dataset, i.e. a valid database objects in DML format
are constructed. This may as well include geometric transformations, e.g. the

53

5 Implementation

transformation of polygons or linestrings (buildings, interpolation lines, etc.) to
point objects referencing house number locations.

Loading

The data is finally loaded into the reference dataset by connecting to the database
and inserting the data using appropriate INSERT-commands.

Figure A.1 on page 86 summarizes the whole process of data integration as im-
plemented83.

5.3 Programming the Interfaces

The framework for the geocoder, i.e. the HTTP/XML interface for client interac-
tion and the whole OpenLS implementation, had already been implemented by
Neis (2008) and has not been changed. The processing of the use cases however
has been created from scratch.

The three use cases for the geocoder (as described in section 4.3) have each been
implemented as a database function using the PostgreSQL procedural database
language PL/pgSQL. The decision for a database procedural language in favour of
a standard programming language like C or Java was primarily based on perfor-
mance advantages, since early prototypes using Java were incapable of providing
acceptable response times.

Figure 5.1 on the next page illustrates those parts of the geocoder which had
already been implemented, as opposed to the parts representing the work shown
in this thesis. The three use cases are represented by the PL/pgSQL functions
freetext_search(), struct_search() and reverse_geocode().

5.3.1 Geocode Result Format

The three functions should return a standard geocode resultset as defined in sec-
tion 4.3. To accomplish this, a special data type geocode_result has been cre-
ated in the database, which is returned by each function. Listing 5.1 shows the
SQL code used to create this data type.

83cleaning and standardization steps left out for clarity

54

5 Implementation

5.3.2 Freetext Search

The function freetext_search() is given an arbitrary formatted text as a pa-
rameter and returns a list of geocode results. Figure A.3 on page 88 shows the
(simplified) flow chart describing the internal processing programmed into this
function.

Figure 5.1: OpenRouteService Geocoder Architecture
Source: own assembly

CREATE TYPE geocode_result AS
(
id int,
countrycode varchar,
countrys varchar,
postalcode varchar,
municipal varchar,
municipals varchar,
strname varchar,
housenr varchar,
point varchar,
type int,
the_geom geometry,
geocode_quality decimal(3,2)

);

Listing 5.1: SQL: creating the geocode result data type

55

5 Implementation

5.3.2.1 Cleaning and Segmenting

For the cleaning and lexical analysis multiple regular expressions84 have been con-
structed. Listing 5.2 shows an example of this technique used to extract a house
number into the variable v_housenumber from the search text stored in variable
v_freetext.

IF v_freetext ~ E’\\m[0-9]{1,3}[a-zA-Z]?\\M’
THEN

v_housenumber := substring(v_freetext, E’\\m[0-9]{1,3}[a-zA-
Z]?\\M’);

v_freetext := regexp_replace(v_freetext,v_housenumber,’’);
v_housenumber := regexp_replace(v_housenumber,E’[^0-9]’,’’,’

g’);
END IF;

Listing 5.2: Extracting house numbers using regular expressions

5.3.2.2 Determining Street/City Relations

As discussed earlier, no static relations between streets and cities are enforced in
the database schema. It was thus necessary to develop an approach to dynami-
cally determine such relations, e.g. when searching for a street within a specific
city. The following algorithm has been developed and implemented to determine
these relations:

Find a street named X of a given city Y :

1. Search for streets that have the street name “X” in their strname column and
the name “Y” in their municipal column.

2. If no match found in step 1: search for all cities that have the name “Y” in
their municipal column

3. For each city found in step 2, search for streets matching name “X” within
a search radius “d” of the city

4. If no street found in step 3, increase the search radius “d” and repeat step 3
until street found or maximum search radius reached

Figure A.4 on page 89 shows the flow chart of this approach.
84regular expressions: a search pattern language

56

5 Implementation

5.3.2.3 Approximate String Matching

Approximate string matching should be used to determine possible matches for
cities and streets when no perfect match could be found. In order to implement
this requirement, the additional module pg_trgm for PostgreSQL has been used.
This module provides several functions and operators to measure the similarity
of two strings “by counting the number of trigrams they share”85 (PostgreSQL,
2008, p.1807). The similarity is specified by a numerical value ranging from 1
(strings are completely identical) to 0 (strings have no similarity at all). List-
ing 5.3 shows an example usage of the similarity() function provided by this
module.

select similarity (’Salzburg’,’Salzburg’) as example1,
similarity (’Salzburg’,’Sallzburg’) as example2,
similarity (’Salzburg’,’Sallzbur’) as example3,
similarity (’Salzburg’,’Sallzbg’) as example4;

example1 | example2 | example3 | example4
----------+----------+----------+----------

1 | 0.727273 | 0.5 | 0.307692

Listing 5.3: Example of similarity match function

The similarity value returned by this function is used to calculate the parameter
geocode_quality of the geocode result, i.e. its value gives a hint about the probabil-
ity of what is being returned is what has been searched for (a geocode_quality of
“1” indicates a perfect match). Listing 5.4 on the following page shows an exam-
ple of two geocode requests returning a perfect match and an approximate match
result.

5.3.2.4 Locating the Geocode Result

The result of the freeform or structured text geocode request must contain a point
coordinate pair defining the location of the object returned. This is an easy task
when the corresponding object in the reference dataset found during the location
phase already is a point object, like a city, stored as a point object referencing its

85a triagram in this case means a group of three consecutive characters found in a string
(PostgreSQL, 2008, p.1807)

57

5 Implementation

centerpoint. It is however a lot more complicated when the object found during
the location phase is a street, for the following reasons:

1. A street may consist of multiple unrelated segments.

2. The shape of a street can make it difficult to define a “centerpoint”.

Streets consisting of multiple unrelated segments

This problem is due to the inherent weaknesses of the OSM data model described
in section 4.1.2. If two segments of a street are not logically joined via a relation
object (they hardly ever are) the only relation between those segments is their
name tag (storing the street name) and their distance. In order to retrieve the
corresponding segments belonging to a given street segment, the following ap-
proach has thus been implemented:

1. Form the initial street geometry of just the single segment.

2. Search for additional segments sharing the same street name within a buffer
zone of 500m around the street’s geometry.

3. If additional segments are found, add them to the street geometry and re-
peat step 2.

This approach turned out to be very effective in most cases yet two limitations
have to be considered:

• If the segments are further away than 500m, they are not recognized as be-
longing together

SELECT ’1’ as example,municipal,strname,geocode_quality
FROM freetext_search(’Hellbrunnerstraße Salzburg’)
UNION
SELECT ’2’ as example,municipal,strname,geocode_quality
FROM freetext_search(’Hellbrunerstraße Sallzburg’);

example | municipal | strname | geocode_quality
---------+-----------+-------------------+-----------------
1 | Salzburg | Hellbrunnerstraße | 1.00
2 | Salzburg | Hellbrunnerstraße | 0.61

Listing 5.4: Usage of geocode_quality parameter in geocode resultset

58

5 Implementation

• If two streets sharing the same name but belonging to different cities are
within distance of 500m, they are mistakenly considered as beloning to-
gether

Calculating the centerpoint for non-trivial street geometries

If a street consists of a single segment defined by a simple linestring, the center-
point may be determined by simply calculating the middle of the line, yet if the
street consists of multiple segments forming a more complex shape, there is no
simple definition of a center for this street. The following process has thus been
developed as a general rule to retrieve the centerpoint of a street:

1. Calculate the centroid of the street geometry.

2. Calculate the point of the street geometry closest to the centroid and define
this as the centerpoint.

Figure 5.2 on the next page demonstrates this approach on the example of two
geometries stored in the reference datatset, each representing a street located in
Paderborn, Germany86.

The process of finding all segments of a street and the calculation of the street’s
centerpoint has been implemented within a separate PL/pgSQL function called
get_whole_street(). The code for this function is shown in listing B.6 on
page 99.

5.3.3 Structured Search

The structured_search() function has been implemented similar to the free-
text based function with the difference that no segmentation of the search text is
needed, because the search terms are given as separate parameters to the func-
tion. Listing 5.5 on the next page shows an example call of this function with two
search parameters defining the street and municipal to be searched for.

86the first example shows the street Lichtenauer Weg and the second one shows the street Lippeaue

59

5 Implementation

(a) unconnected segments

(b) complex geometry

Figure 5.2: Retrieving the centerpoint for non-trivial street geometries
Source: own assembly

SELECT countrycode,municipal,strname,point
FROM struct_search(NULL,NULL,NULL,’Salzburg’,NULL,’

Hellbrunnerstraße’,NULL,NULL);

--
countrycode | at
municipal | Salzburg
strname | Hellbrunnerstraße
point | POINT(13.0586889344801 47.7665960489067)

Listing 5.5: Example usage of struct_search function

60

5 Implementation

5.3.4 Reverse Geocoding

The function reverse_geocode() is given a lat/lon coordinate pair as param-
eter and returns a corresponding address as a geocode resultset object. Its im-
plementation is much less complex than the two use cases shown before and has
been implemented according to three basic steps:

1. Search for the closest house number entry in the reference dataset using a
search radius of 20m from the given point.

2. If no match found in step 1 search for the closest street segment using a
maximum search radius of 1km.

3. If no match found in step 2 search for the closest city using a maximum
search radius of 10km.

Additionally, in this use case the geocoding_quality parameter of the geocode re-
sultset is used to inform the user about the actual distance from the point which
was searched for and the object returned in the result. Listing B.5 on page 96
shows the complete function as currently used in production. The search radius
parameters for house numbers, streets and cities are just given initial values and
may be changed later if more appropriate ones can be determined or even dy-
namically calculated based on spatial analysis of the study area.

5.4 Locating House Numbers

The task of locating house numbers has been implemented using a separate
PL/pgSQL function get_housenumber_of_street(). It is given two param-
eters: the id of a street segment and a house number to be searched for. The
result is the location of the house number as a point geometry and an informa-
tion about how this house number has been determined. The function is used
by freetext_search() and struct_search() to determine house number
positions during the location phase of the geocoding process.

5.4.1 Exact Match

If the house number which was searched for can be found in the house numbers

table, its point geometry is retrieved and returned by the function. Listing 5.6

61

5 Implementation

shows an example call of the function returning an exact match for the street “Au-
gartenstraße” in Karlsruhe, Germany (segment nr 1816327 is a part of the street)
whereas listing 5.7 shows its usage in combination with the freetext_search()
function.

SELECT AsText(geom) AS point,housenr
FROM get_housenumber_of_street(1816327,46);

point | housenr
-----------------------------+---------
POINT(8.4080637 48.9990288) | 46

Listing 5.6: Example usage of function get_housenumber_of_street()

SELECT municipal,strname,housenr,point
FROM freetext_search(’Augartenstraße 46 Karlsruhe’);

municipal | Karlsruhe
strname | Augartenstraße
housenr | 46
point | POINT(8.4080637 48.9990288)

Listing 5.7: Retrieving exact house number locations with freetext_search()

5.4.2 Interpolation

As defined in section 4.4.3.3, a house number should be interpolated if it lies
numerically between two known house numbers of a given street segment. The
following algorithm has been implemented to fulfill this requirement:

1. Determine all known house number locations of the street.

2. If searched house number is odd, remove all even numbers and vice versa.

3. Determine closest higher and lower numbers to searched house number.

4. Determine points on street closest to higher and lower number.

5. Interpolate between these two points along the street segment to determine
the searched house number location.

62

5 Implementation

6. Return the resulting position of the interpolation and the two house num-
bers between which interpolation took place.

Figure 5.3 visualizes this process giving the example of the street “Augarten-
straße” located in Karlsruhe and listing 5.8 shows an example usage of the func-
tion freetext_search() returning an interpolated house number location.

Figure 5.3: Example of house number interpolation between two known house
numbers

Source: own assembly

SELECT municipal,strname,housenr,point
FROM freetext_search(’Augartenstraße 50 Karlsruhe’);

--
municipal | Karlsruhe
strname | Augartenstraße
housenr | 46-64
point | POINT(8.40867975628639 48.9990866918913)

Listing 5.8: Retrieving interpolated house number locations using the function
freetext_search()

63

5 Implementation

5.4.3 Probability Based Approaches

The hypotheses to determine house numbers by probability based approaches
as developed in the analysis phase (see section 4.4.4) have been implemented in
function get_housenumber_of_street() as well. When no exact match for
a house number can be found and interpolation is impossible too, the probability
based approaches are used if applicable.

5.4.3.1 Guessing Directions

The first task in guessing the house number location is to determine the direction
of the street. This has been implemented using the three different approaches
developed in the analysis phase (see section 4.4.4).

Dead-end streets

The following algorithm has been implemented in order to detect dead-end
streets:

1. Select number of streets touching the starting point of the linestring repre-
senting the street.

2. Select number of streets touching the end point of the linestring representing
the street.

3. If the result of the first step is greater than 0 whereas the result of the second
is 0 or vice versa, consider street as being a dead-end street.

4. If we found a potential dead-end street and the starting point of its linestring
touches no other street reverse current direction of street.

Streets proceeding away from city center

In order to detect streets proceeding away from the city center, the following
algorithm has been developed and implemented:

1. Locate centerpoint of nearest city.

2. Construct a triangle defined by the corner points A, B and C where. . .

A is the end point of the street closer to the city center.

64

5 Implementation

B is the other end point of the street.

C is the city center.

3. Calculate the lengths of the sides a, b and c.

4. Calculate the degree of arc β using β = arccos(a2+c2−b2

2ac
)

The degree of arc β can now be used as a measure of the relative direction to the
city center. Figure 5.4 visualizes this approach giving the example of two streets
located in Paderborn, Germany.

Figure 5.4: Determining street direction related to city center
Source: own assembly

The actual threshold value for β, up to which a street should be considered pro-
ceeding radial to the city center, is not easy to determine. Different values have
been tested for their suitability and a value of 45 degrees produced good results

65

5 Implementation

in most cases (as will be shown in the evaluation phase later). Additionally, the
algorithm has been limited to streets no further than 3km away from the city
center.

Streets of different ranks

Within the OSM data model, the rank of a street is defined by using the highway-
tag. In order to compare these ranks they are first transformed to numerical val-
ues according to table 5.187.

highway tag value integer value for comparison
motorway 70
trunk 60
primary 50
secondary 40
tertiary 30
residential 20
living_street 10

Table 5.1: Transforming street ranks to integer values for comparison

The following algorithm has then been implemented in order to detect streets,
which are connected to exactly one other street on boths ends, but where the ranks
of the connected streets differ:

1. Select number of streets touching the starting point of the linestring repre-
senting the street.

2. Select number of streets touching the end point of the linestring representing
the street.

3. If both ends are connected to exactly one street retrieve the numerical value
of the ranks of theses streets.

4. If ranks differ order the street so that it starts at the point connected to the
street with a higher rank.

87ordering taken from http://wiki.openstreetmap.org/wiki/Map_Features#Highway
(last accessed: April 14th, 2009)

66

5 Implementation

5.4.3.2 Guessing Distances

If the presumable direction of a street can be estimated by one of the three ap-
proaches described before, the position of the searched house number may be
interpolated along the street. As shown in section 4.4.4.1, the approximate posi-
tion p of house number x along a given street can be calculated as. . .

p = o+ (x+ x (mod 2)− 2) ∗ d

. . . with d being the average distance between house numbers and o being the
position of the first house along the street.

Average distance between house numbers

The average distance between house numbers in the survey area has been cal-
culated using data from the official surveying office, containing the positions of
more than 2,000,000 buildings of which a sample set of 25,670 buildings has been
used for the calculation. The average distance between two house numbers has
been calculated as 6.65 meters88.

Additionally, the following hypotheses have been tested89:

1. The average distance between house numbers correlates with the street’s
distance to the city center (“buildings in the city center are closer than in
suburbian areas”).

2. The average distance between house numbers correlates with the length of
the street (“the longer the street, the bigger the gaps between single build-
ings”).

3. The average distance between house numbers correlates with the number
of sorrounding streets (bigger lots in less urban areas).

4. The average distance of houses along a street depends on the sorrounding
landuse (houses in residential areas are closer than in industrial areas).

The first three hypotheses have statistically been tested by calculating the Pearson
product-moment correlation coefficient for each of the relations using a set of 25,670

88It is important to keep in mind that a sequential alternating addressing scheme (see section 4.4.2)
is assumed for the survey area, i.e. the average distance between two buildings is actually twice
the average distance between house numbers.

89as developed in section 4.4.4.2

67

5 Implementation

house number pairs90. The correlation coefficient for the first hypothesis was
calculated as 0.07 whereas it was 0.18 for the second hypothesis.

In order to test the third hypothesis, the number of surrounding streets within a
distance of 100m has been calculated for each street and this value has been tested
for correlations to the average distance between house numbers. The correlation
coefficient was calculated as 0.04 hence this hypothesis has been discarded.

The fourth hypothesis has been tested by grouping house number distances by
their corresponding landuse areas residential, commercial and industrial, which are
(sporadically) available in OSM as polygon data. Table 5.2 shows the results of
this test, indeed revealing significant differences in house number distances for
industrial and commercial areas. Nevertheless, due to the very low number of
available polygons referencing those areas (hence the low sample size) it has been
decided not to include this parameter in the approximation.

landuse sample size average distance between house numbers
all 25670 6.65m
commercial 132 9.13m
industrial 222 12.48m
residential 10853 6.55m

Table 5.2: Relation between landuse and house number distance

It was instead decided to further investigate the second hypothesis (showing the
highest correlation coefficient) by visually analyzing the correlation. Figure 5.5 on
the following page shows a chart displaying the average distance of house num-
bers for ranges of street lengths in steps of 100m, which supports the assumption
that the distance of house numbers positively correlates with the length of the
street the house numbers belong to. Table 5.3 on the next page shows the actual
values used in this chart and the number of measures for each group.

Considering this result, it was decided to determine the average distance dy-
namically. With l being the length of the street and d being the average distance
between house numbers, the following algorithm has been implemented:

• If l is less than 100m, d is set to 4.1

• If l is greater than 400m, d is set to 7.9

90“house number pair” meaning two known sequential house numbers (e.g. 2/4 or 13/15, etc.)
along a given street

68

5 Implementation

• If l is between 100 and 400m, d is calculated using the linear interpolation
d = 4.1 + (7.9− 4.1) ∗ l−100

400−100

Figure 5.5: Correlation between street length and house number distance
Source: own assembly

street length measures average house number
(maximum) distance (meters)
100 5516 4.12
200 7870 6.40
300 4586 7.26
400 2478 7.92
500 1518 7.81
600 959 7.83
700 669 7.99
800 437 8.47
900 313 9.69
1000 239 10.87

Table 5.3: Correlation between street length and house number distance

69

5 Implementation

Position of the first house number on the street

To determine the average offset of the first house along a street to the street’s
starting point, the following algorithm has been implemented:

1. Select all known locations referencing a house number of 1 or 2.

2. Determine the distance to the starting point of their associated streets.

3. Calculate the average offset for the location of a house number to the street’s
starting point.

The average offset has been calculated as 50.31 meters using a sample set of 3545
house number locations. In order to improve the approximation, a hypothesis
has been constructed, assuming that the offset may correlate with the length of
the street. A calculation of the correlation coefficient between the street’s length
and the offset of the first house number along the street has revealed a value of
0.65, indicating a considerably high correlation, hence supporting the hypothe-
sis. Further investigation by visual analysis confirmed this result as shown in
figure 5.6.

Figure 5.6: Correlation between street length and corner lot offset
Source: own assembly

It has thus been decided to dynamically determine the offset using the following
algorithm, with l being the length of the street and o being the assumed offset for

70

5 Implementation

the first house number along the street:

• If l is less than 100m, o is set to 20m.

• If l is greater than 800m, o is set to 100m.

• If l is between 100 and 800m, o is calculated using the linear interpolation:
o = 20 + (100− 20) ∗ l−100

800−100

71

6 Evaluation

In this chapter the success of the geocoder implementation will be measured in
terms of its geocoding qualities. The quality of a geocoder is generally deter-
mined by examing two measurements:

Match Rate: The match rate indicates the percentage of geocoding re-
quests returning a match (Cayo and Talbot, 2003, p.2).

Positional Accuracy: The positional accuracy of the geocoder indicates the devi-
ation from the point, as returned by the geoder, to the real
position of the address, which has been geocoded.

Both measurements will now be evaluated in order to determine the overall qual-
ity and usability of the geocoder and the positional accuracy will as well be com-
pared to the commercial geocoding service offered by GoogleTM.

6.1 Match Rate

The Match Rate is an indicator for both the quality and completeness of the ref-
erence dataset and for the implementation of the geocoding process. In order to
return a correct match for a geocode request, the place which has been searched
for has to be. . .

• present in the reference dataset

• found during the matching phase of the geocoding process

6.1.1 Importance of the match rate

The importance of the match rate depends on the intended use of the geocoder.
When used in routing applications e.g., it basically determines if the start or end

6 Evaluation

point of a routing request can be found and thus determines if the whole request
can be processed or not. Hence for the user of the application it simply deter-
mines if the service “works” or “does not work”. In this case the match rate
directly influences the usability and acceptance of the service.

When the geocoder is used instead as a preprocessing step to spatially analyze
address datasets, the match rate can be of critical importance. Ratcliffe (2001) ex-
amined the influence of the geocoding match rate in the context of crime analysis
using monte carlo simulations. He found the minimum acceptable hit rate of a
geocoder, which still allows to reliably detect spatial patterns in the distribution
of crime incidents, to be 85%.

6.1.2 Examining the match rate

In order to measure the match rate of the geocoding implementation presented in
this thesis, a sample set of geocoding requests has been sent to the geocoder for
three different precision levels: municipal, street and house number. The geocod-
ing results have then been declared as a match, if a response of the same precision
level could be returned.

Two different types of sample requests have been used. The first sample set was
randomly generated from official surveying data of the federal state of Northrhine-
Westfalia, Germany, whereas a second sample set was randomly extracted from the
protocols of the real geocoding application in production, i.e. it has been tested
by replaying geocoding requests which had already been sent to the service.

Municipal Level

In this test only municipal level requests have been sent to the geocoder. Table 6.1
shows the results of the test.

Test Data No. of Requests Matches Match Rate in %
Original Queries 100 85 85.00
Random Sample 334 289 86.53

Table 6.1: Match rate of municipal level requests

73

6 Evaluation

Street Level

In the next step, street level requests have been sent to the geocoder, again using
both randomly generated addresses and replaying real requests extracted from
the protocols. Table 6.2 shows the results of this test.

Test Data Requests Matches Match Rate in %
Original Queries 100 72 72.00
Random Sample 1000 598 59.80

Table 6.2: Match rate of street level requests

House Number Level

The last test was performed using geocode requests including house numbers.
The results have been separated into house number locations actually found in
the reference dataset (exact match), house number locations interpolated between
two known house numbers (interpolated match) and house number locations
determined using probability based approaches (probability match). Table 6.3
shows the results of this test. The reason for the significantly higher match rate of
original queries may be due to users, who actually mapped a specific house num-
ber, and later tried to locate “their” house number by sending a corresponding
request to the geocoder.

Test Data Requests Matches Match Rate in %
Original Queries 100 5 (exact match) 5.00

16 (probability match) 16.00
0 (interpolated match) 0.00

Random Sample 1000 7 (exact match) 0.70
142 (probability match) 14.20
1 (interpolated match) 0.10

Table 6.3: Match rate of house number level requests

6.2 Positional Accuracy of House Number Requests

The match rate of a geocoder merely determines whether a match for a geocode
request was found or not, yet it says nothing about the positional accuracy of the

74

6 Evaluation

geocode result (Grubesic and Murray, 2004). In order to examine the accuracy of
the geocoder, a sample set of requests has again been sent to the geocoder and the
point locations returned for the requests have been compared to the real locations
of the addresses, ascertained by the official surveying agency for the study area,
the federal state North-Rhine Westfalia, Germany.

The tests have been divided into two categories. The first category determines the
accuracy of the geocoding results when existing house number data was available
in OSM whereas the second determines the accuracy of the geocoding results
when probability based approaches had been used to approximate house number
locations.

6.2.1 Overall Average Accuracy

As a first measure, the overall average positional error of the geocoder has been
measured and determined to be 174.73m as shown in table 6.4. Nevertheless,
this value may be biased by extreme positional errors induced from a small set
of geocoding requests. With respect to this, the percentiles of requests which fall
within a maximum error range have been determined as well, e.g. showing that
50% of all geocode results include a positional error of less than 91,33m.

Number of sample requests 159,498
Average positional error 174.73m
Standard deviation of positional error 286.12m

Percentiles of requests within a maximum error range
Percentile Maximum Positional Error
95% 596.59m
90% 369.12m
80% 220,43m
70% 156,43m
60% 117,58m
50% 91,33m

Table 6.4: Overall average of geocoding accuracy

6.2.2 Accuracy Using Existing Data

In the next step, the accuracy of the geocoder has been tested for house number
level requests, for which actual house number data was available in the OSM

75

6 Evaluation

data. This could either be exact house number matches or interpolated loca-
tions using interpolation lines or data received by interpolating along a street
between two known house number locations. The measured positional error
when using house number data has further been compared to the positional er-
ror which would have been measured when deliberately omitting the house num-
ber data available and just returning the centerpoint of the street instead. This
has been done in order to measure the improvement of positional accuracy when
house number data is available.

For exact house number matches (i.e. a node or building referencing the exact
house number was found), the positional error was measured to be 13.19m. Com-
paring this to the positional error for the same sample requests if no house num-
ber data was available shows an impressive improvement of 168.84m for the ac-
curacy of the geocoding as shown in table 6.5.

Sample size 2894
Average positional error 13.19m
Average positional error omitting house number data 182.03m
Improvement of accuracy 168.84m

Table 6.5: Positional accuracy for exact house number matches

The same test has been carried out for house number locations determined using
OSM interpolation lines and plain interpolation along a street segment between
two known house numbers. Tables 6.6 and 6.7 on the next page show the results
of the tests, indicating that both methods are well suitable to significantly im-
prove the geocoding result compared to simply returning the centerpoint of the
corresponding street.

Sample size 363
Average positional error 36.81m
Average positional error omitting house number data 225.76m
Improvement of accuracy 188.95m

Table 6.6: Positional accuracy using interpolation between two known house
numbers

76

6 Evaluation

6.2.3 Accuracy using Probability Based Approaches

The probability based approaches to house number locating as developed in sec-
tion 4.4.4 and implemented in section 5.4.3 have been evaluated considering their
applicability to improve the geocoding results. The main question to be answered
has been whether theses approaches are suitable to generate more accurate results
than simply returning the centerpoint of a street. The results shown in table 6.8
lead to the conclusion that two of the approaches are indeed suitable to signif-
icantly improve geocoding accuracy whereas the “streets of different rank” ap-
proach has failed to generate an improvement.

Considering these results, the most efficient approach seems to be the one deter-
mining the relation of the street to the city center in order to guess the direction of
the street. This hypothesis was however based on the assumption that the city of
interest has a centerpoint from which most of the streets may proceed in a radial
direction. It may thus be assumed that this approach is more efficient in cities,

Sample size 1434
Average positional error 40.73m
Average positional error omitting house number data 154.34
Improvement of accuracy 113.62m

Table 6.7: Positional accuracy using interpolation lines

Dead-end streets
Sample size 23656
Average positional error using probability approach 77.38m
Average positional error returning street centerpoint 106.90m
Improvement of accuracy 29.53m

Streets proceeding away from city center
Sample size 10423
Average positional error using probability approach 130.34m
Average positional error returning street centerpoint 184.78m
Improvement of accuracy 54.43m

Streets of different ranks
Sample size 17242
Average positional error using probability approach 109.06m
Average positional error returning street centerpoint 108.62m
Improvement of accuracy -0.43m

Table 6.8: Positional accuracy of probability based approaches

77

6 Evaluation

which actually have a distinct center, than in cities, where a distinct center is hard
or even impossible to determine.

In order to investigate this assumption, the effectiveness of the approach has been
tested for different types of cities within the study area and ranked by the per-
centage of improvement achieved. The results shown in table 6.9 indeed reveal
significant differences between cities, ranging from an improvement of 52% to a
deterioration of 57%.

City Sample Positional error Positional error Improvement
Size city-center street centerpoint in percent

Münster 1490 90.21m 186.73m 51,69
Paderborn 814 77.37m 157.85m 50,99
Siegen 1240 115.72m 213.66m 45,84
Essen 1224 113.27m 160.12m 29,26
Düsseldorf 1524 115.67m 154.44m 25,10
Köln 534 111.12m 121.10m 8,24
Gelsenkirchen 1026 210.09m 133.77m -57,06

Table 6.9: Effectiveness of street relation to city center approach for different cities

Comparing the city generating the best result (Münster) with the one generating
the worst (Gelsenkirchen), it becomes clear that the layout of the city is of criti-
cal importance to the success of the approach. Looking at figure A.5 on page 90,
showing the detection of streets radial to the city center of Münster, it seems per-
fectly reasonable that the approach generated good results, because the city lay-
out comprises a distinct city center with streets proceeding in radial directions.
When comparing this with figure A.6 on page 90, showing the same approach for
the city of Gelsenkirchen, it becomes very clear why it generated no good results
in this case instead. The layout of the city of Gelsenkirchen comprises no obvious
city center which is why the city centerpoint in OpenStreetMap was supposedly
set to a location which was probably seen as defining the “centroid” of the city’s
multiple parts.

Nevertheless, when using the city centerpoint coordinates as returned by the
Google Maps API (Google Maps, 2009) instead, the results are entirely different.
Table 6.10 on the next page shows that when using these coordinates as the city
centerpoint, the deterioration of 57% could be turned into an improvement of al-
most 13%. Figure A.7 on page 91 visualizes the effect of the two different city
centerpoints on the results of this approach.

78

6 Evaluation

Sample Positional error Positional error Improvement
Size city-center approach street centerpoint in percent
751 145.27m 166.25m 12.62

Table 6.10: Effectiveness of street relation to city center approach for
Gelsenkirchen when using Google Maps city centerpoint

The conclusion to be drawn from these findings is that the street relation to city cen-
ter approach may render significantly improved accuracy on the condition that a
suitable centerpoint for the city in question can be determined. Figure 6.1 on the
next page visualizes the overall improvement of geocoding accuracy by compar-
ing the positional errors generated by this approach with the positional errors
when returning the street centerpoint instead.

Summarizing these results it could be shown that for a sample size of 154,807
house number locations, for which no data was provided by OpenStreetMap (nei-
ther exact nor interpolated locations), 23,656 locations could be approximated us-
ing the “dead-end street” approach and 10,423 positions could be approximated
using the “streets proceeding away from city center” approach. From this it fol-
lows that for about 22% of the requests probability based approaches where ap-
plicable.

6.2.4 Comparison with Google Maps

In order to judge the accuracy values measured before, it has been decided to
compare the results to a common commercial geocoding application. The Google
Maps API (Google Maps, 2009) by GoogleTM offers a simple HTTP interface al-
lowing to send and retrieve geocode requests using specially formed URLs. List-
ing 6.1 shows a sample URL requesting a geocode response for the string “Hell-
brunnerstraße 34 Salzburg” in XML format and listing B.8 on page 103 shows the
corresponding result, including the lat/lon coordinate pair.

http://maps.google.com/maps/geo?q=Hellbrunnerstraße+34+Salzburg&
output=xml&key=abcdefg

Listing 6.1: Sample geocode request to Google Maps API

For all of the different methods to locate house number positions (exact match,
interpolation and probability based) a sample set of addresses has been geocoded

79

6 Evaluation

using both the geocoder implemented in this thesis and the geocoder offered by
Google Maps. The results have then again been compared to the real positions of
the house numbers and corresponding positional errors have been determined.
Table 6.11 shows the results of these comparisons.

Location Sample Mean error of Mean error of Difference
Method Size ORS gecoder Google geocoder Google - ORS
Exact Match 2652 13.01m 40.87m 27.86
Plain interpolation 293 37.46m 37.63m 0.18
Interpolation lines 1018 30.99m 26.44m -4.54
Dead-end streets 17275 88.86m 40.04m -48.82
Street relation
to city center 7013 135.20m 34.24m -100.96

Table 6.11: Geocoding accuracy comparison of ORS to Google Maps for different
house number locating approaches

Figure 6.1: Effectiveness of street relation to city center approach
Source: own assembly

80

6 Evaluation

Based on these figures the following conclusions can be drawn:

• When exact house numbers locations are availabe in OSM data, the mean
positional error of the ORS geocoder is significantly lower than the one of-
fered by Google.

• When interpolation is possible using interpolation lines or by interpola-
tion along street segments between two known house number locations,
the mean positional error is not significantly different.

• Probability based approximations of house number locations implemented
in the ORS geocoder show a significantly higher mean positional error than
Google’s geocoder.

Figure 6.2 visualizes the differences in geocoding accuracy between ORS and
GoogleMaps when house number data is available in OpenStreetMap.

Figure 6.2: Positional errors in OpenRouteService and GoogleMaps geocoding
when house number data available in OSM

Source: own assembly

81

7 Summary

7.1 Conclusions

The key findings of this work and the conclusions to be drawn from them will be
presented according to the questions this thesis was supposed to answer91:

Is it possible to build a working geocoding service based on the
volunteered spatial data provided by the OpenStreetMap project?

The work has shown that it is indeed possible to build a geocoding service based
on OpenStreetMap data, although the inherent weaknesses of its data model re-
quire substantial preprocessing and transformational steps as well as concessions
in terms of relational integrity.

Is it possible to effectively compensate incomplete spatial data
(particularly house number locations) using probability based
approaches?

It has been demonstrated that it is indeed possible to effectively approximate
house number locations using probability based approaches based on hypothe-
ses according to official house numbering guidelines. For the sample set of cities
within the study area, an improvement of up to 52% in terms of positional accu-
racy could be reached. It was nevertheless as well found that the effectiveness of
these approaches, although showing a significant overall average improvement,
depends heavily on the suitability of the study area. It was further found that
these improvements are still not sufficient to generate accuracy levels compara-
ble to cases where actual house number data was available.

91as stated in section 1.5

7 Summary

Which match rate and positional accuracy can be achieved by a geocoder
based on volunteered spatial data and how do these figures compare to
commercial geocoding services?

Match Rate
When considering a match rate of 85% to be the minimum acceptable rate nec-
essary to reliably detect spatial patterns in address datasets (as proposed by
Ratcliffe (2001)) it has to be concluded that the achieved match rate on street and
house number level92 is not yet sufficient for spatial analysis purposes. It may
however be considered a sufficient initial basis for the OpenRouteService online
routing application.

Positional Accuracy
The overall positional accuracy for house number level geocoding requests was
measured as being 174,73m, with 95% of the results located within a maximum
distance of 597m from their true positions. These figures have to be consid-
ered not suitable for fine-scale spatial analyses of address datasets. Zandbergen
(2007a) e.g. showed that even a medium error of 41 meters with a 90th percentile
of just 100 meters can significantly bias analysis results on the example analy-
sis of traffic-related air pollution on school children (using a sample of 104,865
addresses).

The average positional accuracy achieved when interpolation was possible (rang-
ing from 37m to 41m) is nevertheless close to the medium error of 41m measured
by Zandbergen (2007a) for 104,865 sample addresses located in Orange County,
Florida and geocoded using official street centerline and parcel data of the Prop-
erty Appraisers Office of Orange County.

When exact house number data is available in OSM, the measured medium
positional error of merely 13m, can be considered to be an extraordinary ac-
curacy. Literature research revealed no case study presenting a geocoding
service providing accuracy figures even close (e.g. compare Cayo and Talbot
(2003); Dearwent et al. (2001); Mazumdar et al. (2008); Goldberg et al. (2008);
Grubesic and Murray (2004); Ratcliffe (2001)).

92the match rate for street level requests ranged from 60% to 70% and for house number requests
it was merely up to 5% for perfect matches and up to 16% for probability based matches

83

7 Summary

Google Maps Comparison

The comparison with Google Maps showed that when distinct house number data
is available in OpenStreetMap, the average positional accuracy of the geocoder
implememented is significantly better than the accuracy provided by Google
(41m vs. 13m). In those cases where house number interpolation was possible (ei-
ther because of interpolation lines or by plain interpolation between two known
house numbers) the differences in accuracy are negligible.

Yet for the case when no house number data is available, the average positional
accuracy proved significantly worse than the one provided by Google Maps. Al-
though the average positional error for these cases may be reduced when proba-
bility based house number locating approaches are applicable, the results are still
not equivalent to the accuracy provided by Google.

7.2 Outlook

The geocoding service implemented within the scope of this thesis is currently
used in production for the geocoding component of OpenRouteService 93 but has
already successfully been integrated into other research projects, e.g. OSM-3D
Germany94. The feedback received so far has been very encouraging and further
research will presumably be conducted focusing the following aspects:

• Adaptations for different study areas.

• Optimization of probability based approaches by constructing and testing
further hypotheses.

• Adaptations of house number locating approaches for different house num-
bering schemes (opposed to the alternating sequential schema used within
the study area of this thesis).

The recent development of the OpenStreetMap project is very promising. Within
a mere four months during the implementational phase of this thesis, the amount
of house number locations for the area of Germany, stored in the OpenStreetMap
database, has almost doubled from approximately 172,000 house numbers at the

93available at: http://www.openrouteservice.org
94available at: http://www.osm-3d.org/

84

7 Summary

end of December 2008 to more than 330,000 house numbers at the end of April
2009.

Within the same time, the number of requests directed to the OpenRouteService
geocoder has steadily increased as well. Figure 7.1 shows the progress of the
number of requests per day from December 2008 to April 2009. These figures
may indicate that the work presented in this thesis has positively influenced the
usability and thus the acceptance of the service. This view is as well supported
by the fact that the percentage of requests directed to the geocoder, which in-
cluded house numbers, has significantly increased since the first prototype of the
house number-level geocoder had been published (December 2008) as visualized
in figure 7.2.

Figure 7.1: Requests sent to the ORS geocoder from 12/2008 to 04/2009
Source: own assembly based on ORS geocoder access protocols

Figure 7.2: Requests including house numbers sent to the ORS geocoder from
12/2008 to 04/2009
Source: own assembly based on ORS geocoder access protocols

85

A Figures

Figure A.1: Implementation of the data integration process
Source: own assembly

A Figures

(a) Google Maps

(b) OpenStreetMap

Figure A.2: City center of Baghdad as shown by Google Maps and Open-
StreetMap

Source: screenshots from http://maps.google.com/ and
http://www.openstreetmap.org/ taken March 28th, 2009

87

A Figures

Figure A.3: Flow chart for freetext_search function
Source: own assembly

88

A Figures

Figure A.4: Determining street/city relations (flow chart)
Source: own assembly

89

A Figures

Figure A.5: Determining streets radial to the city center of Münster
Source: own assembly

Figure A.6: Determining streets radial to the city center of Gelsenkirchen
Source: own assembly

90

A Figures

Figure A.7: Determining streets radial to the city center of Gelsenkirchen using
Google Maps centerpoint

Source: own assembly

91

B Listings

<?xml version="1.0" encoding="UTF-8"?>
<xls:XLS xmlns:xls="http://www.opengis.net/xls"

xmlns:sch="http://www.ascc.net/xml/schematron"
xmlns:gml="http://www.opengis.net/gml"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opengis.net/xls
http://schemas.opengis.net/ols/1.1.0/

LocationUtilityService.xsd"
version="1.1">
<xls:RequestHeader/>
<xls:Request methodName="GeocodeRequest" requestID="123"

version="1.1">
<xls:GeocodeRequest>

<xls:Address countryCode="at">
<xls:freeFormAddress>Hellbrunnerstraße Salzburg</

xls:freeFormAddress>
</xls:Address>

</xls:GeocodeRequest>
</xls:Request>

</xls:XLS>

Listing B.1: Example geocode request using a freeform address

B Listings

<?xml version="1.0" encoding="UTF-8"?>
<xls:XLS xmlns:xls="http://www.opengis.net/xls"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:gml="http://www.opengis.net/gml" version="1.1"
xsi:schemaLocation="http://www.opengis.net/xls
http://schemas.opengis.net/ols/1.1.0/LocationUtilityService.

xsd">
<xls:ResponseHeader xsi:type="xls:ResponseHeaderType"/>
<xls:Response xsi:type="xls:ResponseType" requestID="123"

version="1.1" numberOfResponses="1">
<xls:GeocodeResponse xsi:type="xls:GeocodeResponseType">
<xls:GeocodeResponseList numberOfGeocodedAddresses="1">

<xls:GeocodedAddress>
<gml:Point>
<gml:pos srsName="EPSG:4326">

13.0580134145655 47.7659168508311
</gml:pos>
</gml:Point>
<xls:Address countryCode="at">

<xls:StreetAddress>
<xls:Street officialName="Hellbrunnerstraße"/>
</xls:StreetAddress>
<xls:Place type="Municipality">Salzburg</xls:Place>

</xls:Address>
<xls:GeocodeMatchCode accuracy="1.0"/>

</xls:GeocodedAddress>
</xls:GeocodeResponseList>
</xls:GeocodeResponse>

</xls:Response>
</xls:XLS>

Listing B.2: Example geocode response

93

B Listings

<?xml version="1.0" encoding="UTF-8"?>
<xls:XLS

xmlns:xls="http://www.opengis.net/xls"
xmlns:sch="http://www.ascc.net/xml/schematron"
xmlns:gml="http://www.opengis.net/gml"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opengis.net/xls
http://schemas.opengis.net/ols/1.1.0/LocationUtilityService.

xsd"
version="1.1">

<xls:RequestHeader/>
<xls:Request methodName="ReverseGeocodeRequest" requestID="123"

version="1.1">
<xls:ReverseGeocodeRequest>

<xls:Position>
<gml:Point srsName="4326">
<gml:pos>13.0580134145655 47.7659168508311</gml:pos>

</gml:Point>
</xls:Position>

<xls:ReverseGeocodePreference>StreetAddress</
xls:ReverseGeocodePreference>

</xls:ReverseGeocodeRequest>
</xls:Request>
</xls:XLS>

Listing B.3: Example reverse geocode request

94

B Listings

<?xml version="1.0" encoding="UTF-8"?>
<xls:XLS

xmlns:xls="http://www.opengis.net/xls"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:gml="http://www.opengis.net/gml" version="1.1"
xsi:schemaLocation="http://www.opengis.net/xls
http://schemas.opengis.net/ols/1.1.0/LocationUtilityService.

xsd">
<xls:ResponseHeader xsi:type="xls:ResponseHeaderType"/>
<xls:Response xsi:type="xls:ResponseType" requestID="123"

version="1.1" numberOfResponses="1">
<xls:ReverseGeocodeResponse xsi:type="

xls:ReverseGeocodeResponseType">
<xls:ReverseGeocodedLocation>
<gml:Point>

<gml:pos srsName="EPSG:4326">
13.058013414565503 47.7659168508311

</gml:pos>
</gml:Point>
<xls:Address countryCode="at">

<xls:StreetAddress>
<xls:Street officialName="Hellbrunnerstraße"/>

</xls:StreetAddress>
<xls:Place type="Municipality">Salzburg</xls:Place>

</xls:Address>
<xls:SearchCentreDistance uom="M" value="0.0"/>

</xls:ReverseGeocodedLocation>
</xls:ReverseGeocodeResponse>

</xls:Response>
</xls:XLS>

Listing B.4: Example reverse geocode response

95

B Listings

Listing B.5: Reverse geocoding function written in PL/pgSQL

CREATE OR REPLACE FUNCTION reverse_geocode (varchar)

RETURNS setof geocode_result AS $$

DECLARE

v_points text;

v_point geometry;

v_resultset geocode_result;

v_minimum_distance real;

v_temp_real real;

v_housenumber varchar;

v_maximum_distance_to_housenumber_match real;

v_housenumber_row housenumbers%ROWTYPE;

v_distance real;

BEGIN

-- first parameter is lat/lon coordinate pair

v_points := $1;

-- maximum distance to consider housenumber as perfect match

v_maximum_distance_to_housenumber_match := 0.0002;

-- construct point geometry from input parameter

v_point := GeomFromText(’POINT(’ || v_points || ’)’,4326);

-- check for perfect matching housenumber first

SELECT housenr INTO v_housenumber

FROM (SELECT housenr,ST_Distance(the_geom,v_point) AS dist

FROM housenumbers

WHERE ST_DWithin(the_geom,

v_point,

v_maximum_distance_to_housenumber_match

)

ORDER BY dist LIMIT 1) AS x;

IF v_housenumber IS NOT NULL

THEN

v_resultset.housenr = v_housenumber;

96

B Listings

v_resultset.geocode_quality := 1 - ST_Distance(v_point,

v_resultset.the_geom) * 10;

RETURN NEXT v_resultset;

RETURN;

END IF;

-- search for street within 1km

-- looping over increasing search radius for performance

FOR v_temp_real IN 0..3

LOOP

v_minimum_distance := 1 / POWER((5-v_temp_real)*10,2);

FOR v_resultset IN SELECT id, countrycode,

countrys, postalcode,

municipal, municipals,

strname,’’,’’,

’’||v_points AS point,

type, the_geom, 1 FROM (

SELECT *, asText(the_geom),

ST_Distance(the_geom,v_point) AS dist

FROM addressbook

WHERE ST_DWithin(the_geom,v_point,

v_minimum_distance)

AND strname IS NOT NULL ORDER BY dist LIMIT 1

) AS x

LOOP

v_resultset.geocode_quality := 1 - ST_Distance(v_point,

v_resultset.the_geom) * 10;

RETURN NEXT v_resultset;

RETURN;

END LOOP;

END LOOP;

-- search for city within distance of 10km if no street found

-- looping over increasing search radius for performance

FOR v_temp_real IN 1..5

LOOP

v_minimum_distance := v_temp_real * 0.02;

FOR v_resultset IN SELECT id,countrycode,

97

B Listings

countrys,postalcode,

municipal,municipals,

’’,’’,’’,

’’||v_points AS point,

type, the_geom, 1 FROM (

SELECT *, asText(the_geom),

ST_Distance(the_geom,v_point) AS dist

FROM addressbook

WHERE type < 8

AND ST_DWithin(the_geom,v_point,

v_minimum_distance)

ORDER BY dist LIMIT 1

) AS x

LOOP

v_resultset.geocode_quality := 1 - ST_Distance(v_point,

v_resultset.the_geom) * 10;

RETURN NEXT v_resultset;

RETURN;

END LOOP;

END LOOP;

RETURN;

END;

$$ LANGUAGE plpgsql;

98

B Listings

Listing B.6: Retrieving all segments of a street and returning the centerpoint

DROP TYPE geocode_get_street_result CASCADE;

CREATE TYPE geocode_get_street_result AS

(

geom geometry,

centerpoint geometry

);

-- collect all segments of a street identified by a single

segment of addresbook

CREATE OR REPLACE FUNCTION get_whole_street (v_addressbook_id

int)

RETURNS geocode_get_street_result AS $$

DECLARE

v_addressbook_entry addressbook%ROWTYPE;

v_addressbook_result addressbook%ROWTYPE;

v_result geocode_get_street_result;

v_geom geometry;

v_counter int;

v_samefields_list text[];

v_found_street boolean;

v_used_ids int[];

v_segments geometry[];

v_nr_segments int;

v_centroid geometry;

v_middle_of_street geometry;

v_center_segment geometry;

v_center_segment_linestring geometry;

v_dist_centroid_segment float;

BEGIN

v_counter = 1;

v_found_street = FALSE;

SELECT * FROM addressbook INTO v_addressbook_entry WHERE id =

v_addressbook_id;

99

B Listings

v_used_ids := array_append(v_used_ids,v_addressbook_entry.id);

IF v_addressbook_entry IS NULL

THEN

RAISE EXCEPTION ’ERROR: no addressbook entry for id % found!

’,v_addressbook_id;

RETURN NULL;

END IF;

v_geom := v_addressbook_entry.the_geom;

v_segments := array_append(v_segments,v_geom);

LOOP

FOR v_addressbook_result IN SELECT * FROM addressbook WHERE

strname = v_addressbook_entry.strname

AND id <> ALL(v_used_ids)

AND ST_DWithin(the_geom,v_geom,0.005)

LOOP

v_segments := array_append(v_segments,v_addressbook_result.

the_geom);

v_geom = ST_Union(v_geom,v_addressbook_result.the_geom);

v_used_ids := array_append(v_used_ids,v_addressbook_result.

id);

END LOOP;

IF v_addressbook_result IS NULL THEN EXIT; END IF;

END LOOP;

v_nr_segments := array_upper(v_segments,1);

v_centroid := ST_Centroid(v_geom);

v_dist_centroid_segment := ST_Distance(v_centroid,v_segments[1])

;

v_center_segment := v_segments[1];

IF v_nr_segments > 1 THEN

v_centroid := ST_Centroid(v_geom);

RAISE NOTICE ’searching for closest segment to centroid...’;

FOR i in 2..array_upper(v_segments,1)

LOOP

IF ST_Distance(v_centroid,v_segments[i]) <

v_dist_centroid_segment

100

B Listings

THEN

RAISE NOTICE ’found segment closer to centroid: %’,i

;

v_dist_centroid_segment := ST_Distance(v_centroid,

v_segments[2]);

v_center_segment := v_segments[i];

END IF;

END LOOP;

v_center_segment_linestring := ST_LineMerge(v_center_segment

);

v_middle_of_street := ST_line_interpolate_point(

v_center_segment_linestring,ST_line_locate_point(

v_center_segment_linestring,v_centroid));

ELSE

v_middle_of_street := ST_Centroid(v_geom);

END IF;

v_result.geom := v_geom;

v_result.centerpoint := v_middle_of_street;

RETURN v_result;

END;

$$ LANGUAGE plpgsql;

101

B Listings

create osm database user

createuser -s osm

create osm database

createdb --owner=osm --encoding=utf8 osm

add pl/pgsql language

createlang plpgsql osm

add trgm module

psql -f pg_trgm.sql osm

add postgis extension

psql -f lwpostgis.sql osm

add spatial reference systems

psql -f spatial_ref_sys.sql osm

Listing B.7: UNIX commands to create the database

102

B Listings

<?xml version="1.0" encoding="UTF-8" ?>

<kml xmlns="http://earth.google.com/kml/2.0"><Response>

<name>Hellbrunnerstraße 34 Salzburg</name>

<Status>

<code>200</code>

<request>geocode</request>

</Status>

<Placemark id="p1">

<address>Hellbrunner Straße 34, 5020 Salzburg, Österreich</

address>

<AddressDetails Accuracy="8" xmlns="

urn:oasis:names:tc:ciq:xsdschema:xAL:2.0"><Country><

CountryNameCode>AT</CountryNameCode><CountryName>

Österreich</CountryName><AdministrativeArea><

AdministrativeAreaName>Salzburg</AdministrativeAreaName><

SubAdministrativeArea><SubAdministrativeAreaName>Salzburg

(Stadt)</SubAdministrativeAreaName><Locality><

LocalityName>Salzburg</LocalityName><Thoroughfare><

ThoroughfareName>Hellbrunner Straße 34</ThoroughfareName>

</Thoroughfare><PostalCode><PostalCodeNumber>5020</

PostalCodeNumber></PostalCode></Locality></

SubAdministrativeArea></AdministrativeArea></Country></

AddressDetails>

<ExtendedData>

<LatLonBox north="47.7917662" south="47.7854710" east="

13.0634045" west="13.0571093" />

</ExtendedData>

<Point><coordinates>13.0602569,47.7886186,0</coordinates></

Point>

</Placemark>

</Response></kml>

Listing B.8: Google Maps geocode result in XML format

103

C Bibliography

Bakshi, R., Knoblock, C. A. and Thakkar, S. (2004), Exploiting online sources to ac-
curately geocode addresses., in ‘Proceedings of the 12th annual ACM interna-
tional workshop on Geographic information systems’, ACM, Washington DC,
USA, pp. 194–203.

Behr, F.-J., Rimayanti, A. and Li, H. (2008), Opengeocoding.org - a free, partici-
patory, community oriented geocoding service, Technical report, Department
of Geomatics, Computer Science and Mathematics, University of Applied Sci-
ences Stuttgart, Stuttgart, Germany.

Borkar, V. R., Deshmukh, K. and Sarawagi, S. (2001), Automatic segmentation of
text into structured records, in ‘Proceedings of the SIGMOD Conference’, Santa
Barbara, California.

Brownstein, J. S., Cassa, C., Kohane, I. S. and Mandl, K. D. (2005), Reverse geocod-
ing: Concerns about patient confidentiality in the display of geospatial health
data, in ‘Proceedings of the Annual Symposium’, Amercian Medical Informat-
ics Association, Washington, DC, USA.

Cayo, M. R. and Talbot, T. O. (2003), ‘Positional error in automated geocoding of
residential addresses’, International Journal of Health Geographics 2:10.

Christen, P. (2006), A comparison of personal name matching: Techniques and
practical issues, in ‘Proceedings of the Sixth IEEE International Conference on
Data Mining’, Hong Kong, pp. 290–294.

Christen, P. and Churches, T. (2005), A probabilistic deduplication, record link-
age and geocoding system, in ‘Proceedings of the ARC Health Data Mining
workshop’, Adelaide, Australia.

Christen, P. and Zhu, J. X. (2002), Probabilistic name and address cleaning and
standardisation, in ‘Proceedings of The Australasian Data Mining Workshop’,
Canberra, Australia.

C Bibliography

Creative Commons (2009), ‘Attribution-share alike license 2.0’. Last accessed:
March 27th, 2009.
URL: http://creativecommons.org/licenses/by-sa/2.0/legalcode

Davis, C., Fonseca, F. and Borges, K. A. V. (2003), A flexible addressing system for
approximate geocoding, in ‘Brazilian Symposium on GeoInformatics’.

Dearwent, S., Jacobs, R. and Halbert, J. (2001), ‘Locational uncertainty in georef-
erencing public health datasets’, Journal of Exposure Analysis and Environmental
Epidemiology 11, 329–334.

ESRI (2005), ‘An overview of esri data and maps, release 9.1’. Last accessed: April
24th, 2009.
URL: http://webhelp.esri.com/arcgisdesktop/9.1/index.cfm?
ID=2038&TopicName=An%20overview%20of%20ESRI%20Data%20and%20Maps

ESRI (2008), ‘Introducing arcsde implementation for postgresql’, Transcript of the
Educational Services Podcast series. Last accessed: April 15th, 2009.
URL: http://www.esri.com/news/podcasts/transcripts/
introducingarcsdeimplementationforpostgresql.pdf

Farnsworth, G. (1970), The DIME geocoding system, Census use study, U.S. Bureau
of the Census, Washington, DC, USA.

Farvacque-Vitkovic, C., Godin, L., Leroux, H., Verdet, F. and Chavez, R. (2005),
Street Addressing and the Management of Cities, The International Bank for Re-
construction and Development / The World Bank, Washington, DC, USA.

Fonda-Bonardi, P. (1994), House numbering systems in los angeles, in ‘GIS/LIS
‘94 Proceedings’, Los Angeles County Urban Research Section, pp. 322–331.

Free Software Foundation (1991), ‘Gnu general public license, version 2’. Last
accessed: April 15th, 2009.
URL: http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt

Goldberg, D. W. (2008), A Geocoding Best Practices Guide, University of Southern
California, GIS Research Laboratory.

Goldberg, D., Wilson, J., Knoblock, C., Ritz, B. and Cockburn, M. (2008), ‘An
effective and efficient approach for manually improving geocoded data’, Inter-
national Journal of Health Geographics 7(1), 60.

Goodchild, M. F. (2007a), ‘Citizens as sensors: the world of volunteered geogra-
phy’, GeoJournal 69(4), 211–221.

105

C Bibliography

Goodchild, M. F. (2007b), ‘Citizens as sensors: Web 2.0 and the volunteering of
geographic information’, Geofocus 7, 8–10.

Google Maps (2009), ‘Google maps terms and conditions’. Last accessed: March
22nd, 2009.
URL: http://www.google.com/intl/en_ALL/help/terms_local.html

Grubesic, T. H. and Murray, A. T. (2004), Assessing positional uncertainty in
geocoded data, in ‘Proceedings of the 24th Urban Data Management Sympo-
sium’, Chioggia, Italy.

Haklay, M. (2008), How good is openstreetmap information? a comparative
study of openstreetmap and ordnance survey datasets for london and the rest
of england, Technical report, Department of Civil, Environmental and Geo-
matic Engineering, UCL.

Han, J. and Kamber, M. (2006), Data Mining: Concepts and Techniques, The Morgan
Kaufmann Series in Data Management, 2nd edn, Diane Cerra, San Francisco,
USA.

Harris, K. (1999), Mapping Crime: Principle And Practice, Diane Pub Co.

IETF: The Internet Engineering Task Force (1999), ‘Rfc2616: Hypertext transfer
protocol – http/1.1’. Last accessed: March 27th, 2009.
URL: http://www.ietf.org/rfc/rfc2616.txt

Kim, U. (2001), A historical study on the parcel number and numbering system
in korea, in ‘Proceedings of the Technical Conference during the FIG Working
Week, 8-10 May’, Seoul, Korea.

Krieger, N., Chen, J. T., Waterman, P. D., Rehkopf, D. H. and Subramanian, S.
(2005), ‘Painting a truer picture of us socioeconomic and racial/ethnic health
inequalities: The public health disparities geocoding project’, American Journal
of Public Health 95(2), 312–323.

Königlich Hannoversches Ministerium des Inneren (1857), ‘Bekanntmachung des
königlichen ministeriums des innern, die allgemeine einführung fester haus-
nummern betreffend’.

Lait, A. and Randell, B. (1996), An assessment of name matching algorithms,
Technical report, Departement of Computing Science, University of Newcas-
tle upon Tyle, Newcastle, UK.

106

C Bibliography

Mazumdar, S., Rushton, G., Smith, B., Zimmerman, D. and Donham, K. (2008),
‘Geocoding accuracy and the recovery of relationships between environmental
exposures and health’, International Journal of Health Geographics 7(1), 13.

MLP (2001), ‘Mobile location protocol specification’.

Navarro, G. (2001), ‘A guided tour to approximate string matching’, ACM Com-
puting Surveys 33(1), 31–88.

Neis, P. (2006), Routenplaner für einen emergency route service auf basis der
openls spezifikation, Diplomarbeit, University of Applied Sciences Mainz.

Neis, P. (2008), Location based services mit openstreetmap daten, Master’s thesis,
Fachhochschule Mainz Fachbereich I.

Neis, P. and Zipf, A. (2008), Openrouteservice.org is three times open: Combining
opensource, openls and openstreetmaps, in ‘Proceedings of the GISRUK 2008
conference’, UNIGIS UK, Manchester.

OGC (2008), ‘Opengis location service (openls) implementation specification:
Core services’.

OpenStreetMap (2009), ‘The free wiki world map’. Last accessed: March 25th,
2009.
URL: http://www.openstreetmap.org/

OpenStreetMapStats (2009), ‘Openstreetmap stats report’. Last accessed: March
22nd, 2009.
URL: http://www.openstreetmap.org/stats/data_stats.html

OSMProtocol (2009), ‘Osm protocol version 0.5’. Last accessed: March 26th.
URL: http://wiki.openstreetmap.org/wiki/OSM_Protocol_Version_0.5

Perkins, C. and Dodge, M. (2008), ‘The potential of user-generated cartography: a
case study of the openstreetmap project and mapchester mapping party’, North
West Geography 8.

PostgreSQL (2008), PostgreSQL 8.3.4 Documentation, The PostgreSQL Global De-
velopment Group.

Pouliquen, B., Steinberger, R., Ignat, C. and De Groeve, T. (2004), Geographical
information recognition and visualization in texts written in various languages,
in ‘SAC ’04: Proceedings of the 2004 ACM symposium on Applied computing’,
ACM, New York, USA, pp. 1051–1058.

107

C Bibliography

Rahm, E. and Do, H. H. (2000), ‘Data cleaning: Problems and current approaches’,
IEEE Data Engineering Bulletin 23, 2000.

Ratcliffe, J. H. (2001), ‘On the accuracy of tiger-type geocoded address data in
relation to cadastral and census areal units’, Geographical Information Science
15, 473–485.

Ratcliffe, J. H. (2004), ‘Geocoding crime and a first estimate of a minimum accept-
able hit rate’, International Journal of Geographical Information Science 18, 61–72.

Rushton, G., Armstrong, M. P., Gittler, J., Greene, B. R., Pavlik, C. E., West, M. M.
and Zimmerman, D. L. (2006), ‘Geocoding in cancer research: A review’, Amer-
ican Journal of Preventive Medicine 30, 16–24.

Snae, C. (2007), A comparison and analysis of name matching algorithms, in ‘Pro-
ceedings of World Academy of Science, Engineering and Technology’, Vol. 21,
World Academy of Science, Prague, Czech Republic.

Städtetag NRW (1979), ‘Richtlinien für die nummerierung von gebäuden oder
bebauten grundstücken’.

TagWatch (2009), ‘Openstreetmap tagwatch europe’. Last accessed: April 15th,
2009.
URL: http://tagwatch.stoecker.eu/Europe/De/index.html

Tantner, A. (2006), ‘Wer ist die nummer 1?’, Jungle World 23, 28–31.

Waldner, U., Machguth, H., Simonet, S. and Axhausen, K. W. (2005),
Geokodierung von adressen: Methodik und erfolgsquoten bei unterschiedlich-
sten datenquellen, Technical report, Swiss Federal Institute of Technology
Zurich, Zurich, Switzerland.

Wiezoreck, J., Guo, Q. and Hijmans, R. T. (2004), ‘The point-radius method for
georeferencing locality descriptions and calculating associated uncertainty’, In-
ternational Journal of Geographical Information Science 18(8), 745–767.

Zandbergen, P. (2007a), ‘Influence of geocoding quality on environmental expo-
sure assessment of children living near high traffic roads’, BMC Public Health
7(1), 37.

Zandbergen, P. A. (2007b), ‘A comparison of address point, parcel and street
geocoding techniques’, Computers, Environment and Urban Systems 32(3), 214–
232.

108

	Acknowledgements
	Statement of Originality
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Listings
	Glossary
	Introduction
	Motivation
	Objectives
	Scope
	Approach and Methodology
	Expected Results
	Target Audience
	Structure of the Thesis

	Geocoding Basics
	What is Geocoding?
	The Use of Geocoding

	Research Basis
	OpenStreetMap
	Project Description
	Software Components
	Data Model
	Nodes
	Ways
	Relations

	Data Interfaces
	Direct Access
	Database Exports
	Rendered Maps

	Usage Examples
	Licensing

	OpenGIS Location Services (OpenLS)
	Core Compontents
	Location Utility Service
	Use Cases
	Abstract Data Types
	Request and Response Parameters
	Example Requests and Responses

	OpenRouteService
	Overview
	OpenStreetMap Data Integration
	The Geocoder Component

	PostgreSQL Database Management System
	Overview
	PL/pgSQL procedural database language
	The PostGIS Extension

	Analysis and Methodology
	Reference Dataset
	Completeness and Accuracy
	Suitability of OSM Data Model for Geocoding
	Proposed Data Model
	Data Integration

	Designing The Geocoding Process
	Parsing
	Matching
	Locating

	Use Cases
	House Numbering
	Historical Overview
	House Numbering Systems
	Using Existing Data
	House Number Data in OpenStreetMap
	Exact Match
	Interpolation

	Probability Based Approach
	Parameters needed for the Calculation
	Hypotheses for Educated Guesses

	Implementation
	Development Environment
	Building the Reference Dataset
	Database
	Data Model
	Data Integration

	Programming the Interfaces
	Geocode Result Format
	Freetext Search
	Cleaning and Segmenting
	Determining Street/City Relations
	Approximate String Matching
	Locating the Geocode Result

	Structured Search
	Reverse Geocoding

	Locating House Numbers
	Exact Match
	Interpolation
	Probability Based Approaches
	Guessing Directions
	Guessing Distances

	Evaluation
	Match Rate
	Importance of the match rate
	Examining the match rate

	Positional Accuracy of House Number Requests
	Overall Average Accuracy
	Accuracy Using Existing Data
	Accuracy using Probability Based Approaches
	Comparison with Google Maps

	Summary
	Conclusions
	Outlook

	Figures
	Listings
	Bibliography

