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Abstract 
Most of the large databases currently available have a strong spatiotemporal component and 

potentially contain information that might be of value. Spatial analysis is far from adequate 

handling the huge volumes of data and the growing complexity. Based on Data Mining 

techniques and Knowledge Discovery the population development of the 2896 Swiss 

communities is examined by time intervals. The time intervals orientate on the census days 

of the Swiss federal population census, which was carried out every 10 years since 1850 

(=15 decades). The question is how many patterns will occur. The patterns are described 

concerning their characteristics (size and properties by decade). The patterns with similar 

properties are grouped into classes. To explain these classes, the discovered classification is 

compared with already existing classifications of Switzerland (height zones, community 

types, urban rural types and NUTS2-Regions). The classes are presented in localized way 

and proofed in mind of the spatial analyst. By using cartograms the communities and their 

patterns are presented in proportion to their middle population during the 15 decades. 

Kurzfassung 
Durch den schnellen Fortschritt in der Informationstechnologie und das rapide Anwachsen 

der Datenmengen mit raumzeitlicher Komponente steigen die Anforderungen, aus diesen 

Daten Wissen zu extrahieren und darzustellen. Auf der Grundlage von Techniken des Data 

Mining und der Knowledge Discovery wird die Bevölkerungsentwicklung der 2896 

Schweizer Gemeinden anhand ausgewählter Zeitschnitte untersucht. Die Zeitschnitte 

orientieren sich an den Zählungsstichtagen der Eidgenössischen Volkszählung, die seit 1850 

alle 10 Jahre durchgeführt wurde (=15 Dekaden). Es stellt sich die Frage wie viele 

Entwicklungsmuster in der Schweiz existieren. Die Aufgabe besteht darin, relevante 

Entwicklungsmuster zu identifizieren. Die Entwicklungsmuster werden nach Art und 

Ausmaß präzisiert. Die Entwicklungsmuster mit ähnlichen Eigenschaften werden in 

sogenannte Entwicklungsklassen gruppiert. Um die Entwicklungsklassen zu erklären, wird 

die gefundene Klassifikation über Kontingenztabellen mit bereits bestehenden 

Klassifikationen in der Schweiz verglichen (Höhenstufen, Gemeindetypen, Stadt-Land-

Typen sowie NUTS2-Regionen). Die Eigenschaften der Entwicklungsmuster werden 

lokalisiert dargestellt. Mit Hilfe von Kartogrammen werden die Gemeinden und ihre 

Entwicklungsmuster in Proportion zu ihrer Einwohnerzahl über die 15 Dekaden abgebildet. 
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1 Introduction 
In general, mankind’s demographic history is characterized by periods of more or less 

dramatic growth, but also by times of stagnation and decline. The demographic growth 

bears witness to the processes of interaction between populations and their environment, 

as well as to the relations between individuals and between subsets of societies. 

The comprehensive description of the long-term changes in population in a continuous 

area such as Switzerland demands a uniform data collection over a longer period. 

Switzerland offers such a memory indicating the spatial, social and economic 

development of the Swiss Confederation over the last 150 years. A Census was held in 

Switzerland every 10 years since 1850. The data collection was initiated by the great 

efforts of the Federal Councilor Stefano Franscini (1796-1857). Today it is therefore 

possible to decode the population dynamics on the level of communities.  

Although the Swiss heartland and the great Alpine valleys have been well populated 

since the first millennium before Common Era, the total population of Switzerland has 

always remained modest in size compared with the neighboring countries 

(Rothenbacher, 2002). 

The territory within the present national borders had less than half a million inhabitants 

in the year 1000. It was only in about 1600 that the one million mark was passed. Like 

Europe as a whole, Switzerland experienced a marked growth from the 18th century 

onwards. In 1848, when the Federal State was established in 1848 the number of 

inhabitants in the country reached 2.4 million. The development in the analyzed time 

period is characterized by a continuous population growth but with different intensities. 

Periods with strong growth can be observed around 1900, the time after the Second 

World War until 1970 and the last two decades until 2000. During the last decades 

Switzerland had one of the largest growth rates in Western Europe (Haug, 2002).  

The population has tripled since 1850, amounting to 7.3 million in the year 2000. 

At present, stabilization in the population can be observed, as is typical of the Western 

world. Swiss population accounts for 0.1% of the world’s population (Watkins, 2007). 

According to the most plausible estimates (BFS, 2006), it should only continue to rise 

slightly in the course of the next decades, reaching a ceiling of some 8.2 million towards 

the year 2030, after which it will probably decline. Other prognoses points at an early 

decline in the year 2015 and a population of 6.5 million in 2050. 



Population Cluster – Spatial Temporal Analysis Introduction 

2 

1.1 Motivation 
Urbanized areas are a major component of the modern environment. For the first time, 

more half of the world’s population will be living in urbanized areas by the end of this 

decade (United Nations, 2009). Switzerland is a highly urbanized country. Urban, 

suburban and rural areas are closely linked by dense flows of people, goods, materials 

and information. It is widely acknowledged that the contemporary physical space 

presents a complex structure; research on the nature of this structure and the pattern of 

its growth has remained indispensable. For many years it was very difficult to start a 

long-term analysis in Switzerland and the alpine regions in general because of 

heterogeneous spatial and statistical definitions and a general lack of uniform data. 

Against this background the motivation of this thesis is to brighten the knowledge about 

the long-term population development of Swiss communities in terms of patterns and 

localized properties. The initial idea of the thesis is the analysis of the established 

census data of the year 2000 (Schuler et al., 2002). Actually urban planners and 

politicians have several impressions about the recent problems of Swiss population 

losses in peripheral alpine regions (source, year) as well as about the urban sprawl in the 

Midland (Tschopp et al., 2003; Oswalt/Baccini, 2003). The long-term development of 

all Swiss communities is often not quantified and therefore more or less nebulous in 

context of actual planning and decision processes (Bätzing, 2001). But the long-term 

aspects should be taken into account to avoid dramatic losses of economic, social and 

cultural capitals in the coming decades. 

1.2 Assumptions and Questions 
The investigation of Swiss communities will focus on the long-term behavior of 

population between 1850 and 2000 and is based on several assumptions. These 

assumptions lead to specific research questions and future perspectives: 

1. Spatial data analysis (in conjunction with the techniques of data mining) is an 

appropriate way to quantify the long-term development of communities. The 

summary of a large amount of communities (2896 objects) to a smaller amount 

of meaningful patterns leads to a better understanding of the processes 

generating the attribute values. Thus it is possible to formulate hypothesis on the 

general development of communities in the past. 

Questions: How many different (long-term) patterns exist in Switzerland?  
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2. Several development directions are characterizing the 2896 Swiss communities. 

The variety of existing long-term patterns is extremely wide and differing. The 

expected patterns are therefore not just influenced by an increase or decrease but 

probably by a multitude of opposing and recurring trends. Clustering will 

support the interpretation and characterization of the observed population 

episodes in a transparent and systematic way. 

Questions: What are the relevant patterns of population development? How 

many clusters of patterns do exist? What are the characteristics of clustered 

long-term patterns? Where do these patterns occur? 

3. The amount and change of population might be influenced both by other spatial 

and non-spatial characteristics. It is expected that the communities are not 

independent of each other. Attribute values in nearby places tend to be more 

similar than attribute values drawn from locations far away from each other. 

Questions: Are there official classifications (spatial or non-spatial) that might 

be valuable for the explanation of patterns? Are there analytical techniques that 

might be of interest for the explanation of such results? 

Future Perspectives: What are the possibilities for further spatial investigations?  

1.3 Modus Operandi 
The description of the long-term development in a continuous area such as Switzerland 

requires a systematic analysis. The approach of this thesis refers to a cyclical data 

mining approach (see for deeper information into the lecture notes of Prof. Ultsch, 

2009). A central issue of data mining is the transition from data to knowledge. An 

important goal of knowledge discovery is the search for patterns in data that can help 

explain the underlying process that generated the data. Techniques of data mining are 

therefore of high relevance to reveal logical or mathematical and partly complex 

descriptions of patterns and regularities inside the set of 2896 Swiss communities. 

• Inspection of Data and Modeling: A preliminary data observation is taken into 

account as it helps to ensure the integrity of the data set before proceeding 

further with the analysis of the long-term population development. Typical 

Indexes of population change will be discussed in view of their properties. 

Hypothesis about the data distribution will be formulated. A data model will be 

elaborated and later on proofed. 
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• Properties of population change: At the beginning of this thesis it is assumed by 

the author that Swiss communities allow a grouping process based on processes 

of population decline, stagnation or increase. It might be possible to identify 

specific development profiles by using characteristics of all 15 decades. Such 

characteristics are explored to trigger discussions in the application domain and 

to reveal insights about spatiotemporal phenomena. Since communities with 

similar characteristics are occurring a clear definition and description of their 

properties should be elaborated. 

• Clustering: Clustering is an appropriate method in context of the comparison of 

the population development over time. Such method is often applied to group 

objects such that objects in the same group are similar and objects in different 

groups are unlike each other. A great deal of variability in the range and 

distribution of variables is a problem for cluster algorithms which involves 

distance measurements. Since the data does not follow a normal distribution, 

other techniques and transformations should be taken into account to achieve 

normality or symmetry. In this case other techniques should be integrated to 

ensure the clustering and classification. 

• Cluster Explanation: Since a partition of classes is realized it might be good to 

foster the understanding of their spatial characteristics. In view of already 

existing techniques in the field of data mining a comparison with other common 

spatial classifications should be developed. The explanation provides the 

mentioned transition from data to knowledge and generates several hypotheses 

for further investigations. The partition of classes and the machine-generated 

explanations should be validated mindful of the spatial analyst. 

• Geovisualization: The process of knowledge conversion and communication is 

supplemented by spatial reasoning. The style of the presentation and the 

technical realization is task of the population cartography as a sub domain of the 

thematic cartography. Maps dealing with population usually provide information 

of distribution, density, structure or the spatial long-lasting/temporary change of 

population and stratification (Witt, 1971). Against this background several 

results of the long-term population analysis will be presented in map and 

diagram form. Such maps can be used as basis for further spatial analysis and 

content based interpretation in a future perspective. 
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1.4 Restrictions 
Due to the lack of several long-term data dimensions the initial idea of this thesis is to 

use the development of population between 1850 and 2000 as a kind of overall indicator 

for the observable (cumulated) situation of Swiss communities.  

The level of communities is often discussed as an appropriate scale to analyze the 

population development (see section 3.2). However, the author wants to point out that 

the whole study depends on the quality and accessibility of Swiss population data. At 

this stage the different size of communities (area) cannot be taken into account due to 

official data restrictions and limited amount of time. In the future it might be possible to 

get access to other population data that is not directly influenced by statistical 

aggregation and official territories.  

1.5 Audience 
This thesis aims to be a contribution to everyone interested in the development of 

communities. In particular the long-term dynamic of population in Switzerland will be 

examined and presented. By discovering different patterns it might be possible to think 

in new spatial relations and neighborhoods (e.g. comparative strengths, interregional 

communication and cooperation), thus, communities obtain a new condition in a long-

term perspective. 

It is supposed that the integration of geographical information systems and in addition 

the application of Data-Mining techniques will sharpen the planner’s present view to the 

past development of communities. As this work integrates techniques of Data Mining it 

may also be of interest in the field of Geographic Information Science. Practitioners in 

the field of Spatial Planning and Historians are requested to validate the detected long-

term patterns and dependencies. 

The long-term population analysis of this thesis might be useful to establish a more 

general framework for deeper investigations and enlarged explanations using other 

dimensions such as economic, social or cultural data. Quantitative spatial investigations 

in general might lead to advanced strategic instruments such as semi or fully automated 

urban monitoring systems or a benchmark system for regional policy. In the future it 

might be possible that politicians and planners might intensify the effort to integrate 

long-term analysis into the planning and design process. A comprehensive, dynamic 

understanding of the past evolution of communities is however an essential condition 

for formulating comprehensive and reliable long-term visions (e.g. 2030/2050). 
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1.6 Structure of the thesis 
The thesis is separated into nine chapters. One of them provides fundamentals (chapter 

2) to explain some theoretical aspects that are relevant for the later developed approach. 

A survey of literature in the subject area is called related work (chapter 3). The long-

term analysis of the Swiss population between 1850 and 2000 is then divided in to 4 

specifiable work packages: 

• The description of data and the subsequent inspection and modeling process are 

the basis for the computed results (see chapter 4).  

• Essentially, the quality of analysis is a function of the quality of the data. Due to 

the detailed investigation of data distributions several subtasks lead to the 

identification of so called patterns (see chapter 5).  

• These patterns are analyzed by their frequency and also described by relevance. 

Such measurement provides later on clustering and classification of patterns 

(chapter 6). The localization and spatial reasoning supports the understanding of 

population change over time (15 decades) and the spatial distribution of patterns 

and related communities. 

• The explanation of classified patterns is realized in chapter 7. Existing spatial 

typologies are compared to the classification results of this thesis. 

• The discussion implies a critical drawback of the presented work, the 

methodological procedure and a short comparison of expected and observed 

results (chapter 8). 

• Conclusion and some perspectives for future steps are to find in chapter 9. 

 
Figure 1: Structure of the thesis 

Map (=http://de.wikipedia.org/wiki/Schweiz, 01.01.2009)
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2 Fundamentals 

2.1 Spatial Analysis, Data Mining and Knowledge Discovery 
Most of the large databases currently available have a strong spatiotemporal component 

and potentially contain information that might be of value. Miller and Han (2009) are 

quoted as follows: “Due to the growth and wide availability of geo-referenced data in 

recent years, traditional spatial analysis tools are far from adequate at handling the huge 

volumes of data and the growing complexity of spatial analysis task. Geographic data 

mining and knowledge discovery represent important directions in the development of a 

new generation of spatial analysis tools in data-rich environment”. Urban Data Mining 

(Behnisch, 2009) describes in similar manner such methodological approach to reveal 

logical or mathematical and partly complex descriptions of patterns and regularities 

inside a set of multidimensional geospatial data. Data Mining is commonly defined as 

the inspection of data. Mining implies a laborious process of searching for hidden 

information in a large amount of data (Han and Kamber, 2006). The ultimate goal of 

Data mining is to provide evidence-based insight through a deeper understanding of 

data (in the mind of the analyst) and to produce results that can be utilized at policy and 

strategy levels. Important requirements for ‘knowledge discovery’ are interpretability, 

novelty and the usefulness of results. Since the use of the term ‘data-mining’ is quite 

diverse, a short but more general definition of data-mining and knowledge discovery 

will be presented (Ultsch, 1987). Data mining means the inspection of a large data set 

with the aim of knowledge discovery. Knowledge discovery is the discovery of new 

patterns in the data, i.e. knowledge that is unknown in this form so far. This knowledge 

has to be presented symbolically and should be understandable for human beings as 

well as useful in knowledge-based systems. An important goal of knowledge discovery 

is the search for patterns in data that can help explain the underlying process that 

generated the data. A central issue of Data Mining is the transition from data to 

knowledge. The conversion of sub-symbolic patterns and trends in data to a symbolic 

form is seen as the most difficult and most critical part of data analysis (Ultsch and 

Korus, 1995). Symbolically represented knowledge – as sought by data-mining – is a 

representation of facts in a formal language such that an interpreter with competence to 

process symbols can utilize this knowledge. In particular, human beings must be able to 

read, understand and evaluate this knowledge. The knowledge should be useful for 

analysis, diagnosis, simulation and/or prognosis of the process that generated the data. 
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A cyclical data mining procedure was developed by the mentor of this thesis (Figure 2) 

in former times and later on successful applied. Applications of the methods are 

reported e.g. for medicine, meteorology, biology, pharmacy, stock prediction, customer 

relation management or spatial pattern detection and explanation. “Urban Data Mining” 

is interested in methods and approaches for community examination (Behnisch, 2009). 

When analyzing population data in this thesis important steps of such cyclical 

methodology procedure are taken into account. The cyclical methodology procedure is 

characterized by six main tasks (Figure 2) following the initial step of data collection. 

The main tasks on the far right of Figure 2 contain several aspects within the circle and 

are roughly explained below. It should be considered that the analysis certainly starts 

with a relevant problem or specific research question. According to the presented steps 

within the circle there are often several combinations and processes necessary to find an 

appropriate solution or probably surprising answer. In particular, the cyclical approach 

provides the ability to identify hidden relationships and unusual patterns within a large 

amount of data. But human interaction is important during the mining process to 

analyze and validate partial results as early as possible and to guide further steps. 

 
Figure 2: Cyclical Data Mining Approach, Source: Ultsch (2009), applied to 

community data in “Urban Data Mining” (Behnisch, 2009) 

Data inspection 

Examination of the variables to gain insight into the data and the relations between data 

reformulate variables to make them compatible and comparable. Data inspection is 

crucial for a successful outcome of the analysis. The inspection of data is commonly 

realized by visualization in form of histograms, Quantile-Quantile-plots, PDE-plots 



Population Cluster – Spatial Temporal Analysis Fundamentals 

9 

(Ultsch, 2005b) and Box-Plots. If the data are not cleansed and normalized, there is a 

danger of obtaining spurious and meaningless results. For many similarity measures, 

e.g. the commonly used Euclidean distance, normalization of data needs to be 

considered to avoid undesired emphasis of features with large ranges and variances. The 

application of transformation measurements such as ladder of power is often 

recommended to take into account restrictions of statistics (Hand et al., 2001). 

Furthermore the set of variables is usually proofed by correlation coefficients and 

scatter plots to discover relations or unforeseen dependencies in the set of variables. 

Structure visualization 

Many methods offer a two dimensional projection with respect to some quality measure. 

Most commonly principal component analysis (PCA) preserving total variance and 

multidimensional scaling (MDS) preserving distances as good as possible are used. The 

output of these methods are merely coordinates in a two dimensional plane. Since there 

are not clearly separated clusters in a dataset it will be hard to recognize groups for 

examples. More visualization capabilities than simple low dimensional projections are 

offered by the Emergent SOM (ESOM). The original high dimensional distances can be 

visualized with the canonical U-Matrix (Ultsch, 1992). The projection leads to sharpen 

cluster boundaries. The visualization can be interpreted as height values on top of the 

usually two dimensional grid of the ESOM, leading to an intuitive landscape. The data 

space can be displayed in form of topographical maps, intuitively understandable also 

by users without scientific education. Clearly defined borders between clusters, where 

large distances in data space are present, are visualized in the form of high mountains. 

Smaller intra cluster distances or borders of overlapping clusters form smaller hills. 

Homogeneous regions of data space are placed in flat valleys. Toroid maps should be 

used to avoid border effects. The U-Map is a non-redundant view of the U-Matrix of 

such a border-less ESOM (A. Ultsch., 2003b; Ultsch, 2005c; Ultsch/Mörchen, 2005d). 

Structure definition 

Clustering (i.e. unsupervised classification) is the process of finding intrinsic groups 

(classes) in a set of data without knowing a priori which data set belongs to which class. 

Classification is the task of assigning class labels to a data set according to a model 

where classes are known. Results can suggest a general typology and lead to the 

development of prediction models using subgroups instead of the total population 

(amount of objects, e.g. communities). Clustering can be applied to nonspatial variables, 

spatial variables (e.g. shape), and proximity of the objects or events in space, time and 
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space-time. Each cluster should be as homogeneous as possible and distinct from other 

clusters. For example a cluster can be defined based on distance (e.g. agglomerative 

(Ward, 1963), divisive), density (e.g. DBSCAN (Sander et al., 1998)), partitioning (e.g. 

EM algorithm (Bilmes, 1997)) or grid structure (e.g. STING (Wang et al., 1997)).  

Structure control and explanation 

The openness of the formation of clusters needs an additional validation and 

explanation of results. Regression is the task of explicitly modeling variable 

dependencies to predict a subset of the variables from others (Hastie et al., 2009). 

Regression can also be used to replace missing values. Discriminant analysis is 

applicable to determine the class of an observation based on a set of variables. The 

Explanation of clusters can be also realized for example by a classification and 

regression tree (Breiman et al., 1984) or by contingency tables. The structure control 

supports the explanation and description of a classification result. 

Operationalization 

New objects can be associated to existing classes by classifiers representing a model in 

the form of rules or decision trees. A classifier is based on learning, testing and 

validation of data sets. It is expressed in a sub-symbolic or symbolic form whereas a 

symbolic classifier (e.g. Sig* (Ultsch, 2008)) assists human skills of comprehension. 

Knowledge conversion 

The most important step is the generation of useful, new and unsuspected knowledge. It 

is required to be representable in a linguistic form that is understandable to humans and 

automatically usable by knowledge-based systems. With extracted knowledge it is 

possible to diagnose unknown examples. Geographic Visualization (MacEachren, 1994) 

supports the interpretation of results. Geographic Visualization is commonly defined as 

the integration of cartography, GIS, and scientific visualization to explore geographic 

data and communicate geographic information to private or public audiences 

(MacEachren and Kraak, 1997). Spatial analysis provides a synoptic view of observed 

spatial patterns. Maps are essential for visualizing such patterns. Important tasks are the 

spatial feature identification, spatial feature comparison and in particular spatial feature 

interpretation. Identification allows to spot the emergence of spatiotemporal patterns at 

different levels of spatial aggregation and to explore boundaries between spatial classes. 

Spatial feature identification and comparison can guide spatial query formulation. 

Spatial feature interpretation can help to build geographic domain knowledge. 
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2.2 Dissimilarity Measurements 
It is to point out that there are specific forms of dissimilarity. Dissimilarity usually 

fulfills three criteria (Izenman, 2008): 

1. ݀൫݌௜, ௝൯݌ ൒ 0 ՜ positivity 

2. ݀൫݌௜, ௝൯݌ ൌ ௜݌ ֞ 0 ൌ ௝݌ ՜ separate identity 

3. ݀൫݌௝, ௜൯݌ ൌ ݀൫݌௜, ௝൯݌ ՜ symmetry 

Metric dissimilarity satisfies the fourth property:  

4. ݀൫݌௜, ௝൯݌ ൑ ݀ሺ݌௜, ௞ሻ݌ ൅ ݀൫݌௞, ௝൯݌ ՜ triangle inequality 

Ultrametric dissimilarities can be displayed graphically (see dendrogram in section 2.3) 

and satisfies the fifth property: 

5. ݀൫݌௜, ௝൯݌ ൑ ,௜݌൛݀ሺݔܽ݉ ,௞ሻ݌ ݀൫݌௝,  ௞൯ൟ݌

Several reasons for the use of the Euclidean distance are later on discussed in the 

chapter about clustering. Generally Euclidean Distance is one of the most popular 

distance measurements. The Euclidean distance ܧ is based on the Pythagoras theorem. 

It corresponds to the geometric distance into the multidimensional feature space and is 

not limited to any orthogonal dimension.  

 

Figure 3: Sketch of the Euclidean Distance between points in the feature space 
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݊
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2.3 Ward Clustering 
Clustering is a well-known example of unsupervised learning and is often used to 

arrange large quantities of high dimensional data into natural cluster (groups). 

Hierarchical Clustering is an appropriate approach and is subdivided into agglomerative 

methods, which proceed by series of fusions of objects into cluster (bottom-up), and 

divisive methods, which separate a given partition of objects successively into finer 

partitions (top-down). The later on applied clustering approach is based on a technique 

that is one of the most used in practice: WARD algorithm (Ward, 1963) is a typical 

hierarchical (agglomerative) algorithm. Such algorithm seeking to form the 

partitions ܥ௖, ܥ௖ିଵ, … ,  .ଵܥ

Ward algorithm begins with a partition that treats each object as its own cluster. At each 

agglomerative step, the union of every possible partition pair is considered and the two 

partitions whose fusion results in minimum increase in “information loss” are 

combined. At each agglomerative step the number of distinct partitions is reduced by 1. 

Any particular partition ܿ is characterized by a sum of square measure of variationሺܸሻ.  

ܸ ൌ ෍ ෍൫ݔ௣௡௖ െ ҧ௡௖൯ଶݔ
ଷ

௡ୀଵ

஼

௖ୀଵ

  

with  ݔ௣௡௖ = values of period ݊ of object p (for all objects pൌ 1, … , ܲ) in partition ܿ 

and ݔҧ௡௖ = mean value or the mean vector (centroid) of period ݊ in partition c. 

Each partition is further characterized by a specific value ܴଶ (=mean squared error) 

describing the mentioned “information loss”. Let ܸሺ1ሻ be the value when all objects are 

aggregated into a single (very heterogeneous) partition. ܸሺ1ሻ plays the role of the “total 

sum of squares”. Let ܸሺܥ) be the value of V for the partition into C partitions. 

A proportion of variability ௏ሺ௖ሻ
௏ሺଵሻ is measured for each partition ܿ, ܴଶ describes the 

information loss e.g. characteristics of objects that are unexplained by the new partition: 

ݎ݋ݎݎ݁ ݀݁ݎܽݑݍݏ ݊ܽ݁݉ ൌ ܴଶ ൌ ൭1 െ ቆ
ܸሺܿሻ
ܸሺ1ሻቇ൱

ଶ
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The total number of objects should be considered to be partitioned into several similar 

ones. At the start there is no information loss (ܸሺܥሻ  is zero and ܴଶ ݅1 ݏ). At ܸሺ1ሻ , 

ܴଶ ݅0 ݏ. At any intermediate step, ܴଶ  measures the proportion of variability explained 

by the current partition ܿ. The analysis of  ܴଶ at intermediate agglomerative steps leads 

to the identification of a decrease in similarity within partitions as the number of 

partitions drops from C to 1. 

The aim of Ward algorithm is to unify cluster such that the variation inside these cluster 

is not increasing dramatically. In contrast to other agglomerative algorithms (e.g. Single 

Linkage) this algorithm does not put together cluster with smaller distance, but it joins 

cluster that do not excessively increase the information loss.  

Clusters are compact if all of objects within them are relatively homogeneous together 

(high similarity) as compared with objects in different clusters (high dissimilarity). 

However, like variance, mean squared error has a disadvantage of heavily weighting 

outliers. This is a result of the squaring of each term, which effectively weights large 

errors more heavily than small ones. Furthermore the algorithm tends to join clusters 

with a small number of observations, and it is strongly biased toward producing clusters 

with the same shape and with roughly the same number of observations. Generally it is 

to emphasize that no provision can be made for a relocation of objects that may have 

been “incorrectly” partitioned at an early stage. When clustering in this thesis the data is 

already inspected. The clearly bounded and symmetrical range provides the whole 

clustering process (see suggestion of Prof. Ultsch in section 5.2). Against this 

background unforeseen circumstances which may affect the results are minimized. 

The clusters are defined by the partition at the point Wards algorithm is stopped. But 

how to find the point between ܥ and 1 that leads to a clear and distinguishable structure 

and a good representation of content. All hierarchical clustering methods can be 

displayed in a dendrogram. Such tree-like diagram can depict the mergers or divisions 

which have been made at successive level. The dendrogram may be drawn in a 

horizontal or vertical form. It visualizes the height of the linkage of objects. That means 

the difference in height defines how close objects are to each other. Objects are similar 

to each other at low heights whereas objects are more dissimilar are combined higher up 

the dendrogram. By cutting the dendrogram at an appropriate height a partition of 

objects into a specified number of groups can be obtained. If a line is drawn on the 

dendrogram at a given height, then the marked branches of the tree constitute a cluster.  
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2.4 k-Nearest-Neighbor-Classification 

The k-Nearest-Neighbor-Classifier is a sub-symbolic one. That means the classifier 

does not require any deeper understanding of the class. The ݇-Nearest-Neighbor 

classifier supports the labeling by finding a labeled object that is the nearest neighbor of 

an unlabeled object. 

The ݇-Nearest-Neighbor classifier was firstly introduced to the beginning of the 1950s 

(Fix / Hodges, 1951 and 1952) as a method of non-parametrical classification. The 

learning data will be arranged in ascending order in a chosen metric ܴܫௗ to a given 

observation ݌ א  :ௗ. Thus the following equation is satisfiedܴܫ

ԡ݌ െ ோܲଵ௡ԡ ൑ ԡ݌ െ ோܲଶ௡ԡ ൑ ڮ ൑ ԡ݌ െ ோܲ௡௡ԡ 

Whereas ሺܴଵ:௡, … , ܴ௡:௡ሻ is defined as a randomly permutation of the tuple ሺ1, … , ݊ሻ. It 

is possible that different points of the learning series have the same distance to ݌. A ݇-

Nearest-Neighbor classifier determines the class that is most frequently under ݇-nearest-

neighbors of ݌. It should be mentioned that a classifier with ݇ ൌ 1 lead to a construction 

of a Voronoi diagram. 
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2.5 Class explanation using Contingency Tables 
A contingency table, often referred to as cross-classifications or cross-tabulations, 

usually shows frequencies for particular combinations of values of two discrete random 

attributes ܺ and ܻ. Each cell in the table represents a mutually exclusive combination of 

ܺ and ܻ values. Contingency tables contain row attributes across the horizontal axis and 

column attributes down the vertical. Cell entries give the number of cases (e.g. 

communities, patterns, or other unit of analysis) that occur in each cell. The cells 

themselves are formed by combining one category from each of the row and column 

attributes. Marginal totals (or marginals) give the total number of cases found in each 

category of the attributes — in other words they are the row and column totals. The 

mentioned elements are shown in tabular form below (Table 1). 

Table 1: Structure of a Contingency Table (absolute / relative frequency) 
 ሺ࢓ ࢞ ࢑ሻ ࢏ ࢋ࢒࢈ࢇ࢚ ࢟ࢉ࢔ࢋࢍ࢔࢏࢚࢔࢕ࢉ ൌ ૚, … , ࢑ 

ܿଵ ... ࢐ ࢓࡯ ൌ ૚, … ,  ࢓

࢘૚  ଵ݂ଵ ... ଵ݂௠ ࢉ ൌ  ࢔࢓࢛࢒࢕ࢉ 

࢘૛ ଶ݂ଵ ... ଶ݂௠ ࢘ ൌ  ࢝࢕࢘ 

...
 

...
 

  ...
࢐࢏ࢌ  ൌ   ࢟ࢉ࢔ࢋ࢛ࢗࢋ࢘ࢌ 

࢐࢏࢖ ௞݂ଵ ... ௞݂௠ ࢑ࡾ ൌ  ࢓࢑࢔/࢐࢏ࢌ 

 
 →  ሻ࢓ሺ࢟ࢅ

௜݂.  ൌ  ௜݂ଵ ൅ . . . ൅ ௜݂௠ ܿଵ ... ࢓࡯ 

   ሺ࢞࢑ሻ  ࢘૚ ଵ݂ଵ ... ଵ݂௠ࢄ

↓ 
࢘૛ ଶ݂ଵ ... ଶ݂௠ ࢌ૛.  ൌ ݂݋ ݈ܽݐ݋ܶ    ࢄ

...
 

...
 

  ...
 

  

   ௞݂ଵ ... ௞݂௠ ࢑ࡾ

.݂௝  ൌ  ଵ݂௝ ൅ . . . ൅ ௞݂௝ ࢌ.૚ ൌ ݈ܽݐ݋ܶ ݂݋ ࢓࢑࢔     ࢅ ൌ ࢙ࢋ࢏ࢉ࢔ࢋ࢛ࢗࢋ࢘ࡲ ࢒࢒ࢇ ࢌ࢕ ࢒ࢇ࢚࢕ࢀ

.࢏࢖ →  ሻ࢓ሺ࢟ࢅ  ൌ  ෍ ௜௝݌ ൌ ௜݂./݊௞௠

௠

௝ୀଵ

 
ܿଵ ... ࢓࡯ 

   ଵ௠݌ ... ଵଵ݌ ሺ࢞࢑ሻ  ࢘૚ࢄ

↓ 
࢘૛ ݌ଶଵ ... ݌ଶ௠ ࢖૛.  ൌ ݂݋ ݈ܽݐ݋ܶ   ࢄ

...
 

...
 

  ...
 

  

   ௞௠݌ ... ௞ଵ݌ ࢑ࡾ

࢐.࢖  ൌ  ෍ ௜௝݌ ൌ .݂௝/݊௞௠

௞

௜ୀଵ

૚.࢖  ൌ ݈ܽݐ݋ܶ ݂݋ ܻ 
    

૚ 



Population Cluster – Spatial Temporal Analysis Fundamentals 

16 

Normally, cell entries are expressed as either row or column percentages (depending on 

the point of analysis).  

Table 2: Contingency Table, Frequency as vertical and horizontal Percentages 

 →  ሻ࢓ሺ࢟ࢅ
 

ܿଵ ... ࢐࢏࢜ ࢓࡯  ൌ  ࢐.ࢌ/࢐࢏ࢌ 

݅ ଵ௠ݒ ... ଵଵݒ ሺ࢞࢑ሻ  ࢘૚ࢄ ൌ 1, … , ݇ 

↓ 
࢘૛ ݒଶଵ ... ݒଶ௠ ݆ ൌ 1, … , ݉ 

...
 

...
 

  ...
  

  ௞௠ݒ ... ௞ଵݒ ࢑ࡾ

ࢅሃࢄሺ ࢒ࢇ࢚࢕ࢀ ൌ ࢘࢐ሻ ૚ ૚ ૚  
 

࢐࢏ࢎ →  ሻ࢓ሺ࢟ࢅ  ൌ  .࢏ࢌ/࢐࢏ࢌ 

ܿଵ ... ࢒ࢇ࢚࢕ࢀ ࢓࡯ ሺࢅሃࢄ ൌ  ሻ࢏ࢉ

 ሺ࢞࢑ሻ  ࢘૚ ݄ଵଵ ... ݄ଵ௠ ૚ࢄ

↓ 
࢘૛ ݄ଶଵ ... ݄ଶ௠ ૚ 

...
 

...
 

  ...
 

  

 ௞ଵ ... ݄௞௠ ૚݄ ࢑ࡾ

The expected frequency for each cell ( ா݂೔ೕ) is computed by multiplying the marginal 

frequencies for the row and column (row and column totals) of the desired cell and then 

dividing by the total number of observations. The formula of the expected frequency 

can be represented as follows:  

ா݂೔ೕ  ൌ  
ሺRow Total כ  Column Totalሻ

࢓࢑࢔
 ൌ  

݂݅. כ    ݂.݆.

࢓࢑࢔
 

One important question for the interpretation of contingency tables is as follows: “Is the 

proportion of observed values significantly higher or lower than would be expected?” 

Under the assumption of statistical independency of classes and a constant probability it 

is possible to model the frequency distribution of communities with the binomial 

inverse cumulative distribution function (CDF). It provides the proof whether the given 

number of communities of a class ݅ differs significantly from the expected number for 

class ݆. The prior probability is already known due to the computation of the expected 

value ா݂೔ೕ. It is assumed that there is a 5 error. Then the binomial inverse CDF provides 

the identification of limits for the decision about significance. That means the 

identification of a positive (values are to high) or negative significant (values are to low) 

number of communities.  
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A significant result means that the cells of a contingency table should be interpreted. A 

non-significant test means that no effects were discovered and chance could explain the 

observed differences in the cells. In this case, an interpretation of the cell frequencies is 

not useful. The deviation for each cell is computed by the difference of observed and 

expected values. These values are helpful during the interpretation process of significant 

cell entries. 

Table 3: Deviation for each cell (observed - expected) 

݅ ൌ 1, … ,  →  ሻ࢓ሺ࢟ࢅ ݇
݆ ൌ 1, … , ݉ ܿଵ ... ࢒ࢇ࢚࢕ࢀ ࢓࡯ ሺࢅሃࢄ ൌ  ሻ࢏ࢉ

ሺ࢞࢑ሻ  ࢘૚ ଵ݂ଵࢄ െ ா݂భభ ... ଵ݂௠ െ ா݂భ೘ 0 

↓ 
࢘૛ ଶ݂ଵ െ ா݂మభ ... ଶ݂௠ െ ா݂మ೘ 0 

...
 

...
 

  ...
 

  

௞݂ଵ ࢑ࡾ െ ா݂ೖభ ... ௞݂௠ െ ா݂ೖ೘ 0 

ࢅሃࢄሺ ࢒ࢇ࢚࢕ࢀ ൌ ࢘࢐ሻ 0   0 
Sum of the (Observed – Expected) for 

both the rows and columns equals zero. 

With regard to the publications of section 4.3.2 (Ultsch, 2005) the equation for 

determining the relative difference, could be also used in case of the presentation of the 

difference of expected and observed values: 

݂݂݅ܦ݈ܴ݁ ቀ ௜݂௝, ா݂೔ೕቁ ൌ
݁ܿ݊݁ݎ݂݂݁݅݀

݉݁ܽ݊ ൌ
௜݂௝ െ ா݂೔ೕ

ଵ
ଶ ቀ ா݂೔ೕ ൅ ௜݂௝ቁ

ൌ
௜݂௝ െ ா݂೔ೕ

ா݂೔ೕ ൅ ௜݂௝
כ 2 

The value of relative difference is adjusted by multiplying by 100% to reduce rounding 

errors. The values of ܴ݈݂݂݁݅ܦ ቀ ௜݂௝, ா݂೔ೕቁ is displayed in each contingency tables of the 

thesis and supports the interpretation. 

Another procedure should be mentioned that is often used to test the significance of 

contingency tables. It is called the chi-square statistic. The Chi-squared statistic is based 

on the postulate of empirical independence. This test assumes a sample with a 

sufficiently large size. If a chi square test is applied on a sample with a smaller size, 

then the chi square test will yield an inaccurate inference. Using the chi-square for each 

cell the observed frequency is compared with the expected frequency ா݂೔ೕ. 
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Chi-square statistic is represented by the formula below: 

ଶݔ ൌ ෍ ෍
ቀ ௜݂௝ െ ா݂೔ೕቁ

ଶ

ா݂೔ೕ

௠

௝ୀଵ

௞

௜ୀଵ

 

In general, the larger the difference between the observed and expected values, the 

greater is ݔଶ. The chi-square test of significance is also useful as a tool to determine 

whether or not it is worth the researcher’s effort to interpret a contingency table.  

For this purpose the degree of freedom is computed by multiplying one minus the 

number of rows, times one minus the number of columns: 

݉݋݀݁݁ݎ݂ ݂݋ ݁݁ݎ݃݁݀ ൌ ݂݀ ൌ  ሺܴ݈ܽݐ݋ܶ ݓ݋ െ  1 ሻ  ·  ሺ݈ܽݐ݋ܶ ݊݉ݑ݈݋ܥ െ 1ሻ 

To provide the interpretation it is therefore necessary to compute the contingence 

coefficient ܭ as presented by the formula below: 

ܭ ൌ ඨ ଶݔ

݊ ൅  ଶݔ

The contingence coefficient ܭ is defined in the range ሾ0,  ௠௔௫ is theܭ ௠௔௫ሿ. The valueܭ

upper limit and is computed as a function based on the table dimension. That means 

related to the number of columns and rows. Based on the formula below M is equal to 

the smaller value of ݇ or ݉. 

௠௔௫ܭ ൌ ඨܯ െ 1
ܯ ܯ  ݄ݐ݅ݓ    ൌ ݉݅݊ሼ݇, ݉ሽ 

The contingence coefficient ܭ is normalized to כܭ א ሾ0,1ሿ. Thus the coefficient is not 

any more dependent of the table dimension. 

כܭ ൌ
ܭ

௠௔௫ܭ
 

Using כܭ it is possible to decide about the relation of two different categories. Values of 

 כܭ near by zero indicate that there is probably no relation of both values. Values of כܭ

near by 1 indicate that there is probably a clear relation. 
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3 Related Work – City Classification, Analysis of Population 

3.1 City Classification and Urban Portraits 
There are several trials to build up content-based classifications in the focus of research 

about geospatial objects (e.g. buildings, building stocks, cities and regions) and their 

similarities. For example, Harris started in 1943 (Harris, 1943). He was a pioneer in city 

classification and ranked US cities according to industrial specialization data. Later on 

in the 1970s studies were geared to measure socio-economic properties and shifted more 

towards the goals of public policy. In recent years the evaluation of the performance of 

different cities is becoming increasingly important for sustainable development (Arlt et 

al., 2001). The patterns of demographic and economic changes in Germany are also part 

of several investigations (Siedentop et al., 2003; Gatzweiler et al., 2003). Critical 

properties of geospatial objects are discussed and analyzed by Demsar (2006). Methods 

of data mining are applied to analyze Swedish communities. 

The demographical analysis of the geographical Institute of the University of Bern have 

shown that the level of communities is essential to identify growing or declining areas 

in countries of the alpine region (Bätzing, 1993 and Bätzing et al, 1996). Thus it is also 

well known that the higher level of NUTS-3 (Nomenclature des unités territoriales 

statistiques: Bezirke, departments, provincies) is not appropriate to detect spatial 

disparities (as a negative example see ABIS 1999). 

Another study on the level of communities was interested in the classification of 

characteristic agrarian structure regions in the Alps (Tappeiner et al., 2003). The 

clustering process deals with 43 variables (30 static and 13 dynamic) and 5.558 alpine 

communities. Such study has demonstrated the risk to fail when handling such a large 

amount of variables. The important step of data inspection including the investigation of 

data distributions is not discussed and presented in detail. The study applies the CLARA 

algorithm, the k-means algorithm and the k-medoid algorithm. The authors claim that 

the k-mediod algorithm has proper characteristics not to overweight extreme objects and 

is presented by the authors as a suitable method to classify communities. But the authors 

do not take into account that it might be better to form clusters with just a subset of 

relevant variables. Furthermore a cluster explanation with other variables of the 43 

variables is not considered. The results are presented in just one map and the integration 

of spatial analysis or GIS in general is sparsely presented. 
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In recent years another study has tried to define a consistent definition of the mountain 

region in Europe based on GIS and several non-spatial community indicators including 

demographical data (Hill et al, 2004). Such project was further interested to harmonize 

statistical data for deeper combined analysis. About 115.000 communities in Europe are 

therefore characterized and it is obvious that the demand of a multidimensional analysis 

(e.g. Geographical Data Mining, Knowledge Discovery) will be of rising interest. 

It is to emphasize that several former classification studies are calculated by hierarchical 

clustering algorithms (e.g. WARD, k-means). Especially in the field of urban and 

spatial planning as well as regional science, data are usually multidimensional, spatially 

correlated and heterogeneous. These properties make some of the former approaches 

often inappropriate for the data, as their basic assumptions cease to be valid (e.g. 

identically distributed). For example a great deal of variability in the range and 

distribution of variables may pose a problem for cluster algorithms which involves 

distance measurements. Furthermore, several cluster algorithms are limited to find 

clusters of specific shape (e.g. spherical, ellipsoid). Extracting knowledge from 

geospatial data requires therefore an intensive data understanding and inspection as it 

helps the researcher to become familiar with the nature of the data. 

In context of the Swiss spatial organization and demography the interval 1850 to 2000 

is already investigated on national scale and in parts on the level of communities (e.g. 

Tschop et al., 2002). Some general statements to population and settlement patterns are 

given. However the characterization is briefly and the localization of patterns on the 

level of communities is missing. A scatter plot allows the comparison of two time points 

(1920 and 1990). The concentration of population is displayed in a Lorenz curve. The 

relative development of population is displayed along transit axes (e.g. west-east). 

Thereby it is possible to start a visual comparison of districts. It should be mentioned 

that many other studies of spatial properties (e.g. urbanization) are more descriptive and 

metaphorically. Classification of communities and GIS are not in the scope of interest. 

They often refer to urban sprawl or uncontrolled development resulting in concepts like 

the “Zwischenstadt” (Sieverts, 1999). Swiss approaches centered on the Netzstadt 

concept related the urban and regional development to the urban metabolism (Baccini, 

Oswald 2003). Another famous study addresses a qualitative portrait of the Swiss urban 

conditions (Diener et al., 2005). There is a great demand for the classification of 

communities. To tap the full potential of spatial interpretation and analysis the author of 

this thesis would suggest spatial analysis, Data Mining and Knowledge Discovery. 
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3.2 Clustering of Swiss Communities concerning the 

development of Population in a long-term Perspective 

Many former demographic studies have been made by using cross-section analysis 

(=comparison of two time points). In this section one study should be discussed in a 

deeper way. The here presented study was the starting point and motivation to tackle 

such a spatiotemporal clustering problem in this master thesis.  

The study is dealing with a longitudinal section analysis (=long-term analysis) of the 

population development in European alpine communities (Dickhörner, 2000, 

Bätzing/Dickhörner, 2001). The target was the typing of all alpine communities 

concerning the development of their population between 1870 and 1990. Basis for that 

was the absolute population of communities in 1870, 1950, 1960, 1970, 1980 and 1990 

from the Alpine Database (developed by Werner Bätzing and Manfred Perlik). A 

special variable is the first time interval from 1870 to 1950, which leads over 80 years. 

This big step summarizes the changing from an agrarian society in 1870 to an industrial 

society in 1950. At the same time the demographic results of both world wars have been 

smoothed. This time interval can be recognized as the beginning, which makes it easier 

to assess the development after 1950, which is of greater interest. 

To avoid weighting, the relative growth rate per year ܴூ for the time interval ܫ ሺ ݐଵ , ݐଶሻ  

has been used. The authors argue that the five metric variables of a dedicated number 

have the same quantitative meaning on all (harmonized) feature scales. By using of the 

variable ‚relative growth rate per year’ the attribute’s space is by the opinion of the 

authors extensively standardized. So in their opinion an important condition for the 

„regional taxonomic method” and also „all other multivariate numeric methods“ is 

fulfilled, which depends on „direct numeric comparisons“.  

The mentioned asymmetric range of values ܴூ א ሾെ100, ∞ሾ has a critical influence in 

particular on the calculation of distances and similarity patterns. Normalizing by the 

empirical variance is a big problem, when values are not normally distributed and the 

results are mainly influenced by extreme cases. Therefore in the opinion of the authors a 

Gaussian transformation for example should be carried out with these values. From their 

point of view this would lead to results which are difficult to be interpreted and would 

be less understandable because of more abstracted values. In the present case less data 

inspection and improvement is not worth to be legitimate from their point of view. 
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The authors discuss the linear independence of variables as another requirement of 

cluster analysis. That means that the same information will not be used more than once 

with different variables in an analysis. The variables have been proved for correlation 

and only one minor significant correlation has been found. 

In the work of the authors the Euclidian distance is used in spite of a measure for 

dissimilarity. All communities with a relative growth rate over +10%/a respectively 

below –10%/a in a specified interval have been eliminated during the clustering process. 

Ward algorithm is used for clustering and results are later on optimized by the non-

hierarchical Quick-Cluster-Analysis. This procedure was realized for outlier treatment 

and general optimization. The communities are partitioned into 17 clusters. 11 of them 

are characterized by different growing processes. These clusters consist of 51.2% of the 

alpine communities with 75.1% of the alpine population in 1990 (51.3% in 1870) living 

on 48.8% of the alpine area. One big cluster is characterized by stagnation (17.4% of 

communities, 16.5% of alpine population in 1990 and 23.4% in 1870, 23.8% of alpine 

area). Five clusters are characterized by different declining processes (31.4% of alpine 

communities, 8.4% of alpine population in 1990, 25.2% in 1870 and 27.4% of the 

alpine area). 

Besides the changing of population further variables are added in the already mentioned 

Alpine Database. To detect relations between them and the development of community 

population data relations have been proved. The distribution of all alpine communities 

(total amount) to the seventeen clusters served as a reference. A correlation analysis was 

done with the following variables: nationality, geographic height, community area, 

population, and urbanization zones. In contrast to this cluster explanation the author of 

this thesis suggests to use of contingency tables. 

The longitudinal study concludes that the distribution of Swiss Alpine communities to 

the clusters is mainly characteristic in accordance to the Alpine average. So in the Swiss 

Alps not only all development types are present, but also their quantitative weighting is 

comparable near the alpine average. Therefore analyses in this area have a high grade of 

representativeness for the whole Alp area. This study has tried to offer an insight to the 

demographic development in European Alpine regions. But this study was mainly 

interested in the last five decades.  

Against this background the here presented thesis aims to examine the population 

change by 15 decades (1850 to 2000). The author is mainly interested in a consistent 

approach. 
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4 Population Data – Data Inspection and Modeling 

4.1 Basic Spatial Unit (BSU) 
The analysis of population development requires initially the selection of an appropriate 

administrative level (i.e. community) or rather the definition of a comparable spatial 

unit of interest. In view of growth and decline it is very important to analyze such 

processes on an appropriate administrative level or scale. Furthermore the selection 

depends on the availability and amount of official statistics. The basic spatial unit 

(BSU) denotes the smallest type of areal unit for which data are available. Traditionally 

in Switzerland most of the statistical data focus on the cantonal or community level. In 

particular census data is typically established on the level of communities. Against this 

background statistics of population are often aggregated and published on this level. In 

Switzerland data is actually available in the time frame 1850 to 2000. Such valuable and 

long range data (population per community) has a great influence on the final selection 

of spatial units. 

It is to point out that the actual system of Swiss communities derived from different 

historical events and institutional decisions and factors (Meyer, 1978). Thus the size of 

communities ranges from 31 to 28221 ha and the number of population ranges from 22 

to 363273. The specific interpretation of one community demands a critical handling 

with respect to local properties such as growing settlement areas in the valleys and 

several shrinking settlement areas on the hillside. For example such community 

characteristics are to find in Ticino or Valais. It is to remark that the analysis of 

communities is already influenced by generalization processes but it is also to state that 

this official statistical level is the only lower one with countrywide significance. At least 

it is possible to observe regional linkages and characteristics as well as suburban 

specifics. At present there are no other alternatives allowing a deeper spatial 

investigation of the long-term development of Swiss population. This thesis is therefore 

based on the level of communities as a spatial reference system.  

For the future it should be necessary to get access to other official data and to extend the 

scope of spatial interest (Manley et al., 2006). For example population data needs some 

spatial disaggregation to reach the level of individual houses or precisely defined and 

comparable settlement areas (official geo data). Such approaches lead to highly resolute 

data (Thinh, 2004, p. 52 ff.). In the future it seems to be promising to compare results of 

different spatial levels (e.g. settlement area vs. community vs. canton). 
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4.2 Database 
The database of this thesis is characterized by data of official statistics and in particular 

of the Swiss Federal Population Census (German: Eidgenössische Volkszählung, 

French: Recensement fédéral de la population, Italian: Censimento federale della 

popolazione). The geometry of all 2.896 communities is available in scale of 

1:2.000.000. Such generalized geo-data (GEOSTAT) is just as well established by the 

Federal Office of Statistics. All variables computed results are stored in a relational 

database that is joined to the matched spatial units in a GIS. 

The population of a spatial unit is typically defined (Bähr, 2004) as a certain amount 

that consists of different distinguishable elements (e.g. individuals, persons) belonging 

to it permanently (e.g. legally established resident or de jure inhabitants.). Population 

covers both nationals and aliens, native and foreign-born persons, intemees, refugees 

and any other group physically present within the borders of a country at a specified 

time. A population census comprises the total process of collecting, compiling, 

evaluating, analyzing and publishing or otherwise disseminating demographic, 

economic and social data pertaining, at a specified time, to all persons in a country or in 

a well delimited part of a country. The Swiss Federal Population Census has been 

realized every 10 years starting in 1850 (Schuler, 2002). Exceptions of the regular cycle 

are to mention for the years 1888 and 1941. In 1980 there is one community “Vellerat” 

hindering the census (Missing Census Data: “NaN”, undisclosed 69 persons in 1980). 

However, the Swiss Federal Population Census follows criteria of a common modern 

census (Witthauer, 1969): completeness (≠double count or omissions), concurrence 

(reference date: e.g. 05.12.2000), individuals (≠groups or families), delimitation of areas 

(Swiss federal territory), scientific review (published, reported) and periodicity (10 

years, by decade). In 2000, statistical data was optimized and temporally harmonized in 

a comparable way by the Federal Statistical Office. Therefore it is possible to analyze 

Swiss communities in a long-term perspective – this means that population data by 

decade is available since 1850. The harmonization process has followed modifications 

of the territorial area (e.g. community fusion, community separation, line of the border), 

and characteristics of political and statistical definitions (e.g. factual and legal position). 

Collected data include population data (citizenship, place of residence, place of birth, 

position in household, number of children etc.), household data (number of individuals 

living in the household, etc.), accommodation data (surface area, amount of rent paid, 

etc.) and building data (geo-coordinates, time of construction, number of floors, etc.). 
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4.3 Population Change by Decade 
Actually several indexes are in use to measure the change in population (Schwarz, 1970; 

Woods, 1979; Bähr, 2004). Typical indexes aim to compare two values of different 

temporal states without knowing everything in-between. Changes in populations (P) are 

measured to describe either a gain or a loss between different temporal states (ݐ and 

ݐ െ 1). The change found is an increase if the new value ௧ܲ ൐  ;௧ܲିଵ ݁ݑ݈ܽݒ ݏݑ݋݅ݒ݁ݎ݌ 

the change found is a decrease if new value ௧ܲ ൏  .௧ܲିଵ ݁ݑ݈ܽݒ ݏݑ݋݅ݒ݁ݎ݌ 

The absolute quantity is a measure of the absolute occurrence of the population. The 

relative quantity is a measure of the absolute occurrence of population in relation to a 

specific output quantity. 

In view of the Swiss Federal Population Census it is possible to realize a community 

comparison on the basis of 15 variables representing a specific change by decade (e.g. 

1850 to 1860, 1860 to 1870 etc.). In context of such a classification task examining 

relative quantities is usually more informative than absolute quantities (Vogel, 1975). 

The index relative percent change (RPC) of population is well known in the field of 

geography (Husa and Wohlschlägl, 2007). Relative percent change allows a comparison 

of communities with a different absolute population (e.g. small/large communities). 

However, there are some crucial properties in context of classification discussed by 

Ultsch (2009) that will be similarly presented in the following sub-sections. As an 

alternative to relative change calculation, relative differences (RelDiff) are therefore 

also proposed. This index results from the research in the field of Data Mining and 

Knowledge Discovery (Ultsch, 2003 a). It is already demonstrated as a superior index 

for classification and in particular for the search of similarity patterns. 

4.3.1 Relative Percent Change (RPC) 
The relative change (RC) of population is defined as the absolute change divided by the 

previous value. Absolute change means the difference of population from a previous 

value ( ௧ܲିଵ, ௧ܲିଵ ൒ 0) to a new value ( ௧ܲ, ௧ܲ ൒ 0). 

ሺܥܴ ௧ܲ, ௧ܲିଵሻ ൌ
݄݁݃݊ܽܿ ݁ݐݑ݈݋ݏܾܽ
݁ݑ݈ܽݒ ݏݑ݋݅ݒ݁ݎ݌ ൌ

– ݁ݑ݈ܽݒ ݓ݁݊ ݁ݑ݈ܽݒ ݏݑ݋݅ݒ݁ݎ݌
݁ݑ݈ܽݒ ݏݑ݋݅ݒ݁ݎ݌ ൌ ൬ ௧ܲ െ ௧ܲିଵ

௧ܲିଵ
൰ 

The relative change (RC) of population can be expressed as percent change (RPC). 

ሺܥܴܲ ௧ܲ, ௧ܲିଵሻ ൌ ܥܴ כ 100% ൌ ൬ ௧ܲ െ ௧ܲିଵ

௧ܲିଵ
൰ כ 100% 
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In a theoretical sense the percent change is problematic for very small values of the 

previous population ௧ܲିଵ ( ௧ܲିଵ ؆ 0). 

Another special case will appear if the community population is lost completely within 

10 years ( ௧ܲ ൌ 0). 

ሺܥܴܲ ௧ܲ, ௧ܲିଵሻ ൌ ൬
0 െ ௧ܲିଵ

௧ܲିଵ
൰ כ 100 ൌ െ1 כ 100 ൌ െ100 % 

The range of values is therefore bounded to the bottom. The minimum of percent 

change  is െ100 %. Within ten years the population of one community might increase 

tenfold or more. That is why there is no upper bound (infinite endpoint) and the range is 

asymmetric: ܴܲܥሺ ௧ܲ, ௧ܲିଵሻ א ሾെ100,∞ሾ.  It is expected that the majority of Swiss 

communities seeks to show values between െ50 % and +100 %. 

Limits: The definition problem of the denominator ௧ܲିଵ ՜ 0  (previous value) and the 

mentioned assymetric range of values (ܴܲܥ௧ א ሾെ100, ∞ሾ) have a critical influence in 

particular on the calculation of distances and similarity patterns. Typical measures are 

Euclidian distances, correlation measures, Mahalanobis distances and others. Since the 

population data of several communities needs to be compared, the variance of the data 

have to be taken into account. To normalize by the empirical variance is a big problem, 

when values are not normally distributed and the results are mainly influenced by 

extreme cases. Typically comprehensive transformations (Mathematical functions) are 

necessary to achieve normality or symmetry in data distributions. But this procedure is 

sophisticated and statistical and visual tests are prerequisite to obtain reliable models. 

4.3.2 Relative Difference (RelDiff) 
Generally percent difference is the numerical interpretation of comparing two values 

with one another (Abramowitz and Stegun, 1972). It is often used as a quantitative 

index of quality control for repeated measurements where the outcome is expected to be 

the same. Percent difference is similar to percent error, which is applied when one 

determines an experimental value and is comparing it to the accepted or actual value. 

The here presented index relative difference (RelDiff) results from the research of the 

Databionics Research Laboratory, Department of Computer Science, University of 

Marburg. Applications are already to find in context of DNA array experiments (Ultsch, 

2005a) or return measurements in stock investments (Ultsch, 2008). 
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With regard to the mentioned above publications the equation for determining the 

relative population difference, could be similarly defined by decade as follows: 

ሺ݂݂݅ܦ݈ܴ݁ ௧ܲ, ௧ܲିଵሻ ൌ
݁ܿ݊݁ݎ݂݂݁݅݀

݉݁ܽ݊ሺ݀݁ܿܽ݀݁ሻ ൌ ௧ܲ െ ௧ܲିଵ
ଵ
ଶሺ ௧ܲିଵ ൅ ௧ܲሻ

ൌ ௧ܲ െ ௧ܲିଵ

௧ܲିଵ ൅ ௧ܲ
כ 2 

The equation is based on the understanding of relative change (RC) as a general 

semantic. The ratio is now adapted using the mean of both values in the denominator. 

ܥܴ ൌ
݄݁݃݊ܽܿ ݁ݐݑ݈݋ݏܾܽ
݁ݑ݈ܽݒ ݏݑ݋݅ݒ݁ݎ݌ ൌ ൬ ௧ܲ െ ௧ܲିଵ

௧ܲିଵ
൰ ֜ ܦܴܲ ൌ

݄݁݃݊ܽܿ ݁ݐݑ݈݋ݏܾܽ
݉݁ܽ݊ሺ݀݁ܿܽ݀݁ሻ ൌ ௧ܲ െ ௧ܲିଵ

ଵ
ଶሺ ௧ܲିଵ ൅ ௧ܲሻ

 

Relative population difference is used where a new value  ௧ܲ  and a previous value ௧ܲିଵ 

correspond to the idea of change found. Both values must contain the same units in 

order to be compared correctly with one another. The numerator is similarly defined as 

the difference of population (new value  ௧ܲ  and a previous value ௧ܲିଵ). The 

denominator represents a so called basic population (universal set per decade) that is 

compareable in a wider sense to the previous equation of relative change (RC). 

The general requirement for selecting two values to be compared is that the user of this 

technique expects the two values (assuming both ௧ܲିଵ ൒ 0 and ௧ܲ ൒ 0 are positive) to be 

numerically equivalent. A relative difference of 0% explains that the two values are 

exactly the same. In this case the population seeks to be stable within one decade. The 

relative difference is greater 0 (less then 0) if the new value of population ௧ܲ is greater 

then the previous value ௧ܲିଵ ( ௧ܲ is smaller than ௧ܲିଵ). 

A total loss of population is uncritical for the definition of relative difference: 

ሺ݂݂݅ܦ݈݈ܴ݁ ௧ܲ, ௧ܲିଵሻ ൌ
0 െ ௧ܲିଵ

௧ܲିଵ ൅ 0 כ 2 ൌ െ2  

Zero values of population do not lead to undefined values. Extreme values are generally 

fixed to േ2. In a theoretical sense the upper bound represents an exorbitant population 

increase. The range of relative difference is bounded and symmetric ሺሾെ2,2ሿ). 

Finally the value of relative difference is adjusted by multiplying by 100% to reduce 

rounding errors: 

ሺ݂݂݅ܦ݈ܴ݁ ௧ܲ, ௧ܲିଵሻ ൌ
݁ܿ݊݁ݎ݂݂݁݅݀

݉݁ܽ݊ሺ݀݁ܿܽ݀݁ሻ כ 2 כ 100 ൌ ௧ܲ െ ௧ܲିଵ

௧ܲିଵ ൅ ௧ܲ
כ 200 
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Advantages: Generally a great deal of variability in the range and distribution may pose 

a problem for cluster algorithms which involve distance measurements. For example 

atypical scores in a distribution (outlier) can wildly determine the Euclidian Distance. It 

is obvious that the influence of outlier (extrem values) on relative percent difference is 

clearly alliviated due to the symmetric and limited range. Furthermore the numerical 

stability for relative percent difference is much better than for relative percent change. 

Relative percent difference is particularly suitable for normalisation and standardization. 

Typically those measurements require statistical operations to be applied to each 

individual value using the global parameter of each variable such as its minimum value, 

mean or variance. The above mentioned properties of relative difference are here clearly 

superior to the common relative percent change. Finally the values of relative difference 

ensure a direct interpretation. 

4.4 Description of the Expected Distribution 
At the beginning of the long-term analysis it is assumed that the population has been 

increased in all 2896 communities since the initial date of 1850. However it seems to be 

necessary to gain insight into the population change by decade. For this purpose 

expected characteristics of population change by decade are summarized: 

I. The first assumption deals with the state of population change by decade.  

Three states of population change by decade are expected: “Loser”, “Typical” 

and “Winner”. Such typical communities represent the general trend of 

population change in Switzerland within 10 years. The mean ߤ of the Swiss 

population change by decade is described by typical communities. The mean 

value of population change is a first indicator to formulate hypothesis about the 

general situation in Switzerland. The two other groups (“Loser”, “Winner”) are 

characterized by a development that is above or below the detected trend by 

decade. The “Winner” group of communities is often represented by large 

positive values. The “Loser” group of communities is often characterized by 

negative large values. But usually it is to consider that these two developments 

are just better or rather worse than the typical development. General 

characteristics are sketched below:  

 “Loser” “Typical” “Winner” 
൏                           െ … 0 … ׎ … ൅                      ൐ 

 ݁ݒ݋ܾܽ         ݈݀݊ܽݎ݁ݖݐ݅ݓܵ ݊݅ ݀݊݁ݎܶ               ݓ݋݈ܾ݁
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II. The second assumption deals with the size of community classes. 

The major group of communities is formed by typical communities. In view of 

several decades the minor group “Winner” is sometimes bigger than the group 

“Loser” and vice versa. The mentioned characteristics of all groups are 

illustrated as follows:  

 “Loser” “Typical” “Winner” 
 ݕݐ݅ݎ݋݊݅݉                   ݕݐ݅ݎ݋݆ܽ݉                        ݕݐ݅ݎ݋݊݅݉

III. The third assumption deals with the distribution of population change 

a) Which distribution represents the “typical” state of population change? 

Since communities are characterized by a normal distribution it is to 

state that the sum of many unobserved random population members is 

acting independently of one another. The central limit theorem (CLT) 

offers general conditions under which the mean of a sufficiently large 

number of independent random variables (in this case “communities with 

population”), each with finite mean and variance will be approximately 

normally distributed. The location ݔ of the peak of the distribution 

represents the mean ߤ of the Swiss population change by decade (see 

Figure 4: 15 points in time since 1850 (݀ሺݐሻ, ݀ሺݐ െ 1ሻ). For normal 

distributed data, the interval ߤ േ  covers a probability of 68.3%, while ߪ

ߤ േ  .covers 95.5% ߪ2

b) Which distribution represents the “winner” state of population change? 

Since communities are characterized by a log-normal distribution it is 

to state that the product of many unobserved random population member 

is acting independently of one another. Communities with an increase of 

population follow a skewed distribution to the left characterized by just a 

few communities with very large positive values. This asymmetric 

distribution is probably described by a median smaller than the mean 

value, large variance and clearly positive values. A major difference to 

the normal distributed data of typical communities is that the effect of 

population is multiplicative. The force of multiplication is represented by 

booming processes (growth, concentration). All communities play major 

roles in a developing situation whereas processes are intensified by 

adjacencies and other spatial conditions. 
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c) Which distribution represents the “loser” state of population change? 

Since communities are characterized by a log-normal distribution it is 

to state that the product of many unobserved random population member 

is acting independently of one another. Communities with a decreasing 

population follow a skewed distribution to the right characterized by just 

a few communities with very large negative values. This asymmetric 

distribution is probably described by a median bigger than the mean 

value, large variance and clear negative values. The effect of population 

is multiplicative. The force of multiplication is represented by intensive 

declining processes (concentration, abandoned areas). All communities 

play major roles in a negative situation whereas processes are intensified 

by adjacencies and other spatial conditions. Due to the mentioned 

properties data of decreasing communities might be usually log-normal 

distributed.  

 “Loser” “Typical” “Winner” 
 ݈ܽ݉ݎ݋݊݃݋݈                   ݈ܽ݉ݎ݋݊                        ݈ܽ݉ݎ݋݊݃݋݈

4.5 Mixture Models 
The assumed distribution of population change is a composite distribution. A mixture 

model will be elaborated which is based on such a composite (log-normal,normal,log-

normal) distribution. 

Mixture modelling has the advantage of being able to model distributions of continuous 

variables. Such process is based on density estimation of the data (Ultsch, 2005). The 

probability density function is thought of as the density according to which the data 

(population change by decade) is generally distributed. The mixture density is a 

probability density function which is expressed as a convex combination of several 

probability density functions. A convex combination of probability distributions is a 

weighted sum of its component probability density functions ܲሺܺ|ܥሻ, with probability 

density function: 

ܲሺܺሻ ൌ ෍ ܲሺܥሻ · ܲሺܺ|ܥሻ
ଷ

஼ୀଵ

 

0 ൑ ܲሺܥሻ ൑ 1,  where ܲሺܥ ൌ 1ሻ ൅ ܲሺܥ ൌ 2ሻ ൅ ܲሺܥ ൌ 3ሻ ൌ 1 

ܥ  ൌ 1 ൌ ;"ݎ݁ݏ݋ܮ" ܥ  ൌ 2 ൌ ;"݈ܽܿ݅݌ݕܶ" ܥ  ൌ 3 ൌ  "ݎܹ݁݊݊݅"
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The components are described by either normal or log-normal probability distributions. 

These are two-parameter distributions (Crow and Shimizu, 1988, p. 1) and without loss 

of generality the parameters can be taken to the mean ܯ and standard deviation  ܵ. 

Let ܯሺܥ|ܺሻ represent the mean and ܵሺܥ|ܺሻ the standard deviation of the component 

density function ܲሺܥ|ܺሻ. The objective of fitting the mixture to the data is to estimate 

the following parameter: frequency  ܲሺܥ ൌ ,ሻݎ݁ݏ݋ܮ ܲሺܥ ൌ ,ሻ݈ܽܿ݅݌ݕܶ ܲሺܥ ൌ

ܥሺܯ :ሻ; mean Mݎܹ݁݊݊݅ ൌ ,ሻݎ݁ݏ݋ܮ ܥሺܯ ൌ ,ሻ݈ܽܿ݅݌ݕܶ ܥሺܯ ൌ  ሻ and standardݎܹ݁݊݊݅

deviation S: ܵሺܥ ൌ ,ሻݎ݁ݏ݋ܮ ܵሺܥ ൌ ,ሻ݈ܽܿ݅݌ݕܶ ܵሺܥ ൌ  .ሻݎܹ݁݊݊݅

The Expectation Maximization (EM-) algorithm proposed by Dempster, Laird, and 

Rubin (1977), is appropriate for solving parameter estimation problems for a Mixture of 

distributions (Bilmes 1997). When there is a need to learn parameters of a mixture, the 

EM algorithm starts with initial values for all parameters and they are re-estimated 

iteratively. It is crucial to start with ‘good’ initial parameters as the algorithm only finds 

a local, and not a global optimum. Therefore the solution (to where the algorithm 

converges) strongly depends on the initial parameters and needs several recalculations. 

The Mixtures are verified by Pareto Density Estimation (PDE) and probability density 

functions (PDF). Density estimation using hyperspheres with a global radius are a 

simple and efficient way to estimate data density (Ultsch, 2005b). Quantile-Quantile (Q-

Q) plots are used as a graphical technique to compare the distribution of population 

change to a theoretical model. It is a plot of the quantiles of the first data set against the 

quantiles of the second data set. If the distributions are similar, the points in the Q-Q 

plot will approximately lie on a line. Q-Q plots are used to compare the shapes of 

distributions, providing a graphical view of how properties such as location, scale, and 

skewness are similar or different in the two distributions. 

4.6 Modeling, Standardization and Test of Distributions 
The modelling process takes into account that different mixture distributions by decade 

need to be comparable. The idea is therefore to use a two-stage modelling process 

regarding a standardization procedure. 
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Initially the aim is to model the distribution of typical communities as a Gaussian 

(normal distribution). The detection of the mean ߤ (Figure 4) is here meaningful to 

characterize the typical Swiss population change by decade (15 points in time since 

1850, ݀ሺݐሻ, ݀ሺݐ െ 1ሻ). For example in 1950 it is 5 % by decade.  

 
Figure 4: Typical Communities: Mean of the population change by decade 

The typical population change is a kind of “clinical thermometer” over time. Table 4 

gives a rough overview of the history in Switzerland (1850-2000). Spatial and 

functional linkages between demographic and urbanization (urban/rural) processes are 

of interest for the explanation. This relation is crucial to control spatial developments. 

However a precise examination of such communities is necessary. 

Table 4: Short Timeline of Switzerland’s History (1850-2000) 
1848 Federal State The Principles of the constitution are still valid today. 

1863 Thomas Cook organizes tours (all included) to Switzerland: start of mass tourism 

1882/83 Emigration 13,500 persons leave Switzerland: USA,83%; Argentina, 11%; Canada,4%; Brasil, 2% 

1898 State Railways Companies parliament and electorate decide to nationalize the major railway lines 

1914 - 1918 World War I. Armed neutrality works when surrounded by war faring nations. 

1918 - 1933 Economic Crisis Inner conflicts, general strike and world economic crisis hit this industrialized country. 

1933 - 1939 Spiritual Defense Hitler in Germany is soon seen as a danger to Switzerland's independence. Thousands of 
German refugees (jews, intellectuals) are accepted. 

1939 - 1945 World War II. Neutral Switzerland surrounded by fascist troops or collaborating regimes. 

Since 1945 Prosperity Recent history is characterized by political stability, economic progress, increased social 
security and a new openness and tolerance. 

1973-1983 Oil Crisis Affected by the hike of oil prices which resulted in a decrease of energy consumption 

1950-2000 Suburbanization A first period of fast growing town centres is followed by suburban growth dispersion 
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The typical population change is characterized by a normal distribution (Figure 1). PDE 

and Q-Q-Plot verify the assumptions of data distribution (see example of population 

change by decade in 1900). 

 

Figure 5: Proof of Data Distribution using Gaussian Model and Q-Q-Plot 
Gaussian= red line, PDE= fine line 

Variable: ܴ݈݁ݐ) 1900 ݂݂݅ܦ ൌ ݐ ,1900 െ 1 ൌ 1890) 

Generally z-transformation is a famous measure to standardize or auto-scale the 

statistical data. Mean and standard deviation of typical population change are used as a 

precondition for the standardization of the whole mixture. 
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௜ݖ ൌ z-transformed values and ௜ܺ ൌ original values of population change by decade 

ܯ ൌ Mean and ܵ ൌ standard deviation of the typical population change by decade 
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Computed z-scores become comparable by measuring the observations in multiples of 

the standard deviation. If the original distribution is a normal one, the z-transformed 

data belongs to a standard normal distribution. The mean of z-transformed data is 

always zero. 

The second modelling stage deals with the whole mixture model (Log-Normal-Normal-

Log-Normal). Each component of the standardized mixture model is described precisely 

(e.g. Figure 6). Mixture modeling is used for density estimation as a reasonable 

approximation of population change by decade. In particular the elaborated mixture 

model represents a generic model, combining three categories (“Loser”, “Typical”, 

“Winner”) by decade. Each subpopulation has its own characteristic parameters: Mean, 

Standard Deviation and Weight. Since the original distribution of typical communities 

is a normal one, the z-transformed data belongs to a standard normal distribution 

ܯ) ൌ 0; ܵ ൌ 1). The mean and standard deviation of typical communities (z-

transformed data of the normal distribution) are therefore used to control the modelling 

process of the whole mixture model. The Q-Q-Plot confirms the assumed distribution. 

Figure 7 shows the points of compared distributions (quantiles of the first and second 

data set) that lie on a clear line. 

 
Figure 6: Mixture Model (Log-Normal-Log) of population change by decade 

Mixture= red line, Component Density Function= flat line, PDE= fine line 
Variable: ܲݐ) ݁݀ܽܿ݁ܦ ݕܾ ݄݁݃݊ܽܥ ݊݋݅ݐ݈ܽݑ݌݋ ൌ ݐ ,1900 െ 1 ൌ 1890) 
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ܲሺܥ ൌ ሻݎ݁ݏ݋ܮ ൌ    0.03 

Mixture Parameter 

ܥሺܯ ൌ ሻݎ݁ݏ݋ܮ ൌ ‐2.76 
ܥሺܯ ൌ  ሻ=0݈ܽܿ݅݌ݕܶ
ܥሺܯ ൌ  ሻ=2.80ݎܹ݁݊݊݅

ܵሺܥ ൌ ሻݎ݁ݏ݋ܮ ൌ0.90 
ܵሺܥ ൌ ሻ݈ܽܿ݅݌ݕܶ ൌ1 
ܵሺܥ ൌ ሻݎܹ݁݊݊݅ ൌ1.45 

ܲሺܥ ൌ ሻ݈ܽܿ݅݌ݕܶ ൌ 0.86 
ܲሺܥ ൌ ሻݎܹ݁݊݊݅ ൌ 0.12 
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Figure 7: Q-Q-Plot (population change by decade vs. Mixture Model), 1860-2000 

-5 0 5
-5

0

5

10

15

Mixture Modell (Log-N-Log)

Po
pu

la
tio

n 
C

ha
ng

e 
by

 D
ec

ad
e Q-Q-Plot (ZData1860)

-5 0 5 10
-4

-2

0

2

4

6

8

10

Mixture Modell (Log-N-Log)

Po
pu

la
tio

n 
C

ha
ng

e 
by

 D
ec

ad
e Q-Q-Plot (ZData1870)

-5 0 5 10 15
-5

0

5

10

15

20

Mixture Modell (Log-N-Log)

Po
pu

la
tio

n 
C

ha
ng

e 
by

 D
ec

ad
e Q-Q-Plot (ZData1880)

-5 0 5 10
-4

-2

0

2

4

6

8

10

Mixture Modell (Log-N-Log)

Po
pu

la
tio

n 
C

ha
ng

e 
by

 D
ec

ad
e Q-Q-Plot (ZData1888)

-5 0 5 10 15
-5

0

5

10

15

20

Mixture Modell (Log-N-Log)

Po
pu

la
tio

n 
C

ha
ng

e 
by

 D
ec

ad
e Q-Q-Plot (ZData1900)

-5 0 5 10
-5

0

5

10

15

20

Mixture Modell (Log-N-Log)

Po
pu

la
tio

n 
C

ha
ng

e 
by

 D
ec

ad
e Q-Q-Plot (ZData1910)

-5 0 5 10
-5

0

5

10

15

Mixture Modell (Log-N-Log)

Po
pu

la
tio

n 
C

ha
ng

e 
by

 D
ec

ad
e Q-Q-Plot (ZData1920)

-5 0 5 10 15
-4

-2

0

2

4

6

8

10

Mixture Modell (Log-N-Log)

Po
pu

la
tio

n 
C

ha
ng

e 
by

 D
ec

ad
e Q-Q-Plot (ZData1930)

-5 0 5 10
-4

-2

0

2

4

6

8

Mixture Modell (Log-N-Log)

Po
pu

la
tio

n 
C

ha
ng

e 
by

 D
ec

ad
e Q-Q-Plot (ZData1941)

-5 0 5 10
-4

-2

0

2

4

6

8

Mixture Modell (Log-N-Log)

Po
pu

la
tio

n 
C

ha
ng

e 
by

 D
ec

ad
e Q-Q-Plot (ZData1950)

-5 0 5 10
-5

0

5

10

15

Mixture Modell (Log-N-Log)

Po
pu

la
tio

n 
C

ha
ng

e 
by

 D
ec

ad
e Q-Q-Plot (ZData1960)

-10 0 10 20
-5

0

5

10

15

Mixture Modell (Log-N-Log)

Po
pu

la
tio

n 
C

ha
ng

e 
by

 D
ec

ad
e Q-Q-Plot (ZData1970)

-5 0 5 10
-5

0

5

10

15

Mixture Modell (Log-N-Log)

Po
pu

la
tio

n 
C

ha
ng

e 
by

 D
ec

ad
e Q-Q-Plot (ZData1980)

-5 0 5 10
-5

0

5

10

15

Mixture Modell (Log-N-Log)

Po
pu

la
tio

n 
C

ha
ng

e 
by

 D
ec

ad
e Q-Q-Plot (ZData1990)

-5 0 5 10
-4

-2

0

2

4

6

8

Mixture Modell (Log-N-Log)

Po
pu

la
tio

n 
C

ha
ng

e 
by

 D
ec

ad
e Q-Q-Plot (ZData2000)

  



Population Cluster – Spatial Temporal Analysis Patterns 

36 

5 Patterns in Context of Population Change 

5.1 Posterior Probabilities using Bayes’ Theorem 
Based on the value of population change by decade and the elaborated category ܥ 

(“loser”, “typical”, “winner”) it is possible to calculate posterior probabilities defining 

the degree of membership to a specific category. Each category is already characterized 

by a specific prior probability ܲሺܥሻ and a component probability density function 

ܲሺܥ|ܺሻ. The Bayes’ theorem supports the computation of the posterior probability that 

a specific category ܥ is observed for the given feature X (Han/Kamber, 2006, p. 311): 

ܲሺܺ|ܥሻ ൌ
ܲሺܥሻ · ܲሺܥ|ܺሻ

ܲሺܺሻ  

The posterior probability of ܺ occurring given that category C has occurred is equal to 

the prior probability of category C occurring, multiplied by the probability of 

component ܲሺܥ|ܺሻ and divided by the probability of ܲሺܺሻ. This famous ratio poses the 

first definition of the conditional probability in the 18th century and was created by 

Thomas Bayes (1702-1761). Bayes’ theorem is used to compute the posterior 

probabilities (see Figure 8). Each community is described by three values related to the 

three categories of the mixture model. A specific category C (ݎ݋݅ݎ݁ݐݏ݋݌ ൒ 0.5) is 

predominant observed for a given value of population change. 

 

Figure 8: Posterior probabilities based on population change and categories 
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5.2 Classification using categorical memberships by decade 
In mathematics any sequence of numbers that may be modeled by a mathematical 

function is considered as a pattern. Hardy (1992, p.84) is quoted as follows: “A 

mathematician, like a painter or a poet, is a maker of patterns. If his patterns are more 

permanent than theirs, it is because they are made with ideas”. 

For the purpose of classification a specific function was suggested by Prof. Ultsch. His 

advice ensures the classification procedure in an efficient and appropriate way. This 

procedure is generally based on Bayes’ decision boundaries and the definition of 

classes. Based on the above mentioned posterior probabilities and category ܥ LTW is 

described as follows: 

ܹܶܮ ׷  ሾെ2,2ሿ ՜ ሾെ1,1ሿ, (LTW=Loser, Typical, Winner)  

ሺܺሻܹܶܮ ൌ ܲሺܺ|ܹ݅݊݊݁ݎሻ െ ܲሺܺ|ݎ݁ݏ݋ܮሻ   e.g. ܹܶܮሺܺሻ ൌ 0.65 െ 0 ൌ ൅0.65
ሺܺሻܹܶܮ        ൌ 0 െ 0.49 ൌ െ0.49 
ሺܺሻܹܶܮ        ൌ 0 െ 0.8 ൌ െ0.8 

In case of ܲሺܺ|ܥሻ ്  ሻ is equal proportionally to scaled Bayes’ posteriorݔሺܹܶܮ 1

probability. Scaling means the translation of values into the positive and negative range 

using the equation above. In case of integer values LTW has the following properties: 

ሺܺሻܹܶܮ ൌ െ1       ൏ൌ൐ ܲሺܺ|ݎ݁ݏ݋ܮሻ ൌ 1 

ሺܺሻܹܶܮ ൌ 0          ൏ൌ൐ ܲሺܺ|݈ܶܽܿ݅݌ݕሻ ൌ 1 

ሺܺሻܹܶܮ ൌ ൅1        ൏ൌ൐ ܲሺܺ|ܹ݅݊݊݁ݎሻ ൌ 1 

The above mentioned properties of ܹܶܮ are valuable to detect directly a specific 

category (Loser, Typical, Winner). That means it forms categories based on decision 

rules. 

• “Winner” will arise when ܹܶܮሺܺሻ ൒ ൅0.5. The category by decade is ൅1.  

•  “Loser” will arise when ܹܶܮሺܺሻ  ൑ െ0.5 . The category by decade is െ1.  

• “Typical” will arise when the following decision criteria is satisfied:  

െ0,5 ൐ ሺܺሻܹܶܮ ൏ 0.5. The category is equal to zero.  

Each category by decade is element of a pattern. The term pattern is used in this thesis 

to describe unique profiles of categories over time (15 decades). In summary a pattern 

consists of a set of 15 categorial values (-1, 0, 1) related to the membership label 

(“Loser”, “Typical”, “Winner”). 
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LTW is particularly suitable due to the symmetric and limited range. In order of a 

clustering approach (Clustering and Classification of Patterns, in section 6) and related 

proximity measurements several advantages are further discussed. The above presented 

decision rules have the following properties: 

• The classification of patterns is simple and easy to realize. 

• The rules are as compact as possible to handle the complexity. 

• It is possible to represent meaningful properties of the patterns to be classified. 

• The categorical features ease the selection of relevant patterns. 

• It is possible to classify new patterns and to extend the classification by 

increasing its dimension (e.g. another decade). 

• The classification is able to highlight the relationship between patterns. 

It is possible to discuss the expected results of such a classification process. When the 

number of decades is 15 and the number of categorical features (“Loser”, “Typical”, 

“Winner”) by decade is 3 the possible number of different patterns is 3 to the power of 

15. By the author of this thesis it is assumed that a number of approximately 1000 

different patterns will arise. One reason for this number might be the possibility that 

there are about three or five patterns consisting of a large group of communities in 

relation to the total amount of 2896 communities. For example a individual pattern size 

between 300 and 500 communities is conceivable.  

Based on the data distribution of population change and the knowledge that most 

communities show a typical development by decade over time there are probably 

several patterns characterized in most decades by a “Typical”. In consideration of 

different patterns it is further assumed that there are many patterns consisting of only 

one or two communities. Perhaps such group of more or less outliers is defined by an 

amount of 300 communities (10 % of the total amount of communities). In view of the 

Swiss spatial planning policy (e.g. desired spatial development, balancing interests, 

structure plan = “Richtplan”, plan directeur in French) the author of this thesis does not 

expect any patterns characterized just by “Losers” or just by “Winners”. 

Figure 9 shows the result of pattern classification sorted by frequency. There are 880 

different patterns observed. Each pattern is characterized by a unique set of categories 

,ሺ݀1ܹܶܮ) . . . , ݀15ሻ). The observed pattern matrix (2896 Swiss communities ൈ 15 

decades) gives an overview of the frequency and variety of patterns. 
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Figure 9: Frequency of patterns, blue=”Loser”, yellow=”Typical”, red=”Winner” 

5.3 Expected versus observed frequency of patterns 
Based on the classification and categories by decade it is possible to discuss the joint 

distribution of their occurrence and the results of patterns in general. In view of all 15 

decades (݀݁ܿܽ݀݁ ݀ ൌ 1, … ,15) the observed probability ்ܲ,ௗ ൌ ܲሺܥ ൌ  ሻ does݈ܽܿ݅݌ݕܶ

not vary over time. The mean value is 85 % and the standard deviation of the 

probability ்ܲ,ௗ is just 6%. Figure 11 shows the observed probability ்ܲ,ௗ over time. 

 
Figure 10: Probability ࢊ,ࢀࡼ observed in 15 decades 
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Under the assumption of statistical independency of decades and a constant probability 

்ܲ,ௗ it is possible to model the frequency distribution of patterns as a binomial 

distribution (Bortz, 2005, p.65). Such model is realized in this form: If ்ܲ is given as the 

probability that a community will be described as “Typical” the probability ே்ܲ is also 

given that a community is a “Non-Typical”: ே்ܲ ൌ 1 െ ்ܲ. That means a “Winner” or a 

“Loser”. In addition ݑ is the amount of “Non-Typical” features in a pattern. The 

probability ݌௕௜௡ of a pattern with ݑ ݅݊ ሾ0,15ሿ is then computed as follows: 

ሻݑ௕௜௡ሺ݌ ൌ ൬
15
ݑ ൰ · ே்ܲ

௨ · ்ܲሺଵହି௨ሻ 

The expected frequency of a pattern is obtained using the probability ݌௕௜௡ in relation to 

the total amount of communities (=2.896). The comparison of expected pattern 

frequency by the model to the frequency by observation identifies differences. Figure 11 

shows the observed and expected frequencies of patterns in relation to the number of 

“Non-Typical” features per pattern. 

 

Figure 11: Size of classified patterns (total amount=880) 

Due to the visualization of pattern frequencies (observed versus expected) it is obvious 

that the observed patterns which do not consist of any “Non-Typical” feature are clearly 

above the expected frequency (by the factor 4). The inspection of distribution has 

already indicated such big amount of “Typical” communities by decade. This pattern is 

essential for the description of the Swiss population change. 
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In contrast to this major deviation of frequencies the observed patterns with two or three 

“Non-Typical” features are below the expected frequency (by the factor 2). Those 

patterns should be inspected more precisely when later on deciding about relevance of 

patterns. In focus of any further deviations the observed frequency of patterns with six 

or seven “Non-Typical” features is also above the expected frequency. 

The expected and observed frequencies are further examined by using the cumulative 

distribution function. According to the observed patterns with number ݑ ൌ 0 or 1=ݑ 

(number of “Non-Typical”) it is remarkable that more than 50 percent of all Swiss 

communities are characterized by these patterns. Furthermore the frequency of observed 

patterns is clearly disproportional to the expected frequency of the model. Nearly 

seventy percent of communities are described by patterns with zero, one or two “Non-

Typical”. The observed total number of “Non-Typical” per pattern is 10. 

 
Figure 12: Size of classified patterns (total amount=880) 
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5.4 Relevance of Patterns 
The goal of this section is the final selection of patterns that are relevant and interesting 

enough for the clustering approach (similar/dissimilar). Two main tasks are to mention 

for this purpose. The first one deals with the definition of a specific criterion of 

relevance (population impact). The second one supports the pattern selection using in 

addition a procedure of information optimization (Pareto Principle). It is assumed that 

the final amount of relevant patterns varies from 80 to 150. 

5.4.1 Long-term Impact of Population 
In view of strategic spatial planning it is a crucial task to measure the relevance of each 

pattern. Each pattern is already characterized by the amount of communities. There are 

few patterns comprising a large amount of communities and there are many patterns 

comprising a relatively small amount of communities. Since the Swiss community 

system is very heterogeneous (e.g. in population, size etc.) it is by far not sufficient to 

use the number of communities for the detection of relevant patterns. 

It is a pragmatic planning approach to have a deeper look to the size of population. The 

question is how many people have an impact on one pattern? For this issue it is possible 

to use population data of one specific year in a short-term perspective or summarized 

population data in a long-term perspective. The mean of population by decade was 

already mentioned in Chapter 4.3.2. This value represents the denominator of Relative 

Difference and describes all 2896 communities by decade. In consideration of the long-

term description of population change (1850 to 2000) it seems conceivable to compute 

the Mean of all 15 mean values by decade. Furthermore it appears complete to sum up 

all these “long-term Means” of communities related to one pattern. Finally there is one 

number ሺܫܲܮሻ describing the long-term impact of population on each pattern: 

ܫܲܮ ൌ ݐܿܽ݌݉ܫ ݊݋݅ݐ݈ܽݑ݌݋ܲ ݉ݎ݁ݐ݃݊݋ܮ ൌ ෍ ݊ܽ݁ܯ ݉ݎ݁ݐ݃݊݋ܮ
஼௉

ଵ

ൌ ଵܯܮ ൅ ڮ ൅  ஼௉ܯܮ

with: 

݊ܽ݁ܯ ݉ݎ݁ݐ݃݊݋ܮ ൌ ܯܮ ൌ
1

15 · ෍ ஽݊ܽ݁ܯ

ଵହ

஽ୀଵ

ൌ
1

15 · ሺܯଵ ൅ ڮ ൅  ଵହሻܯ

݁݀ܽܿ݁ܦ ݊ܽ݁ܯ ൌ ஽݊ܽ݁ܯ ൌ భ
మ
ሺ ௧ܲିଵ ൅ ௧ܲሻ, new value ௧ܲ,  ௧ܲିଵ ݁ݑ݈ܽݒ ݏݑ݋݅ݒ݁ݎ݌

ܲܥ ൌ א ݏ݁݅ݐ݅݊ݑ݉݉݋ܿ ݂݋ ݎܾ݁݉ݑܰ  ݊ݎ݁ݐݐܽ݌



Population Cluster – Spatial Temporal Analysis Patterns 

43 

5.4.2 Optimum of Patterns 

The amount of 880 unique patterns will be now scrutinized in order of relevance. Thus 

several observed criteria are used such as the disproportional frequency of patterns 

(expected versus observed), the number of patterns, the number of “Non-Typical” per 

pattern and in particular the population impact. 

The first step is to find relevant patterns by ordering all patterns by frequency. The most 

frequent pattern is described by 15 “Typical” over time. It is of course relevant due to 

the representation of the Swiss “Typical” development of population change over time 

(total=852, 30 % of Swiss communities, LPI=959,636). 

For the selection of other relevant patterns it is helpful to have deeper look to the 

population impact on each pattern. The order of patterns leads to the selection of six 

other relevant patterns. The population impact on each pattern is here always above 

100000. Since the next following pattern is described by just 76948 such value is 

reasonable as a clear boundary. Three of these 6 further patterns are described by just 

one community. In view of population it is not surprising that these singular patterns are 

the famous and largest Swiss cities such as Zürich (=7 “Non-Typical”), Bern (=4 “Non-

Typical”) and Basel (=4 “Non-Typical”). Geneva is to find in an additional pattern of 

these 6 patterns. It consists of 4 communities (= 2 “Non-Typical). All these patterns are 

nearly describing 45 % of the whole Swiss population (=Long-term Population Impact). 

The question is how to identify an optimal number of other relevant patterns in the 

amount of remaining patterns? The patterns and computed values of the long-term 

population impact are now used for information optimization. The same idea is used as 

for a theoretical foundation of the Pareto 80/20-law (Ultsch, 2001). It is assumed by the 

author of this thesis that the minimal value describing a relevant population impact on a 

pattern is within the range of 2000 to 10,000. 

A Lorenz curve presents the association of the number of patterns and the computed 

long-term population impact (see Figure 13). From the ideal point 0% of long-term 

population impact and 100% of knowledge of the patterns the distance to the real 

situations on the Lorenz curve is measured. The identification mark ’a’ in Figure 13 

shows the shortest of such distances. From this it is concluded that in order to gain 

different patterns only about 14% of the patterns, the 14% relevant ones, should be 

examined in deep detail. This is consistent approximately with the well known Pareto 

80/20-law. 
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Figure 13: Information Optimization in View of relevant Patterns in Switzerland 

A long-term population impact of 5000 per pattern is the observed boundary. 122 

relevant patterns are selected (~14 percent of 880). All relevant patterns are 

characterizing about 1899 Swiss communities (65% of 2896 communities). All these 

relevant patterns will be later used for the clustering procedure.  
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For the purpose of interpretation, comparison and in particular for clustering it is useful 
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urbanization processes (e.g. Schaeffer, 1992; Tschopp, 2002) are taken into account. 

The already observed patterns and localized results (see appendix) are the basis to 

define reasonable intervals. Figure 15 shows in addition the pattern matrix (122 patterns 

ൈ 15 decades) allowing a visual comparison of patterns (development of population by 

decade). The view to the patterns by decade leads to the formulation of three 
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the period 1850 to 1910. The second one takes 4 decades (7-10) and is equal to the 
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period 1910 to 1950. The last period covers 5 decades (11-15) and is equal to the period 

1950 to 2000. All three periods are roughly characterized in view of the Swiss 

population as a whole and general urbanization process. 

Period 1850-1910 (Industrialization and urbanization): This period is characterized by 

a strong population and urban growth. Two phases of growth generally occur (1850 to 

1880 and 1888 to 1910). Furthermore a short period of stagnation (1880-1888) is 

discussed in the literature (Rey, 2003; Schuler et al., 2002). Characteristics are rapid 

economical and social changes, tourism and furthermore railway construction. 

Period 1910-1950 (World War I, II): The period of both World Wars and the related 

meantime is characterized by stagnation in view of the whole Swiss population and 

growth rate. Switzerland is subject to separation and negative impact of both wars. 

Period 1950-2000 (Urbanization/Suburbanization): A period of population growth and 

economic boom faces Switzerland. In the 1950s a suburbanization trend was starting in 

Switzerland because core urban centers were growing slower than smaller urban and 

rural areas. Later on counter-urbanization (Mulugeta/Schaeffer, 2009) is occurring (e.g. 

1970 to 2000). In general counter-urbanization occurs when population growth in areas 

with small populations exceeds that in large population centers (Dean et al., 1984). 

Counter-urbanization is also defined as the reversal of the long trend towards more and 

larger urban settlements. Such trend implies a process of settlement system change. 

 

Figure 14: Relevant Patterns (blue=”Loser”, yellow=”Typical”, red=”Winner”) 
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5.6 Growth Indicator by Periodical Subdivision 
For a unique and comprehensive pattern description of each period it is necessary to 

define a specific indicator. Such indicator measures the population development per 

period and sums up the observed patterns by decade:  

period 1 (1850-1860, 6 decades): ܫܩଵ: ሼെ1, 0,1ሽ ՜ ሾെ6, ൅6ሿ 

period 2 (1910-1950, 4 decades): ܫܩଶ: ሼെ1, 0,1ሽ ՜ ሾെ4, ൅4ሿ 

period 3 (1960-2000, 5 decades): ܫܩଷ: ሼെ1, 0,1ሽ ՜ ሾെ5, ൅5ሿ 

The growth indicator ܫܩ௡ is computed as follows: 

ݎ݋ݐܽܿ݅݀݊݅ ݄ݐݓ݋ݎ݃ ൌ ௡ܫܩ  ൌ ෍ ஽݌ ൌ ௔݌ ൅ ௔ାଵ݌ ൅ ڮ ൅ ௕݌

௕

஽ୀ௔

 

with  ݌ ൌ ܦ ,݁݀ܽܿ݁݀ ݕܾ ݊ݎ݁ݐݐܽ݌ ൌ ݀݁ܿܽ݀݁ , ݊ ൌ   ,݀݋݅ݎ݁݌

 ܽ ൌ bൌ ,݀݋݅ݎ݁݌ ݕܾ ݁݀ܽܿ݁݀ ݐݏݎ݂݅  ݀݋݅ݎ݁݌ ݕܾ ݁݀ܽܿ݁݀ ݐݏ݈ܽ

The growth indicator ܫܩ௡ is characterized for each period ݊ א ሼ1,2,3ሽ by a different 

number of decades ܦ. Such decades are in interval ሾܽ, ܾሿ and represent a different 

number of patterns by decade. 

 ௡ has the following properties: Large negative values characterize a “Loser”. Largeܫܩ

positive values indicate a “Winner”. Values by Zero represent a “Typical”. In case of 

only one positive and only one negative value in a longer period such characteristics are 

cancelling each other. Thus the pattern is finally characterized as a “Typical”. In view of 

the pattern matrix of the following section such specific situation is not really occurring. 

 

Figure 15: Growth Indicators of Relevant Patterns  
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6 Clustering and Classification of Patterns 
In this thesis clustering is used as a measure to detect dissimilarity of one pattern p (see 

definition in section 5.2) to one another on the basis of the Euclidean Distance. 

6.1 Dissimilarity of Patterns 
Decisions about dissimilarity are often based on distance measurements and are used in 

this thesis to quantify the proximity of patterns in the multidimensional feature space (3 

periods ݊ א ሼ1,2,3ሽ and specific additive values of pattern features). Thus let 

patterns ݌௜, ௝݌ א ܴ௡. Based on a number of patterns ܲ a symmetric ܲܲݔ matrix is 

realized. For patterns with ݊ dimensions (number of periods ݊ ൌ 1, … , 3), the 

Euclidean distance ܧ൫݌௜,  :௝ is defined as follows݌ ௜ and݌ ௝൯ between two patterns݌

,௜݌൫ܧ ௝൯݌ ൌ ඨ෍൫݌௜௡ െ ௝௡൯ଶ݌

௡

 

Where ݌௜௡ and ݌௝௡ represent the ݊௧௛ dimension values of ݌௜ and ݌௝. Matrix ܧ is 

symmetric. Euclidean Distance is used to represent relatedness in pattern content, such 

that semantically similar patterns are placed closer to one another in feature space than 

less similar ones. Such measurement is comparable in a wider sense (feature space) to 

the famous first law in geography: „Everything is related to everything else, but near 

things are more related than distant things“ (Tobler, 1970). 

Why is Euclidean distance an appropriate measurement for clustering of patterns?  

• Since data of patterns will be compared, the variance of the data has to be taken 

into account. Generally a great deal of variability in the range and distribution 

may pose a problem for cluster algorithms which involve distance measurements 

(e.g. Ward). For example atypical scores in a distribution (outlier) can wildly 

determine the Euclidian distance. The values of ܫܩ௡ are here advantegous. The 

influence of outlier (extrem values) on Euclidean Distance is clearly alliviated 

due to the symmetric and limited range of the growth indicator: (period 1: 

ሾെ6,6ሿ, period 2: ሾെ4,4ሿ, period 3: ሾെ5,5ሿ). When dealing with dissimilar 

patterns the distance is in minimum 1. The pattern properties and related integer 

values of the growth indicator have the advantage of a precise distinction of 

patterns. Such measurement provides the clustering by distance. 
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• It is often the case that components of data feature vectors are not immediately 

comparable. When variables are on different measurement scales (e.g. km, area, 

persons), standardization is necessary to balance the contribution of the variables 

in the computation of distance. ܫܩ௡ values of patterns are on a similar scale.  

• The Euclidean distance matters on peak heights, so two patterns of similar shape 

but different mean absordance would be treated as much different. When 

comparing patterns based on ݉݁ܽݏ݁ݑ݈ܽݒ ݀݁ݎݑݏ such criteria is not necessary 

due to meaningful characterisics by period (“Loser”, “Typical”, “Winner”).  

• Euclidean distance is not appropriate for variables that are correlated. This 

property was already proofed and is not significant.  

6.2 Ward Clustering 
When analyzing patterns the goal is to partition the 122 patterns into cluster, where the 

number of cluster is unknown and has to be determined from the data of patterns (see 

section 5.5). A cluster is determined by using 3 periodical growth indicators (=each 

period is defined by additive pattern information). The advantage is the measurement of 

dissimilarity in terms of integer values by 1. Using Ward algorithm takes such property 

into account because the algorithm unifies cluster such that the variation inside these 

cluster is not increasing dramatically. In contrast to other agglomerative algorithms (e.g. 

Single Linkage) this algorithm does not put together cluster with smaller distance, but it 

joins cluster that do not excessively increase the information loss. The clustering 

depends upon how similar (dissimilar) the patterns are to each other. Similar patterns 

are treated as homogeneous cluster, whereas dissimilar patterns form additional cluster. 

As a result clusters should be far enough apart that cluster are easily identifiable. Each 

cluster is later be replaced by an integer representing each cluster. When analyzing 

patterns the requested result is a clear and compact cluster structure. Before clustering it 

is assumed by the author that there are about 6 to 12 clusters which fulfill such 

requirements (3 periods and a specific value of ܫܩ௡ lead to discriminable cluster 

descriptions). The interpretation of the dendrogram leads finally to an eight cluster 

solution. Cutting at the marked point provides well separated clusters. Dissimilar cluster 

are therefore combined higher up to the diagram. A deeper look to the distance leads to 

the understanding of a clear and compact structure. A finer solution would lead to an 

elusive and marginal distinguishable amount of clusters. Furthermore the eight cluster 

solution seems reasonable in view of the total amount of 122 clustered patterns. 
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Figure 16: Result of WARD Clustering (dendrogram) 

6.3 k-Nearest-Neighbor-Classification of Patterns 

In the following the author will use the term class instead of a cluster in order to avoid 

misunderstanding. The clustering of 122 relevant patterns has led to 8 classes with 

different size observed. Each class has specifiable properties described by three growth 

indicators. These indicators are related to the three defined periods (1850-1910, 1910-

1950, 1950-2000). The classes are already characterizing 1899 Swiss communities. 

However, there are 997 Swiss communities and related patterns without a class 

membership. The patterns of these communities should be allocated to the 8 classes. 

The aim is therefore to find an allocation procedure which allows identifying the class 

membership of all 2896 communities respectively their patterns. For this purpose a ݇-

nearest neighbor classifier will be realized (see section 2.4). The first step is to construct 

a classifier based on the classified patterns. The second step is to start the allocation of 

the rest of patterns using the constructed classifier. Figure 17 shows the principle using 

training and test data in general form. 
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Figure 17: Construction of a classifier with training and test data 

In case of the pattern classification the ݇-Nearest-Neighbor classifier will be initially 

constructed (trained) on the basis of all labeled patterns. Such procedure is necessary to 

assign the quality of the classifier. It is tested how far the observed classes will be 

rediscovered. 

The number of neighbors is ݇ ൌ 1 and the growth indicators are used to identify the 

accuracy of allocation to the given classes (overall accuracy). Such procedural step 

leads to an accuracy of 100% (expected 100%). It is confirmed that the accuracy is good 

enough to classify the other patterns. This set of 122 relevant patterns is now a kind of 

reference and is the basis to start the comparison with the other patterns without a class 

membership (test data). For that purpose a value of ݇ ൌ 1 is chosen (Figure 18). 

 
Figure 18: Allocation problem (labeled versus unlabeled pattern) 
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The result of classification is displayed in view of the size of the classes and the amount 

of population per class (see Figure 19, Figure 20).  

 
Figure 19: Size of classes 

 

Figure 20: Mean Population and Population of the year 2000 per class 
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6.4 Typical Communities of classified Patterns 

Each class should be further described by a typical community. The identification of 

such a community is realized in a two stage procedure. At the beginning each class is 

characterized by the mean value of each growth indicator by period. The median of each 

growth indicator is also computed for the purpose of comparison of both values. The 

Median is the middle value below which 50% of the cases fall. The three presented 

values allow the selection and description of a characteristic (mean) pattern by class ܿ: 

 തതതଷ௖ܫܩ :3 ݀݋݅ݎ݁ܲ              തതതଶ௖ܫܩ :2 ݀݋݅ݎ݁ܲ           തതതଵ௖ܫܩ :1 ݀݋݅ݎ݁ܲ

Secondly the typical community of each class is identified on the basis of the mean 

population of 15 decades. As mentioned before the impact of population is reasonable 

when dealing with population development. All communities of the selected pattern are 

ordered in descending order by population. The community with the maximum is 

described by the author as a typical community. A class can be characterized using the 

label of the typical community: “is like St. Gallen” or “is like Solothurn”. Table 5 

shows the eight typical communities and their properties by period. The value of the 

growth indicator by period can be used to find a label for each period. The author 

decides to characterize a community as a “Winner” by period when the positive relative 

frequency is equal or above 25%. That means for example that a value of 1 in period 2 

is equal to an overall winner in that period: ࡵࡳ૛ ൌ ૚
૝

כ ૚૙૙ ൌ ૙, ૛૞%. A winner can be 

further characterized by different intensities per period.  

The classification of patterns and the identification of typical communities lead to 

another important aspect. The author wants to emphasize that Solothurn is the typical 

Swiss community in context of the long-term population development (1850-2000). 

Table 5: Typical communities of 8 classes and their properties 

c Typical community ࡵࡳ૚ࢉ ࢉ૛ࡵࡳ 1850-1910  2000-1950 ࢉ૜ࡵࡳ 1910-1950

1 “Gossau” +4 “Winner” 0 “Typical”” +1 “Typical” 
2 “St. Gallen” +5 “Winner” 0 “Typical” 0 “Typical” 
3 “La Chaux-de-Fonds” +3 “Winner” 0 “Typical” 0 “Typical” 
4 “Uster” 0 “Typical” 0 “Typical” +2 “Winner” 
5 “Ascona” 0 “Typical” +3 “Winner” +1 “Typical”” 
6 “Zug” +1 “Typical” 0 “Typical” +1 “Typical”” 
7 “Dietikon” +3 “Winner” +1 “Winner” +2 “Winner” 
8 “Solothurn” 0 “Typical” 0 “Typical” 0 “Typical” 
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6.5 Localization, Spatial Reasoning 
The aim is to obtain a view to each class and to formulate some spatial abstractions. The 

interpretation leads to explanations and triggers some hypothesis that might be valuable 

for further explanations and subsequent analysis.  

The communities of class 1 are mostly to find in the Swiss agglomeration zone. The 25 

communities are just representing 1 percent of Swiss communities. Those communities 

are mainly showing an increase of population in the first period (1850-1910). This 

increase is above the general Swiss trend and therefore there are many winning 

communities in this period observed. 

Class 2 is described by many big cities respectively cores of an agglomeration. In total 

there are 10 communities allocated to this class. Zurich, St. Gallen, Luzern, Lausanne 

and Montreux belong for example to this class. The urbanization process in the first 

period has a big influence on these communities. In the first period communities are in 

average characterized by a “winner” in 5 of six decades. Later on many of these 

communities follow the typical population development in Switzerland. It is further 

interesting that only Zurich (1910-1950: 1 “Winner”), Lausanne (1910-1950: 1 

“Winner”) and Olten (1910-1950: 1 “Winner”, 1950-2000: 1 “Winner”) are 

characterized by some “Winners” in the subsequent periods. 

Communities of the Class 3 are often to find in the Midlands (19/35) and thus there are 

many to find also in the lower regions. The communities of this class are also 

characterized by many “winning” communities in the first period (1850-1910). In the 

subsequent periods the class is in average following the typical population development. 

There are 30 % of Swiss communities allocated to Class 4. There is a widespread of this 

class in the Swiss area. It is characterized by winning communities in the last 5 decades. 

It is assumed that these communities did clearly benefit from the economical and social 

changes in Switzerland in the recent years. Furthermore the changes in transport 

systems did probably support such a development of communities.  

The communities of class 4 are frequently to find in the agglomeration zone. 

Communities are often suburban or peri-urban. It is to state that about 2 million of the 

Swiss population is living in these communities. However there are not so many high 

populated communities belonging to this class. The class 4 is often localized in the 

canton Zurich, Vaud, Aargau, Basel (hinterland), Ticino and Geneva. The typical 

community was “Uster” nearby Zurich. 
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There are 8 communities allocated to class 5. In comparison to other Swiss communities 

these communities are characterized by a “winning” period of population between 1910 

and 1950. In average these communities are “winning” in three of 4 decades. These 

communities are located in the canton of Zurich, Valais, Geneva, Basel, Bern and 

Ticino and the area of these communities is small. Examples of this class are Ascona, 

Riehen nearby Basel, Montana. 

The class 6 is also often located nearby big cities and cores of agglomeration. These 

communities are mostly to find in the lower regions. The majority of communities are 

located in the suburban area of Switzerland. This class is in third position in view of the 

total number of 224 Communities. These communities are showing in average 

“Typical” properties by period. In comparison to class 8 the majority of communities 

can be characterized at least by one “Non-Typical” (“Winner”/”Loser”) in the first and 

third period. 

The class 7 contains 55 communities. There are many to find in the canton of Zurich 

and Valais. The communities are often to find in the agglomeration zone and represent 

small city centers. Bellinzona, Emmen, Grenchen, Wettingen, Thalwil and Dietikon 

(typical community) are just some examples. The communities are often “Winners” in 

the first and in particular in the third period. It is assumed that communities of class 4, 6 

and class 4 express recent developments of urban sprawl. 

Class 8 describes the typical population development in Switzerland. All periods are 

therefore described by a development that represents the Swiss trend of population 

change. There are 60 % of all 2896 Swiss communities that represent such a 

development. Furthermore this class comprises a large amount of population both in 

view of the long-term mean of population and the population in the year 2000. The 

midlands and Eastern Switzerland are influenced by typical communities. The typical 

communities are often to find in the canton of Bern (287), Vaud (191), Graubünden 

(156), Fribourg (147), Valais (114), Ticino (117), Aargau (104), Jura (75), Luzern (71) 

and Solothurn (68). Typical communities are to find both in the lower and higher 

regions. About 1400 communities are located below 1200 meters but many of them are 

to find in rural regions of Switzerland. Solothurn is the typical Swiss community in 

view of population change by 15 decades. 

Figure 21 determines the eight class solution and displays the spatial structure of 

classified communities. 
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Figure 21: Localization of the classification result (8 classes) 

 

 

Figure 22: Localization of the classification result in proportion to the population 
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For many years map makers have searched for a way to construct cartograms. These are 

maps in which the sizes of geographic regions such as communities appear in 

proportion to their population or some other analogous property. Such maps are used in 

this thesis for the representation of patterns by decade (see appendix). Furthermore 

Figure 22 displays the classification results using the long-term mean of population in 

proportion to the area of a community. The method of Gastner and Newman (2004) is 

the basis for the realization of such maps. It is a method for constructing density-

equalizing cartograms. The method supports to choose the balance between good 

density equalization and low distortion of map regions. The implementation in GIS 

software was used straightforward. (number of cells in width and height is 2048, see 

Burgdorf, 2008). The cartogram provides to emphasize the cores and other communities 

of agglomerations in visual manner. But the proportion of the suburban areas (e.g. 

rings) is narrowed in comparison to the center. The low populated regions and in 

particular alpine regions are less important in this display. 

In addition the observed patterns are now presented in view of the property “Typical” 

and “Non-Typical”. Figure 23 and Figure 24 show all localized patterns. Under the 

assumption of statistical independency of decades and a constant probability it was 

possible to model the frequency distribution of these two types (patterns) as a binomial 

distribution (see section 5.4). As a result it was detected that the observed patterns of 

“Typical” feature are clearly above the expected frequency (by the factor 4). The 

geographical regions Jura, Central Plateau and Alps are characterized by the “Typical” 

pattern in different frequency and spatial coherence. When thinking about the own 

expectation to the localization of typical communities it is interesting for the author that 

the canton of Bern, Luzern, St. Gallen are certainly characterized of this pattern. Higher 

and in particular alpine regions seem to be characterized in most cases by other patterns. 

Further spatial analysis and techniques of data mining should be taken into account to 

find several reasons for this special frequency and spatial distribution. This pattern 

characterized by 852 communities is interesting in view of a discrete sampling. It is 

further to see that the applied clustering and classification procedure (Figure 21) has led 

to a deeper insight into the patterns with “Non-Typical”. The above mentioned 

clustering and classification provides the identification of similar developments over 

time. Several classes can be labeled e.g. typical communities, suburban communities, 

small city centers, cores of agglomeration or rural and remote communities. These 

spatial abstractions need a further explanation with other nonspatial or spatial attributes. 
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Figure 23: Map of 15 observed “Typical” per Pattern in 15 Decades (total = 852) 

 

non-typical:    

frequency:       852       675       511       359      238       131        70         36         13          6          5 = 2896 

cumulative:    29.42    52.73    70.37   82.77    90.99    95.51    97.93    99.17    99.62    99.83         =100% 

Figure 24: Map of observed “Non-Typical” per pattern in 15 decades (total = 2044) 
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7 Explanation of Classified Patterns 
It is possible to integrate contingency tables to understand the observed classes in a 

complementary form. Such procedure supports the finding of class explanations based 

on well-known typologies. At the beginning a short description of relevant typologies 

provides the general understanding of typologies and spatial content. Later on a 

comparison is made on contingency tables in order to decide whether or not 

dependencies are present. 

7.1 Administrative Spatial Typologies 
Swiss spatial representations and administrative analysis are usually based on different 

spatial units and structures, so that different phenomena depending on subject and 

frequency may be presented in adequate manner. Spatial structures can be distinct into 

regionalization and typologies. Regionalization implies structuring the national territory 

in spatial coherent subareas (with the exception of enclaves), whereas typologies are 

summarizations of spatial discontinuous, but similar structured subareas. Spatial 

structures and typologies, which are currently most used in statistics of Switzerland, are 

the following (Schuler et al., 2005): 

• Institutional structures: communities, counties, cantons. 
• Regional political structures: areas of spatial planning, IHG-Regions, areas of 

economical regeneration. 
• Regions of analysis: greater regions, language areas, MS-Regions, agglomerations 

and metropolitan areas. 
• Spatial Typologies: type of community (according to Centre-Peripheral Model), 

typology of the MS-Regions (MS = Mobilité spatiale). 
• Typology of height (e.g. Schmidt, 1969, Walter/Breckle, 1991). 

The about 3000 communities of Switzerland have been classified according to a Centre-

Peripheral-Concept and diverse criteria into 22 types of communities, which even have 

been combined in 9 main types (Table 6, Table 7). The spatial typology of communities 

has been developed about 20 years ago by a team of researchers on the ETH Lausanne 

ordered by BFS. The updating after the confederate census in 1990 and 2000 generated 

adjustments to the changed economical and social reality, but also confirmed the chosen 

method. The typology uses variables in conjunction with employment (commuter 

activities, ratio of employees, economic sector) development, tax revenue (income of 

the direct federal tax), tourism (room nights), structure of population as well as central 

functions. The assignment of a community to a determined type in 1980 also was 

dependent of the kind of MS-Region to which it belonged. 
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Table 6: Spatial Typology of Communities (Centre-Peripheral-Concept, 22 types) 

Key  Label Main Criteria Communities 

1 big Centres 
(Grosszentren) 

main town of a MS-Region, 
population >300.000 5 0.17% 

2 medium Centres 
(Mittelzentren) 

main town of a MS-Region, 
population >14.000 22 0.76% 

3 small Centres 
Kleinzentren) 

main town of a MS-Region, 
population >7.000 42 1.45% 

4 peripheral Centres 
(Peripheriezentren) 

main town, MS-Region, population 
<7.000, not located in 
agglomeration  

27 0.93% 

5 communities with high-income 
(Einkommensstarke Gemeinden) 

located in an agglomeration zone, 
tax income >800 SFR/inhabitant 88 3.04% 

6 touristic communities 
(touristische Gemeinden) 

not located in an agglomeration 
zone and dependent on population 
and accommodations/inhabitant 

53 1.83% 

7 semi-touristic communities 
(semitouristische Gemeinden) 

not located in an agglomeration 
zone and dependent on population 
and accommodations/inhabitant 

111 3.83% 

8 homes and institutions 
(Gemeinden mit Heimen/ Institutionen“) collective households > 10% 39 1.35% 

9 workplaces, of metropolitan region 
(Arbeitsplatzgemeinden metropolitaner Regionen) 

dependent on population and 
percentage of jobs/employees 114 3.94% 

10 
suburban communities of 
metropolitan regions 

(Suburbane Gemeinden metropolitaner Regionen)

dependent on population and 
percentage of apartment houses 72 2.49% 

11 
peri-urban communities of 
metropolitan region 

(Periurbane Gemeinden metropolitaner Regionen)
located in an agglomeration zone 245 8.46% 

12 
workplace communities of non-
metropolitan region 

(Arbeitsplatzgemeinden nicht-metropolitaner 
Regionen)

dependent on population and 
percentage of jobs/employees 93 3.21% 

13 
suburban communities of non-
metropolitan region 

(Suburbane Gemeinden nicht-metropolitaner 
Regionen)

dependent on population and 
percentage of apartment houses 53 1.83% 

14 
peri-urban communities of non-
metropolitan region 
(Periurbane Gemeinde nicht-metropolitaner Region)

located in an agglomeration zone 219 7.56% 

15 commuters and high immigration 
(Wegpendlergemeinden mit hoher Zuwanderung) 

born people in that community 
<35.5% 367 12.67% 

16 commuters and low immigration 
(Wegpendlergemeinde mit geringer Zuwanderung) 

born people in that community 
>35.5% 265 9.15% 

17 industrial tertiary communities 
(Industriell-tertiäre Gemeinden) 

primary sector <9%, secondary 
sector <38% 177 6.11% 

18 industrial communities 
(Industrielle Gemeinden) 

primary sector <9%, secondary 
sector >26 106 3.66% 

19 agrarian-industrial communities 
(Agrar-industrielle Gemeinden) 

importance of primary sector is 
middle 216 7.46% 

20 agrarian-tertiary communities 
(Agrar-tertiäre Gemeinden) 

primary sector: 9-23.5%,  
tertiary double as secondary sector 278 9.60% 

21 agrarian communities 
(Agrarische Gemeinden) primary sector >23.5% 233 8.05% 

22 communities with decline in population 
(Gemeinden mit starkem Bevölkerungsrückgang) 

elderly people >28% or Population 
development 1970-2000: + 60% 71 2.45% 
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Table 7: Spatial Typology of Communities (Centre-Peripheral-Concept, 9 types) 

Key Label Main Criteria Communities 

1 Centres (1, 2, 3) 
(Zentren) 

main town of a MS-Region, 
population >7.000 69 2.38% 

2 Suburban Communities (9,10,12,13) 
(Suburbane Gemeinden) 

dependent on population and 
percentage of apartment houses 332 11.46% 

3 Communities with high-income (5) 
(Einkommensstarke Gemeinden) 

located in an agglomeration zone, 
tax income >800 SFR/inhabitant 88 3.04% 

4 Peri-urban Communities (11+14) 
(Periuburbane Gemeinden) located in an agglomeration zone 464 16.02% 

5 Touristic Communities (6+7) 
(touristische Gemeinden) 

not located in an agglomeration 
zone and dependent on population 
and accommodations/inhabitant 

164 5.66% 

6 
Industrial and tertiary Communities 
(4,8,17,18) 

(Industrielle und tertiäre Gemeinden) 

dependent on percentage of primary 
and secondary sector 349 12.05% 

7 
Rural Communities with commuters 
(15+16) 

(Ländliche Pendlergemeinden 

dependent on percentage of 
workplace, population and 
commuters 

632 21.8% 

8 Agrarian-mixed Communities (19+20) 
(Agrar-gemischte Gemeinden) 

dependent on percentage of primary 
and secondary sector 494 17.06% 

9 Agrarian Communities (21+22) 
(Agrarische Gemeinden) primary sector >23.5% 304 10.50% 

In Switzerland exist currently 50 agglomeration areas with their allocated core 

(=Kernstadt) and other communities which belong to the agglomeration. An 

agglomeration area is defined by a population of minimal 20.000. There are 5 

communities defined as cities, which don’t belong to an agglomeration area, these are 

called ‘isolated cities’ and are mainly located in dead end valleys (Table 8). The highest 

and the lowest point of Switzerland are located between more than 4000 m vertical 

height. Depending on altitude Switzerland is divided into 5 classes (Table 9). 

Table 8: Typology of urban/rural regions depending on state of urbanization 

Key Class Label German Translation Communities 
1 core of agglomeration „Kernstadt einer Agglomeration“ 64 2.21%
2 (other) communities in agglomeration zone „Andere Agglomerationsgemeinde“ 910 31.42%
3 isolated city „Isolierte Stadt“ 5 0.17%
4 rural community „Ländliche Gemeinde“ 1917 66.19%

Table 9: Typology of communities depending on height 

Key Class Label German Translation Height (NN) Communities 
1 hill zone Hügelstufe bis 600 m 1713 59.15%
2 mountain zone Bergstufe bis 1200 m 1012 34.94%
3 subalpine zone Untere Alpenstufe bis 1800 m 164 5.66%
4 alpine zone Obere Alpenstufe bis 2500 m 7 0.24%
5 snow zone Schneestufe ab 2500 m 0 0.00%
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7.2 Class Explanation using Contingency tables 
The data of the spatial typologies were examined according to significant properties 

using contingency tables. If the observed value is considerable greater than the expected 

we can notice a positive significance. Otherwise if it is considerable less we state a 

negative significance. The discovered significance has been marked in the tables with 

green as positive and red as negative. 

Class 1 (suburban communities) 

This class is significantly characterized by suburban (16 of 25) communities. Many of 

them are workplace communities (7 of 25). It is significant that the most are located in 

the hill zone (21 of 25).  

Class 2 (core communities) 

This class represents communities in the core of an agglomeration zone. It is positive 

significant that the communities of this class are in the core of an agglomeration. There 

are 7 of 10 communities with this property. These core communities can be further 

characterized as big or medium centres as indicated by significance.  

Class 3 (communities in agglomeration zone, Medium centres) 

The communities of class 3 are mainly located in an agglomeration zone. A significance 

is observed for the medium centres. Another significant feature for some communities is 

the characteristic as peripheral centres. There are significantly less rural communities in 

this class than expected. Most of the communities are located in the Midland (19 of 35). 

Class 4 (peri-urban communities) 

In class 4 we find the most communities in the suburban and peri-urban zone of an 

agglomeration. These communities are often so called workplace communities. Another 

significant feature of the communities of this class is high income. The class is 

significantly characterized by commuters and immigrants. Many rural but non agrarian 

communities belong to this class, but the number is significant less than expected. It is 

significant that 667 of 888 communities are to find in the hill zone. It is also observed 

that most of the communities are located in the western part of Switzerland, which 

includes the Région Lémanique, the Midland and northwest of Switzerland. 
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Class 5 (rich communities) 

The communities of this class belong to an agglomeration zone (7 of 8). A significant 

feature of these communities is high income. Some can also be characterized as 

touristic. It can also be stated that there is a negative significance for rural communities. 

Class 6 (suburban communities) 

Some communities of class 6 are located in the core zone and can be identified as small 

centres. The most communities (135 of 225) are located in the suburban and peri-urban 

zone. This is double of the expected value. It is significant that some communities are 

characterized as workplaces. One third of the communities are rural communities, but 

this feature has a negative significance. Most of the communities are located in the hill 

zone (166 of 225). In the mountain zone are fewer communities than expected.  

Class 7 (suburban workplace communities) 

Most of the communities (45 of 55) are located in the suburban zone of an 

agglomeration. Some of them (5 of 55) can be identified as touristic communities. There 

is a high significance for workplace communities (21 of 55). The expected value of 

commuters could not be confirmed. Also was not confirmed that the expected value of 

rural communities could be found in this class. It is significant that most of the 

communities are located in the hill zone (43 of 55). In the mountain zone there are less 

than half of the expected communities to find. The most communities are located in the 

Région Lémanique, in the Midland and significantly in the Zurich area. 

Class 8 (typical Swiss communities) 

Most of the communities (1481 of 1671) can be identified as rural communities. It is 

surprising that the communities are not mainly located in the hill zone as expected. But 

it is obvious, that the communities in this class have a positive significance in higher 

areas of the Midland and Eastern Switzerland compared to all other classes. Most of the 

communities a significance in the field of industrial-tertiary, agrarian-mixed and 

agrarian economics can be identified. 

The following tables present the results of the analysis by contingency tables. Maps of 

Switzerland are shown additionally to deepen the understanding of the spatial 

distribution and localization of administrative or other already established community 

classifications in Switzerland. 
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Table 10: Typology of urban/rural regions compared to the 8 classes 

1= core of agglomeration, 2= communities in agglomeration zone, 3= isolated city, 4= rural community 

1 2 3 4 Row %
1 7 16 0 2 25 0,86

expected 0,55 7,86 0,04 16,55
% change 171% 68% -200% -157%

2 7 2 0 1 10 0,35
expected 0,22 3,14 0,02 6,62
% change 188% -44% -200% -148%

3 10 11 1 13 35 1,21
expected 0,77 11,00 0,06 23,17
% change 171% 0% 177% -56%

4 7 518 1 342 868 29,97
expected 19,18 272,75 1,50 574,57
% change -93% 62% -40% -51%

5 1 7 0 0 8 0,28
expected 0,18 2,51 0,01 5,30
% change 140% 94% -200% -200%

6 14 135 2 73 224 7,73
expected 4,95 70,39 0,39 148,28
% change 96% 63% 135% -68%

7 5 45 0 5 55 1,90
expected 1,22 17,28 0,09 36,41
% change 122% 89% -200% -152%

8 13 176 1 1481 1671 57,70
expected 36,93 525,08 2,88 1106,12
% change -96% -100% -97% 29%

Column 64 910 5 1917 2896 100,00
% 2,21 31,42 0,17 66,20 100,00  

 

Figure 25: Localization of urban/rural regions in Switzerland 
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Table 11: Typology of height compared to the 8 classes 

1= hill zone, 2= mountain zone, 3= subalpine zone, 4= alpine zone 

1 2 3 4 Row %
1 21 3 0 1 25 0,86

expected 14,79 8,74 1,42 0,06
% change 35% -98% -200% 177%

2 8 2 0 0 10 0,35
expected 5,92 3,49 0,57 0,02
% change 30% -54% -200% -200%

3 25 9 1 0 35 1,21
expected 20,70 12,23 1,98 0,08
% change 19% -30% -66% -200%

4 667 173 28 0 868 29,97
expected 513,43 303,32 49,15 2,10
% change 26% -55% -55% -200%

5 7 0 1 0 8 0,28
expected 4,73 2,80 0,45 0,02
% change 39% -200% 75% -200%

6 166 48 8 2 224 7,73
expected 132,50 78,28 12,69 0,54
% change 22% -48% -45% 115%

7 43 7 4 1 55 1,90
expected 32,53 19,22 3,11 0,13
% change 28% -93% 25% 153%

8 776 770 122 3 1671 57,70
expected 988,41 583,93 94,63 4,04
% change -24% 27% 25% -30%

Column 1713 1012 164 7 2896
% 59,15 34,95 5,66 0,24 100,00  

 
Figure 26: Localization of communities by height in Switzerland 
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Table 12: 9er Typology of Centre-Peripheral-Concept compared to the 8 classes 

1= centre, 2= suburban, 3= community with high income, 4= peri-urban, 5=tourism, 

6=industrial/tertian, 7=commuters, 8=agrarian mixed, 9=agrarian 

1=CEN 2=SUB 3=RE 4=PERI 5=TOUR 6=IND 7=PEND 8=MIX 9=AGR Row %
1 6 12 2 1 3 1 0 0 0 25 0,86

expected 0,60 2,87 0,76 4,01 1,42 3,01 5,46 4,26 2,62
% change 164% 123% 90% -120% 72% -100% -200% -200% -200%

2 7 2 0 0 0 1 0 0 0 10 0,35
expected 0,24 1,15 0,30 1,60 0,57 1,21 2,18 1,71 1,05
% change 187% 54% -200% -200% -200% -19% -200% -200% -200%

3 8 8 0 3 3 8 5 0 0 35 1,21
expected 0,83 4,01 1,06 5,61 1,98 4,22 7,64 5,97 3,67
% change 162% 66% -200% -61% 41% 62% -42% -200% -200%

4 6 177 56 282 31 58 191 56 11 868 29,97
expected 20,68 99,51 26,38 139,07 49,15 104,60 189,42 148,06 91,11
% change -110% 56% 72% 68% -45% -57% 1% -90% -157%

5 0 3 3 0 2 0 0 0 0 8 0,28
expected 0,19 0,92 0,24 1,28 0,45 0,96 1,75 1,36 0,84
% change -200% 106% 170% -200% 126% -200% -200% -200% -200%

6 16 63 14 52 8 24 37 9 1 224 7,73
expected 5,34 25,68 6,81 35,89 12,69 26,99 48,88 38,21 23,51
% change 100% 84% 69% 37% -45% -12% -28% -124% -184%

7 5 30 2 10 5 2 1 0 0 55 1,90
expected 1,31 6,31 1,67 8,81 3,11 6,63 12,00 9,38 5,77
% change 117% 131% 18% 13% 46% -107% -169% -200% -200%

8 21 37 11 116 112 255 398 429 292 1671 57,70
expected 39,81 191,56 50,78 267,73 94,63 201,37 364,66 285,04 175,40
% change -62% -135% -129% -79% 17% 24% 9% 40% 50%

Column 69 332 88 464 164 349 632 494 304 2896
% 2,38 11,46 3,04 16,02 5,66 12,05 21,82 17,06 10,50 100,00

 

 
Figure 27: Localization of types of the Swiss Centre-Peripheral-Concept 
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Table 13: Nuts 2-Typology of 7 greater regions compared to the 8 classes 

1= Région lémanique, 2= Espace Mittelland, 3= Nordwestschweiz, 

4= Zürich, 5= Ostschweiz, 6= Zentralschweiz, 7= Ticino 

1 2 3 4 5 6 7 Row %
1 4 5 4 1 8 1 2 25 0,86

expected 5,08 7,88 2,77 1,48 4,07 1,61 2,11
% change -24% -45% 36% -38% 65% -46% -6%

2 2 4 0 1 2 1 0 10 0,35
expected 2,03 3,15 1,11 0,59 1,63 0,64 0,85
% change -2% 24% -200% 51% 21% 44% -200%

3 1 19 1 2 6 1 5 35 1,21
expected 7,12 11,03 3,88 2,07 5,69 2,25 2,96
% change -151% 53% -118% -3% 5% -77% 51%

4 208 180 156 99 87 52 86 868 29,97
expected 176,53 273,65 96,21 51,25 141,17 55,75 73,43
% change 16% -41% 47% 64% -47% -7% 16%

5 2 3 1 1 0 0 1 8 0,28
expected 1,63 2,52 0,89 0,47 1,30 0,51 0,68
% change 21% 17% 12% 72% -200% -200% 39%

6 48 83 20 12 26 8 27 224 7,73
expected 45,56 70,62 24,83 13,23 36,43 14,39 18,95
% change 5% 16% -22% -10% -33% -57% 35%

7 14 12 5 8 6 3 7 55 1,90
expected 11,19 17,34 6,10 3,25 8,95 3,53 4,65
% change 22% -36% -20% 85% -39% -16% 40%

8 310 607 134 47 336 120 117 1671 57,70
expected 339,85 526,80 185,21 98,67 271,77 107,32 141,36
% change -9% 14% -32% -71% 21% 11% -19%

Column 589 913 321 171 471 186 245 2896
% 20,34 31,53 11,08 5,90 16,26 6,42 8,46 100,00  

 
Figure 28: Greater Regions (Nuts 2 Regions) in Switzerland 

1=Région lémanique 
2= Espace Mittelland 
3= Nordwestschweiz 
4= Zürich  
5= Ostschweiz 
6= Central CH 
7=Ticino 
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1 – big centre 5 – high income 9 – workplaces of a metropolitan region 12 – workplaces of non metropolitan region 15 – commuters, high immigration 19 – agrarian industrial 

2 – medium centre 6 – touristic 10 – suburban of a metropolitan region 13 – suburban of non metropolitan region 16 – commuters, low immigration 20 – agrarian tertiary 

3 – small centre 7 – semi-touristic 11 – peri-urban of a metropolitan region 14 – peri-urban of non metropolitan region 17 – industrial tertiary 21 – agrarian 

4 – peripheral centre 8 – homes /institutions   18 – industrial 22 – decline in population 

 

 

 

 
 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Row %
1 0 2 4 0 2 3 0 0 7 0 0 3 2 1 0 0 0 1 0 0 0 0 25 0,86

expected 0,04 0,19 0,36 0,23 0,76 0,46 0,96 0,34 0,98 0,62 2,11 0,80 0,46 1,89 3,17 2,29 1,53 0,92 1,86 2,40 2,01 0,61
% change -200% 165% 167% -200% 90% 147% -200% -200% 151% -200% -200% 116% 126% -62% -200% -200% -200% 9% -200% -200% -200% -200%

2 2 4 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 10 0,35
expected 0,02 0,08 0,15 0,09 0,30 0,18 0,38 0,13 0,39 0,25 0,85 0,32 0,18 0,76 1,27 0,92 0,61 0,37 0,75 0,96 0,80 0,25
% change 197% 193% 149% -200% -200% -200% -200% -200% -200% -200% -200% 103% 138% -200% -200% -200% -200% 93% -200% -200% -200% -200%

3 2 4 2 3 0 3 0 0 0 2 0 4 2 3 5 0 2 3 0 0 0 0 35 1,21
expected 0,06 0,27 0,51 0,33 1,06 0,64 1,34 0,47 1,38 0,87 2,96 1,12 0,64 2,65 4,44 3,20 2,14 1,28 2,61 3,36 2,82 0,86
% change 188% 175% 119% 161% -200% 130% -200% -200% -200% 79% -200% 112% 103% 13% 12% -200% -7% 80% -200% -200% -200% -200%

4 0 0 6 4 56 11 20 3 65 53 181 37 22 101 152 39 38 13 11 45 9 2 868 29,97
expected 1,50 6,59 12,59 8,09 26,38 15,89 33,27 11,69 34,17 21,58 73,43 27,87 15,89 65,64 110,00 79,43 53,05 31,77 64,74 83,32 69,84 21,28
% change -200% -200% -71% -68% 72% -36% -50% -118% 62% 84% 85% 28% 32% 42% 32% -68% -33% -84% -142% -60% -154% -166%

5 0 0 0 0 3 2 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 8 0,28
expected 0,01 0,06 0,12 0,07 0,24 0,15 0,31 0,11 0,31 0,20 0,68 0,26 0,15 0,60 1,01 0,73 0,49 0,29 0,60 0,77 0,64 0,20
% change -200% -200% -200% -200% 170% 173% -200% -200% 104% 134% -200% -200% 149% -200% -200% -200% -200% -200% -200% -200% -200% -200%

6 0 5 11 3 14 4 4 5 25 9 18 15 14 34 31 6 10 6 0 9 1 0 224 7,73
expected 0,39 1,70 3,25 2,09 6,81 4,10 8,59 3,02 8,82 5,57 18,95 7,19 4,10 16,94 28,39 20,50 13,69 8,20 16,71 21,50 18,02 5,49
% change -200% 98% 109% 36% 69% -2% -73% 49% 96% 47% -5% 70% 109% 67% 9% -109% -31% -31% -200% -82% -179% -200%

7 0 1 4 0 2 5 0 0 11 5 2 10 4 8 1 0 1 1 0 0 0 0 55 1,90
expected 0,09 0,42 0,80 0,51 1,67 1,01 2,11 0,74 2,17 1,37 4,65 1,77 1,01 4,16 6,97 5,03 3,36 2,01 4,10 5,28 4,43 1,35
% change -200% 82% 133% -200% 18% 133% -200% -200% 134% 114% -80% 140% 120% 63% -150% -200% -108% -67% -200% -200% -200% -200%

8 1 6 14 17 11 25 87 31 5 2 44 23 7 72 178 220 126 81 205 224 223 69 1671 57,70
expected 2,88 12,69 24,23 15,58 50,78 30,58 64,05 22,50 65,78 41,54 141,36 53,66 30,58 126,36 211,77 152,91 102,13 61,16 124,63 160,41 134,44 40,97
% change -97% -72% -54% 9% -129% -20% 30% 32% -172% -182% -105% -80% -125% -55% -17% 36% 21% 28% 49% 33% 50% 51%

Column 5 22 42 27 88 53 111 39 114 72 245 93 53 219 367 265 177 106 216 278 233 71 2896
% 0,17 0,76 1,45 0,93 3,04 1,83 3,83 1,35 3,94 2,49 8,46 3,21 1,83 7,56 12,67 9,15 6,11 3,66 7,46 9,60 8,05 2,45 100,00
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8 Discussion 
In the presented long-term analysis, a classification and clustering procedure was 

applied to community data (for 2896 communities). The author expects that in the 

future the concept of Data Mining in connection with Knowledge-Discovery techniques 

will become increasing important for geographical information science (GISc), urban 

research and future planning processes. The issue for this long-term analysis is to apply 

typical Data Mining techniques and methods to validate the process and outcomes. 

The author has assumed at the beginning that Swiss communities allow a grouping 

process based on processes of population decline, stagnation or increase. The idea was 

to identify specific development profiles by using characteristics of all 15 decades. The 

presented long-term analysis provides the ability to identify patterns within a large 

amount of Swiss community data.  

First, several indexes are discussed to decide about their properties. Typical indexes aim 

to compare two values of different temporal states without knowing everything in-

between. As an alternative to relative change calculation the author has used relative 

differences (RelDiff). This index is already in use in the field of Data Mining and 

Knowledge-Discovery (Ultsch, 2003 a). The thesis has shown that relative difference is 

superior to common relative percent change because the influence of outlier (extrem 

values) on relative percent difference is alliviated due to an symmetric and limited 

range. Other indexes are critically in consideration of normalizing by the empirical 

variance when values are not normal distributed. The results then are mainly influenced 

by extreme cases when distances (e.g. Euclidean Distance) are calculated. 

It was then started to gain insight into the distribution of population change by decade. 

For this purpose expected characteristics of population change by decade are assumed 

and discussed in this thesis. This step leads to a general assumption of the distribution 

of population change. A composite distribution is assumed when taking into account 

three characteristic developments: Losing Communities (e.g. multiplicative process  

log-normal), Typical Communities (e.g. population is acting independently  CLT 

Theorem), Winning Communities (e.g. multiplicative process, growth  log-normal). 

Due to the assumed distribution of typical communities the Swiss trend of population 

development over time is observable. A mixture model is realized based on the 

distribution assumption as composite of a log-normal, normal, log-normal distribution. 
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The Expectation Maximization (EM-) algorithm is used in this thesis for parameter 

computation of the mixture distributions (Bilmes 1997). It should be mentioned that 

‘good’ initial parameters are important as the algorithm only finds a local and not a 

global optimum. Several re-calculations are necessary to proof the intermediate results. 

The modeling process uses also Pareto Density Estimation (PDE; Ultsch, 2005) and 

probability density functions (PDF) to verify the Mixture. In addition to other common 

mixture models such technique ensures the modeling process. Q-Q-plots are finally used 

to proof the modeled distribution of “Typical” to a theoretical model.  

The modeling process takes a standardization procedure into account by using a two-

stage modeling procedure. This process realizes that mixture distributions by decade are 

different and need to be comparable. Thus the distribution of typical communities is 

first modeled as a Gaussian (normal) distribution. The detection of the mean and 

standard deviation are helpful to characterize the typical Swiss population change by 

decade (clinical thermometer). The proof by Pareto Density Estimation and Q-Q-Plot 

leads to the verification of the distribution assumption (Normal Distribution). The 

second modeling stage deals with the whole mixture model (Lognormal-Normal-

Lognormal). It is to emphasize that the whole model is now based on standardized data. 

The mean and standard deviation of the first modeling process are the basis for the z-

Transformation. The standardization provides the clustering processes and comparisons 

of decades. In consideration of the distribution of typical communities as a normal one, 

it is further known that the z-transformed data belongs to a standard normal distribution. 

The mean and standard deviation of typical communities provide to control the 

modeling process of the whole mixture model (M=0; S=1). The whole model is also 

proofed by Q-Q-plots. It is therefore verified that the distribution assumptions and the 

elaborated model are reasonable. It can be concluded that population change is 

described precisely using the mentioned composite distribution.  

In comparison to other clustering approaches dealing with population data the pool of 

data is examined in depth in this thesis. In particular the variance and the properties of 

distance measurements in view of clustering are considered. The importance for the 

investigation of distributions is demonstrated. It has led to intermediate results that three 

categories by decade (“Loser”, “Typical”, and “Winner”) characterize Swiss 

communities in one decade. The modeled distribution and determined parameters 

(Mean, Standard Deviation and amount of communities by distribution) provide the 

identification of the degree of membership to a specific category.  
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The posterior probability and component probability density function are the basis to 

compute the posterior probabilities using Bayesian theorem. This theorem offers 

advantages through its ability to formally incorporate prior knowledge into model 

specification via prior distributions and allows considering the variability. A specific 

category C is then predominant observed for a given value of population change 

(posterior ≥0.5) in a community. Each category by decade can be therefore used as an 

element of unique profiles over time (15 decades). Due to the comprehensive modeling 

process it is now possible to get a first insight into each decade and the specific amount 

of communities by category. The approach supports the discovery of probably multiple 

and partly unsuspected profiles over time. For a better understanding and 

characterization of communities the term pattern is defined in this thesis to describe 

such profiles consisting of unique categories by decade. In comparison to typical 

clustering approaches of population data such approach allows a deeper understanding 

in advance of communities in one decade and also in a combined view to several 

decades. 

Due to his long and intensive experience in Data Mining and Knowledge-Discovery the 

mentor of this thesis (Prof. Dr. A. Ultsch) suggests a function that supports the 

classification of patterns using decision rules (LTW[1,1-]→[2,2-] ׷, (LTW=Loser, 

Typical, Winner). The function is valuable to detect directly a specific category. That 

means it forms categories related to the membership label (“Loser”, “Typical”, 

“Winner”). Based on results of Bayesian posterior probabilities and the decision rules a 

set of 15 categorical values (-1, 0, 1) allow a description of patterns.  A classification 

process leads to the identification of the total number of patterns. At the beginning the 

author had the expectation that a number of approximately 1000 different patterns will 

arise. It was conceivable that in view of all 2896 communities and the characteristics of 

the distribution there will arise three or five large groups of a single pattern. It was 

further assumed that many patterns are describing only one or two communities. The 

size of this group was assumed by 300 communities and labeled in advance as outlier. 

With regard to the classification result such assumptions are mostly confirmed. In total 

880 patterns are observed in Switzerland and this value is nearby the expectation of the 

author. According to the pattern frequency it is also true that a larger group of patterns 

is dominating. There is one pattern characterizing 852 communities and it shows always 

typical categorical values (15x ”Typical”). This pattern is surprising because it is clearly 

representing the “Typical” Swiss population development over time. 
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However, there are also about 863 communities allocated to 775 patterns that are 

described by only 1 or 2 communities. The group of observed specific developments 

(“outlier”) is much bigger than expected. The author uses a pattern matrix to display all 

15 characteristics in a combined view. It shows the frequency and variety of patterns in 

graphical form. Such measurement is possible due to the classification of patterns. In 

comparison to other approaches dealing with population data the description of decades 

based on patterns is helpful to get insight into existing developments. The author is 

interested to understand the data and patterns more precisely before clustering. Such 

approach is not just interested in the application of a so called “black-box” clustering 

procedure. 

For this reason the author takes another comparison of expected and observed patterns 

into account. At first the author describes each pattern by the number of “Typical” and 

“Non-Typical”. Under the assumption of statistical independency of decades and a 

constant prior probability it is possible to model the frequency distribution of these 

patterns as a binomial distribution. The mixture model supports the determination of the 

prior probability and results by decade are now very useful for this procedure. The 

comparison of the expected pattern frequency by the model to the observed frequency 

identifies several differences. For example the observed mentioned “Typical” pattern 

(=852 communities) is above the expected frequency by factor 4.  Further spatial 

analysis and techniques of Data Mining should be taken into account in the future to 

find explanations for this unexpected frequency and specific distribution in the Swiss 

space. This pattern might be valuable for other investigations of population as well as be 

interesting to deepen the investigation by using randomly subsets of this pattern. 

Another interesting aspect deals with patterns with one or zero “Non-Typical”. They are 

characterizing more than 50 percent of all Swiss communities. In context of 

geographical information science it should be further mentioned that there are also some 

other interesting techniques which are based on the assumption that some spatial areas 

having higher or lower values than being expected alone by chance. These techniques 

lead to the identification of local clusters where the values are above or below those of a 

random distribution in space (Anselin, 1995). 

According to a clustering procedure the author aims to select relevant patterns for 

clustering. A pragmatic planning approach is to have a deeper look to the size of 

population. The question is therefore how many people have an impact on one pattern? 
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But in consideration of the long-term description of population change (1850 to 2000) it 

seems to be more informative to compute the overall mean of all 15 mean values by 

decade. This value is labeled in this thesis as the long-term impact per pattern and is 

also an interesting value in general for the description of other communities and regions 

over time. For the purpose of pattern selection another already developed technique of 

Data Mining is applied (Ultsch, 2001). It is a procedure of information optimization 

based on the famous Pareto principle. The number of patterns and the values of the 

long-term population impact are used in this manner. From this it is concluded that in 

order to gain different patterns only about 14% of the patterns, the 14% relevant ones, 

should be examined in deep detail. The assumption of the author was that the minimal 

value of the population impact on a pattern is within the range of 2000 to 10,000. The 

observed value is 5000 per pattern. The author has concluded that clustering should be 

based on patterns showing either a disproportional frequency (clear deviation of 

observed and expected frequencies; binomial model) or a meaningful amount of 

population per pattern. Finally 122 patterns are selected and declared as a relevant 

pattern in Switzerland. It is to remark that 65% of all 2896 communities belong to these 

relevant patterns and about 85 percent of population. The procedure of information 

optimization is generally a good technique in context of further spatial investigations. 

Such technique allows deciding about a subset of data that might be particularly 

relevant for the description of a specific property or phenomena. However in this thesis 

it should be mentioned that the criteria that might be useful for such procedure of 

information optimization are multitude and thus the author decided in a first pragmatic 

way to choose the amount of population as a criterion of relevance. The author wants to 

suggest the use of other criteria (e.g. number of buildings, percentage of urbanized area 

per community) . Furthermore it might be helpful to compare the results and the number 

of relevant patterns.  

For the purpose of interpretation and in particular for clustering of relevant patterns the 

author has defined three periodical subdivisions. These periods are identified based on 

knowledge about the general population growth and population development in 

Switzerland. The periods are as follows: period 1 (1850-1910, industrialization and 

urban growth), period 2 (1910-1950, World War I, II, subject of separation) and period 

3 (1950-2000, urbanization, suburbanization, economic boom faces Switzerland). The 

use of a pattern matrix (122 patterns × 15 decades) allows a visual comparison and 

confirms such division in a visual way.  
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Nevertheless the author would suggest to detect some more reasons and explanation for 

this subdivision. The verification should be based on other multidimensional 

descriptions and on the general historical and societal Swiss context. 

For clustering of relevant patterns the author has defined growth indicators for each 

period. The clustering is therefore based on three indicators per pattern. These indicators 

sum up the observed patterns by decade for each period. Large positive values indicate a 

Winner by period, values by zero indicate a typical development by period and large 

negative values by period indicate a Loser. At this point it should be mentioned that the 

data modeling of population change has led to the awareness about the quantities of 

patterns by decade. Thus it is already discovered that there are more “Winner” than 

“Loser” and the large amount of communities is described by “Typicals” by decade. 

Against this background it was not assumed that there are many growth indicators by 

period showing large negative values. 

The clustering has required a decision about dissimilarity of patterns. Distance 

measurements are used in this thesis to quantify the proximity of patterns in a 

multidimensional feature space (3 periods n {3 ,2 ,1} א and specific additive values of 

patterns). A precise distinction of patterns is realized due to the properties of the growth 

indicator and related integer values. Such measurement provides the clustering by 

distance. The thesis has shown that other approaches are often influenced by large 

variances when using Euclidean distance. The influence of outliers (extreme values) on 

Euclidean Distance is alleviated due to the symmetric and limited range of the growth 

indicator. One advantage is that the values of the growth indicator are on similar scale 

and comparable. The similarity of patterns is handled by integer values. This indicator 

benefits from the intensive data inspection. It is based on the identified patterns and the 

translation to a semantic by decade. That means pattern are different from each other by 

a value of 1. Another advantage is furthermore that standardization is not necessary. 

The use of Ward algorithm takes such developed properties better into account than 

other hierarchical algorithms. Generally it is an appropriate method for clustering. In 

this specific case the algorithm forms clusters according to the values of the growth 

indicator. The information loss refers to the inner and outer cluster differences and is 

supported by the scaled values of the growth indicator. When clustering the 122 

relevant patterns the aimed expected result was a clear and compact cluster structure 

whereas a solution of 6 to 12 clusters were expected. It is conceivable when clustering 

122 patterns based on information about population change that each cluster will 
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contain about 10 patterns in average. The interpretation of the dendrogram has 

confirmed the expectation and has led to an eight cluster solution. These clusters are 

describing 1899 communities.  

The aim of this thesis was to describe all 2896 communities according to their 

population development over time. The use of a k-Nearest Neighbor Classifier is based 

on the assumption that the 122 relevant patterns are point of reference for the whole 

Swiss population development. Thus the patterns can be used as training data. A k-

Nearest Neighbor classifier is constructed to determine a class membership in particular 

for the rest of 997 unlabeled Swiss communities. The classifier provides the 

identification of the nearest neighbor that has already class information to allocate an 

unlabeled community.  

It might be possible to compare the results of the k-Nearest Neighbor classification to 

other techniques in the field of Geographical Information Science. A comparison of 

quality of several spatial techniques is certainly of theoretical interest. For example it is 

interesting to compare the classification results of this thesis (2896 communities with a 

unique class membership) to results of spatial interpolation. The two spatial data sets 

(1899 communities / 997 communities) can be used for the integration of methods and 

allow future research. 

In comparison to several former approaches in clustering and city classification the 

author of this thesis is additionally interested in class explanation. Knowledge 

conversion provides the transition from data to knowledge and generates several 

hypotheses (e.g. class descriptions and explanations) for further investigations. 2896 

classified communities allow now a deeper explanation. The size of classes is described 

at first and also the impact of population per class. By using a weighted mean of the 

three growth indicators it was further possible to identify a typical community for each 

class. Based on the analyzed population data by decade (1850-2000) it can be stated that 

Solothurn is the typical community in Switzerland.  

The localization of classes is used for the spatial verification and spatial reasoning. 

Several classes can be therefore characterized by additional labels such as suburban 

communities, small city centers, cores of agglomeration or rural and remote 

communities. The method of Gastner and Newman (2004) is the basis for the realization 

of scaled maps. The size of communities is therefore scaled in proportion to the amount 

of population. The high populated regions and classes are thereby emphasized. 
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A comparison of scaled and common maps allows a deeper description in the future. 

The maps in the appendix are a cartographical basis for the interpretation of periods and 

decades. It might be possible to discuss these results with other spatial planners and 

geographers to find further reasons for the development of communities. 

Structure interpretation and spatial reasoning were also realized in this thesis by using 

contingency tables with the aim of identifying a significant number of explanatory 

characteristics. Such procedure is based on well-known typologies in Switzerland. The 

comparison is made on contingency tables in order to decide whether or not 

dependencies are significant. 

At the end of this discussion it should be emphasized that specific classes should be 

investigated in detail by other structural and temporal parameters (e.g. age of the 

population, infrastructure, buildings, etc.). 
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9 Conclusion and perspectives for future steps 

9.1 Achieved Targets 
At the beginning of this thesis several questions were formulated and the achieved 

targets are shortly summarized.  

The first question dealt with the number of patterns probably arising when analyzing the 

long-term development of population (1850-2000). Due to an intensive inspection and 

modeling of Swiss population data it was possible to identify 880 patterns according to 

their properties by 15 decades. Mixture modeling and the Bayesian theorem are basis 

for the classification of patterns by using defined decision rules. A pattern is described 

as unique profiles of categories over time. A set of 15 categorical values (-1, 0, 1) 

related to the category “Loser”, “Typical”, “Winner” provides the further interpretation 

of 2896 Swiss communities. A “Typical” represents the Swiss trend of population 

change by decade. All intermediate results are presented by decades in localized form. 

The second question was interested in the number of relevant patterns of population 

development. To answer this question a two stage procedure was realized. At first the 

frequency of observed and expected values was analyzed. Under the assumption of 

statistical independency of decades and a constant probability it has been shown that it 

is possible to model the frequency distribution of patterns (“Typical”/”Non-Typical”) as 

a binomial distribution. The comparison of expected and observed values has led to the 

selection of patterns with a disproportional frequency. Secondly the patterns and their 

(long-term) mean value of population by 15 decades are used for information 

optimization. Such technique relates to the theoretical foundation of the Pareto 80/20-

law (Ultsch, 2001). As a result 122 patterns are selected and described by 3 growth 

indicators (1850-1910, 1910-1950, and 1950-2000).  

The third question asked for the number of clusters. By using the Euclidean Distance 

and Ward algorithm a clustering was realized. The result was a compact structure of 

eight clusters. The specific characteristics of Euclidean Distance are taken into account 

by using scaled growth indicators (symmetric and limited range, proximity of different 

patterns is 1). Later on a k-Nearest Neighbor classifier is used to allocate all Swiss 

communities to the partition of 8 classes. In view of the population change by 15 

decades it can be further stated that the typical community is observed by “Solothurn”. 
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The localization provides the verification of results in a spatial abstraction and leads to a 

finer description of classes. Classification results are also presented using the long-term 

mean of population in proportion to the area of a community (Gastner and Newman, 

2004). The explanation of the observed classes is realized on the basis of other already 

existing spatial typologies. Several significant relations are extracted on the basis of 

contingency tables.  

In conclusion the application of methods from Data Mining and Knowledge Discovery 

are probably more and more important to develop a new generation of spatial analysis 

tools in a data-rich environment. Quantitative spatial investigations in general might 

lead to advanced strategic instruments such as semi or fully automated urban 

monitoring systems or a benchmark system for regional Swiss and European policy. 
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9.2 Perspectives for future Steps 
Patterns of population change are different for the countryside near major cities, for 

metropolitan villages and for remote rural villages. In consideration of different 

patterns, it is possible to provide a data-based approach on spatial relations and 

neighborhoods (e.g. comparative qualities, interregional communication and 

cooperation). Swiss urbanized landscapes are highly dynamic, complex and 

multifunctional. Detailed inventories of landscape conditions and monitoring of change 

are urgently needed.  

It is important to work with extracted knowledge when formulating strategies for the 

future development of Swiss communities. Therefore, a need for adjusted planning tools 

exists. A good base for the implementation of such tools is the spatiotemporal data 

exploration in a long-term perspective leading to specific details and explanations. The 

exploration of communities and other spatial lower scaled geospatial objects triggers 

discussions in the application domain and reveals insights about spatiotemporal 

phenomena and long-term processes. Furthermore, field investigation in selected areas 

should be conducted to obtain more reliable statistical data in space and time. In 

particular, long-term time courses serves as a basis for making decisions, as well as to 

control decisions that have been taken. To foster the understanding of the here presented 

classification other techniques are certainly of interest for validation and further 

explanation. Spatial outliers (Shekhar et al., 2003) might be of specific interest for 

further research. The modifiable unit problem (Openshaw, 1984) should be also taken 

into account to optimize the analysis of Swiss communities. At the end of this thesis 

some techniques and methods are briefly presented and discussed in view of future 

research. 

9.2.1 Verification by Structure Visualization 
The goal of clustering is to determine the intrinsic grouping in the set of data. But how 

to decide what constitutes a good clustering? Against this background the technique of 

an Emergent Self Organizing Map (Ultsch, 1999) is briefly presented in context of 

future perspectives in spatial analysis and geographical information sciences. Such 

technique would be an appropriate technique to verify the cluster structure of this thesis 

(computed by WARD algorithm). The aim is then to get visual insight into set of data. 

The power of self-organization allows the emergence of structure in data and supports 

its visualization, clustering and labeling concerning a combined distance and density-
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based approach. To visualize high-dimensional data, a projection from the high 

dimensional space onto two dimensions is needed (=planar map). This projection onto a 

grid of neurons is called a self-organizing map (SOM). There are two different SOM 

usages. The first are SOM, introduced by Kohonen (1982). Neurons are identified with 

clusters in the data space (k-means SOM) and there are very few neurons. The second 

are SOM where the map space is regarded as a tool for the visualization of the otherwise 

high-dimensional data space. These SOM consist of thousands or tens of thousand 

neurons. Such SOM allow the emergence of intrinsic structural features of the data 

space and therefore they are called emergent SOM (ESOM). The ESOM preserves the 

neighborhood relationships of the high-dimensional data and the weight vectors of the 

neurons are thought as a sampling point of the data. The U-Matrix has become the 

canonical tool for displaying the distance structures of the input data on ESOM. The P-

Matrix takes density information into account. The combination of a U-Matrix and a P-

Matrix leads to the U*-Matrix. On this U*-Matrix a structure in the data set can be 

detected directly. Figure 29 allows a comparison of both methods using the same data to 

see in whether there are cluster structures. 

 
Figure 29: k-means SOM by Kaski et al. (2002) (left) and U*-Matrix (right) 

The often-used finite grid as map has the disadvantage that neurons at the rim of the 

map have very different mapping qualities compared with neurons in the centre versus 

the border. This is important during the learning phase and structures the projection. In 

many applications important structures appear in the corner of such a planar map. Using 

ESOM has the advantage of a non-linear disentanglement of complex structures. The 

clustering of the ESOM can be performed at two different levels. The ‘best match’ 

visualization can be used to mark data points that represent a neuron with a defined 

characteristic (in this thesis clustering result by WARD). On the U*-Matrix the cluster 

structure in a set of data can be proofed and detected directly. Such visualization is used 
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in tiled form to avoid border effects. Afterwards, a so-called island view is realized by 

mask to reduce redundancies which means each neuron is nearly visible at once. The 

corresponding U*-Map (island view) delivers a geographical landscape of the input data 

on a projected map (imaginary axis). The cluster boundaries are expressed by 

mountains, which means the value of height defines the distance between different 

patterns, which are displayed on the z-axis. A valley describes similar objects (e.g. 

communities or other spatial objects and according to this thesis patterns), characterized 

by small U-heights on the U*-Map. Objects found in coherent regions are assigned to 

one cluster. All local regions lying in the same cluster have nearly the same properties. 

The here presented U*-Map is an example for the possibilities of to integrate such 

method into the common geospatial analysis. It offers a proof by visualization of a 

given structure (e.g. hierarchical clustering results) and fosters a spatial abstraction. 

 
Figure 30: Example of an island view (U* -Map, see also Ultsch, 2005c). 

9.2.2 Verification by Spatial Explanation 
In spatial datasets „dependence is present in all directions and becomes weaker as data 

locations become more and more dispersed” (Cressie, 1993). Furthermore Tobler’s 

‘First Law of Geography’ is to keep in mind when analyzing spatial data (Tobler, 1979): 

„Everything is related to everything else, but near things are more related than distant 

things.” Against this background it might be valuable to deepen the explanations of the 

elaborated classification of this thesis by other non-spatial and probably spatial data. 
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Other techniques might be useful for the ongoing explanation of the classification 

(longterm development of population 1850-2000).  

The first option is to use indicators of spatial association. These are statistics that 

evaluate the existence of clusters in the spatial arrangement of a given variable. In case 

of extended data local clusters in the values mean that there are areas that have higher or 

lower values than is to be expected by chance alone; that is, the values occurring are 

above or below those of a random distribution in space. Local spatial autocorrelation 

analysis is based on the Local Moran LISA statistics (Anselin, 1995). This yields a 

measure of spatial autocorrelation for each individual location. A cluster map represents 

a special choropleth map showing those locations with a significant Local Moran 

statistics classified by type of spatial correlation. Conclusions depend on the 

significance level, and thus provides an informal mechanism to deal with multiple 

comparisons. 

The second option is to develop regression models. Spatial Auto-Regression models 

(SAR) are an extension of the classical regression model for incorporating spatial 

dependence. They are popular for prediction and classification of spatial data. For 

example spatial contextual classification and prediction models for mining geospatial 

data should be taken into account (Shekhar, 2002). Geographically weighted regression 

(GWR) is testing for significance of spatial versus non-spatial effects (see Fotheringham 

et al.). It can combine spatial and non-spatial variables and can test the relative 

plausibility of models. Furthermore it can map various statistics (e.g., y-intercept, slope 

coefficients, standard errors, t-values, residuals, diagnostic test results) and provides the 

possibility for mapping variation within district sub-units of a larger space. 

“Never concerned that the answer may prove disappointing, with pleasure and confidence we turn over each new 

stone to find unimagined strangeness leading on to more wonderful questions and mysteries – certainly a grand 

adventure.” Richard P. Feynman (1988, S.243) 
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Appendix 3: Decade 1860: “Loser”, 61; “Typical”, 2578; “Winner”, 257 communities 

Loser Typical Winner
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Appendix 4: Decade 1870: “Loser”, 71; “Typical”, 2628; “Winner”, 197 communities 

Loser Typical Winner
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Appendix 5: Decade 1880: “Loser”, 63; “Typical”, 2650; “Winner”, 183 communities 

Loser Typical Winner
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Appendix 6: Decade 1888: “Loser”, 99; “Typical”, 2549; “Winner”, 248 communities 

Loser Typical Winner
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Appendix 7: Decade 1900: “Loser”, 54; “Typical”, 2544; “Winner”, 298 communities 

Loser Typical Winner



Population Cluster – Spatial-Temporal Analysis Appendix 

G 

 

 

 

Appendix 8: Decade 1910: “Loser”, 47; “Typical”, 2622; “Winner”, 227 communities 

Loser Typical Winner
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Appendix 9: Decade 1920: “Loser”, 130; “Typical”, 2667; “Winner”, 99 communities 

Loser Typical Winner
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Appendix 10: Decade 1930: “Loser”, 68; “Typical”, 2684; “Winner”, 144 communities 

Loser Typical Winner
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Appendix 11: Decade 1941: “Loser”, 109; “Typical”, 2693; “Winner”, 94 communities 

Loser Typical Winner
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Appendix 12: Decade 1950: “Loser”, 127; “Typical”, 2686; “Winner”, 83 communities 

Loser Typical Winner
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Appendix 13: Decade 1960: “Loser”, 99; “Typical”, 2387; “Winner”, 410 communities 

Loser Typical Winner
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Appendix 14: Decade 1970: “Loser”, 156; “Typical”, 2067; “Winner”, 673 communities 

Loser Typical Winner
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Appendix 15: Decade 1980: “Loser”, 114; “Typical”, 2272; “Winner”, 510 communities 

Loser Typical Winner
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Appendix 16: Decade 1990: “Loser”, 44; “Typical”, 2560; “Winner”, 292 communities 

Loser Typical Winner
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Appendix 17: Decade 2000: “Loser”, 39; “Typical”, 2592; “Winner”, 265 communities 

Loser Typical Winner
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Appendix 18: Long-term Mean of Population (1850-2000), Mean=1489, Median=585 

31 - 296 297 - 585 586 - 1324 1325 - 249567


