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Abstract 

“Space and time are among the most fundamental of notions. They provide a basis for 

ordering all modes of thought and belief” (Peuquet, 2002). For the dimension of space it is 

state of the art to store information about real world phenomena in geodatabases. The 

fundamental units of geography are called features (OpenGis_Consortium, 1999) which are 

implemented as rows of database tables including one column for the location on the 

earth’s surface. To provide appropriate standards for querying and analysing features the 

Open Geospatial Consortium had developed the relevant specifications. The most important 

concept was to extend the relational model defined by Codd (Codd, 1970) in order to 

integrate space into a data base. This concept is described in the simple feature 

specification (OpenGIS_Consortium, 2006a) where geometries representing a location on 

the earth’s surface are implemented as user defined data types. The simple feature 

specification is implemented on a widespread basis by major RDBMS vendors and is the 

state of the art technique for storing information about real world objects. 

Besides space the second fundamental dimension of our life is time (Peuquet, 2002). In the 

past much effort had been done to integrate time into databases. What was common to all 

developments was the extension of the relational model defined by Codd (Codd, 1970). But 

what is left until today is an agreement of major database vendors on how to integrate 

time. This is in sharp contrast to the dimension of space where there already exists an 

industry for spatial databases. 

The main goal of this work is to transform time into geometry in order to integrate it into 

geodatabases. The idea is mainly based on the concept of geometry of time within the ISO 

19108 standard (ISO, 2002). But already Frank (Frank, Egenhofer, & Colledge, 1998) had 

identified that it may be a natural approach to transform time into geometry which 

corresponds in some aspects to the perception of time of humans.  
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1. Introduction 

Based on the definition of Peuquet “Space and time are among the most fundamental of 

notions. They provide a basis for ordering all modes of thought and belief” it is the main 

motivation of this work to provide concepts of modelling space and time together in 

relational data base management systems (RDBMS).  

The underlying concept of RDBMS is the relational model developed by Codd (Codd, 1970) 

which is nowadays the most widespread data model used for database applications (Steiner, 

1998). To integrate the dimension of space into RDBMS much effort had been made in the 

past which resulted in the Open Geospatial consortium defining standards in the field of 

Geographic Information Systems (GIS). The “Simple Feature Access” standard is an 

important contribution to this thesis as it describes how space is conceived into RDBMS. The 

standard has been widely accepted as the main vendors in the field of GIS rely on it. 

Databases providing support for space are called geodatabases. Their support consists of 

providing spatial data structures, spatial operations, spatial indexing methods and much 

more. It is the result of the work of the Open Geospatial consortium and the acceptance in 

the GI community that there is a broad consensus on how space is used within RDBMS. 

Moreover the concepts of integrating space into RDBMS are proved to work as they are 

implemented on a widespread basis. In geodatabases it is possible to ask for the location of 

things or the spatial relationships of objects and their neighbours. 

In contrast to that there still is not a consensus on how time is integrated into RDBMS 

respectively geodatabases (Chomicki, 2005). In the past many concepts of temporal 

relational models had been developed as a basis for integrating time into RDBMS. But 

nowadays state of the art RDBMS lack at supporting time as they usually capture a single 

state of data, most often the current one (Steiner, 1998). None of the major RDBMS vendors 

provide a native support for time as they do for space. However database near applications 

which are working based on previously developed temporal concepts are available. One 

movement to overcome the lack of time support in geodatabases had been done by the 

International Standardisation Organisation (ISO). So far it developed a standard called “ISO 

19108 Geographic Information – Temporal Schema”. The standard provides concepts 

needed to describe the temporal characteristics of geographic information. As this standard 

had identified that when conceiving time into geodatabases then there are some analogies 
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between space and time. Hence within this standard the concept of geometry of time is 

introduced which is about representing time as geometry. The important thought behind 

that is that a geodatabase already provides the necessary functionality when time is 

represented as geometry. Hence a spatial framework consisting of data structures, 

operations, indexing methods and much more is reused in the temporal context.  

This thesis will follow the idea of representing time as geometry in order to integrate it into 

geodatabases. Therefore this work provides a formal basis to transform time into geometry. 

Based on this formal description this work provides a prototypical integration of time into a 

geodatabase.  

The scope of this work is to overcome the lack of time support and integrate time 

represented as geometry into geodatabases. This is based on fundamental findings of 

important contributions in the field of combining space and time in databases. Worboys 

identified that “much information which is referred to space is also referenced to time” 

(Worboys, 1994). Moreover Peuquet pointed out that “things change in space over time ... 

to exist is to have being within both space and time. “ (Peuquet, 2002). In her work Peuquet 

mentioned that in human history space and time were so basic to our understanding that 

they were regarded to the source of our world.  

Now integrating time into geodatabases provides a basis for ordering all modes of thought 

and belief as Peuquet (Peuquet, 2002) mentioned. It raises new perspectives and probably 

delivers interesting insights of data. A geodatabase providing support for time is able to 

answer the question where things are located and when they had happened. It is further 

possible to find out if things existed together because they occurred within the same period 

of time at the same place. How a place looked like ten days ago or how this place will look 

like in one year? These are the common scenarios of so called spatio-temporal issues as 

space and time are considered together. This work will point out that when time is 

represented as geometry it is possible to completely solve spatio temporal problems with 

the spatial framework of a geodatabase. 
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1.1 Hypothesis 

Based on identified analogies of the two fundamental dimensions space and time it is a 

natural approach to represent time as geometry in order to integrate it into a geodatabase. 

The spatial framework a geodatabase provides allows meaningful operations applied in 

temporal context. 

1.2 Time as Geometry 

This section gives a short introduction of the main part of this thesis.  

1.2.1 Theory 

The main idea of this work is to model time as geometry in order to integrate time into geo 

data bases. The formal basis for this approach is now introduced so for a detailed 

description it is necessary to read chapter 7. 

This work uses a discrete view of time that is absolute and not relative as defined by 

Einstein. Therefore the speed of time is assumed to be independent from an object’s own 

motion. But in this work time is always relative to an arbitrary origin which marks the 

earliest possible date specification. Further it is assumed that time is totally ordered and 

that it is possible to measure the distance between two date specifications. The next 

assumption is that time linearly extends from the origin to the future. Therefore it is not 

possible that time branches in the future or that time cycles in a repetitive manner. Once an 

event had happened it will never happen again at that time. It is assumed that any date 

specification uses the Gregorian calendar to identify years, month and days. The 

Coordinated World Time UTC is used to identify hours, minutes and seconds. As a result any 

date specification used for the formal description of the approach is of the form 

{YYYY.MM.DD HH:MIN:SEC}. The smallest time unit used in this work is one second.  

In order to transform a date specification into geometry it is necessary to transform date 

specifications into numbers. Therefore an interval scale based view of time is defined in 

chapter 7.3. The natural numbers are the underlying values of any transformed date 

specification. Chapter 7.4 identifies two functions which are necessary to transform date 

specifications into geometry and geometry back into date specifications. The functions are 

described on a formal basis, their implementation is provided in chapter 8.4. Finally in 

chapter 7.5 the formal description provides a mapping from temporal primitives to 

geometric primitives. Therefore an instant of time is represented as point geometry and a 
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period of time is represented as simple line geometry. As a result the following figure 

summarises the process of transforming time into geometry. 

 

Figure 1 Transforming time into geometry 

1.2.2 Methods for Implementation 

The implementation of the provided formal description is described in chapter 8. It provides 

the necessary implementation steps to integrate time into geodatabases. Before time is 

converted into geometry time is mapped onto the SQL-92 data type TIMESTAMP which 

stores an anchored position in time at a granularity of seconds. Any relative temporal 

information is mapped onto the SQL-92 data type INTERVAL DAY TO SECOND. The goal of 

the implementation is to integrate the transformation functions as database functions 

which are described in chapter 8.4. Oracle Express Edition including Oracle Locator is used 

as a database including a spatial framework. It provides a rich spatial framework consisting 

of a spatial data type, spatial operations, spatial analytical methods, indexing methods and 

much more. It is also compliant to the Open Geospatial simple feature specification as it 

provides functions to transform geometry from its native representation into a well known 

binary or well known text representation. As the transformation functions are implemented 

and time therefore is represented as geometry it is possible to reuse the existing spatial 

framework in temporal context. Chapter 8.5 provides a mapping from temporal operations 

to spatial operations. For each spatial operation it is evaluated if it provides a meaningful 

result in temporal context. For example if one period is during another period this question 

is transformed into if one line geometry is inside another line geometry. Finally the power of 

the spatial framework applied in temporal context is shown with a bus station scenario 

where spatio temporal questions are provided.  
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1.2.3 Data 

To test the outcome of the implementation a bus scenario is provided in chapter 8.6. The 

goal of the bus station scenario is to provide a basis for interesting spatial, temporal but also 

spatio temporal questions. The following figure provides an overview of the bus station 

scenario. 

 

Figure 2 Bus station scenario 

There are three bus lines called A,B and C. Each bus line has a number of stations where the 

bus stops. At each bus station there is a schedule providing the information when a bus 

arrives. The time a bus stops at a bus station is implemented as a period as it is close to 

reality that a bus takes time at the station when passengers enter or exit. For this scenario it 

is assumed that a bus needs 15 seconds from the arrival to the departure at a station.  

In order to reuse the functionality of the spatial framework the period is transformed into a 

line geometry via the Time_To_Geometry function and the location of the bus station is a 

spatial point. As a result this work should be able to answer the following questions: 

• Find those stations which are within a walking distance of 200 meters of a given 

location 

• Find those stations at which a bus arrives or departures within a given period of time 

• Find those stations within a walking distance of 500 meters where a bus stands at a 

given time point 

• Based on a given location and a given time find those stations where someone will 

arrive before a bus and must no wait longer than for ten minutes at that station. A 

walking speed of 5km/h is assumed. 
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1.3 Expected Results 

The expected result of this work is the integration of time into a geo database where time is 

represented as geometry. To accomplish this goal a formal basis for the transformation of 

time into geometry must be provided. A prototypical implementation within a geo database 

gives answer about the feasibility of the provided formal description. Finally when 

integration is finished it should be possible to answer the previous mentioned spatial, 

temporal and spatio temporal questions. Therefore the questions are translated into SQL 

statements where both spatial and temporal problems are solved via the spatial framework 

as time is represented as geometry. 

1.4 Issues not covered 

This work assumes time to be a finite continuum and therefore a discrete view of time is 

used. For the provided concept of transforming time into geometry time is interpreted to be 

absolute and not relative. Hence this work is based on a Newtonian view of time rather than 

Einstein’s relativity theory. As a result of this view of time there are a number of topics not 

covered by this work including the hot topic are of moving objects. Güting and Schneider 

provide (Güting & Schneider, 2005) an important work in the subject area of moving 

objects. Aleshkeikh (Alesheikh) and Somayeh (Somayeh & Alesheikh) provided an 

appropriate entry point in the subject area. 

Another issue that is not covered by this work is the visualisation of temporal information. 

Of course the provided examples and use cases show graphical representations of time but 

it is not the scope of this work to provide concepts related to the visualisation.  

Real time systems are not covered by this work too. It is assumed that there is period of 

time that goes by from making an observation in the real world to storing that information 

in the database.  

In the past dozens of concepts of temporal relations had been developed. It is beyond the 

scope of this work to evaluate and compare them in detail but they serve as an important 

basis for all thoughts about this work. 

1.5 Audience 

This thesis may be a contribution to everyone interested in modelling space and time in 

relational database management systems. As this work integrates time into geo databases it 

may also be of interest in the field of Geographic Information Systems.  
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1.6 Structure of the Thesis 

The following figure provides information of the structure of this thesis. 

 

Figure 3 Structure of the thesis 

This work is separated into one part providing an evaluation of relevant literature in the 

subject area which is called background research. The second part is the main part of this 

work. It is separated into a formal description for the transformation of time into geometry 

and a prototypical implementation of that description within a geo database. Each 

previously evaluated paper of the background research is more or less a contribution to the 

main part.   
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Background Research 
 

The scope of this section is to describe and identify the main contributions to this work. This 

work is based on the following fundamental concepts. The first is the relational model 

defined by Codd (Codd, 1970) as it provides the basic modelling paradigms for nowadays 

state of the art Relational Database Management System (RDBMS). Based on this the 

second important concept is how the dimension of space is conceived into RDBMS, so called 

Geo Databases. The related standards of the International Standardisation Organisation 

(ISO) and the Open Geospatial Consortium (OGC) are evaluated. The third important 

concept is how the dimension of time is conceived into RDBMS. Previously developed 

modelling paradigms and concepts extending the relational model to the temporal domain 

are described. The background research is completed by the ISO Standard “ISO 19108 

Geographic Information –Temporal Schema” which introduces the idea of geometry of time.  
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2. The Relational Model 

The relational model was first introduced by Codd (Codd, 1970) in his paper “A relational 

Model of Data for Large Shared Data Banks”. Codd published follow-up papers where he 

brought his idea on a mathematical framework (Codd, 1972). The main idea of this model 

was to protect users from having to know how data is organized in the machine, hence in 

such a model data are described only by its natural structure (Codd, 1970). At the time of his 

paper there existed ordering, indexing and access path data dependencies which he 

identified. The scope of the relational model was to overcome these data dependencies. 

Nowadays the relational model is the most widespread data model used for database 

applications and is implemented in state of the art relational database management 

systems (Steiner, 1998). Jensen (Jensen, Soo, & Snodgrass, 1994) pointed out the success of 

the relational model is related to its simplicity.  

The relational model consists of a set of relations.  

 

“Given sets S1 ,S2  . . .  , Sn,  (not  necessarily distinct), R is a relation on these n sets if it is a 

set of n- tuples each of which has its first element from S1, its second element from Sz , and 

so on. More concisely, R is a subset of the Cartesian product S1 x S2 x .... x Sn.” (Codd, 1970). 

 

To better understand this mathematical formal definition a more general definition of a 

relation is needed. Steiner defined a relation in its simplest form as the Cartesian product of 

its domains (Steiner, 1998). From Codd’s perspective a relation is the provided data 

structure in the relational model to store information about real world phenomena. A 

relation consists of domains which describe the properties of such phenomena. As Codd 

mentioned a relation can be viewed as a two dimensional table, where a row in that table is 

called a tuple (Codd, 1970). 

BUS_STATION ARRIVAL DEPARTURE 

FIRST_BUS_STATION 01.01.2008 07:40 01.01.2008 07:42 

SECOND_BUS_STATION 01.01.2008 08:30 01.01.2008 08:32 

Table 1 A relation viewed as a two dimensional table 
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2.1 Integrity constraints 

To apply operations and integrity constraints on relations Codd (Codd, 1970) introduced the 

concepts of primary key and foreign key. He defined a primary key as the one domain or 

combination of domains which uniquely identify each tuple of a relation. Hence, a primary 

key is non redundant. To enable cross references between relations foreign keys are 

defined. Codd defined a foreign key as the one domain or combination of domains which is 

not the primary key of a relation but the primary key of another relation. In his definition it 

is not excluded that the two involved relations of a cross reference are the same. 

2.2 Normalisation 

Another concept introduced by Codd is called normalisation. To describe this concept it first 

must be distinguished between simple domains and non simple domains. Simple domains 

are domains whose elements are atomic they only consist of scalar values. Non simple 

domains consist of elements whose values include for example relations (Codd, 1970). The 

process of eliminating such non simple domains from a relation is called normalisation. 

Codd described a common way of this process by excluding non simple domains from the 

original relation and redefine them as new relations. They are related to their original 

relation through the concept of a foreign key. As a result a normalised table only consists of 

simple domains and can again be viewed as a two dimensional table.  

Codd further introduced permutation, projection, join and other operations applied to 

relations. For example a join operation is understood as setting relations in relation to each 

other through a domain they have in common (Codd, 1970). Moreover he mentioned as 

time progresses a relation may be subject to insertion of additional tuples. Existing tuples 

may be deleted or altered.  

All the basic ideas and concepts of Codd are implemented in nowadays state of the art 

relational database management systems. The implemented counterpart of a relation is 

called a database table. Domains of relations are implemented as attributes of such tables. 

The concepts of primary key, foreign key are implemented as integrity constraints. 

Normalisation of relations as an idea has become accepted although there are reasons why 

the process of normalisation may be relaxed. The operations applied to relations are 

implemented too. 
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2.3 Structured Query Language SQL 

What has come along with all this is the definition of a computer language which makes it 

possible to use the relational model in all its aspects. Such a standard is the Structured 

Query Language (SQL). Originally SQL had been developed by Donald D. Chamberlin and 

Raymond F. Boyce under the name “SEQUEL”. The scope of it was to access data of relations 

based on the relational model of Codd (Chamberlin & Boyce, 1974). Later on this language 

had been adopted as a standard by the International Standardisation Organisation (ISO). In 

state of the art RDBMS the standard SQL-92 of the year 1992 is implemented. Following 

standards like SQL:1999 or SQL:2003 are not implemented on a widespread basis 

(Snodgrass, 2000). The SQL in its nowadays implemented form provides a means of using 

the concepts related to Codd on a computational basis.  

2.4 Contribution 

The relational model and the SQL standard are both main contributions to this work. They 

provided the basic concepts behind state of the art database management systems. Steiner 

(Steiner, 1998) summarises that a data model consists of data structures, data operations 

and integrity constraints. Data structures provide a means to store data, operations applied 

to them provide a means to query and manipulate this data. Finally integrity constraints 

provide a means to keep data integer and avoid redundancy. As it is the scope of this work 

to model time into geo databases the above presented concepts need temporal and spatial 

counterparts. Space and time had previously considered separately to fit into the relational 

model. On the one hand geo databases provide data structures and operations dealing with 

spatial data types. On the other hand temporal data models consist of temporal data 

structures, temporal operations and temporal integrity constraints. How space and time are 

conceived into the relational model is discussed in the following chapters. Within the main 

part of this work concepts are provided how the two dimensions are together considered 

into the relational model. 
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3. Simple Features 

The goal of this chapter is to provide an overview of state of the art standards and 

techniques to use spatial information inside data bases, so called geo data bases. 

The Open Geospatial Consortium (OGC, available at http://www.opengeospatial.org/) is a 

non profit organisation which was founded in 1994. The major task of the OGC consists in 

developing open standards and specifications in the field of GI-Systems. Their developed 

standards are separated into Abstract Specifications and Implementation Specifications. The 

former type of standard is written at an abstract level and often in relation with an 

according standard of the International Standardisation Organisation (ISO). The latter type 

of standard is considered for practical use and is mainly based on Unified Modelling 

Language (UML) models. Therefore such a standard is independent from specific software 

architecture. 

For this thesis there are two abstract specifications important. The first is called “Topic 2 – 

Geometry” which is also an ISO standard (ISO, 2003) called “ISO 19107 Geographic 

Information – Spatial Schema”. In this specification the different types of geometry are 

described in detail using UML models. Figure 4 shows the basic geometry classes. 

 

Figure 4 Geometry basic classes (ISO, 2003) 
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3.1 Definitions 

To understand the different types of geometry this standard provides important definitions 

on the following terms: 

 

Position is “described by a single set of coordinates within a coordinate reference system” 

(ISO, 2003). 

 

Interior is the “set of all direct positions that are on a geometric object but which are not on 

its boundary” (ISO, 2003). 

 

Boundary is the “set that represents the limit of an entity” (ISO, 2003). 

 

Exterior is the “difference between the universe and the closure” (ISO, 2003). 

 

With these definitions in mind it is possible to define the geometric primitives which are 

relevant for this thesis.  

 

Point is a “0-dimensional geometric primitive which represents a position” (ISO, 2003). 

Further it states that the boundary of a point is the empty set the interior of a point is its 

position.  

 

Curve is a “1-dimensional geometric primitive representing the continuous image of a line” 

(ISO, 2003). The boundary of a curve is defined as the set of points at either ends of the 

curve. As a curve has a direction the first point is called start point and the last point is 

called end point. The interior of a curve consists of all points between the start and end 

points based on an interpolation. A common method is linear interpolation, where the start 

and end points are connected by a straight line. 

 

There exist definitions on surface and many other types of geometry too, but they are not 

relevant to this work.  
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3.2 Features 

Based on these important definitions on types of geometry the second abstract specification 

important for this thesis is called “Topic 5 – Features”. Within this specification it is defined 

how real world phenomena are modelled into a world of features. “The fundamental unit of 

geographic information is called a feature” (OpenGis_Consortium, 1999). 

3.3 Geometries 

In addition to the above mentioned abstract specifications one implementation specification 

is an important contribution to this work as well. It is separated into two parts, the first part 

is called “Simple Feature Access – Part I: Common Architecture” and it defines the different 

types of geometries which are considered as a basis for simple features. Figure 5 shows an 

UML model of the considered types of geometry. 

 

Figure 5 Geometry class hierarchy (OpenGIS_Consortium, 2006a) 
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3.4 Spatial Operations 

Further this standard defines the properties for each type of geometry as well as relational 

operations applied to them. For example the well known Dimensionality Extended Nine-

Intersection Matrix (DE-9IM) describing the relations between two geometries is provided 

(OpenGIS_Consortium, 2006a, S. 35). This matrix is based on the assumption that geometric 

primitives have an interior, a boundary and an exterior. 

 

Figure 6 DE-9IM Matrix (OpenGIS_Consortium, 2006a) 

The second part of the simple feature specification is called “Simple Feature Access – Part II: 

SQL Option” and it defines how features (remember the above mentioned standard “Topic 5 

– Features”) are conceived into the relational model defined by Codd (Codd, 1970). Hence 

the scope of this part is to describe a SQL schema that supports storage, retrieval, query and 

update of collections of features (OpenGIS_Consortium, 2006b). Besides the SQL 

implementation option there are other options like the implementation option based on the 

Component Object Model (COM). For this work only the SQL option is considered. 

3.5 Geodatabases 

In the SQL specification a table is called feature table within a geodatabase. Columns of such 

a table are whether spatial or non spatial and describe the attributes of a feature which 

itself is represented as a row of a feature table. Non spatial attributes are derived from the 

SQL implementation and spatial attributes are derived from the OGC Implementations 

Specification. The spatial attributes may be implemented as user defined data types (UDT) 

(OpenGIS_Consortium, 2006b). Further this standard identifies different SQL operations 

applied to feature tables as well as how the different types of geometry are stored in a 

feature table. 
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4. About Time 

The scope of this chapter is to give an introduction to the time domain. General concepts, 

definitions as well as methodologies from the main contributors of the subject area are 

identified. The chapter starts with abstract concepts related to the time domain like the 

taxonomic model developed by Frank (Frank, Egenhofer, & Colledge, 1998) which identified 

different types of time. Further different views of time and the topic how time can be 

conceived into computer systems are provided. The chapter ends up with the definitions of 

time related data types within relational database managements systems. 

4.1 Types of Time 

What is time and how do we understand time? Such questions are almost very philosophical 

and cannot be answered by this work. To give an appropriate introduction Frank (Frank, 

Egenhofer, & Colledge, 1998) had developed a taxonomic model which identified different 

types of time. Of course in reality there is only one time, the different types of time refer to 

our conception of time and how time can be conceived into computer systems. He had also 

identified that on different types of time different operations may be applied. Figure 7 

shows the different types of time as identified by Frank (Frank, Egenhofer, & Colledge, 

1998). 

 

Figure 7 Types of Time (Frank, Egenhofer, & Colledge, 1998) 

The first consideration is whether an event occurs at an instant or it has duration over a 

period of time. Instants of time are absolute and represent a point in time. Once this time 

point had occurred it is forever in the past. An example for a time instant is January 1
st

. In 

contrast, a time interval represents duration between two time instants. Intervals are called 
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periods if they are considered to be absolute. For example the period between 1
st

 January 

and 7
th

 January is an absolute period defined by its two delimiting time instants. If intervals 

only represent duration then they are considered to be relative. For example the expression 

“two weeks” is considered as a relative interval. The according data types to instants, 

intervals and periods are discussed in chapter 4.5. 

The second consideration is whether time is interpreted linear or cyclic. To use ordinal or 

interval scale values is the third consideration. Moreover an important role plays the 

ordering of events. As Frank mentioned linear time may have total order, a partial order or a 

branching order. In a total order system one event occurs after the other. Linear time 

extends from the past to the present throughout the future. From Frank’s perspective a 

partial order exists if the observations of two observers are considered together but each 

observation do not know its temporal relation to the other one. 

Branching time is defined as linear time with different future states. One observation may 

have multiple states for the same period of time. This type of time is useful for planning 

scenarios or predictive tasks. Figure 8 shows how time branches from the past to the future. 

 

Figure 8 Branching Time (Ott & Swiaczny, 2001) 
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When time is interpreted as cyclic then it has a repetitive pattern. For example many 

cultural or biological processes, like the four seasons or breading seasons, occur on a cycling 

basis (Frank, Egenhofer, & Colledge, 1998). One character of cycling time is that an ordering 

of events is meaningless as for example morning is before but also after evening. 

 

Figure 9 Cycling Time (Ott & Swiaczny, 2001) 

Lastly Frank identified multiple perspectives of time which is often referred to dimensions of 

time. This topic is discussed in chapter 4.3. 

As a summary it should be mentioned that many of the presented considerations can be 

combined. A total order, a partial order or a branching order are the possibilities if linear 

time is used. Further the scale of measurement can be considered too. Frank also 

introduced the concept of tolerance. He stated that the temporal information of 

observations may include errors of measurement. To better compare temporal information 

a tolerance may be used to define at what precision to values are considered equal. This 

concept is related to the concept of using a discrete view of time which is discussed in 

chapter 4.4. 

4.2 Abstractions of Time 

From the beginning of research the view of time either as absolute or relative produced 

much discussion. Peuquet (Peuquet, 2002) mentioned that from ancient history until 

Newton time always had been considered to be absolute. But with the first relative theory 

of Einstein the understanding changed to a relative view of time. It states that the relativity 

of time is related to the movement of objects. In the context of this work the movement of 

objects is the topic of moving objects which is not covered within this work as mentioned in 

chapter 1.4. Therefore this work interprets time to be absolute rather than to be relative. 

Chapter 7.2 provides the definition of an absolute view of time as a basis for the 

implementation described later in this work. 
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4.3 Dimensions of Time 

In literature there is much discussion about dimensions of time which Frank (Frank, 

Egenhofer, & Colledge, 1998) had identified as multiple perspectives of time. In general 

there are two dimensions, valid time and transaction time. Any other dimension is defined 

as user defined time (Snodgrass, 1992). 

4.3.1 Valid Time 

Valid time is the defined as the “time when a fact is true in the abstracted reality. “ (ISO, 

2002). It defines the time of an observation had existed in the real world. The valid time 

dimension is also called the valid time period which is discussed in later chapters. Valid time 

often describes the lifetime of real world phenomena. As Jensen stated all facts have a valid 

time by definition (Jensen, 2000). One important fact is that in the context of database 

systems valid time must always be provided by the user it can never be provided by the 

database itself (Steiner, 1998). 

4.3.2 Transaction Time 

Transaction time is defined as the “time when a fact is current in a database and may be 

retrieved.” (ISO, 2002). It is the time the recorded fact of the reality is available in the 

database. Hence this dimension of time does not say anything about when the recorded fact 

was valid in the real world. Jensen stated that the period from insertion to deletion is the 

duration of transaction time (Jensen, 2000). Steiner (Steiner, 1998) mentioned that there is 

often a delay between when a fact is observed in reality and when a fact is true in the 

database. Hence transaction time is an important dimension of time as it provides the 

possibility to query database changes. Transaction time must always be provided by the 

database system, it cannot be provided by the user. 

4.3.3 User Defined Time 

Any other dimension of time except from valid time and transaction time is referred to user 

defined time. An real world object may have zero, one or more user defined time 

dimensions. For example the periods of legal aspects can be modelled as user defined time. 
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Valid time and transaction time can be viewed as two orthogonal axes (Ott & Swiaczny, 

2001). The following figure shows the relations between valid time and transaction time. 

 

Figure 10 Valid Time and Transaction Time (Ott & Swiaczny, 2001) 

Valid time and transaction time are synchronic as long as the period of valid time overlaps 

the period of transaction time. In such a case the observation of the real world is valid while 

it is also stored within the database. In Figure 10 this relation between valid time and 

transaction time is called “line of synchrony”. The time delay between the occurrence in the 

real world and the storage in the database is called “time lack of update”. When an event is 

stored in the database before it happens in the real world it is called a “projection of future 

state”. Further Ott and Swiaczny (Ott & Swiaczny, 2001) provided an overview of possible 

queries if both dimension are supported. These queries are shown in Figure 11. 

 

Figure 11 Queries on both dimensions of time (Ott & Swiaczny, 2001, adoptep from 

Langran) 
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4.4 Discrete vs. Continuous 

There are two possible abstractions of time called continuous view and discrete view. Frank 

(Frank, Egenhofer, & Colledge, 1998) mentioned that in a continuous view time is dense and 

therefore between any two time instants another one can be inserted. Thus such an 

approach is isomorphic to the real numbers (Steiner, 1998). In contrast in a discrete view 

temporal information is isomorphic to the natural numbers. As a result between any two 

time instants no other time instant can be inserted. In her work Peuquet (Peuquet, 2002) 

pointed out the important difference between both views. She stated that the continuous 

view focuses on space and time as the subject matter. In such a view time and space are the 

two important subjects of interest and everything that exists within these subjects is just 

derived information. In contrast in a discrete view objects are the subject matter (Peuquet, 

2002) and the derived information is about space and time. 

Roosman (Roosmann, Busch, Gorczyk, & Mauersberger, 2003) and others said in their work 

that discrete time is used if time is measured at certain time points or time intervals and the 

variation is discontinuous between them. In contrast a continuous time may be more 

appropriate to describe processes as it probably will exist a theory to interpolate a value for 

every time point on the continuous time axis. As a continuous view of time is more 

appropriate to describe processes and therefore is more appropriate to describe the 

movement of objects this view tends to apply to the topic of moving objects which is not 

covered by this work. Moreover Steiner stated that as using time in relational database 

management systems is build on a discrete computing device it also may be used in a 

discrete manner (Steiner, 1998). Clifford and Tansel mentioned that “... from a practical 

standpoint the natural numbers seem a more useful candidate for modelling properties of 

database time.” (Clifford & Tansel, 1985). Further they mentioned in their work that the 

discrete view is more appropriate as a recording instrument has at a best a finite quantum. 

Snodgrass (Snodgrass, Temporal Databases, 1992) provides several reasons why a discrete 

model is more appropriate than a continuous model in the context of relational database 

management systems. For example he stated that observations are already measured on a 

discrete basis. Moreover we all tend to use time on a more discrete view as we are using 

clocks and calendars.  

In a discrete view time is abstracted as a finite dimension with equal sized time instants 

(Steiner, 1998). Clifford and Tansel (Clifford & Tansel, 1985) defined the discrete view as a 
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set of equal distanced points, these discrete time points are called chronos. Between two 

consecutive time points there is duration of one time unit. The points are totally ordered 

and relative to an origin.  

 

Figure 12 Chronos with different granularities (Ott & Swiaczny, 2001) 

Chronos are the main concept when modelling time discrete “...  the sequence of chronons 

may be thought of as representing a portioning of the real time line into equal-sized, 

indivisible segments ...” (Roosmann, Busch, Gorczyk, & Mauersberger, 2003). One chronon 

itself has no duration, but the temporal distance between two consecutive chronos has 

duration. The ISO Standard 19108 introduced the Gregorian calendar as a prominent 

example of a discrete view of time. The smallest time unit is one day. Within one day 

humans use clock time to discrete time. Therefore clock time in combination with the 

Gregorian calendar is a very popular discrete view of time and is the basis for this work. 

Frank introduced that a discrete view can be built with varying degrees of tolerance but also 

with different levels of granularity. The granularity is the smallest unit used in a discrete 

view, whereas the tolerance is equal to or greater than the granularity. A discrete model can 

have a granularity of one day, but for specific applications a tolerance of one week may be 

preferred. Therefore two time instants are considered equal if they fall into the same level 

of tolerance. For example consider a granularity of one day. Now compare December 31
st

 

2007with January 1
st

 2008 at level of granularity they are not equal. If a tolerance of one 

year is used they are still not equal but for example if a tolerance of one week is used they 

may be considered equal. 
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4.5 Temporal Data types 

Temporal values are the core of temporal applications, they are the stuff of which temporal 

applications are made as Snodgrass (Snodgrass, 2000) mentioned in his work. Data types are 

needed to model time in relational database management systems. In literature there are 

three main types defined: instants, intervals and periods. These types had been defined by 

the International Standardisation Organisation (ISO) within the standard “ISO 19108 

Geographic Information – Temporal Schema” which is an important contribution to this 

work. 

4.5.1 Instants 

“An instant is an anchored location on the time line” (Snodgrass, 2000). In general an instant 

represents a point in time. Once it has occurred it is forever in the past and will not occur 

again (Snodgrass, 2000). Within the SQL-92 standard there are two different data type 

definitions for instants. The first data type is called “DATE”. According to the definition a 

value of data type date includes calendar date as well as clock time. The default calendar is 

the Gregorian calendar with UTC as clock time. The clock time is modelled with a precision 

of a second. The newer data type for instants is called “TIMESTAMP”. Timestamps are able 

to represent clock time up to a precision of nanoseconds. Further this data type provides 

three possibilities of time zone support. First is no support only UTC time is stored. The 

second possibility is to store the time zone offset from UTC in the temporal values. This 

approach is called timestamp with time zone. The third possibility is called timestamp with 

local time zone. For this approach the time zone offset is not stored in the values but values 

are always represented in the session time zone of the user. 

The ISO standard (ISO, ISO 19108 Geographic information - Temporal schema (draft 

version), 2002) defines an instant as a “0-dimensional geometric primitive representing 

position in time.” (ISO, 2002). This geometric view of a time instant is considered as one of 

the main ideas of this work and described in chapter 7.5.1. 

4.5.2 Intervals 

“An interval is an unanchored contiguous portion of the time line” (Snodgrass, 2000). 

Intervals are relative they represent the temporal distance respectively the duration 

between two instants (Snodgrass, 2000). For example the temporal information “3 weeks” is 

an interval. As instants also intervals are defined within the SQL-92 standard. From a general 
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perspective they are often mixed up with periods which are described in the next chapter. 

There are two different types of intervals defined. The first type of interval is called “year to 

month” interval. The second interval type is called “day to second” interval (Snodgrass, 

2000). This distinction is a result of the unsteady character of time. For example a year 

consists of 12 month this is always the same. But a year either consists of 365 days or in the 

case of a leap year of 366 days. Hence it is not possible to define an interval type of “year to 

day” as the number of days varies. The same applies to months. Therefore the separation 

into two types of intervals had been done. The “year to month” interval provides the 

possibility to store intervals from years to months. The interval type “day to second” 

represents intervals from days to seconds. 

4.5.3 Periods 

Periods are not defined in the SQL-92 standard they are part of the SQL 3 standard. At the 

moment they are not implemented within a state of the art relational database 

management system. Snodgrass (Snodgrass, 2000) defines a period as “an anchored 

duration of the time line”. Further he stated that they may had not been included in state of 

the art RDBMS as they can be implemented as a pair of two time instants. To express the 

time a fact is valid periods are used. Periods are most often interpreted as closed-open. This 

means that the last time instant of the period is not included. In contrast if a closed-closed 

approach is used then the last time instant is included. There are less prominent options 

called open-open and open-closed (Snodgrass, 2000). 

The lack of support of a period data type in current databases is one of the main 

motivations of this work. Further the ISO standard (ISO, ISO 19108 Geographic information - 

Temporal schema (draft version), 2002) defines a period as a “one-dimensional geometric 

primitive representing extent in time.” (ISO, 2002). This geometric view of a period is 

considered as one of the main ideas of this work and described in chapter 7.5.2. 
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4.6 Subtleties 

The following sub chapters provide a short description of well known subtleties. Snodgrass 

(Snodgrass, 2000) provided an extensive description of time related problems in his work. 

4.6.1 Leap Year 

The first subtlety is related to leap years. As it is strictly defined when a year is a leap year 

they are not a general problem. But as you cannot assume a year to be 365 days long it was 

not possible in the past to define only one interval data type. As discussed in chapter 4.5.2 

there are “year to month” and “day to second” types of intervals. Further interval 

calculations which include February 29
th

 must always carefully considered. Computer 

systems in general do not have a problem to handle the leap year topic but the ones who 

are interpreting the output from computer systems must always be aware of the impact of 

interval calculations in leap years. 

4.6.2 Leap Seconds 

Leap seconds are introduced by a committee (Snodgrass, 2000) with the scope to adjust the 

atom clock to the astronomic clock. The main problem with leap seconds is that their 

occurrence is agreed by a committee and is not strictly defined as leap years. This 

committee agrees on a date when the leap second should be implemented. Most often they 

are implementing it in the last minute of year which then consists of 61 seconds. Leap 

seconds cannot be considered in relational database management systems as their 

implementation date is not predictable.  

4.6.3 Daylight Saving Time 

The existence of daylight saving time brings along some heavy subtleties. The first impact to 

consider is that a day cannot be assumed to last for 24 hours. In October the day where 

daylight saving time comes into play lasts for 25 hours as the interval between 2 pm and 3 

pm is repeated. The according day in March lasts only for 23 hours as the interval between 2 

pm and 3 pm does not exist. The next problem is related to the periods where time changes. 

As the period in October repeats what this does mean to things happened in that period. 

The period between 2pm and 3pm in March does not exist therefore a data base system 

must not allow to store temporal information within this period.  
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5. Temporal Relations 

This chapter provides an overview of important concepts of integration time into RDBMS. 

5.1 Timestamps 

Timestamps are the main method to implement the valid time dimension on database level. 

Any other dimension of time like transaction time also relies on this methodology. Time 

stamping data is common to all previously developed temporal data models but there are 

important differences in considering what is time stamped within a database and how data 

is time stamped. On the one hand there are concepts time stamping on tuple level, on the 

other hand there are concepts time stamping on attribute level. This is either implemented 

through a pair of time instants delimiting a period or as a single time instant.  

5.1.1 Attribute Level 

Concepts allowing attributes being time stamped have the advantage that not only for the 

tuple but also for a particular attribute the valid time period is provided. This is 

implemented by adding two timestamp attributes for each attribute of interest of a 

temporal relation. According to Kaiser (Kaiser, 1998) one major drawback is that an 

attribute now consists of a triplet of attributes. Such a triplet consists of the attribute itself 

and two time stamp values defining its valid time period. In Codd’s original perspective 

(Codd, 1970) such a relation consisting of triplets has non atomic attribute values. Hence, 

first normal form is already violated through this fact. Concepts like classification of 

attributes (Kaiser, 1998), or temporal partitioning (Snodgrass, 2000, S. 206) try to overcome 

this problem by grouping attribute triplets together into new relations and cross reference 

them via a foreign key. Kaiser (Kaiser, 1998) classified attributes into time stamp attributes, 

time independent attributes and time dependent attributes. On the basis of this 

classification he divided a relation into one relation for each class of attributes. As result the 

original relation is separated into one including the primary key and the valid time period 

and other relations containing the same classes of attributes. They are all cross referenced 

to the original table via foreign key concepts. In the strict case each attribute with its related 

time stamps must be implemented as a relation and cross referenced via foreign key 

concepts. In practice it would be an enormous effort to implement a model where for each 

original attribute a relation is maintained.   
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5.1.2 Tuple Level 

Another approach is to time stamp the valid time period on tuple level. This is implemented 

by adding two time stamp values only to the relation and not to an attribute. Hence, each 

row of database table now has the valid time period defined. As a result all the attributes of 

a row are only valid within this period. Hence it is not possible that a particular attribute has 

a different valid time period. The advantage of this approach is that attributes remain 

atomic, so first normal form is not violated. The disadvantage is that such a concept 

generates vertical anomalies (Steiner, 1998) as the primary key is not unique anymore. The 

challenge is to find new uniqueness concepts which take the valid time period on row level 

into account. The concepts are described in chapter 5.3.2. Other concepts like coalescing 

(Snodgrass, 2000, S. 159) which aim at removing unnecessary duplicates (duplicates with 

the same values, except the timestamp values) are not without controversy in literature. 

This work will further use time stamping on tuple level as the preferred concept.  

5.1.3 Interval representation 

According to Clifford and Tansel (Clifford & Tansel, 1985) there are two different concepts to 

define the valid time period. The first approach is an interval representation, where the 

interval is defined either as two timestamps or as a period data type. The disadvantage of 

the interval representation is that without further constraint approaches it is possible to 

define overlapping periods. Moreover workarounds are needed to define that the valid time 

period is valid until now. Such workarounds are described in chapter 5.4. When interval 

encoding is used it must be considered whether to use closed-closed or closed-open 

intervals. 

5.1.4 Point representation 

The second approach mentioned by Clifford and Tansel (Clifford & Tansel, 1985) is called 

point representation. The start of the valid time period is implemented by one timestamp 

on the tuple. The end of the period is defined by the timestamp of the next (chronological) 

tuple. The disadvantages of the point representation are that the valid time period is only 

implicit defined on a tuple as the end of the period is only available through the 

chronological next tuple. Hence very complex database queries with sub queries are 

required for answering simple temporal questions.  
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5.2 Modifying Temporal Relations 

Inserts, updates and deletes are the three important manipulation operations which can be 

applied to database tables. Insert operations are adding new rows to tables, update 

operations are modifying attributes of existing rows and delete operations are deleting 

existing rows. In the case of temporal relations each operation has a temporal counterpart. 

In his work Chomicki (Chomicki, 2005) pointed out that at least from an abstract point of 

view there are no differences between standard operations and their temporal 

counterparts. In practice the SQL statements for insert, update and delete operations on 

temporal relations are getting quite complex. In temporal relations there are some issues to 

consider which Snodgrass (Snodgrass, 2000) described in his work. He developed a 

classification of modifying operations where he distinguishes between current 

modifications, sequenced modifications and non sequenced modifications. For this work 

only sequenced modifications are of interest as they apply to the past, present and future 

(Snodgrass, 2000). It is assumed that the valid time dimension is implemented via two time 

stamps on tuple level. Sequenced modification operations are further assumed to comply 

with the SQL-92 standard. Each operation is described in the following chapters. 

5.2.1 Insert 

In a sequenced insertion the user or the application must provide the valid time period. The 

challenge of the temporal insertion statement is to maintain integrity. Hence the primary 

key as well as foreign keys must not be violated. Snodgrass (Snodgrass, 2000, S. 189) had 

defined the following steps in the case of a sequenced insert. The first step of Snodgrass 

recommendation is to maintain entity integrity. To accomplish this check the SQL statement 

is expanded to check whether there are rows with the same primary key overlapping with 

the provided valid time period. The second step is to maintain referential integrity. 

Therefore the statement is expanded to check whether there exist rows in the referenced 

table which cover the provided valid time period with their own valid time period. The third 

step further checks if the periods of validity of the rows of the referenced table have no 

gaps. Snodgrass stated that it is up to the application whether the integrity is directly 

checked within the insert statement or through database triggers or assertions.  
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5.2.2 Update 

A sequenced update is the temporal counterpart of the standard update operation. It is 

assumed that the application provides the valid time period which applies to the row after 

the update operation. In the following discussion this period is called period of applicability 

(PA). In contrast the valid time period (PV) is the period before the sequenced update. 

Snodgrass (Snodgrass, 2000) identified four cases of how the PA and the PV have to be 

considered in the case of an update operation. 

 

Figure 13 Temporal Update Cases (Snodgrass, 2000, S. 196) 

In the first case the PA is within the PV. The original PV is separated into three parts. The 

first part extends from the original start of the PV to the start of the PA. The attribute values 

of the original row remain for this part. The second part is the PA it itself. The attribute 

values of this part are those which are affected by the update statement and are therefore 

updated. The third part extends from the end of PA to the original end of the PV. The 

attribute values of the original row remain for this part. A result of case 1 is that a 

sequenced update statement affecting one row causes three new rows to be inserted. The 

old row is deleted but their attribute values are remained. Case 2 and case 3 are considered 

in a similar manner. In case 4 the PA extends the whole PV and therefore the entire row is 

updated. 
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5.2.3 Delete 

A sequenced deletion is the temporal counterpart of the standard delete operation. It is 

assumed that the application provides the valid time period which defines the period that 

the affected rows should not be valid after the statement. In the following discussion this 

period is called period of applicability (PA). In contrast the valid time period (PV) is the 

period before the sequenced deletion. Snodgrass (Snodgrass, 2000) identified four cases of 

how the PA and the PV have to be considered in the case of a delete operation. 

. 

 

Figure 14 Cases of Temporal Deletions (Snodgrass, 2000, S. 191) 

In the first case the PA is within the PV. The original PV is separated into three parts. The 

first part extends from the original start of the PV to the start of the PA. The attribute values 

of the original row remain for this part. The second part is the PA it itself. The attribute 

values of this part are those which are affected by the delete statement and are therefore 

not valid anymore. The third part extends from the end of PA to the original end of the PV. 

The attribute values of the original row remain for this part. A result of case 1 is that a 

sequenced delete statement affecting one row causes two new rows to be inserted but they 

are not valid for the PA of the delete statement. Case 2 and case 3 are considered in a 

similar manner. In case 4 the PA extends the whole PV and therefore the entire row is not 

valid anymore. 
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5.3 Normalisation 

Normalisation is a major concept in database theory. Codd (Codd, 1970) introduced 

normalisation with its relational model and described it as the process of eliminating non 

simple domains from a relation. As with other concepts in the context of relations 

normalisation has a temporal counterpart as well.  

“There is also a need for temporal normal forms and underlying concepts that may serve as 

important guidelines during temporal database design.” (Jensen, Snodgrass, & Soo, 1996, S. 

1). In their work Jensen, Snodgrass and Soo (Jensen, Snodgrass, & Soo, 1996) provided a 

description of previously developed temporal normal forms and related concepts like 

functional dependency. What they pointed out in their work is that a major disadvantage of 

the reviewed normal forms is that they are all related to different underlying temporal data 

models. Further they pointed out that the models do not satisfy all requirements of the 

conventional normal forms. Moreover they are not following the same goals as their 

conventional counterparts.  

In a later work Jensen mentioned that “the conventional normalization concepts are not 

applicable to temporal relational data models because these models employ relational 

structures different from conventional relations.” (Jensen, 2000). But Jensen and Snodgrass 

(Jensen, Snodgrass, & Soo, 1996) identified two issues that at least should be satisfied by 

temporal normalisation. First, as the process of normalisation consists of decomposing 

relations with non simple domains into relations with simple domains this decomposition 

should be lossless. Hence the contents of the original relation should be available from the 

decomposed relations via natural join operations. Second, the process of decomposition 

should preserve existing dependencies. 

However, normalisation has become a common methodology during database design and 

therefore it is worth considering it in the case of temporal relations. Normalised temporal 

relations will benefit from the framework defined for conventional relations. Therefore 

storage structures, query evaluation techniques and further concepts will remain the same 

as in the relational model (Jensen, Soo, & Snodgrass, 1994).  
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5.3.1 Functional Dependencies 

Functional dependencies are a concept related to normalisation. They describe 

dependencies between domains respectively attributes of a relation. Further they are a 

basis for normalisation and for the definition of the primary key of a relation. As a primary 

key is the set of domains which uniquely identify a tuple in a relation all other domains of 

that relation are fully functional dependent on that primary key. Armstrong (Armstrong, 

1974) had defined axioms respectively rules which make it possible to find all functional 

dependencies of a relation. In literature these rules are known as Armstrong’s axioms. 

Functional dependencies are used as a concept during database design they don’t have an 

implemented counterpart in a database. 

As with other concepts functional dependencies have a temporal counterpart too, called 

temporal functional dependencies. At an abstract point of view temporal functional 

dependencies are divided into intrastate and interstate dependencies (Jensen, Snodgrass, & 

Soo, 1996). Intrastate dependencies are those which apply to individual snapshots of a 

temporal relation. Hence they are understood as conventional functional dependencies 

applying to attributes of a temporal relation ignoring time. In contrast interstate functional 

dependencies are those dependencies across snapshots. They describe functional 

dependencies of attributes over time. For this work only intrastate dependencies are 

considered and serve as a basis for concepts related to temporal primary keys.  
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5.3.2 Temporal Primary Key 

Snodgrass (Snodgrass, 2000) pointed out that when adding time support to relations it is 

one of the first steps to consider the valid time period as a part of the primary key. A 

primary key uniquely identifies each row in a table. Originally Codd (Codd, 1970) defined a 

primary key as the set of domains of a relation which uniquely identify tuples of that 

relation. Therefore the goal of a temporal primary key is to uniquely identify tuples within 

temporal relations at any given time. At first sight it seems that adding the valid time period 

to the primary key is the solution. The following examples of a relation storing information 

about an employee’s department attendance show the opposite.  

The employment relation consists of the employee column and the department column. The 

employee column is the primary key. An employee can only attend to one department. For 

convenience it is assumed that the name of the employee is unique. For such a relation it is 

not possible to store information about the history of an employee’s department 

attendance. 

EMPLOYEE DEPARTMENT 

Lukas Development 

Alexander Business 

 

After adding a valid time period to the relation and adding the department column to the 

primary key it is possible to store the history of an employment.  

EMPLOYEE DEPARTMENT FROM TO 

Lukas Development 1.1.2008 31.1.2008 

Lukas Business 1.2.2008 25.2.2008 

Alexander Business 1.1.2008 31.1.2008 

 

The primary key consisting of EMPLOYEE and DEPARTMENT does not cover the case that an 

employee may attend twice to a department over time. The red marked cells in the table 

below show this case which violates the given primary key. 

EMPLOYEE DEPARTMENT FROM TO 

Lukas Development 1.1.2008 31.1.2008 

Lukas Business 1.2.2008 29.2.2008 

Alexander Business 1.1.2008 31.1.2008 

Lukas Development 1.3.2008 31.3.2008 
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Now time has come to include the valid time period to the primary key. The table below 

shows the relation with the valid time period added to the primary key. 

EMPLOYEE DEPARTMENT FROM TO 

Lukas Development 1.1.2008 31.1.2008 

Lukas Business 1.2.2008 29.2.2008 

Alexander Business 1.1.2008 31.1.2008 

Lukas Development 25.2.2008 31.3.2008 

 

Within the period between 25.2.2008 and 29.2.2008 employee Lukas attends to more than 

one department but the primary key is not violated.  

EMPLOYEE DEPARTMENT FROM TO 

Lukas Development 1.1.2008 31.1.2008 

Lukas Business 1.2.2008 29.2.2008 

Alexander Business 1.1.2008 31.1.2008 

Lukas Development 25.2.2008 31.3.2008 

 

As a result Snodgrass (Snodgrass, 2000) stated adding the valid time period to the primary 

key is not enough to get a temporal primary key. Because it is the period between the two 

valid time values which must be unique and not two valid time value themselves. Hence it is 

not possible to define a primary key the usual way. In his work Snodgrass (Snodgrass, 2000) 

provided SQL statements which assure that rows with the same primary key are not 

overlapping each other in time. There are two possibilities to implement such SQL 

statements. First they can be included in manipulating operations such as insert, update and 

delete. Second they can be implemented within database functionality like triggers. 

Snodgrass (Snodgrass, 2000) summarises that a temporal primary key is the analogue of a 

conventional primary key if it assures that at any given time there are no two rows with 

overlapping valid time periods with the same primary key.  
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5.3.3 Temporal Foreign Key 

Codd (Codd, 1970) defined a foreign key as the one domain or combination of domains 

which is not the primary key of a relation but the primary key of another relation. This 

concept enables to define cross references between relations and is called referential 

integrity. The temporal counterpart concept is called temporal referential integrity. 

Snodgrass (Snodgrass, 2000) distinguished between four cases considering which side of the 

cross reference is a temporal relation. For this work the case that both relations are 

temporal relations is important and now described in detail. In his work Snodgrass 

(Snodgrass, 2000) pointed out three steps which are needed to ensure referential integrity if 

both relations are temporal: 

1) For all rows r in the referenced table there must be that key value in the referencing 

table when r starts, 

2) for all rows r in the referenced table there must be that key value in the referencing 

table when r ends 

3) and there are no gaps in the referencing table within the valid time period of all rows 

r with that key value 

With other words, the valid time period of a row with a foreign key in the referenced table 

must be completely covered by the valid time period of referenced primary key of the 

referencing table. The following tables show an example of temporal referential integrity 

including again an employment relation in this case as the referenced table. An employee 

relation storing all employees of a company is considered as the referencing table. In the 

first case below temporal referential integrity is not violated as the valid time period of the 

employee completely covers the referenced valid time periods of the employment relation. 

EMPLOYEE 

EMPLOYEE FROM TO AGE SEX 

Lukas 1.1.2008 01.06.2008 24 Male 

 

EMPLOYMENT 

EMPLOYEE DEPARTMENT FROM TO 

Lukas Development 1.1.2008 31.1.2008 

Lukas Business 1.2.2008 29.2.2008 
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The second case below shows a violation as the employment in the business department 

goes beyond the valid time period of the employee.   

EMPLOYEE 

EMPLOYEE FROM TO AGE SEX 

Lukas 1.1.2008 01.06.2008 24 Male 

 

EMPLOYMENT 

EMPLOYEE DEPARTMENT FROM TO 

Lukas Development 1.1.2008 31.1.2008 

Lukas Business 1.2.2008 31.6.2008 

 

The third case below shows a violation as the employee attended to the company twice. 

Hence there is a gap between the valid time periods of the employee relation. The 

employment within the business department falls within the gap therefore temporal 

referential integrity is violated. 

EMPLOYEE 

EMPLOYEE FROM TO AGE SEX 

Lukas 1.1.2008 01.06.2008 24 Male 

Lukas 1.10.2008 31.12.2008 24 Male 

 

EMPLOYMENT 

EMPLOYEE DEPARTMENT FROM TO 

Lukas Development 1.1.2008 31.1.2008 

Lukas Business 1.2.2008 31.6.2008 

 

Snodgrass (Snodgrass, 2000) pointed out that it is not possible to define temporal 

referential integrity the usual way. Therefore he again provided SQL statements which can 

be implement either within manipulation operations or within database functionality like 

triggers. Temporal referential integrity is the temporal counterpart of referential integrity if 

it assures that valid time periods of the referenced table are completely covered by valid 

time periods of the referencing table. Further during valid time periods of the referenced 

table there are no gaps in valid time periods of the referencing table allowed. 

  



Temporal Relations 

Page 37 of 86 

5.4 Current State 

This section provides an overview of concepts for querying current state of temporal 

relations. In conventional relations there is no other state than the current state so this 

topic is unique to temporal relations and has no conventional counterpart. 

According to Snodgrass (Snodgrass, 2000) there are two possibilities to define the current 

state into a valid time period. It is assumed that the valid time period is encoded via a pair of 

time instants. One time instant is called start date and one time instant is called end date. 

The end of the valid time period is set to the maximum date a system provides. It is possible 

to query the current state of such a relation through comparing the end date with the 

maximum date. A major disadvantage of this approach is that it is not possible to distinguish 

between rows that are valid until the maximum time and a row which is valid now. Rows 

whose valid time period ends before the maximum date fall out of the query condition. As a 

result this approach is not practicable. Another approach is to set the end date to null. A 

value of null defines that the end of the valid time period of a row is unknown and therefore 

always considered as valid now. The disadvantage of this approach is that null values may 

cause errors in database functions comparing dates (Snodgrass, 2000).  

In his work Snodgrass (Snodgrass, 2000) pointed out that the current state is not more 

important than any other state of a temporal relation. Therefore he provided SQL 

statements that are querying any given state out of a temporal relation.  

5.4.1 Temporal Partitioning 

Another approach to query current state out of the temporal relational model is called 

Temporal Partitioning. Snodgrass (Snodgrass, 2000) introduced that approach, which is 

implemented by separating current state from past state. Therefore a temporal relation is 

split up into one relation storing the current state and one relation storing rows whose valid 

time period had expired. An extension of temporal partitioning is to separate future states 

into a third relation too. The advantage of temporal partitioning is that querying the current 

state is possible with conventional querying methods. On the other hand when querying 

history states and current states together, queries get much more complex as relations have 

to be joined within such a query statement.  
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5.5 Temporal Databases 

In this chapter previously developed temporal databases are shortly introduced.  

 

Figure 15 Temporal Databases (Worboys, 1994) 

Figure 15 shows the classification of temporal databases from Worboys (Worboys, 1994). 

Static databases also called snapshot databases store information about real world 

phenomena for a certain state, most often the current state. Manipulating operations such 

as update statements overwrite this state. Therefore past states are not accessible in 

snapshot databases. They neither support valid time nor transaction time. Historic 

databases record the information about real world phenomena for multiple states. They 

only support valid time, hence the period must be provided by the user and not by the 

system (Steiner, 1998). Rollback databases only support transaction time, hence the valid 

time period is maintained by the system. The database keeps track of every change in data 

such a concept can be viewed as append-only (Steiner, 1998). Finally bitemporal databases 

support both dimensions of time. According to Steiner (Steiner, 1998) such databases have 

the properties of historical and rollback databases. Therefore within bitemporal databases it 

is possible to query when an observation of the real world had happened and when this fact 

was available in database (Worboys, 1994).  

Nowadays state of the art RDBMS are snapshot databases, they neither support valid time 

nor transaction time. Most often the support of time does not go beyond the support of 

temporal data types. But there are many solutions built on top of RDBMS which temporally 

enable them. For example TimeDB
1
 is a java based interpreter which translates conventional 

SQL statements into temporal statements. Relations of a database schema are converted to 

bitemporal relations. But also major RDBMS vendors like for example Oracle may provide 

time support through applications on top of RDBMS like the Oracle Workspace Manager
2
. 

What is missing is a native support of temporal relations.  

                                                      
1
 http://www.timeconsult.com/ 

2
 http://www.oracle.com/technology/products/database/workspace_manager/index.html  
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5.6 Temporal Data models 

In the past dozens of temporal data models had been developed. It is beyond the scope of 

this work to provide a complete list or to describe each model in detail. The important 

concepts of temporal relations had been already described in the previous chapters. Many 

of the provided concepts originate to a previously developed temporal data model. Anyway 

this section gives a short overview of temporal data models. Snodgrass (Snodgrass, 1992) 

provided a list of temporal data models which is shown in Figure 16. 

 

Figure 16 Temporal Data Models (Snodgrass, 1992) 

For each temporal data model Snodgrass mentioned which temporal dimension is 

supported. An often used distinction between the previously developed models is whether 

they are satisfying first normal form or not (Chomicki, 2005). Often this fact is related to 

whether a model uses attribute or tuple level time stamping as time stamping on attribute 

level violates first normal form. Kaiser (Kaiser, 1998) provided a comparison of the most 

important temporal data models which is shown in Figure 17. 

 

Figure 17 Comparison of Temporal Data Models (Kaiser, 1998) 
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Kaiser pointed out which temporal dimension a temporal data model supports and to which 

level normalisation concepts like primary key and foreign key are supported. One important 

consideration is if a temporal data model is available in commercial RDBMS. According to 

Kaiser there is only the ATSQL2 temporal data model commercially available. In their work 

Ott and Swiaczny (Ott & Swiaczny, 2001) provided an overview of temporal models and 

approaches. They identified a snapshot approach as the simplest approach to provide 

temporal data in a GIS. Further they described the concepts of a space time cube, topology 

of time and the space time composite which are all developed by Langran. One of the most 

important developments had been done by Snodgrass, Jensen and others by developing a 

unifying model which is called the Bitemporal Conceptional Data Model further abbreviated 

as BCDM. The scope of this model was to unify previously developed concepts into one 

temporal data model (Jensen, Soo, & Snodgrass, 1994). “The idea behind the BCDM is to 

retain the simplicity of the relational model while also capturing the temporal aspects of the 

facts stored in a database.” (Jensen, 2000). The core elements of the BCDM are bitemporal 

relations also called bitemporal tables. They include four time stamp columns, two for each 

dimension of time. Hence a bitemporal table is bitemporal as it supports valid time as well 

as transaction time. As a result of the development of the BCDM Snodgrass and others 

developed the TSQL2 Temporal language. Within this language a period data type was 

defined to overcome the problem of defining periods via pairs of time stamps. In later 

papers Snodgrass extended the BCDM by defining temporal integrity constraints.  

One of the latest developments in the field of temporal data models was the integration of 

temporal concepts into the SQL3 standard. According to Snodgrass (Snodgrass, 2000) the 

integration process had suffered from many disagreements of the involved researches. But 

one of the main goals had been accomplished as a period data type had been defined within 

SQL3. Moreover temporal predicates had been defined in order to query for relationships of 

periods (Snodgrass, 2000). Anyway today there is no state of the art relational database 

compliant to the SQL3 standard in the temporal sense (Steiner, 1998). Most often the 

temporal support does not go beyond the support of simple date and time data types 

excluding a period data type. 
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6. Geometry of Time 

The International Standardisation Organisation (ISO) developed a standard called “ISO 

19108 Geographic information – Temporal Schema”. The standard provides concepts 

needed to describe the temporal characteristics of geographic information. “Temporal 

characteristics of geographic information include feature attributes, feature operations, 

feature associations, and metadata elements that take a value in the temporal domain.” 

(ISO, 2002). The standard emphasises valid time rather than transaction time. Temporal 

structures provided in the ISO standard are not only intended for use in the area of 

Geographic Information Systems. To understand the most important characteristics of 

temporal information the ISO Standard provides definitions which are important for this 

work 

6.1 Definitions 

Calendar is a “discrete  temporal reference system that provides a basis for defining  

temporal position to a resolution of one day” (ISO, 2002).. 

Coordinated Universal Time (UTC) is a “time scale maintained by the Bureau International 

des Poids et Mesures (International Bureau of Weights and Measures) and the International 

Earth Rotation Service (IERS) that forms the basis of a coordinated dissemination of standard 

frequencies and time signals ...” (ISO, 2002).. 

Day is a “period having a duration nominally equivalent to the periodic time of the Earth's 

rotation around its axis.” (ISO, 2002). 

Event is an “action which occurs at an instant.” (ISO, 2002). 

Instant is a “0-dimensional geometric primitive representing position in time.” (ISO, 2002). 

Month is a “period approximately equal in duration to the periodic time of a lunar cycle.” 

(ISO, 2002). 

Period is an “one-dimensional geometric primitive representing extent in time.” (ISO, 2002). 

Temporal coordinate system is a “temporal reference system based on an interval scale on 

which distance is measured as a multiple of a single unit of time.” (ISO, 2002). 

Temporal position is a “location relative to a temporal reference system.” (ISO, 2002). 

Temporal reference system is a “reference system against which time is measured.” (ISO, 

2002). 
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6.2 Temporal geometric primitives 

Within the ISO Standard one chapter is titled “Geometry of Time” (ISO, 2002, S. 7) which 

corresponds to the main idea of this work. It says that time is a dimension analogous to any 

of the spatial dimensions. As a spatial point occupies a position in space an instant in time 

occupies a position in relation to a temporal reference system. According to the standard 

one important difference between space and time is that time has single dimension and 

cannot be reused (ISO, 2002). The following figure shows an abstract UML Model defining 

temporal objects. 

 

Figure 18 Temporal Objects (ISO, 2002) 

Figure 18 shows that temporal primitives which are namely instants and periods are 

conceived to geometric primitives. Hence an instant in time is equivalent to a point in space. 

In practice, an instant is an interval whose duration is less than the resolution of the time 

scale (ISO, 2002). The same applies to a period. A period is equivalent to a curve in space 

and it is bounded by one instant at the beginning and one instant at the end. As a result of 

this a period has a length, a so called duration, which itself is equal to the temporal distance 

of the two bounding instants (ISO, 2002).  

Figure 19 shows the relation between periods and instants. Both are derived from the 

abstract class TM_GeometricPrimitive. 
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Figure 19 Temporal geometric primitives (ISO, 2002) 

The classes TM_Instant and TM_Period are relevant to this work and discussed in chapter 

7.5. 

6.3 Temporal reference system 

As it was defined previously in this work a value in the time domain is a temporal position 

measured relative to a temporal reference system. The ISO Standard recommends using the 

Gregorian calendar in combination with the UTC. The Gregorian calendar identifies temporal 

information at a granularity of one day and the UTC identifies temporal position within a 

day operating on a precision beyond seconds.  

It says in the ISO standard that for other application other temporal reference systems may 

be appropriate. But as recommended this work will use Gregorian calendar in combination 

with UTC. This combination is the common one provided by most database systems. 
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6.4 From Temporal Objects to Spatio Temporal Objects 

Roosman and others (Roosmann, Busch, Gorczyk, & Mauersberger, 2003) followed the 

concepts of the ISO standard and provided concepts of modelling time as geometry. In their 

work they provided an UML model which defines a temporal object. 

 
Figure 20 Temporal Objects (Roosmann, Busch, Gorczyk, & Mauersberger, 2003) 

Figure 20 shows the definition of a temporal object which is always based on a temporal 

reference system. A temporal object consists of temporal primitives or temporal complexes. 

Moreover a temporal object may consist of temporal aggregates or temporal topological 

primitives. For this work only temporal primitives such as a time point or time period are of 

interest and described in chapter 7.5. Roosman and others (Roosmann, Busch, Gorczyk, & 

Mauersberger, 2003) identified the relations between temporal, spatial and thematic 

objects which resulted in an UML model of a spatio temporal object as shown in the 

following figure. 

 

Figure 21 Spatio temporal object (Roosmann, Busch, Gorczyk, & Mauersberger, 2003) 
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Main Part -Time as Geometry 
 

The scope of this section is to combine the relational model defined by Codd (Codd, 1970), 

the simple feature specification (OpenGIS_Consortium, 2006a) defined by the Open 

Geospatial Consortium and concepts related to temporal relations into a concept of spatio 

temporal relations. In literature common analogies between space and time had been 

identified when conceiving these dimensions into relational data bases. Further the 

International Standardisation Organisation published a standard called “ISO 19108 

Geographic Information – Temporal Schema” which defined the geometry of time. 

Therefore the introduced concept of spatio temporal relations will be based on the 

extension of the relational model where space is implemented as simple feature geometry 

but also time is implemented as simple feature geometry. As a result spatial operations are 

used to answer both spatial and temporal questions.  
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7. Time as Geometry – A formal description 

This chapter describes the steps which are necessary to model time as geometry. As a first 

step chapter 7.2 introduces a discrete view of time as the basis for this work. This view uses 

the Gregorian calendar in combination with the Coordinated World Time (UTC) as its 

temporal reference system. To model time as geometry it is further necessary to transform 

date specifications into something like coordinates. Therefore an interval scale based view 

of discrete time is introduced. Finally two functions are identified for the translation of date 

specifications into coordinates and coordinates into date specifications. The contents of this 

chapter are on a formal basis and therefore independent from an implementation. The 

implementation of the provided formal concepts is described in chapter 8. 

7.1 Background 

The main idea of this thesis applies to the idea of modelling time as geometry in order to 

integrate time into geo data bases. The main motivation behind that is to reuse the existing 

spatial framework within geo data bases for a temporal context. Therefore spatial data 

types are used to represent temporal values. For example an instant in time is represented 

as a point. A period of time is represented as a line geometry. As a result it is possible to 

apply other components of a spatial framework such as spatial operations to those 

transformed temporal values. The provided approach mainly follows the concepts of the ISO 

19108 standard and the contents of the work of Roosman and others (Roosmann, Busch, 

Gorczyk, & Mauersberger, 2003). To model time as geometry is also based on some 

common analogies of those two dimensions which were identified in the past. In language 

there are many words which are used in the context of space and time (Peuquet, 2002). For 

example the words before and after are used in both, space and time. As Peuquet (Peuquet, 

2002) mentioned, things happen in space over time. So there is fundamental relation 

between these two concepts. When something exists in the real world, it takes times and 

takes place (Peuquet, 2002). But there are also great differences between space and time as 

time can’t be reused. Once something had happened it will never happen again at that time. 

The idea of modelling time as geometry also follows a traditional method to map time onto 

a time line constructed from integer or real numbers (Langran, 1992). Such an approach is 

useful and corresponds—with some imitations—to cognitive models of time (Frank, 

Egenhofer, & Colledge, 1998).  
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7.2 A Discrete View of Time 

The goal of this chapter is to introduce a discrete view of time as a basis for this work. This 

view includes the following important assumptions: 

• Time is absolute, but relative to an origin 

The first assumption is that time is absolute and therefore it does not apply to Einstein’s 

relativity theory. For this work it is assumed that time always goes by at same speed 

independent from an object’s own motion. Hence time in the past and time in the future go 

by at same speed. The use of an origin is part of the first assumption. Time is relative to this 

origin. For example consider a date specification of January 1
st

 2008 as the origin and 

January 8
th 

 2008 as another date specification. Hence January 8
th

 2008 is absolute but the 

relative time of January 1
st

 2008 to January 8
th

 2008 is 7 days.  

• Time is linear and totally ordered 

The second assumption is based on the first assumption and further defines that time is 

linear and totally ordered. Time starts at the origin and linearly extends from the origin to 

the future. A total order is assumed therefore for two date specifications t1 and t2 it is 

necessary that either t1=t2 or t1 < t2 respectively t1 > t2 but it is not possible that both t1<t2 

and t1>t2. Therefore it is not possible that an event happens before and after a second event 

as it would be possible when cycling time is used (e.g. morning and evening). Once an event 

has had occurred at a time it will never occur again at that time. Time cannot be reused. 

• Time is used within a temporal reference system 

The third assumption is based on the first and second assumption and further includes that 

a temporal reference system is used to define the set of date specifications. For this work 

the Gregorian calendar is used to identify years, months and days. The Universal 

Coordinated Time (UTC) is used to identify time within a day. Hence it used to identify 

hours, minutes and seconds. The smallest time unit used in this work is one second. As a 

result this work assumes a date specification to be of the form {YYYY.MM.DD HH:MIN:SEC}. 

For example consider an event had happened on January 1
st

 2008 at 1pm the according date 

specification of this is {2008.01.01 13:00:00}. 
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For the provided discrete view of time a formal definition of any date specification is as 

follows: 

� ≔ �����. ��. �� ��: �
�. �� |  ���� ∈  ℕ, �� ∈ �1,2, … , 12} , �� ∈ �1,2, … , 31} , �� ∈ �0,1, … , 24} , �
� ∈ �0,1, … , 60} , �� ∈ �0,1, … , 60}} 

 

Years are described as positive natural numbers where the minimum is the year 0 and the 

maximum is the year 9999. Months have a value range from 1 to 12 the same applies for 

days they have a value range from 1 to 31. Hours have a value range of 0 to 24 where 00:00 

is assumed as the beginning of a new day and 24:00 is assumed as the end of the last day. 

Minutes and seconds have a value range from 0 to 60. 

Figure 22 is a graphical representation of the provided discrete view of time including two 

date specifications and a distance between them. 

 
Figure 22 Discrete view of time (Gregorian calendar + UTC) 

To allow measurements and distance calculations a metric must be defined. For any date 

specification the following assumptions are made: 

• Distance(T1,T1) = 0 

• Distance(T1,T2) = 0 -> T1 = T2 

• Distance(T1, T2) = Distance (T2,T1) 

• Distance(T1,T3) <= Distance(T1,T2) + Distance(T2,T3) 

The first assumption is that the temporal distance between two equal date specifications is 

0. As a result there are no unequal date specifications with distance 0 between them. The 

third assumption is that the temporal distance from T1 to T2 is equal to the temporal 

distance from T2 to T1. It is necessary that the temporal distance between T1 and T3 is less 

than or equal to the sum of the temporal distances of T1 to T2 and T2 to T3.  
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7.3 A discrete view of time based on an interval scale 

The previous chapter introduced a discrete view of time whose temporal values are date 

specifications. The goal of this chapter is to introduce a discrete view of time based on an 

interval scale whose values are the natural numbers. Further it is the goal of this chapter to 

describe a transformation between the discrete view of time using date specifications and 

the introduced discrete view of time based on an interval scale. To model time as geometry 

it is necessary to transform date specifications into something like coordinates. Because 

coordinates are numbers date specifications must be transformed into numbers first. An 

interval scale is used as it allows meaningful measurements between values which are 

necessary to calculate distances. When transforming date specifications into numbers it is 

further necessary that the previously identified assumptions apply to the interval scale 

based view too. Hence this view again assumes an origin as well as a total order. As a result 

a date specification relatively later to an origin is transformed into a greater number than a 

date specification relatively earlier to an origin. Further the temporal distance between two 

date specifications must be equal to the distance of the related numbers.  

 

Figure 23 Calendar time vs. Interval scale 

Figure 23 shows a comparison between the discrete view of time based on the Gregorian 

calendar and discrete view of time based on an interval scale. The two date specifications T1 

and T2 have their transformed counterpart on an interval scale called T1’ and T2’. When 

transforming date specifications into numbers it is necessary that T1 < T2 it implies that T1’ < 

T2’. Further it is necessary that the temporal distance between T1 and T2 is equal to the 

distance between T1’ and T2’.   
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The formal definition of any transformed date specification into a number is as follows: 

�� ∈  ℕ ∀ �′  
This formal definition says that after the transformation any date specification is member of 

the natural numbers. The date specification of the origin is transformed into 0 and is 

therefore the least number on the interval scale. Any date specification after the origin is 

transformed into a number greater than 0.  

Again a metric is necessary to allow distance calculations. The following assumptions still 

apply: 

• Distance(T’1,T’1) = 0 

• Distance(T’1,T’2) = 0 -> T’1 = T’2 

• Distance(T’1, T’2) = Distance (T’2,T’1) 

• Distance(T’1,T’3) <= Distance(T’1,T’2) + Distance(T’2,T’3) 

The first assumption is that if the distance of two equal date specifications is 0 then the 

distance of their transformed numbers must be 0 too. As a distance between two unequal 

date specifications is not 0 the distance between their transformed numbers is not 0 too. 

The temporal distance from T’1 to T’2 is equal to the temporal distance from T’2 to T’1. If 

T1<T2<T3 then it is necessary that T’1<T’2 <T’3. Hence the temporal distance between T’1 and 

T’3 is less than or equal to the sum of the temporal distances of T’1 to T’2 and T’2 to T’3. 

 

This chapter had introduced a discrete view of time based on an interval scale whose values 

are the natural numbers. This view of time is more appropriate when modelling time as 

geometry as date specifications are transformed into numbers which corresponds to 

geometric coordinates consisting of numbers too. To accomplish a transformation from date 

specifications into natural numbers this chapter provided a description of the necessary 

formal aspects to consider. The next chapter describes the needed functions for the 

transformation on a formal basis. 
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7.4 Functions 

Based on all previously defined assumptions this chapter describes two functions necessary 

for the transformation of date specifications into natural numbers. Hence this chapter 

describes how a discrete view of time based on calendar time is transformed into a discrete 

view of time based on an interval scale. Figure 24 compares both approaches and points out 

the necessary transformation functions.  

 

Figure 24 Functions needed for transformation 

The first function transforms a date specification of the form {YYYY.MM.DD HH:MIN:SEC} 

into a number. This function is called TimestampToNumber. The second function transforms 

a number to a date specification. This function is called NumberToTimestamp. Before 

describing both functions in detail it is necessary to introduce an interval date specification 

of the form {TTTTTTTTT.HH.MIN.SEC}. It is needed to represent temporal distances between 

an origin and other date specifications. The formal definition of such an interval is as 

follows: 


( , �) ≔ ����������. ��. �
�. �� |  ��������� ∈  ℕ �0, … ,3649635} , �� ∈ �0, … ,23} , �
� ∈ �0, … ,59} , �� ∈ �0, … . ,59} } 

 

An interval from an origin to any other date specification is defined as the number of whole 

days plus the number of left hours, minutes and seconds. The minimum number of days is 0 

and the maximum number of days is 3649635 which is the number of days between the 

year 0 and the year 9999. For example the interval between a date specification of 

{2008.01.01 13:00:00} and {2008.01.02 14:38:52} is an interval of the length 

{000000001.01.38.52}. In other words the interval’s length is one day, one hour, 38 minutes 

and 52 seconds.  
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In the next subchapters the above identified functions called TimeStampToNumber and 

NumberToTimestamp are described in detail. 

7.4.1 TimeStampToNumber(fpOrigin, fpDate) 

This function transforms a date specification of the form {YYYY.MM.DD HH:MIN:SEC} into a 

natural number on the interval scale. This natural number is the transformed counterpart of 

the original date specification. The function requires two date specifications as its input 

parameters. The first is a date specification of the origin and the second is a date 

specification of the date to be transformed. The function returns a natural number which is 

the number of seconds between the origin and the date. The functionality is to calculate the 

number of whole days plus the number of the remaining hours, minutes and seconds 

between the origin and the date to be transformed. The outcome of this calculation is an 

interval of the length {TTTTTTTTT.HH.MIN.SEC}. This length is then converted into the 

number of seconds via the following formula: 

�$%&'( )�'*+,-. ∶= 1(��������� ∗ 86400) + (�� ∗ 3600) + (�
� ∗ 60) +  ��5 

As a result this function returns the calculated number of seconds between the origin and 

the date to be transformed. When applying this number on the interval scale based view it 

is the transformed counterpart of the original date specification relative to the origin (which 

is 0). The following figure provides an overview of the calculation scenario. 

 

Figure 25 Date specification to number 

This function is the basis for modelling time as geometry as it transforms date specifications 

into natural numbers. As a result these numbers are then used as coordinates of geometry. 
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7.4.2 NumberToTimeStamp(fpOrigin, NumberOfSeconds) 

This function transforms a natural number into a date specification of the form 

{YYYY.MM.DD HH:MIN:SEC}. The function requires one date specifications and one number 

as its input parameters. The first is a date specification of the origin and the second is the 

number of seconds from the origin. The function returns a date specification. The 

functionality is to calculate the number of whole days plus the number of the remaining 

hours, minutes and seconds out of the number of seconds. The outcome of this calculation 

is an interval of the length {TTTTTTTTT.HH.MIN.SEC}. This length is then added to the date 

specification of the origin. The formula of the function is as follows: 

� ∶= ( (676, + �TTTTTTTTT. HH. MIN. SEC})  
���� ∶= 
��@A B�$%&'( )�'*+,-.86400 C 

 �� ∶= 
��@A D�$%&'( )�'*+,-. − (���� ∗ 86400)3600 F 

�
� ∶= 
��@A D�$%&'( )�'*+,-. − (���� ∗ 86400) −  (�� ∗ 3600)60 F 

�� ∶= 
��@A1�$%&'( )�'*+,-. − (���� ∗ 86400) −  (�� ∗ 3600)
−  (�
� ∗ 60)5 

As a result this function returns the calculated date specification. This date specification is 

the transformed counterpart of the original number of seconds. The following figure 

provides an overview of the calculation scenario. 

 

Figure 26 Number to date specification 

This function is the logical counterpart to the TimeStampToNumber function.  
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7.5 Temporal geographic primitives 

The scope of this chapter is to describe temporal geometric primitives as a basis for 

modelling time as geometry. There are two base types of temporal geometric primitives: 

• Instant is a “0-dimensional geometric primitive representing position in time.” (ISO, 

2002). 

• Period is a “1-dimensional geometric primitive representing extent in time.” (ISO, 

2002). 

Temporal geometric primitives are the necessary geographic primitives to represent time as 

geometry. Figure 27 shows the class hierarchy of temporal geometric primitives. 

 

Figure 27 Temporal geometric primitives (ISO, 2002) 

Temporal geographic primitives are temporal primitives represented as geographic 

primitives. As an instant represents position in time its geographic primitive represents 

position in space. Hence a period represents extent in time thus its geometric primitive is a 

curve in space. A period is defined by one instant where it starts and one instant where it 

ends. The duration of a period is equal to the temporal difference of its instants (ISO, 2002). 

The previous chapter described the function TimeStampToNumber which transforms date 

specifications into numbers. These numbers are the input values for the coordinates of 

temporal geometric primitive when time is modelled as geometry.  
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7.5.1 Instant 

An instant represents position in time it is analogous to a geographic point representing 

position in space. An instant is the temporal counterpart of a geographic point. Therefore a 

point is the geometric primitive of an instant. To transform an instant into a point first the 

formal definition of a point in space is considered as: 

G+6,H(I, J) ≔ � I ∈ A, J ∈ A} 

As a result the formal definition of an instant modelled as point geometry is as follows: 


,.HK,H(I, J) ≔ � I ∈ �0, … , 3.15328464LL} ⊆  ℕ, J ∈ �0}  ⊆  ℕ} 

An instant represented as a point is defined by its coordinates. The minimum value of x is 0 

which is the origin and applies to the return value of TimeStampToNumber(Origin, Origin). 

The maximum value of x is 3.15328464LL which applies to the return value of 

TimeStampToNumber(Origin, {9999.12.31 24:00:00}). Moreover the TimeStampToNumber 

function returns any possible x coordinate which is considered as the number of seconds 

from the origin to the date specification of the instant. The y coordinate of an instant is 

always 0. 

 

Figure 28 Process of transforming an instant into a point 

Figure 28 summarises the complete process of transforming a date specification into a 

natural number which is the x coordinate of an instant. The date specification of 

{2008.01.02 14:32:58} is transformed into the natural number 91978 via the 

TimeStampToNumber function. This number is the x coordinate of a point P with an y 

coordinate of 0. 
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7.5.2 Period 

A period represents extent in time hence it is analogous to a curve in space. A period 

therefore is the temporal counterpart of a curve in space. The formal definition of a curve in 

space is as follows (OpenGIS_Consortium, 2006a): 

�(K, &) = �H ∈ A| K ≤ H ≤ &}     ): OK, &P → ℝS 

According to that definition a curve is a geometric object that is the homeomorphic image 

of a closed interval. Based on this abstract definition a line is defined as a curve consisting of 

two bounding points where linear interpolation is used to represent all points between 

them. A line geometry is therefore a straight line between a start point and an end point. A 

period is considered as the temporal counterpart of a line geometry which is a simple type 

of curve. To transform a period to a line geometry the formal definition of a line geometry is 

considered as: 

 

T6,'(IUVWXV, JUVWXV, IYZ[ , JYZ[) ≔ � IUVWXV , JUVWXV , IYZ[, JYZ[  ∈ A} 

 

The formal definition of a period modelled as line geometry is as follows: 

G'(6+-(IUVWXV , JUVWXV, IYZ[, JYZ[) ≔ � 

IUVWXV, IYZ[  ∈ �0, … , 3.15328464LL} ⊆  ℕ ∧  IUVWXV < IYZ[, 

JUVWXV, JYZ[  ∈ �0}  ⊆  ℕ} 

A period represented as line geometry consists of the coordinates of its instants at the start 

and the instant at the end. The value range for all x coordinates is from 0 which is the origin 

to 3.15328464LL which is the return value of TimeStampToNumber(Origin, {9999.12.31 

24:00:00}. As a period must have at least a duration of one second and has a direction from 

start to end it is necessary that IUVWXV < IYZ[. A period with a duration of 0 seconds is 

considered as an instant. The duration of a period is equal to the distance between its start 

and end instant. As a period is represented as a line geometry the concepts of interior, 

exterior and boundary apply. The boundary of a period consists of the instant at the start 

and the instant at the end. All points between them are linear interpolated and considered 

as the interior. As a curve is a closed interval a line geometry representing a period includes 

the start and end instant.  
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Figure 29 summarises the process of transforming a period of time into a line geometry. 

 

Figure 29 Process of transforming a period into a line 

Within Figure 29 there are two date specifications given which are delimiting a period of 

time between them. The period in this example goes from January 2
nd

 14:32:58 to January 

2
nd

 15:32:58 and therefore lasts for one hour. As a first step the two date specifications are 

transformed into natural numbers via the TimeStampToNumber function. The first date 

specification is transformed into 91978 and the second one is transformed into 95578. The 

difference of those two numbers is 3600 which is the number of seconds between them. 

This difference equals the original duration. As the last step the period is represented as a 

line geometry. Such a geometry consists of two points. The x coordinates of those points are 

the transformed numbers whereas the y coordinates are 0. The length of the line geometry 

is 3600 which is equal to the duration of the original calendar time. As a result the measures 

of the original date specification are obtained throughout all steps of this transformation. 

7.6 Summary 

This chapter provided a formal basis for modelling time as geometry. A discrete view of time 

using date specifications was introduced. Those date specifications are transformed into 

natural numbers on an interval scale as basis for coordinates. The necessary functions for 

this transformation are described. To model time as geometry the relevant geometric 

primitives were identified. Based on the formal description the next chapter describes a 

prototypical implementation inside a geodatabase.  
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8. Time as Geometry – A prototypical implementation 

The scope of this chapter is to describe an implementation of the previously provided 

formal description of transforming time into geometry. The outcome of this implementation 

should be a prototypical implementation of a spatio temporal application.  

8.1 Scope 

The goal of the implementation is to integrate time into a geo database. It is the scope of 

the implementation to develop the necessary functions to transform time into geometry in 

order to reuse spatial data structures and operations within a geo database. The formal 

description of modelling time as geometry from previous chapters is implemented within 

database functionality such as functions, procedures or triggers. The outcome of integrating 

time into geo databases are database tables consisting of conventional attributes, spatial 

attributes and temporal attributes. Spatial attributes describe the location on the earth’s 

surface whereas temporal attributes describe when a fact was observed in the real world. 

Both spatial as well as temporal attributes are represented as geometry. If the observation 

period has no duration then it is considered as an instant in time represented as point 

geometry. If the observation has at least a duration of one second then it is considered as a 

period which is represented as line geometry.  

As time is represented as geometry the implementation points out that spatial operations 

such as overlap, meet, contains apply to temporal operations. Moreover spatial analytical 

functions like distance calculations apply to temporal functions too. As a result time is 

integrated into a geo database based on a geometric representation. This work underlines 

that spatial functionality within geo databases provides meaningful operations applied to 

time. It is the scope of this work to prove spatial functionality of its significance in the 

temporal case. 
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8.2 Functional Specification 

This section provides a functional specification of the implementation. It defines the 

necessary functionality in order to integrate time into geo databases represented as 

geometry. 

8.2.1 Need to have 

• TimeStampToNumber function as a database function 

• NumberToTimeStamp function as a database function 

• A database function transforming instants into point geometries 

• A database function transforming periods into line geometries 

8.2.2 Nice to have 

• Uniqueness constraints considering time as part of a primary key 

• Referential integrity constraints considering time as part of a foreign key 

• Temporal modification operations such as sequenced insert, update or delete 

• Provide spatial metadata applying to the temporal case 

8.2.3 Not to have 

• Visualisation techniques 

• Complex geometries such as Multipoint or Multiline 

• Topology 
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8.3 Base technology 

This section shortly introduces the used base technology on which the implementation is 

based on. To integrate time into geo databases there are three main software components 

necessary. The first is a geo database which is the destination of the integration. Further a 

SQL client application to express SQL statements is needed. To visualise the results in an 

appropriate manner a desktop GIS client application is used in order to display time 

represented as geometry. 

8.3.1  Oracle Express Edition with Oracle Locator 

Oracle Express Edition
3
 is a data base for developing purposes. It is free to use as its limited 

to one CPU, one gigabyte of memory and four gigabyte of hard disk space. It is based on the 

10g R2 release. Oracle Locator
4
 is the package which provides the necessary spatial 

functionality and is included in Oracle Express Edition. It includes spatial data type as well as 

spatial operations, indexing methods and some analytical functions. Further it is based on 

the simple feature specification of the Open Geospatial consortium (OpenGIS_Consortium, 

2006b) as it provides functions transforming its native geometry type into a well-know text 

or well-known binary representation. 

8.3.2 Oracle SQL Plus Worksheet 

The Oracle SQL Plus Worksheet is a client application which enables a simple SQL interface 

to formulate SQL expressions. In this work it is used to formulate SQL expressions as well as 

showing their results in a tabular manner.  

8.3.3 Esri ArcView 

Esri ArcView
5
 is used as a desktop GIS client application visualising spatial information as 

maps. As in this work time is represented as geometry this application is further used to 

visualise temporal information on a map.  

  

                                                      
3
 http://www.oracle.com/technology/products/database/xe/index.html 

4
 http://www.oracle.com/technology/products/spatial/index.html 

5
 http://www.esri.com/software/arcgis/arcview/about/features.html 
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8.4 Functions 

The scope of this section is to provide a description of implemented functions. The source 

code of each function is provided as a figure in order to maintain syntax colouring. 

Developer comments are red. The syntax applies to the Oracle PL/SQL standard. 

8.4.1 TimeStampToNumber 

The source code of the TimeStampToNumber function as defined in chapter 7.4.1 is shown 

in the following figure. 

 

Figure 30 TimeStampToNumber source code 

The goal of the TimeStampToNumber function is to transform a date specification to a 

number relative to an origin. Therefore the return value of this function is the number of 

seconds between the origin and the date. As input this function takes an origin and a date to 

transform. For both a timestamp data type is used. The functionality is to calculate the 

interval between the origin and the date which is accomplished by a subtraction. It returns a 

DAY TO SECOND type of interval which then is converted into seconds. 
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The following figure shows an example of using the implemented function. 

 

Figure 31 Transforming a date specification into a number 

In this example January 1
st

 at 1pm is used as the origin and January 1
st

 2pm is used as the 

date to transform. The result of the function is 3600 which is the number of seconds 

between the origin and the date which is equal to one hour.  
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8.4.2 TimeToGeometry 

The goal of the TimeToGeometry function is to transform time into geometry. Hence 

instants are transformed to points and periods are transformed into lines. The source code 

of the function is as follows: 

 

Figure 32 TimeToGeometry source code 

The function takes as input three date specifications one for the origin and two for 

delimiting a period. The parameter pFrom is the date specification where a period starts. 

Hence the parameter pTo is the date specification where a period ends. If pFrom is equal to 

pTo then the period is considered as an instant. In the case of a period the return value of 

the function is a simple line geometry. In the case of an instant the return value is a simple 

point geometry. The functionality is to transform the input date specification into numbers 

via the TimeStampToNumber function. Geometries are created through geometry 

constructors which take the calculated numbers as coordinates. 
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The following figure shows an example of transforming an instant into a point geometry. 

 

Figure 33 Transforming an instant into a point geometry 

In this example January 1
st

 at 1pm is used as the origin and January 1
st

 2pm is used as the 

start and end of a period which is therefore considered as an instant. The result of the 

function is a point geometry with 3600 as its x coordinate and 0 as its y coordinate. 

The following figure shows an example of transforming a period into a line geometry. 

 

Figure 34 Transforming a period into a line geometry 

In this example January 1
st

 at 1pm is used as the origin and January 1
st

 2pm is used as the 

start and January 1
st

 3pm as the end of a period. The result of the function is a line geometry 

consisting of a start point with a coordinate pair of {3600,0} and an end point with a 

coordinate pair of {7200,0}. 
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8.4.3 NumberToTimeStamp 

The goal of this function is to transform a number relative to an origin into a date 

specification. It is the natural counterpart of the TimeStampToNumber function. The 

following figure provides the source code of the function. 

 

Figure 35 NumberToTimeStamp source code 

The following figure shows an example of transforming a number into a date specification. 

 

Figure 36 Transforming a number into a date specification 

In this example January 1
st

 at 1pm is the origin and the number to transform is 7200. The 

result is a date specification of January 1
st

 at 3pm. 
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8.4.4 GeometryToTime 

The goal of the function is to transform a geometry into a date specification. It is the natural 

counterpart to the TimeToGeometry function. This function is only necessary for displaying 

date specifications in a tabular manner rather than coordinates of the used geometries. It 

provides a better understanding for the results of ongoing examples. The following figure 

provides the source code of the function. 

 

Figure 37 GeometryToTime source code 

The function takes as input a date specification of the origin, a geometry to transform and a 

number indicating whether begin or the end of the period should be returned. The following 

figure shows an example of the function. 

 

Figure 38 Transforming geometry into a date specification 
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8.5 Spatial operations in temporal context 

The scope of this chapter is to use spatial operations to determine relationships in temporal 

context. For each relationship two periods are transformed into line geometries via the 

Time_To_Geometry function. Afterwards the spatial relationship of those line geometries is 

determined via the Oracle Locator relate function. As a result the determined spatial 

relationships are evaluated of their expressiveness in the temporal case.  

As an introduction to this topic Ott and Swiaczny (Ott & Swiaczny, 2001) provided a mapping 

between spatial and temporal operators. 

 

Figure 39 Spatial and temporal operators (Ott & Swiaczny, 2001) 

The following table provides a mapping of the identified temporal operations in literature to 

their counterparts within Oracle Locator. 

Temporal operator Oracle Locator Operator 

before / after  

meets SDO_TOUCH 

equals SDO_EQUAL 

during SDO_CONTAINS 

starts/finishes SDO_COVERS 

Overlaps SDO_OVERLAPS 

Table 2 Temporal operators vs. Oracle Locator operations 

The following table provides a mapping of temporal set operations and their counterparts 

within Oracle Locator. 

Temporal set operations Oracle Locator set operations 

intersection SDO_GEOM.SDO_INTERSECTION 

union SDO_GEOM.SDO_UNION 

difference SDO_GEOM.SDO_DIFFERENCE 

Table 3 Temporal set operations vs. Oracle set operations 
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8.5.1 Disjoint 

The following figure shows the disjoint relationship as the two periods do not have any 

spatial interact. The first period lasts from January 1
st

 2pm to 5pm. The second period lasts 

from January 1
st

 7pm to 8pm. Both are converted into a line geometry via the 

Time_To_Geometry function. As they do not have any spatial interact they do not have any 

temporal interact as well and their relationship is disjoint. 

 

Figure 40 Disjoint relationship 

8.5.2 Touch 

The following figure shows the touch relationship as the two periods have a spatial interact 

at their boundary. The first period lasts from January 1
st

 2pm to 3pm. The second period 

lasts from January 1
st

 3pm to 4pm. Both are converted into a line geometry via the 

Time_To_Geometry function. At 3pm the first period ends and the second starts so their 

line geometries have this point in common. As a result the touch relationship applies. 

 

Figure 41 Touch relationship  
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8.5.3 Covers 

The following figure shows the covers relationship as the two periods have a spatial interact 

at their interior and at their boundary. The first period lasts from January 1
st

 2pm to 5pm. 

The second period lasts from January 1
st

 4pm to 5pm. Both are converted into a line 

geometry via the Time_To_Geometry function. The line geometry of the second period is 

within the first period. Both geometries share the point at 5pm. As a result their interior and 

their boundary have spatial interact and therefore the covers relationship applies. 

 

Figure 42 Covers relationship 

8.5.4 Contains 

The following figure shows the contains relationship as the two periods have a spatial 

interact at their interior. The first period lasts from January 1
st

 2pm to 5pm. The second 

period lasts from January 1
st

 3pm to 4pm. Both are converted into a line geometry via the 

Time_To_Geometry function. The line geometry of the second period is completely within 

the first period’s line geometry therefore the contains relationship applies. The difference 

between contains and covers is that for a covers relationship the boundaries of the lines 

must interact. 

 

Figure 43 Contains relationship  
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8.5.5 Equal 

The following figure shows the equal relationship as the two periods have the same interior 

and boundary. The first period lasts from January 1
st

 2pm to 3pm. The second period lasts 

from January 1
st

 2pm to 3pm too. Both are converted into a line geometry via the 

Time_To_Geometry function. The line geometries of both periods are the same therefore 

the equal relationship applies. 

 

Figure 44 Equal relationship 

8.5.6 Overlap 

The following figure shows the overlap relationship as the two periods have a spatial 

interact at their interior and their boundary. The first period lasts from January 1
st

 2pm to 

5pm. The second period lasts from January 1
st

 1pm to 4pm. Both are converted into a line 

geometry via the Time_To_Geometry function. Their line geometries share the period 

between 2pm and 4pm therefore the overlap relationship applies. In the case of line 

geometries the overlap relationship is called overlapbdydisjoint which means that an 

overlap applies but the boundaries are disjoint. 

 

Figure 45 Overlap relationship 
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8.5.7 Before or After 

Within Oracle Locator there exist no spatial operator considering a before or after 

relationship because in space there is basically no direction. But it is possible to provide a 

before or after relationship via the linear distance function. The first period lasts from 

January 1
st

 2pm to 5pm. The second period lasts from January 1
st

 3pm to 5pm. Both are 

converted into a line geometry via the Time_To_Geometry function. First the linear distance 

of both line geometries to the origin is calculated via the distance function. The origin is 

January 1
st

 1pm therefore the linear distance of the first period is 3600 spatial units (= 3600 

seconds = 1 hour) and the distance of the second period is 7200 units (=7200 seconds = 2 

hours). A period’s line geometry with a smaller distance to the origin always starts before a 

period’s line geometry with a greater distance. As a result it is possible to determine a 

before or after relationship by comparing the distances of periods to their origin. 

 

Figure 46 Before or After relationship 
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8.5.8 Intersection 

The following figure shows an intersection of two periods. The first period lasts from 

January 1
st

 3pm to 5pm. The second period lasts from January 1
st

 1pm to 8pm. Both are 

converted into a line geometry via the Time_To_Geometry function. Their line geometries 

share the period between 3pm and 5pm which is the result of the intersection. The second 

statement in Figure 47 transforms the result into readable date specifications via the 

Geometry_To_Time function. 

 
Figure 47 Intersection operation 

8.5.9 Union 

The following figure shows the union of two periods. The first period lasts from January 1
st

 

3pm to 5pm. The second period lasts from January 1
st

 1pm to 6pm. Both are converted into 

a line geometry via the Time_To_Geometry function. The union of their line geometries is 

equal to the union of the periods which is from 1pm to 6pm. The second statement in Figure 

48 transforms the result into readable date specifications via the Geometry_To_Time 

function. 

 
Figure 48 Union operation  
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8.5.10 Difference 

The following figure shows the difference of two periods. The first period lasts from January 

1
st

 3pm to 5pm. The second period lasts from January 1
st

 3pm to 4pm. Both are converted 

into a line geometry via the Time_To_Geometry function. Their line geometries do not share 

the period between 4pm and 5pm which is the result of the difference. The second 

statement in Figure 49 transforms the result of the difference operation into readable date 

specifications via the Geometry_To_Time function. 

 

Figure 49 Difference Operation 

8.5.11 Length 

The following figure shows a length calculation of a period. The period lasts from January 1
st

 

3pm to 5pm. It is converted into a line geometry via the Time_To_Geometry function. The 

length of the period’s line geometry is 7200 spatial units. In the temporal context these are 

7200 seconds respectively the period’s duration is 2 hours. 

 

Figure 50 Length calculation  
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8.6 The bus station scenario 

The goal of this chapter is to provide interesting spatio temporal use cases based on a bus 

station scenario. For example a spatio temporal question on this scenario would be “Find 

those stations where more than one bus line stop in the same period of time within a 

walking distance of 1km within the next half an hour?”. The result of such a question gives 

information of when and where it is convenient to change the bus line. The following figure 

gives an overview of the bus lines and their stations. 

 

Figure 51 Bus station scenario 

There are three bus lines called A,B and C. Each bus line has a number of stations where the 

bus stops. At each bus station there is a schedule providing the information when a bus 

arrives. There are stations where more than one bus line stops. The time a bus stops at a 

bus station is implemented as a period and not as an instant. It is closer to reality as a bus 

takes time at the station when passengers enter or exit. For this scenario it is assumed that 

a bus needs 15 seconds from the arrival to the departure at a station. At end stations this 

period may be longer. In order to reuse the functionality of spatial operations the period is 

transformed into a line geometry via the Time_To_Geometry function.  

Chapter 8.6.1 provides an overview of the Entity Relationship Model of the bus station 

scenario. How the initial data loading was accomplished is described in chapter 8.6.2. In the 

following chapters spatial, temporal and spatio-temporal questions are formulated and 

translated into SQL statements. For spatial and temporal questions only spatial operations 

are used as time is modelled as geometry. At the end the results of the statements are 

discussed.  
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8.6.1 Entity Relationship Model 

The following figure shows the Entity Relationship Model of the bus station scenario.  

 

Figure 52 Bus station ERM 

The BUS_LINE table consists of a BUS_LINE attribute for the name of the bus line which is 

also the primary key of that table. For simplicity it is assumed that there are no two bus lines 

with the same name. The LINE_GEOMETRY attribute is for a line geometry which represents 

the line of the bus connecting the bus stations. The BUS_STATION table consists of a name 

attribute for the name of the station and a point geometry for the location of the station. 

The most important table is the BUS_SCHEDULE table as it stores the relevant information 

when a bus stops at a station and is therefore the weak-entity between BUS_LINE and 

BUS_STATION. It consists of the attributes BUS_LINE and BUS_STATION and a line geometry 

representing the period of time a bus stops at a station. The ORIGIN table consists of one 

TIME_GEOMETRY attribute for the origin which is used in following SQL statements. The 

MY_TIME table consists of one TIME_GEOMTRY attribute for a local time which is used in 

following SQL statements. For both tables the TIME_GEOMETRY attribute represents an 

instant in time as a point geometry. Both tables are helper tables as following SQL 

statements are more readable when an origin and a local time can be used by joining those 

tables.  
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8.6.2 Initial Data Loading 

The scope of this chapter is to give a short distinctive overview of the initial data loading of 

the provided data model. The BUS_STATION and BUS_LINE tables are filled with 

conventional SQL insert statements. The following figure shows an insert statement into the 

BUS_SCHEDULE table converting a period of time into a line geometry. 

 

Figure 53 Inserting values into the bus schedule 

Figure 53 shows the information that bus line ‘A’ arrives at station ‘Volksschule Moos’ at 

April 21
st

 5am and departures at 6am. This period lasts for ten minutes because this station 

is the end station. It is converted into a line geometry via the Time_To_Geometry function. 

In order to use the same origin throughout following SQL statements an origin of January 1
st

 

00:00am is inserted into the origin table. Figure 54 shows the insert statement. 

 

Figure 54 Definition of the origin 

In chapter 0 a local time for a spatio temporal question is needed. In order to reuse this 

local time in SQL statements and make them more readable a date specification of April 21
st

 

07:40am is inserted into the MY_TIME table. Figure 55 shows the insert statement. 

 

Figure 55 Definition of my time 
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As a result the following figure shows a graphical representation of some rows of the bus 

schedule table. 

 

Figure 56 Bus schedule viewed on the time line 

The period between a bus arrival and departure is transformed into a line geometry which is 

labelled with the name of the bus station. Bus line A is represented as a red line, bus line B 

as a green line and bus line C as a blue line. In order to avoid display conflicts the bus lines 

are displayed with different y offsets. 

8.6.3 Spatial Questions 

The following figure shows an example of a conventional spatial query within Oracle 

Locator. Therefore the aspect of time is not considered. For this example the originating 

location is at the station “Sinnhubstraße”. Now the spatial question is to find those stations 

which are within a linear distance of 200 meters of the originating location.  

 

Figure 57 Spatial question 

Figure 57 shows the solution to the above stated question. The linear distance is calculated 

via the SDO_GEOM.SDO_DISTANCE function and is compared to be less than 200 meters. As 

a result there are two stations within a distance of 151.644 meters respectively 180.679 

meters away from “Sinnhubstraße”. 
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8.6.4 Temporal Questions 

The following figure shows an example of a temporal query within Oracle Locator. Therefore 

the aspect of space is not considered. For this example the period of interest is between 

April 21
st

 2008 07:45am and 08:00 am. Now the temporal question is to find those stations 

at which a bus arrives or departures within that period of time.  

 

Figure 58 Temporal question 

Figure 58 shows the SQL statement to the above stated question. The period of interest is 

converted into a line geometry via the Time_To_Geometry function. It is then used within a 

SDO_ANYINTERACT spatial operator in order to find spatially interacting periods of the 

BUS_SCHEDULE table which are represented as line geometries too. As the spatial operator 

SDO_ANYINTERACT searches for any spatial relationship it returns all bus stations where a 

bus arrives or departures within the period of interest. In order to provide a readable result 

the periods’ line geometry is converted back into two timestamps via the 

Geometry_To_Time function. The result shows that there are many bus stations where a 

bus stops or arrives between 07:45 and 08:00.  
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8.6.5 Spatio-temporal questions 

The goal of this chapter is to provide interesting questions as space and time are considered 

together. For this example the originating location is at the bus station “Sinnhubstraße”. The 

time of interest is April 21
st

 2008 at 07:40am. Now the spatio temporal question is to find 

those stations within a linear distance of 500 meters where a bus stands at a bus station at 

07:40am.  

 

Figure 59 Spatio temporal Question I 

Figure 59 shows the SQL statement of the above stated question. As the time of interest is a 

time instant it is converted into a point geometry via the Time_To_Geometry function. 

Afterwards it is used within a SDO_ANYINTERACT spatial operator in order to find spatially 

interacting periods of the BUS_SCHEDULE table which are represented as line geometries. 

As the spatial operator SDO_ANYINTERACT searches for any spatial relationship it returns all 

bus stations where a bus stands at the station at 07:40am. In order to provide a readable 

result the bus schedule periods’ line geometry is converted back into two timestamps via 

the Geometry_To_Time function. The result shows that there is only one bus station where 

bus line “A” stops at 07:40am. As mentioned earlier it is assumed that it takes a bus at least 

15 seconds to handle incoming and leaving passengers. 
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The example points out the power of combining space and time into spatio temporal 

questions. Again the originating location is at “Sinnhubstraße” and the time of interest is 

April 21
st

 2008 at 07:40am. Now the question is to find those stations where one will arrive 

before a bus and must no wait longer than for ten minutes at that station. Further for each 

station the result should provide the information how long one has to go to arrive there. A 

walking speed of 5km/h is assumed. 

 

Figure 60 Spatio temporal question II 

Figure 60 shows the SQL statement to the above stated question. The time one has to go to 

the station is calculated via the SDO_GEOM.SDO_DISTANCE function which returns the 

distance in meters to a station. This distance is multiplied by 1.38 (5km/h= 1,38m/sec) to 

calculate the seconds to go which are then converted into minutes. The minutes one has to 

wait are calculated by subtracting the minutes to go from the number of minutes the bus 

arrives relative to 07:40. To find only those stations where one arrives before a bus is 

accomplished by comparing if the number of minutes the bus arrives is greater than the 

minutes one has to go there. The limitation that one must not wait longer than ten minutes 

at a station is accomplished by ensuring that the number of minutes a bus arrives minus the 

number of minutes to go there is less than 10 minutes. As a last step the statement ensures 

that the result only consists of bus stations where a bus stops after 07:40 because one 
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cannot arrive at a bus station in the past. The result shows that there are 24 stations where 

one arrives before a bus and must not wait longer than ten minutes. Considering the last 

line of the result where one has to cover a distance of more than 3km and go for 78 minutes 

in order to wait at least ten minutes the query should be extended to limit the linear 

distance a station is away. Another lack of the query is that within the result a bus station is 

included more than once showing several bus arrivals. Maybe only the next bus arrival 

within ten minutes is of interest. This can be accomplished by including a minimum function. 

The following figure shows the same example as before but the identified limitations are 

corrected. 

 

Figure 61 Spatio temporal question III 

As a result there are 6 bus stations where one arrives before a bus and must not wait longer 

than for ten minutes. The station with the greatest distance is 950 meters where one has to 

go for 21 minutes. No station in the result is listed more than once as only the next arrival of 

a bus within ten minutes is of interest. 
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9. Summary 

In the section of the background research this work identified the main contributions in the 

field of integrating time into geodatabases. The main foundation for relational database 

management systems is the relational model defined by Codd (Codd, 1970). This thesis 

reminded of the importance of this early work as it contributes to all spatial and temporal 

databases modelling paradigms. Afterwards this work described the main standards of the 

International Standardisation Organisation and the Open Geospatial Consortium concerning 

the integration of space into databases which resulted in geodatabases storing information 

about features. Besides that the temporal domain and its previous works defining the basic 

structure of time served as a foundation of how time is conceived within this thesis. 

Concepts of temporal relations were evaluated in order to identify problems and their 

solutions. For some of the identified solutions only minor adoptions were necessary to apply 

them to the ideas of this work. Finally the background research introduced the ISO 19018 

standard with its innovative chapter describing the geometry of time.  

The idea of transforming time into geometry in order to integrate it into a geodatabase is 

described in the main part. First formal descriptions of a discrete view of time based on 

calendar time and a discrete view of time based on an interval scale were provided. To 

transform time into geometry it was necessary to transform date specification into 

something like coordinates. Hence formal descriptions of functions were provided which 

transformed date specifications into numbers. A mapping between temporal primitives and 

geometric primitives resulted in temporal geometric primitives which supported a basic 

understanding of the geometry of time. The goal of the implementation was to evaluate the 

feasibility of integrating time into a geodatabase. Database Functions inside a geodatabase 

were developed in order to implement the functionality of the formal descriptions. Sample 

SQL statements using geometry constructors for creating instants and periods were 

provided. Based on a mapping between temporal and spatial operations this work applied 

spatial operations in temporal context. Finally a bus station scenario provided use cases for 

spatial, temporal and spatio temporal questions. This work showed how temporal questions 

are transformed into spatial questions and therefore solved via spatial operations. Finally 

interesting spatio-temporal questions were applied to the bus station scenario and 

delivered insights into data considering space and time together.  
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9.1 Conclusion 

The main goal of this work was to transform time into geometry in order to integrate it into 

geodatabases. This goal had been achieved on a formal basis and also by the prototypical 

implementation within a geodatabase. Further it was of interest if spatial operations allow 

meaningful operations in temporal context applied to time represented as geometry. This 

work pointed out that spatial operations determining the relationship of geometries have an 

appropriate meaning in temporal context. Each of the spatial operation available in a 

geodatabase produced a meaningful temporal result. Therefore the implementation 

confirms what an expected result was. 

The bus station scenario served as a basis for complex spatio temporal questions. As it 

includes space and time at an equivalent level it follows the idea of the ISO 19108 standard 

of spatio temporal objects. In the introduction of this work spatio temporal question had 

been formulated. What was achieved with the bus station scenario is that all temporal 

problems are solved only using functionality of a spatial framework. It turns out that 

regardless of the complexity of the question this work gets along without any other 

functionality than spatial for solving temporal problems.  

The major conclusion of this work is that transforming time into geometry is an appropriate 

way to integrate time into geodatabases. Not only it is a practicable approach because the 

extensive functionality of a spatial framework can be reused but also time represented as 

geometry corresponds to our perception of time. It is a natural approach to consider an 

instant of time as a point and a period of time as line geometry. It turned out that time 

represented as geometry helps to understand temporal relationships of periods as we tend 

to imagine that a period has a linear representation on a time line. Finally it must be 

mentioned that the findings of earlier papers which had identified analogies between space 

and time apply to the findings of this work in many ways. 
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9.2 Future Research 

Upon the provided concepts of modelling time as geometry further research is needed in 

the field of integrity constraints. Snodgrass (Snodgrass, 2000) identified that when 

integrating time into relations it is obvious that it should be considered as part of the 

primary key. This also applies to referential integrity. As a result there are concepts needed 

to include time which is represented as geometry into integrity constraints. In geodatabases 

geometry is implemented as a user defined data type which cannot be part of a primary key 

on a declarative level. Therefore the uniqueness of a primary key including geometry must 

be implemented as database functionality such as row triggers or assertions. Snodgrass had 

provided the basic concepts for that which may be adapted to work with geometry. 

Another direction for future research are complex date specifications. It is an interesting 

question how a date specification “Every Monday at 7 AM” can be represented as geometry. 

A multipoint geometry for example may be an appropriate geometric representation of the 

above mentioned complex date specification. A multiline geometry for example may be an 

appropriate geometric representation of a date specification “At weekends from 1pm to 

3pm”.  

How to query the current state out of a temporal relation is another issue which is left open 

by this work. Existing approaches are using the maximum date available in a system as the 

end of a valid time period. This approach may be adapted to time represented as geometry 

where the line geometry of a valid time period extends to the maximum date the system 

provides. Therefore the maximum date must be defined which would be the third major 

metadatum besides the origin and the granularity.  

The topic of metadata needs further investigation too. It is an important question whether 

spatial metadata of a period’s line geometry apply in temporal context. An appropriate start 

point for metadata of time represented as geometry is the ISO 19108 standard (ISO, 2002) 

as it defines temporal reference systems. 
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