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Abstract

“Space and time are among the most fundamental of notions. They provide a basis for
ordering all modes of thought and belief” (Peuquet, 2002). For the dimension of space it is
state of the art to store information about real world phenomena in geodatabases. The
fundamental units of geography are called features (OpenGis_Consortium, 1999) which are
implemented as rows of database tables including one column for the location on the
earth’s surface. To provide appropriate standards for querying and analysing features the
Open Geospatial Consortium had developed the relevant specifications. The most important
concept was to extend the relational model defined by Codd (Codd, 1970) in order to
integrate space into a data base. This concept is described in the simple feature
specification (OpenGIS_Consortium, 2006a) where geometries representing a location on
the earth’s surface are implemented as user defined data types. The simple feature
specification is implemented on a widespread basis by major RDBMS vendors and is the
state of the art technique for storing information about real world objects.

Besides space the second fundamental dimension of our life is time (Peuquet, 2002). In the
past much effort had been done to integrate time into databases. What was common to all
developments was the extension of the relational model defined by Codd (Codd, 1970). But
what is left until today is an agreement of major database vendors on how to integrate
time. This is in sharp contrast to the dimension of space where there already exists an
industry for spatial databases.

The main goal of this work is to transform time into geometry in order to integrate it into
geodatabases. The idea is mainly based on the concept of geometry of time within the ISO
19108 standard (ISO, 2002). But already Frank (Frank, Egenhofer, & Colledge, 1998) had
identified that it may be a natural approach to transform time into geometry which

corresponds in some aspects to the perception of time of humans.



Table of Contents

1. INTRODUCTION ..ccuiiuiiiniiiniineiianiinirairsnisesisesissrsssssssssssssssassrasssassssssssssssssnnss 1
1.1 HY P OTNESIS. cceeiiie et e e et e e e e e e e e e e e sbbbbrae e e e e e e e arrrees 3
1.2 TIMIE @S GROMIEEIY ..ttt ettt ettt e e ee e e s nnnnnnnnns 3
1.2.1 B 1 =Te T PP TPPP 3
1.2.2 Methods for IMplementation .........veeeieeiiiiciic e 4
1.2.3 D | = PO P PP PPPPPPP 5
1.3 EXPECTEA RESUILS ...uvvvieeeiee ettt ettt e e st e e e e e s esabbb e e e e e e e eees s eesassbaaereeeeeesasrsrens 6
1.4 [SSUES NOT COVEIEM ...ttt ettt e st e et esbe e e sneeenaneeeas 6
1.5 AUIENCE .t st 6
1.6 SErUCTUrE Of The ThESIS oo e e 7
BACKGROUND RESEARCH .....cccituiimuiimnirenimenineiiniieineiiieiieesisesisssrsssrsssssssssssasssnses 8
2. THE RELATIONAL MODEL.....ccciituiiieiimirnirenirenimeiieesinsisssresssesssssssssrassrassssses 9
2.1 LN =T =d Y oo o 1) o = 1 g PR 10
2.2 NOIMATISATION. .ttt bbbt e s e e enneas 10
2.3 Structured Query Language SQL........ccoeveiiiiiiiiiie e 11
2.4 CONTIIDULION 1.ttt et e et e e e ab e st esab e e saneesnee 11
3. SIMPLE FEATURES.....ccituiiiiiiiiniiiireiieiiiiieeiieiiesinesisesisssrassrsssrsssssssssssassss 12
31 DfINITIONS ..t e s re e 13
3.2 FEATUIES et e s s 14
3.3 LCT=T0 T 0= 4 TP ORI 14
34 Yo LA 1O 1= - 1 4 Lo o FF PRSPPI 15
35 GEOAATADASES ..o 15
L S £ = 10 U 0 I 1 1 16
4.1 TYPES OF TIM ittt e e e st e e e s st e e e s sbbebae e e s sabaeeeesasaeeeennsens 16
4.2 ADSEractions Of TiME ...cccuiiiieiieeiece e s e e nee 18
4.3 DIimeNnSioNS OFf TIME ...eiiiiiiiiieeee et 19
43.1 Valid TIME et re e e e nne e e 19
4.3.2 TranNSACTION TIME oo e ee e rae e 19
433 User DefiNed TIME ...cc.eeiiieiieiieeee ettt e sae e s 19



4.4 DiSCrete VS. CONTINUOUS ..uuviiei ittt et s et e et e et s e et e sbaseraaseraseraaseesnnseranserens 21

4.5 TeMPOral Data Ty PES.cciiiiiiee ettt ettt e s s e e e s ba e e e e s ebae e e e sareeeesnnees 23
45.1 INSTANTS .ottt e 23
45.2 INEEIVAIS. .. ettt b e e r e e 23
4.5.3 PEIIOAS e 24
4.6 SUDTIETIES ...t 25
46.1 WE [o N =T | T T T T OO PPPRPTPT 25
4.6.2 [T T o YT olo T N 25
4.6.3 Daylight SAVING TIME ..vviiiiiiiiie et e e e sbre e e s s abe e e e e s naaaeeeas 25
5. TEMPORAL RELATIONS .....cciiiiiuireiireiinniiniieinesinesisesisssressresssssssssrassrassnnses 26
5.1 B I =TS =T 0 o U 26
511 ATEFDULE LOVEL. ..t s 26
5.1.2 TUPIE LEVEI vttt e e e et e e e e e s s eabbbaa e e e seeeeessennsraaeeeeeas 27
5.1.3 INterval repreSENtAtioN . ..ivuiee e e e 27
5.1.4 o] oLl =Y o T =Y =] g} =) f (o o I 27
5.2 Modifying Temporal ReIatioNS......cccuuiiiiiiiie e 28
521 14T o PP OPPRPPPR 28
5.2.2 (6] oTo - TP UPPPPPOPPPP 29
523 D= 1= PSP PP PRPPRRTRPIN 30
53 NOFMAISATION. ... e e s ne e 31
53.1 FUNCLIONal DEPENUENCIES. ....uiiiiiiiiee ettt e s e e s sra e e e e e e saaaee s 32
5.3.2 TeMPOTal Primary KEY....uuueee oottt e eesetree e e e s seanraereee e s s e e e eeasraeneeas 33
533 TemMPOral FOr@IZN KBY ..eiiiiuiieiiiiiiie ittt sttt ssbae e e s sbaa e e e s s saaaeeesans 35
5.4 CUITENT STAt@ .o s 37
54.1 Temporal PartitioNiNg .....cuuee i e e s sara e 37
5.5 TeMPOral DAtab@SES cueeviiiiiiiiiiiieee e e eee bbb r e e e e e e s asreabbrereeeeessennsrens 38
5.6 Temporal Data MOAEIS.....coc.eei i 39
6. GEOMETRY OF TIME .....ccuiiuiiiuiirniiinninniiaineiiiesinesisesisssrsssrssssesssssrsssrasssasssnsss 41
6.1 DfINITIONS ..t e ne e 41
6.2 Temporal eoMEtriC PriMItIVES ..coivviiieiiiiiee e sita e e e eans 42
6.3 TemMPOral refErENCE SYSTEM .. .uuiieiiiiiii ittt e e e eesbbrre e e e e s sesestbaaessrereeeeeesenssees 43



6.4 From Temporal Objects to Spatio Temporal ObJectS .........ccovvvviivieeieeeiiiiireeeee e, 44

MAIN PART -TIME AS GEOMETRY....ciucituiituiimeiiniiniiiniineiieiiaisisssas 45
7. TIME AS GEOMETRY — A FORMAL DESCRIPTION ....ccccctuiireiinenrnncrnncrncnncnnnes 46
7.1 BACKEIOUNG .ottt e e e e e e e e e s e e s seeabbbbereeeeeesennnnrens 46
7.2 A DisSCrete VIEW Of TiME..couiii ittt sttt e s s sane e 47
7.3 A discrete view of time based on an interval scale ........cccceoviiiiiiiiiiiini 49
7.4 FUNCHIONS ..ttt e saaa e 51
7.4.1 TimeStampToNumber(fpOrigin, fEDAte) ....cccvvevvieeiciiecee e 52
7.4.2 NumberToTimeStamp(fpOrigin, NUmberOfSeconds)......ccccceeeeieecvreereeeeeiiirrreeeeeen. 53
7.5 Temporal geographic PrimitiVES ....cccuueei it e srae e e 54
7.5.1 INSEANT Lo 55
7.5.2 =T To Yo T TP PP PP PSP OPPRRPPPTN 56
7.6 SUMIMIAIY 1 eeetitiieee et e e e e ettt eree e e e e e et ettt e e eeeeeeeattasa e eeeeeesesasssnnansaseeesssssssnseeeessssssnnnnnseseeesnnnes 57
8. TIME AS GEOMETRY — A PROTOTYPICAL IMPLEMENTATION.......ccctvverunrnnnns 58
8.1 Yoo ] o1 B T T T PP TP T TP PTUT TP 58
8.2 Functional SPeCIfiCatioN .....ccccuvvvieiie e e e e e anares 59
8.2.1 NEEA 1O NAVE ...ttt e st e e e e 59
8.2.2 NICE TO NAVE ...ttt 59
8.2.3 NOT £ NAVE. ..t s sbe e s b e 59
8.3 2 TR A=Tol oY g Vo] Lo} -4V PSP P PPPPRROPPPP 60
8.3.1 Oracle Express Edition with Oracle LOCator.......cooevvvveeieiiiiiciiieeeeeec et 60
8.3.2 Oracle SQL Plus WOTrKSREET........cooiuiiiiiiiiiiee ettt 60
8.3.3 ESTTATCVIBW ittt e e 60
8.4 FUNCHIONS et e e e s s s 61
8.4.1 TiIMESTAMPTONUMDET ...uvviiiiii et e e e s e bbae e e e e e e s seas e asraeneees 61
8.4.2 TIMET OGEOM EIY .. e 63
8.4.3 NUM DI TOTIMESTAMIP . .uvvieeieeieiieitieeeeeeee e cerrereeeeeeeertbrreeeeessesasrreeeeseessesnnnnsrrenees 65
8.44 (CT<ToT0 0 11 4 VA Ko X HT0 4 [ PP PO PP PPPPPPPPPPPPPPRE 66
8.5 Spatial operations in teMPOral CONTEXL ....ciiviiiiiiiiiiiiee e 67
8.5.1 DT [0 1 o | U 68
8.5.2 TOUCK ettt ettt e b et e bt e s bt e e it e e e bt e sateebeenaeesareeane 68



8.5.3 (000 17 <] 3 69

8.54 L6701 01 = 1 o 1P OPPPRPPPT 69
8.5.5 o [UF- | PSRRI 70
8.5.6 (O 17T 4 1T o PSPPI 70
8.5.7 BefOre OF ATLEI .. e 71
8.5.8 INTEISECLION .eeiiiiiiiiiciiii e 72
8.5.9 161 Lo T o [P PP P PP PPPPPPP 72
8.5.10 D3 =T =T o Tl PSR TOPPRPPPRTSPIN 73
8.5.11 (0= =4 o o T PP PPPPPPROPPPP 73
8.6 The bus Station SCENAMIO ....ccouvieiieieeeee e e 74
8.6.1 Entity Relationship MOdel.......cooviiiiiiiieiceeeee e e 75
8.6.2 INItial DAta LOAAING ccuvvvvieiieeieieiirieeee ettt e e e e seaab e e e e e seeeseennsraaeeeas 76
8.6.3 SPAtial QUESTIONS ...vviiiiiiiie it e e s e e e e s s abae e e sanaeas 77
8.6.4 TeMPOral QUESTIONS .. .uvviiiiieiiiiictteeeee e eeeebbre e e e e seabbeereeeeseeeesenasraeneeas 78
8.6.5 Spatio-temMpPOoral QUESLIONS........ceiiiiiiie it e 79
9. SUMMARY ..cuctuiiiuiiniiniiniiieiiieiieeiieiiaiieiiseiisesissrssssisssstssstassrassssssssssssssasses 82
9.1 (670] 3T (V1Y o IO PR P PSR 83
9.2 FULUPE RESEAICH ...t 84
10. BIBLIOGRAPHY ...ccuiiuiiiiiiieiiniiiiieiiieiineiiniiaiiieiimesisesrasrassssssssssssssasssasssnsssnss 85

Vi



List of Figures

Figure 1 Transforming time into SEOMEIIY .....viiiiiiiiiirieeee e b 4
Figure 2 BUsS StatioN SCENAIMIO ..uuuuii i i eeeeiiiee e e e eeeeeecee e e e e et re e e e e e e e e eeeaae e e e eeeseeesasanaeeseeaeeens 5
Figure 3 Structure of the thesis ... e 7
Figure 4 Geometry basic classes (ISO, 2003) ......ccovvvrrrerieeieiiiiireeeeeeeeeeerreeeeee e e e s cearrrereeeeens 12
Figure 5 Geometry class hierarchy (OpenGIS_Consortium, 20063).......cccccceeevveercreeerireeennens 14
Figure 6 DE-9IM Matrix (OpenGIS_Consortium, 2006@) ........cccvverereeeeiiiiirreeeeeeeeiesinrereeeeeeseens 15
Figure 7 Types of Time (Frank, Egenhofer, & Colledge, 1998) .......cccccevvvvrviiercieencrieeeree e, 16
Figure 8 Branching Time (Ott & SWIaczny, 2001) .......uveeeveieiiiiiiieeieeeeeeiiiireeeeeeeesennreesreeeeeeens 17
Figure 9 Cycling Time (Ott & SWIaczny, 2001) .....ccecuieiiiieeiiieeciee e eiee e esree e e s esreeeaaeas 18
Figure 10 Valid Time and Transaction Time (Ott & Swiaczny, 2001)......ccccvvverreeeiviicnreereeeennn. 20

Figure 11 Queries on both dimensions of time (Ott & Swiaczny, 2001, adoptep from

(I o =4 T o ) TSR 20
Figure 12 Chronos with different granularities (Ott & Swiaczny, 2001)......cccccveeeevvccvveerereenn. 22
Figure 13 Temporal Update Cases (Snodgrass, 2000, S. 196) ......ccccceevreerrveesieeesireeenreesneeen. 29
Figure 14 Cases of Temporal Deletions (Snodgrass, 2000, S. 191).......cccevvrvrreereeiiiicinreereeeennn. 30
Figure 15 Temporal Databases (Worboys, 1994) .......cccceeevieiriiiiiiiee e e 38
Figure 16 Temporal Data Models (SNodgrass, 1992).......cccceiiciiirereeeeeiiiiiieeeee e serirereeeeeeee e 39
Figure 17 Comparison of Temporal Data Models (Kaiser, 1998).......cccccceevvueerireercreeenreeennnenn. 39
Figure 18 Temporal Objects (ISO, 2002) .....uueeieeeiiiiciiireeieeeeeiiirreeeeeeeeeeerreeeeeeeeeen e e senrrrereeeeens 42
Figure 19 Temporal geometric primitives (ISO, 2002)........cceeriueeriiiieeiieeeiieesieeesree e e enenens 43
Figure 20 Temporal Objects (Roosmann, Busch, Gorczyk, & Mauersberger, 2003) ............... 44
Figure 21 Spatio temporal object (Roosmann, Busch, Gorczyk, & Mauersberger, 2003)....... 44
Figure 22 Discrete view of time (Gregorian Calendar + UTC)......cccccevevieeeiieesieeeniee e, 48
Figure 23 Calendar time vs. INterval SCAlE ....uuiiiiiiiiciiiieeiie e 49
Figure 24 Functions needed for transformation ..........cccecvieiiiiiiei e 51
Figure 25 Date specification tO NUMDE ........oiiiiiiiiiie e e 52
Figure 26 Number to date SpPeCifiCation ........oovuuiiiiiiiiieiree e 53
Figure 27 Temporal geometric primitives (1SO, 2002)........coovvviirereeeeeiiiiiireeeeeeeeeesrrrereeeeeeeeens 54
Figure 28 Process of transforming an instant into @ Point........ccccvvvviiieeinieen e 55
Figure 29 Process of transforming a period into @ liN€ ........ccooveiiiiiiniiieeiniiee e 57

Vi



Figure 30 TimeStampTONUMDEr SOUICE COUE .....coouurrririieeeiiiirreeeeeeeeeeirrreeee e e e serrreeerreeeeeees 61

Figure 31 Transforming a date specification into a number .........cccoovvieiiniiie i, 62
Figure 32 TimeToGEOMELrY SOUICE COUB.....uuuuurmrririnrrrirnririrrrrrersrerrrrrerrrererererereeereeeeee ... 63
Figure 33 Transforming an instant into a point GeOMEetry ......ccccvviiviiieeiniiee e 64
Figure 34 Transforming a period into a lin€ BEOMEetIrY.......coevvvvveeiiiiiiiciieeee e 64
Figure 35 NumberToTimeStamp SOUICE COUE .....ccovurrririieieiiiireeeee e eeeeirreeeee e e e serrrererereee e 65
Figure 36 Transforming a number into a date specification .........cccevveeiiiiiieiiiiie e 65
Figure 37 GeometryTOTIME SOUICE COUR ....uuuuururrrrunrrrurnrnrrrsrsrsrsrsrerrrererererererereeereeeees s 66
Figure 38 Transforming geometry into a date specification .........cccecveeeiiiiieiiiiiie e, 66
Figure 39 Spatial and temporal operators (Ott & Swiaczny, 2001)......cccccvvvvveereeiiiicinreereeeenn. 67
Figure 40 Disjoint relationShip .......ouieeiiiiiiee e s s saee e 68
Figure 41 TOUCK relationNShip ...uueeeiiiiiiiiiiieeieeee ettt s e ae e e e e e e e esarreeeeeeeees 68
Figure 42 Covers relationNShip ....c.i it ree e e s s sbae e e ssaaaeesnans 69
Figure 43 Contains relatioNShip ... e e e er e e e 69
Figure 44 Equal relationSNip c.o..ueee ittt s s naae e 70
Figure 45 Overlap relationShip ... e ee e s e e s saae e e e 70
Figure 46 Before or After relatioNShip ..o ee e 71
Figure 47 Intersection OPeration .............eeeuuieieiiiiiiiiieieieiee ettt eeeeeeeeeeeeeeeeeeeenansnsesesssesssesnnes 72
T ={Ul IR R B oTTe] g o] o 1=] - 1 (o] o (USSRt 72
Figure 49 Difference OPeration .......c.ceiiiciieei et e s saee e s s e ssbeeeessaeeeesnaes 73
Figure 50 Length CalCUIGLION ....uvviiiii ittt ee e e e e s senarreeeeeeeeas 73
Figure 51 Bus STation SCENAIIO .....uuiieiiiiieiiieiiiiit ettt ee e et eeeeasaassnsesssssesesesenes 74
Figure 52 Bus station ERIM ......ueee i e e e e e et e e e e e e e ear e e e e e eeeees 75
Figure 53 Inserting values into the bus schedule ..., 76
Figure 54 Definition of the Origin........cooiiiiii e 76
Figure 55 Definition Of MY TiMeE ... e e earr e e e e e 76
Figure 56 Bus schedule viewed on the time liNe .......c..eeiiviiiiiiiiiiii e 77
FIgure 57 Spatial QUESTION ....euviiiiiii ettt e e e e e s e e are e e e e e e s senarreeeeeeeees 77
Figure 58 TempPoral QUESTION .....uiiiiiiieiceiie ettt e e e s e e e e e e ssbaeeessaaeeesnaes 78
Figure 59 Spatio temporal QUESTION L......uuveeieiiiiiiiiiiiieeie e e e sarrrereee e 79
Figure 60 Spatio temporal QUESTION 1l ...c.uuiiiiiiiieeieiiie ettt e e s saaee e 80
Figure 61 Spatio temporal QUESTION ] ......ueeeeiiiiiiiiiiiieeiee e e e e 81



List of Tables

Table 1 A relation viewed as a two dimensional table...........cccovieeieiiiicciie e, 9
Table 2 Temporal operators vs. Oracle Locator Operations.......ccccceeeeeeecnrveeeeeeeeieiiineeeeeeeeeeens 67
Table 3 Temporal set operations vs. Oracle set Operations........ccccvvueeeeiriieeeiniieeesirineeeeeenne 67



Introduction

1. Introduction

Based on the definition of Peuquet “Space and time are among the most fundamental of
notions. They provide a basis for ordering all modes of thought and belief” it is the main
motivation of this work to provide concepts of modelling space and time together in
relational data base management systems (RDBMS).

The underlying concept of RDBMS is the relational model developed by Codd (Codd, 1970)
which is nowadays the most widespread data model used for database applications (Steiner,
1998). To integrate the dimension of space into RDBMS much effort had been made in the
past which resulted in the Open Geospatial consortium defining standards in the field of
Geographic Information Systems (GIS). The “Simple Feature Access” standard is an
important contribution to this thesis as it describes how space is conceived into RDBMS. The
standard has been widely accepted as the main vendors in the field of GIS rely on it.
Databases providing support for space are called geodatabases. Their support consists of
providing spatial data structures, spatial operations, spatial indexing methods and much
more. It is the result of the work of the Open Geospatial consortium and the acceptance in
the GI community that there is a broad consensus on how space is used within RDBMS.
Moreover the concepts of integrating space into RDBMS are proved to work as they are
implemented on a widespread basis. In geodatabases it is possible to ask for the location of
things or the spatial relationships of objects and their neighbours.

In contrast to that there still is not a consensus on how time is integrated into RDBMS
respectively geodatabases (Chomicki, 2005). In the past many concepts of temporal
relational models had been developed as a basis for integrating time into RDBMS. But
nowadays state of the art RDBMS lack at supporting time as they usually capture a single
state of data, most often the current one (Steiner, 1998). None of the major RDBMS vendors
provide a native support for time as they do for space. However database near applications
which are working based on previously developed temporal concepts are available. One
movement to overcome the lack of time support in geodatabases had been done by the
International Standardisation Organisation (ISO). So far it developed a standard called “ISO
19108 Geographic Information — Temporal Schema”. The standard provides concepts
needed to describe the temporal characteristics of geographic information. As this standard

had identified that when conceiving time into geodatabases then there are some analogies
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between space and time. Hence within this standard the concept of geometry of time is
introduced which is about representing time as geometry. The important thought behind
that is that a geodatabase already provides the necessary functionality when time is
represented as geometry. Hence a spatial framework consisting of data structures,
operations, indexing methods and much more is reused in the temporal context.

This thesis will follow the idea of representing time as geometry in order to integrate it into
geodatabases. Therefore this work provides a formal basis to transform time into geometry.
Based on this formal description this work provides a prototypical integration of time into a
geodatabase.

The scope of this work is to overcome the lack of time support and integrate time
represented as geometry into geodatabases. This is based on fundamental findings of
important contributions in the field of combining space and time in databases. Worboys
identified that “much information which is referred to space is also referenced to time”
(Worboys, 1994). Moreover Peuquet pointed out that “things change in space over time ...
to exist is to have being within both space and time. “ (Peuquet, 2002). In her work Peuquet
mentioned that in human history space and time were so basic to our understanding that
they were regarded to the source of our world.

Now integrating time into geodatabases provides a basis for ordering all modes of thought
and belief as Peuquet (Peuquet, 2002) mentioned. It raises new perspectives and probably
delivers interesting insights of data. A geodatabase providing support for time is able to
answer the question where things are located and when they had happened. It is further
possible to find out if things existed together because they occurred within the same period
of time at the same place. How a place looked like ten days ago or how this place will look
like in one year? These are the common scenarios of so called spatio-temporal issues as
space and time are considered together. This work will point out that when time is
represented as geometry it is possible to completely solve spatio temporal problems with

the spatial framework of a geodatabase.
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1.1 Hypothesis

Based on identified analogies of the two fundamental dimensions space and time it is a
natural approach to represent time as geometry in order to integrate it into a geodatabase.
The spatial framework a geodatabase provides allows meaningful operations applied in

temporal context.

1.2 Time as Geometry

This section gives a short introduction of the main part of this thesis.

1.2.1 Theory

The main idea of this work is to model time as geometry in order to integrate time into geo
data bases. The formal basis for this approach is now introduced so for a detailed
description it is necessary to read chapter 7.

This work uses a discrete view of time that is absolute and not relative as defined by
Einstein. Therefore the speed of time is assumed to be independent from an object’s own
motion. But in this work time is always relative to an arbitrary origin which marks the
earliest possible date specification. Further it is assumed that time is totally ordered and
that it is possible to measure the distance between two date specifications. The next
assumption is that time linearly extends from the origin to the future. Therefore it is not
possible that time branches in the future or that time cycles in a repetitive manner. Once an
event had happened it will never happen again at that time. It is assumed that any date
specification uses the Gregorian calendar to identify years, month and days. The
Coordinated World Time UTC is used to identify hours, minutes and seconds. As a result any
date specification used for the formal description of the approach is of the form
{YYYY.MM.DD HH:MIN:SEC}. The smallest time unit used in this work is one second.

In order to transform a date specification into geometry it is necessary to transform date
specifications into numbers. Therefore an interval scale based view of time is defined in
chapter 7.3. The natural numbers are the underlying values of any transformed date
specification. Chapter 7.4 identifies two functions which are necessary to transform date
specifications into geometry and geometry back into date specifications. The functions are
described on a formal basis, their implementation is provided in chapter 8.4. Finally in
chapter 7.5 the formal description provides a mapping from temporal primitives to

geometric primitives. Therefore an instant of time is represented as point geometry and a
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period of time is represented as simple line geometry. As a result the following figure

summarises the process of transforming time into geometry.

Adiscrete view of

time based on the

Gregorian calendar

andUTC Interval(T1,72) ={000000000.01.00.00} = 1 hour
L

[ 8+, 0050102143258 7. 2oss.01021532:58)

Origin {2008.01.01 13:00:00}
TimeStampToNumber TimeStampToNumber

|, (1*864001+{1¥3600}+(32°60)+32=91978 |, (1*86400)+(2*3600}+(32+60)+32=95578
Adiscrete view of
timebasedonan
interval scale

Origin'{0}

Interval(T";, T7,) = {91978, 95578} = 3600 seconds = one hour
1

% *
T, {91978} T, {95578}

Temporal Line
inR?

> /' Temporalline geometric primitive

1°,{91978,0 1°,{95578 )
OriginSén M a ) - g X - Axis

Figure 1 Transforming time into geometry

1.2.2 Methods for Implementation

The implementation of the provided formal description is described in chapter 8. It provides
the necessary implementation steps to integrate time into geodatabases. Before time is
converted into geometry time is mapped onto the SQL-92 data type TIMESTAMP which
stores an anchored position in time at a granularity of seconds. Any relative temporal
information is mapped onto the SQL-92 data type INTERVAL DAY TO SECOND. The goal of
the implementation is to integrate the transformation functions as database functions
which are described in chapter 8.4. Oracle Express Edition including Oracle Locator is used
as a database including a spatial framework. It provides a rich spatial framework consisting
of a spatial data type, spatial operations, spatial analytical methods, indexing methods and
much more. It is also compliant to the Open Geospatial simple feature specification as it
provides functions to transform geometry from its native representation into a well known
binary or well known text representation. As the transformation functions are implemented
and time therefore is represented as geometry it is possible to reuse the existing spatial
framework in temporal context. Chapter 8.5 provides a mapping from temporal operations
to spatial operations. For each spatial operation it is evaluated if it provides a meaningful
result in temporal context. For example if one period is during another period this question
is transformed into if one line geometry is inside another line geometry. Finally the power of
the spatial framework applied in temporal context is shown with a bus station scenario

where spatio temporal questions are provided.
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1.2.3 Data

To test the outcome of the implementation a bus scenario is provided in chapter 8.6. The
goal of the bus station scenario is to provide a basis for interesting spatial, temporal but also
spatio temporal questions. The following figure provides an overview of the bus station

scenario.

Figure 2 Bus station scenario

There are three bus lines called A,B and C. Each bus line has a number of stations where the
bus stops. At each bus station there is a schedule providing the information when a bus
arrives. The time a bus stops at a bus station is implemented as a period as it is close to
reality that a bus takes time at the station when passengers enter or exit. For this scenario it
is assumed that a bus needs 15 seconds from the arrival to the departure at a station.
In order to reuse the functionality of the spatial framework the period is transformed into a
line geometry via the Time_To_Geometry function and the location of the bus station is a
spatial point. As a result this work should be able to answer the following questions:
® Find those stations which are within a walking distance of 200 meters of a given
location
® Find those stations at which a bus arrives or departures within a given period of time
* Find those stations within a walking distance of 500 meters where a bus stands at a
given time point

® Based on a given location and a given time find those stations where someone will
arrive before a bus and must no wait longer than for ten minutes at that station. A
walking speed of 5km/h is assumed.
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1.3 Expected Results

The expected result of this work is the integration of time into a geo database where time is
represented as geometry. To accomplish this goal a formal basis for the transformation of
time into geometry must be provided. A prototypical implementation within a geo database
gives answer about the feasibility of the provided formal description. Finally when
integration is finished it should be possible to answer the previous mentioned spatial,
temporal and spatio temporal questions. Therefore the questions are translated into SQL
statements where both spatial and temporal problems are solved via the spatial framework

as time is represented as geometry.

1.4 Issues not covered

This work assumes time to be a finite continuum and therefore a discrete view of time is
used. For the provided concept of transforming time into geometry time is interpreted to be
absolute and not relative. Hence this work is based on a Newtonian view of time rather than
Einstein’s relativity theory. As a result of this view of time there are a number of topics not
covered by this work including the hot topic are of moving objects. Gliting and Schneider
provide (Glting & Schneider, 2005) an important work in the subject area of moving
objects. Aleshkeikh (Alesheikh) and Somayeh (Somayeh & Alesheikh) provided an
appropriate entry point in the subject area.

Another issue that is not covered by this work is the visualisation of temporal information.
Of course the provided examples and use cases show graphical representations of time but
it is not the scope of this work to provide concepts related to the visualisation.

Real time systems are not covered by this work too. It is assumed that there is period of
time that goes by from making an observation in the real world to storing that information
in the database.

In the past dozens of concepts of temporal relations had been developed. It is beyond the
scope of this work to evaluate and compare them in detail but they serve as an important

basis for all thoughts about this work.

1.5 Audience
This thesis may be a contribution to everyone interested in modelling space and time in
relational database management systems. As this work integrates time into geo databases it

may also be of interest in the field of Geographic Information Systems.
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1.6 Structure of the Thesis

The following figure provides information of the structure of this thesis.

& Background Research &

( Ctl)n;:ﬂﬁﬁ (A world of features)( Types of Time )( Timestamps )(mD
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Time as Geometry
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Implementation of Spatial Operations in
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i AR Functions Temporal Context
Functions and data
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transformation
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Figure 3 Structure of the thesis

This work is separated into one part providing an evaluation of relevant literature in the
subject area which is called background research. The second part is the main part of this
work. It is separated into a formal description for the transformation of time into geometry
and a prototypical implementation of that description within a geo database. Each
previously evaluated paper of the background research is more or less a contribution to the

main part.
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Background Research

The scope of this section is to describe and identify the main contributions to this work. This
work is based on the following fundamental concepts. The first is the relational model
defined by Codd (Codd, 1970) as it provides the basic modelling paradigms for nowadays
state of the art Relational Database Management System (RDBMS). Based on this the
second important concept is how the dimension of space is conceived into RDBMS, so called
Geo Databases. The related standards of the International Standardisation Organisation
(ISO) and the Open Geospatial Consortium (OGC) are evaluated. The third important
concept is how the dimension of time is conceived into RDBMS. Previously developed
modelling paradigms and concepts extending the relational model to the temporal domain
are described. The background research is completed by the ISO Standard “ISO 19108

Geographic Information —Temporal Schema” which introduces the idea of geometry of time.
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2. The Relational Model

The relational model was first introduced by Codd (Codd, 1970) in his paper “A relational
Model of Data for Large Shared Data Banks”. Codd published follow-up papers where he
brought his idea on a mathematical framework (Codd, 1972). The main idea of this model
was to protect users from having to know how data is organized in the machine, hence in
such a model data are described only by its natural structure (Codd, 1970). At the time of his
paper there existed ordering, indexing and access path data dependencies which he
identified. The scope of the relational model was to overcome these data dependencies.
Nowadays the relational model is the most widespread data model used for database
applications and is implemented in state of the art relational database management
systems (Steiner, 1998). Jensen (Jensen, Soo, & Snodgrass, 1994) pointed out the success of
the relational model is related to its simplicity.

The relational model consists of a set of relations.

“Given sets S;,S, ... , S, (not necessarily distinct), R is a relation on these n sets if it is a
set of n- tuples each of which has its first element from S1, its second element from Sz , and

so on. More concisely, R is a subset of the Cartesian product S; xS, x .... x S,.” (Codd, 1970).

To better understand this mathematical formal definition a more general definition of a
relation is needed. Steiner defined a relation in its simplest form as the Cartesian product of
its domains (Steiner, 1998). From Codd’s perspective a relation is the provided data
structure in the relational model to store information about real world phenomena. A
relation consists of domains which describe the properties of such phenomena. As Codd
mentioned a relation can be viewed as a two dimensional table, where a row in that table is

called a tuple (Codd, 1970).

BUS_STATION ARRIVAL DEPARTURE
FIRST_BUS_STATION 01.01.2008 07:40 01.01.2008 07:42
SECOND_BUS_STATION 01.01.2008 08:30 01.01.2008 08:32

Table 1 A relation viewed as a two dimensional table
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2.1 Integrity constraints

To apply operations and integrity constraints on relations Codd (Codd, 1970) introduced the
concepts of primary key and foreign key. He defined a primary key as the one domain or
combination of domains which uniquely identify each tuple of a relation. Hence, a primary
key is non redundant. To enable cross references between relations foreign keys are
defined. Codd defined a foreign key as the one domain or combination of domains which is
not the primary key of a relation but the primary key of another relation. In his definition it

is not excluded that the two involved relations of a cross reference are the same.

2.2 Normalisation

Another concept introduced by Codd is called normalisation. To describe this concept it first
must be distinguished between simple domains and non simple domains. Simple domains
are domains whose elements are atomic they only consist of scalar values. Non simple
domains consist of elements whose values include for example relations (Codd, 1970). The
process of eliminating such non simple domains from a relation is called normalisation.
Codd described a common way of this process by excluding non simple domains from the
original relation and redefine them as new relations. They are related to their original
relation through the concept of a foreign key. As a result a normalised table only consists of
simple domains and can again be viewed as a two dimensional table.

Codd further introduced permutation, projection, join and other operations applied to
relations. For example a join operation is understood as setting relations in relation to each
other through a domain they have in common (Codd, 1970). Moreover he mentioned as
time progresses a relation may be subject to insertion of additional tuples. Existing tuples
may be deleted or altered.

All the basic ideas and concepts of Codd are implemented in nowadays state of the art
relational database management systems. The implemented counterpart of a relation is
called a database table. Domains of relations are implemented as attributes of such tables.
The concepts of primary key, foreign key are implemented as integrity constraints.
Normalisation of relations as an idea has become accepted although there are reasons why
the process of normalisation may be relaxed. The operations applied to relations are

implemented too.
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2.3 Structured Query Language SQL

What has come along with all this is the definition of a computer language which makes it
possible to use the relational model in all its aspects. Such a standard is the Structured
Query Language (SQL). Originally SQL had been developed by Donald D. Chamberlin and
Raymond F. Boyce under the name “SEQUEL". The scope of it was to access data of relations
based on the relational model of Codd (Chamberlin & Boyce, 1974). Later on this language
had been adopted as a standard by the International Standardisation Organisation (I1SO). In
state of the art RDBMS the standard SQL-92 of the year 1992 is implemented. Following
standards like SQL:1999 or SQL:2003 are not implemented on a widespread basis
(Snodgrass, 2000). The SQL in its nowadays implemented form provides a means of using

the concepts related to Codd on a computational basis.

2.4  Contribution

The relational model and the SQL standard are both main contributions to this work. They
provided the basic concepts behind state of the art database management systems. Steiner
(Steiner, 1998) summarises that a data model consists of data structures, data operations
and integrity constraints. Data structures provide a means to store data, operations applied
to them provide a means to query and manipulate this data. Finally integrity constraints
provide a means to keep data integer and avoid redundancy. As it is the scope of this work
to model time into geo databases the above presented concepts need temporal and spatial
counterparts. Space and time had previously considered separately to fit into the relational
model. On the one hand geo databases provide data structures and operations dealing with
spatial data types. On the other hand temporal data models consist of temporal data
structures, temporal operations and temporal integrity constraints. How space and time are
conceived into the relational model is discussed in the following chapters. Within the main
part of this work concepts are provided how the two dimensions are together considered

into the relational model.
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3. Simple Features

The goal of this chapter is to provide an overview of state of the art standards and
techniques to use spatial information inside data bases, so called geo data bases.

The Open Geospatial Consortium (OGC, available at http://www.opengeospatial.org/) is a
non profit organisation which was founded in 1994. The major task of the OGC consists in
developing open standards and specifications in the field of GI-Systems. Their developed
standards are separated into Abstract Specifications and Implementation Specifications. The
former type of standard is written at an abstract level and often in relation with an
according standard of the International Standardisation Organisation (ISO). The latter type
of standard is considered for practical use and is mainly based on Unified Modelling
Language (UML) models. Therefore such a standard is independent from specific software
architecture.

For this thesis there are two abstract specifications important. The first is called “Topic 2 —
Geometry” which is also an ISO standard (ISO, 2003) called “ISO 19107 Geographic
Information — Spatial Schema”. In this specification the different types of geometry are

described in detail using UML models. Figure 4 shows the basic geometry classes.
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Figure 4 Geometry basic classes (1SO, 2003)
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3.1 Definitions
To understand the different types of geometry this standard provides important definitions

on the following terms:

Position is “described by a single set of coordinates within a coordinate reference system”

(IS0, 2003).

Interior is the “set of all direct positions that are on a geometric object but which are not on

its boundary” (1SO, 2003).

Boundary is the “set that represents the limit of an entity” (1SO, 2003).

Exterior is the “difference between the universe and the closure” (1SO, 2003).

With these definitions in mind it is possible to define the geometric primitives which are

relevant for this thesis.

Point is a “O-dimensional geometric primitive which represents a position” (ISO, 2003).
Further it states that the boundary of a point is the empty set the interior of a point is its

position.

Curve is a “1-dimensional geometric primitive representing the continuous image of a line”
(ISO, 2003). The boundary of a curve is defined as the set of points at either ends of the
curve. As a curve has a direction the first point is called start point and the last point is
called end point. The interior of a curve consists of all points between the start and end
points based on an interpolation. A common method is linear interpolation, where the start

and end points are connected by a straight line.

There exist definitions on surface and many other types of geometry too, but they are not

relevant to this work.
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3.2

Based on these important definitions on types of geometry the second abstract specification
important for this thesis is called “Topic 5 — Features”. Within this specification it is defined

how real world phenomena are modelled into a world of features. “The fundamental unit of

Features

geographic information is called a feature” (OpenGis_Consortium, 1999).

3.3

In addition to the above mentioned abstract specifications one implementation specification
is an important contribution to this work as well. It is separated into two parts, the first part
is called “Simple Feature Access — Part I: Common Architecture” and it defines the different

types of geometries which are considered as a basis for simple features. Figure 5 shows an

Geometries

UML model of the considered types of geometry.
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Figure 5 Geometry class hierarchy (OpenGIS_Consortium, 2006a)
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3.4 Spatial Operations

Further this standard defines the properties for each type of geometry as well as relational
operations applied to them. For example the well known Dimensionality Extended Nine-
Intersection Matrix (DE-91M) describing the relations between two geometries is provided
(OpenGIS_Consortium, 20064, S. 35). This matrix is based on the assumption that geometric

primitives have an interior, a boundary and an exterior.

Interior Boundary Exterior
Interior dim(i(a)~I(b)) dim(l(a)~B(b)) dim(l(a)~E(b))
Boundary dim(B(a)~i(b)) dim(B(a)~B(b)) dim(B(a)~E(b))
Exterior dim(E(a)~I(b)) dim(E(a)~B(b)) dim(E(a)E(b))

Figure 6 DE-9IM Matrix (OpenGIS_Consortium, 2006a)

The second part of the simple feature specification is called “Simple Feature Access — Part Il
SQL Option” and it defines how features (remember the above mentioned standard “Topic 5
— Features”) are conceived into the relational model defined by Codd (Codd, 1970). Hence
the scope of this part is to describe a SQL schema that supports storage, retrieval, query and
update of collections of features (OpenGIS_Consortium, 2006b). Besides the SQL
implementation option there are other options like the implementation option based on the

Component Object Model (COM). For this work only the SQL option is considered.

3.5  Geodatabases

In the SQL specification a table is called feature table within a geodatabase. Columns of such
a table are whether spatial or non spatial and describe the attributes of a feature which
itself is represented as a row of a feature table. Non spatial attributes are derived from the
SQL implementation and spatial attributes are derived from the OGC Implementations
Specification. The spatial attributes may be implemented as user defined data types (UDT)
(OpenGIS_Consortium, 2006b). Further this standard identifies different SQL operations
applied to feature tables as well as how the different types of geometry are stored in a

feature table.
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4, About Time

The scope of this chapter is to give an introduction to the time domain. General concepts,
definitions as well as methodologies from the main contributors of the subject area are
identified. The chapter starts with abstract concepts related to the time domain like the
taxonomic model developed by Frank (Frank, Egenhofer, & Colledge, 1998) which identified
different types of time. Further different views of time and the topic how time can be
conceived into computer systems are provided. The chapter ends up with the definitions of

time related data types within relational database managements systems.

4.1 Types of Time

What is time and how do we understand time? Such questions are almost very philosophical
and cannot be answered by this work. To give an appropriate introduction Frank (Frank,
Egenhofer, & Colledge, 1998) had developed a taxonomic model which identified different
types of time. Of course in reality there is only one time, the different types of time refer to
our conception of time and how time can be conceived into computer systems. He had also
identified that on different types of time different operations may be applied. Figure 7

shows the different types of time as identified by Frank (Frank, Egenhofer, & Colledge,

1998).
multiple
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- Single Multiple
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Figure 7 Types of Time (Frank, Egenhofer, & Colledge, 1998)

The first consideration is whether an event occurs at an instant or it has duration over a
period of time. Instants of time are absolute and represent a point in time. Once this time
point had occurred it is forever in the past. An example for a time instant is January 1%. In

contrast, a time interval represents duration between two time instants. Intervals are called
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periods if they are considered to be absolute. For example the period between 1% January
and 7" January is an absolute period defined by its two delimiting time instants. If intervals
only represent duration then they are considered to be relative. For example the expression
“two weeks” is considered as a relative interval. The according data types to instants,
intervals and periods are discussed in chapter 4.5.

The second consideration is whether time is interpreted linear or cyclic. To use ordinal or
interval scale values is the third consideration. Moreover an important role plays the
ordering of events. As Frank mentioned linear time may have total order, a partial order or a
branching order. In a total order system one event occurs after the other. Linear time
extends from the past to the present throughout the future. From Frank’s perspective a
partial order exists if the observations of two observers are considered together but each
observation do not know its temporal relation to the other one.

Branching time is defined as linear time with different future states. One observation may
have multiple states for the same period of time. This type of time is useful for planning

scenarios or predictive tasks. Figure 8 shows how time branches from the past to the future.

Futurg

Figure 8 Branching Time (Ott & Swiaczny, 2001)
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When time is interpreted as cyclic then it has a repetitive pattern. For example many
cultural or biological processes, like the four seasons or breading seasons, occur on a cycling
basis (Frank, Egenhofer, & Colledge, 1998). One character of cycling time is that an ordering
of events is meaningless as for example morning is before but also after evening.

cyelic time

January
. *_ period
4
October April
e )
E Juby

Figure 9 Cycling Time (Ott & Swiaczny, 2001)

Lastly Frank identified multiple perspectives of time which is often referred to dimensions of
time. This topic is discussed in chapter 4.3.

As a summary it should be mentioned that many of the presented considerations can be
combined. A total order, a partial order or a branching order are the possibilities if linear
time is used. Further the scale of measurement can be considered too. Frank also
introduced the concept of tolerance. He stated that the temporal information of
observations may include errors of measurement. To better compare temporal information
a tolerance may be used to define at what precision to values are considered equal. This
concept is related to the concept of using a discrete view of time which is discussed in

chapter 4.4.

4.2  Abstractions of Time

From the beginning of research the view of time either as absolute or relative produced
much discussion. Peuquet (Peuquet, 2002) mentioned that from ancient history until
Newton time always had been considered to be absolute. But with the first relative theory
of Einstein the understanding changed to a relative view of time. It states that the relativity
of time is related to the movement of objects. In the context of this work the movement of
objects is the topic of moving objects which is not covered within this work as mentioned in
chapter 1.4. Therefore this work interprets time to be absolute rather than to be relative.
Chapter 7.2 provides the definition of an absolute view of time as a basis for the

implementation described later in this work.
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4.3 Dimensions of Time

In literature there is much discussion about dimensions of time which Frank (Frank,
Egenhofer, & Colledge, 1998) had identified as multiple perspectives of time. In general
there are two dimensions, valid time and transaction time. Any other dimension is defined

as user defined time (Snodgrass, 1992).

4.3.1 Valid Time

Valid time is the defined as the “time when a fact is true in the abstracted reality. “ (ISO,
2002). It defines the time of an observation had existed in the real world. The valid time
dimension is also called the valid time period which is discussed in later chapters. Valid time
often describes the lifetime of real world phenomena. As Jensen stated all facts have a valid
time by definition (Jensen, 2000). One important fact is that in the context of database
systems valid time must always be provided by the user it can never be provided by the

database itself (Steiner, 1998).

4.3.2 Transaction Time

Transaction time is defined as the “time when a fact is current in a database and may be
retrieved.” (1SO, 2002). It is the time the recorded fact of the reality is available in the
database. Hence this dimension of time does not say anything about when the recorded fact
was valid in the real world. Jensen stated that the period from insertion to deletion is the
duration of transaction time (Jensen, 2000). Steiner (Steiner, 1998) mentioned that there is
often a delay between when a fact is observed in reality and when a fact is true in the
database. Hence transaction time is an important dimension of time as it provides the
possibility to query database changes. Transaction time must always be provided by the

database system, it cannot be provided by the user.

4.3.3 User Defined Time
Any other dimension of time except from valid time and transaction time is referred to user
defined time. An real world object may have zero, one or more user defined time

dimensions. For example the periods of legal aspects can be modelled as user defined time.
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Valid time and transaction time can be viewed as two orthogonal axes (Ott & Swiaczny,

2001). The following figure shows the relations between valid time and transaction time.

walid &
Eamm

_'..
TanSEChon UM
Figure 10 Valid Time and Transaction Time (Ott & Swiaczny, 2001)

Valid time and transaction time are synchronic as long as the period of valid time overlaps
the period of transaction time. In such a case the observation of the real world is valid while
it is also stored within the database. In Figure 10 this relation between valid time and
transaction time is called “line of synchrony”. The time delay between the occurrence in the
real world and the storage in the database is called “time lack of update”. When an event is
stored in the database before it happens in the real world it is called a “projection of future
state”. Further Ott and Swiaczny (Ott & Swiaczny, 2001) provided an overview of possible

queries if both dimension are supported. These queries are shown in Figure 11.

World = Database | What do we know of the world on this date, as of the
same date?

World < Database | To the best of our knowledge as of a given date, how
did the world appear on a given past date?

World > Database | Based on our knowledge as of a given date, how would
we expect the world to appear at a later date?

Figure 11 Queries on both dimensions of time (Ott & Swiaczny, 2001, adoptep from

Langran)
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4.4 Discrete vs. Continuous

There are two possible abstractions of time called continuous view and discrete view. Frank
(Frank, Egenhofer, & Colledge, 1998) mentioned that in a continuous view time is dense and
therefore between any two time instants another one can be inserted. Thus such an
approach is isomorphic to the real numbers (Steiner, 1998). In contrast in a discrete view
temporal information is isomorphic to the natural numbers. As a result between any two
time instants no other time instant can be inserted. In her work Peuquet (Peuquet, 2002)
pointed out the important difference between both views. She stated that the continuous
view focuses on space and time as the subject matter. In such a view time and space are the
two important subjects of interest and everything that exists within these subjects is just
derived information. In contrast in a discrete view objects are the subject matter (Peuquet,
2002) and the derived information is about space and time.

Roosman (Roosmann, Busch, Gorczyk, & Mauersberger, 2003) and others said in their work
that discrete time is used if time is measured at certain time points or time intervals and the
variation is discontinuous between them. In contrast a continuous time may be more
appropriate to describe processes as it probably will exist a theory to interpolate a value for
every time point on the continuous time axis. As a continuous view of time is more
appropriate to describe processes and therefore is more appropriate to describe the
movement of objects this view tends to apply to the topic of moving objects which is not
covered by this work. Moreover Steiner stated that as using time in relational database
management systems is build on a discrete computing device it also may be used in a
discrete manner (Steiner, 1998). Clifford and Tansel mentioned that “.. from a practical
standpoint the natural numbers seem a more useful candidate for modelling properties of
database time.” (Clifford & Tansel, 1985). Further they mentioned in their work that the
discrete view is more appropriate as a recording instrument has at a best a finite quantum.
Snodgrass (Snodgrass, Temporal Databases, 1992) provides several reasons why a discrete
model is more appropriate than a continuous model in the context of relational database
management systems. For example he stated that observations are already measured on a
discrete basis. Moreover we all tend to use time on a more discrete view as we are using
clocks and calendars.

In a discrete view time is abstracted as a finite dimension with equal sized time instants

(Steiner, 1998). Clifford and Tansel (Clifford & Tansel, 1985) defined the discrete view as a
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set of equal distanced points, these discrete time points are called chronos. Between two
consecutive time points there is duration of one time unit. The points are totally ordered

and relative to an origin.

1990 91 92 93 94 1995
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Figure 12 Chronos with different granularities (Ott & Swiaczny, 2001)

Chronos are the main concept when modelling time discrete “... the sequence of chronons
may be thought of as representing a portioning of the real time line into equal-sized,
indivisible segments ...” (Roosmann, Busch, Gorczyk, & Mauersberger, 2003). One chronon
itself has no duration, but the temporal distance between two consecutive chronos has
duration. The ISO Standard 19108 introduced the Gregorian calendar as a prominent
example of a discrete view of time. The smallest time unit is one day. Within one day
humans use clock time to discrete time. Therefore clock time in combination with the
Gregorian calendar is a very popular discrete view of time and is the basis for this work.

Frank introduced that a discrete view can be built with varying degrees of tolerance but also
with different levels of granularity. The granularity is the smallest unit used in a discrete
view, whereas the tolerance is equal to or greater than the granularity. A discrete model can
have a granularity of one day, but for specific applications a tolerance of one week may be
preferred. Therefore two time instants are considered equal if they fall into the same level
of tolerance. For example consider a granularity of one day. Now compare December 31%
2007with January 1% 2008 at level of granularity they are not equal. If a tolerance of one
year is used they are still not equal but for example if a tolerance of one week is used they

may be considered equal.
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4.5 Temporal Data types

Temporal values are the core of temporal applications, they are the stuff of which temporal
applications are made as Snodgrass (Snodgrass, 2000) mentioned in his work. Data types are
needed to model time in relational database management systems. In literature there are
three main types defined: instants, intervals and periods. These types had been defined by
the International Standardisation Organisation (ISO) within the standard “ISO 19108
Geographic Information — Temporal Schema” which is an important contribution to this

work.

4.5.1 Instants

“An instant is an anchored location on the time line” (Snodgrass, 2000). In general an instant
represents a point in time. Once it has occurred it is forever in the past and will not occur
again (Snodgrass, 2000). Within the SQL-92 standard there are two different data type
definitions for instants. The first data type is called “DATE”. According to the definition a
value of data type date includes calendar date as well as clock time. The default calendar is
the Gregorian calendar with UTC as clock time. The clock time is modelled with a precision
of a second. The newer data type for instants is called “TIMESTAMP”. Timestamps are able
to represent clock time up to a precision of nanoseconds. Further this data type provides
three possibilities of time zone support. First is no support only UTC time is stored. The
second possibility is to store the time zone offset from UTC in the temporal values. This
approach is called timestamp with time zone. The third possibility is called timestamp with
local time zone. For this approach the time zone offset is not stored in the values but values
are always represented in the session time zone of the user.

The 1SO standard (ISO, I1SO 19108 Geographic information - Temporal schema (draft
version), 2002) defines an instant as a “O-dimensional geometric primitive representing
position in time.” (1SO, 2002). This geometric view of a time instant is considered as one of

the main ideas of this work and described in chapter 7.5.1.

4.5.2 Intervals

“An interval is an unanchored contiguous portion of the time line” (Snodgrass, 2000).
Intervals are relative they represent the temporal distance respectively the duration
between two instants (Snodgrass, 2000). For example the temporal information “3 weeks” is

an interval. As instants also intervals are defined within the SQL-92 standard. From a general
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perspective they are often mixed up with periods which are described in the next chapter.
There are two different types of intervals defined. The first type of interval is called “year to
month” interval. The second interval type is called “day to second” interval (Snodgrass,
2000). This distinction is a result of the unsteady character of time. For example a year
consists of 12 month this is always the same. But a year either consists of 365 days or in the
case of a leap year of 366 days. Hence it is not possible to define an interval type of “year to
day” as the number of days varies. The same applies to months. Therefore the separation
into two types of intervals had been done. The “year to month” interval provides the
possibility to store intervals from years to months. The interval type “day to second”

represents intervals from days to seconds.

4.5.3 Periods

Periods are not defined in the SQL-92 standard they are part of the SQL 3 standard. At the
moment they are not implemented within a state of the art relational database
management system. Snodgrass (Snodgrass, 2000) defines a period as “an anchored
duration of the time line”. Further he stated that they may had not been included in state of
the art RDBMS as they can be implemented as a pair of two time instants. To express the
time a fact is valid periods are used. Periods are most often interpreted as closed-open. This
means that the last time instant of the period is not included. In contrast if a closed-closed
approach is used then the last time instant is included. There are less prominent options
called open-open and open-closed (Snodgrass, 2000).

The lack of support of a period data type in current databases is one of the main
motivations of this work. Further the ISO standard (ISO, ISO 19108 Geographic information -
Temporal schema (draft version), 2002) defines a period as a “one-dimensional geometric
primitive representing extent in time.” (1SO, 2002). This geometric view of a period is

considered as one of the main ideas of this work and described in chapter 7.5.2.
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4.6  Subtleties
The following sub chapters provide a short description of well known subtleties. Snodgrass

(Snodgrass, 2000) provided an extensive description of time related problems in his work.

4.6.1 Leap Year

The first subtlety is related to leap years. As it is strictly defined when a year is a leap year
they are not a general problem. But as you cannot assume a year to be 365 days long it was
not possible in the past to define only one interval data type. As discussed in chapter 4.5.2
there are “year to month” and “day to second” types of intervals. Further interval
calculations which include February 29" must always carefully considered. Computer
systems in general do not have a problem to handle the leap year topic but the ones who
are interpreting the output from computer systems must always be aware of the impact of

interval calculations in leap years.

4.6.2 Leap Seconds

Leap seconds are introduced by a committee (Snodgrass, 2000) with the scope to adjust the
atom clock to the astronomic clock. The main problem with leap seconds is that their
occurrence is agreed by a committee and is not strictly defined as leap years. This
committee agrees on a date when the leap second should be implemented. Most often they
are implementing it in the last minute of year which then consists of 61 seconds. Leap
seconds cannot be considered in relational database management systems as their

implementation date is not predictable.

4.6.3 Daylight Saving Time

The existence of daylight saving time brings along some heavy subtleties. The first impact to
consider is that a day cannot be assumed to last for 24 hours. In October the day where
daylight saving time comes into play lasts for 25 hours as the interval between 2 pm and 3
pm is repeated. The according day in March lasts only for 23 hours as the interval between 2
pm and 3 pm does not exist. The next problem is related to the periods where time changes.
As the period in October repeats what this does mean to things happened in that period.
The period between 2pm and 3pm in March does not exist therefore a data base system

must not allow to store temporal information within this period.
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5. Temporal Relations

This chapter provides an overview of important concepts of integration time into RDBMS.

5.1 Timestamps

Timestamps are the main method to implement the valid time dimension on database level.
Any other dimension of time like transaction time also relies on this methodology. Time
stamping data is common to all previously developed temporal data models but there are
important differences in considering what is time stamped within a database and how data
is time stamped. On the one hand there are concepts time stamping on tuple level, on the
other hand there are concepts time stamping on attribute level. This is either implemented

through a pair of time instants delimiting a period or as a single time instant.

5.1.1 Attribute Level

Concepts allowing attributes being time stamped have the advantage that not only for the
tuple but also for a particular attribute the valid time period is provided. This is
implemented by adding two timestamp attributes for each attribute of interest of a
temporal relation. According to Kaiser (Kaiser, 1998) one major drawback is that an
attribute now consists of a triplet of attributes. Such a triplet consists of the attribute itself
and two time stamp values defining its valid time period. In Codd’s original perspective
(Codd, 1970) such a relation consisting of triplets has non atomic attribute values. Hence,
first normal form is already violated through this fact. Concepts like classification of
attributes (Kaiser, 1998), or temporal partitioning (Snodgrass, 2000, S. 206) try to overcome
this problem by grouping attribute triplets together into new relations and cross reference
them via a foreign key. Kaiser (Kaiser, 1998) classified attributes into time stamp attributes,
time independent attributes and time dependent attributes. On the basis of this
classification he divided a relation into one relation for each class of attributes. As result the
original relation is separated into one including the primary key and the valid time period
and other relations containing the same classes of attributes. They are all cross referenced
to the original table via foreign key concepts. In the strict case each attribute with its related
time stamps must be implemented as a relation and cross referenced via foreign key
concepts. In practice it would be an enormous effort to implement a model where for each

original attribute a relation is maintained.
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5.1.2 Tuple Level

Another approach is to time stamp the valid time period on tuple level. This is implemented
by adding two time stamp values only to the relation and not to an attribute. Hence, each
row of database table now has the valid time period defined. As a result all the attributes of
a row are only valid within this period. Hence it is not possible that a particular attribute has
a different valid time period. The advantage of this approach is that attributes remain
atomic, so first normal form is not violated. The disadvantage is that such a concept
generates vertical anomalies (Steiner, 1998) as the primary key is not unique anymore. The
challenge is to find new uniqueness concepts which take the valid time period on row level
into account. The concepts are described in chapter 5.3.2. Other concepts like coalescing
(Snodgrass, 2000, S. 159) which aim at removing unnecessary duplicates (duplicates with
the same values, except the timestamp values) are not without controversy in literature.

This work will further use time stamping on tuple level as the preferred concept.

5.1.3 Interval representation

According to Clifford and Tansel (Clifford & Tansel, 1985) there are two different concepts to
define the valid time period. The first approach is an interval representation, where the
interval is defined either as two timestamps or as a period data type. The disadvantage of
the interval representation is that without further constraint approaches it is possible to
define overlapping periods. Moreover workarounds are needed to define that the valid time
period is valid until now. Such workarounds are described in chapter 5.4. When interval
encoding is used it must be considered whether to use closed-closed or closed-open

intervals.

5.1.4 Point representation

The second approach mentioned by Clifford and Tansel (Clifford & Tansel, 1985) is called
point representation. The start of the valid time period is implemented by one timestamp
on the tuple. The end of the period is defined by the timestamp of the next (chronological)
tuple. The disadvantages of the point representation are that the valid time period is only
implicit defined on a tuple as the end of the period is only available through the
chronological next tuple. Hence very complex database queries with sub queries are

required for answering simple temporal questions.
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5.2 Modifying Temporal Relations

Inserts, updates and deletes are the three important manipulation operations which can be
applied to database tables. Insert operations are adding new rows to tables, update
operations are modifying attributes of existing rows and delete operations are deleting
existing rows. In the case of temporal relations each operation has a temporal counterpart.
In his work Chomicki (Chomicki, 2005) pointed out that at least from an abstract point of
view there are no differences between standard operations and their temporal
counterparts. In practice the SQL statements for insert, update and delete operations on
temporal relations are getting quite complex. In temporal relations there are some issues to
consider which Snodgrass (Snodgrass, 2000) described in his work. He developed a
classification of modifying operations where he distinguishes between current
modifications, sequenced modifications and non sequenced modifications. For this work
only sequenced modifications are of interest as they apply to the past, present and future
(Snodgrass, 2000). It is assumed that the valid time dimension is implemented via two time
stamps on tuple level. Sequenced modification operations are further assumed to comply

with the SQL-92 standard. Each operation is described in the following chapters.

5.2.1 |Insert

In a sequenced insertion the user or the application must provide the valid time period. The
challenge of the temporal insertion statement is to maintain integrity. Hence the primary
key as well as foreign keys must not be violated. Snodgrass (Snodgrass, 2000, S. 189) had
defined the following steps in the case of a sequenced insert. The first step of Snodgrass
recommendation is to maintain entity integrity. To accomplish this check the SQL statement
is expanded to check whether there are rows with the same primary key overlapping with
the provided valid time period. The second step is to maintain referential integrity.
Therefore the statement is expanded to check whether there exist rows in the referenced
table which cover the provided valid time period with their own valid time period. The third
step further checks if the periods of validity of the rows of the referenced table have no
gaps. Snodgrass stated that it is up to the application whether the integrity is directly

checked within the insert statement or through database triggers or assertions.
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5.2.2 Update

A sequenced update is the temporal counterpart of the standard update operation. It is
assumed that the application provides the valid time period which applies to the row after
the update operation. In the following discussion this period is called period of applicability
(PA). In contrast the valid time period (PV) is the period before the sequenced update.
Snodgrass (Snodgrass, 2000) identified four cases of how the PA and the PV have to be

considered in the case of an update operation.

Case 1 | PV
PA 3
0Old value retained: 9 9
Updated portion: 3
Case 2 PV y
| PA
I
Old value retained: 3
Updated portion: )
Case 3 } PV
PA ;
0Old value retained: -
Updated portion l%
Case 4 %

Result: entire row updated

Figure 13 Temporal Update Cases (Snodgrass, 2000, S. 196)

In the first case the PA is within the PV. The original PV is separated into three parts. The
first part extends from the original start of the PV to the start of the PA. The attribute values
of the original row remain for this part. The second part is the PA it itself. The attribute
values of this part are those which are affected by the update statement and are therefore
updated. The third part extends from the end of PA to the original end of the PV. The
attribute values of the original row remain for this part. A result of case 1 is that a
sequenced update statement affecting one row causes three new rows to be inserted. The
old row is deleted but their attribute values are remained. Case 2 and case 3 are considered
in a similar manner. In case 4 the PA extends the whole PV and therefore the entire row is

updated.
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5.2.3 Delete

A sequenced deletion is the temporal counterpart of the standard delete operation. It is
assumed that the application provides the valid time period which defines the period that
the affected rows should not be valid after the statement. In the following discussion this
period is called period of applicability (PA). In contrast the valid time period (PV) is the
period before the sequenced deletion. Snodgrass (Snodgrass, 2000) identified four cases of

how the PA and the PV have to be considered in the case of a delete operation.

Case 1 I

Result: — —
Case 2 b
Result: —
Case 3 %
Result: f 0

Case 4

Result: entire row deleted

Figure 14 Cases of Temporal Deletions (Snodgrass, 2000, S. 191)

In the first case the PA is within the PV. The original PV is separated into three parts. The
first part extends from the original start of the PV to the start of the PA. The attribute values
of the original row remain for this part. The second part is the PA it itself. The attribute
values of this part are those which are affected by the delete statement and are therefore
not valid anymore. The third part extends from the end of PA to the original end of the PV.
The attribute values of the original row remain for this part. A result of case 1 is that a
sequenced delete statement affecting one row causes two new rows to be inserted but they
are not valid for the PA of the delete statement. Case 2 and case 3 are considered in a
similar manner. In case 4 the PA extends the whole PV and therefore the entire row is not

valid anymore.
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5.3 Normalisation

Normalisation is a major concept in database theory. Codd (Codd, 1970) introduced
normalisation with its relational model and described it as the process of eliminating non
simple domains from a relation. As with other concepts in the context of relations
normalisation has a temporal counterpart as well.

“There is also a need for temporal normal forms and underlying concepts that may serve as
important guidelines during temporal database design.” (Jensen, Snodgrass, & Soo, 1996, S.
1). In their work Jensen, Snodgrass and Soo (Jensen, Snodgrass, & Soo, 1996) provided a
description of previously developed temporal normal forms and related concepts like
functional dependency. What they pointed out in their work is that a major disadvantage of
the reviewed normal forms is that they are all related to different underlying temporal data
models. Further they pointed out that the models do not satisfy all requirements of the
conventional normal forms. Moreover they are not following the same goals as their
conventional counterparts.

In a later work Jensen mentioned that “the conventional normalization concepts are not
applicable to temporal relational data models because these models employ relational
structures different from conventional relations.” (Jensen, 2000). But Jensen and Snodgrass
(Jensen, Snodgrass, & Soo, 1996) identified two issues that at least should be satisfied by
temporal normalisation. First, as the process of normalisation consists of decomposing
relations with non simple domains into relations with simple domains this decomposition
should be lossless. Hence the contents of the original relation should be available from the
decomposed relations via natural join operations. Second, the process of decomposition
should preserve existing dependencies.

However, normalisation has become a common methodology during database design and
therefore it is worth considering it in the case of temporal relations. Normalised temporal
relations will benefit from the framework defined for conventional relations. Therefore
storage structures, query evaluation techniques and further concepts will remain the same

as in the relational model (Jensen, Soo, & Snodgrass, 1994).

Page 31 of 86



Temporal Relations

5.3.1 Functional Dependencies

Functional dependencies are a concept related to normalisation. They describe
dependencies between domains respectively attributes of a relation. Further they are a
basis for normalisation and for the definition of the primary key of a relation. As a primary
key is the set of domains which uniquely identify a tuple in a relation all other domains of
that relation are fully functional dependent on that primary key. Armstrong (Armstrong,
1974) had defined axioms respectively rules which make it possible to find all functional
dependencies of a relation. In literature these rules are known as Armstrong’s axioms.
Functional dependencies are used as a concept during database design they don’t have an
implemented counterpart in a database.

As with other concepts functional dependencies have a temporal counterpart too, called
temporal functional dependencies. At an abstract point of view temporal functional
dependencies are divided into intrastate and interstate dependencies (Jensen, Snodgrass, &
Soo, 1996). Intrastate dependencies are those which apply to individual snapshots of a
temporal relation. Hence they are understood as conventional functional dependencies
applying to attributes of a temporal relation ignoring time. In contrast interstate functional
dependencies are those dependencies across snapshots. They describe functional
dependencies of attributes over time. For this work only intrastate dependencies are

considered and serve as a basis for concepts related to temporal primary keys.
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5.3.2 Temporal Primary Key

Snodgrass (Snodgrass, 2000) pointed out that when adding time support to relations it is
one of the first steps to consider the valid time period as a part of the primary key. A
primary key uniquely identifies each row in a table. Originally Codd (Codd, 1970) defined a
primary key as the set of domains of a relation which uniquely identify tuples of that
relation. Therefore the goal of a temporal primary key is to uniquely identify tuples within
temporal relations at any given time. At first sight it seems that adding the valid time period
to the primary key is the solution. The following examples of a relation storing information
about an employee’s department attendance show the opposite.

The employment relation consists of the employee column and the department column. The
employee column is the primary key. An employee can only attend to one department. For
convenience it is assumed that the name of the employee is unique. For such a relation it is

not possible to store information about the history of an employee’s department

attendance.
EMPLOYEE DEPARTMENT
Lukas Development
Alexander Business

After adding a valid time period to the relation and adding the department column to the

primary key it is possible to store the history of an employment.

EMPLOYEE DEPARTMENT FROM TO

Lukas Development 1.1.2008 31.1.2008
Lukas Business 1.2.2008 25.2.2008
Alexander Business 1.1.2008 31.1.2008

The primary key consisting of EMPLOYEE and DEPARTMENT does not cover the case that an
employee may attend twice to a department over time. The red marked cells in the table

below show this case which violates the given primary key.

EMPLOYEE DEPARTMENT FROM TO

Lukas Development 1.1.2008 31.1.2008
Lukas Business 1.2.2008 29.2.2008
Alexander Business 1.1.2008 31.1.2008
Lukas Development 1.3.2008 31.3.2008
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Now time has come to include the valid time period to the primary key. The table below

shows the relation with the valid time period added to the primary key.

EMPLOYEE DEPARTMENT FROM T0

Lukas Development 1.1.2008 31.1.2008
Lukas Business 1.2.2008 29.2.2008
Alexander Business 1.1.2008 31.1.2008
Lukas Development 25.2.2008 31.3.2008

Within the period between 25.2.2008 and 29.2.2008 employee Lukas attends to more than

one department but the primary key is not violated.

EMPLOYEE DEPARTMENT FROM TO

Lukas Development 1.1.2008 31.1.2008
Lukas Business 1.2.2008 29.2.2008
Alexander Business 1.1.2008 31.1.2008
Lukas Development 25.2.2008 31.3.2008

As a result Snodgrass (Snodgrass, 2000) stated adding the valid time period to the primary
key is not enough to get a temporal primary key. Because it is the period between the two
valid time values which must be unique and not two valid time value themselves. Hence it is
not possible to define a primary key the usual way. In his work Snodgrass (Snodgrass, 2000)
provided SQL statements which assure that rows with the same primary key are not
overlapping each other in time. There are two possibilities to implement such SQL
statements. First they can be included in manipulating operations such as insert, update and
delete. Second they can be implemented within database functionality like triggers.
Snodgrass (Snodgrass, 2000) summarises that a temporal primary key is the analogue of a
conventional primary key if it assures that at any given time there are no two rows with

overlapping valid time periods with the same primary key.
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5.3.3 Temporal Foreign Key
Codd (Codd, 1970) defined a foreign key as the one domain or combination of domains
which is not the primary key of a relation but the primary key of another relation. This
concept enables to define cross references between relations and is called referential
integrity. The temporal counterpart concept is called temporal referential integrity.
Snodgrass (Snodgrass, 2000) distinguished between four cases considering which side of the
cross reference is a temporal relation. For this work the case that both relations are
temporal relations is important and now described in detail. In his work Snodgrass
(Snodgrass, 2000) pointed out three steps which are needed to ensure referential integrity if
both relations are temporal:
1) For all rows r in the referenced table there must be that key value in the referencing
table when r starts,
2) for all rows r in the referenced table there must be that key value in the referencing
table when r ends
3) and there are no gaps in the referencing table within the valid time period of all rows
r with that key value
With other words, the valid time period of a row with a foreign key in the referenced table
must be completely covered by the valid time period of referenced primary key of the
referencing table. The following tables show an example of temporal referential integrity
including again an employment relation in this case as the referenced table. An employee
relation storing all employees of a company is considered as the referencing table. In the
first case below temporal referential integrity is not violated as the valid time period of the

employee completely covers the referenced valid time periods of the employment relation.

EMPLOYEE
EMPLOYEE FROM T0 AGE SEX
Lukas 1.1.2008 01.06.2008 24 Male
EMPLOYMENT
EMPLOYEE DEPARTMENT FROM T0
Lukas Development 1.1.2008 31.1.2008
Lukas Business 1.2.2008 29.2.2008
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The second case below shows a violation as the employment in the business department

goes beyond the valid time period of the employee.

EMPLOYEE
EMPLOYEE FROM T0 AGE SEX
Lukas 1.1.2008 01.06.2008 24 Male
EMPLOYMENT
EMPLOYEE DEPARTMENT FROM T0
Lukas Development 1.1.2008 31.1.2008
Lukas Business 1.2.2008 31.6.2008

The third case below shows a violation as the employee attended to the company twice.
Hence there is a gap between the valid time periods of the employee relation. The
employment within the business department falls within the gap therefore temporal

referential integrity is violated.

EMPLOYEE
EMPLOYEE FROM T0 AGE SEX
Lukas 1.1.2008 01.06.2008 24 Male
Lukas 1.10.2008 31.12.2008 24 Male
EMPLOYMENT

EMPLOYEE DEPARTMENT FROM TO

Lukas Development 1.1.2008 31.1.2008
Lukas Business 1.2.2008 31.6.2008

Snodgrass (Snodgrass, 2000) pointed out that it is not possible to define temporal
referential integrity the usual way. Therefore he again provided SQL statements which can
be implement either within manipulation operations or within database functionality like
triggers. Temporal referential integrity is the temporal counterpart of referential integrity if
it assures that valid time periods of the referenced table are completely covered by valid
time periods of the referencing table. Further during valid time periods of the referenced

table there are no gaps in valid time periods of the referencing table allowed.
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5.4 Current State

This section provides an overview of concepts for querying current state of temporal
relations. In conventional relations there is no other state than the current state so this
topic is unique to temporal relations and has no conventional counterpart.

According to Snodgrass (Snodgrass, 2000) there are two possibilities to define the current
state into a valid time period. It is assumed that the valid time period is encoded via a pair of
time instants. One time instant is called start date and one time instant is called end date.
The end of the valid time period is set to the maximum date a system provides. It is possible
to query the current state of such a relation through comparing the end date with the
maximum date. A major disadvantage of this approach is that it is not possible to distinguish
between rows that are valid until the maximum time and a row which is valid now. Rows
whose valid time period ends before the maximum date fall out of the query condition. As a
result this approach is not practicable. Another approach is to set the end date to null. A
value of null defines that the end of the valid time period of a row is unknown and therefore
always considered as valid now. The disadvantage of this approach is that null values may
cause errors in database functions comparing dates (Snodgrass, 2000).

In his work Snodgrass (Snodgrass, 2000) pointed out that the current state is not more
important than any other state of a temporal relation. Therefore he provided SQL

statements that are querying any given state out of a temporal relation.

5.4.1 Temporal Partitioning

Another approach to query current state out of the temporal relational model is called
Temporal Partitioning. Snodgrass (Snodgrass, 2000) introduced that approach, which is
implemented by separating current state from past state. Therefore a temporal relation is
split up into one relation storing the current state and one relation storing rows whose valid
time period had expired. An extension of temporal partitioning is to separate future states
into a third relation too. The advantage of temporal partitioning is that querying the current
state is possible with conventional querying methods. On the other hand when querying
history states and current states together, queries get much more complex as relations have

to be joined within such a query statement.
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5.5 Temporal Databases

In this chapter previously developed temporal databases are shortly introduced.

No support for Support for
transaction time transaction time
No support for
event time static rollback
Support for

event time historic bitemporal

Figure 15 Temporal Databases (Worboys, 1994)

Figure 15 shows the classification of temporal databases from Worboys (Worboys, 1994).
Static databases also called snapshot databases store information about real world
phenomena for a certain state, most often the current state. Manipulating operations such
as update statements overwrite this state. Therefore past states are not accessible in
snapshot databases. They neither support valid time nor transaction time. Historic
databases record the information about real world phenomena for multiple states. They
only support valid time, hence the period must be provided by the user and not by the
system (Steiner, 1998). Rollback databases only support transaction time, hence the valid
time period is maintained by the system. The database keeps track of every change in data
such a concept can be viewed as append-only (Steiner, 1998). Finally bitemporal databases
support both dimensions of time. According to Steiner (Steiner, 1998) such databases have
the properties of historical and rollback databases. Therefore within bitemporal databases it
is possible to query when an observation of the real world had happened and when this fact
was available in database (Worboys, 1994).

Nowadays state of the art RDBMS are snapshot databases, they neither support valid time
nor transaction time. Most often the support of time does not go beyond the support of
temporal data types. But there are many solutions built on top of RDBMS which temporally
enable them. For example TimeDB' is a java based interpreter which translates conventional
SQL statements into temporal statements. Relations of a database schema are converted to
bitemporal relations. But also major RDBMS vendors like for example Oracle may provide
time support through applications on top of RDBMS like the Oracle Workspace Managerz.

What is missing is a native support of temporal relations.

! http://www.timeconsult.com/
2 http://www.oracle.com/technology/products/database/workspace manager/index.html
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5.6 Temporal Data models

In the past dozens of temporal data models had been developed. It is beyond the scope of
this work to provide a complete list or to describe each model in detail. The important
concepts of temporal relations had been already described in the previous chapters. Many
of the provided concepts originate to a previously developed temporal data model. Anyway

this section gives a short overview of temporal data models. Snodgrass (Snodgrass, 1992)

provided a list of temporal data models which is shown in Figure 16.

Data Model Citation Iemporal  |Homogeneous| Identifier
Dimension(s)

— Gcite[Snodgrass86A] both ves Ahn
Temporally Oriented Data Model| — @cite[ Ariav86A] both yes Ariav
Time Relational Model 7 vis2] both yes Ben-Zvi
Historical Data Model ords3] valid yes Clifford-1
Historical Relational Data Model|  @cite[CliffordSTA] valid no Clifford-2
Homogeneous Relational Model Gcite[Gadias8B] valid yes Gadia-1
Heterogeneous Relational Model @cite] GadiaS88A] valid no Gadia-2
TempSQL Qcite[Gadia92] both yes Gadia-3
DM/ T Gcite[Jensend1D] | iransaction N/A Tensen
LEGOL 2.0 Gcite[JonesT9] valid yes Jones
DATA Gcite[Kimball78] | iransaction N/A Kimball

— Acite] Lomet8YA] transaction N/A Lomet
Temporal Relational Model Acite[LorentzosS3B] valid no Lorentzos

— Gcitel 1] transaction ves Lum

— Geite[McKenzied10] both o McKenzic
Temporal Relational Model Navathes9] valid yes
QL QcitdSadeghisTB] valid yes
HSQL @cite[ valid yes
Temporal Data Model @cite[ valid yes Shoshani
TQuel Geite[Snodg Both yes Snodgrass
Postgres Acite[Stonebr 7 transaction no Stonebraker]
HQuel Gcite] Tansel86B] valid no Tansel
Accounting Data Model @eite] Thompson91A] both yes I'hompson
Time Oriented Databank Model | @cite[Wiederhold75] valid yes Wiederhold

Figure 16 Temporal Data Models (Snodgrass, 1992)

For each temporal data model Snodgrass mentioned which temporal dimension is
supported. An often used distinction between the previously developed models is whether
they are satisfying first normal form or not (Chomicki, 2005). Often this fact is related to
whether a model uses attribute or tuple level time stamping as time stamping on attribute
level violates first normal form. Kaiser (Kaiser, 1998) provided a comparison of the most

important temporal data models which is shown in Figure 17.

V1: Welche Zeitdimension wird unterstitzt?
V2: Wird die Entitétsintegritdt angemessen unterstitzt?
V3: Wird die referentielle Integritdt angemessen unterstitzt?
V4: Wird ein coalescing automatisch durchgefuhrt?
Vb: Ist das Datenmodell zum relationalen Modell aufwérts kompatibel?
VB: Ist die Datenbanksprache zu SQL92 (syntaktisch) aufwarts kompatibel?
V7: Gibt es einen (kommerziell) verfugbaren Prototyp der Sprache?
IsQL2 TsQL saLt IXSQL ATSQL2 SQL/Temporal
V1 bi Gultigk.  Gultigk.  Gultigk.  bi Gultigk.
V2  nein ja’ kA2 ja ja?’ kA2
V3  nein nein kAZ nein ja?’ kAZ
V4 ja ja nein nein nein nein
V5 nein ja nein ja ja ja
Vé ja ja ja ja ja ja
V7 nein nein nein nein ja nein

Figure 17 Comparison of Temporal Data Models (Kaiser, 1998)
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Kaiser pointed out which temporal dimension a temporal data model supports and to which
level normalisation concepts like primary key and foreign key are supported. One important
consideration is if a temporal data model is available in commercial RDBMS. According to
Kaiser there is only the ATSQL2 temporal data model commercially available. In their work
Ott and Swiaczny (Ott & Swiaczny, 2001) provided an overview of temporal models and
approaches. They identified a snapshot approach as the simplest approach to provide
temporal data in a GIS. Further they described the concepts of a space time cube, topology
of time and the space time composite which are all developed by Langran. One of the most
important developments had been done by Snodgrass, Jensen and others by developing a
unifying model which is called the Bitemporal Conceptional Data Model further abbreviated
as BCDM. The scope of this model was to unify previously developed concepts into one
temporal data model (Jensen, Soo, & Snodgrass, 1994). “The idea behind the BCDM is to
retain the simplicity of the relational model while also capturing the temporal aspects of the
facts stored in a database.” (Jensen, 2000). The core elements of the BCDM are bitemporal
relations also called bitemporal tables. They include four time stamp columns, two for each
dimension of time. Hence a bitemporal table is bitemporal as it supports valid time as well
as transaction time. As a result of the development of the BCDM Snodgrass and others
developed the TSQL2 Temporal language. Within this language a period data type was
defined to overcome the problem of defining periods via pairs of time stamps. In later
papers Snodgrass extended the BCDM by defining temporal integrity constraints.

One of the latest developments in the field of temporal data models was the integration of
temporal concepts into the SQL3 standard. According to Snodgrass (Snodgrass, 2000) the
integration process had suffered from many disagreements of the involved researches. But
one of the main goals had been accomplished as a period data type had been defined within
SQL3. Moreover temporal predicates had been defined in order to query for relationships of
periods (Snodgrass, 2000). Anyway today there is no state of the art relational database
compliant to the SQL3 standard in the temporal sense (Steiner, 1998). Most often the
temporal support does not go beyond the support of simple date and time data types

excluding a period data type.
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6. Geometry of Time

The International Standardisation Organisation (ISO) developed a standard called “ISO
19108 Geographic information — Temporal Schema”. The standard provides concepts
needed to describe the temporal characteristics of geographic information. “Temporal
characteristics of geographic information include feature attributes, feature operations,
feature associations, and metadata elements that take a value in the temporal domain.”
(ISO, 2002). The standard emphasises valid time rather than transaction time. Temporal
structures provided in the ISO standard are not only intended for use in the area of
Geographic Information Systems. To understand the most important characteristics of
temporal information the ISO Standard provides definitions which are important for this

work

6.1 Definitions

Calendar is a “discrete temporal reference system that provides a basis for defining
temporal position to a resolution of one day” (ISO, 2002)..

Coordinated Universal Time (UTC) is a “time scale maintained by the Bureau International
des Poids et Mesures (International Bureau of Weights and Measures) and the International
Earth Rotation Service (IERS) that forms the basis of a coordinated dissemination of standard
frequencies and time signals ...” (ISO, 2002)..

Day is a “period having a duration nominally equivalent to the periodic time of the Earth's
rotation around its axis.” (1SO, 2002).

Event is an “action which occurs at an instant.” (1SO, 2002).

Instant is a “O-dimensional geometric primitive representing position in time.” (1SO, 2002).
Month is a “period approximately equal in duration to the periodic time of a lunar cycle.”
(SO, 2002).

Period is an “one-dimensional geometric primitive representing extent in time.” (I1SO, 2002).
Temporal coordinate system is a “temporal reference system based on an interval scale on
which distance is measured as a multiple of a single unit of time.” (ISO, 2002).

Temporal position is a “location relative to a temporal reference system.” (ISO, 2002).
Temporal reference system is a “reference system against which time is measured.” (ISO,

2002).
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6.2 Temporal geometric primitives

Within the ISO Standard one chapter is titled “Geometry of Time” (I1SO, 2002, S. 7) which
corresponds to the main idea of this work. It says that time is a dimension analogous to any
of the spatial dimensions. As a spatial point occupies a position in space an instant in time
occupies a position in relation to a temporal reference system. According to the standard
one important difference between space and time is that time has single dimension and
cannot be reused (ISO, 2002). The following figure shows an abstract UML Model defining

temporal objects.

TM_Object

%

TM_Primitive TM_Complex

I

TM_TopologicalComplex

TM_GeometricPrimitive TM_TopologicalPrimitive

Figure 18 Temporal Objects (1SO, 2002)

Figure 18 shows that temporal primitives which are namely instants and periods are
conceived to geometric primitives. Hence an instant in time is equivalent to a point in space.
In practice, an instant is an interval whose duration is less than the resolution of the time
scale (ISO, 2002). The same applies to a period. A period is equivalent to a curve in space
and it is bounded by one instant at the beginning and one instant at the end. As a result of
this a period has a length, a so called duration, which itself is equal to the temporal distance
of the two bounding instants (ISO, 2002).

Figure 19 shows the relation between periods and instants. Both are derived from the

abstract class TM_GeometricPrimitive.
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«|nterface»
TM_Order

+relativePosition(other : TM_Primitive) : TM_RelativePosition

A

«Uqles»

«|nterface»
TM_Separation
TM_Primitive

+distance(other : TM_GeometricPrimitive) : TM_Duration

+length() : TM_Duration
I

TM_GeometricPrimitive

“

begin | 1.1 Beginning

UI Ii
begunBy | TM_Period

TM_Instant

+position : TM_Position|  {self.begin.position < self.end.position}

0.” | endedBy

end\ 1.1

Ending

Figure 19 Temporal geometric primitives (1SO, 2002)

The classes TM_Instant and TM_Period are relevant to this work and discussed in chapter

7.5.

6.3 Temporal reference system

As it was defined previously in this work a value in the time domain is a temporal position
measured relative to a temporal reference system. The ISO Standard recommends using the
Gregorian calendar in combination with the UTC. The Gregorian calendar identifies temporal
information at a granularity of one day and the UTC identifies temporal position within a
day operating on a precision beyond seconds.

It says in the ISO standard that for other application other temporal reference systems may
be appropriate. But as recommended this work will use Gregorian calendar in combination

with UTC. This combination is the common one provided by most database systems.
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6.4

From Temporal Objects to Spatio Temporal Objects

Roosman and others (Roosmann, Busch, Gorczyk, & Mauersberger, 2003) followed the

concepts of the ISO standard and provided concepts of modelling time as geometry. In their

work they provided an UML model which defines a temporal object.

Tem poral Primitive

’Tempo ral Reference System Temporal Object
AN
realizes »
< aggregates
4 aggregates
alizes »
Temporal Topologic Complex
Aggregat
—'Temporal To pologic Primitive|

|Composite Time Period ’;

|Com posite TimePo im|

Multi Time Period
Multi Time Poin

Temproal Edge
Temporal Node

Figure 20 Temporal Objects (Roosmann, Busch, Gorczyk, & Mauersberger, 2003)

Figure 20 shows the definition of a temporal object which is always based on a temporal

reference system. A temporal object consists of temporal primitives or temporal complexes.

Moreover a temporal object may consist of temporal aggregates or temporal topological

primitives. For this work only temporal primitives such as a time point or time period are of

interest and described in chapter 7.5. Roosman and others (Roosmann, Busch, Gorczyk, &

Mauersberger, 2003) identified the relations between temporal, spatial and thematic

objects which resulted in an UML model of a spatio temporal object as shown in the

following figure.

Temporal Reference System

4 2ggregates

Temporal Object

aggregates b

Spatial O bject Spatio Tem poral Object ThematicObject
Coordinate Reference System

Figure 21 Spatio temporal object (Roosmann, Busch, Gorczyk, & Mauersberger, 2003)
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Main Part -Time as Geometry

The scope of this section is to combine the relational model defined by Codd (Codd, 1970),
the simple feature specification (OpenGIS_Consortium, 2006a) defined by the Open
Geospatial Consortium and concepts related to temporal relations into a concept of spatio
temporal relations. In literature common analogies between space and time had been
identified when conceiving these dimensions into relational data bases. Further the
International Standardisation Organisation published a standard called “ISO 19108
Geographic Information — Temporal Schema” which defined the geometry of time.
Therefore the introduced concept of spatio temporal relations will be based on the
extension of the relational model where space is implemented as simple feature geometry
but also time is implemented as simple feature geometry. As a result spatial operations are

used to answer both spatial and temporal questions.
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7. Time as Geometry — A formal description

This chapter describes the steps which are necessary to model time as geometry. As a first
step chapter 7.2 introduces a discrete view of time as the basis for this work. This view uses
the Gregorian calendar in combination with the Coordinated World Time (UTC) as its
temporal reference system. To model time as geometry it is further necessary to transform
date specifications into something like coordinates. Therefore an interval scale based view
of discrete time is introduced. Finally two functions are identified for the translation of date
specifications into coordinates and coordinates into date specifications. The contents of this
chapter are on a formal basis and therefore independent from an implementation. The

implementation of the provided formal concepts is described in chapter 8.

7.1 Background

The main idea of this thesis applies to the idea of modelling time as geometry in order to
integrate time into geo data bases. The main motivation behind that is to reuse the existing
spatial framework within geo data bases for a temporal context. Therefore spatial data
types are used to represent temporal values. For example an instant in time is represented
as a point. A period of time is represented as a line geometry. As a result it is possible to
apply other components of a spatial framework such as spatial operations to those
transformed temporal values. The provided approach mainly follows the concepts of the ISO
19108 standard and the contents of the work of Roosman and others (Roosmann, Busch,
Gorczyk, & Mauersberger, 2003). To model time as geometry is also based on some
common analogies of those two dimensions which were identified in the past. In language
there are many words which are used in the context of space and time (Peuquet, 2002). For
example the words before and after are used in both, space and time. As Peuquet (Peuquet,
2002) mentioned, things happen in space over time. So there is fundamental relation
between these two concepts. When something exists in the real world, it takes times and
takes place (Peuquet, 2002). But there are also great differences between space and time as
time can’t be reused. Once something had happened it will never happen again at that time.
The idea of modelling time as geometry also follows a traditional method to map time onto
a time line constructed from integer or real numbers (Langran, 1992). Such an approach is
useful and corresponds—with some imitations—to cognitive models of time (Frank,

Egenhofer, & Colledge, 1998).
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7.2 A Discrete View of Time
The goal of this chapter is to introduce a discrete view of time as a basis for this work. This
view includes the following important assumptions:

e Time is absolute, but relative to an origin

The first assumption is that time is absolute and therefore it does not apply to Einstein’s
relativity theory. For this work it is assumed that time always goes by at same speed
independent from an object’s own motion. Hence time in the past and time in the future go
by at same speed. The use of an origin is part of the first assumption. Time is relative to this
origin. For example consider a date specification of January 1% 2008 as the origin and
January 8™ 2008 as another date specification. Hence January 8 2008 is absolute but the
relative time of January 1% 2008 to January 8" 2008 is 7 days.

e Timeis linear and totally ordered

The second assumption is based on the first assumption and further defines that time is
linear and totally ordered. Time starts at the origin and linearly extends from the origin to
the future. A total order is assumed therefore for two date specifications t; and t; it is
necessary that either ti=t, or t; < t, respectively t; > t, but it is not possible that both t;<t;
and t;>t,. Therefore it is not possible that an event happens before and after a second event
as it would be possible when cycling time is used (e.g. morning and evening). Once an event
has had occurred at a time it will never occur again at that time. Time cannot be reused.

e Time is used within a temporal reference system

The third assumption is based on the first and second assumption and further includes that
a temporal reference system is used to define the set of date specifications. For this work
the Gregorian calendar is used to identify years, months and days. The Universal
Coordinated Time (UTC) is used to identify time within a day. Hence it used to identify
hours, minutes and seconds. The smallest time unit used in this work is one second. As a
result this work assumes a date specification to be of the form {YYYY.MM.DD HH:MIN:SEC]}.
For example consider an event had happened on January 1* 2008 at 1pm the according date

specification of this is {2008.01.01 13:00:00}.
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For the provided discrete view of time a formal definition of any date specification is as

follows:

D := {YYYY.MM.DD HH: MIN.SEC |
YYYY € N,
MM €{12,..,12},
DD €{1,2,..,31},
HH €{0,1,...,24},
MIN €{0,1,...,60},
SEC €{0,1,...,60}}

Years are described as positive natural numbers where the minimum is the year 0 and the
maximum is the year 9999. Months have a value range from 1 to 12 the same applies for
days they have a value range from 1 to 31. Hours have a value range of 0 to 24 where 00:00
is assumed as the beginning of a new day and 24:00 is assumed as the end of the last day.
Minutes and seconds have a value range from 0 to 60.

Figure 22 is a graphical representation of the provided discrete view of time including two

date specifications and a distance between them.

A discrete view of Distance(T,, T,)

time based on the 1

Gregorian calendar [ 1
and UTC

[ -3 s

Origin Ty IYYYY.MM.DD HH:MIN:SEC} T {YYYY.MM.DD HH:MIN:SEC}

Figure 22 Discrete view of time (Gregorian calendar + UTC)

To allow measurements and distance calculations a metric must be defined. For any date
specification the following assumptions are made:

e Distance(T,T1)=0

e Distance(T,T,)=0->T1=T,

e Distance(T,, T,) = Distance (T,,T,)

® Distance(T,T3) <= Distance(T4,T,) + Distance(T,,Ts)
The first assumption is that the temporal distance between two equal date specifications is
0. As a result there are no unequal date specifications with distance 0 between them. The
third assumption is that the temporal distance from T, to T, is equal to the temporal
distance from T, to T;. It is necessary that the temporal distance between T, and Ts is less

than or equal to the sum of the temporal distances of T; to T, and T, to Ts.

Page 48 of 86



Time as Geometry — A formal description

7.3  Adiscrete view of time based on an interval scale

The previous chapter introduced a discrete view of time whose temporal values are date
specifications. The goal of this chapter is to introduce a discrete view of time based on an
interval scale whose values are the natural numbers. Further it is the goal of this chapter to
describe a transformation between the discrete view of time using date specifications and
the introduced discrete view of time based on an interval scale. To model time as geometry
it is necessary to transform date specifications into something like coordinates. Because
coordinates are numbers date specifications must be transformed into numbers first. An
interval scale is used as it allows meaningful measurements between values which are
necessary to calculate distances. When transforming date specifications into numbers it is
further necessary that the previously identified assumptions apply to the interval scale
based view too. Hence this view again assumes an origin as well as a total order. As a result
a date specification relatively later to an origin is transformed into a greater number than a
date specification relatively earlier to an origin. Further the temporal distance between two

date specifications must be equal to the distance of the related numbers.

L}discrete view of D(T,, T)
time based on the 1
Gregorian calendar [ 1
and UTC
] % 2
Origin T, {YYYY.MM.DD HH:MIN:SEC} T {YYYY.MM.DD HH:MIN:SEC}

A discrete view of
DT T
time based on an { }r 2)
interval scale i 1

[ © %

Ty {x} T2 {x}

Origin

Figure 23 Calendar time vs. Interval scale

Figure 23 shows a comparison between the discrete view of time based on the Gregorian
calendar and discrete view of time based on an interval scale. The two date specifications T
and T, have their transformed counterpart on an interval scale called T, and T,. When
transforming date specifications into numbers it is necessary that T; < T, it implies that T," <
T,'. Further it is necessary that the temporal distance between T, and T, is equal to the

distance between T, and T,'.
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The formal definition of any transformed date specification into a number is as follows:
T'e NvVT'

This formal definition says that after the transformation any date specification is member of
the natural numbers. The date specification of the origin is transformed into 0 and is
therefore the least number on the interval scale. Any date specification after the origin is
transformed into a number greater than 0.
Again a metric is necessary to allow distance calculations. The following assumptions still
apply:

e Distance(T’,T'1)=0

e Distance(T’,T,)=0->T'1=T),

e Distance(T’4, T';) = Distance (T’,,T’1)

e Distance(T’,,T'3) <= Distance(T’1,T’;) + Distance(T’,,T's)
The first assumption is that if the distance of two equal date specifications is 0 then the
distance of their transformed numbers must be 0 too. As a distance between two unequal
date specifications is not 0 the distance between their transformed numbers is not 0 too.
The temporal distance from T’; to T’, is equal to the temporal distance from T’, to Ty. If
T1<T,<T;3 then it is necessary that T'1<T’, <T’3. Hence the temporal distance between T’; and

T3 is less than or equal to the sum of the temporal distances of T'; to T, and T', to T's,

This chapter had introduced a discrete view of time based on an interval scale whose values
are the natural numbers. This view of time is more appropriate when modelling time as
geometry as date specifications are transformed into numbers which corresponds to
geometric coordinates consisting of numbers too. To accomplish a transformation from date
specifications into natural numbers this chapter provided a description of the necessary
formal aspects to consider. The next chapter describes the needed functions for the

transformation on a formal basis.
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7.4 Functions

Based on all previously defined assumptions this chapter describes two functions necessary
for the transformation of date specifications into natural numbers. Hence this chapter
describes how a discrete view of time based on calendar time is transformed into a discrete
view of time based on an interval scale. Figure 24 compares both approaches and points out

the necessary transformation functions.

A discrete view of
time based on the
Gregorian calendar

and UTC
T, {YYYY.MM.DD HH:MIN:SEC}

[ *
Qrigin
Date specification Number to date

Adiscrete view of to number specification
time based on an
interval scale

[ *

Origin Titd

Figure 24 Functions needed for transformation

The first function transforms a date specification of the form {YYYY.MM.DD HH:MIN:SEC}

into a number. This function is called TimestampToNumber. The second function transforms

a number to a date specification. This function is called NumberToTimestamp. Before

describing both functions in detail it is necessary to introduce an interval date specification
of the form {TTTTTTTTT.HH.MIN.SEC}. It is needed to represent temporal distances between
an origin and other date specifications. The formal definition of such an interval is as
follows:

1(0,D) :=={TTTTTTTTT.HH.MIN.SEC |
TTTTTTTTT € N{O,...,3649635},

HH €{0,...,23},

MIN € {0,...,59},

SEC €{0,....,59}}
An interval from an origin to any other date specification is defined as the number of whole
days plus the number of left hours, minutes and seconds. The minimum number of days is O
and the maximum number of days is 3649635 which is the number of days between the
year 0 and the year 9999. For example the interval between a date specification of
{2008.01.01 13:00:00} and {2008.01.02 14:38:52} is an interval of the length
{000000001.01.38.52}. In other words the interval’s length is one day, one hour, 38 minutes

and 52 seconds.
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In the next subchapters the above identified functions called TimeStampToNumber and

NumberToTimestamp are described in detail.

7.4.1 TimeStampToNumber(fpOrigin, fpDate)

This function transforms a date specification of the form {YYYY.MM.DD HH:MIN:SEC} into a
natural number on the interval scale. This natural number is the transformed counterpart of
the original date specification. The function requires two date specifications as its input
parameters. The first is a date specification of the origin and the second is a date
specification of the date to be transformed. The function returns a natural number which is
the number of seconds between the origin and the date. The functionality is to calculate the
number of whole days plus the number of the remaining hours, minutes and seconds
between the origin and the date to be transformed. The outcome of this calculation is an
interval of the length {TTTTTTTTT.HH.MIN.SEC}. This length is then converted into the
number of seconds via the following formula:

NumberOfSeconds := ((TTTTTTTTT * 86400) + (HH * 3600) + (MIN * 60) + SEC)
As a result this function returns the calculated number of seconds between the origin and
the date to be transformed. When applying this number on the interval scale based view it
is the transformed counterpart of the original date specification relative to the origin (which

is 0). The following figure provides an overview of the calculation scenario.

A discrete view of
time based on the

) Interval{Origin,T1)={000000001.01.32.58}
Gregorian calendar

and UTC . A .
. T, {2008.01.02 14:32:58}
QOrigin {2008.01.01 13:00:00}

A discrete view of Interval{Origin‘,T1) = {0,91978} TimeStampToNumber

* * -
time based onan l (1*86400)+{1*3600}+(32*60+32=91978

interval scale _L
& %
T

Origin’ {0}

{91978}

Figure 25 Date specification to number

This function is the basis for modelling time as geometry as it transforms date specifications

into natural numbers. As a result these numbers are then used as coordinates of geometry.
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7.4.2 NumberToTimeStamp(fpOrigin, NumberOfSeconds)

This function transforms a natural number into a date specification of the form
{YYYY.MM.DD HH:MIN:SEC}. The function requires one date specifications and one number
as its input parameters. The first is a date specification of the origin and the second is the
number of seconds from the origin. The function returns a date specification. The
functionality is to calculate the number of whole days plus the number of the remaining
hours, minutes and seconds out of the number of seconds. The outcome of this calculation
is an interval of the length {TTTTTTTTT.HH.MIN.SEC}. This length is then added to the date
specification of the origin. The formula of the function is as follows:

D := (Origin + {TTTTTTTTT. HH. MIN. SEC})

TTTT = INTEGER (NumberO fSeconds>
o 86400
NumberOfSeconds — (TTTT * 86400)
HH := INTEGER( 3600 )

NumberOfSeconds — (TTTT = 86400) — (HH * 3600)
MIN := INTEGER ( 60 )

SEC := INTEGER(NumberOfSeconds — (TTTT %= 86400) — (HH = 3600)
— (MIN * 60))
As a result this function returns the calculated date specification. This date specification is
the transformed counterpart of the original number of seconds. The following figure

provides an overview of the calculation scenario.

A discrete view of
time based on the

i Interval{Origin,T1) = {000000001.01.32.58}
Gregorian calendar

and UTC [ A \
1, {2008.01.02 14:32:58}
(| 8
Origin {2008.01.01 13:00:00}
A discrete view of Interval{Qrigin’,T1) ={0,91978} Number to Timestamp
time basedonan |

interval scale f |

T,{91978}
Origin’ {0} !

Figure 26 Number to date specification

This function is the logical counterpart to the TimeStampToNumber function.
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7.5 Temporal geographic primitives
The scope of this chapter is to describe temporal geometric primitives as a basis for
modelling time as geometry. There are two base types of temporal geometric primitives:
e |nstant is a “O-dimensional geometric primitive representing position in time.” (I1SO,
2002).
e Period is a “I-dimensional geometric primitive representing extent in time.” (ISO,
2002).
Temporal geometric primitives are the necessary geographic primitives to represent time as

geometry. Figure 27 shows the class hierarchy of temporal geometric primitives.

«Interface»
TM_Order
+relativePosition(other : TM_Primitive) : TM_RelativePosition
A
«Uges»
I
«Interface» :
TM_Separation
TM_Primitive
+distance(other : TM_GeometricPrimitive) : TM_Duration

+ength() : TM_Duration
A

TM_GeometricPrimitive

B
‘ bEQi”| 1.1 Beginning
0.* T
TM_Instant — tw
+position : TM_Position|  {self.begin.position < self.endpcsiiion’}“"_"'
end[ 1.1 0.* | endedBy
I Ending

Figure 27 Temporal geometric primitives (I1SO, 2002)

Temporal geographic primitives are temporal primitives represented as geographic
primitives. As an instant represents position in time its geographic primitive represents
position in space. Hence a period represents extent in time thus its geometric primitive is a
curve in space. A period is defined by one instant where it starts and one instant where it
ends. The duration of a period is equal to the temporal difference of its instants (ISO, 2002).
The previous chapter described the function TimeStampToNumber which transforms date
specifications into numbers. These numbers are the input values for the coordinates of

temporal geometric primitive when time is modelled as geometry.
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7.5.1 Instant
An instant represents position in time it is analogous to a geographic point representing
position in space. An instant is the temporal counterpart of a geographic point. Therefore a
point is the geometric primitive of an instant. To transform an instant into a point first the
formal definition of a point in space is considered as:
Point(x,y) ={x €R,y € R}

As a result the formal definition of an instant modelled as point geometry is as follows:

Instant(x,y) = {x €{0,...,3.1532846411} C N, y € {0} € N}
An instant represented as a point is defined by its coordinates. The minimum value of x is 0
which is the origin and applies to the return value of TimeStampToNumber(Origin, Origin).
The maximum value of x is 3.15328464'! which applies to the return value of
TimeStampToNumber(Origin, {9999.12.31 24:00:00}). Moreover the TimeStampToNumber
function returns any possible x coordinate which is considered as the number of seconds
from the origin to the date specification of the instant. The y coordinate of an instant is
always 0.

Adiscrete view of
time based on the
Gregorian calendar
andUTC
T, {2008.01.02 14:32:58}

Origin {2008.01.01 13:00:00}

TimeStampToNumber

A discrete view of
Iscrete view o {(1¥86400)+{1¥3600)+(32+60)+32 = 91978

time basedenan

interval scale )
[ | ®

T7, {91978}
Origin'{0} '

A Temporal point geometric primitive
Temporal Point

inR?

.Yﬂis

T¢,{91978,0} .
Origin®{0,0} t X - Axis

Figure 28 Process of transforming an instant into a point

Figure 28 summarises the complete process of transforming a date specification into a
natural number which is the x coordinate of an instant. The date specification of
{2008.01.02 14:32:58} is transformed into the natural number 91978 via the
TimeStampToNumber function. This number is the x coordinate of a point P with an y

coordinate of 0.
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7.5.2 Period

A period represents extent in time hence it is analogous to a curve in space. A period
therefore is the temporal counterpart of a curve in space. The formal definition of a curve in
space is as follows (OpenGIS_Consortium, 2006a):

D(a,b) ={t €Rla <t <b} f:[a,b] > R?

According to that definition a curve is a geometric object that is the homeomorphic image
of a closed interval. Based on this abstract definition a line is defined as a curve consisting of
two bounding points where linear interpolation is used to represent all points between
them. A line geometry is therefore a straight line between a start point and an end point. A
period is considered as the temporal counterpart of a line geometry which is a simple type
of curve. To transform a period to a line geometry the formal definition of a line geometry is
considered as:

: start ,,start ,.end .,endY ._— start .,start ,.end .,end
Llne(x :y » X ry )'_{x :y ' X ,y ER}

The formal definition of a period modelled as line geometry is as follows:
Period (xStart, ystart yend yendy . {
xstart, xend € {0, ...,3.15328464'1} € N A x5t < xend,
yStart,yend € {0} C N}
A period represented as line geometry consists of the coordinates of its instants at the start
and the instant at the end. The value range for all x coordinates is from 0 which is the origin
to 3.15328464' which is the return value of TimeStampToNumber(Origin, {9999.12.31
24:00:00}. As a period must have at least a duration of one second and has a direction from
start to end it is necessary that xSt%t < x€", A period with a duration of 0 seconds is
considered as an instant. The duration of a period is equal to the distance between its start
and end instant. As a period is represented as a line geometry the concepts of interior,
exterior and boundary apply. The boundary of a period consists of the instant at the start
and the instant at the end. All points between them are linear interpolated and considered

as the interior. As a curve is a closed interval a line geometry representing a period includes

the start and end instant.
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Figure 29 summarises the process of transforming a period of time into a line geometry.

Adiscrete viewof
time based on the
Gregorian calendar

and UTC Interval(T1,T2) ={000000000.01.00.00} = 1 hour

o *Tl {2008.01.0214:32:58} 'Tz {2008.01.02 15:32:58}

Origin {2008.01.01 13:00:00} . .
TimeStampToNumber TimeStampToNumber
| (1*86400)+(1*3600)+(32*60)+32= 91978 | (1*86400)+(2*3600)+(32*60)+32=95578

Adiscrete viewof

timebasedonan
interval scale Interval{T™,, T7,) = {91978, 95578} = 3600 seconds = one hour
|

%
7, {91978} 17, {95578}
Origin'{0} t :

Temporal Line
inR?

Temporal line geometric primitive

.Vﬂis

“TG {91978,0} “TG {95578}
OriginSIn m * ’ : - Axis

Figure 29 Process of transforming a period into a line

Within Figure 29 there are two date specifications given which are delimiting a period of
time between them. The period in this example goes from January 2" 14:32:58 to January
2" 15:32:58 and therefore lasts for one hour. As a first step the two date specifications are
transformed into natural numbers via the TimeStampToNumber function. The first date
specification is transformed into 91978 and the second one is transformed into 95578. The
difference of those two numbers is 3600 which is the number of seconds between them.
This difference equals the original duration. As the last step the period is represented as a
line geometry. Such a geometry consists of two points. The x coordinates of those points are
the transformed numbers whereas the y coordinates are 0. The length of the line geometry
is 3600 which is equal to the duration of the original calendar time. As a result the measures

of the original date specification are obtained throughout all steps of this transformation.

7.6 Summary

This chapter provided a formal basis for modelling time as geometry. A discrete view of time
using date specifications was introduced. Those date specifications are transformed into
natural numbers on an interval scale as basis for coordinates. The necessary functions for
this transformation are described. To model time as geometry the relevant geometric
primitives were identified. Based on the formal description the next chapter describes a

prototypical implementation inside a geodatabase.
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8. Time as Geometry — A prototypical implementation

The scope of this chapter is to describe an implementation of the previously provided
formal description of transforming time into geometry. The outcome of this implementation

should be a prototypical implementation of a spatio temporal application.

8.1 Scope

The goal of the implementation is to integrate time into a geo database. It is the scope of
the implementation to develop the necessary functions to transform time into geometry in
order to reuse spatial data structures and operations within a geo database. The formal
description of modelling time as geometry from previous chapters is implemented within
database functionality such as functions, procedures or triggers. The outcome of integrating
time into geo databases are database tables consisting of conventional attributes, spatial
attributes and temporal attributes. Spatial attributes describe the location on the earth’s
surface whereas temporal attributes describe when a fact was observed in the real world.
Both spatial as well as temporal attributes are represented as geometry. If the observation
period has no duration then it is considered as an instant in time represented as point
geometry. If the observation has at least a duration of one second then it is considered as a
period which is represented as line geometry.

As time is represented as geometry the implementation points out that spatial operations
such as overlap, meet, contains apply to temporal operations. Moreover spatial analytical
functions like distance calculations apply to temporal functions too. As a result time is
integrated into a geo database based on a geometric representation. This work underlines
that spatial functionality within geo databases provides meaningful operations applied to
time. It is the scope of this work to prove spatial functionality of its significance in the

temporal case.
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8.2 Functional Specification
This section provides a functional specification of the implementation. It defines the
necessary functionality in order to integrate time into geo databases represented as

geometry.

8.2.1 Need to have
e TimeStampToNumber function as a database function
e NumberToTimeStamp function as a database function
e A database function transforming instants into point geometries

® A database function transforming periods into line geometries

8.2.2 Nice to have
e Uniqueness constraints considering time as part of a primary key
e Referential integrity constraints considering time as part of a foreign key
* Temporal modification operations such as sequenced insert, update or delete

® Provide spatial metadata applying to the temporal case

8.2.3 Not to have
® Visualisation techniques
e Complex geometries such as Multipoint or Multiline

e Topology
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8.3 Base technology

This section shortly introduces the used base technology on which the implementation is
based on. To integrate time into geo databases there are three main software components
necessary. The first is a geo database which is the destination of the integration. Further a
SQL client application to express SQL statements is needed. To visualise the results in an
appropriate manner a desktop GIS client application is used in order to display time

represented as geometry.

8.3.1 Oracle Express Edition with Oracle Locator

Oracle Express Edition® is a data base for developing purposes. It is free to use as its limited
to one CPU, one gigabyte of memory and four gigabyte of hard disk space. It is based on the
10g R2 release. Oracle Locator is the package which provides the necessary spatial
functionality and is included in Oracle Express Edition. It includes spatial data type as well as
spatial operations, indexing methods and some analytical functions. Further it is based on
the simple feature specification of the Open Geospatial consortium (OpenGIS_Consortium,
2006b) as it provides functions transforming its native geometry type into a well-know text

or well-known binary representation.

8.3.2 Oracle SQL Plus Worksheet
The Oracle SQL Plus Worksheet is a client application which enables a simple SQL interface
to formulate SQL expressions. In this work it is used to formulate SQL expressions as well as

showing their results in a tabular manner.

8.3.3 Esri ArcView
Esri ArcView” is used as a desktop GIS client application visualising spatial information as
maps. As in this work time is represented as geometry this application is further used to

visualise temporal information on a map.

® http://www.oracle.com/technology/products/database/xe/index.html
* http://www.oracle.com/technology/products/spatial/index.html
> http://www.esri.com/software/arcgis/arcview/about/features.html
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8.4 Functions
The scope of this section is to provide a description of implemented functions. The source
code of each function is provided as a figure in order to maintain syntax colouring.

Developer comments are red. The syntax applies to the Oracle PL/SQL standard.

8.4.1 TimeStampToNumber
The source code of the TimeStampToNumber function as defined in chapter 7.4.1 is shown

in the following figure.

Cielle

[pOrigin timestamnp, pDate timestamp) return nunher
as
vEeturn numher:
vDays number;
vHours number;
vHMinates number;
vieconds number:
vitart numher;
vEnd rmber;
begin
—-- Check if input parameters are null
if plhate is not null and pOrigin is not null then
—-— Extract Days, Hours, Minutes, ZSeconds out of the interwal between date and origin
vhays := EXTRALACT (DAY FROM{pDate-pOrigin)):
vHours = EXTRACT(HOUR FROM(pDate-pOrigin)):
vMinutes = EXTRACT (MINUTE FROM(pDate-pOrigin)):
vieconds = EXTRACT (SECOND FROM(pDate-pOrigin)):
-- Beturn the number of seconds between origin and date
return (whays*24%¥60%60)+ (vHours*60%60) 4+ (vHinutes¥ 60 +vieconds;
elae
return null;
end if;
end;

Status: Valid (Ln, Cal): (1,1) Kompilieren | Fehler anzeigen

Figure 30 TimeStampToNumber source code

The goal of the TimeStampToNumber function is to transform a date specification to a
number relative to an origin. Therefore the return value of this function is the number of
seconds between the origin and the date. As input this function takes an origin and a date to
transform. For both a timestamp data type is used. The functionality is to calculate the
interval between the origin and the date which is accomplished by a subtraction. It returns a

DAY TO SECOND type of interval which then is converted into seconds.
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The following figure shows an example of using the implemented function.

B sQL*Plus Worksheet

itsblatt Hilfe ORACLE
select Timelitamp To Number|
TO_TIMESTAMP ('01-01-2008 13:00:00', 'DL-MM-YVYY HH24:MI:55'), -- ORIGIN
TO_TIMESTaMP ('01-01-2Z005 l4:00:00', 'DD-MM-TVTT HH=24:MI:33') -- DATE TO TRANIFORM
1 Mumber0f3econds from dual:

* [o

alL

NUMEEROFSECOND S

o

1l row selected.

Figure 31 Transforming a date specification into a number

In this example January 1% at 1pm is used as the origin and January 1% 2pm is used as the
date to transform. The result of the function is 3600 which is the number of seconds

between the origin and the date which is equal to one hour.
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8.4.2 TimeToGeometry
The goal of the TimeToGeometry function is to transform time into geometry. Hence
instants are transformed to points and periods are transformed into lines. The source code

of the function is as follows:

Luelle

(plrigin timestamp, pFrom timestamp, pTo timestamp)
return ndsys. sdo_geometry
as
witart mumber;
vEnd number:
begin
-- Check if input parameters are not null
if pFrom is not null and pTo is not rull then

—— Transform the first date specification into a numher
wvatart := TIMESTAMP_ TO_NUMEER (pOrigin, pFrom):

—- Transform the second date specification into a number
wEnd := TIMESTAMP_TO_MNUMBER(pOrigin, pTo):

if witart = vEnd then
-— If the mumbers are equal it is an instant which is transformed into point geometry
return $D0_GEOMETEY¥ (2001, NULL, SDO_POINT TYPE(wStart, 0, 0), NULL, NULL):
elae
-- If the nmumbers are not equal it is a period which is transformed into a line geometry
return SD0_GEOMETEY (2002, NULL, NULL, SDO_ELEM INFO_ARRAT(1, 2, 1), 5D0_ORDINATE_ ARPAY (wStart,0,wEnd,0)):
end if;
else
return null:
end if;
end;

Status: Walid (Ln, Coly: (1,1) Kompilieren Fehiler anzeigen

Figure 32 TimeToGeometry source code

The function takes as input three date specifications one for the origin and two for
delimiting a period. The parameter pFrom is the date specification where a period starts.
Hence the parameter pTo is the date specification where a period ends. If pFrom is equal to
pTo then the period is considered as an instant. In the case of a period the return value of
the function is a simple line geometry. In the case of an instant the return value is a simple
point geometry. The functionality is to transform the input date specification into numbers
via the TimeStampToNumber function. Geometries are created through geometry

constructors which take the calculated numbers as coordinates.
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The following figure shows an example of transforming an instant into a point geometry.

B squ*Plus Worksheet

platt Hilfe ORACLE

select Time To_Geomerry|

@ Mro_toEsTamr (01-01-2008 13:00:00°, 'DD-MN-YYYY HH24:MI:S3'), -- ORIGIN

4, Jro-romSTA (101-01-2008 14000500, DD-MN-TTYY HGZ4GMIISS), -~ DEGTN of the PERIOD 4
TO_TIMESTAMP {'01-01-2008 14:00:00', 'DD-MI-YYVY HHZ4:MT:25') -- EKD of the PERIAD

) PUINT from dual;|

R ———

8

I
+!

POINT(SDO_GTYPE, SDO_SRID, SDO_POINT(X, ¥, Z), SDO_ELEM INFO, SDO_ORDINATES)

o3

SDO_GEOMETRY (2001, NULL, SDO_FOINT TY¥FE(3600, 0, 0j, NULL, NULL)

1 row selected.

Figure 33 Transforming an instant into a point geometry

In this example January 1% at 1pm is used as the origin and January 1% 2pm is used as the
start and end of a period which is therefore considered as an instant. The result of the
function is a point geometry with 3600 as its x coordinate and 0 as its y coordinate.

The following figure shows an example of transforming a period into a line geometry.
-ioix!

zelect Time_To_Geometry( &

e [TO_TIMESTAMP ('01-01-2008 13:00:00', 'DD-MM-¥¥VV HH24:MI:55'), -- ORIGIN
4 TO_TIMESTANP ('01-01-2008 14:00:00', 'DD-MM-Y¥VY HH24:MI:S5'), -- BEGIN of the PERIOD
TO_TIMESTANP ('01-01-2008 15:00:00', 'DD-MM-¥¥VY EH24:HI:S5') —- END of the PERIOD
} POINT from dual
-
5:@ K = D
POINT(SD0_GTYPE, SD0O_SRID, SD0_POINT(X, ¥, Z), SD0_ELEM INF0, SDO_ORDINATES)
P
> [sp0_GEOMETRY (2002, WULL, NULL, SDO_ELEM INFO_ARRAY{l, 2, 1), SD0_ORDINATE_ARRAY (3600, 0, 7200, 0)

1 row selected.

Figure 34 Transforming a period into a line geometry

In this example January 1% at 1pm is used as the origin and January 1% 2pm is used as the
start and January 1% 3pm as the end of a period. The result of the function is a line geometry
consisting of a start point with a coordinate pair of {3600,0} and an end point with a

coordinate pair of {7200,0}.
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8.4.3 NumberToTimeStamp
The goal of this function is to transform a number relative to an origin into a date
specification. It is the natural counterpart of the TimeStampToNumber function. The

following figure provides the source code of the function.

— Auelle

(plrigin timestamp, plumber number)

return timeztanp

as

begin
-- BEeturn date specification which is origin + interval in seconds
return plrigin + NUMTODSINTERVAL (pMunber, '=zecond']:

end;

Figure 35 NumberToTimeStamp source code

The following figure shows an example of transforming a number into a date specification.

SOL*Plus Worksheet

Bearhieitenn Arhe ORACLE
gelect Number To Time3tanp |
TO_TIMESTAMP ('01-01-Z005 15:00:00', 'DD-MM-¥YVYY HHZ4:MI:55'), -- ORIGIN
7200 -- Mumber0f3econds
) Date_Specification from dual:

™ [o

[

DATE SPECIFICATION

oL

01-JaN-08 03.00.00.000000000 PM

“ad

1l row selected.

Figure 36 Transforming a number into a date specification

In this example January 1*" at 1pm is the origin and the number to transform is 7200. The

result is a date specification of January 1*" at 3pm.
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8.4.4 GeometryToTime

The goal of the function is to transform a geometry into a date specification. It is the natural
counterpart to the TimeToGeometry function. This function is only necessary for displaying
date specifications in a tabular manner rather than coordinates of the used geometries. It
provides a better understanding for the results of ongoing examples. The following figure

provides the source code of the function.

Quelle

(pOrigin TIMESTAME,pTineGeometry ndsys.sdo_geometry,p_start mmber)
return timestawp
as
v din integer:
w_z numher;
w_type integer:
begin

-- Check if the input parameters are not null
if pOrigin is not null and pTineGeometry is not null then
if pTimeGeometry.sdo_point is not null then
-- If the input time geometry is a point than return the point's x coordinate transformed into & timestamp
return number_to_timestamp (p0rigin,pTimeGeometry. sdo_point.x) ;
else
if p_start = 1 then
-- If the input time geometry is a line than return the start point's x coordinate transformed into a timestamp
return number to_timestamp (pOrigin,pTimeGeometry.sdo ordinates(l)]:
else
-- If the input time geometry is & line than return the end point's x coordinate trensformed into a timestamp
return numher_to_timestamp (pOrigin,pTimeGeonetry. sdo_srdinates (pTimebeometry. sdo_ordinates.count - pTimeGeometry.get_dims()+1));
end if:
end if;
end if:
end;

Status: Valid (Ln, Coll (6,52) Kompilieren | Fehler anzeigen

Figure 37 GeometryToTime source code

The function takes as input a date specification of the origin, a geometry to transform and a
number indicating whether begin or the end of the period should be returned. The following

figure shows an example of the function.
_io]xi

Datei Beark hlatt Hilfe ORACLE
select geometry_to_time|

TO_TIMESTAMP {'01-01-2008 13:00:00', 'DD-MM-VY¥Y HHz4:MI:55'), -- ORIGIN,

SDO_GEOMETRY (2002, NULL, NULL, SD0_ELEM INFO_ARRAY(l, Z, 1), SDO_ORDINATE_ARRAY (9616560, 0, 8616575, 0)), -- GEOMETRY TO TRANSFORN
1 -- Return the Eegin of the period

) GEOMETRY_TO_TIME from dual}]

1] >

P E

GEOMETEY_TO_TIME

?

21-&FR-08 08.16.00.000000000 FM

1 row selected.

Figure 38 Transforming geometry into a date specification
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8.5 Spatial operations in temporal context

The scope of this chapter is to use spatial operations to determine relationships in temporal
context. For each relationship two periods are transformed into line geometries via the
Time_To_Geometry function. Afterwards the spatial relationship of those line geometries is
determined via the Oracle Locator relate function. As a result the determined spatial
relationships are evaluated of their expressiveness in the temporal case.

As an introduction to this topic Ott and Swiaczny (Ott & Swiaczny, 2001) provided a mapping

between spatial and temporal operators.

temporal operators

Figure 39 Spatial and temporal operators (Ott & Swiaczny, 2001)

The following table provides a mapping of the identified temporal operations in literature to

their counterparts within Oracle Locator.

Temporal operator Oracle Locator Operator
before / after

meets SDO_TOUCH

equals SDO_EQUAL

during SDO_CONTAINS
starts/finishes SDO_COVERS

Overlaps SDO_OVERLAPS

Table 2 Temporal operators vs. Oracle Locator operations

within Oracle Locator.

Temporal set operations

Oracle Locator set operations

intersection

SDO_GEOM.SDO_INTERSECTION

union

SDO_GEOM.SDO_UNION

difference

SDO_GEOM.SDO_DIFFERENCE

Table 3 Temporal set operations vs. Oracle set operations

The following table provides a mapping of temporal set operations and their counterparts
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8.5.1 Disjoint

The following figure shows the disjoint relationship as the two periods do not have any
spatial interact. The first period lasts from January 1°' 2pm to S5pm. The second period lasts
from January 1% 7pm to 8pm. Both are converted into a line geometry via the

Time_To_Geometry function. As they do not have any spatial interact they do not have any

temporal interact as well and their relationship is disjoint.
101 %I

Datei Bearbeiten Arbeitshlatt Hilfe OoORACLE
select

sdo_geom. relate

Time To_Geometry( -- First Geometry (January lst from 2pm ©o Spm)
[TO_TIMESTAMP('01-01-2008 13:00:00', 'DD-MM-V¥VVY HHZA:MI:S5'),

TO_TIMESTAMP ('01-01-2008 14:00:00', 'DD-PM-VVVY HH24:MI:35'),

ITO_TIMESTAMP('01-01-2008 17:00:00', 'DD-MM-¥VVV HH24:MI:SS5')),

‘deternine ', -~ Determine the Relationship

Time To_Geometry( -- Gecond Geometry (Januwary lst from 7pm to Spm)
[TO_TIMESTAMP('01-01-2008 13:00:00', 'DD-MM-¥VVY HH24:MI:S5'),

TO_TIMESTAMP ('01-01-2Z008 15:00:00', 'DD-PM-VVVY HHZ4:MI:33'),

ITO_TIMESTAMP('01-01-2008 Z0:00:00', 'DD-MM-¥VVY HHZA:MI:S5')),

B E (e

3

(RELATIONSHIF

DISJOINT

1 row selected.

Figure 40 Disjoint relationship

8.5.2 Touch

The following figure shows the touch relationship as the two periods have a spatial interact
at their boundary. The first period lasts from January 1% 2pm to 3pm. The second period
lasts from January 1** 3pm to 4pm. Both are converted into a line geometry via the

Time_To_Geometry function. At 3pm the first period ends and the second starts so their

line geometries have this point in common. As a result the touch relationship applies.
i)

Datei Bearbeiten Arbeitshlatt Hilfe ORACLE
select

sdo_geom.relatel

Time_To_Geometry( -- First Geometry (January lst Erom Zpm to Spm)
TO_TIMESTAMP('01l-01-2008 13:00:00°', 'DD-II-VVVY HH24:MIDE5' ),

TO_TIMESTAMP ('01-01-2008 14:00:00', 'DD-MM-VVVY HHZA:MI:SS'),

TO_TIMESTAMP('01l-01-2Z008 15:00:00', 'DD-IEL-VVVY HH2A:MI:33')),

'determine ', -- Determine the Relationship

Time_To_Geometry( -- Second Geometry (January lst from 3pm to 4pm)
TO_TIMESTAMP('01-01-2Z008 13:00:00°', 'DD-IMI-U0VY HH2L:MIE0" ),

I TO_TIMESTAMP ('01-01-2008 15:00:00°, 'DD-M-777Y HHEd:MI:55'),

TO_TIMESTAMP('01-01-2Z008 1o:00:00", 'DD-IE-VVVY HA24:MI: 33000,

1) BELATIONSHIP

AR GRER T

“ad

RELATTIONSHIP

'TOUCH

1 row selected.

Figure 41 Touch relationship
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8.5.3 Covers

The following figure shows the covers relationship as the two periods have a spatial interact
at their interior and at their boundary. The first period lasts from January 1% 2pm to 5pm.
The second period lasts from January 1** 4pm to 5pm. Both are converted into a line
geometry via the Time_To_Geometry function. The line geometry of the second period is
within the first period. Both geometries share the point at 5pm. As a result their interior and

their boundary have spatial interact and therefore the covers relationship applies.

=10l
tsblatt Hilie ORACLE

select =
2do_geom. relate|

Time_To_Geometry| -- Firar Geometry (Jamary 1st from 2pm to 5pm)

I T0_TIMESTAMP ('01-01-2008 13:00:00', 'DD-MM-YYVY HH24:MI:SS'),

ITO_TIMESTAMP ('01-01-2005 14:00:00', 'DD-MH-YVYY HH24:MT:55'),

[ TO_TIMESTANP ('0.1-01-200% 17:00:00', 'DD-IM-TYVY¥ HHZ4:MI:S5')),

'determine’, -- Determine the Relationship

B SQL*Plus Wor

Tine_To_Geometry| -- Second Geometry (January lst from dpm to Spm)
ITO_TIMESTAMP ('01-01-2005 13:00:00°, 'DD-MM-TYVY HH24:MI:35'),
TO_TIMESTANP ('01-01-2008 16:00:00', 'DD-MI-YV¥T HHZ4:MI:S5'),
TO_TIMESTAMP(*01-01-2008 17:00:00°, 'DD-MHM-TIVY HHo:MI:55')),

BB R

o3

Figure 42 Covers relationship

8.5.4 Contains

The following figure shows the contains relationship as the two periods have a spatial
interact at their interior. The first period lasts from January 1* 2pm to 5pm. The second
period lasts from January 1% 3pm to 4pm. Both are converted into a line geometry via the
Time_To_Geometry function. The line geometry of the second period is completely within
the first period’s line geometry therefore the contains relationship applies. The difference
between contains and covers is that for a covers relationship the boundaries of the lines

must interact.

B 501 *Plus Worksheet ~-10] x|
)a

tshiatt Hille

-- First Geometry (Jamary lst from Zpm to Spm)
'DD-IM-TYVY HHZ4:MIIS5'),
TO_TIMESTANP ('01-01-2008 14:00:00', 'DD-ME-TV¥T HH24:MT:55'),
IT0_TIMESTANP ('01-01-2008 17:00:00', 'DD-MHM-TYVY HH24:MI:SS')),

‘determine !, -~ Determine the Relationship
Time To_Geometry| | - Second Geometry [Jamuary 1ot from pm to dpm)
ITO_TIMESTAMP ('01-01-2008 13:00:00', 'DD-MM-TYVY¥ HH24:MI:55'),

ITO_TIMESTAMP {'01-01-2008 15:0 ', 'DD-MM-YVYY HH24:MI:55'),

ITO_TIMESTAMF('01-01-2008 16:00:00', 'DD-MM-TYVY HH24:MI:55')),

1) PELATIONSHIP =
from dual;

ARG

3

4 »

RELATTONSHIF

CONTAINS

1 row selected.

Figure 43 Contains relationship
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8.5.5 Equal

The following figure shows the equal relationship as the two periods have the same interior

and boundary. The first period lasts from January 1°' 2pm to 3pm. The second period lasts

from January 1% 2pm to 3pm too. Both are converted into a line geometry via the

Time_To_Geometry function. The line geometries of both periods are the same therefore

the equal relationship applies.

B sQL*Plus Worksheet

ITO_TIMESTAMP ('01-01-2008 15:00:00",
'determine’,

Tine_To_Geometry|

ITO_TIMESTAMP ('01-01-2008 13:00:00',

ARG

3

ITO_TIMESTAMP (' 01-01-2005 15:00:00°,
1) RELATIONSHIP

ITO_TIMESTAMP {'01-01-2008 14:00:00',

ITO_TIMESTAMP {'01-01-2008 14:00:00',

'DD-IM-TYVY HHZ4:MIIS5'),
'DD-MM-TYYT HH24:MT:55'),
'DD-MM-YYVY HH24:MI:SS')),

'DD-MM-TYVY HH24:MI:55'),
'DD-MM-TYYY HH24:MI:33'),
'DD-MM-TYVY HH24:MI:35')),

-- First Geometry (Jamary lst from Zpm to Spm)

-- Determine the Relationship
-- Second Geometry (January 1St frem Zpn te Spm)

Figure 44 Equal relationship

8.5.6 Overlap

The following figure shows the overlap relationship as the two periods have a spatial

interact at their interior and their boundary. The first period lasts from January 1% 2pm to

5pm. The second period lasts from January 1% 1pm to 4pm. Both are converted into a line

geometry via the Time_To_Geometry function. Their line geometries share the period

between 2pm and 4pm therefore the overlap relationship applies. In the case of line

geometries the overlap relationship is called overlapbdydisjoint which means that an

overlap applies but the boundaries are disjoint.

B sqL*Plus Wor
tshiatt Hilfe
select

2do_geom. relate|
Time_To_Geometry|

BB R

o3

IT0_TIMESTAMP {*01-01-2008 13:00:00°,
ITO_TIMESTAMP {'01-01-2008 14:00:00',
ITO_TIMESTAMP [ '0L-01-2008 17:00:00",

ITO_TIMESTAMP {'01-01-2008 L3:00:00',
ITO_TIMESTAMP [ '01-01-2008 16:00:00",

'DD-MM-YYVY HHE4:MI:SS'),

'DD-MM-TYYY HHZA:MI:3S'),
'DD-MH-TYVY HHZ4:HI:S5'))1,

, 'DD-MM-TYVY HH24:MI:35'),
'DD-HN-TYYY HHZA:NISE'),
'DD-MM-TYVY HH24:MI:55')),

-- First Geometry [Jammary 1st from 2pm to Spm)

-- Determine the Relationship
-- Second Geometry (January lst from lpm to 4pm)

Figure 45 Overlap relationship
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8.5.7 Before or After

Within Oracle Locator there exist no spatial operator considering a before or after
relationship because in space there is basically no direction. But it is possible to provide a
before or after relationship via the linear distance function. The first period lasts from
January 1°' 2pm to 5pm. The second period lasts from January 1" 3pm to 5pm. Both are
converted into a line geometry via the Time_To_Geometry function. First the linear distance
of both line geometries to the origin is calculated via the distance function. The origin is
January 1°' 1pm therefore the linear distance of the first period is 3600 spatial units (= 3600
seconds = 1 hour) and the distance of the second period is 7200 units (=7200 seconds = 2
hours). A period’s line geometry with a smaller distance to the origin always starts before a
period’s line geometry with a greater distance. As a result it is possible to determine a

before or after relationship by comparing the distances of periods to their origin.

QL*Plus Worksheet

Datei Eearbeiten ORACLE
zelect

sdo_geon. sdo_distance( Distance Function

Time_To_Geometry| First Geometry (Jammary lst from 2pm to Spm)
TO_TIMESTAMP('01-01-2008 13:00:00', 'DD-MM-¥¥¥Y HH2Z4:MI:55'),

TO_TIMESTAMP ('01-01-200&5 14:00:00', 'DD-MM-YYTY HEZ4:MI:S5'),

TO_TIMESTAMP('0L-01-200& 17:00:00', 'DD-MM-TYYT HHZ4:MI: 5510,

Time To_ Geometry| Origin (Jamaary 1st lpm)
TO_TIMESTAMP('0l-01-2005 13:00:00', 'DD-MM-TYYT HH2Z4:MI:55'),

TO_TIMESTAMP('01-01-2008 13:00:00', 'DD-MM-¥¥YT HH24:MI: 35",

TO_TIMESTAMP('01-01-2005 13:00:00", 'DD-MM-VYYY HHZ4:MI:53')),

1

1 FIRST DISTANCE TO_ORIGIN,

sdo_geon. sdo_distance( Distance Function

Time_To_Geometry| Second Geometry (January lst from Jpm to Spm)
TO_TIMESTAMP('01-01-2008 13:00:00', 'DD-MM-¥¥¥Y HH2Z4:MI:55'),

TO_TIMESTAMP ('01-01-2005 15:00:00", 'DD-MM-YYTY HEZ4:MI:S5'),

TO_TIMESTAMP('0L-01-200&8 17:00:00', 'DD-MM-TYYT HHEZL:MIS3')0,

Time To_ Geometry| Origin (Jamaary 1st lpm)
TO_TIMESTAMP('0l-01-2005 13:00:00', 'DD-MM-TYYT HH2Z4:MI:55'),

TO_TIMESTAMP('01-01-2008 13:00:00', 'DD-MM-¥¥YT HH24:MI: 35",

TO_TIMESTAMP('01-01-2005 13:00:00", 'DD-MM-VYYY HHZ4:MI:53')),

1

) SECOND_DISTANCE_TO_ORIGIH|

i
+

5 ) W

e

]

1 row selected.

Figure 46 Before or After relationship
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8.5.8 Intersection

The following figure shows an intersection of two periods. The first period lasts from

January 1°' 3pm to 5pm. The second period lasts from January 1°** 1pm to 8pm. Both are

converted into a line geometry via the Time_To_Geometry function. Their line geometries

share the period between 3pm and 5pm which is the result of the intersection. The second

statement in Figure 47 transforms the result into readable date specifications via the

Geometry_To_Time function.

8.5.9 Union

[Boomamaaea a0l =]

Dot Prambeten uhsisbist Lt
ey

th_geaw, so_inceeseatim|
rass matry(

.......

CHTERSECTIIN_FAOH IWTERSECTIN T

01-TAR- 09 03, 00,100, DTN DD B Q14008 05, 00,00, 0ODI0DI0 HE

L 1w aelened,

Figure 47 Intersection operation

The following figure shows the union of two periods. The first period lasts from January 1

3pm to 5pm. The second period lasts from January 1** 1pm to 6pm. Both are converted into

a line geometry via the Time_To_Geometry function. The union of their line geometries is

equal to the union of the periods which is from 1pm to 6pm. The second statement in Figure

48 transforms the result into readable date specifications via the Geometry _To_Time

function.
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L
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0 _ceoreTe a0tz WL, WL, 0 VN THP_RRATCL, 2, 11, S0 (RDEUTE AFRATIO, D, 360, 0, 14400, 0, 19000, 031,
Stz WL, WL, S0 F_TERL_ASEAYCL, %, 21, S0 CENTAATE_AGEAPID, 0, 36, 0, 1440, 0, 800, 51,

IS—

iz o#_PESTILT 500 GTYIE, &_SRID, d0_POTHT|, ¥, 2), 00 ELEM_INFO, 6D0_IADTRATES|

a1_GEUMETEY (2002, WILL, WILL, HOO_ENEM_TFO_MRAY(L, 3, 1|, S00_0RDIRATE_AFRAE|U, 0, 3600, 0, 14200, 0, 9000, 1)
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01-743-0a 01. 00,00, Dopapanan 01-748-09 0. 1900, DODODAD L

Figure 48 Union operation
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8.5.10 Difference

The following figure shows the difference of two periods. The first period lasts from January
1" 3pm to 5pm. The second period lasts from January 1* 3pm to 4pm. Both are converted
into a line geometry via the Time_To_Geometry function. Their line geometries do not share
the period between 4pm and 5pm which is the result of the difference. The second
statement in Figure 49 transforms the result of the difference operation into readable date

specifications via the Geometry_To_Time function.

B2 SQL*Plus Worksheet o [=[ 3}
O
select
sdo_geon. sdo_difference( -- Difference
Time_To_Geomerry( -- First Geometry (January 1st from 3pm to Spm)

TO_TIMESTANP {'01-01-2008 13:00:00', 'DD-MI-YVYY HEZ4:MI:S5'),

TO_TIMESTAMP {'01-01-2005 15:00:00', 'DD-MM-VYTT HH24:MT:55'),

TO_TIMESTANP ('01-01-2008 17:00:00', 'DD-MI-TVET HEZ4:NL:ES']),

Time_To_Geometry( -- Second Geometry (January Lt from Spuw to 4pm)
TO_TIMESTANP {'01-01-2008 13:00:00', 'DD-MI-YVYY HEZ4:MI:S5'),

TO_TIMESTAMP {'01-01-2005 15:00:00', 'DD-MM-VYTT HH24:MT:55'),

TO_TIMESTANP ('01-01-2008 16:00:00', 'DD-MI-TVET HEZ4:NI:E5']),

1

) INTERSECTION

from dual;

Ve XR

)

select geometry to_time|
TO_TIMESTANP {'01-01-2008 13:00:00', 'DD-MI-YVYY HEZ4:MI:S5'),
3D0_GEOMETRY{2002, WULL, WULL, $DO_ELEM_TNFO_AFRAY(1, 2, 1}, $DO_ORDINATE_ARRAY (10800, 0, 14400, 0)),

1) DIFFERENCE_FROH,

geomertry_to_tine(

TO_TIMESTAMP {'01-01-2008 13:00:00', 'DD-ME-YVYY HEZ4:MI:S5'),

3D0_GEOMETRY{2002, WULL, WULL, $DO_ELEM_TNFO_AFRAY(1, 2, 1}, $DO_ORDINATE_ARRAY (10800, 0, 14400, 0)),
0) DIFFERENCE_TO

from tuals
T D
TNTERSECTION{SD0_GTYPE, SDO_SRID, 3DO_POINT(X, ¥, Z), SDO_ELEN INF0, SD0_ORDINATES) &

SDO_GEOMETRY (2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY[10800, 0, 14400, 0)

1 row selected.

DIFFERENCE_FROM DIFFERENCE_T0

01-JAN-08 04.00.00,000000000 P 01-JAN-08 05.00.00,000000000 FI

1 row selected.
El ¥

Figure 49 Difference Operation

8.5.11 Length

The following figure shows a length calculation of a period. The period lasts from January 1%
3pm to 5pm. It is converted into a line geometry via the Time_To_Geometry function. The
length of the period’s line geometry is 7200 spatial units. In the temporal context these are

7200 seconds respectively the period’s duration is 2 hours.

ORACLE

sde_geon. sdo_Length( -- Length

Time_To_Geometry( -- First Geometry (January 1st from 3pm to 5pu)
TO_TIMESTANP {'01-01-2008 13:00:00', 'DD-MI-YVYY HEZ4:MI:S5'),

TO_TIMESTAMP {'01-01-2005 15:00:00', 'DD-MM-VYTT HH24:MT:55'),

TO_TIMESTANP ('01-01-2008 17:00:00', 'DD-MI-TVET HEZ4:NL:ES']),

1 -~ Tolerance

) DURATION IN_SECONDS

Ve XR

)

Figure 50 Length calculation
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8.6  The bus station scenario

The goal of this chapter is to provide interesting spatio temporal use cases based on a bus
station scenario. For example a spatio temporal question on this scenario would be “Find
those stations where more than one bus line stop in the same period of time within a
walking distance of 1km within the next half an hour?”. The result of such a question gives
information of when and where it is convenient to change the bus line. The following figure

gives an overview of the bus lines and their stations.

Figure 51 Bus station scenario

There are three bus lines called A,B and C. Each bus line has a number of stations where the
bus stops. At each bus station there is a schedule providing the information when a bus
arrives. There are stations where more than one bus line stops. The time a bus stops at a
bus station is implemented as a period and not as an instant. It is closer to reality as a bus
takes time at the station when passengers enter or exit. For this scenario it is assumed that
a bus needs 15 seconds from the arrival to the departure at a station. At end stations this
period may be longer. In order to reuse the functionality of spatial operations the period is
transformed into a line geometry via the Time_To_Geometry function.

Chapter 8.6.1 provides an overview of the Entity Relationship Model of the bus station
scenario. How the initial data loading was accomplished is described in chapter 8.6.2. In the
following chapters spatial, temporal and spatio-temporal questions are formulated and
translated into SQL statements. For spatial and temporal questions only spatial operations
are used as time is modelled as geometry. At the end the results of the statements are

discussed.
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8.6.1 Entity Relationship Model

The following figure shows the Entity Relationship Model of the bus station scenario.

SN

BUS_LINE BUS STATION

has
stops BUS_SCHEDULE

o e

Figure 52 Bus station ERM

The BUS_LINE table consists of a BUS_LINE attribute for the name of the bus line which is
also the primary key of that table. For simplicity it is assumed that there are no two bus lines
with the same name. The LINE_GEOMETRY attribute is for a line geometry which represents
the line of the bus connecting the bus stations. The BUS_STATION table consists of a name
attribute for the name of the station and a point geometry for the location of the station.
The most important table is the BUS_SCHEDULE table as it stores the relevant information
when a bus stops at a station and is therefore the weak-entity between BUS_LINE and
BUS_STATION. It consists of the attributes BUS_LINE and BUS_STATION and a line geometry
representing the period of time a bus stops at a station. The ORIGIN table consists of one
TIME_GEOMETRY attribute for the origin which is used in following SQL statements. The
MY_TIME table consists of one TIME_GEOMTRY attribute for a local time which is used in
following SQL statements. For both tables the TIME_GEOMETRY attribute represents an
instant in time as a point geometry. Both tables are helper tables as following SQL
statements are more readable when an origin and a local time can be used by joining those

tables.
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8.6.2 Initial Data Loading

The scope of this chapter is to give a short distinctive overview of the initial data loading of
the provided data model. The BUS _STATION and BUS_LINE tables are filled with
conventional SQL insert statements. The following figure shows an insert statement into the

BUS_SCHEDULE table converting a period of time into a line geometry.

insert into bus_schedule (bus_line, bus_station, time)
values

{

A, -- bus line

"Wolksschule Moos', —- bus station

TTME_TO_GEOMETRY | -- time to geometry function
TO_TIMESTAME ('01-01-2008 00:00:00', 'DD-MM-TYVY HH24:MI:SS'), -- origin (January lat 00:00)
TO_TIMESTAMP ('21-04-2003 05:50:00', 'DD-MM-V¥VY HH24:MI:35'), -- arrival (April Zlst 05:50)
TO_TIMESTAMP ('Z1-04-2008 06:00:;00', 'DD-MM-TYVY HH24:MI:35') -- departure (4pril Zlst 05:00)

!
1

Figure 53 Inserting values into the bus schedule

Figure 53 shows the information that bus line ‘A’ arrives at station ‘Volksschule Moos’ at
April 21% 5am and departures at 6am. This period lasts for ten minutes because this station
is the end station. It is converted into a line geometry via the Time_To_Geometry function.

In order to use the same origin throughout following SQL statements an origin of January 1*

00:00am is inserted into the origin table. Figure 54 shows the insert statement.

insert into origin walues |

Time To Geometry|

TO_TIMESTAMP('01-01-2005 00:00:00', 'DD-MM-YYTY HHZ4:MI35'),
TO_TIMESTAMP('01-01-2Z005 00:00:00', 'DD-MM-YYTY HHZ4:MI:35'),
TO_TIMESTAMP('01-01-2005 00:00:00", 'DD-MM-¥VYY HHZ4:MIZS5'))
)

Figure 54 Definition of the origin

In chapter 0 a local time for a spatio temporal question is needed. In order to reuse this
local time in SQL statements and make them more readable a date specification of April 21°

07:40am is inserted into the MY_TIME table. Figure 55 shows the insert statement.

insert into wy time wvalues |

Time_To_Geonetry|

TO_TIMEZTAMP('01-01-2005 00:00:00', 'DD-MM-¥¥¥Y HHZ4:MI:55'),
TO_TIMESTAME('Z1-04-2005 07:4a0:00', 'DD-MM-YYTY HHZ4:MI33'),
TO_TIMESTAMP('zZ1-04-2005 07:40:00", 'DD-MM-TVTY HHZ4:MIZS5'))
1:

Figure 55 Definition of my time
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As a result the following figure shows a graphical representation of some rows of the bus

schedule table.

“whlksschu le boo s Miller Pundegg-eg  Firmiansrake hofirkaweg hlkssohu le hoo s Migdorerarake

- -
Hellarunin Apensiediung-Sid P +R
-

“blksshule Moo s Fishinger Graben K- Weher-Gassen  Knig-Ludwig-Str
. - r -

Figure 56 Bus schedule viewed on the time line

The period between a bus arrival and departure is transformed into a line geometry which is
labelled with the name of the bus station. Bus line A is represented as a red line, bus line B
as a green line and bus line C as a blue line. In order to avoid display conflicts the bus lines

are displayed with different y offsets.

8.6.3 Spatial Questions
The following figure shows an example of a conventional spatial query within Oracle
Locator. Therefore the aspect of time is not considered. For this example the originating

location is at the station “Sinnhubstrafle”. Now the spatial question is to find those stations

which are within a linear distance of 200 meters of the originating location.
=[]

Datei Bearbeiten Arbeitshlatt Hilfe

ORACLE

zelect
uy_location.name MY LOCATION,

OTHER_STATIONS.nawe STATIONS IN RANGE,

gdo_geom. sdo_distance (my location.shape, other_ stations.shape,.001) WALKING DISTANCE
from

bus_station MY_LOCATION, bus_station OTHER_STATIONS

where

ny_location.names'Sinnbubstrabe' and

ny_location.name!=0THER_STATIONS.name and

ado_geon. sdo_distance (wy location.shape, other stations.shape,.001) < 200;

"
+.

BB %R

2
+

)

4] | »

MY_LOCATION STATIONS_TN_RANGE WALKING_DISTANCE

Sinnhubstrabe Gorianstrabe 151, 644321
Sirmmhubstrabe Alradenisches Gyunasium 180.679274

4]

Figure 57 Spatial question

Figure 57 shows the solution to the above stated question. The linear distance is calculated
via the SDO_GEOM.SDO_DISTANCE function and is compared to be less than 200 meters. As
a result there are two stations within a distance of 151.644 meters respectively 180.679

meters away from “Sinnhubstralie”.
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8.6.4 Temporal Questions

The following figure shows an example of a temporal query within Oracle Locator. Therefore

the aspect of space is not considered. For this example the period of interest is between

April 21° 2008 07:45am and 08:00 am. Now the temporal question is to find those stations

at which a bus arrives or departures within that period of time.

¥ SOL*Plus Worksheet i

from
here

sdo_anyinteract |
SCHEDULE, time,

EU%_STATION

Time_To_Geometry(
TO_TIMESTAMP({'01-01-2008 00:00:00', 'DD-MM-YYYY HH24:MI:S3'),
TO_TIMESTAMP ('21-04-2005 07:45:00', 'DD-MM-¥Y¥Y HHZA:MI:SS'),

TO_TIMESTAMP({'21-04-2008 08:00:00', 'DD-MM-VYYY HHZ4:MI:S3'))) =
order by ARRIVAL;|

SCHEDULE.bus_station BUS STATION,
geometry to_time (TO_TIMESTAMP['01-01-2008 00:00:00,
geometry to_time (TO_TIMESTAMP('0l-01-2008 00:00:00',

bus_schedule SCHEDULE

—-- gdo_anyinteract -> a bus arrives or departures between 07:45 and 08:00
-- time geometry from the bus schedule
-~ TIME_TO_GEOMETEY function returning a geometry of the period 07:45 - 08:00

ARRIVAL

'DD-MM-FEYY HHZ4:MI:55 ') ,SCHEDULE. time,1) ARRIVAL, -- Arrival {geometry_to_time}
'DD-MM-F¥¥Y HH2Z4:MI:S55'),SCHEDULE. time,0) DEPARTURE -- Departure [(geometry to_time)

\TRIE '

ORACLE

-- dtation

DEPARTURE

Volksschule Moos

Polizeidirektion

Mubdorferstrabe
Fiebinger Graben

Hofhaymeralles
1

ikadenisches Gyunasium

Pensionistenhein Nonntal

Z1-APR-08 07.35.00.000000000 AM
Z1-APR-08 07.43.00.000000000 AM
21-APR-0% 07.45.00.000000000 AM
21-APR-08 07.45.00.000000000 AM
21-APR-0% 07.45.00.000000000 AM
21-APR-0& 07.45.00.000000000 AM
Z1-APR-08 07.45.00.000000000 AM
Z1-APR-0& 07.45,00,000000000 AM
Z1-APR-08 07.46.00.000000000 AM
Z1-APR-0& 07.47.00.000000000 AM
Z21-APR-08 07.47.00.000000000 AM
21-APR-0% 07.45.00.000000000 AM
21-APR-08 07.49.00.000000000 AM
21-APR-08 07.50.00.000000000 AM
21-APR-0& 07.50.00.000000000 AM
Z1-APR-08 07.50.00.000000000 AM
Z1-APR-08 07.50,00,000000000 AM
Z1-APR-08 07.50.00.000000000 AM
Z1-APR-0& 07.50.00.000000000 AM
Z21-APR-08 07.50.00.000000000 AM
21-APR-0% 07.50.00.000000000 AM
21-APR-08 07.50.00.000000000 AM
21-APR-08 07.50.00.000000000 AM
Z1-APR-08 07.52,00,000000000 AM

Z1-APR-08 07.45.00.000000000 AM
Z1-APR-08 07.45.00.000000000 AM
2Z1-APR-08 07.45.15.000000000 AM
21-APR-08 07.45.15.000000000 AM
21-APR-08 07.45.15.000000000 AM
Z1-APR-08 07.45.15.000000000 AM
Z1-APR-08 07.45.15.000000000 AM
Z1-APR-08 07,45.15,000000000 AM
Z1-APR-08 07.46.15.000000000 AM
Z1-APR-08 07.47.15.000000000 AM
Z1-APR-08 07.47.15.000000000 AM
Z1-APR-08 07.45.15.000000000 AM
21-APR-08 07.49.15.000000000 AM
21-APR-08 07.50.15.000000000 AM
21-APR-08 07.50.15.000000000 AM
Z1-APR-08 03.00.00.000000000 AM
21-APR-08 07.50.15,000000000 AM
Z1-APR-08 07.50.15.000000000 AM
Z1-APR-08 07.50.15.000000000 AM
Z1-APR-08 07.50.15.000000000 AM
Z1-APR-08 07.50.15.000000000 AM
21-APR-08 07.50.15.000000000 AM
21-APR-08 07.50.15.000000000 AM
Z1-APR-08 07,52.15.000000000 AM
¥

Figure 58 Temporal question

Figure 58 shows the SQL statement to the above stated question. The period of interest is

converted into a line geometry via the Time_To_Geometry function. It is then used within a

SDO_ANYINTERACT spatial operator in order to find spatially interacting periods of the

BUS_SCHEDULE table which are represented as line geometries too. As the spatial operator

SDO_ANYINTERACT searches for any spatial relationship it returns all bus stations where a

bus arrives or departures within the period of interest. In order to provide a readable result

the periods’ line geometry is converted back into two timestamps via the

Geometry_To_Time function. The result shows that there are many bus stations where a

bus stops or arrives between 07:45 and 08:00.
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8.6.5 Spatio-temporal questions

The goal of this chapter is to provide interesting questions as space and time are considered
together. For this example the originating location is at the bus station “SinnhubstraRe”. The
time of interest is April 21° 2008 at 07:40am. Now the spatio temporal question is to find

those stations within a linear distance of 500 meters where a bus stands at a bus station at

07:40am.
¥
Datei Hilfe ORACLE
select
& other_station.nawe station,
7_{9 achedule.buz line,
geouetry to_time{T0 TIMESTAMP('01-01-2008 00:00:00', 'DD-IH-¥VYY HE24:MI:3'),SCHEDULE. tine,l) ARRIVAL,
qeonetry_to_time(TO_TIMESTAMP('01-01-2008 00:00:00", 'DO-MH-¥VTY HH24:MI:35') , ACHEDULE, tine,0) DERARTURE
from
;l@ ||buz_station MY STATION, bus_stauon (OTHER_STATION, buz scheduls SCHEDULE, my time, origin
B ihere
L= uy_station.names='Simminbstrabe’ and other_atation.name!s'firmhubatrabe' and schedule.bus_stationsother_station.name
-- only those within a linear distance of 500w
? and sdo_geow. 3do_distance (ny_station.shape, other station.shape,l) < 500 and

-- only those where a bus iz at 07:40
ado_anyinteract(achedule. tine, wy time)='TRIE'

order by station, arrival;

STATION EUS_LINE ARRIVAL DERARTURE

Mubdorferstrabe I Z1-AFR-08 07,40, 00,000000000 A 21-APR-08 07,40, 15.000000000

1 row selected.

] v

Figure 59 Spatio temporal Question |

Figure 59 shows the SQL statement of the above stated question. As the time of interest is a
time instant it is converted into a point geometry via the Time_To_Geometry function.
Afterwards it is used within a SDO_ANYINTERACT spatial operator in order to find spatially
interacting periods of the BUS_SCHEDULE table which are represented as line geometries.
As the spatial operator SDO_ANYINTERACT searches for any spatial relationship it returns all
bus stations where a bus stands at the station at 07:40am. In order to provide a readable
result the bus schedule periods’ line geometry is converted back into two timestamps via
the Geometry_To_Time function. The result shows that there is only one bus station where
bus line “A” stops at 07:40am. As mentioned earlier it is assumed that it takes a bus at least

15 seconds to handle incoming and leaving passengers.
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The example points out the power of combining space and time into spatio temporal
guestions. Again the originating location is at “Sinnhubstrale” and the time of interest is
April 21° 2008 at 07:40am. Now the question is to find those stations where one will arrive
before a bus and must no wait longer than for ten minutes at that station. Further for each
station the result should provide the information how long one has to go to arrive there. A

walking speed of 5km/h is assumed.

@ s0L*Plus worksheet N =10/ ]

[b.neme STATION, -- stations
sdo_geon. sdo_distance (a.shape,b. shape,.001) LINEAR DISTANCE, -- linear distance to station

sdo_geou. 9do_distance(a.shepe,b.shepe,.001] "L, 38/60 NINUTES_T0_GO, -- number of Dinutes te go (valking speed = Sim/h = 1,38u/sec)
(ado_geom, sdo_distance (uy_time, SCHEDULE. tine,.001)/60) -

(sdo_geom. sdo_distance (a.shape,b. shape, .001) *1.36/60) NINUTES_I_HAVE_TO_VAIT, -- (mumher of minutes the bus arrives)-(mumber of minutes to go)= minutes T have to wait
¢ [|sdo_geon. sdo_distance (ny_time,3CHEDULE. time,l}/60 BUS_ARRIVES IN MINUTES, -- muber of minutes the bus srrives from my time which is 07:40

geowetry to_time (TO_TIMESTAMP('01-01-Z008 00:00:00', 'DD-MI-FYYY HHZ4:lI:#5'),SCHEDULE.time,l) ARRIVAL_OF_THE EBUS -- arrival of the bus

from bus_station A, bus_station B, bus_schedule SCHEDULE, origin, my_time

-- only those stations where I will arrive before the bus—>(minutes the bus arrives) >= [minutes to go)
sido_geow, sdo_distance (ny_tiue,SCHEDULE. tine,.001) »= sdo_geon.sdo_distance (a,shape,b, shape,.001)*1.38

and

-- only those vhere T have to vait at lesst L0 minutes->{minutes the bus arrives) - (mimites to ga] < 10
(do_geom. sdo_distance (wy_viwe, SCHEDULE. tine,.001)/60) - (sdo_geon.sdo_distance(a.shape,b.shape,.001] 7L, 38/601<10

-- only those after 07:40 -> DISTANCE (origin, BUS_ARRIYAL) > DISTANCE (origin, 07:40)=AFTER
sido_geon. sdo_distance (SCHEDULE. time,origin, 1)>sdo_geon. sdo_distance iny_time,origin,l] -
order by LINEAR DISTANCE BUS_ARRIVES_IN_NINUTES NINUTES_I_HAVE_TO_WALT:

4] [ »
STATTON LINEAR_DISTANCE MINUTES_TO_GO MINUTES T HAVE_T0_WATT BUS_ARRIVES TN MINUTES ARRIVAL OF THE_BUS

Gorianstrage 151.644321  3.48781938 4.51218062 & 21-APR-08 07.48.00.000000000 A0

|Akcadenisches Gyunasivm 180.679274 4.1556233 .644376701 5 21-APR-08 07.45.00.000000000 A0

Mubdorferstraie 347. 650687 7.9959656 1.0040342 3 21-AFR-08 07.43.00.000000000 A

Tusdorferstrate 347.650687 7.9959658 7.0040342 15 21-APR-08 07.55.00,000000000 AN

Markey 743.377426  17.0976808 7.90231916 25 21-APR-08 08.05.00,000000000 AM

Markvey 743.377426  17.0976808 7.90231916 25 21-APR-08 08.05.00.000000000 &M

R.-Knoller-Scr. 822.791958  21.2242151 6.77576434 26 21-APR-08 08.08.00.000000000 &M

Fugelhot 950.134727  21.8530987 5.14690127 25 21-APR-08 08.05.00,000000000 AN

Bergerhof 1129.23912  25.9724999 9.02750014 35 21-APR-08 08.15.00,000000000 AM

F: trabe 1277.25056  29.3767629 .623237057 30 21-APR-08 08.10.00.000000000 &M

F: trabe 1277.25056  29.3767629 7.62323708 37 21-AFR-08 08.17.00.000000000 &M

Pensionistenhein Nonntal 1310.16922  30.1338922 9.86610754 40 21-APR-08 08.20.00.000000000 AN

Mixller Rundega-Weg 1481.2596  34.0689708 1.93102922 36 21-APR-08 08.16.00.000000000 AM

kugeres Tonntal 1549.28403  35.6335326 4.36646735 40 21-APR-08 08.20.00.000000000 &M

Volksschule Moos 1575.68468  36.2453525 3.7545475 40 21-AFR-08 08.20.00.000000000 &M

Fiebinger Graben 1579.34322 36.324894 5.67510599 40 21-APR-08 08.20.00.000000000 AN

[Ednd g-Lud g-5te. 1667.95646  38.8229985 4.17700149 43 21-APR-08 08.23.00,000000000 AN

Bofhaymerallee 1866.59462  43.3916808 1.60831923 45 21-APR-08 08.25.00.000000000 &M

Friedhof 2005.86964  46.1350016 .86439835 55 21-APR-08 08.35.00.000000000 &M

[Fleinguain 2420.1878  55.6643195 4.33568054 60 21-APR-05 08.40.00,000000000 AN

Tosefiau 2639.33036  65.3045987 4.69540129 70 21-APR-08 08.50.00,000000000 AN

Flurvey 3169.75662  72.9044022 7.09559785 60 21-APR-08 03.00.00.000000000 &M

Folizeidirekcion 3d09.94508  75.4288081 1.57118385 60 21-AFR-08 03.00.00.000000000 &M m
morzgy 3425.05839  78.7763431 £.22365695 &5 21-APR-08 09.05.00.000000000 AN

24 rows selected ~
4] »

Figure 60 Spatio temporal question Il

Figure 60 shows the SQL statement to the above stated question. The time one has to go to
the station is calculated via the SDO_GEOM.SDO_DISTANCE function which returns the
distance in meters to a station. This distance is multiplied by 1.38 (5km/h= 1,38m/sec) to
calculate the seconds to go which are then converted into minutes. The minutes one has to
wait are calculated by subtracting the minutes to go from the number of minutes the bus
arrives relative to 07:40. To find only those stations where one arrives before a bus is
accomplished by comparing if the number of minutes the bus arrives is greater than the
minutes one has to go there. The limitation that one must not wait longer than ten minutes
at a station is accomplished by ensuring that the number of minutes a bus arrives minus the
number of minutes to go there is less than 10 minutes. As a last step the statement ensures

that the result only consists of bus stations where a bus stops after 07:40 because one
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cannot arrive at a bus station in the past. The result shows that there are 24 stations where
one arrives before a bus and must not wait longer than ten minutes. Considering the last
line of the result where one has to cover a distance of more than 3km and go for 78 minutes
in order to wait at least ten minutes the query should be extended to limit the linear
distance a station is away. Another lack of the query is that within the result a bus station is
included more than once showing several bus arrivals. Maybe only the next bus arrival
within ten minutes is of interest. This can be accomplished by including a minimum function.
The following figure shows the same example as before but the identified limitations are

corrected.
[rsorpusworksheet

ORACLE

b.name STATION, -- stations
sdo_geon. sdo_distance (a. shape,b.shape,.001) LINEAR DISTANCE, -- linear distance to station

sdo_geon. sdo_distance (a. shape,b. shape,.001)#1.35/60 NINUTES T0_GO, -- mwher of minutes to go (walking speed = Skw/h = 1,38w/sec)
wini(sdo_geon.sdo_distance(ny_time,3CHEDULE. time,.001)/60)-

(sdo_geon. sdo_distance (a. shape,b. shape,.001)*1.38/60)) WINUTES I _HAVE_TO_WAIT -- (mmber of winutes the bus arrives)-{mwher of minutes to go)= minutes T have to wait
from

||bus_station &, bus station B, bus _schedule SCHEDULE, origin, wy time

tere

A nane='Sinnhubstrabe’ and a.nawe!=b.nawe and b.nawe=5CHEDULE.bus station and

-- only those stations where I will arrive hefore the bus-»(wimites the bus arrives) »= (minutes to go)

sdo_geom.sdo_dist,ancetmy_tlme,SCHEDULE.tlme,.bDl] »= ado_geon.sdo_distance [a.shape,b.shape,.001)*1.38

and

-- only those where I have to walt at least L0 minutes-»iminutes the bus arrives) - (mimites to go) < 10

(sdo_geon. sdo_diatance (my_time, SCHEDULE. time,.001) /60) - {ado_geon. sdo_distance (a. shape,h. shape,.001)%1. 38/60)<10

and

-- only those after 07:40 -» DISTANCE (origin,BUS_ARRIVAL) » DISTANCE [origin, 07:40)=AFTER

ad0_geon. sdo_distance [SCHEDULE. time,origin,l)»sdo_geow.sdo_distance (my_time,origin,l)

and

-- only those within 1000w

sdo_geon. 3do_distance (a. shape,b.shape,. 001} < 1000

group by b.name, sdo_geom.sdo distance (a.shape,b.shape,.001), sdo_geow.sdo_distance(a.shape,b.shape,.001) %1, 38/60

order by LINEAR_DISTANCE MINUTES I HAVE TO_UAIT;

P E 3 %

i
i

=ad

STATION

LINEAR_DISTANCE MINUTES_TO_GO MINUTES_I_HAVE_TO_VAIT

Gorianatrabe 151. 644321 3. 46781938 4. 51218062
Aradenisches Gymnasium 180.679274 4,1556233 844376701
Mubdorferstrabe 347.650687 7.9959655 1.0040342
Horkvey 743.377428 17.0976805 7.90231916
R.-Knoller-Str. 922.791959 21.2242151 £.77578494
Kugelhot 950.134727 Z1.8530987 3.14690127

6 rows gelected.

Figure 61 Spatio temporal question Il

As a result there are 6 bus stations where one arrives before a bus and must not wait longer
than for ten minutes. The station with the greatest distance is 950 meters where one has to
go for 21 minutes. No station in the result is listed more than once as only the next arrival of

a bus within ten minutes is of interest.
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9. Summary

In the section of the background research this work identified the main contributions in the
field of integrating time into geodatabases. The main foundation for relational database
management systems is the relational model defined by Codd (Codd, 1970). This thesis
reminded of the importance of this early work as it contributes to all spatial and temporal
databases modelling paradigms. Afterwards this work described the main standards of the
International Standardisation Organisation and the Open Geospatial Consortium concerning
the integration of space into databases which resulted in geodatabases storing information
about features. Besides that the temporal domain and its previous works defining the basic
structure of time served as a foundation of how time is conceived within this thesis.
Concepts of temporal relations were evaluated in order to identify problems and their
solutions. For some of the identified solutions only minor adoptions were necessary to apply
them to the ideas of this work. Finally the background research introduced the 1ISO 19018
standard with its innovative chapter describing the geometry of time.

The idea of transforming time into geometry in order to integrate it into a geodatabase is
described in the main part. First formal descriptions of a discrete view of time based on
calendar time and a discrete view of time based on an interval scale were provided. To
transform time into geometry it was necessary to transform date specification into
something like coordinates. Hence formal descriptions of functions were provided which
transformed date specifications into numbers. A mapping between temporal primitives and
geometric primitives resulted in temporal geometric primitives which supported a basic
understanding of the geometry of time. The goal of the implementation was to evaluate the
feasibility of integrating time into a geodatabase. Database Functions inside a geodatabase
were developed in order to implement the functionality of the formal descriptions. Sample
SQL statements using geometry constructors for creating instants and periods were
provided. Based on a mapping between temporal and spatial operations this work applied
spatial operations in temporal context. Finally a bus station scenario provided use cases for
spatial, temporal and spatio temporal questions. This work showed how temporal questions
are transformed into spatial questions and therefore solved via spatial operations. Finally
interesting spatio-temporal questions were applied to the bus station scenario and

delivered insights into data considering space and time together.
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9.1 Conclusion

The main goal of this work was to transform time into geometry in order to integrate it into
geodatabases. This goal had been achieved on a formal basis and also by the prototypical
implementation within a geodatabase. Further it was of interest if spatial operations allow
meaningful operations in temporal context applied to time represented as geometry. This
work pointed out that spatial operations determining the relationship of geometries have an
appropriate meaning in temporal context. Each of the spatial operation available in a
geodatabase produced a meaningful temporal result. Therefore the implementation
confirms what an expected result was.

The bus station scenario served as a basis for complex spatio temporal questions. As it
includes space and time at an equivalent level it follows the idea of the ISO 19108 standard
of spatio temporal objects. In the introduction of this work spatio temporal question had
been formulated. What was achieved with the bus station scenario is that all temporal
problems are solved only using functionality of a spatial framework. It turns out that
regardless of the complexity of the question this work gets along without any other
functionality than spatial for solving temporal problems.

The major conclusion of this work is that transforming time into geometry is an appropriate
way to integrate time into geodatabases. Not only it is a practicable approach because the
extensive functionality of a spatial framework can be reused but also time represented as
geometry corresponds to our perception of time. It is a natural approach to consider an
instant of time as a point and a period of time as line geometry. It turned out that time
represented as geometry helps to understand temporal relationships of periods as we tend
to imagine that a period has a linear representation on a time line. Finally it must be
mentioned that the findings of earlier papers which had identified analogies between space

and time apply to the findings of this work in many ways.
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9.2 Future Research

Upon the provided concepts of modelling time as geometry further research is needed in
the field of integrity constraints. Snodgrass (Snodgrass, 2000) identified that when
integrating time into relations it is obvious that it should be considered as part of the
primary key. This also applies to referential integrity. As a result there are concepts needed
to include time which is represented as geometry into integrity constraints. In geodatabases
geometry is implemented as a user defined data type which cannot be part of a primary key
on a declarative level. Therefore the uniqueness of a primary key including geometry must
be implemented as database functionality such as row triggers or assertions. Snodgrass had
provided the basic concepts for that which may be adapted to work with geometry.

Another direction for future research are complex date specifications. It is an interesting
guestion how a date specification “Every Monday at 7 AM” can be represented as geometry.
A multipoint geometry for example may be an appropriate geometric representation of the
above mentioned complex date specification. A multiline geometry for example may be an
appropriate geometric representation of a date specification “At weekends from 1pm to
3pm”.

How to query the current state out of a temporal relation is another issue which is left open
by this work. Existing approaches are using the maximum date available in a system as the
end of a valid time period. This approach may be adapted to time represented as geometry
where the line geometry of a valid time period extends to the maximum date the system
provides. Therefore the maximum date must be defined which would be the third major
metadatum besides the origin and the granularity.

The topic of metadata needs further investigation too. It is an important question whether
spatial metadata of a period’s line geometry apply in temporal context. An appropriate start
point for metadata of time represented as geometry is the 1ISO 19108 standard (ISO, 2002)

as it defines temporal reference systems.
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