Web Processing Service For

Moving Objects Analysis

Tobias Fleischmann

U249
UNIGIS MSc 2006

Oberteuringen, 16. April 2008

UNIVERSITAT
SALZBURG

Foreword/Dedication/Thanks

Foreword

This Master Thesis is about spatio-temporal analysis. An interface shall be
developed allowing one to ask questions about moving objects. The ap-
proach is to carry over concepts from Moving Objects Databases and spa-
tio-temporal modelling to develop a service that processes geodata into
movement information in an Open Geospatial Consortium (OGC) compliant
way. The general goal is to support users who need information about
moving objects to answer queries or support decisions with a geopro-
cessing service in a web service environment.

Dedication
To Regina and Mirja.

Thanks

| would like to thank all who supported me in writing this Master Thesis.

Many thanks to Dr. Christian Kiehle, Dr. Markus Schneider and Prof. Dr.
Zdravko Galic for providing articles and assistance in literature research.

Special thanks goes to Prof. Dr. Strobl and the whole UNIGIS team for dis-
cussing my proposal of subject and preparing the Thesis.

| also thank in particular Dr. Martin Huber for mentoring, for discussing key
guestions and concepts. Thanks once more to Dr. Christian Kiehle for his
assistance in setting up the prototype and coping with the deegree frame-
work.

Page i

Declaration on Independent Work
and Plagiarism

With this, | declare that | have written this paper on my own, distinguished
citations, and used no other than the named sources and aids. It is submit-
ted for the degree MASTER OF SCIENCE in the UNIGIS MSc course at the
Z GIS at the University of Salzburg. No part of this research work has been
submitted in the past, or is being submitted, for a degree or examination
at any other University.

Page iii

Abstract

OpenGIS compliant geodata registry, portrayal and access services are
well established and integral part of SDIs. However, geodata manipulation
services, processing the increasing volume of available geodata into value-
added information, are not present. Current trends in consumer electron-
ics and developments in the military domain afford sensors generating a
huge volume of spatio-temporal data that needs to be further analysed.
Here, the author presents a geoprocessing service to process movement
data.

In a Model Driven Architecture (MDA) software engineering approach,
starting with Use Case Analysis, concepts from spatio-temporal modelling
and Moving Objects Databases are applied. A platform independent model
describes a moving object data type with respective analysis operations.
Finally, a service is designed to web-enable the processing functionality.

The recently approved OGC Web Processing Service Implementation Spe-
cification allows the definition of custom processes. A custom process is
executing the actual data processing while the standardized WPS interface
specifies how input and output data are described and how the service re-
quest is handled. Because process input data require GML encoding, an
Application Schema for moving objects, based on the Dynamic Feature
Core Schema, is developed.

A web application, utilizing the deegree SW framework, demonstrates the
feasibility of the designed concept. A crosses process, a spatio-temporal
predicate testing whether the time-varying position of a moving object first
enters and then leaves a specified geometry, is implemented and de-
ployed on an Apache Tomcat Servlet Container.

This Master Thesis connects concepts that are innately discrete: analysis
of moving objects and OpenGIS Web Services (OWS). By identifying mov-
ing objects as spatio-temporal entities with a time-varying position and
moving objects analysis as a geoprocessing task, the OGC standards
framework contains the proper measures to implement a standardized,
distributed processing service for spatio-temporal data: the OWS Imple-
mentation Specification for developing a WPS interface and the Geography
Markup Language (GML) with the Dynamic Feature Schema to create an
Application Schema defining a moving object data type.

Possible steps to continue this work could investigate Web Service Orches-
tration (WSO) to realize complex spatio-temporal processing workflows,
semantic interoperability or consider performance aspects.

Page v

Kurzfassung

OpenGlIS konforme Katalog-, Darstellungs- und Zugriffsdienste fur verteilte
Geodaten sind weit verbreitet und integraler Bestandteil von Geodatenin-
frastrukturen (GDIs). Daten verarbeitende Dienste zur Prozessierung in
grolSer Menge vorliegender Geodaten in mehrwertschaffende Information-
en sind jedoch kaum vorhanden. Aktuelle Entwicklungen in der Unterhal-
tungselektronik und im militarischen Sektor bringen Sensoren hervor, die
massig raumlich-temporale Daten erzeugen und daher einer nachgelager-
ten Verarbeitung bedurfen. Der Autor prasentiert in dieser Arbeit einen
Geoprozessierungsdienst zur Analyse beweglicher Objekte.

In einem auf den Prinzipien von Model Driven Architecture (MDA) basier-
enden Softwareentwicklungsansatz, beginnend mit einer Analyse von An-
wendungsfallen, werden Konzepte aus den Disziplinen der raumlich-tem-
poralen Modellierung und Moving Objects Databases zur Ableitung der SW
Architektur angewandt. Ein plattformunabhangiges Modell beschreibt ein-
en Datentyp fur bewegliche Objekte mit entsprechenden Analyseopera-
tionen. Im nachfolgenden Schritt wird darauf aufbauend ein Dienst en-
twickelt, der diese Verarbeitungsfunktionalitat mittels Internettechnologie
zugreifbar macht.

Der erst kurzlich als Implementierungsspezifikation verabschiedet OGC
Web Processing Service Standard erlaubt die Definition anwendungsspezi-
fischer Prozesse. Solch ein individueller Prozess fuhrt die eigentlich Daten-
verarbeitung durch, wahrend die WPS Schnittstelle festlegt, wie Ein- und
Ausgabedaten zu sind und Aufrufe des Dienstes abzuwickeln sind. Um
Eingabedaten, wie es der Standard vorgibt, GML codiert als Parameter
ubergeben zu kénnen, wird ein entsprechendes Anwendungsschema fur
bewegliche Objekte, basierend auf dem sogenannten Dynamic Feature
Core Schema, erstellt.

Eine Webapplikation, auf Basis des deegree SW Frameworks entwickelt,
weist die Umsetzbarkeit des entwickelten Konzeptes nach. Ein Crosses-
Prozess, welcher den zeitlichen Verlauf einer raumlich-temporalen Be-
ziehung zwischen einem beweglichen Objekt und einem Interessensgebiet
untersucht, wird prototypisch implementiert und auf einem Apache Tom-
cat Servlet Container deployt.

Diese Arbeit verknupft Konzepte, welche von Haus aus keine direkte Bez-
iehung zueinander haben: Analyse von beweglichen Objekten und Open-
GIS Web Services (OWS). Betrachtet man bewegliche Objekte als raumlich-
temporale Instanzen mit einer sich im Laufe der Zeit andernden Position
und deren Analyse als eine Geoprozessierungsaufgabe, so bietet das OGC
Framework mit seinen Standards die geeigneten Mittel, einen standardis-
ierten, verteilten Dienst zur Verarbeitung raumlich-temporaler Daten zu
implementieren: eine OWS Implementation Specification zur Entwicklung

Page vii

Kurzfassung

einer WPS Schnittstelle und die Geography Markup Language (GML) mit
dem Dynamic Feature Schema zur Erstellung eines Applikationsschemas
zur Definition eines Datentyps fur bewegliche Objekte.

Zur Fortsetzung dieser Arbeit bieten sich einige Themengebiete an: Ana-
lyse von Web Service Orchestrierung (WSO) zum Aufbau komplexer, raum-
lich-temporaler Verarbeitungsketten, Untersuchung semantischer Interop-
erabilitat oder die Betrachtung von Performance-Aspekten zur Effizienz-
und Effektivitatssteigerung von Web Service Infrastrukturen.

Page viii

Table of Contents

1.1
1.2

1.3
1.3.1
1.3.2
1.3.3
1.3.4
1.4
1.5

1.6
1.6.1
1.6.2

1.7

3.1

311
31.2
3.1.3
3.1.4
3.1.5

3.2
3.3

Foreword/Dedication/Thanks...............cccooiiiiiiiea i
Declaration on Independent Work and Plagiarism............. ifi
ADBStract. ... Vv
KUFZFasSSUNQG......c.iiiiii e vii
List of Hllustrations................cco i Xiii
List of Tables.........ccoo i XV
List of Abbreviations Used..................cccoiiiiiiii, xvii
INtrodUCIoN.........o 1l
11 Lo 0 AV = 1 o] o TS 1
ODJECTEIVE. ...ttt 1
APPIOACH. ... 2
Ll 2L=T0] o 2PN 2
JL =1 Lo o K= 4
oo KT 4
TeSt Area / Test Data SetlsS. ..ot 5
EXpECted RESUILS.......ceeeeeeeese e 5
Topics NOt EXPIOred..........coveeiiiieeieeeee ettt 5
Target AUAIENCE........ceueeeieie ettt aaes 6
Professional LANQUAQGE.c..o et 6
Familiarity With SUDJECT............oeeeei et a e 6
TRESIS SErUCTUIC. ...ttt eeaaas 7
Literature Survey............ooi 9
HYPOthESIS. ... 13
Theoretical APPIrOACHR..............cvuiiiiiiiiiiiises s ea e 13
Spatio-TemMPOral CONCEPES. ...t 13
Moving ObjeCts DatabasEs.c..vuuiiiiiisi ittt eaa e 14
Spatio-Temporal Conceptual Data Modelling............ccccoovveoiiiiiiiniiiniiinineinnenn, 21
OpenGlIS Standards and SpPecCifiCations.............couuviviiiiiiiiiiiiieeieeeer e 22
Principles Of Object Oriented Software ENngin€ering...............ccccouuuvieviiniinnannns 27
1Y =30 Lo Yo £ 30
100 32

Page ix

4.1
4.2
4.3

4.4
4.4.1
4.4.2

4.5

4.5.1
4.5.2
4.5.3

4.6
4.6.1
4.6.2
4.6.3
4.6.4
4.6.4.1
4.6.4.2

7.1
7.2

7.3
7.3.1
7.3.2

A.l
A2
A3
A.4
A5
A.6
A.7

Page x

Table of Contents

Project Description...............cooiiiiii 33
Domain Model (CIM)..........cuuiiuiiieiieiieeis et aeen 33
Non-Functional ReQUIr€mMeENtS..........oouuviiiiiiiiiiiiiiiiiiiiiiiaiiaiaens 35
USe Case MOAEl..........cuuiueieiiiiiiiisiies et 36
ANAalYSiS MOAEL.........ccoueeeeeee e 37
UsSE Case REAIIZAtION.cee ittt eaa e 37
View of Participating ClaSSES.........ccuureuuiiriieieeiiseie e enanees 38
DeESIGN MOAE!.........cceeeeieee ettt 40
ADbstract Class MOAE! (PIM).........couu e 40
GML Data Mod@l (PSM).........oeee et 43
OWS MOttt ettt e s e st e e e e e s neeaees 45
Prototypical Web Service Implementation....................ccccceevuan.. 47
Architectural APPIrOACH.cuiii it 47
Java FrameWork DEEQGIEE.couui e 49
Implementation, Configuration and Deployment................ccoovvviiiiiiineiininennnn, 51
TESEt Ar€a ANA Dat@........cccuieeiiei ettt 56
CASE SEUAY ... 56
Outline Of Spatio-Temporal Problem.............coeoiieiiiiiii i 57
RESUIES. ... 59
Analysis of Results................ccocoiii 61
Summary, Discussion, Outlook...................c..cociiiiiinn, 63
SUMMIAIY ettt e e e e 63
DiSCUSSION. sttt e e a e aaaes 63
OULIOOK. ..ttt ettt aeeae 64
Generalisation of Proposed SOIULION............ccoviieiiiiii i 64
Proposed Steps For Continuation Of WOrK.............oovuiiiiiiriiiiineiisiiieincineneenn 65
Bibliography...........coo 67
ANNEX A .o e 69
Domain MOAEL...........ceneeeeie ettt aaan 69
Requirements MOdEl...........c.c.couuiieiiiiiiiiiieiie e 71
USE CaSE MOAEL........ccueeeeeeeee ettt a e 73
ANAIYSIS MOAEL. ...ttt a e 87
ADStract Class MOAEl...........c.ovueiuiieiiiiecc e 88
GML Data MOdEl...........coueiiiiieiieic e 113
(@Y 1 Lo o L= P 118

A.8
A.9
A.10

B.1

C.1
C.2
C.3
C.4
C.5

D.1

Table of Contents

JAVA MOAEL......cc.oeeee e 142
ComponenNt MOAEl..........ccc.vuuieiiiiiiiies s 156
Deployment Model............c.couuieiiiiiiiiisiisisais et 158
ANNEeX B 159
Moving Objects GML Application Schema....................ccevvennn. 159
ANNEX G 163
Deployment DeSCIiPtOr...........vuiuiiiiiiiiiiiii ittt saiais 163
Capabilities DOCUMENT...........cceuiieieiiiieee e 166
Process Description DOCUMENT..........c.c.oveuiiiiiiiiiiiiiieeiiiiieeaaa 169
Execute Request DOCUMENT..........cc.ovimiiiiiiiiieee e 171
TESE DALA (GML) ...ttt eeas 175
ANNEX Do 178
ProCESS ClaSS.....ueneeeieee ettt a e 178

Page xi

List of |

Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 3.7:
Figure 3.8:
Figure 3.9:
Figure 3.10
Figure 3.11
Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 4.7:
Figure 4.8:
Figure 4.9:

Figure 4.10:
Figure 4.11:
Figure 4.12:
Figure 4.13:
Figure 4.14:
Figure 4.15:
Figure 4.16:
Figure 4.17:
Figure 4.18:
Figure 4.19:
Figure 4.20:

llustrations

TYPE SY ST OM . i 16
Predicates. ... 17
Set OPeratioNS.o 17
Aggregate OpPerationsS.........cooe i 17
NUMEriC OPerationsS.......ccuiiuiiiiiee e 18
Distance And Direction Operation...........ccoovoiviiiiiiiiiniiineneeen, 18
Projection Operations........coviiiiiiiiiiii e 19
Interaction With Values In Domain And Range...............cc..c..... 19
Derivative Operations........ccooiiiiiiiii 19

: Basic Spatio-Temporal Predicates........ccccovviiiiiiiiiiiiciinen, 21

: Methods applied........oi 31
DOMain MOAEL..... o 34
Use Case Model.......ooiiiiiii 37
Use Case Realization........cooiiiiiiiii e 38
View of Participating Classes.........cccvviviiiiiiiiiiii e 39
Moving Objects Analysis Subsystem & Interface..................... 40
Interface Operations & Implementation..........ccooeviiiiiinnn. 42
Dynamic Feature GML Core Schema..........ccoeviviiiiiiieiiiiiieeeen, 43
Moving Objects Application Schema.........ccocoviiiiiiiiiiiiiniin 45
Web Processing ServiCe. ... 46
Describe Process Request & Response.......ccccovvvvvinviniennnnen. 47
Multi-Tier Architecture.........cooiiiii 48
CrOSSES PrOCESS. . ittt e 49
Deegree Framework For Building Web Applications.............. 50
Deegree WPS Configuration........c.coveiviiiiiiiiiii e 52
Runtime ENVIironment........ooiiiiiin e 53
Web Application Component VieW........coocovviviiiiiiiiiiiiiinieenen, 53
Web Application Business LOQIC........ocuvvvvviiniiiniiiiiieieeieeien 54
Generic OGC Web Service Client.........coooviiiiiiiiiiiieee 55
Web Application Deployment View.........coociviiiiiiiiiiniinennnn 56
CASE STUAY ...t 57

Page xiii

List of Tables

DomMain MOdel.... ... 35
View of Participating ClasSes. ..o 40

Page xv

List of Abbreviations Used

WWW: WOrld Wide WeED.......oiiii e 1
OGC: Open Geospatial ConSOrtiUM.......c.iiiiiiiiii e 1
OWS: OpenGIS WeED SeIVICE.....iiuiiiii e 1
SDI: Spatial Data InfrastruCture....... .o 1
LBS: LOCation BasSed SerVICES.....uiuiiiiiiiei e 1
WMS: WED Map SeIVICE. .. ittt e e 1
WCTS: Web Coordinate Transformation Service........coccovoiiiiiiiiiiiicininenns 1
AOL: Area Of INterest. .. 2
CASE: Computer Aided Software Engineering........ccocoveiviiiiiiiiiciiiiceens 4
IDE: Integrated Development Environment..........ccocoiiiiiiiiiiiinicniicneee, 4
SQL: Structured QUEry LanQUage.cc.iuiiriiie i 9
MADS: Modeling of Application Data with Spatio-temporal Features........... 9
GIS: Geographic Information System.......ccoveiiiiiii 22
ORM: OpenGIS Reference Model.........cooviiiiiiiiii 23
XML: Extensible Markup Language........cooviiiiiiiiiiiii e 24
URL: Uniform Resource LOCator......coiuiiiiiiiiiiin e e 24
KVP: Keyword Value Pair........ooo it 25
MIME: Multipurpose Internet Mail EXtensions........ccocoviiiiiiiiiiiiniie e, 25
WCS: Web COVErage SeIVICE. ...ttt eae e 26
WEFS: Web FEAtUre SEIVICEe... ... 26
WSO: Web Service Orchestration.......coeviviiiii e 26
MDA: Model Driven ArchiteCture. 27
OOA: Object Oriented ANalySiS.....cciiiii e 28
OOD: Object Oriented DeSigN......ciuiiuiiiiiiiie e 28
OMG: Object Management GrOUP.......viuviiiiiiiiiiineiee e e e eneees 29
W3C: World Wide Web CoNSOrtiUM......oouiiiiiiiiiiie e 30
GML: Geography Markup Language.......cccoveiiiiiiiiiiiii e 30
XSD: XML Schema Definition........ccoiiiiii e 30
CIM: Computation Independent Model...........cooiiiiiiiiii e 30
PIM: Platform Independent Model...........c.ooiiiiiiiiiiiii e 31
PSM: Platform Specific Model.........ccooiiiiiiiiii 31

Page xvii

List of Abbreviations Used

MOD: Moving Objects Databases. ..o, 31
OO0: Object Orientation. e 32
URI: Uniform Resource ldentifier.......ccoviiiiiiii e 52
GPX: GPS EXchange FOrmat.......covviiiiiii e 57

Page xuviii

1 Introduction

1.1 Motivation

In the geoinformation science, interoperability is the crucial factor. As a
result of the big success of the WWW, distributed processing and service
oriented architectures are the determining trends in the information tech-
nology. This development has conceived the geoinformation technology as
well and monolithic systems are going to be replaced by collaborating ser-
vices. The OGC is an organization which develops standards specifying
OpenGIS Web Services (OWS). The importance of the OGC service frame-
work increases by the ongoing activities for building SDIs on various ad-
ministrative levels. Geoprocessing services extend current available SDI
services, focusing on the provision of geospatial data, by providing a meth-
od to process geodata into value-added information.

Analysis of moving targets is playing a major role in the military surveil-
lance and reconnaissance domain: sensors are tracking man-made objects
like vehicles and low flying aerial platforms. Non military sensors like the
upcoming European satellite system GALILEO will foster current trends in
consumer electronics to equip mobile devices with GPS receivers. RFID
tags are used for indoor tracking of products. All theses trends contribute
that a huge volume of movement data, also called trajectories, will be-
come available that need to be managed and analysed. This will lead to
the development of many kinds of new applications, such as LBS.

This Thesis examines if moving objects analysis can be performed by
means of OGC concepts and therefore encounters objectives of current re-
search.

1.2 Objective

Until recently, the range of OGC standards covered only portrayal (e.qg.

WMS) and information providing (e.g. WFS, WCS) services and lacked of
true geoprocessing services which process raw geodata into valuable in-
formation. Simple processing services executing arithmetic operations like
WCTS were specified very well but don't represent true geoprocessing in
the aforementioned sense. The OGC Web Processing Service (WPS) over-
comes the aforementioned restrictions and offers access to geospatial pro-
cessing functionality.

The major goal of this work is to apply the concepts of spatio-temporal
modelling and Moving Objects Databases to the development of a geopro-
cessing service. By associating moving objects analysis functionality with
the OGC standard framework, an OpenGIS compliant WPS shall be de-

Page 1

Chapter 1 Introduction

veloped. The resulting service shall describe an interoperable interface
providing processes to conduct spatial and temporal analysis of moving
objects, e.g. query moving objects crossing a specified Area Of Interest (
AOl), which goes beyond the first approaches to define processes by im-
plementing standard GIS functions like buffering as a WPS.

A prototype shall prove the interface concept by implementing a selected
process.

1.3 Approach

1.3.1 Theory

Spatio-temporal concepts that accommodate well known spatial concepts
to include time fail. Because of the differences between spatial and tem-
poral dimensions, simple dimensioning-up strategies work poorly. Alike,
the enhancement of temporal concepts to include spatial data types works
not for moving objects. Spatio-temporal data live in a 3D space which is
the cross-product of the spatial and the time domain.

To describe continuous movement, Moving Object Databases, as described
in (Guting & Schneider, 2005), offer abstract data types with suitable oper-
ations. Moving objects are geometries changing over time, moving points,
in contrast to moving regions, are entities for which only the time-depend-
ent position in space is relevant and not the extent. The spatio-temporal
data perspective in a database is looking at histories of movement con-
cerning the valid time. Querying histories of movement or evolutions of
spatial objects over time requires a spatio-temporal model providing re-
spective data types and operations as well as spatio-temporal predicates.

Main spatio-temporal data types are moving point and moving region. Ad-
ditionally to this main types, related data types with corresponding time-
dependent (also called temporal or moving) types are needed. Operations
can be classified into operations on temporal types, operations on non-
temporal types and operations on set of objects. An approach, called tem-
poral lifting, first designs operations on non temporal types and then ex-
tends temporal variants. Topological predicates alter when temporal
changes of spatial objects occur. The subject of spatio-temporal predicates
therefore is to examine topological predicates over time. The application
of temporal lifting to topological predicates requires additionally temporal
aggregation to avoid undefined spatio-temporal predicates. An undefined
result would violate the essence of predicates that have to be either true
or false. Temporal aggregation is realized by defining an aggregate operat-
or. An universal quantifier aggregates only over a restricted time interval
and can therefore avoid that a moving object is undefined when examining
a spatio-temporal relationship. Developments represent the change of spa-
tial situations over time. Observations on developments reveal however
that predicate constrictions have to be defined and predicates need to be
distinguished between instant predicates and period predicates. A concise

Page 2

1.3 Approach

syntax for developments denotes temporal composition of spatial and spa-
tio-temporal predicates by a sequence of predicates linked by an infix op-
erator. Beside temporal composition, there are other logical connectives to
combine predicates and obtain new complex or compound predicates.

The MADS approach describes a conceptual model, free from implementa-
tion-based limitations, addressing data modelling and manipulation for
space and time dimension. Objects that are subjects to change over time
are called time-varying phenomena. According to the MADS definition, a
spatio-temporal object type has both, a spatial and a temporal extent, sep-
arately, or has a time-varying spatial extent. The life cycle of an object
describes the history of his evolution. MADS supports basic spatial and
temporal data types and spatio-temporal data types for moving objects
along with associated operations and predicates. MADS extends the
concept of time-varying or moving data types and operations, introduced
in (Guting & Schneider, 2005), to the space dimension by supporting addi-
tional space-varying data types and associated operations.

The Open Geospatial Consortium is leading the development of standards
and specification for geospatial services. The technical documents of the
OGC detail interfaces of software components to enable GIS interoperabil-
ity.

The conceptual foundation for the Implementation Specifications, which
describe implementation details, is provided by the Abstract Specifica-
tions. Herein, the feature concept, which is a central term in the “OpenGIS
world”, is introduced. Furthermore, the possibility for an information com-
munity to define own Application Schemas based on the provided concep-
tual schemas is explained. GML, an XML grammar written in XML Schema,
is the language for describing and encoding geospatial information. The
paper also provides key definitions for the service framework, that is a ser-
vice, an interface and an operation is defined. The interfaces of OGC Web
Services have explicit bindings for HTTP. The OGC Web Service Common
Specification specifies many aspects that are common to all OWS interface
Implementation Specifications, most notably the mandatory GetCapabilit-
ies operation.

The WPS Implementation Specification specifies the interface to a Web
Processing Service which facilitates the publishing of geospatial processes
and the discovery of and binding to those processes by clients. A WPS is
able to offer any sort of GIS functionality. The WPS interface standardizes
the way, how processes and their input and output data are described,
how a client can request a process execution and how the output is
handled. The WPS interface therefore offers three mandatory operations:
GetCapabilities, DescribeProcess and Execute.

The GML Core Schemas include the Dynamic Feature Schema, which
defines a number of types and relationships to represent the time-varying
properties of geographic features.

The MDA approach follows three main goals, namely portability, interoper-
ability and re-usability. To accomplish these goals, models were built and

Page 3

Chapter 1 Introduction

regarded from different views. A CIM contains no details about a systems
structure, a PIM no details about concrete platforms and the PSM finally
extends the PIM about such concrete platform details. The principles of ob-
ject orientation, basically abstraction, encapsulation, modularity and hier-
archy, foster the MDA approach. OOA and OOD shall transform system re-
quirements into a system design, evolve a robust architecture for the sys-
tem and adapt the design to match the implementation environment. The
UML is a de-facto standard in OOD, just a language, process independent
and optimally used in a Use Case driven development process. The OO
programming language Java finally is used to implement the prototype.

1.3.2 Methods

The MDA approach represents the engineering guideline for software de-
velopment. To reduce SW system's complexity, a UML model is implemen-
ted to abstract reality. A set of diagrams provides different perspective on
the model. First of all, the business domain of moving object analysis is de-
scribed in a CIM. The goal of the analysis phase is to understand the prob-
lem and to develop a first analysis model, independent of implementation
and technology concerns. A Use Case driven approach is used to translate
functional requirements into a system design. In the design phase, the
model is refined by applying concepts from spatio-temporal modelling:
Moving Objects Databases and the MADS approach describe data types,
operations and predicates for time-varying phenomena in general and
moving objects in particular. Finally, the developed geoprocessing func-
tionality is adapted to the OWS framework to be offered as an OpenGIS
Web Processing Service. The WPS interface provides the three mandatory
operations, described in the WPS Implementation Specification. A GML Ap-
plication Schema is developed to describe the moving objects data struc-
ture in a process execution request. The whole development process is
planned and controlled by respective project management methods.

1.3.3 Tools
e Citavi: bibliography
e FreeMind, EverNote: brainstorming
e OpenOffice Writer: text processing
e Microsoft Visio: graphical illustrations

e Enterprise Architect: software engineering by means of UML model-
ling (CASE tool)

e XML Spy: XML encoding

e Eclipse: prototype implementation (Java IDE)
e Microsoft Project: project management

e Garmin MapSource: test data generation

Page 4

1.3 Approach

1.3.4 Test Area/ Test Data Sets

As test area, the Lake Constance region in the south of Germany was
chosen.

The following test data sets, encoded as GML documents, are required:

e a track, describing a moving object as GML Application Schema,
which has to be developed in this work

e the boundary of the Lake Constance as GML polygon geometry

For test data generation, a track was manually created using a GPS plan-
ning tool. Such a track, consisting of a list of track points, can be stored in
the GPX format. The single track point coordinates, supplemented by a
time stamp, are finally carried over in the GML document.

The same test data generation approach, as described for the track, was
utilized to roughly vectorize the shape of the Lake Constance and to get
the respective boundary coordinates.

1.4 Expected Results

In short, the result of this thesis shall be an OGC compliant interface de-
scription for a Web Processing Service which facilitates geospatial pro-
cesses for moving objects analysis along with a prototypical implementa-
tion of a sample process. The method of resolution shall answer the follow-
ing questions:

Is it possible to apply methods from project management and software en-
gineering to elaborate a geospatial processing problem?

Is it possible to take over concepts from conceptual spatio-temporal mod-
elling and Moving Objects Databases in the software design?

Is it possible to define processes for moving objects analysis based on the
OGC WPS Implementation Specification?

Is it possible to use the GML Dynamic Feature Core Schema to model a
moving object Application Schema?

Is it possible to utilize the deegree SW framework to implement a proto-
typical WPS to proof the defined concept?

1.5 Topics Not Explored

There are some topics, touching web-enabled geoprocessing in the broad-
er sense, but going beyond the scope of this work.

Data acquisition is a crucial prerequisite in order to collect the data pro-
cessed into valuable information afterwards. The Sensor Web, a sensor
network consisting of spatially distributed sensor platforms, is not further
considered in this thesis.

A “Moving Objects Algebra”, offering a complete set of spatio-temporal

Page 5

Chapter 1 Introduction

types and operations for querying and manipulating time-varying data, is
not part of this work. Instead, the focus is on defining a moving point type,
disregarding types with a spatial extent called moving regions. Actual pro-
cessing algorithms behind such operations are not picked out as a central
theme.

The second major perspective on moving objects besides the spatio-tem-
poral data perspective, the location management perspective, dealing with
frequently changing location information, real-time position updates and
data processing, is not explored in the following chapters.

Usage of Web Service Orchestration to enhance WPS in order to define
complex processing workflows or the WSO Framework are not considered
in this work. This could be interesting for service chaining, e.g. WFS integ-
ration for data acquisition.

Regarding the prototype, a sophisticated client application with a map
front end embedded in a Graphical User Interface, offering interactive re-
guest definition and map based result visualisation, is not implemented.

Performance evaluation and improvement for geoprocessing services is a
crucial fact for effective and efficient Web Service infrastructures but bey-
ond the scope of this work. To ensure a usable and scalable service infra-
structure, developers have to tackle standard Internet technology intrinsic
bottlenecks and restrictions caused by HTTP and Web Services.

1.6 Target Audience

This paper primarily addresses to researchers, analysts and developers fo-
cusing on geoprocessing, moving objects analysis or OpenGIS Web Ser-
vices.

1.6.1 Professional Language

This Master Thesis contains concepts from both, the mainstream Informa-
tion Technology and the Geographic Information Science.

A professional perspective on spatio-temporal concepts in general and
moving objects in particular, a brief overview about the OGC's mission and
OpenGlS standards and a short introduction of object oriented SW engin-
eering principles is given in the Theoretical Approach.

The Project Description includes a “running example”, introducing the
computational perspective as brief and abstract as possible. Realization
details concerning the UML model or Web Processing Service implementa-
tion are put into the Annexes.

1.6.2 Familiarity with Subject

This Thesis should be accessible to anyone with a working knowledge of
Internet technology and GIS.

A deeper knowledge on spatio-temporal concepts and moving objects ana-
lysis is helpful but not required. Further prerequisites are the familiarity

Page 6

1.6 Target Audience

with geodata and geoservices interoperability and the standardization of
geo web services as defined by the Open Geospatial Consortium.

A background on web application development using the deegree frame-
work is useful but not needed.

Brief introductions to the major concepts and methods are provided in
chapter 3.

1.7 Thesis Structure

The main part of this Thesis starts with an Introduction, summarizing the
author's intention for this work. The actual doing is described in the
chapters 3 and and 4 to 6, respectively. The former is describing the theor-
etical approach, the latter the actual project. A summary, discussion and
outlook conclude the paper in chapter 7.

In chapter 3.1.2, Figures from (Guting & Schneider, 2005) are used to illus-
trate moving objects concepts. Graphics are used to depict the deegree
WPS configuration and the applied methods. Throughout chapter 4, UML
diagrams are included to visualize the model from different perspectives.
Screenshots are applied to illustrate screen contents.

Page 7

2 Literature Survey

There are two subject areas which are relevant for this Thesis: the first one
deals with concepts for spatio-temporal data in general and modelling,
design and querying of moving objects in particular. The second one ad-
dresses the development of geoprocessing services providing GIS opera-
tions as web services, embedded in the OGC service framework.

The challenge of exploring the various arising geographical databases
opens up the field of geographic knowledge discovery which put forth
techniques for spatial data mining to generate new knowledge (Miler, Han,
&Miller, 2001).

In (Roddick & Lees, 2001), a contribution in (Miler, Han, &Miller, 2001), five
main types of rules to inspect spatio-temporal datasets for trends and co-
incidental behaviour are identified. An approach for modelling spatio-tem-
poral data, the dimensioning-up of the spatial dimension to include time,
disregards mismatches in the spatial and temporal dimensions concerning
properties like linearity, directionality, granularity and scale. Because
these properties deal only with limited aspects of time, process aspects of
time are more important in data mining. Process time is, according to the
author, essentially spatial in character and therefore, in contrast to con-
cepts considering time as uni-directional and linear, able to capture tem-
poral change. The process of interest in the context of this thesis is the
movement of objects:

(Guting & Schneider, 2005) present concepts for spatio-temporal data-
bases focusing on the representation of moving entities in databases and
asking queries about such movements. To support moving objects in data-
bases, standard database technology needs to be extended: the data
model has to provide the respective data structures and SQL-like query
language extensions for analysing them. The authors' present an abstract
model for querying histories of movement or evolutions of spatial objects
over time. They derive an implementable, discrete model and describe the
implementation for database systems. Additionally to the history perspect-
ive on moving objects, this book looks also at continuously information
which is related to the current position and near future movements.

(Parent et al., 2006) emphasize the crucial need of conceptual design
methods for developing spatio-temporal databases and applications, which
is currently not very well included in geographical information systems and
moving objects databases. The authors' approach for spatio-temporal data
modelling and manipulation, known as MADS, is introduced beside altern-
ative proposals. MADS provides constructs for modelling data structures,
spatial features, temporal features and multi representation features.

In (Kiehle et al., 2007) and (Kiehle et al., 2006a), the additional benefit of

Page 9

Chapter 2 Literature Survey

geoprocessing services in comparison to currently available distributed
spatial web services is emphasized: "Today SDIs main focus lies on the
provision of geospatial data in the form of distributed spatial web services,
the retrieval through catalogues, and visualization in the form of Web Map
Services (WMS)."(Kiehle et al., 2007, p. 819) Taking SDIs one step further
means "[...] providing a method to process geodata in an Open Geospatial
Consortium (OGC) compliant way into information." (Kiehle et al., 2007, p.
819) The authors' introduce the OGC WPS draft specification, which is
meanwhile an official OGC standard, and present two case studies utilizing
WPS. Additionally the authors' examine the application of service chaining
to orchestrate single services into complex processing units for WPS in
particular and OWS in general.

The paper from (Heier & Kiehle, 2006) details an applied case study in-
volving property information provided by a spatial buffer web service
which is compliant to the recently defined Web Processing Service Spe-
cification defined by OGC and implemented based on the Open Source
Spatial Data Infrastructure framework deegree.

To generate information from the huge amount of distributed available
geodata, the various sources of distributed geodata and non-spatial data
have to be integrated first. In the past, monolithic GIS were used and the
process of information generation was done locally on these large-scale
systems. To overcome the aforementioned shortfall, the concept of SDIs is
employed based on geo web services according to standards published by
the OGC. Applications incorporating the systems business logic can be
built on top of web services. Users in turn access the business logic using
clients. From an architectural point of view, a SDI can therefore be con-
sidered as a multi-tier system consisting of a data tier, a business logic tier
and a presentation tier. The generation of information, also called geopro-
cessing, is a task of the business logic component that utilize a Web Pro-
cessing Service (WPS) for this job (Kiehle, 2006).

The design and implementation of a geoprocessing service for spatial ag-
gregation based on the WPS specification are presented in (Stollberg et al.,
2007). GML was chosen as format for spatial input and output data. The
prototype was realized as an extension of existing Open Source Software:
for the WPS implementation, the Java based 52° North WPS framework
was used.

In (Kiehle & Heier, 2005), the need for a standardized web-based geodata
processing service (WPS) against the background of valuable service
chains in SDIs is postulated. The generation of added value from geodata
through data improvement over the internet within the scope of a SDI is
not possible without high-order processing operations. In this paper, exper-
iences made during an Interoperability Experiment (IE) for the definition of
a WPS were presented.

The technical implementation of a geoprocessing component is described
in (Kiehle & Heier, 2004). The business logic tier consists of a webserver
and a Java servlet container, the geoprocessing service itself is realized in

Page 10

2 Literature Survey

Java. In contrast to the business logic component, described in (Kiehle,
2006), no external WPS is called for information generation. The geopro-
cessing service is implemented as an extension of the deegree WFS and
uses the Java Topology Suite (JTS) for geodata processing. The approach of
calling an external WPS in contrast provides several advantages:

e a service "is easily transferable to any computing platform, thus it is
independent of the platform and implementation language."(Kiehle,
2006, p. 1750)

e the "output of service metadata as standardized XML [...] makes the
service usable in highly complex service chains, in order to generate
information out of data." (Kiehle, 2006, p. 1750)

Therefore, this approach of data processing without using a WPS is not fur-
ther considered in this Thesis. The same applies to the Web Spatial Analys-
is Service (WSAS), described in (Straub et al., 2004). Meanwhile, an OGC
standardized web service for geoprocessing, namely the WPS, is available
which supersedes the WSAS. A service for web based intersection of dis-
tributed geodata can be realized by defining respective processes for a
WPS.

Improvement of effectiveness and efficiency of web services for geopro-
cessing by considering performance issues as described in (Kiehle et al.,
2006b) are not considered in detail in this Thesis. This is a possible topic
for continuation of this work.

Page 11

3 Hypothesis

3.1 Theoretical Approach

3.1.1 Spatio-Temporal Concepts

Spatio-temporal concepts have to deal with space and time. Approaches
accommodating well known spatial concepts to include time fail, "[...] dif-
ferences between the spatial and temporal dimensions cannot be over-
stated, even when examining apparently static phenomena"(Roddick &
Lees, 2001, p. 4): time is considered unidirectional and linear, space bi-dir-
ectional and non-linear. When both continuous phenomena are encoded
with discrete numbers, different granularity is selected, so "[...] simple di-
mensioning-up strategies work poorly"(Roddick & Lees, 2001, p. 4).

A current approach for spatio-temporal data mining and knowledge discov-
ery is the application of spatio-temporal rules on respective data. (Roddick
& Lees, 2001) identified five main rule types:

e Spatio- Temporal Associations: The occurrence of a characteristic X
is accompanied by the occurrence of a characteristic Y

e Spatio-Temporal Generalisation: Using concept hierarchies to ag-
gregate data. Spatial-data-dominant generalisation (first ascending
spatial hierarchies and then generalising attributes data by region)
and non spatial-data-dominant generalisation (first ascending the a-
spatial attribute hierarchies) can be distinguished.

e Spatio-Temporal Clustering: Characteristic features of objects in a
spatio-temporal region or the spatio-temporal characteristics of a set
of objects are sought

e Evolution Rules: Describes the manner in which spatial entities
change over time, requires predicates! because of the big number of
possible rules.

A list of possible spatio-temporal predicates, also presented in (Roddick &
Lees, 2001):

e follows: One cluster of objects traces the same (or similar) spatial
route as another cluster at a later time.

e coincides: One cluster of objects traces the same (or similar) spatial
path whenever a second cluster undergoes specified activity.

e parallels: One cluster of objects traces the same (or a similar) spatial
pattern but offset in space.

1 predicates are operators returning a boolean value, serving as filter conditions

Page 13

Chapter 3 Hypothesis

e mutates: One cluster of objects transforms itself into a second
cluster.

3.1.2 Moving Objects Databases

"Moving objects are basically geometries changing over time [...]"(Guting
& Schneider, 2005, p. 1). Moving points are entities, for which "only the
time-dependent position in space is relevant, not the extent"(Guting &
Schneider, 2005, p. xvii). Regarding a moving point, its position is varying
over time. On the other hand, moving entities with an extent can be char-
acterised as moving regions, able to change its position as well as its ex-
tent and shape over time. Regardless of the geometry, spatio-temporal
databases have to deal with entities changing continuously.

Time can be represented either in a discrete or in a continuous model. The
latter is " [...] more appropriate for dealing with moving objects"(Guting &
Schneider, 2005, p. 11). The definition of time data types depends on the
used model. In a continuous model, they are defined as follows:

e instant: a point on the time line
e period: an anchored (absolute) interval on the time line

e periods or temporal element: a set of disjoint anchored intervals on
the time line

e Iinterval: a directed, unanchored (relative) duration of time - a time
interval of known length with unspecified start and end instants

Concerning the semantics of the time domain, a temporal database is
dealing with the valid time as well as with the transaction time. The valid
time is the real world time when an event occurs while the transaction
time refers to the recording time in the database.

There are two major perspectives on moving objects in databases:

e spatio-temporal data perspective: looking at histories of movements,
asking queries for the past, analysing the continuous change of spa-
tial data over time

e location management perspective: maintaining continuously inform-
ation about the current position and near future positions, that is
dealing with frequently changing location information; ask queries
about the current and near future positions

Querying histories of movement or evolutions of spatial objects over time
requires a spatio-temporal model providing respective data types and op-
erations as well as spatio-temporal predicates.

A natural approach to spatio-temporal modelling is the enhancement of
temporal databases by spatial data types. This approach works for some
categories of spatio-temporal data but not for moving objects. Therefore,
the alternative approach of extending the strategy used in spatial data-
bases to offer abstract data types with suitable operations is more applic-
able for describing continuous movement. In the following, such an ab-

Page 14

3.1 Theoretical Approach

stract model, as described in (Guting & Schneider, 2005), is outlined.

Spatio-temporal data types, embedded in a 3D space (2D + time), e.q.
are:

e moving point (mpoint)
e moving region (mregion).

All types, whose values are functions from time (regarding the valid time
dimension), are temporal types and called “moving”.

Suitable operations e.g. are:

e intersection: returns the part of a moving point whenever it lies in-
side a moving region -> mpoint

e distance: returns the distance between two moving points which is a
real valued function of time -> mreal

e speed: returns the speed of a moving point -> mreal
e trajectory: projects a moving point into the plane (range) -> line

e deftime: returns the set of time intervals when a moving point is
defined -> periods

e length: returns the length of a line value -> real

e min: yields the minimal value assumed over time by a moving real->
real.

Additionally to the above listed main types, related data types are needed,
including

e base types: int, bool, real, string
e spatial types: point, points, line, region
e time types: instant, periods = set of time intervals = range!(instant).

For all base and spatial types, there are corresponding time-dependent
(temporal or “moving”) types?.

As already mentioned, spatio-temporal data “live” in a 3D space which is
the cross-product of the spatial and the time domain. Hence, for moving
spatial types there are respective projections to domain (periods) and
range (2D plane).

1 type constructor, applicable to base and time types, yields to a set of respecting types
2 obtained through application of type constructor “moving”

Page 15

Chapter 3 Hypothesis

/;:\ all temporal [movingrint; \ all "":-;eanu)

read t [::: o mvLag i real) ?éﬂéﬂ:;leﬂﬂﬁ rangs (mesl)

bool movdngr{bool) T rangs (bool)

string moving fatring) range (st g
e — -

poink e ngpointe)™

points moving (poinss) - poines

Line moving (Linel ™ 1inme

repion movingfsegisn) - reyd o

NN N

all E;nja:ﬁ{ms
to domamn - 7

prerods
Figure 3.1: Type System

To develop a complete, consistent and non-proliferating set of spatio-tem-
poral operations, the author's classify operations into

e operations on temporal types
e operations on non temporal types
e operations on sets of objects.

Additionally, types are classified into point types, representing single val-
ues, and point set types, representing sets of values. This approach yields
more generic operations, in some cases specific considerations are
however more appropriate (indicated through an alias in square brackets).

First, operations on non temporal types are designed and then extended to
the temporal variants which is called temporal“lifting”.

Operations on non temporal types are grouped into six classes:
e predicates
e set operations
e aggregation
e nhumeric
e distance and direction
e base type specific.

Regarding predicates, relationships exists between two points, two point
sets and between a point and a point set. Predicates are based on set the-
ory, order relationships and topology.

Page 16

3.1 Theoretical Approach

Sets Qrder (1D S5poces) Topalogy
ﬁmwrsus_ U=w, Uz TR T TR T T = R T TR
point
point set U=V.UzV Wne U, Wve Viusy(beforel ol oVz@ (touches)
VETSUS Unveid I A Vo=@ (attached)
point set [intersects) LP A V° = & {overlaps)
U'c V (inside)
pointversus w € V (inside) Yue U:u<v|before) we oV (on_border)
point set Yye Viugy we VO (in_interior)

Figure 3.2: Predicates

Signatures of set operations are available for the
point, point versus point set, point set versus

spaces and finally for specialized operations.

Dpperation Signatwre

L intersection minus THT — T

2 intersection G -1 T
mi e T —

O —n a3

union tEa —

3, intersection minus union OxXG — {5 |10

4. intersection T, W (T — iy, Gy) [2D]
mi e F WO — 3, | 20¥)
wmd om a0 —h F [2D¥]

5 croseings line= Iine — porinds
touch_points regs ot @ 1ine — points

common_border

reglon X region = points
region® line — Iine

region ¥ raglion — l1fne

Figure 3.3: Set Operations

Aggregation operations are used to reduce point sets to points.

Operation Sigrmature Semantics

mim, mase 3 = (103 warn(p[L), max(p{ L))
avg a4 9 [1Dmuam)

avgcanter) O —n [2]

single o 3 if3 e UV = {u} then u else |

min[start], max and|

periods = instant

Figure 3.4: Aggregate Operations

Numeric operations compute numeric properties from point sets.

relationships point versus
point set in 1D and 2D

Page 17

Chapter 3 Hypothesis

Operatioen Signatwre

no_oomponants @ — int B
Bime 5 = TEal =5

peT i ter région — real
EizeMu:atiun_' perionds — real B
size|length| line — real

sizelarea) region = Tl

Figure 3.5: Numeric Operations

For all continuous types, distance measurement operations exists. The
angle of the line from a starting to an end point is measured by the direc-
tion operation.

Cperation Signature
distance RHE —+ real [oont]
n@g — real [conr)
[] v real [cont]
direction polnt point = real
Figure 3.6: Distance And Direction
Operation

Operations on temporal types are grouped into five classes:
e projections to domain and range
e interaction with domain and range
e rate of change
e lifting
e when

For projections of temporal values, operations are offered to return the
corresponding parts of the projections: periods for temporal functions, spa-
tial point set types for 2D data types.

Page 18

3.1 Theoretical Approach

Operation Signature

deftime movTngal — periods
rangevaluas mowing o} — range{a) | LD
locations moving{poink) = points

moving{points) — points
trajectory mewvdng{peinte) — Iine

meving{podnt=s) — line
routes moving| 1ine) — line
traversad movingl 1ine) = region

moving rogion) — region

inse Iryrdme{r) — imaterik

wal intimal) — @
Figure 3.7: Projection Operations

A relationship between moving types and values, in either their domain or
range, can be retrieved through respective interaction operations.

Operatian Spnatung

atinstant movd ngl it % instant s int imeler) -
atperiods roving(o) x periads — moviagio)

initial, final vl Rgte) — It ime{i)

present moving(o) = ingtant — bool

movipg(o) ¥ periods — Bool

at mavdgle) = b — Illl:.l'\.r'lllll'.m T

movinglelx B — movingimnio, By 20
atmin, atmace movd e o) = movinglm) [ily
Passes o e o) = [— ool

Figure 3.8: Interaction With Values In Domain And
Range

The rate of change of time-dependent values leads to four moving point
specific derivative operations.

Oiperction Signoture Semantics

derivative mreal — mrasl W where pir)=limg_q (it +&)— wi))/ b

speed spoint — rareal W where Wirl=lmg_yn faistanee P+ BLREIH S
mdirection apoint —mEreal Wiwhere puith=lmg g, f31rmor1og (L + 80, L0015
turn mpaint —mraal WWwhere i)

=limg_q{fmairection Bt +8)) = fogivection (B8

welocity mpoint =rmpoint W where W)= limg_q (it +8)—puie)) /b

Figure 3.9: Derivative Operations

In lifting operations, any argument of a operation on non temporal types

Page 19

Chapter 3 Hypothesis

can be replaced by the respective temporal type and the result is also a
corresponding temporal type.

The when operation allows to restrict a temporal value (or a moving ob-
jects) to the times when an arbitrary condition is fulfilled. Hence, the sig-
nature of the when operation shows two arguments, a temporal value and
a predicate that is an operator on a non temporal type.

Operations on sets of objects are needed to manipulate sets of objects in-
stead of atomic data types. The author's define for this purpose an opera-
tion, called decompose which makes the components of point set types ac-
cessible.

In the next step, discrete models can be derived form the abstract model
building the basis for respective implementations. In a discrete model,
counterparts of abstract types are designed. Discrete temporal types are
high-level definitions of data structures, still programming language inde-
pendent but based on the standard data types as known from program-
ming languages.

A more discrete look on predicates for moving spatial objects, restricted to
spatio-temporal predicates between two moving points, two moving re-
gions and a moving point and a moving region, reveals the importance of
topological predicates. Topological relationships describe the "[...] relative
positions of spatial objects to each other without considering metric ob-
jects" (Guting & Schneider, 2005, p. 151). These topological relationships
alter when temporal changes of spatial objects occur, that is if one or both
objects move or reshape, topological transitions happen. The subject of
spatio-temporal predicates therefore is to examine topological predicates
over time.

Applying the concept of temporal lifting as well to topological predicates, a
moving Boolean will be the result, which yields to undefined, whenever a
point or region is undefined. In other words: only on the intersection of the
domains of two spatio-temporal objects, the result is always true or false.
This violates the essence of predicates, stating that a predicate is a func-
tion to Boolean which is either true or false. Therefore, a basic spatio-tem-
poral predicate can be considered as a temporally lifted spatial predicate
yielding a temporal/ moving Boolean, which is aggregated by determining
whether that temporal Boolean was sometimes or always true. In contrast
to a lifted predicate, a spatio-temporal predicate cannot be undefined, un-
defined values will be aggregated into Booleans.

Temporal aggregation is realized by defining two aggregate operators or
quantifier:

e existential quantification: strict quantifier which aggregates un-
defined to false while ranging over the whole time interval

e universal quantification: aggregates only over a restricted time inter-
val, more or less strict depending on the range of quantification

For universal temporal aggregation of Boolean values, there are several

Page 20

3.1 Theoretical Approach

definitions about the time interval over which the universal quantification
can range, yielding finally to four possible quantifiers.

Disjoint = ¥V disjodint
Heet = W meat
overlap = Y overlap
Egual = ¥ egual
Covers = Wy covers
Containg = % containes
Correrodiy = "F':!I coverediy
Trusd e = Ve inside

1

Figure 3.10: Basic Spatio-
Temporal Predicates

After the basic spatio-temporal predicates are defined, developments, rep-
resenting the change of spatial situations over time, have to be specified.
Observations, made at this, reveal, that first, predicate constrictions have
to be defined, and second, predicates need to be distinguished between
instant predicates and period predicates. A concise syntax for develop-
ments denotes temporal compositions of spatial and spatio-temporal pre-
dicates by a sequence of predicates linked together by an infix operator.
Therefore, following three operations were defined, with spatial predicate
(p) and spatio-temporal predicates (P,Q):

e pthenP
e Puntilp
e Puntil p then Q

Beside temporal composition, other logical connectives that can be
defined to combine predicates, are described in an algebra with spatio-
temporal predicates as objects and combinators as operations:

e temporal alternative
e predicate negation
e object reflection

e predicate reflection
e derived combinators

For all cases, the point/point, point/region and region/region case, a large
number of distinct temporal evolutions of topological relationships can be
obtained from a development graph. For each alternative, a own spatio-
temporal predicate could be defined. To assemble this new complex or
compound predicates, the eight basic spatio-temporal predicates are used.

3.1.3 Spatio-Temporal Conceptual Data Modelling
A conceptual model is free from implementation-based limitations, "[...] it

Page 21

Chapter 3 Hypothesis

enables a direct mapping between the perceived real world and its repres-
entation with the concepts of the model" (Parent et al., 2006, p. 19). The
MADS approach addresses conceptual data modelling and manipulation,
for space and time dimension, including tools for this generic approach.
Regarding space modelling, concepts for describing the discrete and con-
tinuous view are important. Concerning time modelling, from an applica-
tion point of view, the valid time is the interesting one. Based on the un-
derlying principle of orthogonality, each modelling dimension can be de-
scribed separately.

Commonly, "[...] spatio-temporal is used in a loose sense, to refer to any-
thing that deals with either space, or time, or both" (Parent et al., 2006, p.
60). Objects that are subjects to change over time in the sense of getting
different values throughout their evolution, are called time-varying phe-
nomena. MADS defines spatio-temporal an "[...] object type that either has
both a spatial and a temporal extent, separately, or has a time-varying
spatial extent" (Parent et al., 2006, p. 67). If the life cycle of an object, the
history of his evolution, is of interest for an application, has to be decided
at the level of each single object type. "A data model allowing to keep the
history of spatial features supports spatio-temporal phenomena such as
moving points and moving or deforming lines and surfaces." (Parent et al.,
2006, p. 60)

MADS supports basic spatial and temporal data types and types for homo-
geneous or heterogeneous collections, organized into a generalization
hierarchy. Both, hierarchies as well as spatio-temporal data types for mov-
ing objects, come along with associated operations and predicates. The
definition of operators is based on the following objectives:

e Minimal set of operators: set of basic operators, can be combined to
more complex operations

e Orthogonality: same operator applies for all dimensions, space and
time and varying types

e Similarity: operators are similar in all dimensions

e Commonality: all operators share the same need to denote what is
being manipulated

MADS extends the concept of time-varying or moving data types and oper-
ations, introduced in (Guting & Schneider, 2005), to the space dimension
by supporting additional space-varying data types and associated opera-
tions.

3.1.4 OpenGIS Standards and Specifications

As declared on the OGC website!, the Open Geospatial Consortium is a
non-profit, international, voluntary consensus organization that is leading
the development of standards for geospatial and location based services.
To enable GIS interoperability, the technical documents of the OGC, avail-

1 http://www.opengeospatial.org

Page 22

3.1 Theoretical Approach

able to everyone at no cost, detail interfaces of software components.
Therefore, independently developed components that implement the
OpenGlIS specifications plug and play immediately.

The conceptual foundation for the Implementation Specifications, which
describe interfaces at the implementation level of detail, is provided by
the Abstract Specifications. The OpenGIS Reference Model (ORM) provides
an architecture framework for the ongoing work of the OGC.

In the ORM, the OGC vision is described as follows: the "OGC vision is a
world in which everyone benefits from geographic information and ser-
vices made available across any network, application, or platform." (OGC
Reference Model OGC 03-040, p. VIl) The derived mission of the OGC
therefore is to "deliver spatial interface and encoding specifications that
are openly and publicly available for global use" (OGC Reference Model
OGC 03-040, p. VII). Accordingly, the purpose and scope of the ORM, which
updates and replaces parts of the 1998 OpenGIS Guide, is to describe the
OGC requirements baseline for geospatial interoperability and to provide a
common architecture for the “Geo-Web”. For this purpose, ORM applies
the Reference Model for Open Distributed Processing (RM-ODP), an inter-
national standard for architecting open, distributed processing systems. To
address different aspects of a system, five viewpoints are defined to de-
scribe different perspectives:

e Enterprise Viewpoint: focuses on purpose, scope and policies for a
system

e Information Viewpoint: focuses on semantics of information and in-
formation processing

e Computational Viewpoint: focuses on component and interface de-
tails without regard to distribution

e Engineering Viewpoint: focuses on the mechanisms and functions re-
quired to support distributed interaction between objects in a system

e Technology Viewpoint: focuses on the choice of technology

In the information viewpoint, the feature concept is introduced, which is a
central term in the “OpenGlIS world”: "A feature is an abstraction of a real
world phenomenon. A geographic feature is a feature associated with a
location relative to the Earth." (OGC Reference Model OGC 03-040, p. 7)
Because geographic information is subjectively perceived and its content
is depending on the needs of particular applications, the OpenGIS frame-
work provides conceptual schemas to define abstract feature types and
the possibility for domain experts to develop their own Application Schem-
as!, fulfilling the special needs of this particular information community?.

1 "An application schema provides the formal description of the data structure and
content required by one or more information communities. An application schema is a
set of conceptual schema for data required by one or more applications." OGC
Reference Model OGC 03-040

2 An information community "[...] is a collection of people [...] who, at least part of the
time, share a common digital geographic information language and common spatial

Page 23

Chapter 3 Hypothesis

Metadata, data about data, are crucial thus enabling data discovery, re-
trieval and reuse. Three different kinds of metadata can be distinguished:

e dataset metadata

e service metadata, e.g. the capabilities document as the result of in-
voking the GetCapabilities operation, which is common to all OWS,
as described later on in the section about the OGC Web Service
Common Specification

e registry information model

The computational viewpoint provides key definitions for the service
framework:

e a service is a "collection of operations, accessible through an inter-
face, that allows a user to evoke a behavior of value to the user [ISO
-19119]" (OGC Reference Model OGC 03-040, p. 2)

e an interface is a "named set of operations that characterize the be-
havior of an entity" (OGC Reference Model OGC 03-040, p. 2)

e an operation is a "specification of an interaction that can be reques-
ted from an object to effect behavior [ISO 19119]" (OGC Reference
Model OGC 03-040, p. 2)

The technology viewpoint is concerned with the infrastructure of a Distrib-
uted Computing Platform (DCP). The OGC has defined a number of encod-
ings, based upon XML, to transfer data packages as messages between
application clients and services, and between services. The language for
describing and encoding geospatial information is GML. The interfaces of
the OGC defined Web Services (OWS) have explicit bindings forHTTP. For
invoking operations of a service, there are the two HTTP methods, GET and
POST. Thus, the online resource for each operation, supported by a service
instance, is a HTTP URL. Only the parameters, comprising the service re-
quest itself, are mandated by the OGC Web Service Common Specification.

The OGC Web Service Common Specification specifies many of the aspects
that are common to all OWS interface Implementation Specifications like
Web Map Service (WMS) or Web Feature Service (WFS) and especially Web
Processing Service (WPS). These common aspects include operation re-
guest! and response? contents, their parameters? and encodings.

The mandatory GetCapabilities operation, provided by each OWS, allows
any client* to retrieve metadata about the capabilities provided by any

feature definitions. This implies a common worldview as well as common abstractions,
feature representations, and metadata." OGC Reference Model OGC 03-040

1 "invocation of an operation by a client" Open GIS Specification 06-121r3

2 'result of an operation, returned from a server to a client" Open GIS Specification 06-
121r3

3 "variable whose name and value are included in an operation request or response"
Open GIS Specification 06-121r3

4 "software component that can invoke an operation from a server” Open GIS
Specification 06-121r3

Page 24

3.1 Theoretical Approach

server! that implements an OWS interface Implementation Specification. A
service metadata document, which makes an OWS server partially self-de-
scribing, is returned as response to the requesting client. A GetCapabilities
request can be KVP encoded (mandatory) or XML encoded (optional). If an
error encounters during servicing this request, an exception report mes-
sage shall be returned, otherwise a service metadata document, encoded
in XML, shall be the normal response.

All other operations, except GetCapabilities, shall include the following re-
quest parameters:

e service: service type identifier, e.g. WPS
e request: operation name, e.g. DescribeProcess
e Vversion: specification version for operation, e.g. 1.0.0

The OGC Web Service Common Specification defines two methods of en-
coding OWS operation requests: one uses XML as encoding language and
the other uses keyword-value pairs (KVP) to encode the various paramet-
ers. HTTP supports two request methods: GET and POST. When the HTTP
GET method is used, the request shall be composed as follows, using the
KVP encoding: URL prefix, ending with 7, followed by key-value pairs for (at
least) the mandatory parameters, where multiple key-value pairs were
separated by an ampersand. An URL, intended for HTTP POST requests, is
a complete URL without additional parameters. This is the URL to which cli-
ents transmit request parameters, using XML encoding, in the body of the
POST message.

A HTTP response, normally a XML document, shall be accompanied by the
appropriate MIME type.

Finally, the OGC Web Service Common Specification provides some guid-
ance for editors of OWS Implementation Specifications in the form of best
practices.

The WPS Implementation Specification, which specifies the interface to a
Web Processing Service, is compliant to the two aforementioned Specifica-
tions, the ORM and the OGC Web Service Common Specification.

The standardized WPS interface facilitates the publishing of geospatial pro-
cesses? and the discovery of and binding to those processes by clients. A
WPS is able to offer any sort of GIS functionality, from simple calculations
to complicated computation models. The WPS therefore follows the
strategy of a service-driven generation of information by processing
geodata, able to fulfil real geoprocessing tasks (a user-driven generation
of information would be the opposite approach, were the user has to loc-
ate relevant raw data, assemble them over the internet e.qg. using WFS,
process the data with local client functionality and then visualize the res-
ult).

1 "a particular instance of a service [ISO 19119 edited]" Open GIS Specification 06-121r3
2 "model or calculation that is made available at a service instance" OGC
Implementation Specification OGC 05-007r7

Page 25

Chapter 3 Hypothesis

The required data, either vector or raster data, can be delivered across a
network or available at the server. The WPS interface standardizes the
way, how processes and their input! and output? data are described, how a
client can request a process execution and how the output is handled. The
actual data processing, executed by the process, is encapsulated by the
generic interface that can be used to describe and web-enable any sort of
geospatial process.

The latest version of the WPS Implementation Specification is 1.0.0, for
prototyping, the predecessor version 0.4.0 (OpenGIS Discussion Paper)
was used, because the Open Source framework deegree is implementing
this version of the standard.

The WPS interface specifies three mandatory operations:

e GetCapabilities: allows a client to request and receive service
metadata (capabilities) documents and additionally provides the
names and general descriptions of each of the processes, offered by
a WPS instance (HTTP GET method using KVP encoding is mandat-
ory)

e DescribeProcess: allows a client to request and receive detailed in-
formation about the processes that can be run on the service in-
stance, including the required inputs, their allowable formats and the
outputs that can be produced. A complex data type data structure
offers the capability to either encode the payload directly in the ex-
ecute request or by referencing a remote location on the web (HTTP
GET method using KVP encoding is mandatory)

e Execute: allows a client to run a specific process, implemented by
the WPS, using provided input parameter values and returning the
produced outputs. Optionally, allows the monitoring of the progress
of a process execution via status messages. The result of a process
execution can be returned directly to the client or, optionally, can be
stored at a web-accessible location which is referenced in the ex-
ecute response document (HTTP POST method using XML encoding
is mandatory)

A WPS instance can offer one or more processes which are not coupled to
the data they operate on. WPS processes can be chained with other ser-
vices of the same kind (other WPS) or of different nature (e.g. WCS or
WEFS) and therefore map complex workflows (also called WSO).

Data input required and data produced by a WPS process can include data
exchange standards such as GML.

The Geography Markup Language, also known as ISO 19136, is an XML
grammar written in XML Schema for the modelling, transport and storage
of geographic information. GML provides objects like features, coordinate
reference systems, geometry, topology, time and units of measure, organ-
ized in 29 so called GML Core Schemas, building the basis for the definition

1 "data provided to a process" OGC Implementation Specification OGC 05-007r7
2 '"result returned by a process" OGC Implementation Specification OGC 05-007r7

Page 26

3.1 Theoretical Approach

of own Application Schemas.

In the Dynamic Feature Schema, a number of types and relationships are
defined to represent the time-varying properties of geographic features. A
dynamic feature extends a geographic feature about dynamic properties.
A TimeSlice is an abstract GML object that encapsulates updates of dy-
namic properties. The MovingObjectStatus element is one example of how
the abstract TimeSlice element may be extended.

The latest version of the GML Implementation Specification is 3.2.1, for de-
veloping the GML Data Model (see chapter 4.5.2), the predecessor version
3.1.1 was used in order to reuse available types for moving objects model-
ling such as a track type. In version 3.2.1, the MovingObjectStatus was de-
precated as a normative schema component and used instead just inform-
atively as an example for the use of dynamic features. The description of
moving objects in GML as one kind of features with properties that vary
over time, differs from the ISO 191411 concept. While the MovingObject-
Status in GML describes the location and other properties of the moving
object at certain time stamps, ISO 19141 describes location and direction
as a function of time.

3.1.5 Principles Of Object Oriented Software Engineering
The main goals of the MDA! approach are

e portability

e interoperability

e re-usability.

These goals can be accomplished through architectural separation of con-
cerns - building models to abstract the complexity of SW systems with dif-
ferent views on the system:

e Computation Independent Model (CIM): contains no details about the
structure of the system, also called Domain Model

e Platform Independent Model (PIM): describes the general structure
and flow of the system without details about concrete platforms

e Platform Specific Model (PSM): extends the platform independent
part about details for a concrete platform

Using model transformation, one model can be converted into another
model of the system. Similar to the CASE approach, in the final step,
source code is generated from the PSM.

The object technology has the following strengths:

e provides a single paradigm, a language used by users, analysts, de-
signers and implementers

e facilitates architectural and code re-use

1 MDA concepts as described in Lohmar, 2006

Page 27

Chapter 3 Hypothesis

e models more closely reflect the real world
e provides stability
e is adaptive to change.
The four basic principles of object orientation® (OO) are:

e Abstraction: concentrating on the essential characteristics, ignoring
less important

e Encapsulation: hide implementation from clients
e Modularity: breaking up something complex into manageable pieces

e Hierarchy: ranking or ordering of abstractions into a tree-like struc-
ture

An object represents a real-world entity with attributes, representing its
state, and operations, representing its behaviour. Each object has a unique
identity and a well defined boundary.

A class is a description of a set of objects that share the same attributes,
operations, relationships and semantics. An object is an instance of a
class. An attribute is a named property of a class that describes a range of
values that instances of the property may hold. An operation is the imple-
mentation of a service that can be requested from any object of the class
to affect behaviour.

Polymorphism is the ability to hide many different implementations behind
a single interface. Interfaces formalize polymorphism and support “plug-
and-play” architectures. An interface is a collection of operations that are
used to specify a service of a class or a component.

An association shows relationships between classes. Multiplicity is the
number of instances one class relates to one instance of another class. An
aggregation is a special form of association that models a whole-part rela-
tionship between an aggregate (the whole) and its parts. A dependency is
a relationship between two model elements where a change in one may
cause a change in the other. Generalisation is a relationship among
classes where one class shares the structure and / or its behaviour of one
or more classes. It defines a hierarchy of abstractions where a subclass in-
herits from one or more super classes. Realisation is a semantic relation-
ship between two classifiers whereas one classifier serves as the contract
that the other classifier agrees to carry out.

The following section gives a short overview about the key concepts of Ob-
ject Oriented Analysis (OOA) and Object Oriented Design (OOD). The pur-
poses of OOA and OOD are to

e transform the requirements into a system design
e evolve a robust architecture for the system
e adapt the design to match the implementation environment, design-

1 OO, OOA/OOD as described in IBM Rational University, 2003

Page 28

3.1 Theoretical Approach

ing it for performance

Input artefacts are the Use Case model and supplementary specification
from the requirements discipline. The result of analysis and design is a
design model, an architecture represented by a number of architectural
views which are abstractions or simplifications of the entire design.

The goal of analysis is to understand the problem and to begin to develop
a visual model independent of implementation and technology concerns.
Analysis focuses on translating the functional requirements into software
concepts. A goal of design is to refine the model in terms of adapting it to
the implementation and the deployment environment and considering per-
formance aspects.

Although Use Cases are not part of traditional object orientation, they are
a recommended method for organizing requirements. A Use Case realiza-
tion describes how a particular Use Case is realized in terms of collaborat-
ing objects, ties together the Use Cases from the Use Case model with the
classes and relationships of the design model. Within the UML, a Use Case
realization can be represented using a set of diagrams that model the con-
text of the collaboration and the interactions of the collaborations.

The UML is a object oriented modelling language used to
e Visualise
e specify
e construct
e document

the artefacts of SW systems. The UML is a de-facto standard in OOD,
standardized by the OMG. The UML is only a language, process independ-
ent, but optimally used in a process that is Use Case driven, architecture
centric, iterative and incremental.

The UML provides a graphical notation, concepts and semantics as well as
respective rules to build a model, a simplification of reality, the blueprint
of a system. Additionally, the UML provides a set of diagrams to visualize
the model from different perspectives. UML 2.x includes thirteen diagrams
that can be classified into three groups:

e behaviour diagrams: a type of diagram that depicts behavioural fea-
tures of a system or business process. This includes activity, state
machine, and Use Case diagrams as well as the four interaction dia-
grams.

e interaction diagrams: a subset of behaviour diagrams which emphas-
ize object interactions. This includes communication, interaction
overview, sequence, and timing diagrams.

e structure diagrams: a type of diagram that depicts the elements of a
specification that are irrespective of time. This includes class, com-
posite structure, component, deployment, object, and package dia-
grams.

Page 29

Chapter 3 Hypothesis

Because it is not possible for one closed language to ever be sufficient to
express all possible nuances of all models across all domains, the UML is
opened-ended and provides an extensibility mechanism that includes

e stereotypes
e tagged values
e constraints

One remark concerning the OO principles encapsulation and modularity is
important at this point: the difference between a package and a subsys-
tem. A package is a general purpose mechanism for organizing elements
into groups. A subsystem in contrast is a combination of a package (can
contain other model elements) and a class (has behaviour). In UML, a sub-
system can be represented using a stereotyped package.

The UML is used as modelling language during OOA / OOD in this work and
therefore UML diagrams are used throughout this paper to illustrate model
elements and parts of the SW design.

The continuous pursue of the object oriented paradigm results in the us-
age of Object Oriented Programming (OOP) for software implementation.
OOP facilitates flexibility and re-usability of software code. Several pro-
gramming languages support OOP, Java is the preferred language for pro-
totype realization.

XML is an open standard edited by the W3C for creating custom markup
languages. “Its primary purpose is to facilitate the sharing of structured
data across different information systems, particularly via the Internet,
and it is used both, to encode documents and to serialize data. It is classi-
fied as an extensible language because it allows its users to define their
own elements”!. The XML specification defines a meta language which
builds the base to define application specific languages.

GML is an OpenGIS Implementation Specification for a XML language to
encode geographic features. GML, also named ISO 19136, is not only a
XML dialect, it consists of 29 XML schemata. These so called core
schemata of GML, also called grammars, are the base for defining one's
one Application Schema, which is the goal of data modelling using GML.
This Application Schema contains the object classes of the specific applica-
tion domain.

A XML language is describe by a XML schema. A XML schema, short XSD,
is a XML language itself and describes the language constructs, elements
and attributes with their data types, of a concrete language.

3.2 Methods

The software development process is guided by the principles of MDA. Ac-
cording to this model-driven software development approach, a Computa-
tion Independent Model (CIM) is developed in a first step. This model will

1 From Wikipedia, the free encyclopedia

Page 30

3.2 Methods

be enhanced to a so called Platform Independent Model (PIM), which is still
independent from technology constraints, just considering functional as-
pects. Finally, a Platform Specific Model (PSM) will be generated, taking
into account platform and / or programming language specifics.

Project Management

. Use Case Model
L Analysis Model

Domain Model _j ===~

Abstract Class Mode|
GML Data Model

OWS Model
JAVA Model

OWS Implementation

OOP [/ ©OOD (] OOA

Fgure 3.11: Methods applied

Assigned to object oriented SW development, the first action in the analys-
is phase is the creation of a domain model. This model describes objects of
the business domain captured by the software system under development.
Functional requirements to the system are defined according to the out-
side-in-method: Use Cases describe the system environment from the user
perspective, the system itself is initially handled as a black box. The do-
main knowledge to model Use Cases for moving objects analysis are
primarily taken from military surveillance projects where similar functional
requirements are present. In the next development step, the Use Case
realisation, a analysis model is derived from the Use Case model, identify-
ing key abstractions that the system have to handle. Analysis classes rep-
resent an early conceptual model of objects from the problem domain.
UML sequence diagrams are used to find these objects by illustrating the
dynamic flow of each Use Case.

In the design phase, the analysis model is refined leading to an abstract
class model, showing complete designhed classes and their relationships to
each other, pictured in UML class and package diagrams. Concepts from
spatio-temporal modelling as defined in the MADS! approach as well as the
abstract model of MOD? ran into the SW architecture, defined and im-

1 Parentetal., 2006
2 Guting & Schneider, 2005

Page 31

Chapter 3 Hypothesis

proved iteratively. To decouple the behaviour and signature (operations)
from its implementation (methods) and to allow multiple and various im-
plementations of the business logic, advantage of the OO interface
paradigm is taken.

Based on the abstract class model, a discrete data model, showing how
the persistence layer is implemented in GML, is designed. The abstract in-
terface is adapted to the principles of OpenGIS Web Services (OWS) to be
in line with the respective OGC standards: Abstract Specifications in gener-
al and the WPS Implementation Specification in particular, which describes
an interface according to the OpenGIS Reference Model (ORM). Finally, a
prototypical implementation of the service interface using the OO pro-
gramming language Java is described in the Java model. Once more, UML
class and package diagrams, enhanced with appropriate stereotypes, are
used to display the respective models.

The engineering approach, as described preceding, as well as all the addi-
tional tasks, necessary to accomplish the “Master Thesis project”, are em-
bedded into respective project management methods to plan the activities
in an adequate order, define pre- and post-conditions and control the
whole progress.

3.3 Tools

e Citavi: bibliography

e FreeMind, EverNote: brainstorming

e OpenOffice Writer: text processing

e Microsoft Visio: graphical illustrations

e Enterprise Architect: software engineering
e XML Spy: XML encoding

e Eclipse: prototype implementation

e Microsoft Project: project management

e Garmin MapSource: test data generation

Page 32

4 Project Description

In the following subchapters, the software architecture and a prototypical
realization are described in more detail.

The architecture model, outlined in chapter 4.1 to 4.5, is introduced by a
number of different views. A architectural view is a simplified description
or abstraction of a system from a particular perspective, covering particu-
lar concerns and omitting entities that are not relevant to this perspective.
Views in this sense are “slices” of the whole model. Each of these views,
and the UML notation, used to represent them, will be discussed in the
subsequent chapters.

In chapter 4.6, an exemplary implementation of a chosen subset of the
modelled functionality is presented. It is about a geoprocessing task to
check whether a moving object is crossing a particular area of interest.

This process serves as a “running example” throughout the whole Project
Description chapter. The whole UML model with all its diagrams and com-
prehensive documentation is available in Annex A.

4.1 Domain Model (CIM)

A domain model, often part of a business domain model, captures a de-
scription of what the software knows about the domain and the objects it
contains. It is used to define a common, consistent vocabulary across a
project. The domain model is a CIM because it focuses on the environment
of the system, the details of the structure and processing of the system
are suppressed at this business level.

Page 33

Chapter 4 Project Description

object Domain Model (CIM) /

«enumeration»
StatusType
active
inactive
disabled
+status
«entity» . «entity»
MovingStatus ttime| Timelnterval
+time-varying status
«enumeration» +start +end
ClassificationType) -
e «entity» +birth «entity»
onroad +classification MovingObject Timelnstant
offroad .
aircraft - id: Integer - datetime: int
railway +death
watercraft +ime
+track
«entity»
MovingPoint
+position
«entity»
Point
- xoint
- y:int

Figure 4.1: Domain Model
Description of the entities, depicted in the UML class diagram:

Page 34

4.1 Domain Model (CIM)

Entity Description

ClassificationType Possible values a classification type can adopt

MovingObject Object, changing its position over time

MovingPoint If the moving object has no spatial extension, its
track consists of a number of points

MovingStatus Status of the moving object which is also time-vary-
ing

Point Position of a moving point expressed using coordin-
ates

StatusType Possible values a status type can adopt

Timelnstant Point in time for which a moving point is valid re-

spectively birth and death of a moving object indicat-
ing its lifetime. Time instants also indicate the start
and end of a time interval

Timelnterval Timespan for which a moving status is valid

Table 1: Domain Model

4.2

Non-Functional Requirements

In contrast to functional requirements, defining what a system shall do, a
non-functional requirement defines which attributes a system shall have.
Such attributes are normally classified into the following categories:

reliability

look and feel

usability

performance and efficiency
sustainability

portability

security aspects

The following enumeration lists general, non-functional requirements on
web services:

Services shall be coarse-grained

Services shall be repeatable

Services shall be atomar

Services shall be stateless

Interfaces shall be independent from implementation technology

The following enumeration lists non-functional requirements on OWS, de-
rived from the ORM:

Page 35

Chapter 4 Project Description

e OWS shall be agile to be able to adapt to changing business rules
and operational requirements

e OWS shall support the easy and seamless introduction of new tech-
nologies and the evolution of existing ones

e OWS shall provide for robustness and consistent error handling and
recovery to support mission-critical systems development

e OWS shall accommodate authentication, security and privacy fea-
tures and support asset protection

e OWS shall be platform independent concerning DCP, hardware, OS,
programming language and encodings

e OWS shall support implementations of N-tiered, component architec-
tures

e OWS shall support standard interfaces and metadata while accom-
modating the use of other complementary standards and specifica-
tions in environments where OpenGIS specifications are implemen-
ted

e OWS shall support interoperability by specifying interface definitions,
service descriptions and protocols for software collaboration and ne-
gotiation

e OWS shall accommodate independently developed implementations
of a service and many independently provided instantiations of dif-
ferent types of services

e OWS shall accommodate a wide range of data policies
e OWS shall be vendor and data neutral
e OWS shall be data content format independent

4.3 Use Case Model

A Use Case model describes functional requirements in terms of Use
Cases. Use Cases describe the intended functionality of the system from a
users perspective. The system's environment is modelled using actors.

The Use Case model, depicted in Figure 4.2, shows an actor called “Ana-
lyst” which is able to perform the Use Case “Detect AOI Crossing Objects”.

Page 36

4.4 Analysis Model

uc Area Surveillance/

Detect Obj ects
Starting Up

Analyst

(from Actors)

Detect Stopping
Objects

Figure 4.2: Use Case Model

4.4 Analysis Model

During Use Case analysis, initial classes of the system, so called analysis
classes, that perform a Use Case's flow of events, were identified for each
Use Case.

4.4.1 Use Case Realization

One Use Case realization per Use Case, describing how analysis classes
collaborate to perform a Use Case, was developed utilizing an interaction
diagram, or more precisely, a sequence diagram.

The technique for finding analysis classes uses three different perspect-
ives of the system to drive identification of candidate classes:

Page 37

Chapter 4 Project Description

ad Detect AOi Cross |ng (JO]&CL& /

rones sy ooy

| :Client :MovingObject :MovingObject
|

|
| i ; |
, detectAOICrossingObjects() L

executeOperation()

I
I
I
I
I
- |
I
I

crosses()

enter()

leave()

f—————— e e ———]
I S S
f———————,—,————— ———d]

Figure 4.3: Use Case Realization

e the boundary between the system and its actors, represented by a
boundary class

e the information the system uses, represented by a entity class
e the control logic of the system, represented by a control class

Stereotypes are used to represent these perspectives: in Figure 4.3, a “Cli-
ent” is representing the boundary between the “Analyst” and the system,
the system information is represented by the “MovingObject” entity and a
“MovingObject” controller in between is used to decouple the systems in-
terface from its business logic.

The following information flow takes place: the “Analyst” invokes an oper-
ation to detect AOI crossing objects at the “Client” which forwards this re-
quest to the business logic. This entity checks whether the respective ob-
ject first enters and then leaves the specified AOI and the result is re-
turned back to the “Analyst”.

4.4.2 View of Participating Classes
In the View of Participating Classes (VOPC) class diagram, the analysis

Page 38

4.4 Analysis Model

classes with their responsibilities, attributes and relationships to each oth-
er, are illustrated.

class Analysis Model /

«boundary»
Client

detectAOICrossing Objects() : void
detectStartingUp Objects() : void
detectStoppingObjects() : void
detectAerialObjects() : void
detectOffroadObjects() : void
detectOnroadObjects() : void
detectRailboundO bjects() : void
detectWaterbound Objects() : void
detectLOICrossing Objects() : void
detectOrigin() : void

detectSink() : void
detectObjectConce ntration() : void
detectPlatoon() : void
detectMovementP attern() : void

+ + + + + + + + + + + + + +

«control»
MovingObject

+ executeOperation() : void

«entity»
MovingObject

id: Integer

crosses() : void
«entity» enter() :voild
Point leave() : void
inside() : void
X: int meet() : void
y: int disjoint() : void

verifyClassification() : void
intersects() : void
finalPosition() : void
initialPosition() : void
positionAtTime() : void
addToGroup () : void
direction () : void
changeOfDirection() : void
speed() : void

+ distance() : void
+ convexHull() : void

+ + + + + + + + + + + + + + +

Figure 4.4: View of Participating Classes
Documentation of the classes, depicted in the UML class diagram:

Page 39

Chapter 4 Project Description

Class Stereotype Description

Client boundary User interface, presentation layer

MovingObject control Controller, decouples user interface from
business logic

MovingObject entity Object, changing its position over time

Point entity Position of a moving point, expressed using

coordinates

Table 2: View of Participating Classes

4.5 Design Model

The analysis classes, identified during Use Case analysis, are refined into
design elements. During identifying design elements, the decision is
made, which analysis classes are really classes, which are subsystems and
have to be further decomposed, which are existing components where
only an interface have to be declared and which are user interfaces.

4.5.1 Abstract Class Model (PIM)

The Platform Independent Model is focusing on functional aspects.

pkg Abstract Class Model (PIM)/

MovingObjectsAnalysisSystem |J‘|

=]+ Geometry
"E.'g + Instant
E + Instants
"ET + Interval
"E.'g + Intervals
=] + Lifecycle

realize

IMovingObjAnalysis =1+ MovingObjectsAnalysis

"ET + TimeSpan

+ Enumerations

Figure 4.5: Moving Objects Analysis Subsystem & Interface

During transition from analysis model to design model, from “problem do-
main” to “solution domain”, the entity classes from analysis Model were
transferred into a subsystem with an appropriate interface. The interface

Page 40

4.5 Design Model

defines the subsystems behaviour by offering a set of operations. The im-
plementation, fulfilling these operations, is hidden behind the interface,
thus a client using the interface is not affected from changes in the imple-
mentation (principle of encapsulation).

Figure 4.6 shows the set of operations, offered by the “IMovingObjAnalys-
is” interface and, although not in the main focus of this work, a rough idea
about how an implementation behind the interface could look like. For this
purpose, a structural design pattern, a facade, is applied. The facade is a
class with selected operations, comprising a frequently needed subset of
the subsystems functionality, delegating the functionality to other classes
of the subsystem. The classes behind the facade, implementing the inter-
face of the subsystem, are MObject, a spatio-temporal object type and
MObjects, a collection containing multiple such objects.

Page 41

Chapter 4 Project Description

class Abstract Class Model (PIM)/

«interface»
IMovingObjAnalysis

intervals(MObject) : Intervals
instants(MObject) : Instants
positions(MObject) : Points
trajectory(MObject) : Line
startPosition(MObject) : Point
endPosition(MObject) : Point

clip(MObject, Instant) : MPoint

clip(MObject, Intervals) : MPoint
clip(MObject, Geometry) : MPoint
direction(MObject, Instant) : double
minDirection(MObject) : double
maxDirection(MObject) : double
changeOfDirection(MObject, Instant) : doubl
minChangeOfDirection(MObject) : double
maxChangeOfDirection(MObject) : double
speed(MObject, Instant) : double
minSpeed(MObject) : double
maxSpeed(MObject) : double
distanceTo(MObject, Point, Instant) : double
minDistanceTo(MObject, Point) : double
maxDistance To(MObject, Point) : double
directionTo(MObject, Point, Instant) : double
minDirectionTo(MObject, Point) : double
maxDirectionTo(MObject, Point) : double
birth(MObject) : Instant

death(MObject) : Instant
activespan(MObject) : Intervals
status(MObject, Instant) : StatusT

intersection(MObjects, Geometry) : MObjects
difference (MObjects, Geometry) : MObjects
substract(MObjects, Geometry) : MObjects

R T T T TR T T T T T i S T S S e S S S S S A S A T S

checkCategory(MObject, ClassificationT) : boolean

e

verifySTrelationship(STpredicate T, MObject, Geometry) : boolean
verifyTrelationship(TpredicateT, MObject, Time) : boolean

JAY

|
: realize

«facade class»

Mov ingObjectsAnalysis

MovingObjectsAnalysisSystem::

/

MovingObjectsAnalysisSystem::MObject

- id:int

- classification: ClassificationT
- trackk MPoint

lifecycle: Lifecycle = active

verifyClassification(ClassificationT) : boolean
intervals() : Intervals

instants() : Instants

positions() : Points

trajectory() : Line

startPosition() : Point

endPosition() : Point

clip(Instant) : MPoint
clip(Intervals) : MPoint
clip(Geometry) : MPoint
direction(Instant) : double

«collection»
Mov ingObjectsAnalysisSystem::
MODbj ects

minDirection () : double >

maxDirection () : double

mObject: MObject

changeOfDirection(Instant) : double
minChangeOfDirection() : double
maxChangeOfDirection() : double
speed(Instant) : double

intersection(Geometry) : MObjects
difference(Geometry) : MObjects
substract(Geometry) : MObjects

minSpeed() : double

maxSpeed() : double

distanceTo(Point, Instant) : double
minDistanceTo(Point): double
maxDistanceTo(Point) : double
directionTo(Point, Instant) : double
minDirectionTo(Point) : double
maxDirectionTo(Point) : double
verifySTrelationship(STpredicateT, Geometry) : boolean
birth() : Instant

death() : Instant

activespan() : Intervals

status(Instant) : StatusT
verifyTrelationship(TpredicateT, Time) : boolean

T TR T TR T T T i T S S S A T T A I

Page 42

4.5 Design Model

4.5.2 GML Data Model (PSM)

A PSM is focusing on technical aspects. In case of the GML data model, the
focus is on data definition for XML documents using XML Schema. A mov-
ing object can be modelled as a discrete geographic feature that can
handle all the information about a real world entity, including updates and
history. Its characteristics are recorded as feature attributes. Multiple mov-
ing objects can be accumulated in a feature collection.

class Dynamic Feature/

«XSDcomplexType»

«XSDcomplexType» ! _
DynamicFeature CollectionType

FeatureCollectionType extension

«XSDelement»
+ featureMember: FeaturePropertyType

featyres

0..*

«XSDcomplexType» «XSDcomplexType»
AbstractFeatureType extension DynamicFe atureType

TR

+ name: String

dynamicPfoperties

1

«XSDgroup»
DynamicProperties

«XSDelement»
+ validTime: TimePrimitivePropertyType
+ track TrackType

trdck
0.*

«XSDcomplexType»

MovingObjectStatus Type
«XSDcomplexType» location validTime «XSDcomplexType»
LocationPropertyType @ + speed <& TimePrimitivePropertyType
1 + bearing 1
+ acceleration
+ elevation

stafus
0..1

«XSDcomplexType»
StringOrRefType

Figure 4.7: Dynamic Feature GML Core Schema

To model geographic features in XML, the GML Implementation Specifica-
tion provides 29 GML Core Schemas. The Dynamic Feature Schema (see
Figure 4.7) is appropriate to define spatio-temporal features. The content
model of a dynamicFeatureType extends the standard AbstractFeature-

Page 43

Chapter 4 Project Description

Type with a dynamicProperties model group that contains a history ele-
ment. In GML version 3.1.1, a MovingObjectStatusType is used to encapsu-
late various dynamic properties of moving objects. It's one example of how
an AbstractTimeSliceType, encapsulating the time-varying properties of a
dynamic feature, may be extended.

An Application Schema, defining the data structure of a moving object that
changes its position dynamically over time, was defined based on the Dy-
namic Feature Core Schema (see Figure 4.8). The MovingObjectType ex-
tends the DynamicFeatureType with a sequence of staticProperties, com-
prising the moving objects lifecycle (date of birth and date of death), an
identifier and a classification element. Additionally, the Application
Schema restricts the time property of the track element to a time instant
and the location property to point-shaped position. Finally, dedicated enu-
merations for the dynamic status property and the static classification
property are defined. The XSD file itself is put in Annex B.

Page 44

class Moving Objects

4.5 Design Model

«XSDcomplexType»
DynamicFeature::FeatureCollectionType

«XSDelement»
+ featureMem

ber: FeaturePropertyType

AbstractFeature Type

«XSDcomplexType»
DynamicFeature::
DynamicFe ature Type

extension

extension

«XSDcomplexType»
Mov ingGroupType

+ groupldentifier: Integer

groupMembers

0.7

+ name: String

dynamicHroperties

1

«XSDgroup»
DynamicFeature::DynamicProperties

«XSDelement»
+ validTime: Ti
+ track: TrackTy

mePrimitivePropertyType
pe

«XSDcomplexType»
MovingObjectType

staticPrpperties

1

«XSDgroup»
StaticProperties

+ identifier: String
«XSDelement»

+ dateOfBirth: TimelnstantType
+ dateOfDeath: TimelnstantType

string

«enumeration»
Classification

aircraft
offroad
onroad
railway
watercraft

classification

string

«XSDsimpleType»
ClassificationType

trgck
0.
«XSDcomplexType» exténsion «XSDcomplexType»
DynamicF eature:: < MyMov ingObj e ctStatus Type
MovingObjec tStatus Type
status
+ speed status
+ bearing
+ acceleration
+ elevation
0..1 0..1
«XSDcomplexType» «XSDcomplexType»
DynamicFeature:: restriction StatusType
StringOrRefType
time
validlime |
string
. position
«enumeration»
localtion Status
active
disabled
1 inactive
¢ LA
«XSDcomplexType» «XSDcomplexType»
DynamicF eature:: regtr ction TimeType
TimePrimitivePropertyType <
«XSDelement»
+ timePosition: TimelnstantType
1
¢ ¢
«XSDcomplexTy... «XSDcomplexType»
DynamicFeature:: restri ction PositionType
LocationPropertyType
«XSDelement»

+ pos: PointType

Figure 4.8: Moving Objects Application Schema

453 OWS

Model

The OWS model defines an OpenGIS compliant interface. For each geopro-
cessing functionality, offered by the "IMovingObjAnalysis" interface, a WPS

Page 45

Chapter 4 Project Description

process has to be developed, exemplary done for the crosses process as il-
lustrated in Figure 4.9.

class Web Processing Service /

«interface»
Web Service Common::OGCWebService

+ getCapabilities(request :GetCapabilities) : ServiceMetadata

i

«interface»
WebProcessingService

+ describeProcess(request :DescribeProcess) : ProcessDescription
IMovingObjAnalysis + execute(request :Execute) : ExecuteResponse

i

Processes ::Crosses

+ execute(m :MObject, g :Geometry): boolean

Figure 4.9: Web Processing Service

This means, first of all, the interface has to offer the mandatory getCapab-
ilities() operation which has to be provided by each OpenGIS Web Service.
This operation provides service metadata and, if describing the capabilities
of a WPS, as in this case, additionally the offered processes.

Page 46

4.5 Design Model

«interface»
Web Service Common::OGCWebService

capabilities: ServiceMetadata

+ getCapabilities(request :GetCapabilities) : ServiceMetadata

I

«interface»
WebProcessingService

wpsCapabilities: ProcessOfferings
processlO: ProcessDescription
processOutputs: ExecuteResponse

+ describeProcess(request :DescribeProcess) : ProcessDescription
+ execute(request :Execute) : ExecuteResponse

reqlllest resplbnse
Vv Vv
Describe Process ProcessDescription

Figure 4.10: Describe Process Request &
Response

The remaining two operations are specified by the Web Processing Service
Implementation Specification, which defines the interface to a WPS. The
abstract execute() operation has to be redefined by a specific process
which is performing the specific geoprocessing task.

The describeProcess() operation therefore provides detailed information
about such a process, including the necessary input parameter to invoke
its execution.

4.6 Prototypical Web Service Implementation
A PSM is focusing on technical aspects. In case of the prototype, the focus
is on service implementation using the programming language Java.

The realized Web Processing Service shall only demonstrate the feasibility
of the designed concept in principle and therefore implicates some limita-
tions:

e only the crosses process is exemplary implemented

e no real processing algorithm is accomplished which is analysing the
input data and generating a respective processing result - instead,
just “true” is returned which applies to the used test data

4.6.1 Architectural Approach
Multi-tier architecture:

Page 47

Chapter 4 Project Description

e presentation tier: information presentation, human interface

e business logic tier: data access, data processing / information gener-
ation, result forwarding to presentation tier

e data tier: provision of data, web services as data provider

‘ pkg Multi-Tier Architecture /

Presentation Tier |

A

Business Logic Tier |

<->

Data Tier |

Figure 4.11: Multi-Tier
Architecture

The prototype comprises only the central business logic tier, implemented
as a WPS. The required data are already locally available, so no geodata
access service (like a WFS) is required. The WPS GetCapabilities and De-
scribeProcess requests, using the HTTP GET method and KVP encoding,
are carried out directly as URL in a web browser. For invoking the Execute
request, using the HTTP POST method and XML encoding, a “generic OGC
Web Service client” (see Figure 4.18) was used. The processing result can
be analysed on basis of the XML encoded execute response document and
therefore no client application has to be developed.

The WPS is realized as a web application. In order to process movement
data into valuable information, the web application requests the input data
from the user and returns the processing result, which is either true or
false, as response. In an operational Use Case, which is going beyond the
scope of the prototype realized in this work, a more sophisticated web ap-
plication would encapsulate the WPS: after receiving all necessary input
data, the web application would call the WPS and apply the crosses pro-
cess for each moving object. Finally, the application would return the mov-
ing objects which are crossing the AOI.

The business logic of movement analysis is encapsulated in the WPS pro-

Page 48

4.6 Prototypical Web Service Implementation

cess, the web application is responsible for interaction with the user. The
WPS process for generating this value-added information and the web ap-
plication for communication with the client are implemented using the
Open Source SDI framework deegree.

4.6.2 Java Framework Deegree

Deegree! is a free and Open Source Software (0OSS) framework based on
the OO programming language Java. It is a comprehensive implementation
of OGC and ISO standards. Version 2.1 includes, besides well-established
OWS like WMS or WFS, an implementation of the WPS 0.4.0 specification:

e current deegree version 2.3: pre-version

e used deegree version 2.1: latest stable version, implements GML
version 3.1 and WPS version 0.4.0

class movingObjectsAnalysis /

execute::Process

processDescription: ProcessDescription

+ Process(ProcessDescription)
+ execute(Map<String, IOValue>, OutputDefinitions) : ProcessOutputs
+ getProcessDescription() : ProcessDescription

1

Crosses

LOG: ILogger = LoggerFactory.g... {readOnly}
MOVING_OBJECT: String = "MovingObject" {readOnly}
GEOMETRY: String = "Geometry" {readOnly}
mObject: Object = null

aoi: Object = null

identifier: Code = null

title: String = null

_abstract: String = null

format: String = null

encoding: URI = null

dataType: URI = null

complexValue: ComplexValue = null
literalValue: TypedLiteral = null

+ Crosses(ProcessDescription)

+ execute(Map<String, IOValue>, OutputDefinitions) : ProcessOutputs
readSupportedOutput(ProcessDescription.ProcessOutputs) : void
process() : ProcessOutputs
checkObjCrossesAOl() : Boolean
myProcessingMethod(Feature, Polygon) : Boolean
validate() : boolean
readOutputDefinitions(OutputDefinitions) : void
readSupportedinputs(Datalnputs) : void
readValuesFromInputDefinedValues(Map<String, IOValue>) : void

I%Ure 4.12: Crosses Process

1 According to the mail announcement of Dr. Markus Lupp from 03.01.2008, a Project
Steering Committee (PSC) for the deegree project was formed which aspires the
application of deegree to become an official 0SGeo project

Page 49

Chapter 4 Project Description

"The deegree WPS allows the definition of custom processes by imple-
menting the relevant business logic and configuration of input-/output
parameters through a well-defined XML document."(Kiehle et al., 2007, p.
823) The deegree WPS reference implementation, also described in (Kiehle
et al., 2007) and (Heier & Kiehle, 2006), includes a buffer process as an
example of such a custom process. Accordingly, a crosses process was im-
plemented extending the number of deegree WPS processes (see Figure
4.12 for the respective UML class).

class Invocation Sequence/
http::HTTPServlet|
+ doGet()
+ doPost()
+ init()
HttpServiet
enterprise::AbstractOGCServlet «interface» «interface»
servlet::ServiceDispatcher ogcwebservices::OGCWebService
+ init() + perform() + getCapabilities()
handleException() + doService()
% I I
| |
servlet::0GCServletController : :
+ doService() : :
- sendException() AbstractOWServiceHandler !
doGet() servlet::WPSHandler wps:WPService
- reloadServices()
doPost() + peformg + WPService()
+ init() __«;s;»_> - sendGetCapabilitiesResponse() «use» + getConfiguration()
- initServices() - sendDescribeProcessResponse() + getCapabilities()
- getRequiredInitParameter() - sendExecuteResponse() + doService()
- getServiceList() - sendDirectResponse() o
- produceMessage() ; !
+ ctDestroyed() H \
+ destroy() : H
: ,
1 |
| I |
| I |
I 1 I
| I |
in method doService(), called in in method perform(), a service from depending on the request type, method
doGet() and doPost(), a handler from type WPService isinstantiated and doService() returns a capabilities document or
type ServiceDispathcer is instantiated itsdoService() method invoked instantiates a DescribeProcessRequestHandler
and its perform () method invoked to or rather ExecuteRequestHandler and invoke its
dispatch the request to this handler handleRequest() method

Figure 4.13: Deegree Framework For Building Web Applications

"All infrastructure-specific tasks like error handling, process registration,
and advertisement of metadata in OGC-compliant format as well as subor-
dinate tasks like logging and access constraints are handled by the frame-
work."(Kiehle et al., 2007, p. 823) The deegree framework provides the re-
spective classes to handle HTTP requests and forward a client query to the
Web Processing Service, as illustrated in Figure 4.13. The same applies to
the reverse way concerning the WPS response.

In short, the following steps are necessary to define a custom WPS process
using the deegree framework:

e Definition of a XML configuration document which serves as a tem-

Page 50

4.6 Prototypical Web Service Implementation

plate for the DescribeProcess response (process description docu-
ment) and as configuration file for the WPS inside the deegree
framework. In order to serve as a deegree configuration file, the or-
dinary XML document is extended by special deegree parameter
tags. Such a tag is used to refer to the name of the process imple-
mentation class which is called deegree:responsibleClass

e Implementation of the processing logic by subclassing the abstract
super class org.deegree.ogcwebservices.wps.execute.Process.java

A detailed description of implementing and setting up a custom WPS is giv-
en in the following chapter and outlined in Figure 4.14.

4.6.3 Implementation, Configuration and Deployment

As already mentioned in the chapter before, a Java class realizing a cus-
tom process by subclassing the abstract super class Process.java has to be
implemented. The source code of the Crosses.java class is put in Annex D.

This process class, responsible for handling the incoming requests, has to
be referred in the process description document. This XML document de-
scribes the custom process, especially the input parameters for its execu-
tion. Another response document, the capabilities document, needs to be
adapted to describe common service metadata e.g. the service provider.
Finally, the execute request document, including the input data (further
described in chapter 4.6.4) for process execution, has to be encoded in
XML (all XML files were put in Annex C).

Figure 4.14 illustrates graphically the configuration items of a WPS as well
as their relationships to each other: the red boxes show the aforemen-
tioned XML documents and Java class that need to be developed. The cap-
abilities document refers to a directory where the process description doc-
ument is stored. This in turn holds the name of the process class. The pro-
cess class handles the request invoked through the execute request docu-
ment. This again contains, amongst others, input data from a moving ob-
ject data type, described through the respective GML Application Schema.
The entry point in this sequence, however, is the deployment descriptor,
which refers to the capabilities document. The web application and its
runtime environment is described in the following paragraphs.

In order to get a web application running, first of all, its runtime environ-
ment has to be set up:

Page 51

Chapter 4 Project Description

[deegreeWPS\WEB-INF]

Deployment Descriptor
(web.xml)

<!-- WPS INITIALIZING PARAMETERS -->
Capabilities Document:
wps_capabilities.xm|*“

<< refer >>

[deegree\WPS]

Capabilities Document
(wps_capabilities.xml)

<|-- DEEGREE PARAMETERS -->
Process Directory: ,,processConfigs®

[deegreeWPSVWWEB-
INFiconfiwps]

=< rafar == == yalidate>> i
Process Directory Execute Request Document
i (processConfigs) (crossesExecute.xml)

Process Description Document: <Datalnputs>
.Ccrosses_process_config.xmil" <QutputDefinitions>

ProcessOfferings

[deegree\WPS\client!
requestsiwps\thesis\
Execute\xml]

<< refer => <<input >> |

Process Class
(Crosses.class)

Process Description Document
(crosses_process_config.xml)

<< call==

<!-- DEEGREE PARAMETERS -->
Responsible Class:
norg.deegree.ogcwebservices.wps.execute

[deegreeWPSWWEB-INFi\confuwps\processConfigs]

Public Methods: ,execute()"

[deegreeWPS\WEB-INF\classes\org\deegree!,
ogcwebservices\wps\execute\processes!,
movingObjectsAnalysis]

Figure 4.14: Deegree WPS Configuration

e webserver: Apache HTTP webserver (see remarks concerning devel-
opment & test environment)

e Java servlet container: Apache Tomcat

A web application, in its unpacked form, is defined as a hierarchy of direct-
ories and files in a standard layout. The top-level directory of a web applic-
ation, a subdirectory of Tomcat's webapps directory which is also called
the context path of the application, contains files that comprise the applic-
ation's user interface. The WEB-INF subdirectory contains the web applica-
tions deployment descriptor, a XML file named web.xml, a classes subdir-
ectory containing Java class files, required for the application (servlet and
non-servlet classes, that are not combined into JAR files) and a lib subdir-
ectory containing JAR files. The classes in the WEB-INF/classes/ directory
as well as all classes in JAR files, found in the WEB-INF/lib/ directory, are
made visible to other classes within the web application. If the web applic-
ation gets assigned the context path “deegreeWPS”, then a request URI
http://localhost:8080/deegreeWPS/services? will activate the serviet
mapped to the URL pattern /services.

Page 52

http://localhost:8080/deegreeWPS/services
http://localhost:8080/deegreeWPS/services
http://localhost:8080/deegreeWPS/services

4.6 Prototypical Web Service Implementation

cmp Runtime Environment/

request

gk - oot >

Apache Webserver
Web Browser resp onse
< ——— — —
/|\ T
|

V

Apache Tomcat

resp}mse reqyest
|
|
]

Figure 4.15: Runtime Environment

The webserver receives the requests from a web browser, forwards them
to the Java servlet container for further processing and finally provides the
processing result as response.

cmp Component Model /

Runtime Env ironment:: Runtime Env ironmerﬁE|
Web Browser Apache Webserver

Runtime Environme nt::Apache Tomcafq|

Business Logic::
Serv let

Business Logic::
Web Processing
Service

Figure 4.16: Web Application Component View

The Java servlet container provides an environment to execute Java code
on a webserver. The servlet container is a running Java program where
servlets have to register themselves. After dynamic response generation,
the servlet container returns the processing result to the webserver.

The Java servlet technology makes web applications possible. Servlets are
not compiled Java programs with a main method, they are rather single

Page 53

Chapter 4 Project Description

cmp Business Logic/
Web Archive E
Java Archive E
Serv let 0N Web Processing
\&]
ervice
T
!
descrlbed by
V
Depl oyme nt
Descriptor

Figure 4.17: Web Application Business Logic

classes able to process HTTP methods (at least GET and POST), instanti-
ated and activated by the servlet container on demand. The compiled ser-
vlet together with a deployment descriptor (see Figure 4.12), a XML file
holding meta information about the servlet, and further classes, imple-
menting the business logic “behind” the servlet (in this case performing
the process algorithm by utilizing a WPS), can be packed into a single
archive-file. Such a Web ARchive (WAR file) presents a web application in a
packed form and is used to distribute a web application to be installed.

A WAR file for the buffer WPS, including the deegree infrastructure to
handle HTTP requests (OGC servilet and further classes for building web
applications as illustrated in Figure 4.13), is provided by Dr. Christian
Kiehle on the lat/lon GmbH website for download®.

For the crosses WPS web application, the downloaded and unpacked web
archive from Kiehle was used to create the respective deegree configura-
tion files. InFigure 4.14, the path for each file, relative to the applications
context path, is given in squared brackets.

In order to formulate the WPS execution request using the HTTP POST
method, the generic OGC web service client from deegree was used. A re-
quest URI referring to deegreeWPS/client/client.html will retrieve the start
page of the generic client from the respective directory.

1 URL: http://web.lat-lon.de/~kiehle/WPS.zip

Page 54

4.6 Prototypical Web Service Implementation

| e
deegree

generic 0GC WebService client

Service URL, |http Hocalhostd0d0/deegreeWPS/services SEND! I

Choose exarmple request Examp\eltheswsj Request:lCrnssesExecutexm\ j

<?xml version="1.0" encoding="UTF-8"2> fJ
<wps:Execute service="WPS" version="0.4.0" store="false" status="false" xmlns:ows="http://wow.opengis.net/ows"
xilns:wps="hrop://waw. opengeospatial . net/wps” xmlns:xsi="hrop://www.wd . org/ 2001/ XHLSchena-instance "
x2i:schemalocation="htop://wyw. opengeospatial.nec/wps
C:YDaten’ Dokul OGO\ discusssion paper’y05-007réd_Weh Processing Service WPS_v0_4_ 0%wpsi0.4.0YwpsExecute.xsd"s>
<ows: Identifier>Crosses</ows: Identifiers
<wps:Datalnputs:
<wps: Input>
<ows:Identifier>MovingChject</ovs: Identifiers
<ows:Title>Moving Chject</ows:Title>
<ows:ibstract>Moving object to apply crosses predicate to.</ows:Rbstracty =l

Ows: [tle-Doolcan—/ows: 11Ue. =]
— <ows: Abstract>
Statement expressing whether or not the crosses relationships between the moving object and the geometry is either true or falze
<fows: Abstract=>
<fCrutput>
<fCrutputDefinitions>
— <ProcessOutputs>
— <Output>
<ows:Identifier=Boolean=/ows: Identifier=>
<ows: Title>Boolean=/ows: Title>
— <ows: Abstract>
Statement expressing whether or not the crosses relationships between the moving object and the geometry 1s either true or false
<fows: Abstract>

<fCrutput>

</ProcessOutputs=>
<{ExecuteResponse>

Figure 4.18: Generic OGC Web Service Client

To avoid various exceptions while running the web application, the follow-
ing “best practices” should be ensured, considering common installation
issues as well as customization to the deegree framework:

<LiteralValue>true</Literal Value> J

e avoid blanks in the installation path of Apache Tomcat

e increase the Java Virtual Machine's memory: set JAVA OPTS=-
Xmx768m in catalina.bat

e in the process description document, set the tag <wps:Supporte-
dUOMs/> in the ProcessOutputs section

e in the execute request document:
o set xmlins:ows="http://www.opengis.net/ows" in the XML head

o use a web accessible URL in the schema attribute of the Complex-
Value tag when describing Datalnputs

o set schema and uom attributes of Output tag when describing
OutputDefinitions

On a development & test environment, webserver and web browser can be
located on the same machine. In a production environment, the web
browser would be deployed on a client and the webserver, including the
servlet container, would be deployed on a server. Another simplification is
to use the HTTP server from Apache Tomcat instead of installing a stan-
dalone Apache HTTP webserver - this is sufficient for a development & test
environment, in a production environment an Apache HTTP webserver
would be utilized.

Page 55

http://www.opengis.net/ows
http://www.opengis.net/ows
http://www.opengis.net/ows

Chapter 4 Project Description

deployment Deployment Model /

«device»
Client

Runtime Env ironment::
Web Browser

HTTP

«device»
Server

Runtime Environment::Apache Webserver

Runtime Environme nt::Apache Tomcat

Business Logic::
Web Archive

View

4.6.4 Test Area And Data

4641 Case Study

A vehicle is driving from the city of Meersburg to the city of Constance.
This means, the vehicle has to overcome the Lake Constance which separ-
ates the journey's starting point from the destination. This can be done
either by driving around the lake or by crossing the obstacle using a car-
ferry. The vehicle in this case study, illustrated as yellow trajectory, is
crossing the lake using a car-ferry.

The goal is to find out which alternative the vehicle was going to choose
utilizing a WPS.

Page 56

4.6 Prototypical Web Service Implementation

Figure 4.20: Case Study
4.6.4.2 Outline Of Spatio-Temporal Problem

The approach is to check the validity of a particular development, moving
object crosses AOI, which means the change of topological relationships
between a moving objects' geometry and a polygon geometry over the
moving objects' lifetime. For this purpose, a spatio-temporal crosses pre-
dicate is applied.

The following input data sets, GML! encoded, were required:

e moving object: Garmin's MapSource tool was used to create a track.
The single track points were defined on top of a digital road map and
stored in the GPX format. Finally, the coordinates of the track points
were carried over in a GML file to define a moving object geometry.

e polygon: a topographic vector map was used to generalize the ap-
proximate shape of the Lake Constance and the resulting coordin-
ates were carried over in a GML file to define a polygon geometry.

1 The GML files itself are outlined in Annex C

Page 57

5 Results

This chapter provides an overview of the achieved results with regard to
the expectations, expressed in the questions outlined in chapter 1.4.

Is it possible to apply methods from project management and software en-
gineering to elaborate a geospatial processing problem?

First of all, a project plan was created to define the necessary develop-
ment activities, to set up a time schedule including milestones and to con-
trol the project's progress. A model driven SW development approach ac-
cording to the principles of MDA led to a comprehensive visual UML model
incorporating all the analysis concepts and the software design developed
during the SW engineering process. Due to the fact that the UML is pro-
cess independent, applicable across all domains and additionally opened-
ended for extensions, this modelling language was used to design the geo-
processing functionality in a Use Case driven, architecture centric, iterat-
ive and incremental approach.

Is it possible to take over concepts from conceptual spatio-temporal mod-
elling and Moving Objects Databases in the software design?

The developed design model incorporates a Platform Independent Model
(PIM), called abstract class model, that defines an interface for moving ob-
jects analysis. The operations, offered by this interface, were carried over
from spatio-temporal modelling, as describe in the MADS approach, and
from Moving Objects Databases, respectively.

Is it possible to define processes for moving object analysis based on the
OGC WPS Implementation Specification?

In the OWS model, own WPS processes were defined to describe and web-
enable functionality for moving objects analysis. The WPS interface stand-
ardizes the way, how processes and their input and output data are de-
scribed and how a client can request a process execution. The actual data
processing is encapsulated by the generic WPS interface and executed by
the custom processes. Because WPS processes are not coupled to the data
they operate on, they can be reused in any context or, due to their atomic
character, orchestrated into service chains or rather integrated with other
OpenGIS Web Services to form higher-level services.

Is it possible to use the GML Dynamic Feature Core Schema to model a
moving object Application Schema?

The Dynamic Feature Schema defines a number of types and relationships
to represent time-varying properties of geographic features. A dynamic
feature therefore extends a geographic feature about dynamic properties.
A TimeSlice element is an abstract GML object that encapsulates updates
of dynamic properties. A MovingObjectStatus extends the abstract

Page 59

Chapter 5 Results

TimeSlice to represent a track. The developed Application Schema put
some restrictions on the track type allowing only a time instant type as
valid time, a point type as location and a custom enumeration as status.
Finally, a group element was defined in the Application Schema represent-
ing a moving object's static properties.

Is it possible to utilize the deegree SW framework to implement a proto-
typical WPS to proof the defined concept?

The deegree framework handles all infrastructure-specific tasks like error
handling, logging and process registration. The deegree WPS allows the
definition of custom processes. A crosses process, implementing the pro-
cessing logic for a moving objects analysis functionality, was implemented
by subclassing the abstract process super class. A respective XML config-
uration document for the WPS inside the framework was defined. In a spe-
cial deegree parameter tag, an ordinary XML process description docu-
ment, describing especially the input parameters to execute the process,
was extended to refer to the crosses class. Another response document,
the capabilities document, was adapted describing common service
metadata e.qg. the service provider of the crosses WPS. Finally, the execute
request document, including the input data for the process execution, was
encoded in XML.

Page 60

6 Analysis of Results

In general, the achieved results met the expectations existing in the run-
up to this Thesis.

The chosen model driven development approach was optimally adapted to
analyse and design the SW architecture. A Use Case driven process yiel-
ded to initial functionality which was iteratively and incrementally en-
hanced

e considering spatio-temporal concepts

e be compliant with the OpenGIS Web Processing Service Implementa-
tion Specification

e containing implementation and platform specific details.

The project plan, only marginally updated during the project phase, was a
crucial measure in order to finalize the work in time.

Data types, operations and predicates from conceptual spatio-temporal
modelling, as addressed in the MADS approach, could be integrated in the
Platform Independent Model without much effort because both models are
free from implementation specific details. The same is valid for an abstract
Moving Objects Database model, discrete data structures and SQL-like
gueries however had to be translated from the “relational database world”
into the “object oriented world”.

Because a WPS is able to offer all sorts of GIS functionality, it can be also
applied to moving objects analysis. The WPS, as described in the respect-
ive OGC Implementation Specification, offers a generic interface that can
be used to describe and web-enable any geospatial process. A custom pro-
cess is executing the actual data processing while the standardized WPS
interface specifies how input and output data are described and the ser-
vice request is handled.

The GML Dynamic Feature Schema can be utilized for any kind of time-
varying features. The Core Schema offers an abstract element that can be
extended to represent the dynamic properties of a moving object. In GML
version 3.2.1, a respective track element is included as a normative
schema component and therefore has not to be developed in the Applica-
tion Schema. In the latest version, this element was deprecated and used
instead as an informatively example. In order to keep the effort for the Ap-
plication Schema as low as possible, GML version 3.2.1 was applied.

The deegree SW framework is an OWS reference implementation including
also Java classes to realize an OpenGIS compliant WPS. The latest stable
deegree version, however, supports not the latest WPS version 1.0.0, in-
stead the predecessor version 0.4.0. The capabilities documents therefore
have to be encoded according to the schema definitions of this prior ver-

Page 61

Chapter 6 Analysis of Results

sion. The deegree WPS allows the definition of custom processes by sub-
classing an abstract super class. This can be done according to the buffer
process, which is part of the framework. The XML documents have to be
enhanced with the necessary deegree parameters in order to get the ser-
vice to run. For this purpose, the respective buffer files can be adapted to
the own process' needs. In order to have all properties of a moving object
available in the course of implementing the crosses process business logic,
a respective data type should be defined in the deegree framework.

Page 62

7 Summary, Discussion, Outiook

7.1 Summary

This chapter is summarizing what the author has done during this work.

First of all, a literature survey was conducted in order to get a picture of
current developments in spatio-temporal modelling and web-enabled,
standardized geoprocessing research.

The question about a proper methodical approach for software engineering
and project management led to a UML model and a project plan.

In the early software design, concepts from conceptual spatio-temporal
modelling and Moving Objects Databases were applied and a platform in-
dependent design model was developed. In order to offer this functionality
through an interoperable geoprocessing service, a WPS process, describ-
ing and web-enabling functionality for moving objects analysis, was mod-
elled. The WPS Implementation Specification requires GML encoding for
the process input data: therefore, an Application Schema, based on the
Dynamic Feature Core Schema, defining the data structure of a moving
object, was developed.

In order to demonstrate the feasibility of the designed concept, a web ap-
plication, based on the deegree SW framework, was prototypically imple-
mented. The crosses process was coded as a Java class, the deegree
framework configured and the runtime environment established. Finally,
the accurate request-/ response behaviour for all three mandatory WPS in-
terface operations could be demonstrated.

7.2 Discussion

This Thesis connects concepts that are innately discrete: analysis of mov-
ing objects and OpenGIS Web Services. By identifying moving objects as
spatio-temporal entities with a time-varying position and moving objects
analysis as a geoprocessing task, the OGC standards framework contains
the proper measures to implement a standardized, distributed processing
service:

e the OWS Implementation Specification for a Web Processing Service
interface

e the Geography Markup Language with the Dynamic Feature Schema

The professional literature is using different terms in order to denominate
spatio-temporal data types. While (Guting & Schneider, 2005) use the
term temporal respectively moving spatial type, (Parent et al., 2006) use

Page 63

Chapter 7 Summary, Discussion, Outlook

the term time-varying spatial type. Caution is advised as well when using
the terms time and temporal data type respectively.

The deegree framework provides the infrastructure to implement OpenGIS
Web Services in general and custom WPS processes in particular. Because
it follows the OO principles of abstraction, encapsulation, modularity and
hierarchy, comprehensive web applications can be build very fast. The de-
veloper can concentrate on the business logic and don't have to care
about underlying infrastructure-specific tasks that are handled by the
framework.

In order to configure the deegree WPS, deegree specific tags are required
in the capabilities and process description document. Because these dee-
gree parameters are not part of the standard XML Schema, a schema val-
idation yields to an incorrect result. The author's recommendation there-
fore is to first develop pure standard conform XML documents, validate
them against the respective schema definitions and finally insert deegree
specific parameters. Additionally, the deegree WPS implementation re-
quires some definitions, necessary in order to avoid exceptions at runtime,
that are not mandatory to implement concerning the implementation spe-
cification. The author suggests to revise these parts of the deegree WPS in
an upcoming release.

As already denoted, there are some pitfalls to go around in order to get
the final web application running. This refers to installation and configura-
tion as well as the WPS itself. Some of them are listed as “best practices”
in chapter 4.6.3. The author recommends to set up a WPS Implementation
Guide closing implementation specific gaps essential for developers to im-
plement the standard in a common and interoperable way. The deegree
specific parameters as well as “best practices” could be part of such an
Implementation Guide, which is one of the three pillars, besides the Imple-
mentation Specification itself and a prototype, interoperability projects are
based on.

7.3 Outlook

7.3.1 Generalisation of Proposed Solution

This Thesis focused on spatio-temporal processing functionality for moving
points: in a more general approach, all kinds of time-varying objects, also
spatio-temporal object types with a time-varying spatial extent, moving re-
gions, have to be considered.

Another restriction was given by considering only Use Cases from a single
business domain. In order to come closer to a complete set of operations
and data types for spatio-temporal analysis and therefore to get
something like a “Spatio-Temporal Algebra”, other business domains and
respective Use Cases have to be considered. Possible business domains,
dealing with similar topics, could be public transportation (traffic telemat-
ics), fleet management and Supply Chain Event Management (SCEM).

Page 64

7.3 Outlook

7.3.2 Proposed Steps For Continuation of Work

After finishing this work, there are some topics remaining for future activit-
ies.

Instead returning a static defined processing result, the implemented
crosses process could be extended about real processing algorithms. For
example, a Moving Objects Database could be applied in order to perform
process execution.

Furthermore, other processes could be implemented and optionally called
by a more sophisticated web application encapsulating the WPS. In order
to realize complex processing workflows, web services could be orches-
trated to service chains. A WFS could be employed as geodata access ser-
vice, providing the necessary input data for a WPS that delivers the pro-
cessing result to a WMS to prepare a map based visualisation. An orches-
tration engine as central service chaining unit and a rule engine to enforce
specific workflow rules, organised in a Web Service Orchestration (WSO?)
framework, could enhance an ordinary OWS based web application with
additional functionality and flexibility. Such a web application would re-
quire a more sophisticated client application with a map front end as well
in order to be able to display a map based processing result.

Another possibility to continue this work could be the consideration of per-
formance aspects. This includes questions like process distribution (num-
ber of processes for WPS, number of WPS per server), application of grid
computing and other performance issues like caching, data granularity or
asynchronous communication as described in (Kiehle et al., 2006b).

Also an important topic are current investigations into the semantic geo-
spatial web. Semantic interoperability is a crucial extension of syntactic in-
teroperability on the way to intelligent web services.

A more general future task is to support current SDI developments and
other GIS interoperability initiatives (like GIPSIE? or Digital Earth) to pro-
mote the development of OpenGlS in general and geoprocessing services
in particular.

1 Kiehle et al., 2007
2 GIS Interoperability Project Stimulation the Industry in Europe

Page 65

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Guting, Ralf Hartmut; Schneider, Markus. Moving objects data-
bases, 1% ed.; Data Management Systems; Morgan Kaufmann; El-
sevier Morgan Kaufmann: Amsterdam, 2005, Vol. 1.

Heier, Christian; Kiehle, Christian. Automatisierte
Liegenschaftsauskunft mittels OGC Web Processing Service. GIS -
Zeitschrift far Geoinformatik 2006, 7/2006 (7) 12-16.

Mastering Object-Oriented Analysis and Design with UML, |IBM
Rational University, 2003.

Kiehle, Christian. Business logic for geoprocessing of distributed
geodata. Computers and Geosciences 2006, 32 (10) 1746-1757.

Kiehle, Christian; Heier, Christian. Entwicklung eines Geoprocessing
Moduls zur Informationsgewinnung aus distributiven Geodaten. GIS
- Zeitschrift fur Geoinformatik 2004, 6/2004 (6) 26-31.

Kiehle, Christian; Heier, Christian. Standardisierte
Geodatenverarbeitung im Internet - der OGC Web Processing
Service. GIS - Zeitschrift fur Geoinformatik 2005, 6/2005 (6) 39-
43,

Kiehle, Christian; Heier, Christian; Greve, Klaus. Standardized
Geoprocessing. Taking Spatial Data Infrastructures one Step
Furtherhttp://www.agile2006.hu/papers/a273.pdf.

Kiehle, Christian; Heier, Christian; Greve, Klaus. Requirements for
Next Generation Spatial Data Infrastructures — Standardized Web
Based Geoprocessing and Web Service Orchestration. Transactions
in GIS 2007 (11(6)) 819-834.

Kiehle, Christian; Scholten, Marius; Klamma, Ralf. Evaluating
Performance in Spatial Data Infrastructures for Geoprocessing.
IEEE Internet Computing 2006, 10 (5) 34-41.

Lohmar, Frank. MDA: QVT - Der neue OMG Standard., Borland.

Miler, H. J., Han, J., Miller, H.)., Eds.: Geographic Data Mining and
Knowledge Discovery, 1% ed.; Research monographs in geographic
information systems; Taylor & Francis: London, 2001.

OGC Implementation Specification; OGC 05-007r7. Web Processing
Service; Open Geospatial Consortium Inc., 08.06.2007.

Open GIS Specification; 06-121r3. OGC Web Service Common
Specification; Open Geospatial Consortium Inc., 09.02.2007.

OGC Reference Model; OGC 03-040. OGC Reference Model; Open

Page 67

[15]

[16]

[17]

[18]

Page 68

Bibliography

Geospatial Consortium Inc., 16.09.2003.

Parent, Christine; Spaccapietra, Stefano; Zimanyi, Esteban;
Zimanyi, Esteban. Conceptual modeling for traditional and spatio-
temporal applications: The MADS approach, 1%t ed.; Springer:
Berlin, 2006.

Roddick, John F.; Lees, Brian G. Paradigms for spatial and spatio-
temporal data mining. In Geographic Data Mining and Knowledge
Discovery. Miler, H. J., Han, J., Miller, H. J., Eds. Research
monographs in geographic information systems Taylor & Francis:
London, 2001.

Stollberg, Beate; Lutz, Michael; Ostlander, Nicole; Bernard, Lars.
Geoprozessierung in Geodateninfrastrukturen - Aufgaben fur die
nachste Generation. GIS - Zeitschrift fur Geoinformatik 2007,
4/2007 (4) 22-27.

Straub, Florian; Donaubauer, Andreas; Lowis of Menar, Olaf von.
Webbasierte Verschneidung verteilter Geodaten fur die forstliche
Standortserkundung. GeoBIT 2004, 11/2004 (11) 30-31.

UML Model
Domain Model

Annex A

object Domain Model (CIM) /

«enumeration»
StatusType
active
inactive
disabled
+status
«entity» . «entity»
MovingStatus +ime | Timelnterval
+time-varying status
«enumeration» +start +end
ClassificationType) -
T «entity» +bith «entity»
onroad +classification MovingObject Timelnstant
offroad - -
aircraft - id: Integer datetime: int
railway +death
watercraft +time
+track
«entity»
Mov ingPoint
+position
«entity»
Point
Xx: int
y: int

Domain Model (CIM)
Package: Business Domain Model

Domain Model (CIM)::ClassificationType
Class: Possible values a classification type can adopt.

Domain Model (CIM)::ClassificationType Attributes

Page 69

Annex A

_ Attribute Type

onroad private :
int

offroad private :
int

aircraft private :
int

railway private :
int

watercraft private :
int

Domain Model (CIM)::MovingObject
Class: Object, changing its position over time

Domain Model (CIM)::MovingObject Attributes

_ Attribute Type
id private :
Integer

Domain Model (CIM)::MovingObject Methods

Method Type

crosses () public: void
enter () public: void
leave () public: void
inside () public: void
meet () public: void
disjoint () public: void
verifyClassification () public: void
intersects () public: void
finalPosition () public: void
initialPosition () public: void
positionAtTime () public: void
addToGroup () public: void
direction () public: void
changeOfDirection () public: void
speed () public: void

Domain Model (CIM)::MovingPoint
Class: If the moving object has no spatial extension, its track consists of a number of points.

Domain Model (CIM)::MovingStatus
Class: Status of the moving object which is also time-varying.

Domain Model (CIM)::Point
Class: Position of a moving point expressed using coordinates

Domain Model (CIM)::Point Attributes

_ Attribute Type
X private :
int
y private :
int

Domain Model (CIM)::Point Methods
Method Type
distance () public: void

Page 70

convexHull ()

" public: void

Domain Model (CIM)::StatusType

Class: Possible values a status type can adopt.

Domain Model (CIM)::StatusType Attributes

_ Attribute Type
active private :
int
inactive private :
int
disabled private :
int

Domain Model (CIM)::Timelnstant
Class: Point in time for which a moving point is valid respectively birth and death of a moving object

indicating its lifetime. Time instants also indicate the start and end of a time interval.

Domain Model (CIM)::Timelnstant Attributes

_Attribute Type \
datetime private :
int

Domain Model (CIM)::Timelnterval

Class: Timespan for which a moving status is valid.

Requirements Model

Domain Model

Page 71

Annex A

Non-Functional Requirements

rag Noa-Furelicnai Reauire nenis

Services shall be
coarse-grained.

Services shall be

repeatable.

Services shall be
atomar.

Services shall be
stateless.

Interfaces shall be independent
from implementation technology.

OWS shall support the easy
and seamless introduction of
new technologies and the
evolution of existing ones.

OWS shall be agile to be able to
adapt to changing business rules
and operational requirements.

OWS shall provide for robustness

and consistent error handling and
recovery to support mission-critical
systems development.

OWS shall accommodate
authentication, security and privacy
features and support asset protection.

OWS shall be platform independent
concerning DCP, hardware, OS,
programming language and encodings.

OWS shall support implementations of
N-tiered, component architectures.

OWS shall support standard interfaces and
metadata while accommodating the use of
other complementary standards and
specificationsin environments where
OpenGIS specifications are implemented.

OWS shall support interoperab

collaboration and negotiation.

specifying interface definitions, service
descriptions and protocols for software

ility by

OWS shall accommodate
independently developed
implementations of a service and
many independently provided
instantiations of different types of
services.

OWS shall accommodate a
wide range of data policies.

OWS shall be vendor
and data neutral.

OWS shall be

Non-Functional Requirements

format independent.

data content

Package: Non-functional requirements to services in general and OWS in particular

Interfaces shall be independent from implementation technology.

OWS shall accommodate a wide range of data policies.

OWS shall accommodate authentication, security and privacy features and support asset

protection.

OWS shall accommodate independently developed implementations of a service and many

independently provided instantiations of different types of services.

OWS shall be agile to be able to adapt to changing business rules and operational

requirements.

OWS shall be data content format independent.

OWS shall be platform independent concerning DCP, hardware, OS, programming language

and encodings.

OWS shall be vendor and data neutral.

OWS shall provide for robustness and consistent error handling and recovery to support
mission-critical systems development.

Page 72

Requirements Model

OWS shall support implementations of N-tiered, component architectures.

OWS shall support interoperability by specifying interface definitions, service descriptions and
protocols for software collaboration and negotiation.

OWS shall support standard interfaces and metadata while accommodating the use of other
complementary standards and specifications in environments where OpenGIS specifications

are implemented.

OWS shall support the easy and seamless introduction of new technologies and the evolution

of existing ones.

Services shall be atomar.

Services shall be coarse-grained.

Services shall be repeatable.

Services shall be stateless.

Use Case Model

uc Use Case Model /
Category Detection

Mov ement Analysis

P=Y + Detect Aerial Objects E + Recognize Movement Pattern

[=] + Detect Offroad Objects

[=] + Detect Onroad Objects

[=] + Detect Rail-Bound Objects Border Surveillance

[=1+ Detect Water-Bound Objects

E + Detect LOI Crossing Objects

Spatial Distribution Analysis

[=1 + Detect Origin

f=1+ Detect Platoon

f=1 + Detect Sink

[=] + Recognize Time Dependent Object Concentration

Area Surveillance

[=] + Detect AOI Crossing Objects
[=] + Detect Objects Starting Up
[=] + Detect Stopping Objects

Actors

n+ Analyst

Use Case Model

Package: Functional Requirements, expressed as Use Cases

Page 73

Annex A

Actors

Actors

uc Actors /

Analyst

Package: External environment, user how interacts with the system

Category Detection

uc Category Detection /

Detect Aerial Objects

Detect Offroad
Objects

Detect Onroad
Objects

Analyst

(from Actors)

Detect Rail-Bound
Objects

Detect Water-Bound
Objects

Category Detection

Package: Use Case package

Page 74

Detect Aerial Objects

Use Case Model

analysis Detect Aerial Objects /

Client MovingObject MovingObject
Analyst
(from Actors)
|sdDeiect Aeriai Tbjecis /o
:Analyst
] Client :MovingObject :MovingObject
i detectAerialObjects() E E E
>_ 1 [
executeOperation() E E
verifyClassification() '
B
S 5
Systered-Friaty | e

Page 75

Annex A

Detect Offroad Objects

sd Uelect \)I’Iro.ac Juj ex.ls

! Cllent
!
!
1

|
[l
'

L

detectOffroadObjects(L

executeOperation()

0 O O

:MovingObject

|
I
[l
'
[l
'
'
|
'
[l

e

S
S

verifyClassificati

E

:MovingObject

on()

aeeeo]

Detect Onroad Objects

sd Denecn Onroad O-u ecs

detectOnroadObjects(L !

executeOperation()

o]

:Mov ingObject

LS e

! :Client

verifyClassification()

<

[|

:MovingObject

Page 76

Detect Rail-Bound Objects

{ sd Detect Rail-Bound Objects

i

:Analyst

detectRailboundObjects()
el

:Client :MovingObject :MovingObject

Use Case Model

executeOperation()

verifyClassification()

Detect Water-Bound Objects

<
Commmme oo 5
ey s s
sidetectWaiBoundobjects
:Analyst
! :Client :MovingObject :MovingObject
E detectWaterboundObjects&: i :
executeOperation() H H
i
verifyClassification() !
G
- mme oo !
AR ! E

Page 77

Annex A

Area Surveillance

uc Area Surveillance /

Detect AOI Crossing
Objects

Detect Objects
Starting Up

Analyst

(from Actors)

Detect Stopping

Objects

Area Surveillance
Package: Use Case package

Detect AOI Crossing Objects

analysis Detect AOI Crossing Objects /

Client MovingObject MovingObject
Analyst

(from Actors)

Page 78

sd Detect AOI Crussing Gbjecis]

X

:Analyst
1

[l
[l
'

-

detectAOICrossingObjects()

:Client

executeOperation()

g

. C . C ___.

:Mov ingObject

crosses()

Sy S 7 S 7 S

Use Case Model

:MovingObject

enter()

leave()

Detect Objects Starting Up

| analysis Detect Obiects Starting 'Jp /

O—0—0

Client

Analyst

(from Actors)

MovingObject

MovingObject

Page 79

Annex A

| saDetect Gojects SiaringUp /-
:Analyst
! Client :MovingObject :MovingObject
1 detectStartingUpObjects() E E E
il ; :
executeOperation() E E
leave i
0 >
inside()
meet()
disjoint()
DG LT T
e moonn oo !
DOMMMAEEERRREERER bR : :
Detect Stopping Objects
analysis Detect Stopping Objects /
lient Movi ject i j
Analyst Clien ovingObjec MovingObject
(from Actors)

Page 80

sa Deieci Stoppirg Objecis 7

X

:Analyst
1

detectStoppingObjects()

:Client :MovingObject

executeOperation()

1
[l
[l
'
[l
'
|
I
[l
I

L

Use Case Model

:Mov ingObject

enter()
disjoint()
meet()
inside()
<.
o mmmmmmmeee e eenee o E
I E E
Border Surveillance

Border Surveillance

uc Border Surveillance /

Analyst

(from Actors)

Package: Use Case package

Detect LOI Crossing

Objects

Page 81

Annex A

Detect LOI Crossing Objects

I sd Detect LOi Grossing ij;;tsi]

X

:Analyst
! :Client :MovingObject :MovingObject

detectLOICrossingObjects()
>

executeOperation() é
crosses() > ;
disjoint()
intersects()
disjoint()
<.
PR g
A
Spatial Distribution Analysis
uc Spatial Distribution Analysis /
Recognize Time |
Dependent Object
Concentration
Detect Origin |

Analyst

(from Actors)

Detect Platoon

Page 82

Use Case Model

Spatial Distribution Analysis
Package: Use Case package, usage of geostatistic, Point Pattern Analysis

Detect Origin

— £ 1

analysis Detect Origin /

00—

Client MovingObject MovingObject Point

Analyst

(from Actors)

sd Detect Origin

L0 Q0 9 Q

] :Client :Mov ingObject :MovingObject :Point
1 [[

detectOrigin() _ !
g),_

executeOperation()

initialPosition()

distance()

convexHull()

RS [DRSS

E—
e

Geostatistic:
- Determination of spatial point distribution with methods like Nearest Neighbour Statistic
- Identification of spatial cluster (significance test for point distribution)

Page 83

Annex A

Detect Platoon

sa Detect Flatoon /

|

detectPlatoon()

executeOperationq

Geostatistic

positionAtTime()

addToGroup()

Detect Sink

[sd Detect Sink

b QO Q Q

] :Client :MovingObject :MovingObject :Point
i ! !

i !
!
!

detectSink()

executeOperation()

'
1
|
i
! | Geostatistic
i
finalPosition() E

\

distance(),

e ®-----D---1

A
R

10 O 0 0

i :Client :MovingObject :MovingObject :Point)
1 T T 1

convexHull()

Page 84

Use Case Model

Recognize Time Dependent Object Concentration

su Recoygnize’ nrne cupenuem Object wncemrdtuon

L O RO OO

Cllent Movqubject MovqubJect :Point

detectO bjectConcentratior& E

executeOperation(i

[l
[l
I
'
|
I
[l
1
I
'
|
|
'
[l
[l

-

\
\
\

positionAtTime“

1
Ll
Ll
Ll
1
1
1
:
Ll
Geostatistic !
1
Ll
Ll
Ll
1
1
1
Ll

distance() ‘\‘

convexHull()

A

Movement Analysis

uc Movement Analysis /

Recognize

Movement Pattern

Analyst

(from Actors)

Movement Analysis
Package: Use Case package

Page 85

Annex A

Recognize Movement Pattern

Page 86

analy5|s Recogmze Movement Pattern /

Client MovingObject
Analyst

(from Actors)

MovingObject

sd Recognice Movement Pauem

1
Ll
Ll
detectMovementPatternk_:

executeOperation()

e
R

L0 O 0

:Client :MovingObject :MovingObject

direction()

changeOfDirection(I i

speed() E

nregistored,I1

Analysis Model

Analysis Model::Client

class Analysis Model

«entity»
Point

- xint

«boundary»
Client

+ + + + + + + + + + + + + +

detectAQOICrossingObjects() : void
detectStartingUpObjects() : void
detectStoppingObjects() : void
detectAerialObjects() : void
detectOffroadObjects() : void
detectOnroadObjects() : void
detectRailboundObjects() : void
detectWaterboundObjects() : void
detectLOICrossingObjects() : void
detectOrigin() : void

detectSink() : void
detectObjectConcentration() : void
detectPlatoon() : void
detectMovementPattern() : void

«control»
MovingObject

+ executeOperation() : void

«entity»
MovingObject

id: Integer

-y int

+ distance() : void
+ convexHull() : void

crosses() : void

enter() : void

leave() : void
inside() : void
meet() : void

disjoint() : void
verifyClassification() : void
intersects() : void
finalPosition() : void
initialPosition() : void
positionAtTime() : void
addToGroup() : void
direction() : void
changeOfDirection() : void

+ + 4+ + + + + + + + + + + + o+

speed() : void

Class: User Interface, presentation layer

Analysis Model::Client Methods

Method Type |
detectAOICrossingObijects () public: void
detectStartingUpObjects () public: void
detectStoppingObjects () public: void
detectAerialObjects () public: void
detectOffroadObijects () public: void

Analysis Model

Page 87

Annex A

detectOnroadObjects () public: void
detectRailboundObjects () public: void
detectWaterboundObijects () public: void
detectLOICrossingObijects () public: void
detectOrigin () public: void
detectSink () public: void
detectObjectConcentration () public: void
detectPlatoon () public: void
detectMovementPattern () public: void

Analysis Model::MovingObject
Class: Controller, decouples User Interface from business logic

Analysis Model::MovingObject Methods

Method

Type

executeOperation ()

public: void

Abstract Class Model

class Besign Madel ,/J

Abstract Class Model (PIM)

+ IMovingObjAnalysis
+ MovingObjectsAnalysisSystem

create service

_....................----->E+ Web Service Common

create service implementation>

create persistence

Page 88

OWS Model

+ Web Processing Service

(from Implementation Model)

Java Model (PSM)

+ javax
+org

(from Implementation Model)

GML Data Model (PSM)

.......................... S + DynamicFeature
+ MovingObjects

(from Implementation Model)

Abstract Class Model

class Abstract Class Model (PIM) /

«interface»
IMovingObjAnalysis

il il il

checkCategory(MObject, ClassificationT) : boolean
intervals(MObject) : Intervals
instants(MObject) : Instants
positions(MObject) : Points
trajectory(MObject) : Line
startPosition(MObject) : Point
endPosition(MObject) : Point

clip(MObject, Instant) : MPoint

clip(MObject, Intervals) : MPoint
clip(MObject, Geometry) : MPoint
direction(MObject, Instant) : double
minDirection(MObject) : double
maxDirection(MObject) : double
changeOfDirection(MObject, Instant) : double
minChangeOfDirection(MObject) : double
maxChangeOfDirection(MObject) : double
speed(MObject, nstant) : double
minSpeed(MObject) : double
maxSpeed(MObject) : double

distance To(MObject, Point, Instant) : double
minDistance To(MObject, Point) : double
maxDistanceTo(MObject, Point) : double
directionTo(MObject, Point, Instant) : double
minDirectionTo(MObject, Point) : double
maxDirectionTo(MObject, Point) : double
birth(MObject) : Instant

death(MObject) : Instant

activespan(MObject) : Intervals
status(MObject, Instant) : StatusT
verifySTrelationship(S Tpredicate T, MObject, Geometry) : boolean
verifyTrelationship(Tpredicate T, MObject, Time) : boolean
intersection(MObjects, Geometry) : MObjects
difference (MObjects, Geometry) : MObjects
substract(MObjects, Geometry) : MObjects

A

]
realize

'
'
'
'

«facade class»

MovingObjectsAnalysis

Mov ingObj ectsAnalysisSystem::

/

MovingObj

Object

id: int

classification: ClassificationT
track: MPoint

lifecycle: Lifecycle = active

FoF ok ok F A ko F o ok ok F kb b+ o+ o+ ok F ok F o+ o+ o+

verifyClassification(ClassificationT) : boolean

intervals() : Intervals

instants() : Instants

positions() : Points

trajectory() : Line

startPosition() : Point
endPosition() : Point

clip(Instant) : MPoint
clip(Intervals) : MPoint
clip(Geometry) : MPoint
direction(Instant) : double
minDirection() : double
maxDirection() : double
changeOfDirection(Instant) : double
minChangeOfDirection() : double
maxChangeOfDirection() : double
speed(Instant) : double
minSpeed() : double

maxSpeed() : double
distanceTo(Point, Instant) : double
minDistanceTo(Point) : double
maxDistanceTo(Point) : double
directionTo(Point, Instant) : double
minDirectionTo(Point) : double
maxDirectionTo(Point) : double

verifySTrelationship(STpredicateT, Geometry) : boolean

birth() : Instant
death() : Instant
activespan() : Intervals
status(Instant) : StatusT

verifyTrelationship(T predicateT, Time) : boolean

«collection»

MovingObjectsAnalysisSystem::

MObjects

mObject: MObject

+

+

intersection(Geometry) : MObjects
difference(Geometry) : MObjects
substract(Geometry) : MObjects

Page 89

Annex A

pkg Abstract Class Model (PIM)/

MovingObjectsAnalysisSystem |J‘|

+ Geometry
+ Instant

+ Instants
+ Interval

+ Intervals
+ Lifecycle
+ Line

+ MGroup
+ MObject
+ MObjects
+ MovingObjectsAnalysis
+ MPoint

+ MReal

+ MStatus
+ Point

+ Points

realize

IMovingObjAnalysis

+ Surface

+ Time

+ TimeSpan

|+ Enumerations

=]
=]
=
=]
=
=]
=
=
=
=
=
=
=
=
=
=
=
=]
=
=]
=
=]
=
=]
=
=]
=
=]
=
=
=
=
=
=
=
=
=
=

Abstract Class Model (PIM)::IMovingObjAnalysis
Interface: services, offered by the MovingObjectsAnalysisSystem

Abstract Class Model (PIM)::IMovingObjAnalysis Interfaces

Method Type Notes
checkCategory (MObject, | public: boolean param: m [MObject - in]
ClassificationT) param: c [ClassificationT -in]

Testing whether the moving object complies with
the specified classification.

intervals (MObject) public: Intervals param: m [MObject - in]

Returns the set of time intervals between the
single track points.

instants (MObject) public: Instants param: m [MObject - in]
Returns the set of instants for which a track point
is defined.

positions (MObject) public: Points param: m [MObject - in]

Returns the set of track points for which an
instant is defined when the moving object is
projected into the plane.

trajectory (MObject) public: Line param: m [MObject - in]

Returns the line when the moving object is
projected into the plane.
startPosition (MObject) public: Point param: m [MObject - in]

Returns the first track point of the moving object's
lifespan.

Page 90

endPosition (MObject)

public:

Point

Abstract Class Model

param: m [MObject - in]

Returns the last track point of the moving object's
lifespan.

clip (MObject, Instant)

public:

MPoint

param: m [MObject - in]
param: i [Instant - in]

Returns the point/instant pair that is defined for
the particular instant i.

clip (MObject, Intervals)

public:

MPoint

param: m [MObject - in]
param: i [Intervals - in]

Returns the portion of the track that is defined for
the particular intervals i.

clip (MObject, Geometry)

public:

MPoint

param: m [MObject - in]
param: g [Geometry - in]

Returns the portion of the track that is defined for
the Geometry g.

direction (MObject,
Instant)

public:

double

param: m [MObject - in]
param: i [Instant - in]

Returns the direction of the moving object at
instant i, the angle between the x-axis and a
tangent to the trajectory of the moving object.

minDirection (MObject)

maxDirection (MObject)

public:

public:

double

double

param: m [MObject - in]

Returns the minimum direction of the moving
object during its lifespan.
param: m [MObject - in]

Returns the maximum direction of the moving
object during its lifespan.

changeOfDirection
(MObject, Instant)

minChangeOfDirection
(MObject)

public:

public:

double

double

param: m [MObject - in]
param: i [Instant - in]

Returns the change of direction of the moving
object at instant i.
param: m [MObject - in]

Returns the minimum change of direction of the
moving object during its lifespan.

maxChangeOfDirection
(MObject)

public:

double

param: m [MObject - in]

Returns the maximum change of direction of the
moving object during its lifespan.

speed (MObject, Instant)

minSpeed (MObject)

public:

public:

double

double

param: m [MObject - in]
param: i [Instant - in]

Returns the speed of the moving object at instant
i.
param: m [MObject - in]

Returns the minimum speed of the moving object
during its lifespan.

maxSpeed (MObject)

public:

double

param: m [MObject - in]

Returns the maximum speed of the moving
object during its lifespan.

distanceTo (MObject,

public:

double

param: m [MObject - in]

Page 91

Annex A

Point, Instant)

param: p [Point - in]
param: i [Instant - in]

Returns the distance between the moving object
and p at instant i.

minDistanceTo (MObject,
Point)

public:

double

param: m [MObject - in]
param: p [Point - in]

Returns the minimum distance between the
moving object and p during the moving objects'
lifespan.

maxDistanceTo
(MObject, Point)

public:

double

param: m [MObject - in]
param: p [Point - in]

Returns the maximum distance between the
moving object and p during the moving objects'
lifespan.

directionTo (MObject,
Point, Instant)

public:

double

param: m [MObject - in]
param: p [Point - in]
param: i [Instant - in]

Returns the direction (angle of the line from the
moving object to the second point, measured in
degrees, relative to a horizontal line) between the
moving point and p at instant i.

minDirectionTo (MObject,
Point)

maxDirectionTo
(MObject, Point)

public:

public:

double

double

param: m [MObject - in]
param: p [Point - in]

Returns the minimum direction between the
moving point and p during the moving objects'
lifespan.

param: m [MObject - in]

param: p [Point - in]

Returns the maximum direction between the
moving point and p during the moving objects'
lifespan.

birth (MObject)

public:

Instant

param: m [MObject - in]

Returns the instant at which the moving objects
becomes active for the first time.

death (MObject)

public:

Instant

param: m [MObject - in]

Returns the instant just before the moving object
enters the disabled status.

activespan (MObject)

public:

Intervals

param: m [MObject - in]

Returns the intervals in which the moving object
is active.

status (MObject, Instant)

public:

StatusT

param: m [MObject - in]
param: i [Instant - in]

Returning the status of the moving object at a
particular instant i.

verifySTrelationship
(STpredicateT, MObject,
Geometry)

public:

boolean

param: stp [STpredicateT - in]
param: m [MObject - in]
param: g [Geometry - in]

Testing whether the specified spatio-temporal
(ST) topological relationship applies to the time-
varying position of the moving object and the
specified geometry g.

Page 92

verify Trelationship
(Tpredicate T, MObject,
Time)

intersection (MObjects,
Geometry)

public: boolean

public: MObjects

Abstract Class Model

param: stp [TpredicateT - in]
param: m [MObject - in]
param: t[Time -in]

Testing whether the specified temporal (T)
topological relationship applies to the lifecycle of
the moving object and the specified time t.
param: ms [MObjects - in]

param: g [Geometry - in]

Returning the spatial intersection of this MObjects
with the parameter g, which can either be a Line,
a Surface, a Points or another MObjects
geometry. The result type is the minimum of the
two types in assumed dimensional order: points <
line < surface.

[testing intersects predicate for each mObiject]

difference (MObjects,
Geometry)

public: MObjects

param: ms [MObjects - in]
param: g [Geometry - in]

Returning the spatial difference of this MObjects
with the parameter g. The result type is the
minimum of the two types in assumed
dimensional order: points < line < surface.
[testing disjoint predicate for each mObject]

substract (MObjects,
Geometry)

public: MObjects

param: ms [MObjects - in]
param: g [Geometry - in]

Remove all values from this MObjects that are
also in parameter g. The result type is also a
MObjects since substracting a lower-dimensional
value returns the MObjects unchanged and
subtracting a higher-dimensional value does not
increase the dimension of the MObjects.

[testing intersects predicate for each mObiject]

Page 93

Annex A

MovingObjectsAnalysisSystem

Page 94

class Movinngjec'sAnalysisSys(em/

«collectiony»

Points

point: Point

+ o+ o+

convexHull() : Surface
intersection(Geometry) : Points
difference(Geometry) : Points
substract(Geometry) : Points
union(Points) : Points

Geometry

Time

«collection»

- srs String
dimension: int

distance(Geometry) : double
equals(Geometry) : boolean
disjoint(Geometry) : boolean
intersects(Geometry) : boolean
crosses(Geometry) : boolean
overlaps(Geometry) : boolean
covers(Geometry) : boolean
coveredBy(Geometry) : boolean
contains(Geometry) : boolean
inside(Geometry) : boolean

dimension: int

Intervals

interval: Interval

T

equals(Time) : boolean
disjoint(Time) : boolean
intersects(Time) : boolean
overlaps(Time) : boolean
covers(Time) : boolean
contains(Time) : boolean
inside(Time) : boolean
meets(Time) : boolean
starts(Time) : boolean
finishes(Time) : boolean
precedes(Time) : boolean

-

startinterval() : Interval
endinterval() : Interval
duration() : TimeSpan|

+ o+

«collection»
Instants

instant: Instant

<}—

T+ o+ F o+ o+

meets(Geometry) : boolean succeeds(Time) : boolean + start(): Instant
adjacent(Geometry) : boolean + end(): Instant
touches(Geometry) : boolean
TimeSpan
- year int
Surface - month: int
- day: int
exterior: Lines Point Instant - hout: int
interior: Lines s - - minute: int
o d§:bwz = po I - second: int
v = el I - millisecond: int
- day: int
+ distance(Geometry) : double - hour: int
+ equals(Point) : boolean - minute: int
+ disioint(Geometry) : boolean - sacond: int
i + intersects(Geometry) : boolean _ millisscond: int
Line)
+ coveredBy(Geometry) : boolean
- sPoint: Point + inside(Geometry) : boolean <> Interval
i i + meets(Geometry) :
~ epoint: Point s(Geometny) : boolean —
- end: Instant
+ duration(): TimeSpan
MObject
- id: int «collection»
- classification: ClassificationT MStatus
- track: MPoint -
e, - lifecycle: Lifecycle = active - time: Interval
R - status StatusT
verifyClassification(ClassificationT) : boolean
- time: Instant intervals() : Intervals

position: Point

T4 4 T+ T+ 4+

deflntervals() : Intervals
deflnstants() : Instants
locations() : Points
trajectory() : Line
atinstant(Instant) : MPoint
atintervals(intervals) : MPoint
atLocation(Geometry) : MPoint
initial() : MPoint

final() : MPoint

speed() : MReal

mDirection() : MReal

turn() : MReal

distance(Point) : MReal
direction(Point) : MReal
equals(MPoint) : boolean
disjoint(Geometry) : boolean
intersects(Geometry) : boolean
coveredBy(Geometry) : boolean
inside(Geometry) : boolean
meets(Geometry) : boolean
enters(Geometry) : boolean
leaves(Geometry) : boolean
crosses(Geometry) : boolean
touches(Geometry) : boolean
snaps(Geometry) : boolean
releases(Geometry) : boolean
bypasses(Geometry) : boolean
excurses(Geometry) : boolean

R T R R R

instants() : Instants

positions() : Points.

trajectory() : Line

startPosition() : Point
endPosition() : Point
clip(Instant) : MPoint
clip(Intervals) : MPoint
clip(Geometry) : MPoint
direction(Instant) : double
minDirection() : double
maxDirection() : double
changeOfDirection(Instant) : double
minChangeOfDirection() : double
maxChangeOfDirection() : double
speed(Instant) : double
minSpeed(): double
maxSpeed() : double

Lifecycle

status: MStatus
dob: Instant
- dod: Instant

getDob() : Instant
getDod() : Instant
lifetime() : TimeSpan
lifespan() : Interval
activespan() : Intervals
status(Instant) : StatusT
equals(interval) : boolean
disjoint(Time) : boolean
intersects(Time) : boolean

distanceTo(Point, Instant) : double
minDistanceTo(Point) : double
maxDistanceTo(Point) : double
directionTo(Point, Instant) : double
minDirectionTo(Point) : double
maxDirectionTo(Point) : double
verifySTrelationship(STpredicateT, Geometry) : boolean
birth(): Instant

death() : Instant

activespan() : Intervals

status(Instant) : StatusT
verifyTrelationship(TpredicateT, Time) : boolean

«collection»
MObjects

- mObject: MObject

+ intersection(Geometry) : MObjects
+ difference(Geometry) : MObjects
+ substract(Geometry) : MObjects

1

MGroup

groupld: int

T

add(MObject) : void
remove(MObject) : void
count() : int

+ +

): boolean
covers(Time) : boolean
contains(Time) : boolean
inside(Interval) : boolean
meets(Time): boolean
starts(instant) : boolean
finishes(instant) : boolean
precedes(Time) : boolean
succeeds(Time) : boolean

T+ 4 4+ T+ F 4+

MovingObjectsAnalysisSystem

Package

Abstract Class Model

Implements: IMovingObjAnalysis. : business logic component

MovingObjectsAnalysisSystem::Geometry

Class: abstract spatial object type, corresponds to GM_Obiject in ISO 19107 "Geographic Information

- Spatial schema"

MovingObjectsAnalysisSystem::Geometry Attributes
~ Attribute Type Notes
srs private : Referenzsystem
String
dimension private : 0 = Point, 1 = Line oder 2 = Surface
int
MovingObjectsAnalysisSystem::Geometry Methods
 Method Type Notes
distance (Geometry) public: double param: g [Geometry - in]
Returning the shortest distance between any two
points of this Geometry value and the parameter g.
equals (Geometry) public: boolean | param: g [Geometry -in]
Testing whether this Geometry is equal to the
parameter g which is of the same dimension.
disjoint (Geometry) public: boolean | param: g [Geometry -in]
Testing whether this Geometry and the parameter g
do not intersect.
intersects (Geometry) public: boolean param: g [Geometry - in]
Testing whether this Geometry and the parameter g
share at least one point.
crosses (Geometry) public: boolean param: g [Geometry - in]
Testing whether this Geometry intersects the
parameter g and the dimension of their intersection
is less than the dimension of the geometries.
overlaps (Geometry) public: boolean param: g [Geometry - in]
Testing whether this Geometry intersects the
parameter g which is of the same dimension and the
dimension of their intersection is equal to the
dimension of both geometries.
covers (Geometry) public: boolean param: g [Geometry - in]
Testing whether this Geometry contains every point
of the parameter g.
coveredBy (Geometry) | public: boolean param: g [Geometry - in]
Testing whether parameter g contains every point of
this Geometry.
contains (Geometry) public: boolean | param: g [Geometry -in]
Testing whether the interior of this Geometry
contains every point of the interior of the parameter
g.

Page 95

Annex A

inside (Geometry) public: boolean param: g [Geometry - in]

Testing whether every point of the interior of this
Geometry is located in the interior of the parameter

meets (Geometry) public: boolean péram: g [Geometry - in]

Testing whether this Geometry nad the parameter g
intersect in a point while their interiors are disjoint.

adjacent (Geometry) public: boolean param: g [Geometry - in]

Testing whether this Geometry and the parameter g
intersect in a line while their interiors are disjoint.

touches (Geometry) public: boolean param: g [Geometry - in]

Testing whether this Geometry either meets or is
adjacent to the parameter g.

MovingObjectsAnalysisSystem::Instant

Class
Extends: Time. : primitive/simple anchored time/temporal type

MovingObjectsAnalysisSystem::Instant Attributes

_ Attribute Type |

year private :
int

month private :
int

day private :
int

hour private :
int

minute private :
int

second private :
int

millisecond private :
int

MovingObjectsAnalysisSystem::Instants

Class
Extends: Time. : Instant Set, collection of instants.

MovingObjectsAnalysisSystem::Instants Attributes

_ Attribute Type
instant private :
Instant

MovingObjectsAnalysisSystem::Instants Methods

Method Type Notes
start () public: Instant Returns the earliest instant in
time.
end () public: Instant Returns the latest instant in
time.

MovingObjectsAnalysisSystem::Interval
Class

Page 96

Abstract Class Model

Extends: Time. : primitive/simple anchored time/temporal type

MovingObjectsAnalysisSystem::Interval Attributes

_ Attribute Type
start private :
Instant
end private :
Instant

MovingObjectsAnalysisSystem::Interval Methods

Method

Type

Notes

duration ()

public: TimeSpan

MovingObjectsAnalysisSystem::Intervals

Class

Returns the duration of time from the start to the
end of the interval.

Extends: Time. : Interval Set, collection of intervals. There is a constraint that the intervals are disjoint

(not overlapping).

MovingObjectsAnalysisSystem::Intervals Attributes

_ Attribute Type
interval private :
Interval

MovingObjectsAnalysisSystem::Intervals Methods

Method

Type

Notes |

startinterval ()

public: Interval

Returns the earliest interval, the interval which
starts and ends first.

endInterval ()

public: Interval

Returns the latest interval, the interval which
starts and ends latest.

duration ()

public: TimeSpan

MovingObjectsAnalysisSystem::Lifecycle

Class: type used for capturing lifecycle information, is a parameterized complex type composed of a
time-varying attribute status and two temporal attributes dob and dod (which enclose the lifecycle

interval).

Returns the duration of the intervals, from start of
the first to the end of the last interval.

Operations in a formal language, based on an algebraic approach.

MovingObjectsAnalysisSystem::Lifecycle Attributes

_ Attribute Type Notes |
status private : time-varying attribute, type of temporal extent:
MStatus interval
dob private : date of birth
Instant
dod private : date of death
Instant

MovingObjectsAnalysisSystem::Lifecycle Methods

Method Type Notes

getDob () public: Instant Returns the instant at which this lifecycle
becomes active for the first time.

getDod () public: Instant Returns the instant just before this lifecycle
enters the disabled status.

lifetime () public: TimeSpan | Returns the duration between dob and dod as a
duration of time that is not linked to the timeline.

lifespan () public: Interval Returns the interval between the instants in

Page 97

Annex A

which this lifecycle becomes first active and
becomes disabled (between dob and dod).

activespan ()

public:

Intervals

Returns the intervals in which this lifecycle is
active.

status (/nstant)

equals (Interval)

public:

public:

StatusT

boolean

param:i[Instant - in]

Returning the status of this lifecycle at a
particular instant.
param:i[Interval - in]

Testing whether this lifecycle is equal to the
parameter i.

disjoint (Time)

public:

boolean

param:t[Time -in]

Testing whether this lifecycle and the parameter
t do not intersect.

intersects (Time)

public:

boolean

param: t[Time - in]

Testing whether this lifecycle and the parameter
t have at least one instant in common.

overlaps (Interval)

public:

boolean

param: i [Interval - in]

Testing whether the interior of this lifecycle and
the parameter i intersect, while the intersection
of this lifecycle and i is not equal to one of them.

covers (Time)

public:

boolean

param: t[Time - in]

Testing whether this lifecycle contains every
instant of the parameter t.

contains (Time)

public:

boolean

param: t[Time - in]

Testing whether any instant of the parameter t
belongs to this lifecycle.

inside (Interval)

public:

boolean

param:i[Interval - in]

Testing whether any instant of this lifecycle
belongs to the parameter i (predicate also called
during).

meets (Time)

starts (instant)

public:

public:

boolean

boolean

param: t[Time - in]

Testing whether the last instant of this interval is
equal to the first instant of the parameter t or
vice-versa.

param: i [instant - in]

Testing whether the first instant of this lifecycle
and the parameter i are the same.

finishes (instant)

public:

boolean

param: i [instant - in]

Testing whether the last instant of this lifecycle
and the parameter i are the same.

precedes (Time)

public:

boolean

param: t[Time - in]

Testing whether the last instant of this lifecycle is
smaller than the first instant of parameter t
(predicate also called before).

succeeds (Time)

Page 98

public:

boolean

param:t[Time -in]

Testing whether the first instant of this lifecycle is
greater than the last instant of parameter t
(predicate also called after).

Abstract Class Model

MovingObjectsAnalysisSystem::Line

Class
Extends: Geometry. : primitive/simple geometry type

MovingObjectsAnalysisSystem::Line Attributes

_ Attribute Type Notes
sPoint private : Start point of the (oriented) line.
Point
ePoint private : End point of the (oriented) line.
Point
MovingObjectsAnalysisSystem::Line Methods
Method Type Notes |
distance (Geometry) public: double param: g [Geometry - in]

Returning the shortest distance between any two
points of this Line value and the parameter g.
equals (Line) public: boolean param: | [Line - in]

Testing whether this Line is equal to the
parameter |.
disjoint (Geometry) public: boolean param: g [Geometry - in]

Testing whether this Line and the parameter g
do not intersect.
intersects (Geometry) public: boolean param: g [Geometry - in]

Testing whether this Line and the parameter g
share at least one point.
crosses (Geometry) public: boolean param: g [Geometry - in]

Testing whether this Line intersects the
parameter g and the dimension of their
intersection is less than the dimension of the
geometries.

overlaps (Line) public: boolean param: | [Line - in]

Testing whether this Line intersects the
parameter | which is of the same dimension and
the dimension of their intersection is equal to the
dimension of both geometries.

covers (Geometry) public: boolean param: g [Geometry - in]

Testing whether this Line contains every point of
the parameter g.
coveredBy (Geometry) public: boolean param: g [Geometry - in]

Testing whether parameter g contains every
point of this Line.
contains (Geometry) public: boolean param: g [Geometry - in]

Testing whether the interior of this Line contains
every point of the interior of the parameter g.
inside (Geometry) public: boolean param: g [Geometry - in]

Testing whether every point of the interior of this
Line is located in the interior of the parameter g.

Page 99

Annex A

meets (Geometry) public: boolean

param: g [Geometry - in]

Testing whether this Line and the parameter g
intersect in a point while their interiors are
disjoint.

adjacent (Geometry) public: boolean

param: g [Geometry - in]

Testing whether this Line and the parameter g
intersect in a line while their interiors are disjoint.

touches (Geometry) public: boolean

param: g [Geometry - in]

Testing whether this Line either meets or is
adjacent to the parameter g.

intersection (Geometry) public: Geometry

param: g [Geometry - in]

Returning the spatial intersection () of this Line
with the parameter g. The result type is the
minimum of the two types in assumed
dimensional order: points < line < surface.

difference (Geometry) public: Geometry

param: g [Geometry - in]

Returning the spatial difference of this Line with
the parameter g. The result type is the minimum
of the two types in assumed dimensional order:
points < line < surface.

substract (Geometry) public: Line

param: g [Geometry - in]

Remove all values from this Line that are also in
parameter g. The result type is also a line since
substracting a lower-dimensional value returns
the line unchanged and subtracting a higher-
dimensional value does not increase the
dimension of the line.

union (Line) public: Line

MovingObjectsAnalysisSystem::MGroup

Class
Extends: MObjects. :

param: | [Line - in]

Returning the spatial union of this Line with the
parameter |, which can only be a Line geometry.

MovingObjectsAnalysisSystem::MGroup Attributes

_Attribute | Type
groupld private :
int

MovingObjectsAnalysisSystem::MGroup Methods

Method Type Notes
add (MObject) public: void param: o [MObject - in]
Adds a new moving object to the group.
remove (MObject) public: void param: o [MObject - in]
Removes a moving object from the group.
count () public: int Counts the number of moving objects belonging
to the group.

Page 100

Abstract Class Model

MovingObjectsAnalysisSystem::MObject

Class: Moving object: spatial and temporal object type, object with spatial extent/ geometry and
lifecycle. Additionally, spatial attribute is time-varying.
Operations in a user-oriented language, based on a textual language.

MovingObjectsAnalysisSystem::MObject Attributes

_ Attribute Type Notes
id private : thematic attribute [static]
int
classification private : thematic attribute [static]
ClassificationT
track private : temporal/moving (def. from MOD) or time-
MPoint varying (def. from MADS) spatial attribute. Type

of temporal extent: instant, set composed of
(time, value)-couples. lllustrates the time-varying
positions of the moving object. [time-varying]
lifecycle private : predefined attribute which keeps track of the
Lifecycle status of instances: complex type, consisting of
a [time-varying] attribute status and two temporal
attributes dob and dod.

Initial Value: active;

MovingObjectsAnalysisSystem::MObject Methods

Method Type Notes
verifyClassification public: boolean | param: c [ClassificationT - in]
(ClassificationT)

Testing whether the moving object complies with
the specified classification.

intervals () public: Returns the set of time intervals between the
Intervals single track points.
instants () public: Instants | Returns the set of instants for which a track point
is defined.
positions () public: Points Returns the set of track points for which an

instant is defined when the moving object is
projected into the plane.

trajectory () public: Line Returns the line when the moving object is
projected into the plane.

startPosition () public: Point Returns the first track point of the moving
object's lifespan.

endPosition () public: Point Returns the last track point of the moving
object's lifespan.

clip (Instant) public: MPoint param: i [Instant - in]

Returns the point/instant pair that is defined for
the particular instant i.
clip (Intervals) public: MPoint param: i [Intervals - in]

Returns the portion of the track that is defined
for the particular intervals i.
clip (Geometry) public: MPoint param: g [Geometry - in]

Returns the portion of the track that is defined
for the Geometry g.
direction (/Instant) public: double param: i [Instant - in]

Returns the direction of the moving object at
instant i, the angle between the x-axis and a
tangent to the trajectory of the moving object.
minDirection () public: double Returns the minimum direction of the moving

Page 101

Annex A

object during its lifespan.

maxDirection () public: double Returns the maximum direction of the moving
object during its lifespan.

changeOfDirection (Instant) | public: double param: i [Instant - in]

Returns the change of direction of the moving
object at instant i.

minChangeOfDirection () public: double Returns the minimum change of direction of the
moving object during its lifespan.

maxChangeOfDirection () public: double Returns the maximum change of direction of the
moving object during its lifespan.

speed (Instant) public: double param: i [Instant - in]

Returns the speed of the moving object at

instant i.

minSpeed () public: double Returns the minimum speed of the moving
object during its lifespan.

maxSpeed () public: double Returns the maximum speed of the moving

object during its lifespan.

distanceTo (Point, Instant) public: double param: p [Point - in]
param: i [Instant - in]

Returns the distance between the moving object
and p at instant i.

minDistanceTo (Point) public: double param: p [Point - in]

Returns the minimum distance between the
moving object and p during the moving objects'
lifespan.

maxDistanceTo (Point) public: double param: p [Point - in]

Returns the maximum distance between the
moving object and p during the moving objects'
lifespan.

directionTo (Point, Instant) public: double param: p [Point - in]
param: i [Instant - in]

Returns the direction (angle of the line from the
moving object to the second point, measured in
degrees, relative to a horizontal line) between
the moving point and p at instant i.

minDirectionTo (Point) public: double param: p [Point - in]

Returns the minimum direction between the
moving point and p during the moving objects'
lifespan.

maxDirectionTo (Point) public: double param: p [Point - in]

Returns the maximum direction between the
moving point and p during the moving objects'

lifespan.
verifySTrelationship public: boolean | param: stp [STpredicateT - in]
(STpredicateT, Geometry) param: g [Geometry - in]

Testing whether the specified spatio-temporal
(ST) topological relationship applies to the time-
varying position of the moving object and the
specified geometry g.

birth () public: Instant Returns the instant at which the moving objects
becomes active for the first time.
death () public: Instant Returns the instant just before the moving object

Page 102

Abstract Class Model

enters the disabled status.

activespan ()

public:
Intervals

Returns the intervals in which the moving object
is active.

status (Instant)

public: StatusT

param: i [Instant - in]

Returning the status of the moving object at a
particular instant i.

verifyTrelationship
(TpredicateT, Time)

public: boolean

MovingObjectsAnalysisSystem::MObjects

Class: collection of moving objects
Operations in a user-oriented language, based on a textual language.

param: stp [TpredicateT - in]
param: t[Time -in]

Testing whether the specified temporal (T)
topological relationship applies to the lifecycle of
the moving object and the specified time t.

MovingObjectsAnalysisSystem::MObjects Attributes

_ Attribute Type \
mObject private :
MObject

MovingObjectsAnalysisSystem::MObjects Methods

Method

Type

Notes

intersection (Geometry) public: MObjects

difference (Geometry) public: MObjects

param: g [Geometry - in]

Returning the spatial intersection of this
MObjects with the parameter g, which can either
be a Line, a Surface, a Points or another
MObjects geometry. The result type is the
minimum of the two types in assumed
dimensional order: points < line < surface.
[testing intersects predicate for each mObject]
param: g [Geometry - in]

Returning the spatial difference of this MObjects
with the parameter g. The result type is the
minimum of the two types in assumed
dimensional order: points < line < surface.
[testing disjoint predicate for each mObject]

substract (Geometry) public: MObjects

param: g [Geometry - in]

Remove all values from this MObjects that are
also in parameter g. The result type is also a
MObjects since substracting a lower-
dimensional value returns the MObjects
unchanged and subtracting a higher-
dimensional value does not increase the
dimension of the MObjects.

[testing intersects predicate for each mObject]

MovingObjectsAnalysisSystem::MovingObjectsAnalysis

Class

Implements: IMovingObjAnalysis. : class with selected operations, comprising a frequently needed
subset of the subsystems functionality, delegating the functionality to other classes of the subsystem

Page 103

Annex A

MovingObjectsAnalysisSystem::MPoint

Class: Infinite Set (collection of elements) of (instant,point)-pairs.
Operations in a formal language, based on an algebraic approach.

MovingObjectsAnalysisSystem::MPoint Attributes

_ Attribute Type |
time private :
Instant
position private :
Point

MovingObjectsAnalysisSystem::MPoint Methods

Method

Type

Notes

defintervals ()

public:

Intervals

Returns the temporal extent on which the
function is defined: this is the set of time intervals
when a temporal function is defined (also called
defTime).

deflnstants ()

public:

Instants

Returns the temporal extent on which the
function is defined: this is the set of instants for
which a Point is defined (also called defTime).

locations ()

public:

Points

Returns the spatial extent on which the function
is defined: the set of points for which an instant is
defined when the moving point is projected into
the plane (also called defSpace).

trajectory ()

public:

Line

Returns the line when the moving point is
projected into the plane.

atinstant (Instant)

public:

MPoint

param:i[Instant - in]

Returns the (instant,point)-pair that is defined for
the particular instant i.

atintervals (Intervals)

public:

MPoint

param: i [Intervals - in]

Returns the portion of the function that is defined
for the particular intervals i.

atLocation (Geometry) public:

MPoint

param: g [Geometry - in]

Returns the portion of the function that is defined
for the spatial extend g.

initial ()

public:

MPoint

Returns the (instant,point)-pair for the first instant
of the definition time.

final ()

public:

MPoint

Returns the (instant,point)-pair for the last instant
of the definition time.

speed ()

public:

MReal

Returns a moving real type indicating the speed
of a moving point as a function over time (rate of
change/derivative).

mDirection ()

public:

MReal

Returns the direction of movement, the angle
between the x-axis and a tangent to the trajectory
of the moving point (rate of change/derivative).

turn ()

public:

MReal

Returns the change of direction at all times (rate
of change/derivative).

distance (Point)

public:

MReal

param: p [Point - in]

Returns the time-varying distance between a
moving point and p.

direction (Point)

public:

MReal

param: p [Point - in]

Returns the time-varying direction (angle of the

line from the first to the second point, measured
in degrees, relative to a horizontal line) between
a moving point and p.

equals (MPoint)

public:

boolean

param: m [MPoint - in]

Page 104

disjoint (Geometry)

public: boolean

Abstract Class Model

Testing whether this MPoint is equal to the
parameter m.

Preferred temporal aggregation: universal
quantifier ranging over the whole lifetime which
has to be the same for both objects (requires
identical domains).

param: g [Geometry - in]

Testing whether this MPoint and the parameter g
do not intersect.

Preferred temporal aggregation: universal
quantifier ranging only over the two objects'
common lifetime.

intersects (Geometry)

public: boolean

param: g [Geometry - in]

Testing whether this MPoint and the parameter g
share at least one point.

Preferred temporal aggregation: universal
quantifier ranging only over the two objects'
common lifetime.

coveredBy (Geometry)

public: boolean

param: g [Geometry - in]

Testing whether parameter g contains this
MPoint.

Preferred temporal aggregation: universal
quantifier ranging over the whole lifetime of this
MPoint.

inside (Geometry)

public: boolean

param: g [Geometry - in]

Testing whether this MPoint is located in the
interior of the parameter g.

Preferred temporal aggregation: universal
quantifier ranging over the whole lifetime of this
MPoint.

meets (Geometry)

public: boolean

param: g [Geometry - in]

Testing whether this MPoint and the parameter g
intersect in a point while their interiors are
disjoint.

Preferred temporal aggregation: universal
quantifier ranging over the whole lifetime which
has to be de same for both objects (requires
identical domain).

enters (Geometry)

public: boolean

param: g [Geometry - in]

Testing whether this MPoint is disjoint of the
parameter g until they meet and then is inside of
the parameter g.

Development, combines basic spatio-temporal
predicates to a ordered sequence. Therefore,
predicates are constricted to respective intervals
and classified into instant predicates (lowercase)
and period predicates (capital letter): Disjoint >
meet > Inside.

leaves (Geometry)

public: boolean

param: g [Geometry - in]
Testing whether this MPoint is inside of the

parameter g until they meet and then is disjoint of
the parameter g (is the opposite of enters).

Page 105

Annex A

crosses (Geometry)

touches (Geometry)

snaps (Geometry)

public: boolean

public: boolean

public: boolean

Development, combines basic spatio-temporal
predicates to a ordered sequence. Therefore,
predicates are constricted to respective intervals
and classified into instant predicates (lowercase)
and period predicates (capital letter): Inside >
meet > Disjoint

param: g [Geometry - in]

Testing whether this MPoint first enters and then
leaves the parameter g.

Development, combines basic spatio-temporal
predicates to a ordered sequence. Therefore,
predicates are constricted to respective intervals
and classified into instant predicates (lowercase)
and period predicates (capital letter): Disjoint >
meet > Inside > meet > Disjoint.

param: g [Geometry - in]

Testing whether this MPoint is disjoint of the
parameter g until they meet and then is disjoint
again.

Development, combines basic spatio-temporal
predicates to a ordered sequence. Therefore,
predicates are constricted to respective intervals
and classified into instant predicates (lowercase)
and period predicates (capital letter): Disjoint >
meet > Disjoint.

param: g [Geometry - in]

Testing whether this MPoint is disjoint of the
parameter g and then meets parameter g.
Development, combines basic spatio-temporal
predicates to a ordered sequence. Therefore,
predicates are constricted to respective intervals
and classified into instant predicates (lowercase)
and period predicates (capital letter): Disjoint >
Meet.

releases (Geometry)

public: boolean

param: g [Geometry - in]

Testing whether this MPoint meets the parameter
g and then is disjoint of parameter g (is the
opposite of snaps).

Development, combines basic spatio-temporal
predicates to a ordered sequence. Therefore,
predicates are constricted to respective intervals
and classified into instant predicates (lowercase)
and period predicates (capital letter): Meet >
Disjoint.

bypasses (Geometry)

public: boolean

param: g [Geometry - in]

Testing whether this MPoint first snaps and then
releases the parameter g.

Development, combines basic spatio-temporal
predicates to a ordered sequence. Therefore,
predicates are constricted to respective intervals
and classified into instant predicates (lowercase)
and period predicates (capital letter): Disjoint >
Meet > Disjoint.

excurses (Geometry)

Page 106

public: boolean

param: g [Geometry - in]

Testing whether this MPoint meets the parameter
g, then they are disjoint and then they meet

MovingObjectsAnalysisSystem::MReal

Abstract Class Model

again.

Development, combines basic spatio-temporal
predicates to a ordered sequence. Therefore,
predicates are constricted to respective intervals
and classified into instant predicates (lowercase)
and period predicates (capital letter): Meet >
Disjoint > Meet.

Class: Infinite Set (collection of elements) of (instant,value)-pairs.

MovingObjectsAnalysisSystem::MReal Attributes

~ Attribute Type
instant private :
Instant
value private :
double
MovingObjectsAnalysisSystem::MReal Methods
 Method Type Notes
atMin () public: MReal Returns the (instant,value)-pairs for the minimum value of
the value range.
atMax () public: MReal Returns the (instant,value)-pairs for the maximum value of
the value range.
at (double) public: MReal param: v [double - in]
Returns the portion of the function that is defined for the
range of v -> restricts the range of the function.

MovingObjectsAnalysisSystem::MStatus
Class: Infinite Set (collection of elements) of (interval,status)-pairs.

MovingObjectsAnalysisSystem::MStatus Attributes

_ Attribute Type
time private :
Interval
status private :
StatusT

MovingObjectsAnalysisSystem::Point

Class

Extends: Geometry. : primitive/simple geometry type

MovingObjectsAnalysisSystem::Point Attributes

_ Attribute Type |
X private :
double
y private :
double
MovingObjectsAnalysisSystem::Point Methods
 Method Type ' Notes
distance (Geometry) public: double param: g [Geometry - in]

Returning the shortest distance between any two

Page 107

Annex A

points of this Point value and the parameter g.

equals (Point)

public: boolean

param: p [Point - in]

Testing whether this Point is equal to the
parameter p.

disjoint (Geometry)

public: boolean

param: g [Geometry - in]

Testing whether this Point and the parameter g
do not intersect.

intersects (Geometry)

public: boolean

param: g [Geometry - in]

Testing whether this Point and the parameter g
share at least one point.

coveredBy (Geometry)

public: boolean

param: g [Geometry - in]

Testing whether parameter g contains this Point.

inside (Geometry)

public: boolean

param: g [Geometry - in]

Testing whether this Point is located in the interior
of the parameter g.

meets (Geometry)

public: boolean

param: g [Geometry - in]

Testing whether this Point and the parameter g
intersect in a point while their interiors are disjoint
(g either Line or Surface).

MovingObjectsAnalysisSystem::Points

Class

Extends: Geometry. : Point Set, collection of points.

MovingObjectsAnalysisSystem::Points Attributes

_ Attribute Type
point private :
Point

MovingObjectsAnalysisSystem::Points Methods

Method

Type

Notes

convexHull ()

public: Surface

Returning the convex hull of this Points.

intersection (Geometry)

public: Points

param: g [Geometry - in]

Returning the spatial intersection of this Points
with the parameter g, which can either be a Line,
a Surface or another Points geometry. The result
type is the minimum of the two types in assumed
dimensional order: points < line < surface.

difference (Geometry)

public: Points

param: g [Geometry - in]

Returning the spatial difference of this Points with
the parameter g. The result type is the minimum
of the two types in assumed dimensional order:
points < line < surface.

substract (Geometry)

public: Points

param: g [Geometry - in]

Remove all values from this Points that are also
in parameter g. The result type is also a Points
since substracting a lower-dimensional value
returns the Points unchanged and subtracting a
higher-dimensional value does not increase the
dimension of the Points.

union (Points)

Page 108

public: Points

param: p [Points - in]

Abstract Class Model

Returning the spatial union of this Points with the
parameter p, which can only be a Points
geometry.

MovingObjectsAnalysisSystem::Surface

Class
Extends: Geometry. : primitive/simple geometry type

MovingObjectsAnalysisSystem::Surface Attributes

_ Attribute Type Notes
exterior private : Exterior boundary of the surface.
Lines
interior private : List of interior boundaries of the surface.
Lines

MovingObjectsAnalysisSystem::Time

Class: abstract temporal object type, corresponds to TM_Object in ISO 19108 "Geographic
Information - Temporal schema". Is the root of the hierarchy defining anchored temporal types.

MovingObjectsAnalysisSystem::Time Attributes

_ Attribute Type Notes
dimension private : 0 = instant, 1 = interval
int

MovingObjectsAnalysisSystem::Time Methods
Method Type Notes
equals (Time) public: boolean param: t[Time -in]

Testing whether this Time is equal to the
parameter t.
disjoint (Time) public: boolean param:t[Time -in]

Testing whether this Time and the parameter t
do not intersect.
intersects (Time) public: boolean param: t[Time - in]

Testing whether this Time and the parameter t
have at least one instant in common.
overlaps (Time) public: boolean param:t[Time -in]

Testing whether the interior of this Time and the
parameter t intersect, while the intersection of
this Time and t is not equal to one of them.
covers (Time) public: boolean param: t[Time - in]

Testing whether this Time contains every instant
of the parameter t.
contains (Time) public: boolean param: t[Time - in]

Testing whether any instant of the parameter t
belongs to this Time.
inside (Time) public: boolean param: t[Time - in]

Testing whether any instant of this Time belongs
to the parameter t.
meets (Time) public: boolean param: t[Time -in]

Page 109

Annex A

starts (Time)

public: boolean

Testing whether the last instant of this Time is
equal to the first instant of the parameter t or
vice-versa.

param: t[Time -in]

Testing whether the first instant of this Time and
the parameter t are the same.

finishes (Time)

public: boolean

param:t[Time -in]

Testing whether the last instant of this Time and
the parameter t are the same.

precedes (Time)

public: boolean

param: t[Time - in]

Testing whether the last instant of this time is
smaller than the first instant of parameter t.

succeeds (Time)

MovingObjectsAnalysisSystem::TimeSpan

public: boolean

param: t[Time - in]

Testing whether the first instant of this Time is
greater than the last instant of parameter t.

Class: primitive/simple unanchored time/temporal type, duration of time that is not linked to the

timeline.

MovingObjectsAnalysisSystem::TimeSpan Attributes

_ Attribute Type

year private :
int

month private :
int

day private :
int

hout private :
int

minute private :
int

second private :
int

millisecond private :
int

Enumerations::ClassificationT

Class:

Enumerations::ClassificationT Attributes

_ Attribute Type Notes
onroad public : landgestiitztes onroad Fahrzeug wie Auto, LKW, usw.
«enumy int
offroad public : landgestutztes offroad Fahrzeug wie Gelandewagen,
«enumy int Kettenfahrzeug usw.
aircraft public : Luftfahrzeug
«enum» int
railway public : Schienenfahrzeug
«enum» int
watercraft public : Wasserfahrzeug
«enumy int

Page 110

Abstract Class Model

Enumerations::StatusT

Class: Defines possible status values and transition rules which are restricting status changes. The
value "scheduled" is N/A for this context. Temporal extend, associated to the active status: interval.
Valid transitions:
active <-> suspended -> disabled

| A

I I

Enumerations::StatusT Attributes

_ Attribute Type Notes
active public : active
«enumy» int
suspended public : temporarily inactive
«enumy» int
disabled public : expired, never becomes active
«enum» int again

Enumerations::STpredicateT
Class:

Enumerations::STpredicateT Attributes
~ Attribute | Type

equals public :
«enum» int
disjoint public :
«enum» int
intersects public :
«enum» int
coveredBy public :
«enum» int
inside public :
«enum» int
meets public :
«enum» int
enters public :
«enumy int
leaves public :
«enumy int
crosses public :
«enumy int
touches public :
«enumy int
shaps public :
«enumy int
releases public :
«enumy» | int
bypasses public :
«enum» int
excurses public :
«enum» int

Enumerations::TpredicateT
Class:

Page 111

Annex A

Enumerations::TpredicateT Attributes

_ Attribute Type
equals public :
«enum» int
disjoint public :
«enum» int
intersects public :
«enum» int
overlaps public :
«enumy int
covers public :
«enumy int
contains public :
«enumy int
inside public :
«enumy int
meets public :
«enumy int
starts public :
«enumy int
finishes public :
«enumy int
precedes public :
«enumy int
succeeds public :
«enumy int

Implementation Model

Page 112

J

class Implemeatadcn Mcdel

GML Data Model (PSM)

+ DynamicFeature
+ MovingObjects

N

OWS Model

'
+ Web Service Common E
+ Web Processing Service E
I
!
I
"

Java Model (PSM)

+ javax
+org

GML Data Model

GML Data Model

pkq GML Dzta Model iPSM; /J

«XSDschema»
DynamicFeature

+ AbstractFeatureType

+ DynamicFeatureCollectionType
+ DynamicFeatureType

+ DynamicProperties

+ FeatureCollectionType

+ LocationPropertyType

+ MovingObjectStatusType

+ StringOrRefType

+ TimePrimitivePropertyType

T

«imgort»

«XSDschema»
MovingObjects

+ Classification

+ ClassificationType

+ MovingGroupType

+ MovingObjectType

+ MyMovingObjectStatusType
+ PositionType

+ StaticProperties

+ Status

+ StatusType

M0 @A 0 EO man e D me mn e

+ TimeType

GML Data Model (PSM)
Package: definition of a XML structure for spatio-temporal data types, based on GML core schemas

Page 113

Annex A

DynamicFeature

class Dynamic Feature /

«XSDcomplexType»

«XSDcomplexType» ! ;
extension DynamicFeatureCollectionType

FeatureCollectionType

! «XSDelement»
+ featureMember: FeaturePropertyType

featyres
i 0.*
«XSDcomplexType» «XSDcomplexType»
| AbstractFeatureType extension DynamicFeatureType

R

+ name: String

dynamicPfoperties

1

| «XSDgroup»
DynamicProperties

«XSDelement»
L + validTime: TimePrimitivePropertyType
+ track: TrackType

I trck

0.*

«XSDcomplexType»
Mov ingObj ectStatus Type

«XSDcomplexType» location validTime «XSDcomplexType»
! LocationPropertyType |@p—— * speed @ TimePrimitiv ePropertyType
+ bearing 1

L + acceleration

i + elevation
staftus
|
0.1

«XSDcomplexType»
{ StringOrRefType

DynamicFeature
Package: GML Core Schema

DynamicFeature::AbstractFeatureType

Class: Provides a set of common properties for defining concrete feature types with location and time
reference.

DynamicFeature::DynamicFeatureCollectionType

Class
Extends: FeatureCollectionType. : A collection of dynamic features that may possess a history
and/or a timestamp.

DynamicFeature::DynamicFeatureCollectionType Attributes

Page 114

_ Attribute Type
featureMember public :
«XSDelement» FeaturePropertyType

DynamicFeature::DynamicFeatureType

Class

GML Data Model

Extends: AbstractFeatureType. : A dynamic feature may possess a history and/or a timestamp.

DynamicFeature::DynamicFeatureType Attributes

~ Attribute

Type

name

public :String

DynamicFeature::DynamicProperties

Class: Time-varying properties of dynamic features.

DynamicFeature::DynamicProperties Attributes

_Attribute Type
validTime public :
«XSDelement» TimePrimitiveProperty Type
track public :
«XSDelement» TrackType

DynamicFeature::FeatureCollectionType
Class: Contains zero or more features.

DynamicFeature::FeatureCollectionType Attributes

~ Attribute Type
featureMember public :
«XSDelement» FeaturePropertyType

DynamicFeature::LocationPropertyType
Class: Generalised location property

DynamicFeature::MovingObjectStatusType
Class: Encapsulates various dynamic properties of moving objects.

DynamicFeature::MovingObjectStatusType Attributes

_ Attribute Type
speed public :
bearing public :
acceleration public :
elevation public :

DynamicFeature::StringOrRefType
Class: Text property type, is of string type, so the text can be included inline but also referenced

remotely via xlinks

DynamicFeature::TimePrimitivePropertyType

Class: Generalised temporal property

DynamicFeature::TimePrimitivePropertyType Attributes

_ Attribute Type
validTime public :
«XSDelement» TimePrimitiveProperty Type
location public :

«XSDelement»

Page 115

Annex A

MovingObjects
class Moving Objects /

«XSDcomplexType»
DynamicFeature::FeatureCollectionType extension «XSDcomplexType»
<} Mov ingGroupType
«XSDelement» o=
+ I fier. |
+ featureMember: FeaturePropertyType gouciCentie il leosy

groupMembers

0.¢
AbstractFeatureType string
«XSDcomplexType»
«XSDcomplexType» extension Mov ingObjectType
DynamicFeature::

«enumeration»
Classification
DynamicFeatureType

+ name: String

aircraft
offroad
onroad
dynamicRroperties staticPrpperties railway
watercraft
1 0 0 {
«XSDgroup» «XSDgroup»
DynamicFeature::DynamicProperties StaticProperties string
classification ;
«XSDelementy + identifier: String (S—— 2XSD§Ifmpl_eType»
+ validTime: TimePrimitivePropertyType «XSDelement» 0.1 lassificationType
+ track: TrackType + dateOfBirth: TimelnstantType
T + dateOfDeath: TimelnstantType
trgck
0.*
«XSDcomplexType» S Hénsion «XSDcomplexType»
DynamicFeature:: <} MyMov ingObjectStatus Type
Mov ingObjectStatusType
status
+ speed status
+ bearing
+ acceleration
+ elevation
0..1 0.1
«XSDcomplexType» «XSDcomplexType»
DynamicFeature:: restriction StatusType
StringOrRefType Q
time
validlime |
string
. posjtion
«enumeration»
location Status
active
disabled
1 inactive
¢ LN
«XSDcomplexType» «XSDcomplexType»
DynamicFeature:: restriction TimeType
TimePrimitivePropertyType [<{
«XSDelement»
+ timePosition: TimelnstantType
1
0 1
«XSDcomplexTy... «XSDcomplexType»
DynamicFeature:: restriction PositionType
LocationPropertyType <}
«XSDelement»
+ pos: PointType

Page 116

MovingObjects
Package: GML Application Schema

MovingObjects::Classification

Class
Implements: string. : List of values to classify a moving object.

MovingObjects::Classification Attributes

_ Attribute Type \
aircraft Public :
offroad Public :
onroad Public :
railway Public :
watercraft Public :

MovingObjects::ClassificationType

Class
Implements: string. : Category a moving object belongs to.

MovingObjects::MovingGroupType
Class

Extends: FeatureCollectionType. : Group a moving object is assigned to.

MovingObjects::MovingGroupType Attributes
_ Attribute Type
groupldentifier public :Integer

MovingObjects::MovingObjectType

Class
Extends: DynamicFeatureType. : Object changing its position over time.

MovingObjects::MyMovingObjectStatusType
Class

GML Data Model

Extends: MovingObjectStatusType. : Status of a moving objects which changes depending on the

object's movement.

MovingObjects::PositionType
Class

Extends: LocationPropertyType. : Location of a moving object without spatial extent (point-shaped).

MovingObjects::PositionType Attributes

_ Attribute Type |
pos public :
«XSDelement» PointType

MovingObjects::StaticProperties
Class: Time invariant properties of a moving object.

MovingObjects::StaticProperties Attributes

_ Attribute Type
identifier public :

String
dateOfBirth public :
«XSDelement» TimelnstantType
dateOfDeath public :
«XSDelement» TimelnstantType

Page 117

Annex A

MovingObjects::Status

Class
Implements: string. : List of values to describe the status of a moving object.

MovingObjects::Status Attributes

_ Attribute Type
active public :
disabled public :
inactive public :

MovingObjects::StatusType

Class
Extends: StringOrRefType. : Status of a moving object.

MovingObjects::TimeType
Class
Extends: TimePrimitivePropertyType. : Time stamp of a moving object as an instant in time.

MovingObjects::TimeType Attributes

_ Attribute Type
timePosition public :
«XSDelement» TimelnstantType

OWS Model

«OGC web service»
Web Service Common

=1 + GetCapabilities
+ OGCWebService
= + ServiceMetadata

A\

A 1
include
Ll
Ll

«OGC web service»
Web Processing Service

Page 118

OWS Model

OWS Model

Package: interface definition of a OpenGIS Web Service (OWS) Web Service Common

class Web Service Common/

«interface»
OGCWebService

capabilities: ServiceMetadata

+ getCapabilities(GetCapabilities) : ServiceMetadata

Web Service Common::GetCapabilities
Class: GetCapabilities request handler of an ordinary OWS

Web Service Common::0GCWebService
Class: OpenGIS Web Service interface

Web Service Common::0OGCWebService Attributes

_ Attribute Type Notes
capabilities private : Contains metadata about the service provider
ServiceMetadata and, for WPS, additionally metadata about

available processes.

Web Service Common::0GCWebService Methods

 Method Type Notes
getCapabilities public: param: request [GetCapabilities - in]
(GetCapabilities) ServiceMetadata

Web Service Common::ServiceMetadata
Class: WPS capabilities document

Retrieval of service metadata. Returns
capabilities document that includes metadata
about the service provider and, for WPS,
additionally metadata about available processes.

Page 119

Annex A

Web Processing Service

class Web Processing Service /

IMovingObjAnalysis

«interface»

Web Service Common::0GCWebService

+

getCapabilities(request :GetCapabilities) : ServiceMetadata

1

«interface»
WebProcessingService

+
+

describeProcess(request :DescribeProcess) : ProcessDescription

execute(request :Execute) : ExecuteResponse

Processes::Crosses

+ execute(m :MObject, g :Geometry): boolean

substitutional for all
processes

class WPS Get Capabilities /

«interface»

Web Service Common::0GCWebService

capabilities: ServiceMetadata

+

getCapabilities(request :GetCapabilities) : ServiceMetadata

reqf;est

v

resppnse

Y

Web Service Common::

GetCapabilities ServiceMetadata

Web Service Common::

1

I

WPSGetCapabilities

ProcessOfferings

Page 120

OWS Model

class Describe Process /

«interface»
Web Service Common::0GCWebService

capabilities: ServiceMetadata

+ getCapabilities(request :GetCapabilities) : ServiceMetadata

I

«interface»
WebProcessingService

wpsCapabilities: ProcessOfferings
processlO: ProcessDescription
processOutputs: ExecuteResponse

+ describeProcess(request :DescribeProcess) : ProcessDescription
+ execute(request :Execute) : ExecuteResponse

i
reqfiest resppnse
v v
U U
DescribeProcess ProcessDescription

class Execute

«interface»
Web Service Common::0GCWebService

capabilities: ServiceMetadata

+ getCapabilities(request :GetCapabilities) : ServiceMetadata

I

«interface»
WebProcessingService

wpsCapabilities: ProcessOfferings
processlO: ProcessDescription
processOutputs: ExecuteResponse

+ describeProcess(request :DescribeProcess) : ProcessDescription
+ execute(request :Execute) : ExecuteResponse

Ll Ll
reqfiest response
Ll

Ll
| 1
v v
Execute ExecuteResponse

Web Processing Service::DescribeProcess
Class: DescribeProcess request handler of a WPS

Web Processing Service::Execute
Class: Execute request handler of a WPS

Page 121

Annex A

Web Processing Service::ExecuteResponse
Class: Execute response document

Web Processing Service::ProcessDescription
Class: Process description document

Web Processing Service::ProcessOfferings

Class
Extends: ServiceMetadata. : List of processes offered by the WPS, belongs to the service metadata

Web Processing Service::WPSGetCapabilities

Class
Extends: GetCapabilities. : GetCapabilities request handler of a WPS

Web Processing Service::WebProcessingService

Class
Extends: OGCWebService. Implements: IMovingObjAnalysis. : OpenGIS WPS interface

Web Processing Service::WebProcessingService Attributes

_ Attribute Type Notes
wpsCapabilities private :
ProcessOfferings
processlO private : Contains a detailed description about input and
ProcessDescription output parameters of a specific process.
processOutputs private :
ExecuteResponse

Web Processing Service::WebProcessingService Methods

Method Type Notes

describeProcess public: param: request [DescribeProcess - in]
(DescribeProcess) ProcessDescription
Retrieval of detailed description about input and
output parameters of a specific process. Returns
process description document.

An input parameter may be defined either as a
complex data type (e.g. GML), a literal data type
(e.g. an integer value), or a bounding box data
type. The complex data type data structure offers
the capability to either encode the payload
directly in the request or by referencing a remote
location.

execute (Execute) public abstract: param: request [Execute - in]
ExecuteResponse
Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly
to the client or it can be stored at a web-
accessible location which is referenced in the
execute response document.

Processes
Package: Contains atomic WPS processes for Moving Object Analysis tasks

Processes::Activespan
Class

Page 122

OWS Model

Extends: WebProcessingService. : Returns the intervals in which the moving object is active.

Processes::Activespan Methods
Method Type Notes
execute (MObject) public: Intervals param: m [MObject - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly
to the client or it can be stored at a web-
accessible location which is referenced in the
execute response document.

Processes::Birth

Class

Extends: WebProcessingService. : Returns the instant at which the moving objects becomes active
for the first time.

Processes::Birth Methods
Method Type Notes
execute (MObject) public: Instant param: m [MObject - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly
to the client or it can be stored at a web-
accessible location which is referenced in the
execute response document.

Processes::ChangeOfDirection

Class
Extends: WebProcessingService. : Returns the change of direction of the moving object at instant i.

Processes::ChangeOfDirection Methods

Method Type Notes
execute (MObject, public: double param: m [MObject - in]
Instant) param: i [Instant - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly
to the client or it can be stored at a web-
accessible location which is referenced in the
execute response document.

Processes::CheckCategory

Class
Extends: WebProcessingService. : Testing whether the moving object complies with the specified
classification.

Page 123

Annex A

Processes::CheckCategory Methods

 Method Type Notes
execute (MObject, public: boolean param: m [MObject - in]
ClassificationT) param: c [ClassificationT - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly
to the client or it can be stored at a web-
accessible location which is referenced in the
execute response document.

Processes::ClipGeometry

Class
Extends: WebProcessingService. : Returns the portion of the track that is defined for the Geometry

g.
Processes::ClipGeometry Methods

 Method Type Notes
execute (MObject, public: MPoint param: m [MObject - in]
Geometry) param: g [Geometry - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly
to the client or it can be stored at a web-
accessible location which is referenced in the
execute response document.

Processes::Clipinstant

Class
Extends: WebProcessingService. : Returns the point/instant pair that is defined for the particular
instant i.

Processes::Clipinstant Methods

 Method Type Notes
execute (MObject, public: MPoint param: m [MObject - in]
Instant) param: i [Instant - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly
to the client or it can be stored at a web-
accessible location which is referenced in the
execute response document.

Processes::Clipinterval

Class
Extends: WebProcessingService. : Returns the portion of the track that is defined for the particular
intervals i.

Page 124

Processes::Clipinterval Methods

OWS Model

Method Type Notes
execute (MObject, public: MPoint param: m [MObject - in]
Intervals) param: i [Intervals - in]

Processes::Death
Class

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly
to the client or it can be stored at a web-
accessible location which is referenced in the
execute response document.

Extends: WebProcessingService. : Returns the instant just before the moving object enters the

disabled status.

Processes::Death Methods

 Method

Type

Notes

execute (MObject)

public: Instant

param: m [MObject - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly
to the client or it can be stored at a web-
accessible location which is referenced in the
execute response document.

Processes::Direction
Class

Extends: WebProcessingService. : Returns the direction of the moving object at instant i, the angle
between the x-axis and a tangent to the trajectory of the moving object.

Processes::Direction Methods

Method Type Notes |
execute (MObject, public: double param: m [MObject - in]
Instant) param: i [Instant - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly
to the client or it can be stored at a web-
accessible location which is referenced in the
execute response document.

Processes::DirectionTo
Class

Extends: WebProcessingService. : Returns the maximum distance between the moving object and

Page 125

Annex A

p during the moving objects' lifespan.

Processes::DirectionTo Methods

Method Type Notes
execute (MObject, Point, | public: double param: m [MObject - in]
Instant) param: p [Point - in]

param: i [Instant - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly
to the client or it can be stored at a web-
accessible location which is referenced in the
execute response document.

Processes::DistanceTo

Class
Extends: WebProcessingService. : Returns the distance between the moving object and p at instant
i.

Processes::DistanceTo Methods

Method Type Notes
execute (MObject, Point, | public: double param: m [MObject - in]
Instant) param: p [Point - in]

param: i [Instant - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly
to the client or it can be stored at a web-
accessible location which is referenced in the
execute response document.

Processes::EndPosition

Class
Extends: WebProcessingService. : Returns the last track point of the moving object's lifespan.

Processes::EndPosition Methods
Method Type Notes
execute (MObject) public: Point param: m [MObject - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly
to the client or it can be stored at a web-
accessible location which is referenced in the
execute response document.

Processes::Finishes

Class
Extends: WebProcessingService. : Testing whether the last instant of the lifecycle of the moving

Page 126

OWS Model

object and the specified time t are the same.

Processes::Finishes Methods
Method Type Notes

execute (MObject, Time) | public: boolean param: m [MObject - in]
param: t[Time - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly to
the client or it can be stored at a web-accessible
location which is referenced in the execute
response document.

Processes::Instants

Class
Extends: WebProcessingService. : Returns the set of instants for which a track point is defined.

Processes::Instants Methods
Method Type Notes
execute (MObject) public: Instants param: m [MObject - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly to
the client or it can be stored at a web-accessible
location which is referenced in the execute
response document.

Processes::Intervals

Class
Extends: WebProcessingService. : Returns the set of time intervals between the single track points.

Processes::Intervals Methods
Method Type Notes |
execute (MObject) public: Intervals param: m [MObject - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly
to the client or it can be stored at a web-
accessible location which is referenced in the
execute response document.

Processes::MaxChangeOfDirection

Class
Extends: WebProcessingService. : Returns the maximum change of direction of the moving object
during its lifespan.

Page 127

Annex A

Processes::MaxChangeOfDirection Methods
Method Type Notes
execute (MObject) public: double param: m [MObject - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly
to the client or it can be stored at a web-
accessible location which is referenced in the
execute response document.

Processes::MaxDirection

Class
Extends: WebProcessingService. : Returns the maximum direction of the moving object during its
lifespan.

Processes::MaxDirection Methods

 Method Type Notes

execute (MObject) public: double param: m [MObject - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly to
the client or it can be stored at a web-accessible
location which is referenced in the execute
response document.

Processes::MaxDirectionTo

Class
Extends: WebProcessingService. : Returns the maximum direction between the moving point and p
during the moving objects' lifespan.

Processes::MaxDirectionTo Methods

Method Type Notes

execute (MObject, Point) | public: double param: m [MObject - in]
param: p [Point - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly to
the client or it can be stored at a web-accessible
location which is referenced in the execute
response document.

Processes::MaxDistanceTo

Class
Extends: WebProcessingService. : Returns the maximum distance between the moving object and
p during the moving objects' lifespan.

Page 128

OWS Model

Processes::MaxDistanceTo Methods
Method Type Notes

execute (MObject, Point) | public: double param: m [MObject - in]
param: p [Point - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly
to the client or it can be stored at a web-
accessible location which is referenced in the
execute response document.

Processes::MaxSpeed

Class

Extends: WebProcessingService. : Returns the maximum speed of the moving object during its
lifespan.

Processes::MaxSpeed Methods
Method Type Notes |
execute (MObject) public: double param: m [MObject - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly
to the client or it can be stored at a web-
accessible location which is referenced in the
execute response document.

Processes::MinChangeOfDirection

Class
Extends: WebProcessingService. : Returns the minimum change of direction of the moving object
during its lifespan.

Processes::MinChangeOfDirection Methods
Method Type Notes |
execute (MObject) public: double | param: m [MObject - in]

Provides the underlying functionality of the service
and allows monitoring the progress of the process
execution via status messages. Returns process
result.

The result of a process can be returned directly to the
client or it can be stored at a web-accessible location
which is referenced in the execute response
document.

Processes::MinDirection

Class
Extends: WebProcessingService. : Returns the minimum direction of the moving object during its
lifespan.

Page 129

Annex A

Processes::MinDirection Methods
 Method Type Notes
execute (MObject) public: double param: m [MObject - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly
to the client or it can be stored at a web-
accessible location which is referenced in the
execute response document.

Processes::MinDirectionTo

Class

Extends: WebProcessingService. : Returns the minimum direction between the moving point and p
during the moving objects' lifespan.

Processes::MinDirectionTo Methods

Method Type Notes |
execute (MObject, Point) | public: double param: m [MObject - in]

param: p [Point - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly
to the client or it can be stored at a web-
accessible location which is referenced in the
execute response document.

Processes::MinDistanceTo

Class
Extends: WebProcessingService. : Returns the distance between the moving object and p at instant
i.

Processes::MinDistanceTo Methods
Method Type Notes
execute (MObject, Point) | public: double param: m [MObject - in]
param: p [Point - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly
to the client or it can be stored at a web-
accessible location which is referenced in the
execute response document.

Processes::MinSpeed

Class
Extends: WebProcessingService. : Returns the minimum speed of the moving object during its
lifespan.

Page 130

OWS Model

Processes::MinSpeed Methods
Method Type Notes
execute (MObject) public: double param: m [MObject - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly
to the client or it can be stored at a web-
accessible location which is referenced in the
execute response document.

Processes::Positions

Class
Extends: WebProcessingService. : Returns the set of track points for which an instant is defined
when the moving object is projected into the plane.

Processes::Positions Methods
Method Type Notes
execute (MObject) public: Points param: m [MObject - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly
to the client or it can be stored at a web-
accessible location which is referenced in the
execute response document.

Processes::Precedes

Class
Extends: WebProcessingService. : Testing whether the ast instant of the lifecycle of the moving
object is smaller than the first instant of the specified time t.

Processes::Precedes Methods
 Method Type Notes

execute (MObject, Time) | public: boolean param: m [MObject - in]
param: t[Time - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly
to the client or it can be stored at a web-
accessible location which is referenced in the
execute response document.

Processes::SpatioTemporalBypasses

Class
Extends: WebProcessingService. : Testing whether the time-varying position of the moving object
first snaps and then releases the specified geometry g.

Page 131

Annex A

Processes::SpatioTemporalBypasses Methods

Method Type Notes
execute (MObject, public: boolean param: m [MObject - in]
Geometry) param: g [Geometry - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly
to the client or it can be stored at a web-
accessible location which is referenced in the
execute response document.

Processes::SpatioTemporalCoveredBy

Class
Extends: WebProcessingService. : Testing whether the specified geometry g contains the time-
varying position of the moving object.

Processes::SpatioTemporalCoveredBy Methods

Method Type Notes
execute (MObject, public: boolean param: m [MObject - in]
Geometry) param: g [Geometry - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly
to the client or it can be stored at a web-
accessible location which is referenced in the
execute response document.

Processes::SpatioTemporalCrosses

Class
Extends: WebProcessingService. : Testing whether the time-varying position of the moving object
first enters and then leaves the specified geometry g.

Processes::SpatioTemporalCrosses Methods

Method Type Notes
execute (MObject, public: boolean param: m [MObject - in]
Geometry) param: g [Geometry - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly
to the client or it can be stored at a web-
accessible location which is referenced in the
execute response document.

Processes::SpatioTemporalDifference

Class

Extends: WebProcessingService. : Returns the spatial difference of this MObjects with the
parameter g. The result type is the minimum of the two types in assumed dimensional order: points <
line < surface.

Page 132

Processes::SpatioTemporalDifference Methods

OWS Model

Method Type

Notes

execute (MObjects, public: MObjects
Geometry)

Processes::SpatioTemporalDisjoint
Class

param: ms [MObjects - in]
param: g [Geometry - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly to
the client or it can be stored at a web-accessible
location which is referenced in the execute
response document.

Extends: WebProcessingService. : Testing whether the time-varying position of the moving object

and the specified geometry g do not intersect.

Processes::SpatioTemporalDisjoint Methods

Method Type

Notes

execute (MObject, public: boolean
Geometry)

Processes::SpatioTemporalEnters
Class

param: m [MObject - in]
param: g [Geometry - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly to
the client or it can be stored at a web-accessible
location which is referenced in the execute
response document.

Extends: WebProcessingService. : Testing whether the time-varying position of the moving object is
disjoint of the specified geometry g until they meet and then is inside of the specified geometry g.

Processes::SpatioTemporalEnters Methods

Method Type

Notes

execute (MObject, public: boolean
Geometry)

Processes::SpatioTemporalEquals
Class

param: m [MObject - in]
param: g [Geometry - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly to
the client or it can be stored at a web-accessible
location which is referenced in the execute
response document.

Page 133

Annex A

Extends: WebProcessingService. : Testing whether the time-varying position of the moving object is
equal to the specified geometry g.

Processes::SpatioTemporalEquals Methods

 Method Type Notes
execute (MObject, public: boolean param: m [MObject - in]
Geometry) param: g [Geometry - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly to
the client or it can be stored at a web-accessible
location which is referenced in the execute
response document.

Processes::SpatioTemporalExcurses

Class
Extends: WebProcessingService. : Testing whether the time-varying position of the moving object
meets the specified geometry g, then they are disjoint and then they meet again.

Processes::SpatioTemporalExcurses Methods

Method Type Notes
execute (MObject, public: boolean param: m [MObject - in]
Geometry) param: g [Geometry - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly to
the client or it can be stored at a web-accessible
location which is referenced in the execute
response document.

Processes::SpatioTemporalinside

Class
Extends: WebProcessingService. : Testing whether the time-varying position of the moving object is
located in the interior of the specified geometry g.

Processes::SpatioTemporallnside Methods

Method Type Notes
execute (MObject, public: boolean param: m [MObject - in]
Geometry) param: g [Geometry - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly to
the client or it can be stored at a web-accessible
location which is referenced in the execute
response document.

Processes::SpatioTemporalintersection
Class

Page 134

OWS Model

Extends: WebProcessingService. : Returns the spatial intersection of this MObjects with the
parameter g, which can either be a Line, a Surface, a Points or another MObjects geometry. The result
type is the minimum of the two types in assumed dimensional order: points < line < surface.

Processes::SpatioTemporallntersection Methods

 Method Type Notes
execute (MObjects, public: MObjects param: ms [MObjects - in]
Geometry) param: g [Geometry - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly to
the client or it can be stored at a web-accessible
location which is referenced in the execute
response document.

Processes::SpatioTemporallntersects

Class
Extends: WebProcessingService. : Testing whether the time-varying position of the moving object
and the specified geometry g share at least one point.

Processes::SpatioTemporallntersects Methods

 Method Type Notes
execute (MObject, public: boolean param: m [MObject - in]
Geometry) param: g [Geometry - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly to
the client or it can be stored at a web-accessible
location which is referenced in the execute
response document.

Processes::SpatioTemporalLeaves

Class
Extends: WebProcessingService. : Testing whether the time-varying position of the moving object is
disjoint of the specified geometry g until they meet and then is inside of the specified geometry g.

Processes::SpatioTemporalLeaves Methods

 Method Type Notes
execute (MObject, public: boolean param: m [MObject - in]
Geometry) param: g [Geometry - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly
to the client or it can be stored at a web-
accessible location which is referenced in the
execute response document.

Page 135

Annex A

Processes::SpatioTemporalMeets

Class
Extends: WebProcessingService. : Testing whether the time-varying position of the moving object
and the specified geometry g intersect in a point while their interiors are disjoint.

Processes::SpatioTemporalMeets Methods

Method Type Notes
execute (MObject, public: boolean param: m [MObject - in]
Geometry) param: g [Geometry - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly
to the client or it can be stored at a web-
accessible location which is referenced in the
execute response document.

Processes::SpatioTemporalReleases

Class

Extends: WebProcessingService. : Testing whether the time-varying position of the moving object
meets the specified geometry g and then is disjoint of the specified geometry g (is the opposite of
snaps).

Processes::SpatioTemporalReleases Methods

Method Type Notes
execute (MObject, public: boolean param: m [MObject - in]
Geometry) param: g [Geometry - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly
to the client or it can be stored at a web-
accessible location which is referenced in the
execute response document.

Processes::SpatioTemporalSnaps

Class
Extends: WebProcessingService. : Testing whether the time-varying position of the moving object is
disjoint of the specified geometry g and then meets the specified geometry g.

Processes::SpatioTemporalSnaps Methods

Method Type Notes \
execute (MObject, public: boolean param: m [MObject - in]
Geometry) param: g [Geometry - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly
to the client or it can be stored at a web-
accessible location which is referenced in the
execute response document.

Page 136

OWS Model

Processes::SpatioTemporalSubstract

Class

Extends: WebProcessingService. : Remove all values from this MObjects that are also in parameter
g. The result type is also a MObjects since substracting a lower-dimensional value returns the
MObjects unchanged and subtracting a higher-dimensional value does not increase the dimension of
the MObjects.

Processes::SpatioTemporalSubstract Methods

Method Type Notes
execute (MObjects, public: MObjects param: ms [MObjects - in]
Geometry) param: g [Geometry - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly
to the client or it can be stored at a web-
accessible location which is referenced in the
execute response document.

Processes::SpatioTemporalTouches

Class
Extends: WebProcessingService. : Testing whether the time-varying position of the moving object is
disjoint of the specified geometry g until they meet and then is disjoint again.

Processes::SpatioTemporalTouches Methods

Method Type Notes |
execute (MObject, public: boolean param: m [MObject - in]
Geometry) param: g [Geometry - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly
to the client or it can be stored at a web-
accessible location which is referenced in the
execute response document.

Processes::Speed

Class
Extends: WebProcessingService. : Returns the speed of the moving object at instant i.

Processes::Speed Methods

 Method Type Notes
execute (MObject, public: double param: m [MObject - in]
Instant) param: i [Instant - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly
to the client or it can be stored at a web-
accessible location which is referenced in the
execute response document.

Page 137

Annex A

Processes::StartPosition

Class
Extends: WebProcessingService. : Returns the first track point of the moving object's lifespan.

Processes::StartPosition Methods

Method Type Notes

execute (MObject) public: Point param: m [MObject - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly to
the client or it can be stored at a web-accessible
location which is referenced in the execute
response document.

Processes::Starts

Class
Extends: WebProcessingService. : Testing whether the first instant of the lifecycle of the moving
object and the specified time t are the same.

Processes::Starts Methods
Method Type Notes

execute (MObject, Time) | public: boolean param: m [MObject - in]
param: t [Time - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly
to the client or it can be stored at a web-
accessible location which is referenced in the
execute response document.

Processes::Status

Class
Extends: WebProcessingService. : Returning the status of the moving object at a particular instant i.

Processes::Status Methods

 Method Type Notes
execute (MObject, public: StatusT param: m [MObject - in]
Instant) param: i [Instant - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly
to the client or it can be stored at a web-
accessible location which is referenced in the
execute response document.

Page 138

OWS Model

Processes::Succeeds

Class
Extends: WebProcessingService. : Testing whether the first instant of the lifecycle of the moving
object is greater than the last instant of the specified time t.

Processes::Succeeds Methods

Method Type Notes |
execute (MObject, Time) | public: boolean param: m [MObject - in]

param: t[Time -in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly
to the client or it can be stored at a web-
accessible location which is referenced in the
execute response document.

Processes::TemporalContains

Class
Extends: WebProcessingService. : Testing whether any instant of the specified time t belongs to the
lifecycle of the moving object.

Processes::TemporalContains Methods

Method Type Notes |
execute (MObject, Time) | public: boolean | param: m [MObject - in]

param: t[Time - in]

Provides the underlying functionality of the service
and allows monitoring the progress of the process
execution via status messages. Returns process
result.

The result of a process can be returned directly to
the client or it can be stored at a web-accessible
location which is referenced in the execute
response document.

Processes::TemporalCovers

Class
Extends: WebProcessingService. : Testing whether the lifecycle of the moving object contains every
instant of the specified time t.

Processes::TemporalCovers Methods

Method Type Notes |
execute (MObject, Time) | public: boolean param: m [MObject - in]

param: t[Time -in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly
to the client or it can be stored at a web-
accessible location which is referenced in the
execute response document.

Page 139

Annex A

Processes::TemporalDisjoint

Class
Extends: WebProcessingService. : Testing whether the lifecycle of the moving object and the
specified time t do not intersect.

Processes::TemporalDisjoint Methods
Method Type Notes
execute (MObject, Time) | public: boolean param: m [MObject - in]
param: t[Time -in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly
to the client or it can be stored at a web-
accessible location which is referenced in the
execute response document.

Processes::TemporalEquals

Class
Extends: WebProcessingService. : Testing whether the lifecycle of the moving object is equal to the
specified time t.

Processes::TemporalEquals Methods
Method Type Notes

execute (MObject, Time) | public: boolean param: m [MObject - in]
param: t[Time - in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly
to the client or it can be stored at a web-
accessible location which is referenced in the
execute response document.

Processes::Temporallnside

Class
Extends: WebProcessingService. : Testing whether any instant of the lifecycle of the moving object
belongs to the specified time t.

Processes::Temporallnside Methods

Method Type Notes |
execute (MObject, Time) | public: param: m [MObject - in]

ExecuteResponse | param:t[Time -in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly
to the client or it can be stored at a web-
accessible location which is referenced in the
execute response document.

Page 140

OWS Model

Processes::Temporalintersects

Class
Extends: WebProcessingService. : Testing whether the lifecycle of the moving object and the
specified time t have at least one instant in common.

Processes::Temporallntersects Methods
Method Type Notes

execute (MObject, Time) | public: boolean param: m [MObject - in]
param: t[Time -in]

Provides the underlying functionality of the
service and allows monitoring the progress of the
process execution via status messages. Returns
process result.

The result of a process can be returned directly
to the client or it can be stored at a web-
accessible location which is referenced in the
execute response document.

Processes::TemporalMeets

Class
Extends: WebProcessingService. : Testing whether the last instant of the lifecycle of the moving
object is equal to the first instant of the specified time t or vice-versa.

Processes::TemporalMeets Methods

Method Type Notes |
execute (MObject, Time) | public: boolean param: m [MObject - in]

param: t[Time -in]

Provides the underlying functionality of the service
and allows monitoring the progress of the process
execution via status messages. Returns process
result.

The result of a process can be returned directly to
the client or it can be stored at a web-accessible
location which is referenced in the execute
response document.

Processes::TemporalOverlaps

Class

Extends: WebProcessingService. : Testing whether the interior of the lifecycle of the moving object
and the specified time t intersect, while the intersection of the lifecycle of the moving object and t is not
equal to one of them.

Processes::TemporalOverlaps Methods
 Method Type Notes

execute (MObject, Time) | public: boolean param: m [MObject - in]
param: t[Time -in]

Provides the underlying functionality of the service
and allows monitoring the progress of the process
execution via status messages. Returns process
result.

The result of a process can be returned directly to
the client or it can be stored at a web-accessible
location which is referenced in the execute
response document.

Page 141

Annex A

Processes::Trajectory

Class
Extends: WebProcessingService. : Returns the line when the moving object is projected into the
plane.

Processes::Trajectory Methods
Method Type Notes
execute (MObject) public: Line | param: m [MObject - in]

Provides the underlying functionality of the service and
allows monitoring the progress of the process
execution via status messages. Returns process result.

The result of a process can be returned directly to the
client or it can be stored at a web-accessible location
which is referenced in the execute response document.

Java Model

This class diagram shows class dependencies and calls enabling a HTTP request to be forwarded
from a client to the WPS process.

Java Model (PSM)
Package: prototypical implementation

Note: in method doService(), called in doGet() and doPost(), a handler from type ServiceDispathcer is
instantiated and its perform() method invoked to dispatch the request to this handler

Note: in method perform(), a service from type WP Service is instantiated and its doService() method
invoked

Note: depending on the request type, method doService() returns a capabilities document or
instantiates a DescribeProcessRequestHandler or rather ExecuteRequestHandler and invoke its
handleRequest() method

Jjavax
Package: Root element of javax package hierarchy

Page 142

Java Model

class Invocation Sequence/

http::HTTPServlet|

+ doGet()

+ doPost()

+ init()

HttpServiet
enterprise::AbstractOGCServlet «interface» «interface»
serviet::ServiceDispatcher ogcwebservices::0GCWebService

+init() + perform() + getCapabilities()
handleException() + doService()

ﬁx A /Ay

servlet::OGCServletController

+ doService()

- sendException() AbstractOWServiceHandler

doGet() " o I

- reloadServices() servlet:WPSHandler wps::WPService
doPost() + perform() + WPService()
+init() __«;s;»_> - sendGetCapabilitiesResponse() | cuse» ~ |+ getConfiguration()
- initServices() - sendDescribeProcessResponse() + getCapabilities()
- getRequiredInitParameter() - sendExecuteResponse() + doService()

- getServiceList() - sendDirectResponse()

- produceMessage()

+ ctDestroyed()
+ destroy()

in method doService(), called in in method perform(), a service from depending on the request type, method
doGet() and doPost(), a handler from type WPService isinstantiated and doService() returns a capabilities document or
type ServiceDispathcerisinstantiated itsdoService() method invoked instantiates a DescribeProcessRequestHandler
and its perform() method invoked to or rather ExecuteRequestHandler and invoke its
dispatch the request to this handler handleRequest() method

servlet

Package: Servlet package

http
Package: Servlet binding to HTTP protocol

http::HTTPServlet
Class:

http::HTTPServlet Methods

Method | Type
doGet () public: void
doPost () public: void
init () public: void

org

Package: Root element of deegree package hierarchy

Page 143

Annex A

deegree

pkg deegree /
ogcwebservices

+ AbstractOGCWebServiceRequest

+ CurrentUpdateSequenceException
+ DefaultOGCWebServiceResponse

+ EchoRequest

+ ExceptionDocument

+ ExceptionFormat

+ ExceptionReport

+ InconsistentRequestException

+ InvalidParameterValueException

enterprise

+ AbstractOGCSenvlet
+ DeegreeParams

+ InvalidUpdateSequenceException
+ LonLatEnvelope
+ MetadatalLink

+ Proxy + MetadataType

+ ServiceException
+ WebUtils

]+ control
|]+ serviet

+ MissingParameterValueException

+ NoApplicableCodeException

+ OGCRequestFactory

+ 0GCServiceTypes

+ OGCWebServiceException

+ OperationNotSupportedException
+ OWSUtils

+ SupportedFormats

+ SupportedSRSs

+ VersionNegotiationFailedException
+ OGCWebService

1+ OGCWebServiceRequest

1+ OGCWebServiceResponse

Page 144

enterprise

pkg enterprise /
control

+ AbstractDBListener

+ AbstractListener

+ AbstractSecuredListener

+ ApplicationHandler

+ RequestDispatcher
RequestUser

+ RPCException

+ RPCFactory

+ RPCFault

+ RPCMember

+ RPCMethodCall

+ RPCMethodResponse

+ RPCParameter

+ RPCStruct

+ RPCUtils

+ RPCWebEvent

+ WebEvent

W1+ FormEvent

1+ WebListener

servlet

AbstractOWServiceHandler

+ CSWHandler

+ CSWHarvestingContextListener

+ DirectoryAccessServlet

+ FeaturelnfoFilterDef

+ GZIPFilter

+ GZIPResponseStream

+ GZIPResponseWrapper

+ LoggingFilter

+ Messages

+ 0GCServletController

+ ServiceLookup

+ ServletRequestWrapper

+ ServletResponseWrapper

+ SimpleProxyServlet

+ SOAPFacadeServietFilter
SOSHandler

+ WASSHandler
WCSHandler
WFSHandler

+ WFSRequestMapping

+ WMPSHandler

+ WMSHandler

+ WPSHandler

+ WPVSHandler

W1+ ServiceDispatcher

Package: Deegree apps, for building web applications

enterprise::AbstractOGCServlet

Class

Java Model

Extends: HTTPServiet. Implements: HttpServlet. : Abstract servlet that serves as an OCC-
compliant HTTP-frontend to any OGC-WebService (WFS, WMS, ...).

@todo refactoring required, move to package servlet

enterprise::AbstractOGCServiet Methods

Method

Type

Notes

init (ServletConfig)

public: void

servlet configuration

param: servletConfig [ServletConfig - in]

Called by the servlet container to indicate that the
servlet is being placed into service. Sets the
debug level according to the debug parameter
defined in the ServiletEngine's environment.

<p>
<p>

handleException (String,

Exception,
HttpServietResponse)

protected: void

param: msg [String - in]
param: ex [Exception - in]
param: response [HttpServletResponse - in]

handles fatal errors by creating a OGC exception

Page 145

Annex A

XML and sending it back to the client
@deprecated

control
Package: not further described here

serviet

servlet::AbstractOWServiceHandler

Class

Implements: ServiceDispatcher. : This class provides methods that are common to all services that
comply to the OWS Common Implementation Specification 0.3.0.

<p> At the moment, the only implemented functionality allows the sending of exception reports to the
client, but in the future this may be extended by providing a method that sends responses to
GetCapabilities requests.

</p>
@since 2.0
serviet::AbstractOWServiceHandler Attributes
_Attribute Type Notes
RESPONSE_TYPE private const static | private static final String RESPONSE_TYPE =
: "application/vnd.ogc.se_xml";
String Initial Value: "text/xml";
LOG private static : Initial Value: LoggerFactory.getlLogger(
ILogger AbstractOWServiceHandler.class);
serviet::AbstractOWServiceHandler Methods
Method Type Notes
sendException public: void param: httpResponse [HitpServletResponse -
(HttpServletResponse, in]
OGCWebServiceException) param: serviceException
[OGCWebServiceException - in]
serviceException

Sends an exception report to the client. The
exception report complies to the OWS Common
Implementation Specification 0.3.0.

sendException public: void param: httpResponse [HitpServietResponse -

(HttpServletResponse, in]

Exception) param: serviceException [Exception - in]
serviceException

Sends an exception report to the client. The
exception report complies to the OWS Common
Implementation Specification 0.3.0.

servlet::0OGCServletController

Class

Extends: AbstractOGCServiet. : An <code>OGCServletController</code> handles all incoming
requests. The controller for all OGC service requests. Dispatcher to specific handler for WMS, WFS
and other.

@see Front
controller

servlet::OGCServletController Attributes

_ Attribute Type Notes
address public static : address is the url of the client which requests.
String Initial Value: null;
serialVersionUID private const static | Initial Value: -4461759017823581221L;

Page 146

}ong

Java Model

LOG private const static | Initial Value: LoggerFactory.getLogger(
: OGCServletController.class);
ILogger
SERVICE private const static | Initial Value: "services";
String
HANDLER_CLASS private const static | Initial Value: ".handler";
String
HANDLER_CONF private const static | Initial Value: ".config";
String
SERVICE_FACTORIES | private const static | Initial Value: new HashMap<Class, String>();
_MAPPINGS :
Map<Class,
String>
ERR_MSG private const static | Initial Value: "Can't set configuration for {0}";
String
servlet::OGCServletController Methods
Method Type Notes
doService public: void param: request [HitpServletRequest - in]
(HttpServletRequest, param: response [HttpServietResponse - in]
HttpServietResponse)
@TODO refactor and optimize code for
initializing handler
sendException private: void param: response [HttpServletResponse - in]
(HttpServletResponse, param: e [OGCWebServiceException - in]
OGCWebServiceException, e
HttpServietRequest) param: request [HitpServiletRequest - in]

Sends the passed
<tt>OGCWebServiceException</tt> to the
calling client.

doGet (HttpServietRequest,
HitpServletResponse)

protected: void

param: request [HttpServietRequest - in]
param: response [HttpServletResponse - in]

@see

javax.servlet.http.HttpServlet#doGet(javax.servl
et.http.HttpServietRequest,
javax.servlet.http.HttpServietResponse)

reloadServices private: void

param: request [HttpServietRequest - in]

(HttpServletRequest, param: response [HttpServietResponse - in]
HttpServietResponse)
doPost protected: void param: request [HttpServietRequest - in]
(HttpServletRequest, param: response [HttpServietResponse - in]
HitpServletResponse)
(non-Javadoc)
@see
javax.servlet.http.HttpServiet#doPost(javax.serv
let.http.HttpServietRequest,
javax.servlet.http.HttpServletResponse)
init () public: void @see javax.servlet.GenericServlet#init()
initServices private: void param: context [ServletContext - in]
(ServletContext)
getRequiredInitParameter private: String param: name [String - in]
(String)

Page 147

Annex A

getServicelList () private: String @return the services, separated by ","
produceMessage (String, private: String param: pattern [String - in]
Object]]) param: args [Object[] - in]

Formats the provided string and the args array
into a String using MessageFormat.
@return the message to present the client.

ctDestroyed () public: void @see
javax.servlet.ServletContextListener#contextDe
stroyed(javax.servlet.ServietContextEvent)

destroy () public: void

servilet::WPSHandler

Class
Extends: AbstractOWServiceHandler. Implements: ServiceDispatcher. : WPSHandler.java
Created on 08.03.2006. 17:01:31h

@since 2.0
servlet::WPSHandler Attributes
~ Attribute Type Notes
LOG private const static : | Initial Value: LoggerFactory.getLogger(
ILogger WPSHandler.class);

servlet::WPSHandler Methods

 Method Type Notes
perform public: void param: request [OGCWebServiceRequest -
(OGCWebServiceRequest, in]
HttpServietResponse) param: httpServletResponse

[HttpServletResponse - in]

sendGetCapabilitiesResponse private: void | param: httpResponse [HttpServletResponse -
(HttpServletResponse, in]
WPSCapabilities) param: capabilities [WPSCapabilities - in]

Sends the response to a GetCapabilities
request to the client.

sendDescribeProcessResponse | private: void | param: httpResponse [HitpServietResponse -
(HttpServletResponse, in]

ProcessDescriptions) param: processDescriptions

[ProcessDescriptions - in]

Sends the response to a DescribeProcess
request to the client.
@param capabilities

sendExecuteResponse private: void | param: httpResponse [HttpServietResponse -

(HttpServletResponse, in]

ExecuteResponse) param: executeResponse [ExecuteResponse -
in]

Sends the response to an Execute request to
the client.

@param httpServietResponse

@param request

sendDirectResponse private static: | param: httpResponse [HttpServiletResponse -
(HttpServletResponse, void in]
ComplexValue) param: complexValue [ComplexValue - in]

complexValue

Writes the passed
<code>ComplexValue</code> to the
<code>HTTPServletResponse</code>

Page 148

servlet::ServiceDispatcher
Interface: ServiceDispatcher

@since 2.0

servlet::ServiceDispatcher Interfaces

 Method

| Type |

Java Model

Notes

perform

(OGCWebServiceRequest,
HttpServietResponse)

ogcwebservices

ogcwebservices

public: void

param: request [OGCWebServiceRequest - in]
param: response [HttpServietResponse - in]

wps

pkg ogcwebservices /

+ ProcessBrief

+ ServerBusyException
+ WPSDescription

+ WPService

+ WPServiceFactory

+ WPSRequestBaseType
+ XMLFactory

|]+ capabilities

||+ configuration

||+ describeprocess

|]+ execute

Package: Deegree OWS framework, business logic

ogcwebservices::0GCWebService

Interface:

ogcwebservices::OGCWebService Interfaces

Method Type Notes
getCapabilities () public: returns the capabilities of a OGC web service
OGCCapabilities | @return the capabilities of a OGC web service

doService

(OGCWebServiceRequest)

public: Object

ogcwebservices::OGCWebServiceRequest

Interface: This is the base interface for all request on OGC Web Services (OWS). Each class that
capsulates a request against an OWS has to implements this interface.

@since 1.0

ogcwebservices::OGCWebServiceRequest Interfaces

Method

Type

param: request [OGCWebServiceRequest - in]
request (WMS, WCS, WFS, CSW, WFS-G,

WMPS) to perform the implementation of this

method performs the handling of the passed

OGCWebServiceEvent directly and returns the

result to the calling class/ method

@return result of a service operation

Notes

getVendorSpecificParameters () | public:

Map

Finally, the requests allow for optional vendor-
specific parameters (VSPs) that will enhance the
results of a request. Typically, these are used for

Page 149

Annex A

private testing of non-standard functionality prior to
possible standardization. A generic client is not
required or expected to make use of these VSPs.
@return the vendor specificparameters
getVendorSpecificParameter public: param: name [String - in]
(String) String the "key" of a vsp
Finally, the requests allow for optional vendor-
specific parameters (VSPs) that will enhance the
results of a request. Typically, these are used for
private testing of non-standard functionality prior to
possible standardization. A generic client is not
required or expected to make use of these VSPs.
@return the value requested by the key
getld () public: @return the ID of a request
String
getVersion () public: @return the requested service version
String
getServiceName () public: @return the name of the service that is targeted by
String the request
getRequestParameter () public: @return the URI of a HTTP GET request. If the
String request doesn't support HTTP GET a
<tt>WebServiceException</tt> will be thrown
@deprecated should be replaced by a factory class
TODO

ogcwebservices::OGCWebServiceResponse

Interface: This is the base interface for all responses to OGC Web Services (OWS) requests. Each
class that capsulates a response within an OWS has to implement this interface.

ogcwebservices::OGCWebServiceResponse Interfaces

Method Type Notes

getRequest () public: returns the request that causes the response.
OGCWebService
Request

getException () public: returns an XML encoding of the exception that
OGCWebService | raised. If no exception raised <tt>null</tt> will be
Exception returned.

Page 150

wps

Java Model

pkg wps /

describeprocess

+ ComplexData
+ DescribeProcessRequest

+ InputDescription

+ Literallnput

+ LiteralOutput

+ OutputDescription

+ ProcessDescription

+ ProcessDescriptionDocument
+ ProcessDescriptions

+ ProcessDescriptionsDocument
+ SupportedComplexData

+ SupportedCRSs

+ SupportedUOMs

P

+ DescribeProcessRequestHandler

capabilities

+ ProcessOfferings

+ WPSCapabilities

+ WPSCapabilitiesDocument
+ WPSGetCapabilities

+ WPSOperationsMetadata

N

wps

+ ProcessBrief

+ WPService

+ XMLFactory
]+ capabilities
.|+ configuration

|]+ execute

+ ServerBusyException
+ WPSDescription

+ WPServiceFactory
+ WPSRequestBaseType

||+ describeprocess

execute

+ ComplexValue

+ ComplexValueEncoding

+ DefaultRequestQueueManager
+ ExecuteDatalnputs

+ ExecuteRequest

+ ExecuteRequestHandler

+ ExecuteResponse

+ ExecuteResponseDocument
+10Value

+ OutputDefinition

+ OutputDefinitions

+ Process

+ ProcessFailed

+ ProcessStarted

(from ogcwebservices)

+ Status
1+ RequestQueueManager

processes
g + Buffer
|]+ movingObjectsAnalysis

(from execute)
Ll

Y

movingObjectsAnalysis

+ Crosses
(from processes)

wps
Package: Web Processing Service (WPS) package
wps::WPService
Class
Implements: OGCWebService. : WPService.java Created on 08.03.2006. 17:34:15h
@since 2.0
wps::WPService Attributes
_ Attribute Type Notes

LOG private const static : | Initial Value: LoggerFactory.getLogger(

ILogger WPService.class);
TP private const static : | Initial Value: TriggerProvider.create(

Page 151

Annex A

TriggerProvider WPService.class);
configuration private : Initial Value: null;
WPSConfiguration
wps::WPService Methods
Method Type Notes
WPService public: param: configuration [WPSConfiguration - in]
(WPSConfiguration)
configuration
getConfiguration () public: @return Returns the configuration.
WPSConfiguration
getCapabilities () public: (non-Javadoc)
OGC¢Capabilities @see

org.deegree.ogcwebservices. OGCWebServic
e#getCapabilities()

doService
(OGCWebServiceRequest)

capabilities

Package: not further described in this document

configuration

Package: not further described in this document

describeprocess

Package: not further described in this document

execute

execute::Process

public: Object

param: request [OGCWebServiceRequest -
in]

(non-Javadoc)

@see
org.deegree.ogcwebservices.OGCWebServic
e#doService(org.deegree.ogcwebservices.OG
CWebServiceRequest)

pkg execute

processes

g + Buffer
|]+ movingObjectsAnalysis

,,,,,,,,,,,,,,,, 1

Class: Process.java Created on 11.03.2006. 18:32:39h

execute::Process Attributes

_ Attribute Type
processDescription protected :
ProcessDescription

execute::Process Methods

Method Type Notes
Process public: param: processDescription
(ProcessDescription) [ProcessDescription - in]

processDescription

execute (Map<String,
IOValue>,

Page 152

public abstract:
ProcessOutputs

param: inputs [Map<String, IOValue> - in]
param: outputDefinitions [OutputDefinitions - in

OutputDefinitions) ‘ ‘]
@return

Java Model

getProcessDescription () ‘

processes

movingObjectsAnalysis

public: ‘ @return processDescription

ProcessDescription

pkg processes /
mov ingObj ectsAnalysis

=] +
Crosses

class movingObjectsAnaIysis/

execute::Process

processDescription: ProcessDescription

Process(ProcessDescription)
execute(Map<String, I0Value>, OutputDefinitions) : ProcessOutputs
getProcessDescription() : ProcessDescription

1

Crosses

LOG: ILogger = LoggerFactory.g... {readOnly}
MOVING_OBJECT: String = "MovingObject" {readOnly}
GEOMETRY: String = "Geometry" {readOnly}
mObject: Object = null

aoi: Object = null

identifier: Code = null

title: String = null

_abstract: String = null

format: String = null

encoding: URI = null

dataType: URI = null

complexValue: ComplexValue = null
literalValue: TypedLiteral = null

Crosses(ProcessDescription)

execute(Map<String, I0Value>, OutputDefinitions) : ProcessOutputs
readSupportedOutput(ProcessDescription.ProcessOutputs) : void
process() : ProcessOutputs

checkObjCrossesAQl() : Boolean

myProcessingMethod(Feature, Polygon) : Boolean

validate() : boolean

readOutputDefinitions(OutputDefinitions) : void
readSupportedinputs(Datalnputs) : void
readValuesFromInputDefinedValues(Map<String, I0Value>) : void

movingObjectsAnalysis::Crosses

Class

Extends: Process. : Crosses.java Created on 20.03.2008 This class describes an exemplary

Process Implementation. The corresponding configuration document is '<root>\WEB-

INF\confi\wps\processConfigs.xml'. Process configuration is described further inside the configuration
document. The process implementor has to ensure, that the process implemented extends the

Page 153

Annex A

abstract super class Process. This example process IS NOT intended to describe a best practice
approach. In some cases simplifying assumptions have been made for sake of simplicity.

movingObjectsAnalysis::Crosses Attributes

_ Attribute Type Notes
LOG private const static : | define an ILogger for this class
ILogger Initial Value: LoggerFactory.getLogger(
Crosses.class);
MOVING_OBJECT private const static : | The provided crosses implementation is just a
String dummy returning hard coded results. In a

operational implementation the processing should
be done by a underlying Moving Objects
Database. Crosses is a spatio-temporal predicate
which is used to verify the relationships between
a moving object and a geometry which can either
be true or false. The crosses predicate takes two
inputs: 1.) The moving object to apply the
crosses predicate to 2.) The Geometry to to be
tested whether the moving object first enters and
then leaves it (polygon) The <wps:Datalnputs>
section defines two elements: MovingObject
(mandatory) and Geometry (mandatory).

Initial Value: "MovingObject";

GEOMETRY private const static : | Initial Value: "Geometry";
String
mObject private : object and aoi represent the
Object <wps:ComplexData/> elements in the Datalnputs

section. This sample process is feeded with a
movingObject and a polygon.
Initial Value: null;

aoi private : Initial Value: null;
Object

identifier private : Initial Value: null;
Code

title private : Initial Value: null;
String

_abstract private : Initial Value: null;
String

format private : Initial Value: null;
String

encoding private : Initial Value: null;
URI

dataType private : values for ProcessOutput, will be filled
URI dynamically

Initial Value: null;

complexValue private : Initial Value: null;
ComplexValue

literalValue private : Initial Value: null;
TypedLiteral

movingObjectsAnalysis::Crosses Methods
Method Type Notes
Crosses public: param: processDescription [ProcessDescription
(ProcessDescription) -in]

processDescription

Constructor
execute (Map<String, public: param: inputs [Map<String, IOValue> - in]
IOValue>, ProcessOutputs param: outputDefinitions [OutputDefinitions - in]

OutputDefinitions)

This is the central method for implementing a

Page 154

Java Model

process. A <code>Map<String,|IOValue></code>
serves as an input object. Each String represents
the key (e.g. MovingObject) which holds an
IOValue as value (e.g. an object representing a
complete <wps:Input> element with all
corresponding sub-elements). The process
implementation is responsible for retrieving all
specified values according to the process
configuration document. The method returns a
<code>ProcessOutputs</code> object, which
encapsulates the result of the process's
operation.

readSupportedOutput private: void param: configuredProcessOutput
(ProcessDescription.Pro [ProcessDescription.ProcessOutputs - in]
cessOutputs) configuredProcessOutput
Private method that reads configured output for
process output
process () private: Private method for creating the processOutputs
ProcessOutputs data structure and initiating processing

@return boolean value

checkObjCrossesAOl ()

private: Boolean

Private method for reading the input data and
calling the actual crosses process
@return boolean value

myProcessingMethod
(Feature, Polygon)

validate ()

private: Boolean

private: boolean

param: movingObj [Feature - in]
dynamicFeature to apply crosses predicate to
param: polygon [Polygon -in]
geometry to be tested whether movingObj first
enters and then leaves it

Private method for implementing the actual
crosses process. This is just a dummy process
were no real algorithms were applied. According
to the moving objects ID, the crosses predicate is
set either to true (for MObject_2) or false (for
MObject_1) respectively.

@return boolean value

Private method for validating provided input
parameters against configured input parameters.
Actually, this is a very sophisticated
implementation.

@return

readOutputDefinitions
(OutputDefinitions)

private: void

param: outputDefinitions [OutputDefinitions - in]
outputDefinitions

FIXME Assumes (simplified for the actual
process) that only one output is defined. Private
method that reads the output definitions into local
variables.

readSupportedinputs
(Datalnputs)

private: void

param: configuredDatalnputs [Datalnputs - in]
configuredDatalnputs

Private method that reads configured data inputs
for validation

readValuesFromInputD
efinedValues
(Map<String, IOValue>)

private: void

param: inputs [Map<String, IOValue> - in]

Private method for assigning input values to local
variables

Page 155

Annex A

Component Model

cmp Component Model /

Runtime Environment:: Runtime Environmerﬁg|
Web Browser Apache Webserver

Runtime Environ\rpent::Apache Tomc§;|

Business Logic::
Servlet

Business Logic::
Web Processing
Service

Business Logic

cmp Business Logic /

Web Archive

Java Archive

Servlet E:|_©_ Web:;:‘(,::::s;sing{'

1
|
|
T
L

descrllbed by

v

Deployment
Descriptor

Business Logic::Web Archive
Component: Web application, packed into a WAR file

Page 156

Business Logic::Deployment Descriptor

Component: Servlet metadata, stored in the web.xml file

Business Logic::Java Archive
Component: Business logic and classes for building web applications, packed into a JAR file

Business Logic::Servlet

Component: Java Servlet from the deegree OWS Java framework

Business Logic::Web Processing Service

Component Model

Component: WPS and Process from the deegree OWS Java framework Runtime Environment
defines how the system is structured

cmp Runtime Environment /

Web Browser

request

----------- >

response

<

Apache Webserver

resp:onse reqpest

i v

Apache Tomcat

Runtime Environment::Apache Tomcat
Component: Java Servlet Container

Runtime Environment::Apache Webserver

Component:

Runtime Environment::Web Browser

Component: dsfsdfsdfdsf

Page 157

Annex A

Deployment Model

Describes how and where system components are deployed onto physical nodes

deployment Deployment Model /

«device»
Client

Runtime Environment::
Web Browser

HTTP

«device»
Server

Runtime Environment::Apache Webserver

Runtime Environment::Apache Tomcat

Business Logic::
Web Archive

Page 158

Annex B

XML Schema

Moving Objects GML Application Schema

<?xml version="1.0" encoding="UTF-8"?>

<!-- edited with XMLSpy v2008 (http://www.altova.com) by Tobias Fleischmann (UNIGIS) -->
<xsd:schema xmlns:mObj="http://localhost:8080/deegreeWPS" xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:gml="http://www.opengis.net/gml" targetNamespace="http://localhost:8080/deegreeWPsS"
elementFormDefault="qualified" attributeFormDefault="unqualified">
<xsd:import namespace="http://www.opengis.net/gml"
schemaLocation="C:\Daten\XSD\SCHEMAS OPENGIS NET\gml\3.1l.l\base\gml.xsd"/>
<xsd:simpleType name="ClassificationType">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="onroad"/>
<xsd:enumeration value="offroad"/>
<xsd:enumeration value="aircraft"/>
<xsd:enumeration value="watercraft"/>
<xsd:enumeration value="railway"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:complexType name="StatusType">
<xsd:simpleContent>
<xsd:restriction base="gml:StringOrRefType">
<xsd:enumeration value="active"/>
<xsd:enumeration value="inactive"/>
<xsd:enumeration value="disabled"/>
</xsd:restriction>
</xsd:simpleContent>
</xsd:complexType>
<xsd:complexType name="PositionType">
<xsd:complexContent>
<xsd:restriction base="gml:LocationPropertyType">

Page 159

Annex B

<xsd:sequence minOccurs="0">
<xsd:choice>
<xsd:element ref="gml:Point"/>
<xsd:element ref="gml:Null"/>
</xsd:choice>
</xsd:sequence>
</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="TimeType">
<xsd:complexContent>
<xsd:restriction base="gml:TimePrimitivePropertyType">
<xsd:sequence minOccurs="0">
<xsd:element ref="gml:TimeInstant"/>
</xsd:sequence>
</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>

<xsd:group name="StaticProperties">

<xsd:sequence>
<xsd:element
<xsd:element
<xsd:element
<xsd:element
</xsd:sequence>
</xsd:group>

ref="mObj:
ref="m0Obj
ref="m0Obj
ref="m0Obj

Identifier"/>

:DateOfBirth"/>
:DateOfDeath"/>
:Classification" minOccurs="0"/>

<xsd:complexType name="MyMovingObjectStatusType">
<xsd:complexContent>
<xsd:extension base="gml:MovingObjectStatusType"/>
</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="MovingObjectType">
<xsd:complexContent>
<xsd:extension base="gml:DynamicFeatureType">

<xsd:group ref="mObj:StaticProperties"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="MovingGroupType">
<xsd:complexContent>
<xsd:extension base="gml:FeatureCollectionType">

Page 160

<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:

Moving Objects GML Application Schema

<xsd:sequence>
<xsd:element name="groupIldentifier" type="xsd:integer"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

element
element
element
element
element
element
element
element

name="Identifier" type="xsd:string"/>

name="DateOfBirth" type="gml:TimeInstantType"/>

name="DateOfDeath" type="gml:TimeInstantType"/>

name="Classification" type="mObj:ClassificationType"/>

name="Status" type="mObj:StatusType" substitutionGroup="gml:status"/>
name="Position" type="mObj:PositionType" substitutionGroup="gml:location"/>
name="Time" type="mObj:TimeType" substitutionGroup="gml:validTime"/>
name="MyMovingObjectStatus" type="mObj:MyMovingObjectStatusType"

substitutionGroup="gml:MovingObjectStatus"/>
<xsd:element name="MovingObject" type="mObj:MovingObjectType" substitutionGroup="gml: Feature"/>
<xsd:element name="MovingObjectCollection" type="gml:FeatureCollectionType"
substitutionGroup="gml: FeatureCollection"/>
<xsd:element name="MovingGroup" type="mObj:MovingGroupType" substitutionGroup="gml: FeatureCollection"/>
</xsd:schema>

Page 161

Annex C

XML Encoding

Deployment Descriptor

<?xml version="1.0"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN" "http://java.sun.com/dtd/web-
app_2_ 3.dtd">
<web-app>
<display-name>deegree 2.0</display-name>
<description>deegree 2.0 OWS</description>
<servlet>
<servlet-name>owservice</servlet-name>
<servlet-class>org.deegree.enterprise.servlet.0GCServlietController</servlet-class>

<init-param>
<param-name>services</param-name>
<param-value>wps</param-value>
<description>
list of supported services, e.g.: wfs,wms (comma separated), will be replaced by ant
</description>
</init-param>

<!-- WMS INITIALIZING PARAMETERS -->
<init-param>
<param-name>wmns.handler</param-name>
<param-value>org.deegree.enterprise.servlet.WMSHandler</param-value>
</init-param>
<init-param>
<param-name>wms.config</param-name>
<param-value>WEB-INF/conf/wms/wms 1 3 0 reference implementation configuration.xml</param-value>
<!-- Replace with the following line for a 1.1.1 reference impleaentation. -—=>
<!I-- <param-value>WEB-INF/conf/wms/wms 1 1 1 reference implementation configuration.xml</param-value>-->
</init-param>

Page 163

Annex C

<!-- WEFS INITIALIZING PARAMETERS -->
<init-param>
<param-name>wfs.handler</param-name>
<param-value>org.deegree.enterprise.servlet.WFSHandler</param-value>
</init-param>
<init-param>
<param-name>wfs.config</param-name>
<param-value>WEB-INF/conf/wfs/example wfs configuration.xml</param-value>
</init-param>

<!-—- WPS INITIALIZING PARAMETERS -->
<init-param>
<param-name>wps.handler</param-name>
<param-value>org.deegree.enterprise.servlet.WPSHandler</param-value>
</init-param>
<init-param>
<param-name>wps.config</param-name>
<param-value>WEB-INF/conf/wps/wps capabilities.xml</param-value>
</init-param>

<!-- WSS INITIALIZING PARAMETERS -->
<init-param>
<param-name>wss.handler</param-name>
<param-value>org.deegree.enterprise.servlet.WASSHandler</param-value>
</init-param>
<init-param>
<param-name>wss.config</param-name>
<param-value>WEB-INF/conf/wass/wss/example wss capabilities.xml</param-value>
</init-param>

<!-- WAS INITIALIZING PARAMETERS -->
<init-param>
<param-name>was.handler</param-name>
<param-value>org.deegree.enterprise.servlet.WASSHandler</param-value>
</init-param>
<init-param>
<param-name>was.config</param-name>
<param-value>WEB-INF/conf/wass/was/example was capabilities.xml</param-value>
</init-param>

Page 164

<!-- WCS INITIALIZING PARAMETERS -->
<init-param>
<param-name>wcs.handler</param-name>
<param-value>org.deegree.enterprise.servlet.WCSHandler</param-value>
</init-param>
<init-param>
<param-name>wcs.config</param-name>
<param-value>WEB-INF/conf/wcs/example wcs capabilities.xml</param-value>
</init-param>

<!-- CSW INITIALIZING PARAMETERS -->
<init-param>
<param-name>csw.handler</param-name>
<param-value>org.deegree.enterprise.servlet.CSWHandler</param-value>
</init-param>
<init-param>
<param-name>csw.config</param-name>
<param-value>WEB-INF/conf/csw/example csw_configuration.xml</param-value>
</init-param>

<!-- SOS INITIALIZING PARAMETERS -->
<init-param>
<param-name>sos.handler</param-name>
<param-value>org.deegree.enterprise.servlet.SOSHandler</param-value>
</init-param>
<init-param>
<param-name>sos.config</param-name>
<param-value>WEB-INF/conf/sos/example sos capabilities.xml</param-value>
</init-param>

<!=-— WPVS INITIALIZING PARAMETERS -->
<init-param>
<param-name>wpvs.handler</param-name>
<param-value>org.deegree.enterprise.servlet.WPVSHandler</param-value>
</init-param>
<init-param>
<param-name>wpvs.config</param-name>
<param-value>WEB-INF/conf/wpvs/wpvs configuration.xml</param-value>
</init-param>

Deployment Descriptor

Page 165

Annex C

<!-- WPVS-client INITIALIZING PARAMETERS -->
<init-param>
<param-name>wpvc.handler</param-name>
<param-value>org.deegree.enterprise.servlet.WPVSHandler</param-value>
</init-param>
<init-param>
<param-name>wpvc.config</param-name>
<param-value>WEB-INF/conf/wpvs/wpvs_ configuration.xml</param-value>
</init-param>

<load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
<servlet-name>owservice</servlet-name>
<url-pattern>/services</url-pattern>
</servlet-mapping>

<welcome-file-list>
<welcome-file>/index.jsp</welcome-file>
</welcome-file-list>

<error-page>
<error-code>500</error-code>
<location>/error.jsp</location>
</error-page>

<error-page>
<exception-type>org.deegree.ogcwebservices.OGCWebServiceException</exception-type>
<location>/error.]jsp</location>

</error-page>

</web-app>

Capabilities Document

<?xml version="1.0" encoding="UTF-8"7?>

<!-- This file is part of the deegree wps implementation. It represents an exemplary configuration document for a
wps capabilities interface. -->
<!-- Only wps specific elements will be explained below. The implementation is based on version 0.4.0 of the OGC Web

Page 166

Capabilities Document

Processing Service Specification. -->
<Capabilities xmlns:xlink="http://www.w3.0rg/1999/x1link" version="0.4.0" xmlns:wps="http://www.opengis.net/wps"
xmlns:ows="http://www.opengis.net/ows" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://www.opengis.net/wps ..\wpsGetCapabilities.xsd"
xmlns:deegree="http://www.deegree.org/wps">
<!-- deegreeParams are for internal configuration of the deegree framework-->
<deegree:deegreeParams>

<deegree:DefaultOnlineResource xmlns:xlink="http://www.w3.0rg/1999/x1ink" xlink:type="simple"
xlink:href="http://localhost:8080/wps_deegree/wps"/>

<deegree:CacheSize>100</deegree:CacheSize>

<deegree:RequestTimelLimit>35</deegree:RequestTimelLimit>

<!-- The ProcessDirectoryList will be scanned recursively for processes which will be automatically
registered to the wps server. The path is relative to the file you are currently reading.-->

<deegree:ProcessDirectoryList>

<deegree:ProcessDirectory>processConfigs</deegree:ProcessDirectory>

</deegree:ProcessDirectoryList>

<!-- The RequestQueueManager is responsible for storing requests. This feature will be essential at the
time the server supports storage of output.

Any RequestQueueManager implementation shall implement the
org.deegree.ogcwebservices.wps.execute.RequestQueueManager interface.
The current DefaultRequestQueueManager simply stores requests to a map and retrieves them

afterwards from the map. -->

<deegree:RequestQueueManager>

<deegree:ResponsibleClass>org.deegree.ogcwebservices.wps.execute.Defaul tRequestQueueManager</deegree:ResponsibleClas
s>
</deegree:RequestQueueManager>
</deegree:deegreeParams>
<!-- The remainder of this file is a standard capabilities description. -->
<ows:Serviceldentification>
<ows:Title>deegree WPS Server</ows:Title>
<ows:Abstract>deegree compliant WPS Server hosted by Tobias Fleischmann</ows:Abstract>
<ows:Keywords>
<ows:Keyword>WPS</ows :Keyword>
<ows:Keyword>geospatial</ows:Keyword>
<ows:Keyword>geoprocessing</ows:Keyword>
</ows:Keywords>
<ows:ServiceType>WPS</ows:ServiceType>
<ows:ServiceTypeVersion>0.2.0</ows:ServiceTypeVersion>
<ows:ServiceTypeVersion>0.1.0</ows:ServiceTypeVersion>

Page 167

Annex C

<ows:Fees>NONE</ows:Fees>
<ows:AccessConstraints>NONE</ows:AccessConstraints>
</ows:Serviceldentification>
<ows:ServiceProvider>
<ows:ProviderName>Tobias Fleischmann</ows:ProviderName>
<ows:ProviderSite xlink:href="http://www.unigis.ac.at/"/>
<ows:ServiceContact>
<ows:IndividualName>Tobias Fleischmann</ows:IndividualName>
<ows:PositionName>UNIGIS MSc student</ows:PositionName>
<ows:ContactInfo>
<ows:Address>
<ows:DeliveryPoint>Richard-Wagner-Strasse 9</ows:DeliveryPoint>
<ows:City>Oberteuringen</ows:City>
<ows:AdministrativeArea>BW</ows:AdministrativeArea>
<ows:PostalCode>88094</ows:PostalCode>
<ows:Country>Germany</ows:Country>
<ows:ElectronicMailAddress>mt.ul249@web.de</ows:ElectronicMailAddress>
</ows:Address>
</ows:ContactInfo>
</ows:ServiceContact>
</ows:ServiceProvider>
<ows:OperationsMetadata>
<ows:0Operation name="GetCapabilities">
<ows:DCP>
<ows :HTTP>
<ows:Get xlink:href="http://localhost:8080/deegreeWPS/services?"/>
</ows:HTTP>
</ows:DCP>
</ows:0Operation>
<ows:Operation name="DescribeProcess">
<ows:DCP>
<ows :HTTP>
<ows:Get xlink:href="http://localhost:8080/deegreeWPS/services?"/>
<!-- <ows:Post xlink:href="http://localhost:8080/deegreeWPS/services"/> —->
</ows:HTTP>
</ows :DCP>
</ows:0peration>
<ows:0Operation name="Execute">
<ows :DCP>
<ows:HTTP>
<!-- <ows:Get xlink:href="http://localhost:8080/deegreeWPS/services?"/> —-->

Page 168

Capabilities Document

<ows:Post xlink:href="http://localhost:8080/deegreeWPS/services" />
</ows:HTTP>
</ows:DCP>
</ows:0Operation>
</ows:0OperationsMetadata>
<!-- The server will generate a dynamic process offerings section out of the process descriptions. -->
</Capabilities>

Process Description Document

<?xml version="1.0" encoding="UTF-8"?>

<!-- This file is part of the deegree wps implementation. It represents an exemplary process configuration document
for a buffer process. -->

<!-- Only wps specific elements will be explained below. The implementation is based on version 0.4.0 of the OGC Web
Processing Service Specification. -->

<!-- the root element defines the optional parameters store and status, which are currently not supported. -->
<wps:ProcessDescriptions xmlns:wps="http://www.opengeospatial.net/wps" xmlns:ows="http://www.opengis.net/ows"
xmlns:xlink="http://www.w3.0rg/1999/x1ink" xmlns:deegree="http://www.deegree.org/wps"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemalLocation="http://www.opengis.net/wps

. .\wpsDescribeProcess.xsd">

<wps:ProcessDescription processVersion="1" storeSupported="false" statusSupported="false">

<!-- deegreeParams are for internal configuration of the deegree framework-->
<deegree:deegreeParams>
<!-- The responsibleClass represents the actual processImplementing class, identified by it's fully

qualified classname. Each process shall only define one responsible class.
Although it is of course possible to set up a detailed sub-package structure below the responsible
class. —-—>

<deegree:responsibleClass>org.deegree.ogcwebservices.wps.execute.processes.movingObjectsAnalysis.Crosses</deegree:re
sponsibleClass>

</deegree:deegreeParams>

<ows:Identifier>Crosses</ows:Identifier>

<ows:Title>Crosses Predicate</ows:Title>

<ows:Abstract>Testing whether the time-varying position of a moving object first enters and then leaves the
specified geometry. Accepts a GML geometry and provides a boolean output.</ows:Abstract>

<ows:Metadata xlink:title="spatio-temporal predicate"/>

<ows:Metadata xlink:title="moving object"/>

<ows:Metadata xlink:title="geometry"/>

Page 169

Annex C

<ows:Metadata xlink:title="GML"/>

<!-- BEGIN OF DATAINPUTS -->
<!-- the Datalnputs section describes the process inputs for the implementation. -->
<wps:Datalnputs>

<!-- An Input element refers to a single input -->

<wps:Input>
<ows:Identifier>MovingObject</ows:Identifier>
<ows:Title>Moving Object</ows:Title>
<ows:Abstract>Moving object to apply crosses predicate to.</ows:Abstract>
<wps:ComplexData>
<wps:SupportedComplexData>
<wps:Format>text/xml</wps:Format>
<wps:Encoding>UTF-8</wps:Encoding>
<wps:Schema>"http://localhost:8080/deegreeWPS/MovingObjects.xsd"</wps:Schema>
</wps:SupportedComplexData>
</wps:ComplexData>
<wps:MinimumOccurs>1</wps:MinimumOccurs>
</wps:Input>
<wps:Input>
<ows:Identifier>Geometry</ows:Identifier>
<ows:Title>Geometry</ows:Title>
<ows:Abstract>Geometry to be tested whether moving object first enters and then leaves
it.</ows:Abstract>
<wps:ComplexData>
<wps:SupportedComplexData>
<wps:Format>text/xml</wps:Format>
<wps:Encoding>UTF-8</wps:Encoding>
<wps:Schema>http://schemas.opengis.net/gml/3.0.0/base/gml.xsd</wps:Schema>
</wps:SupportedComplexData>
</wps:ComplexData>
<wps:MinimumOccurs>1</wps:MinimumOccurs>
</wps:Input>
</wps:Datalnputs>

<!-- END OF DATAINPUTS -->
<!-- BEGIN OF PROCESSOUTPUTS-->
<wps:ProcessOutputs>

<!-- A process may define several outputs-->

<wps:Output>
<ows:Identifier>Boolean</ows:Identifier>
<ows:Title>Boolean</ows:Title>
<ows:Abstract>Statement expressing whether or not the crosses relationships between the moving

Page 170

Process Description Document

object and the geometry is either true or false.</ows:Abstract>
<wps:LiteralOutput>
<ows:DataType ows:reference="urn:ogc:def:dataType:0GC:1.1:boolean">boolean</ows:DataType>
<wps:SupportedUOMs />
</wps:LiteralOutput>
</wps:0utput>
</wps:ProcessOutputs>
<!-- END OF PROCESSOUTPUTS-->
</wps:ProcessDescription>
</wps:ProcessDescriptions>

Execute Request Document

<?xml version="1.0" encoding="UTF-8"?>
<wps:Execute service="WPS" version="0.4.0" store="false" status="false" xmlns:ows="http://www.opengis.net/ows"
xmlns:wps="http://www.opengeospatial.net/wps" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opengeospatial.net/wps C:\Daten\Doku\OGC\discusssion paper\05-
007r4 Web Processing Service WPS v0 4 O\wps\0.4.0\wpsExecute.xsd">
" <ows:Identifier>Crosses</ows:Identifier>
<wps:Datalnputs>
<wps:Input>
<ows:Identifier>MovingObject</ows:Identifier>
<ows:Title>Moving Object</ows:Title>
<ows:Abstract>Moving object to apply crosses predicate to.</ows:Abstract>
<wps:ComplexValue format="text/xml" encoding="UTF-8"
schema="http://localhost:8080/deegreeWPS/MovingObjects.xsd">
<mOb7j :MovingObject xmlns:mObj="http://localhost:8080/deegreeWPsS"
xmlns:gml="http://www.opengis.net/gml">
<gml:description>Vehicle moving from Meersburg to Constance by crossing the Lake
Constance using a car ferry</gml:description>
<gml:srsName>EPSG:4326</gml:srsName>
<gml:track>
<mObj :MyMovingObjectStatus>
<gml:description>TrkPt 1: Meersburg</gml:description>
<mObj : Time>
<gml:TimeInstant>
<gml:timePosition>2008-03-02T10:30:00Z</gml:timePosition>
</gml:TimeInstant>

Page 171

Annex C

</mObj : Time>
<mObj:Position>
<gml:Point>
<gml:pos srsDimension="2">47.6954467 9.2663681</gml:pos>
</gml:Point>
</mObj:Position>
<mObj:Status>active</mObj:Status>
</mObj :MyMovingObjectStatus>
<mObj :MyMovingObjectStatus>
<gml:description>TrkPt 2: halfway ferry across the lake</gml:description>
<mObj : Time>
<gml:TimeInstant>
<gml:timePosition>2008-03-02T10:40:00Z2</gml:timePosition>
</gml:TimeInstant>
</m0bj : Time>
<mObj:Position>
<gml:Point>
<gml:pos srsDimension="2">47.6879009 9.2346861</gml:pos>
</gml:Point>
</mObj:Position>
<mOb7j:Status>active</mObj:Status>
</mOb7j :MyMovingObjectStatus>
<mObj :MyMovingObjectStatus>
<gml:description>TrkPt 3: Konstanz Staad</gml:description>
<mObj :Time>
<gml:TimeInstant>
<gml:timePosition>2008-03-02T10:50:00Z</gml:timePosition>
</gml:TimeInstant>
</mObj:Time>
<mObj:Position>
<gml:Point>
<gml:pos srsDimension="2">47.6830500 9.2026031</gml:pos>
</gml:Point>
</mObj:Position>
<mOb7j:Status>active</mObj:Status>
</mObj :MyMovingObjectStatus>
<mObj :MyMovingObjectStatus>
<gml:description>TrkPt 4: Konstanz Rheinbruecke</gml:description>
<mObj : Time>
<gml:TimeInstant>
<gml:timePosition>2008-03-02T10:58:00Z2</gml:timePosition>

Page 172

Execute Request Document

</gml:TimeInstant>
</mObj :Time>
<mObj:Position>
<gml:Point>
<gml:pos srsDimension="2">47.6668804 9.1789418</gml:pos>
</gml:Point>
</mObj:Position>
<mOb7j:Status>active</mObj:Status>
</mOb7j :MyMovingObjectStatus>
</gml:track>
<mObj:Identifier>MObj 2</mObj:Identifier>
<mOb7j:DateOfBirth>
<gml:timePosition>2008-03-02T10:30:00Z</gml:timePosition>
</mObj:Date0fBirth>
<mOb7j:DateOfDeath>
<gml:timePosition>2008-03-02T10:58:00Z2</gml:timePosition>
</mObj:DateOfDeath>
<mObj:Classification>onroad</mObj:Classification>
</mObj :MovingObject>
</wps:ComplexValue>
</wps:Input>
<wps:Input>
<ows:Identifier>Geometry</ows:Identifier>
<ows:Title>Geometry</ows:Title>
<ows:Abstract>Geometry to be tested whether moving object first enters and then leaves
it.</ows:Abstract>
<wps:ComplexValue format="text/xml" encoding="UTF-8"
schema="http://schemas.opengis.net/gml/3.0.0/base/gml.xsd">
<gml:Polygon xmlns:gml="http://www.opengis.net/gml" srsName="EPSG:4326">
<gml:exterior>
<gml:LinearRing>
<gml:pos srsDimension="2">47.8057600
<gml:pos srsDimension="2">47.8189652
<gml:pos srsDimension="2">47.7397338
<gml:pos srsDimension="2">47.7139522
<gml:pos srsDimension="2">47.7139522
<gml:pos srsDimension="2">47.6623889
<gml:pos srsDimension="2">47.6749653
<gml:pos srsDimension="2">47.6472972
<gml:pos srsDimension="2">47.5982492

.0250785</gml :pos>
.0577710</gml :pos>
.2361782</gml :pos>
.2361782</gml :pos>
.2371123</gml :pos>
.3520028</gml:pos>
.4089809</gml:pos>
.5070582</gml :pos>
.5444209</gml:pos>

O O WO W W WO

Page 173

Annex C

<gml:pos srsDimension="2">47.5221619
<gml:pos srsDimension="2">47.5039261
<gml:pos srsDimension="2">47.4775156
<gml:pos srsDimension="2">47.5536029
<gml:pos srsDimension="2">47.5705811
<gml:pos srsDimension="2">47.6680483
<gml:pos srsDimension="2">47.6686771
<gml:pos srsDimension="2">47.6743365
<gml:pos srsDimension="2">47.6435243
<gml:pos srsDimension="2">47.6435243
<gml:pos srsDimension="2">47.6441531
<gml:pos srsDimension="2">47.6611312
<gml:pos srsDimension="2">47.6605024
<gml:pos srsDimension="2">47.6969740
<gml:pos srsDimension="2">47.7284150
<gml:pos srsDimension="2">47.7460220
<gml:pos srsDimension="2">47.7064063
<gml:pos srsDimension="2">47.6718212
<gml:pos srsDimension="2">47.6629279
<gml:pos srsDimension="2">47.6685872
<gml:pos srsDimension="2">47.6898774
<gml:pos srsDimension="2">47.7079335
<gml:pos srsDimension="2">47.7346134
<gml:pos srsDimension="2">47.8057600
</gml:LinearRing>
</gml:exterior>
</gml:Polygon>
</wps:ComplexValue>
</wps:Input>
</wps:DataInputs>
<wps:OutputDefinitions>
<wps:Output format="text/xml" encoding="UTF-8"
schema="http://schemas.opengis.net/gml/3.0.0/base/basicTypes.xsd" uom="urn:ogc:def:dataType:0GC:1.1:boolean">
<ows:Identifier>Boolean</ows:Identifier>
<ows:Title>Boolean</ows:Title>
<ows:Abstract>Statement expressing whether or not the crosses relationships between the moving
object and the geometry is either true or false.</ows:Abstract>
</wps:0utput>
</wps:OutputDefinitions>
</wps:Execute>

.7513172</gml :pos>
.7307677</gml:pos>
.4851076</gml:pos>
.3720852</gml:pos>
.3870303</gml:pos>
.1423042</gml:pos>
.1423042</gml:pos>
.0134027</gml:pos>
.9227980</gml:pos>
.8816990</gml:pos>
.8816990</gml:pos>
.8788967</gml:pos>
.9358750</gml:pos>
.0031279</gml:pos>
.9358750</gml:pos>
.9610949</gml:pos>
.0956008</gml:pos>
.1425045</gml :pos>
.2061546</gml:pos>
.2169631</gml :pos>
.2061546</gml:pos>
.1757307</gml:pos>
.1725281</gml:pos>
.0250785</gml :pos>

O O WO WO WL WIWO WO OO WO WLWLWLWWOWWLWOLO

Page 174

Test Data (GML)

<?xml version="1.0" encoding="UTF-8"?>

Test Data (GML)

<gml:Polygon xmlns:gml="http://www.opengis.net/gml" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opengis.net/gml C:\Daten\XSD\SCHEMAS OPENGIS NET\gml\3.1l.l\base\geometryBasic2d.xsd"

srsName="EPSG:4326">
<gml:exterior>

<gml:LinearRing>

<gml:
<gml:
<gml:
<gml:
<gml:
<gml:
<gml:
<gml:
<gml:
<gml:
<gml:
<gml:
<gml:
<gml:
<gml:
<gml:
<gml:
<gml:
<gml:
<gml:
<gml:
<gml:
<gml:
<gml:
<gml:
<gml:
<gml:
<gml:
<gml:
<gml:

pos
pos
pos
pos
pos
pos
pos
pos
pos
pos
pos
pos
pos
pos
pos
pos
pos
pos
pos
pos
pos
pos
pos
pos
pos
pos
pos
pos
pos
pos

srsDimension="2">47,
srsDimension="2">47.
srsDimension="2">47,
srsDimension="2">47,
srsDimension="2">47,
srsDimension="2">47,
srsDimension="2">47,
srsDimension="2">47,
srsDimension="2">47,
srsDimension="2">47,
srsDimension="2">47,.
srsDimension="2">47,.
srsDimension="2">47.
srsDimension="2">47,
srsDimension="2">47.
srsDimension="2">47,.
srsDimension="2">47.
srsDimension="2">47.
srsDimension="2">47.
srsDimension="2">47.
srsDimension="2">47,.
srsDimension="2">47.
srsDimension="2">47,
srsDimension="2">47.
srsDimension="2">47,
srsDimension="2">47.
srsDimension="2">47,
srsDimension="2">47,
srsDimension="2">47,
srsDimension="2">47,

8057600
8189652
7397338
7139522
7139522
6623889
6749653
6472972
5982492
5221619
5039261
4775156
5536029
5705811
6680483
6686771
6743365
6435243
6435243
6441531
6611312
6605024
6969740
7284150
7460220
7064063
6718212
6629279
6685872
6898774

O WO W WO WO 0 LWO O WL WIWILWWILWLWWOLWLWLWLWOLWOLOLOLo

.0250785</gml:
.0577710</gml:
.2361782</gml:
.2361782</gml:
.2371123</gml:
.3520028</gml:
.4089809</gml:
.5070582</gml:
.5444209</gml:
.7513172</gml:
.7307677</gml:
.4851076</gml:
.3720852</gml:
.3870303</gml:
.1423042</gml:
.1423042</gml:
.0134027</gml:
.9227980</gml:
.8816990</gml:
.8816990</gml:
.8788967</gml:
.9358750</gml:
.0031279</gml:
.9358750</gml:
.9610949</gml:
.0956008</gml:
.1425045</gml:
.2061546</gml:
.2169631</gml:
.2061546</gml:

pos>
pos>
pos>
pos>
pos>
pos>
pos>
pos>
pos>
pos>
pos>
pos>
pos>
pos>
pos>
pos>
pos>
pos>
pos>
pos>
pos>
pos>
pos>
pos>
pos>
pos>
pos>
pos>
pos>
pos>

Page 175

Annex C

<gml:pos srsDimension="2">47.7079335 9.1757307</gml:pos>
<gml:pos srsDimension="2">47.7346134 9.1725281</gml:pos>
<gml:pos srsDimension="2">47.8057600 9.0250785</gml:pos>
</gml:LinearRing>
</gml:exterior>
</gml:Polygon>

<?xml version="1.0" encoding="UTF-8"?>

<mObj:MovingObject xmlns:mObj="file:///C:/Daten/XSD" xmlns:gml="http://www.opengis.net/gml"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemalocation="file:///C:/Daten/XSD
file:///C:/Daten/XSD/MovingObjects.xsd">
<gml:description>Vehicle moving from Meersburg to Constance by crossing the Lake Constance using a car-
ferry</gml:description>
<gml:name>MObject 2</gml:name>
<gml:srsName>EPSG:4326</gml:srsName>
<gml:track>
<mObj:MyMovingObjectStatus>
<gml:description>TrkPt 1: Meersburg</gml:description>
<mObj :Time>
<gml:TimeInstant>
<gml:timePosition>2008-03-02T10:30:00Z</gml:timePosition>
</gml:TimeInstant>
</mObj:Time>
<mObj:Position>
<gml:Point>
<gml:pos srsDimension="2">47.6954467 9.2663681</gml:pos>
</gml:Point>
</mObj:Position>
<mObj:Status>active</mObj:Status>
</mObj :MyMovingObjectStatus>
<mObj:MyMovingObjectStatus>
<gml:description>TrkPt 2: halfway ferry across the lake</gml:description>
<mObj :Time>
<gml:TimeInstant>
<gml:timePosition>2008-03-02T10:40:00Z</gml:timePosition>
</gml:TimeInstant>
</mObj:Time>
<mObj:Position>
<gml:Point>
<gml:pos srsDimension="2">47.6879009 9.2346861</gml:pos>
</gml:Point>
</mObj:Position>
<mObj:Status>active</mObj:Status>

Page 176

Test Data (GML)

</mObj :MyMovingObjectStatus>
<mObj:MyMovingObjectStatus>
<gml:description>TrkPt 3: ferry port Staad</gml:description>
<mObj :Time>
<gml:TimeInstant>
<gml:timePosition>2008-03-02T10:50:00Z</gml:timePosition>
</gml:TimeInstant>
</mObj:Time>
<mObj:Position>
<gml:Point>
<gml:pos srsDimension="2">47.6822627 9.2111293</gml:pos>
</gml:Point>
</mObj:Position>
<mObj:Status>active</mObj:Status>
</mObj :MyMovingObjectStatus>
<mObj :MyMovingObjectStatus>
<gml:description>TrkPt 4: Constance</gml:description>
<mObj :Time>
<gml:TimeInstant>
<gml:timePosition>2008-03-02T10:58:00Z</gml:timePosition>
</gml:TimeInstant>
</mObj:Time>
<mObj:Position>
<gml:Point>
<gml:pos srsDimension="2">47.6831430 9.2024432</gml:pos>
</gml:Point>
</mObj:Position>
<mObj:Status>active</mObj:Status>
</mObj :MyMovingObjectStatus>
</gml:track>
<mObj:Identifier>MObj 2</mObj:Identifier>
<mObj:DateOfBirth>
<gml:timePosition>2008-03-02T10:30:00Z</gml:timePosition>
</mOb7j:DateOfBirth>
<mObj:DateOfDeath>
<gml:timePosition>2008-03-02T10:58:00Z</gml:timePosition>
</mOb7j:DateOfDeath>
<mObj:Classification>onroad</mObj:Classification>
</mObj :MovingObject>

Page 177

Annex D

Java Source Code

package org.

import
import
import
import
import

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

Process Class

java.
Jjava.

java

java.
java.

org.
org
org.
org.
org.
org.
org.
org
org.
org.
org.
org.
org.
org.
org.
org.
org.

Page 178

net.URI;
util.ArrayList;

.util.Iterator;

deegree.
.deegree.
deegree.
deegree.
deegree.
deegree.
deegree.
.deegree.
deegree.
deegree.
deegree.
deegree.
deegree.
deegree.
deegree.
deegree.
deegree.

util.List;
util.Map;

datatypes.Code;

deegree.ogcwebservices.wps.execute.processes.movingObjectsAnalysis;

datatypes.values.TypedLiteral;
framework.log.ILogger;
framework.log.LoggerFactory;
model. feature.Feature;
model.spatialschema.Polygon;

ogcwebservices
ogcwebservices
ogcwebservices
ogcwebservices

ogcwebservices.

ogcwebservices

ogcwebservices.

ogcwebservices

ogcwebservices.
ogcwebservices.

ogcwebservices

.Wps
.Wps
wpSs.
.Wps
wpSs.
.Wps
wpSs.
wpSs.
.wWps

.MissingParameterValueException;
.OGCWebServiceException;
.describeprocess.OutputDescription;
.describeprocess.ProcessDescription;

describeprocess.ProcessDescription.Datalnputs;

.execute.
execute.
.execute.
execute.
execute.
.execute.

ComplexValue;
ExecuteResponse;
IOValue;
OutputDefinition;
OutputDefinitions;
Process;

Annex D

Process Class

import org.deegree.ogcwebservices.wps.execute.ExecuteResponse.ProcessOutputs;

/**

* Crosses.java

*

* Created on 20.03.2008

*

* This class describes an exemplary Process Implementation. The corresponding configuration

* document is '<root>\WEB-INF\confl\wps\processConfigs.xml'. Process configuration is described
* further inside the configuration document.

*

* The process implementor has to ensure, that the process implemented extends the abstract super
* class Process.

*

* This example process IS NOT intended to describe a best practice approach. In some cases

* simplifying assumptions have been made for sake of simplicity.

*

* @author Tobias Fleischmann

* @version 1.0.

*

*

~

public class Crosses extends Process {

/**
* Constructor
* (@param processDescription
*/
public Crosses (ProcessDescription processDescription) {
super (processDescription) ;

}

// define an ILogger for this class
private static final ILogger LOG = LoggerFactory.getLogger(Crosses.class);

/**

* The provided crosses implementation is just a dummy returning hard coded results. In a

* operational implementation the processing should be done by a underlying Moving Objects Database.
* Crosses 1s a spatio-temporal predicate which is used to verify the relationships between a moving

Page 179

Annex D

* object and a geometry which can either be true or false.

* The crosses predicate takes two inputs:

*

* 1.) The moving object to apply the crosses predicate to

* 2.) The Geometry to to be tested whether the moving object first enters and then leaves
* it (polygon)

*

* The <wps:DatalInputs> section defines two elements: MovingObject (mandatory) and Geometry
* (mandatory) .

*/

private static final String MOVING OBJECT = "MovingObject";

private static final String GEOMETRY = "Geometry";

/**

* object and aoil represent the <wps:ComplexData/> elements in the Datalnputs section. This

* sample process 1is feeded with a movingObject and a polygon.

*/

private Object mObject = null;
private Object aoi = null;

private Code identifier = null;

private String title = null;
private String abstract = null;
@SuppressWarnings ("unused")
private String format = null;
@SuppressWarnings ("unused")
private URI encoding = null;
/**

* values for ProcessOutput, will be filled dynamically

*/
private URI dataType = null;

private ComplexValue complexValue = null;

private TypedLiteral literalValue = null;

Page 180

Process Class

/**

* This is the central method for implementing a process. A <code>Map<String, IOValue></code>
serves as an input object. Each String represents the key (e.g. MovingObject) which holds
an IOValue as value (e.g. an object representing a complete <wps:Input> element with all
corresponding sub-elements). The process implementation is responsible for retrieving all
specified values according to the process configuration document.

The method returns a <code>ProcessOutputs</code> object, which encapsulates the result of
the process's operation.

@param inputs

@param outputDefinitions

@throws OGCWebServiceException

/

public ProcessOutputs execute (Map<String, IOValue> inputs, OutputDefinitions outputDefinitions)
throws OGCWebServiceException {

X5k b ok X 3k 3k % X X ok o

// delegate the read out of parameters to a private method
readValuesFromInputDefinedValues (inputs);

// prepare validation of data inputs against process description

// get configured (= supported) inputs from processDescription
DatalInputs configuredDatalnputs = processDescription.getDatalnputs()
// delegate the read out of configured (= supported) inputs to a private method

readSupportedInputs (configuredDatalnputs);

// prepare filling of ProcessOutputs data structure, more precise dataType of LiteralValue

// get configured (= supported) output from processDescription

ProcessDescription.ProcessOutputs configuredProcessOutput = processDescription.getProcessOutputs();
// delegate the read out of configured (= supported) output to a private method
readSupportedOutput (configuredProcessOutput) ;

// delegate the read out of configured outputs to a private method
readOutputDefinitions (outputDefinitions);

// define a processOutputs object
ProcessOutputs processOutputs = null;

Page 181

Annex D

// validate, that data inputs correspond to process description
boolean isValid = wvalidate();

// initiate processing if validation returns ok, otherwise throw exception
if (isvValid) {
processOutputs = process();
} else {
throw new OGCWebServiceException(getClass() .getName (), "The configuration is invalid:"™ +
" retry with data inputs according to process description”);

return processOutputs;

}
/**

* Private method that reads configured output for process output
*

* @param configuredProcessOutput

*/

private void readSupportedOutput (ProcessDescription.ProcessOutputs configuredProcessOutput) {

// define an outputDescription object
OutputDescription outputDescription = null;

// get list of supported WPS output descriptions
List<OutputDescription> outputDescriptions = configuredProcessOutput.getOutput () ;

// get first and only list entry because this process has only one output
Iterator<OutputDescription> outputDescriptionIterator = outputDescriptions.iterator();
if (outputDescriptionIterator.hasNext ())

outputDescription = outputDescriptionIterator.next();

// set member variable needed for process output
this.dataType = outputDescription.getLiteralOutput () .getDataType () .getAbout () ;

}

/**

* Private method for creating the processOutputs data structure and initiating processing
*

* @return boolean value

*

@throws OGCWebServiceException

Page 182

Process Class

*/
private ProcessOutputs process ()
throws OGCWebServiceException {

// create empty ProcessOutputs data structure
ProcessOutputs processOutputs = new ExecuteResponse.ProcessOutputs();

// initiate processing
Boolean predicate = checkObjCrossesAOI () ;

// cast explicitly to a String
String value = predicate.toString();

// fill ProcessOutputs data structure with processing result
this.literalValue = new TypedLiteral (value, dataType);

IOValue ioValue = new IOValue(this.identifier, this.title, this. abstract, null,
this.complexValue, null, this.literalValue);

List<IOValue> processOutputsList = new ArrayList<IOValue>(1);

processOutputsList.add(ioValue);

processOutputs.setOutputs (processOutputsList);

return processOutputs;

}
/‘k‘k

* Private method for reading the input data and calling the actual crosses process
*
* @return boolean value
* @throws OGCWebServiceException
*/
private Boolean checkObjCrossesAOI ()
throws OGCWebServiceException {

// initialize return value with true
Boolean result = new Boolean (true);

// check type of input data
if (! (mObject instanceof Feature))

Page 183

Annex D

LOG.logError ("can't cast moving object to feature -> returning result=false");
if (! (aoi instanceof Polygon))
LOG.logError ("can't cast geometry to polygon -> returning result=false");

if (mObject instanceof Feature && aoi instanceof Polygon) {
LOG.logInfo ("successfully casted input data");
// cast explicitly to a feature and a polygon respectively
Feature mObj = (Feature) this.mObject;
Polygon polygon = (Polygon) this.aoi;

// call respective processing algorithm to perform analysis
// e.g. a Moving Objects Database (MOD)
result = myProcessingMethod(mObj, polygon);

}

return result;

}
/**

Private method for implementing the actual crosses process

@param movingObj: dynamic feature to apply crosses predicate to
@param polygon: geometry to be tested whether movingObj first enters and then leaves it
@return boolean value
@throws OGCWebServiceException
/
private Boolean myProcessingMethod (Feature movingObj, Polygon polygon)
throws OGCWebServiceException {

L S S R

// TODO: implement processing algorithm and return process result

return true;

}
/**

* Private method for validating provided input parameters against configured input parameters.

* Actually, this is a very sophisticated implementation.
*

* @return
*/

private boolean validate () {

Page 184

Process Class

// dummy which replaces a real validation by a hard coded ok
boolean isValid = true;

return isValid;

}

/**
* FIXME Assumes (simplified for the actual process) that only one output is defined.

* Private method that reads the output definitions into local variables.
*

* @param outputDefinitions

*/

private void readOutputDefinitions (OutputDefinitions outputDefinitions) {
List<OutputDefinition> outputDefinitionList = outputDefinitions.getOutputDefinitions{();

Iterator<OutputDefinition> outputDefinitionListIterator = outputDefinitionList.iterator();
while (outputDefinitionListIterator.hasNext()) {
OutputDefinition outputDefinition = outputDefinitionListIterator.next();

this. abstract = outputDefinition.getAbstract();
this.title = outputDefinition.getTitle()
this.identifier = outputDefinition.getIdentifier();
this.format = outputDefinition.getFormat () ;
this.encoding = outputDefinition.getEncoding();

}
/‘k‘k

* Private method that reads configured data inputs for validation
*

* @param configuredDataInputs
*/
private void readSupportedInputs (Datalnputs configuredDatalInputs) {

// TODO:

// Get list of configured (= supported) WPSInputDescriptions from

// configuredDatalnputs, get inputDescription for each configured input and
// write variables for each input separately

Page 185

Annex D

/**

* Private method for assigning input values to local variables
*

* @param inputs

* @throws OGCWebServiceException

*/

private void readValuesFromInputDefinedValues (Map<String, IOValue> inputs)
throws OGCWebServiceException {

IOValue ioMovingObj = null;
IOValue ioGeometryObj = null;

// check for mandatory values
if ((inputs.containsKey(MOVING OBJECT)) && (inputs.containsKey(GEOMETRY))) {
ioMovingObj = inputs.get(MOVING OBJECT) ;
this.mObject = ioMovingObj.getComplexValue() ;
ioGeometryObj = inputs.get(GEOMETRY);
this.aoil = ioGeometryObj.getComplexValue () ;
} else {

throw new MissingParameterValueException(getClass().getName (), "A required Input Parameter is
missing.");

}

Page 186

