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Abstract

In the irrigation-based agriculture of the Khorezm region in the Uzbek part of the Aral Sea Basin, 

cotton is the most common crop. In many areas of Khorezm the actual cotton yield is far below the 

potential. Within a large portion of the region cotton production is not economic and yields are very

poor. Using time-series of satellite-based Proba-1/CHRIS images, spectrometer and biophysical 

data from 2006, this study compared the predictive capability of VIs for estimating cotton growth 

parameterized  by  leaf  area  index  (LAI)  and  cotton  nutrient  content  parameterized  by  leaf 

chlorophyll content (Cab), and examined the spatial variation of cotton LAI and Cab. The study was 

carried out at leaf, plant and regional scale and considered at plant and regional scale four growth 

stages of cotton.

The results in this thesis indicate moderate relationships between cotton LAI and VIs and Cab and 

VIs at regional scale with the absolute best R2 values reaching 0,55 and 0,62 for LAI and Cab 

predictions, respectively. The performance of the normalized difference vegetation index (NDVI) 

was  most  stable  for  predicting  cotton  LAI,  and  modified  chlorophyll  absorption  ratio  index  1 

(MCARI1) was most stable for predicting cotton leaf chlorophyll content at a regional scale over the 

different temporal stages. By performing regressions of VIs with chlorophyll values of leaves from 

different plant layers, the plant layers with the highest correlation were identified for each stage. It 

came out that neither only the top-leaves nor the whole cotton plant, but leaves from the upper two 

to three plant layers achieved the highest regression results for respective stages. 

The found relationships between VIs and LAI for the whole season and VIs and Cab for specific 

stages and plant  layers,  may be integrated into further  agronomic  studies  to support  decision 

makers on adjusting the fertilizer application norms to the seasonal and site-specific requirements, 

thus to help improving yields in a sustainable and economical way in Khorezm. 
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Introduction

 1 Introduction
In Soviet times, wide desert areas in the Aral Sea basin, especially along the two main rivers Amu 

Darya and Syr Darya, wide areas were transformed into irrigation based arable land. Huge water 

withdrawal from these rivers has lead to a dramatical loss of more than two-thirds of the volume of 

the Aral Sea during the last 50 years. With the current rate of decline continuing it is estimated that 

the Aral Sea will disappear completely by 2020 with the current rate of decline (Pidwirny 1999). 

One  area  with  irrigation  based  agriculture  is  the  Khorezm region  in  Uzbekistan.  In  this  area 

unsustainable land and water use has led to a variety of ecological problems with impact on the 

farmers’ economy. The rural population has suffered from high salinisation, groundwater pollution 

by  fertilizer  entry,  high  groundwater  table,  erosion  and  desertification,  hence  decreasing 

agricultural production. In addition, up to 70% of the water is lost in the extensive, old fashioned 

and holey irrigation system. Thus, since similar serious problems occur in a wider region, the Aral 

Sea region was declared as a world ecological disaster area by UNESCO in 1992 (Martius et al. 

2004).

Within  this  regional  problem  framework,  this  work  is  embedded  in  the  pilot  research  project 

„Economic  and  Ecological  Restructuring  of  Land-  and  Water  Use  in  the  Region  Khorezm 

(Uzbekistan)” initiated by the Centre for Development Research (ZEF) in Bonn in cooperation with 

the UNESCO, the University of Urgench and the German Aerospace Center - German Remote 

Sensing Data Center (DLR-DFD) among others. The project is “an interdisciplinary, application-

oriented research project with the aim to provide appropriate regional development concepts based 

on sustainable  and efficient  land and water use” (Vlek et  al.  2003 p.1).  This research project 

started in 2001 and tries to develop recommendations that help to improve the ecological  and 

economical situation of the Khorezm region. 

 1.1 Problem description
In the Khorezm region of Uzbekistan, cotton (Gossypium hirsutum L.) production plays a dominant 

role. However, fertilizer application rates are outdated and often not adapted to the prevailing, site-

specific environmental conditions and recent varieties, leading to over-fertilization, soil and water 

pollution,  unnecessary  expenses  and  lower  income.  Such  agricultural  problems  have  been 

observed  within  the  long-term  and  interdisciplinary  ZEF/UNESCO  project  on  “Economic  and 

Ecological Restructuring of Land and Water Use in Khorezm, Uzbekistan”. Because Nitrogen (N) is 

the most limiting nutrient in Khorezm soils as found by fertilizer trials (Kienzler 2007) the sufficient 

amount of Nitrogen application has to be identified carefully.

In order to support regional stakeholders to optimize N fertilizer application, maps showing the 

spatial distribution of leaf nitrogen status in their cotton fields could be an important information 
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source.  Combined  with  information  on  soils,  plant-nutrient  uptake  behaviour  and  farmers´ 

economic  production  conditions,  leaf  N  status  maps  can  be  helpful  for  adjusting  the  fertilizer 

application according to the actual and site-specific N requirements and farmers´ individual crop 

production  strategies.  Fertilizer  management  approaches using  field  trials  and crop  simulation 

models  have  been mainly  applied  at  a  plot  scale  (Kienzler  2007).  In  contrast,  satellite-based 

hyperspectral approaches have the potential to rapidly assess the crop nutrient status within fields 

over a larger region, and resulting maps could be helpful for regional decision makers and fertilizer 

producers supporting farmers. Such hyperspectral remote sensing approaches are based on the 

principle  that  N deficiencies  in  cotton  leaves  decrease the corresponding chlorophyll  a  and  b 

content which in turn affects reflectance in the visible and near-infrared wavelengths. To determine 

the leaf area index (LAI), an index giving information about the plant coverage and crop growth, 

LAI-meter, e.g. LICOR 2000 is used on the ground. To estimate the leaf area index by remote 

sensing,  the  hyperspectral  information  of  the  satellite  images  is  used  to  calculate  vegetation 

indices (VIs) based on ratios of distinctive reflectance, e.g. at 641 nm and 864 nm. For determining 

the relative amount of leaf chlorophyll on the ground, the ratio of reflectance at 650 nm and 940 nm 

is used by the Minolta SPAD-502 Chlorophyll Meter. However, SPAD needs to be calibrated to the 

dominating cotton cultivar (Khorezm-127) before being functional in estimating the absolute cotton 

leaf chlorophyll content (Rücker 2006). To estimate the cotton leaf chlorophyll content by remote 

sensing  different  vegetation  indices  using  distinctive  ratios  of  reflectance  are  used,  as  for 

estimating LAI. Afterwards these VIs are transferred into real LAI or leaf chlorophyll content and 

the information is presented in form of maps showing the spatial LAI or leaf chlorophyll distribution 

pattern, the ambition of this thesis.

 1.2 Objectives
The main  research  question  of  this  thesis  is  to  investigate  the  performance  of  hyperspectral 

vegetation indices for estimating the spatial distribution of cotton leaf area index and cotton leaf 

chlorophyll content over different temporal stages and at three different spatial scales. Each scale 

has a focus on a specific objective, and results from one scale were needed for the following scale.

– At leaf scale, the smallest, the calibration of SPAD to the cotton cultivar Khorezm-127 is the 

main objective. The equation derived at this scale is essential to transfer SPAD to Cab values at 

the other scales.

– At plant  scale  LAI,  SPAD and reflectance data will  be combined for  plants and plots  with 

different fertilizer application rates to achieve a profound prediction of LAI and Cab - content by 

reflectance based calculation of VIs.

– At regional scale the spatial within-field distribution of LAI and Cab - content estimated by VIs 

based on the spectral information of hyperspectral and multiangular Proba-1/CHRIS images 
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will be presented in GIS-maps. 

2.Literature review
 2.1 Cotton
Uzbekistan is the world´s second largest exporter of cotton ( according to FAOSTAT 2006a 0,45 

mill. tons in 2004) after the United States (2,9 mill. tons). Countrywide raw-cotton production in 

2005 was estimated up to 2,7 t/ha (FAOSTAT 2006a), that is higher than the world average with 

1,9 t/ha, but less than the yield achieved under similar climatic conditions in Australia (4,2 t/ha, 

FAOSTAT 2006b). About 5% of the cotton in Uzbekistan is produced in Khorezm, an irrigated 

landscape (see chapter 3)

The cultivated cotton plant (Gossypium hirsutum L.) is the world´s most 

important fibre producing plant (Diepenbrock 1999).  The white fibres, 

which are used to spin the textile fabric, are growing around the seeds 

in the bolls. The anatomy of cotton is more complex than of any other 

important  annual  crop.  The growth phase lasts for  130 to 180 days, 

depending on temperature and water availability. The temperature has 

to  be  above  15°C  for  at  least  160  days  (Waddle  1984).  The  plant 

develops the vegetative (monopodial, for leaves only) and reproductive 

(sympodial, for flowers) branches more or less at the same time. Cotton 

has three different types of leaves. The first two are called cotyledon, 

the tiny prophyll  –  leaves at  the top of  each branch and the foliage 

leaves (Mauney 1984). The growing cycle can be divided into different 

stages:

1. 2 to 4 leaf stage

2. budding stage

3. flowering stage

4. fruiting stage

5. harvesting

The structure of this thesis is based on observations at the stages  2 to 

3  and  partly  4  which  are  most  important  for  adjusting  fertilizer 

application (chapter 3.4). A fully developed cotton plant can be divided 

into different leaf layers which are separated by nodes (Grimes & El-Zik 

1990).  These  nodes  are  characterized  by  a  monopodial  branch, 

separating  sympodial  ones.  The  number  and  distance  of  the  nodes  are  influenced  by 

environmental  factors  as water  and fertilizer  availability,  temperature  and type of  soil  (Waddle 
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Figure 2.1: Chemical Structure of  
Chlorophyll
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1984). The first reproductive branch will be developed somewhere between the 5th and 9th node. 

The higher the location of a node, the longer the plant needs to grow the first bolls. This position is 

influenced by temperature, nitrogen availability and humidity during early growth (Grimes & El-Zik 

1990).  The flowering  starts  60 to 80 days  after  seeding somewhere between mid  June /  mid 

August, the first bolls are opening 24 days after flowering (Grimes & El-Zik 1990).

 2.2 Biophysical and biochemical parameters to characterize 
vegetation

To monitor the health status of crop it is important to find factors which can be detected without 

destroying the plants and which work fast.

One assessment to the physiological condition of plants is provided by the indication of their health 

or stress state. The stress can be caused by different factors such as heat, freezing, drought, flood, 

soil  erosion,  soil  compaction,  salinisation,  diseases,  insect  action  or  nutrient  loss.An  indicator 

which is used for describing the general development state of a plant is the Leaf Area Index (LAI), 

while the only specific factor analysed is the nutrient stress due to limited Nitrogen.

LAI  is  a  very  important  variable  to  estimate  biomass,  evapotranspiration,  amount  of 

photosynthesis,  productivity  and  dynamic  of  plants  (Xiao  2002).  The variable  was  defined  by 

Watson (1947) as the one side surface area of a 

photosynthetically  active  leaf  accumulated  per 

unit  of  ground  surface  area  the  leaves  are 

growing on (Jonckheer 2004, Weiss 2004). The 

problem is, this definition is only true for plain 

leaves, if they are folded or rolled the one side is 

not defined anymore (Jonckheer 2004). A better 

and  more  common  definition  is  the  following: 

LAI  is  given as  half  of  the  whole  Leaf  Area in  m²  per  m²  ground as  a  simple figure  without 

dimension (Chen & Black 1991). There are different methods to measure the LAI. The direct one 

is, to harvest all leaves, scan their leaf surface and calculate all together. This approach does not 

work if a monitoring of the same leaves or plants is planned. Therefore plants should stay alive at 

least as long as the monitoring lasts. On leaf scale SPAD and reflectance of some leaves was 

measured once and afterwards the plants were harvested. In this case it was possible to scan all 

leaves (see chapter 4.2.2). A less destructive method is the use of instruments like LICOR 2000 

(described in chapter 4.1.4) or the indirect approach using vegetation indices calculated with help 

of the reflection data as described in the following chapters. To get an orientation for high or low 

LAI some mean values are given in table 2.1.

Considering the nutrient stress indicator Nitrogen, it is one of the basics the plants need to build up 
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Table 2.1: LAI-Values of different vegetation coverage

Source: Demircan 1995

Type of vegetation LAI
tropical rainforest >15.0
deciduous forest < 12.0
maize < 5.6
wheat < 5.0
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chlorophyll, the green pigment for harvesting light energy. The chemical structure of chlorophyll in 

figure 2.1 shows this close relation.

Plant  chlorophyll  content  is  the  most  important  biochemical  compound as it  is  an indicator  of 

photosynthetic potential ( Baret & Foutry, 1997). It is closely related to the to nitrogen concentration 

in green vegetation and is therefore a sensitive indicator of crop response to nitrogen deficiency 

(Baret & Fourty, 1997). Chlorophyll is located in the chloroplast, where a cascade of photosystems 

works at different absorption maxima. Photosystem I (PS-I) with a central wavelength of maximum 

absorption  at  700nm  and  Photosystem  II  (PS-II)  also  called  carotenoids  with  680nm,  then 

chlorophyll  a  with  670nm  and  chlorophyll  b  with  650nm  as  the  central  wavelengths  of  their 

maximum absorption.

These characteristic wavelengths were used by different authors to estimate the content of the 

referring pigment by designing a Vegetation Index using this distinctive ratio. Some wavelengths 

are found to be disturbed by e.g. soil reflectance or less. This is pointed out for some indices found 

in literature in the referring chapters later on. 

 2.3 Remote Sensing
Remote sensing is the premier technology for giving an unbiased view of large areas, by providing 

spatially explicit information and the possibility of a repeated collection of this information, and it 

has thus been widely used to estimate crop yields at a regional scale (Quarmby et al. 1993; Baez-

Gonzalez et al. 2002; Bastiaanssen & Ali 2003; Doraiswamy et al. 2003). 

Therefore  the  launching  of  the first  earth  observation satellite,  Landsat-1,  in  1972 opened an 

excellent tool to monitor bio - geophysical processes that take place on planet earth from global to 

regional scales. (Goward & Williams 1997). Only a few years later the North-American Large Area 

Crop Inventory Experiment (LACIE) and AGRISTARS programs proved that Remote Sensing (RS) 

data could successfully assist  in crop identification,  estimation of  some important  crop canopy 

properties, and even help to forecast crop production (Moran et al. 1997). Since these early days 

many scientists have retrieved canopy state variables over large areas using all available sensors. 

Traditionally, aerial  photography and digital broadband multispectral sensors have been used to 

obtain information in agriculture on crop yield and plant development based on the relationships 

between  red  and  near-infrared  (NIR)  reflectance  and crop yield  and development.  During  the 

development  of  the  Landsat  sensors  the  spectral  channels  were  adopted  to  maximize  the 

collection of vegetation indicators (Zarco -Tejada et al. 2005b). Common methods to obtain spatial 

and  temporal  crop  status  based  on  these  sensors  rely  on  calculating  vegetation  indices  as 

described in the following chapters.

Commonly applied methodologies are based on empirical relationships between the normalized 
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difference vegetation index (NDVI) and crop yield (Groten 1993; Dalezios et al. 2001; Conrad et al. 

2004a). However, a simple empirical relationship is only of local and instantaneous significance. 

Furthermore, an empirical assessment requires excessive measurement programs to collect yield 

data in the field, which on a regional scale is time consuming and costly (Moulin et al., 1998). 

 2.4 Vegetation Indices 
“Vegetation  indices  are  models  that  use  the  characteristic  reflectance  properties  of  green 

vegetation in specific wavelengths to derive an index that represents biomass, vegetation cover 

and changes in vegetation cover pattern” (Bean 2000). In this part of the literature review some 

Vegetation Indices (VIs) used by other authors in a similar question as the topic of this thesis are 

introduced. 

The  spectral  reflectance  of  a  plant  is  always  a  combination  of  plant  and  soil  reflectance 

components. These components are governed by the optical properties of these elements and 

photon exchanges within the canopy. As the vegetation grows the part of the soil signal decreases 

but may still be significant. This effect depends on plant density, row effects, canopy geometry, 

wind effects and more (Rondeaux 2006). Some VIs take a few of these effects into account, but 

not all.

The group of classical Broadband vegetation Indices can be subdivided into ratio and orthogonal 

indices (Broge & Mortensen 2002). The ratio indices are calculated more or less independently of 

soil reflectance properties, while orthogonal indices refer to a baseline specific to the local soil 

background. Hybrid indices can be considered as a combination of ratio and orthogonal indices. 

(Dorigo 2006). 

Most of the ratio – based  VIs use the reflectance in the red spectrum, which is related to the 

chlorophyll  light  absorption  and the near  –  infrared spectrum,  related to  the  green vegetation 

density. Together these two bands cover more than 90% of the information on a plant canopy. In 

red and near – infrared the contrast between vegetation and soil signal is maximal (Leblon 2006). 

 2.4.1 Broadband Vegetation Indices
RVI
The Ratio Vegetation Index (RVI) was developed by Pearson & Miller (1972). 

RVI=
R864

R671

with:
 RXXX = nadir reflection at the given wavelength

18
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NDVI
The  Normalized  Difference  Vegetation  index  (NDVI)  was  developed  by  Rouse  et  al  1974  to 

estimate the biomass content of a certain area and is now the most known VI. It is based on the 

contrast between the maximum absorption in the red spectrum, caused by chlorophyll pigments, 

and the near infrared reflection of the leaf cell structures (Giannico 2007). The NDVI is described 

by the following equation:

NDVI=
R864−R671

R864R671

with:
 RXXX = nadir reflection at the given wavelength

The values for NDVI are for selected targets within the following ranges (Witt 1998, Leblon 2006):

 Soil:  0<=NDVI<=0.3

Vegetation: 0.2 <= NDVI<= 0.6    

Water: -1<=NDVI<=1

The  NDVI saturates  in  case  of  dense  and  multi-layered  vegetation  and  shows  a  non-linear 

relationship with biophysical parameters as  LAI ( Haboudane 2004, Baret et al 1991, Lillesaeter 

1982).  This  non-linearity  becomes  more  prominent  with  darker  soil  background  and  with  the 

presence of shadow. The NDVI may not be suitable to infer vegetation fraction because of its non 

– linearity and scale effects (Jiang et al 2006). 

 2.4.2 Orthogonal and Hybrid Vegetation Indices
Orthogonal  indices  were  introduced  in  an  attempt  to  reduce  (soil)  background  effects.  For 

orthogonal vegetation indices the LAI-isolines in the Red–NIR do not converge in the origin but 

remain parallel to the principal axis of soil spectral variation (Richardson and Wiegand, 1977). This 

soil line is expressed by the intercept and slope as determined by linear regression of the local soil 

reflectance in the Red–NIR feature space. The simple difference between NIR and red reflectance

(Jordan, 1969) was the first index of this category. Other orthogonal VIs are the Perpendicular 

Vegetation Index (Richardson and Wiegand, 1977) and the Weighted Difference Vegetation Index 

(Clevers, 1989), but will not be used for this thesis.

RDVI
The Renormalized Difference Vegetation Index (RDVI) was developed by Roujean & Breon 1995 

for a vegetation quantitative monitoring without the influence of different solar zenith angles. The 

given equation is useful for the optimal observation angle of 0° to the ground (nadir view). With 

observation angles between 90° and 45° complex factors for the correction are needed. These 
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factors are not needed for this thesis, though only the nadir scenes are used, but are given in the 

paper of Roujean 1995.

RDVI=
R864−R671

R864R671

with:
RXXX = nadir reflection at the given wavelength

SAVI
The  SAVI (Soil  –  Adjusted  Vegetation  Index)  was 

developed for  low vegetation  cover  area by  Huete 

(1988). “It´s intend is to minimize the effects of soil 

background an the vegetation signal by incorporating 

a  constant  soil  adjustment  factor  L  into  the 

denominator of the NDVI equation. L varies with the 

reflectance  characteristics  for  soil  (colour  and 

brightness).  Huete  (1988)  provides  a  graph  from 

which the values of L can be extracted. (...) The L- 

factor  chosen  depends  on  the  density  of  the 

vegetation one wishes to analyse. For very low vegetation Huete (1988) suggest using an L factor 

of 1.0, for intermediate 0.5 and for high densities 0.25.” (Thiam 2001 P. 95-96). For L = 0 the SAVI 

is equal to NDVI, for L = 100 the SAVI becomes similar to the PVI.

SAVI=
R864−R671

R864R671L⋅1L
with:

L = 0.5 (default in ASTools by Dorigo 2006)
RXXX = nadir reflection at the given wavelength

SAVI2
The second Soil Adjusted Vegetation Index (SAVI2) was created by Major, Baret and Guyot 1990. 

The SAVI2  is  expressing canopy near  infrared  reflectance as  a  linear  function of  canopy red 

reflectance. Based on this finding a second version of SAVI (SAVI2) was developed, which models 

the vegetation isoline behaviour by using the b / a factor as a soil adjustment factor (Broge 2000).

SAVI2=
R864

R671
b
a

with:
a = 1.20, b= 0.04

RXXX = nadir reflection at the given wavelength
MSAVI 
The Modified Soil  Adjusted Vegetation Index (MSAVI)  was introduced by Qi et  al  1994.  They 

replaced the variable L by a developed function. The results were tested with ground and aircraft 
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Figure 2.2: Influence of soil colour on SAVI for cotton  
Source: Huete 1988 in Thiam 2001
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based measurements of cotton plants. The  MSAVI is shown to increase the dynamic range of 

vegetation sensitivity as defined by a “vegetation signal” to “soil noise” ratio (Qi et al 1993).

MSAVI=0,5∗{2⋅R8001−2⋅R80012−R800−a⋅b}
with:

RXXX = nadir reflection at the given wavelength
TSAVI
The Transformed Soil Adjusted Vegetation Index created by Baret et al 1989 for crop canopies is 0 

for bare soil and 1 for high LAI.  According to Elvidge & Chen 1995 the TSAVI is higher influenced 

by background signals than SAVI for pinyon pine growing in shrublands and woodlands.

TSAVI=a⋅
R864−a⋅R671−b

R671a⋅R864−a⋅b
with:

a = 1.20, b= 0.04
RXXX = nadir reflection at the given wavelength

ATSAVI
The Adjusted Transformed Soil Adjusted Vegetaton Index was developed by Baret & Guyot 1991 

for a further minimizing the dependency on soil parameters. The factor X has been adjusted to 

0.08  to minimize soil effects, variations in canopy structure and biochemistry . For a high canopy 

density the ATSAVI is close to 0.70 and for bare soil zero. 

ATSAVI=a⋅
R864−a⋅R671−b

a⋅R864R671−a⋅bX⋅1a2
with:

a = 1.20, b= 0.04, X= 0.08
RXXX = nadir reflection at the given wavelength

OSAVI
The Optimized Soil Adjusted Vegetation Index (OSAVI) was created by Rondeaux et al in 1996 to 

pay further attention to the impact of the soil signals. Therefore they tested the different already 

described versions of the “SAVI – family”, especially for low vegetation coverage with a stronger 

soil signal, and adopted their own factors especially for agricultural applications (Rondeaux et al 

1996). 

OSAVI=
10,16⋅R864−R671

R864R6710,16
with:

RXXX = nadir reflection at the given wavelength
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 2.4.3 Indices based on discrete narrow bands
With the recent development of imaging spectrometers, new indices have been explored using the

information  contained  in  narrow  absorption  features.  In  this  way  it  is  possible  to  improve 

estimations of leaf constituents like chlorophyll  and water  (Haboudane et al.,  2004) or even to 

explore biochemicals with  more subtle spectral  absorption features such as protein,  lignin and 

phosphorus (Fourty et al.,  1996; Mutanga et al.,  2004). Apart from new ratios based on a few 

discrete bands, novel approaches based on spectral shape and the depth of spectral absorption 

features  have been developed.  Although the majority  of  these new techniques were  originally 

developed  for  identifying  leaf  constituents,  many  of  them  have  been  successfully  applied  in 

estimating other biophysical variables such as LAI (Broge and Leblanc, 2000; Haboudane et al., 

2004).

TVI
The Triangular Vegetation Index (TVI) by Broge & Leblanc was developed in 2000 to describe the 

radiative energy absorbed by the pigments as a function of the relative difference between red and 

near infrared reflectance in conjunction with the magnitude of the green region reflectance, where 

the light absorption by chlorophyll is relatively lower (Hall & Rao 1987). The TVI is based on the 

fact that chlorophyll absorption causes a decrease of red reflectance and abundance of leaf tissue 

causes a increased near infrared reflectance (Broge & Leblanc 2000).

TVI=60⋅R750−R550−100⋅R670−R550
with:

RXXX = nadir reflection at the given wavelength
MTVI1 and MTVI2
The Modified Triangular Vegetation Index 1 and 2 were developed by Haboudane et al in 2004 to 

make the TVI suitable for LAI estimations. To achieve this the 750 nm was substituted by the 800 

nm  wavelength because this spectrum is more sensitive to changes in leaf and canopy structures 

and non – sensitive to changes in the pigment level (Haboudane 2004).

MTVI1=1,2⋅[1,2⋅R800−R550 −2,5⋅R670−R550]
with:

RXXX = nadir reflection at the given wavelength

The equation was still strongly influenced by soil reflection. Therefore the equation was optimised 

with the introduction of a soil adjustment factor as developed for  SAVI (Huete 1988). The same 

adjustment was done for the MCARI as shown later.

MTVI2=
1,5⋅[R800−R550−2,5⋅R670−R550]

 2⋅R80012−6⋅R800−5⋅ R670−0,5
with:

RXXX = nadir reflection at the given wavelength
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 2.4.4 Narrow Band Chlorophyll Indices
New  narrow  band  ratios  have  mainly  been  used  for  the  retrieval  of  water  and  chlorophyll 

concentration. Absorption due to leaf water takes place at wavelengths greater than 1000 nm. This 

is why ratio indices attempting to explain water  content always use one or more bands in this 

domain (Penuelas et al., 1997; Zarco-Tejada and Ustin, 2001). Most hyperspectral ratios used for 

estimating leaf chlorophyll  content make use of the three discrete bands describing the typical 

reflectance pattern of green vegetation: the reflectance peak in the green and NIR and the region 

of maximum absorption in the red. 

CARI
The  Chlorophyll  Absorption  in  Reflectance  Index  (CARI)  was  developed  by  Kim  1994  for 

minimizing the influence of the reflection of non – photosynthetic materials (Daughtry et al 2000) 

and is used as basis for different new developed indices.

CARI=

R701

R671
⋅∣a⋅670R671b∣

a21
with:

a= (R701 – R549) / 150; b= R549 – 550*a;
RXXX = nadir reflection at the given wavelength

MCARI
The Modified Chlorophyll  Absorption in Reflectance Index was developed by Daughtry et al  in 

2000. This index was showed to be influenced by parameters as LAI, chlorophyll,  LAI-chlorophyll 

interaction  and background reflectance (Daughtry  2000).  At  low chlorophyll  concentrations  the 

MCARI is sensitive to non- photosynthetic elements (Haboudane 2002). 

MCARI=[R701−R670−0,2⋅R701−R550]⋅
R701

R670

with:
RXXX = nadir reflection at the given wavelength

TCARI
The Transformed Chlorophyll  Absorption Ratio Index (TCARI) was created by Haboudane et al 

2002 to make the MCARI less sensitive to soil influences.

TCARI=3⋅[R701−R670−0,2⋅R701−R550⋅
R701

R670
]

with:
RXXX = nadir reflection at the given wavelength

MCARI1 and MCARI2
The  Modified  Chlorophyll  Absorption  in  Reflectance  Index  one  and  two  were  created  by 

Haboudane et al 2004 in the same way with the MCARI they did for the TVI shown above.
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MCARI1=1,2⋅[2,5⋅R800−R670 −1,3⋅R800−R550 ]
with:

RXXX = nadir reflection at the given wavelength

As for the MTVI1, a less soil reflectance influenced version was developed also for the MCARI1, 

the MCARI2.

MCARI2=
1,54⋅[2,5⋅R800−R670 −1,3⋅R800−R550 ]

 2⋅R80012−6⋅R800−5⋅ R670 −0,5
with:

RXXX = nadir reflection at the given wavelength

SR705 and mND705
These indices where both developed by Sims & Gamon 2002 to predict the chlorophyll content 

from Satellite data. They selected the reflectance of 705 nm for the indices because this is said to 

be influenced only by higher or lower chlorophyll content.  The result were the Simple Ratio Index 

(SR705) and the Normalized Difference Index (mND705) 

SR705=
R750

R705

with:
RXXX = nadir reflection at the given wavelength

mND705=
R750−R705

R750R705−2⋅R440

with:
RXXX = nadir reflection at the given wavelength

MTCI
The MERIS Terrestrial Chlorophyll Index was established by Dash & Curran 2004, to monitor the 

chlorophyll content of large regions by remote sensing. The used spectra are similar to the ones 

used for SR705 and mND705.

MTCI=
R754−R709

R709−R681

with:
RXXX = nadir reflection at the given wavelength

GI
The Greenness Index (GI) is mentioned by Zarco – Tejada et al 2005, but without any further 

comments.

GI=
R554

R677

with:
RXXX = nadir reflection at the given wavelength 
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Red edge parametrisation
The Red Edge Inflection Point (REIP) method is described by 4 different authors with 4 varying 

equations. Two are using the 1st and 2nd order Savitzky – Golay – Filter and the other two self - 

developed equations. The characteristic at the red edge infliction point ( around 720nm) is a blue - 

or  red – shift  which  is  related to  plant  growth conditions.  If  a  shift  towards the shorter  (blue) 

wavelength is observed, a decrease in vegetation density will be associated. If the shift is towards 

the higher (red) wavelength a increase in green material is the reason (Broge & Leblanc 2000). 

Guyot et al 1988 introduced the following equation, called REIP1 in this thesis:

REIP1=
700740

700
⋅Ri−R780

R740R701

with
Ri = 0,5*(R780/R670)

RXXX = nadir reflection at the given wavelength 

The Savitzky – Golay – Filter was developed to smooth a curve by a moving polynomial - fit using 

constant coefficients. Used in the VIs called REIP2 and REIP3 in this thesis. For further details 

look at http://www.statistics4u.info/fundstat_germ/cc_filter_savgol_math.html  

Dawson & Curran 1998 developed an equation based on lagrangian interpolation, which allows the 

determination of  REIP by only three data points. According to Broge & Leblanc 2001, Broge & 

Mortensen 2002, and Broge 2003 this method gives the most accurate estimation of REIP. In this 

thesis this index is called REIP4

 2.4.5 Relations between vegetation index and biophysical / 
biochemical variables

To shorten the following equations only the acronyms for the VIs are given. The equations of the 

VIs available from literature are given in the corresponding chapters. To shorten the names of the 

LAI  related VIs  and to  use distinct  names they were  numbered following  their  appearance in 

ASTools.

LAI – NDVI 
Gardner & Blad 1986 developed for corn the following equation to estimate the LAI from NDVI:

LAI1=−1,2485,839⋅NDVI

Mohammed et al 2005 developed this version:

LAI2=0,45⋅eeNDVI
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LAI - RVI
The combination of LAI and RVI is used by some authors.

Gardner and Blad 1986 developed for maize two equations:

LAI3=0,4160,2553⋅RVI

LAI4=0,03051,9645⋅log RVI −0,1577⋅RVI

Liu et al 1996 developed also two different equations. One for deciduous forest and the other one 

for crops.

LAI5=0,475⋅RVI−2,781
for deciduous forest 

LAI6=0,325⋅RVI−1,5
for crops

 LAI – RDVI, LAI – MSAVI,  LAI – MTVI2 and LAI - REIP
These combinations of indices were created by Broge & Leblanc 2000 and tested by Haboudane 

et al 2004 for corn, soybean and wheat: 

LAI−MTVI2=0,2273,6566⋅MTVI2

LAI−RDVI=0,09186.0002⋅RDVI

LAI−MSAVI=0,16634,2731⋅MSAVI

The last of of the combination LAI – indices was created by Danson & Plummer in 1986 using the 

REIP1 method created by Guyot. (Dorigo et al 2006).

LAI−REIP1=e
log⋅REIP− log 710,1

0,0084

Ca+b – REIP1 and Ca+b – TCARI/OSAVI
These two combinations for predicting the Cab – content were created by Curran & Hay 1986 and 

Haboudane et al 2004 (Dorigo 2006). 

 Cab−REIP1=−32,130,05⋅REIP1

Cab−TCARI /OSAVI=−30,605⋅log TCARI
OSAVI
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3.Study Area
 3.1 Broader setting
Measurements  took  place  at  four  fields  in  Amir  Temur  Shirkat  and  on  plots  on  the  Urgench 

University campus, which are located in the irrigated area of the Khorezm oblast (region) in the 

Republic of Uzbekistan in Central Asia. Considering the broader setting, Uzbekistan is bordered to 

the west by the Ustjurt – Plateau and in the east and southeast by the partly snow covered Tien 

Shan  mountain  range  with  altitudes  up  to  4100m  above  sea  level.  The  average  altitude  of 

Uzbekistan is between 113 and 138 m above sea level. The wells of Amu Darya, from which water 

is used to irrigate the fields in irrigation systems such as Khorezm, are located in Tadjikistan deep 

in  the  Tien  Shan.  Administratively,  Uzbekistan  is  divided  in  12  oblasts  and  the  autonomous 

Republic Karakalpakstan. The total land area of Uzbekistan amounts to 44.9 million ha, of which 

23.5 million ha are in pasture. A total of 4.3 million ha are irrigated of which 3.3 million ha are 

arable land and 1 million ha are pasture (FAO 2003). Approximately 98% of its water is used for 

the irrigated agriculture. 

As shown in figure  3.1,  Khorezm is  a river  oasis  of  the Amu Darya River near the border to 

Turkmenistan at the eastern edge of the Turan lowland between the deserts Kysylkum in the north 

and east and Karakum in the west and south, about 250 km south of the present shores of the Aral 

Sea.  The  capital  of  the  region,  Urgench,  with  about  150.000  inhabitants  is  surrounded  by 

intensively used, irrigated agricultural land. The climate is extremely continental with large daily 

and seasonal temperature differences. The monthly averaged temperatures are 26 to 28°C in July 

and dominated by frost with temperatures down to -20°C in January. With average precipitation 

amounts of  92mm (varying between 40 and 160 mm) per year  very arid area.  The  total  daily 

potential  evapotranspiration (ETo),  calculated with  the Penman-Monteith equation (Smith et  al. 

1991), amounted to 460 mm for 2002. Due to this climatic conditions a huge amount of water is 

needed to irrigate the fields. Agriculture accounts for 26% of the country´s GDP and employs more 

than a third of the population (FAO 2003). The sowjet style irrigation system, with open and often 

leaky canals and inappropriate irrigation of crops, leads to a high salinisation of water and soils, a 

problem  often  encountered  in  irrigation-based  agriculture  in  arid  and  semiarid  landscapes. 

Politically, the agricultural system is still affected by the former sowjet collective farm system. The 

agricultural land in Uzbekistan is divided in 1 389 collective farms (kolkhoz), 872 cooperative farms 

(shirkats), 21 675 family owned farms (dekhan) and 1 895 private farms. This division results in a 

patchwork of fields that vary in size from around 1 ha to 25 ha.  Generally,  the land is leased 

longterm to the farmers, because of the private landown ban. The small farmers of the dekhan and 

private farms do not possess their own machinery, therefore the shirkats, the successor 
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Figure 3.1: Wider setting of the study site within Uzbekistan, b) Khorezm oblast with irrigation canals and the location of the study fields 
and plots, c) location of the four study fields within Amir Temur Shirkat d) study plots on the campus of the Urgench University.

a)
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d)
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organisations of the former socialistic collective farms have tractor parks and provide the farmers 

with advice, fertilizer and access to the irrigation system. 

 3.2 Fields on Amir Temur Shirkat
The four study fields where the measurements of this study took place are part of the Amir Temur 

Shirkat located in Khorezm in the west of Urgench (compare with figure c). 

The fields were selected based on certain criteria, such as to get the allowance from the Shirkat 

manager to perform the measurements, to select fields of the same cotton variety and the same 

fertilizer application and irrigation rate, but with variations of environmental conditions in order to 

capture  different  LAI  and  chlorophyll  conditions  among the  fields.  The different  environmental 

conditions were parametrized by different soil bonitet levels.

Based on a joint field visit with the Shirkat manager of the Amir Temur Shirkat, four fields were 

selected  on  which  the  cotton  variety  “Khorezm  127”  was  planted  at  the  end  of  April  or  the 

beginning of May 2006 after leaching of the fields. These fields were used to validate the satellite 

based estimations of LAI and chlorophyll. The main characteristics of the fields are shown in table 

3.1.

Table 3.1: Fertilizer Application rates and modalities for regional scale

Field Planting Day Fertilisation Amount of Fertilizer Irrigation Amount of Water
Field 1 11.04.06 04.05.06 400 Kg/ha 09.05.06

14.06.06 200 Kg/ha 16.06.06
18.07.06 200 Kg/ha 20.07.06

Field 2 28.4./ 1.5.06 10.07.06 400 Kg/ha 15.07.06
- - 20.07.06

Field 3 14.04.06 10.05.06 200 Kg/ha 15.05.06
02.06.06 200 Kg/ha 04.06.06
05.07.06 200 Kg/ha 10.07.06
01.08.06 200 Kg/ha 04.08.06

Field 4 20.04.06 09.05.06 400 Kg/ha 12.05.06
07.06.06 200 Kg/ha 08.06.06
07.07.06 200 Kg/ha 10.07.06

more than 
enough, nobody 
cared ...
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 3.3 Plots on fertilizer-trial 
For leaf and canopy scale analysis, plots of a fertilizer trial with different fertilizer application rates 

were selected. The plots on the selected fertilizer trial for this study where located in front of the 

ZEF/UNESCO Khorezm project institute within the boundaries of the University of Urganch. The 

small plots were about 1.5 m wide and 3 m long.and were cultivated with the Khorezm 127 Cotton 

Variety with different fertilizer application rates (ranging from 0 to 400 kg nitrogen per ha) and 

water  levels. Each plot consisted of four rows with a varying number of cotton plants because 

some plants died during the season. Within each plot of Water Level 2, the amount of water which 

is recommended as efficient for cotton (Kienzler 2007), five plants located in the two middle rows 

were  randomly  selected  and  labelled  for  an  easier  identification  at  each  measurement.  An 

overview on the fields is given in figure 3.2. 
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Figure 3.2: Photos of Fertilizer Trial Plots a) Overview at mid June, b) during irrigation end of June, c) higher cotton at end of July 
Source: Own photos

a) b) c)
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4.Data and Methods
 4.1 Conceptual framework
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Figure 4.1: Diagram visualizing the conceptual framework of this thesis
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The conceptual framework of this thesis is organized at three spatial scales (fig.  4.1) leaf, plant, 

and field scale.

At a leaf scale SPAD and reflectance measurements of cotton leaves collected at one date were 

combined  with  the  laboratory  analyses  results  to  establish  a  relationship  between  SPAD and 

absolute Cab content extracted in the laboratory. As a result of this scale the equation to transfer 

SPAD into Cab content was achieved. Furthermore relationships between VIs based on spectral 

reflectance measurements, and Cab were analysed to determine the best VI for estimating the leaf 

Cab content by spectral reflectance measured by ASD field spectrometer.  

At a plant scale the measurements (LAI, SPAD, reflectance) were carried out based on cotton 

plants treated with different fertilizer application rates on fertilizer trial  plots (FTPs) (map figure 

3.1d,  photos  figure  3.2).  At  this  scale  LAI,  SPAD  and  reflectance  measured  by  ASD  field 

spectrometer of 5 plants per trial plot and at four dates relating to fertilizer and irrigation events 

were measured. These dates were set approximately at the time of Proba-1/CHRIS satellite-sensor 

data takes. The referring dates are shown in figure 4.2. The results of these measurements were 

aggregated  by  date  and  nitrogen  application  level  of  the  FTPs  separated  for  LAI  and  Cab 

respectively. The results of plant scale comprised the determination of the VI predicting LAI and 

Cab best at the different temporal stages and N-levels.

At a regional scale VIs were calculated based on Proba-1/CHRIS images acquired during four 

dates at which main irrigation and fertilizer events for cotton occured. These VIs were used to 

predict  LAI and SPAD measured from cotton plants that  were located in four farmer-managed 

fields and covered by the satellite images. To correct and verify the satellite – images reflectance 

of different targets was measured using ASD field spectrometer during the satellite overpasses. 

The location where LAI and SPAD values were collected were identified by GPS  measurements 

and photos that were in turn used for georeferencing the satellite images. As results of this spatial 

scale the VIs with the best prediction power for LAI and Cab per temporal stage were determined, 

the relationship evaluated by cross-validation and the respective VIs and equations created to 

estimate LAI and Cab at the last three dates identified. These results are presented in form of GIS 

maps  to  visualise  the  spatial  distribution  and  the  development  over  time  for  LAI  and  Cab, 

respectively. 

The dates when all  measurements of this field campaign were fulfilled are given in figure  4.2. 

Additional measurements for LU-training areas collection are shown as part of the field campaign 

but were not described in the following chapters, because they were not part of this thesis.
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Figure 4.2: Time Table for Measurements during Field Campaign in Uzbekistan

Source: Own work with Excel
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 4.2 Used field instruments and measurements
 4.2.1 Spectral reflectance measurements
Spectral reflectance was measured with the Analytical Spectral Devices 

(ASD) Field Spectrometer (figure  4.3), a instrument consisting of three 

photodiode  arrays  with  a  changing  sensitivity  and  covers  different 

wavelength bands to collect spectral reflectance information of a target 

via an optical pointing device. The VNIR spectrometer covers the 350 – 

1000nm range with a sensitivity of 3nm. The SWIR1 spectrometer (1000 

– 1800nm) and SWIR2 spectrometer (1800 – 

2500nm)  have a sensitivity of 10nm.  

Table 4.1 shows different heights with the cor-

responding spot size for both, bare fibre optic 

and  foreoptic  to  adjust  the  measuring  height 

according to the height and width of the target. 

Figure  4.4 shows  the  cone  within  which  the 

reflection was collected. 

All the collected spectra showed noisy spectral 

behaviour  at  around  1400  and  1800nm  as 

shown in the figure  4.5.  ASD Technical Guide 

(HATCHELL 1999) explained this phenomenon 

as  the  Water  Band  Noise  and  the  ASTools 

(DORIGO et al. 2006) are providing a special 

tool  to remove it,  but this was not necessary 

because the Water Band Noise was out of the spectral area of interest. 
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Figure 4.3: Author using ASD 
Field Spec on wheat field
Source: Own photo

Figure 4.4: Scheme of cone of the ASD fibre opening angle
Source: ASD Technical Guide
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Table 4.1: ASD fibre opening angles and corresponding spot sizes

ASD with bare fibre ASD with foreoptic
Angle 25° Angle 8°
With α/2= 12,5° With α/2=4°
L in m d/2 in m d in m d/2 in m d in m

0,10 0,02 0,044 0,01 0,014
0,15 0,03 0,066 0,01 0,021
0,20 0,04 0,089 0,01 0,028
0,25 0,06 0,111 0,02 0,035
0,30 0,07 0,133 0,02 0,042
0,35 0,08 0,155 0,02 0,049
0,40 0,09 0,177 0,03 0,056
0,45 0,10 0,199 0,03 0,063
0,50 0,11 0,22 0,03 0,07
0,55 0,12 0,244 0,04 0,077
0,60 0,13 0,266 0,04 0,084
0,65 0,14 0,288 0,05 0,091
0,70 0,16 0,310 0,05 0,098
0,75 0,17 0,332 0,05 0,105
0,80 0,18 0,355 0,06 0,112
0,85 0,19 0,377 0,06 0,119
0,90 0,20 0,399 0,06 0,126
0,95 0,21 0,421 0,07 0,133
1,00 0,22 0,44 0,07 0,14
1,05 0,23 0,465 0,07 0,147
1,10 0,24 0,487 0,08 0,154
1,15 0,25 0,510 0,08 0,161
1,20 0,27 0,532 0,08 0,168
1,25 0,28 0,554 0,09 0,175
1,30 0,29 0,576 0,09 0,182
1,35 0,30 0,598 0,09 0,189
1,40 0,31 0,620 0,10 0,196
1,45 0,32 0,643 0,10 0,203
1,50 0,33 0,66 0,10 0,21
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The ten collected spectra per target were corrected following a standardized procedure to make 

the  results  comparable  and  to  remove  possible  errors  and  outliers.  After  downloading  the 

measured spectra from the ASD Field Spectrometer all spectral data collected of the same target 

on one day were stored in the same folder. Afterwards these spectra were imported to ENVI 4.1 

and  grouped  in  one  Spectral  Library  for  each  day  and  sample  collection.  All  intermediate 

processing results from the following steps were saved as new files to be able to reconstruct every 

processing step.  Each file  was named following  a special  naming convention.  Each file  name 

begins with  the date of  data collection,  followed by the information on the location where  the 

spectra  were  collected  and  the  processing  steps.  The  first  step  was  to  eliminate  the  small 

discrepancies between the reflection of the used spectralon and 100% white reflection, because 

the spectralon reflectance was used as reference, The plant reflectance was calculated from the 

differences  to  this  reference.  This correction,  called  “txt-correction”,  was  carried  out  using the 

program “ASTools” (DORIGO et al. 2006) and the ASD Spectralon correction file provided by the 

manufacturer. Secondly the spectral jump between the first spectrometer of the ASD was adjusted 

to  the  second  spectrometer  using  the  corresponding  function  in  the  ASTools.  The  third  step 

included  the  corrections  of  deviations  in  spectral  reflectance  due  to  changes  in  atmospheric 

conditions during the target measurements. For this last correction, the spectralon measurement 

directly  following  the  ASD  calibration  and  the  measurement  of  the  spectralon  and  the 

measurements of the target within a time period of around five minutes were saved in different files 

and corrected using ASTools` ”spectralon correction” mode in order to adjust the gain and the 

curve of the spectra correspondingly. The changes in the spectral information during the process of 

correction is stepwise shown in figure 4.6.
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Figure 4.5: Graph with Water Band Noise
Source: HATCHELL 1999
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Figure 4.6: Different steps of the Spectra preparation process
Source: Own work with ENVI 4.1
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 4.2.2 Measurements with Minolta SPAD Chlorophyll Meter 
The chlorophyll  meter  SPAD-502  produced  by  Minolta  (SPAD)  was  applied  to  determine  the 

relative amount of chlorophyll present in cotton leaves at a certain growth stage. The instrument 

measures leaf absorption in two wavelength regions, comprising the red and the near infrared 

regions. The SPAD emits therefore light by two built in LED´s. The part of the light transmitted 

through the leaf sample is collected by a receiver and the corresponding SPAD value is computed. 

See figures 4.7 to 4.9. 

SPAD provides a rapid and nondestructive diagnosis of  plant chlorophyll  status and has been 

widely tested for crops like rice, corn, wheat and cotton ( TURNER et al. 1991, PETERSON et al. 

1993, VARVEL et al. 1997, FOLLET et al. 1992, BRONSON 2005). BRONSON et al. 2001 and 

RÜCKER  2005  found  for  different  cotton  varieties  that  in-season  chlorophyll  –  meter 

measurements of cotton leaves had a strong correlation with leaf N.

 4.2.3 LICOR – 2000 LAI-Meter
The LI-COR LAI-2000 Plant Canopy Analyzer was used to estimate the Leaf Area Index of cotton 

plants on fields in a non-destructive way. The optical sensor consists of a “fish-eye” lens with a 

hemispherical field of view and a zenith cutoff angle of 74°. This range is divided into five detector 

rings of different view angles. The photodiode  detector is filtered to respond only to radiation 

below 490 nm to minimize the influence of leaf reflectance and transmittance (LI-COR Manual). 

This instrument cannot distinguish the gap fraction produced by the obstruction by stems, bolls, 

flowers, dead or active leaves. It takes all light resistant objects into account. Welles and Norman 

(1991)  therefore  called  the  LAI  Foliage  Area  Index,  to  strengthen  the  difference  of  the  plant 

material of the whole plant and only the leaf area. The measurement strategy was, that the first 

measurement was directly above the plant, followed by 4 measurements at ground level around 

the stem of the plant. For avoiding the influence of the measurement person on data capturing, a 

quarter circle view cap was applied. The measurement area was always shaded using a dark and 

thick umbrella that was covered by a glossy sheet to avoid measurements in direct sunlight, which 

37

Figure 4.8: Function of the Minolta SPAD-502  
Source: Konica 1989

Figure 4.9: Minolta´s 
SPAD-502   
Source: BRONSON 2005

Figure 4.7: Wavelength emitted by the LED
´s built in the SPAD  
SOURCE: Konica 1989
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would be inaccurate due to transmittance and leaf reflectance effects.   

Blenk 2004 used a different measuring method for a similar topic. 

She also took the first measurement above the plants but spread 

the  4  ground  measurements  as  shown  in  Figure  4.11 over 

approximately  one  square  meter.  This  made  it  easier  to 

interpolate the point-based LAI – values to cover a larger area. 

As in this study all 4 measurements were taken under one plant, 

a correction factor was introduced to reduce the overestimation of 

LAI for larger areas. The calculations of these correction factors 

are described in chapter 4.5.5.2. Table 4.6 (also chapter 4.5.5.2) 

shows the correction factors for the different stages.  

 4.3 Leaf scale measurements and analyses
The leaf scale measurements were carried out on the fertilizer trial plots. Therefore four plants of 

the rows 1 and 4 of the trial plots with leaves covering a range of SPAD values as wide as possible 

where selected. The measurements were necessary to establish a relationship between the SPAD 

values, the reflectance measurements and the actual leaf nitrogen content. 33 leaves of 4 plants 

were measured and harvested for the laboratory analysis.  With the results of this analysis the 

calibration of the SPAD values can be performed and the results of the reflectance measurements 

can be validated. Each step of this process is described in the following chapters. 

 4.3.1 Leaf scale spectral reflectance measurements
The spectral reflectance measurement of the whole cotton plants was carried out by holding the 

fibre optic of the ASD field spectrometer in a certain height above the plant canopy. Small move-

ments of the leaves due to slight wind and movements of the optic due to trembling were averaged 

by taking 10 measurements per target. For single leaf spectral reflectance measurements the leaf 

was fixed in a special construction, shown on the photos in figure 4.12.
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Figure 4.10: Sensor optics of LAI-2000  

Source: LI-COR Manual

Figure 4.11: Measuring Method for LAI by 
Blenk 2004
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This construction was modified after Adams (2005). In this study a hole with a diameter of around 

34 mm diameter was drilled in a 3 mm thick metal plate. Afterwards the plate was covered by a 

black  flock paper that exhibits almost no reflection. Heating up of the metal plate that may change 

the leaf pigment properties was avoided by cooling the metal between the measurements using a 

freezer box. The optic of the field spectrometer was fixed on an adjustable tripod and put in a 

position of 10 cm above the leaf. The amount of transmission of the leaf was taken into account by 

measuring the  leaf  once against  an strongly  absorbing and once against  a  strongly  reflecting 

background. The reflectance of the different background materials as well as the reflectance of a 

leaf above white and black background is shown in the figure 4.13. The differences are small but 

easy to recognize.

The area from which the reflectance was taken, was marked with  and thin waterproof  pen, to 

ensure that the SPAD was collected within these areas and that the laboratory takes its samples 

out of the same area. 
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Figure 4.12: Reflectance Measurement Procedure at Leaf Scale

Source: Own photos
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 4.3.2 Leaf scale chlorophyll determination by SPAD and in the 
laboratory

Using the SPAD tool, three readings were taken on each of the 33 leaves within the same area 

from where  reflectance was measured.  This sampling  number was  chosen to  get  an average 

SPAD-value for the leaf, thus averaging potential within-leaf variability of chlorophyll distribution. 

One day after the reflectance and SPAD measurements, the selected leaves were harvested early 

in the morning and fresh weight and leaf area of these leaves was measured by LI-3100 Leaf Area 

Meter subsequently. Afterwards the leaves were put in labelled plastic bags and kept fresh in a 

cooler bag that contained freezer elements. The cooled leaves were transported to Tashkent by 

plane and brought to the UzHydroLab for laboratory analysis. The institute analysed the 33 leaves 

for total nitrogen content, chlorophyll a, b content, amount of caratenoids, anthocyanins and water 

content. Afterwards these results were combined with the results of the SPAD measurements to 
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Figure 4.13: Reflectance of different background materials with and without leaves

Source: Own work with ENVI 4.1
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calibrate the SPAD – values for the Khorezm 127 cotton variety. The Vegetation Indices calculated 

with ASTools and the reflectance measurements were also combined with the laboratory results to 

identify possible empirical relationships. 

 4.4 Plant scale measurements and analysis
Plant scale measurements were performed on cotton plants of the fertilizer trial plots near Urgench 

University.  Five plants of each plot were randomly selected and labelled.  The  SPAD,  LAI and 

reflectance, as well as biometric parameters such as plant height and diameter, number of nodes, 

and leaf angles, of these plants were determined following the field survey time table (compare fig. 

4.2).  The results  were  entered into one Excel  file  per  measurement  date and joined with  the 

respective points of each plot (fig. 3.2). 

These  measurements  were  accomplished  within  3  days  around  the  satellite  overpasses  to 

compare the data collected on plant scale with the regional data.

 4.4.1 Spectral reflectance measurements
The  reflectance  measurements  for  whole  cotton  plants  were  taken  using  the  ASD  field 

spectrometer without the foreoptic thus achieving a measurement angle of 25°. Depending on the 

diameter of the plant, the optic was hold in a vertical orientation at a distance of 15 to 45 cm above 

the  plant.  Following  this  measurement  strategy,  reflectance  data  was  mainly  collected  for  the 

foliage,  thus capturing reflectance data from soil  was  avoided.  For  each plot  five plants  were 

selected and measured with  10 repetitions to average influences such as moving the optic by 

trembling  or  plant  movements  due to  wind.  The height  of  each  measurement  as  well  as  the 

average leaf angle was recorded and added to the corresponding data in the Excel sheet.  All 

measurements  were  performed  from  10am  until  2pm  to  guarantee  relative  homogeneous 

illumination conditions. 

 4.4.2 Biometric data collection on canopy scale
At plant  scale,  biometric  data such as plant  height,  plant  diameter and number of  nodes was 

collected for each plant. SPAD values were measured for all leaves within plant layers that were 

demarcated by nodes on the stem. The measured SPAD values were averaged per layer and 

afterwards  per  plant.  In  the  afternoon  the  LAI  measurements  of  the  monitored  plants  were 

conducted by LICOR – 2000 LAI-meter. The plants were shaded using a big and thick umbrella 

and the LAI was collected according to the procedure described in chapter 4.1.5.   
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 4.5 Regional scale satellite image acquisition, 
measurements and analyses

 4.5.1 Proba-1/CHRIS satellite mission and image acquisition
 4.5.1.1 Proba-1/CHRIS satellite mission
PROBA (Project for On Board Autonomy) is a micro-satellite developed by ESA's General Support 

Technology Programme (GSTP) The satellite was launched from India on 22nd 

October 2001 and operated from ESA's Redu Ground Station in Belgium. Its 

CHRIS  (Compact  High  Resolution  Imaging  Spectrometer)  instrument,  is  a 

multiangular imaging spectrometer. With just 60 x 60 x80 cm dimension and 

14 kg weight, CHRIS is the smallest hyperspectral imager ever flown in space 

and  can  scan  the  earth  surface  at  a  maximum  resolution  of  17  m.  The 

multiangular sensor is able to acquire up to five images of approximately the 

same  target  at  five  observation  angles  (  around  ±  55°,  ±  36°  and  nadir 

viewing) during one overpass, with up to 62 spectral channels (ESA homepage). It now serves as 

a  technology  demonstration  mission  of  ESA (Teston,  2004).  Therefore  the  mission  provides 

images of only a limited number of pilot-sites throughout the globe that are selected by a scientific 

board of ESA. (BEGIEBING 2004) Dr. Gerd Rücker at DLR became one of the principal scientific 

investigators and is now authorized by ESA to acquire Proba-1/CHRIS satellite images of the pilot- 

site in Uzbekistan free of charge. 

The satellite images selected for this project are Proba-1/CHRIS Mode 5 data, because this mode 

has the highest spatial resolution (17 m pixel resolution at nadir sensor orientation) as well  as 

hyperspectral information (37 bands) that is suitable for LAI and chlorophyll estimation. This mode 

is called  the “half swath mode” because the images cover only one half of the nominal imaging 

area. The platform attitude system has only one pointing reference frame, which is coincident with 

the optical axis of the imaging system. Thus it is necessary to define a shifted longitude coordinate 

pointing to the eastern edge of the area to be imaged. This is approximately ¼ of the full swath 

width in normal imaging modes. The precise eastward shift depends on platform altitude and is 

given by:

                                                  Shift=altitude⋅0,0255⋅748
746⋅4

km                                              

In June 2006 the altitude varied between  552 and 685km, resulting in eastward  imaging shifts 

between 3.1 and 3.9km (CHRIS data format).  This image shift  is represented in the coverage 

variation of the images acquired at different dates.
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Figure 4.14: PROBA - 
Satellite in Space 
Source: ESA homepage
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 4.5.1.2  Proba-1/CHRIS image acquisition and time table

The multiangular Proba-1/CHRIS sensor images are acquired within a 55º cone, as defined by a 

vector  connecting  the centre  of  the  earth  to  the 

spacecraft, as illustrated in figure  4.15. The cone 

creates  a  circular  orbit  with  the  distance  to  the 

spacecraft  equal  to  the  semi-major  axis  of  the 

orbit,  but  this  distance  is  not  fixed.  For  orbits 

higher or lower than the semi-major axis the cone 

traced  by  the  satellite  during  acquisition  will  be 

slightly different. The first acquisition is initiated at 

the leading edge of the cone at C1 and the final 

acquisition  finishes  at  the  finishing  edge  of  the 

cone  at  C5.   The  centre  time  of  the  image 

acquisition therefore  does not  correspond to  the 

edge of the cone. The red stripes (shown in figure 

 4.15) are indicating the area of image acquisition 

and  the  C1  to  C5  the  corresponding  image 

acquisition times. (CHRIS data format) 
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Figure 4.15: Angles of CHRIS Image acquisition 
Source: Cutter 2005

Table 4.3: CHRIS Mode 5 Land Channels  

Source: Cutter 2005

Table 4.2: Order of CHRIS Image delivery  

Source: Cutter 2005
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The images are delivered following the order as specified in table 4.2.  The wavelength covered by 

each channel is shown in the table 4.3. The CHRIS images for this project were acquired on the 

dates as shown in  table 4.4. The table shows also if the study area is fully covered.

  Used Symbols:

   + = ok (4 of 4 validation fields in the scene)
   n/a = not available
   x of 4 = number of validation fields in the scene

 4.5.2  Bad line removement and noise reduction of the Proba-1 / 
CHRIS satellite images

Some of the acquired satellite images included several small stripes and bad lines. The stripes 

consisted of two different types of lines. Both line types are shown in figure 4.16 as indicated by 

the  red  arrows.  Several  stripes  are  shown  as  blue-green  dotted  lines  crossing  the  image 

horizontally (white arrows in the image above). Other bad lines are shown in dark grey and white 

line running vertically across the image (black arrow in the image above). All stripes and bad lines 

were  successfully  removed using the ESA HDFclean V2 algorithm programmed by Jeff  Settle 

(pers. Communication) (Cutter, 2006) provided by courtesy of Lisa Haskell from Surrey Satellite 

Technology Ltd. The result of the bad line removement and noise reduction can be seen easily by 

comparing the two images shown as an example in figure 4.16.
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Table 4.4: Satellite Images covering  validation fields 

Source: internship - report Richard Fuchs (2006)

date -55 -36 0 36 55
11.06.06 n/a + + + 3 of 4
20.06.06 + + + + +
28.06.06 + + + + +
07.07.06 + + + + +
17.07.06 + + + + +
02.08.06 0 of 4 + + + 0 of 4

b)



Data and Methods

 4.5.3 Georeferencing of Proba-1 / CHRIS Images
In order to validate the LAI and chlorophyll estimations with measurements in the field, all satellite 

images were  georeferenced using ground control  points  (GCPs).  These points  were  collected 

using a GARMIN GPS 12 handheld receiver. For higher precision of the determined coordinates 

the GPS was continuously kept switched on between the point collection and the average button 

was hit just before marking a GCP. Crossroads of bigger streets, bridges over wider irrigation or 

drainage channels or street  /  railway crossings were selected as GCPs. To identify the GCPs 
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Figure 4.17: Pictures of GCP´s on bridges, crossroads and rail road crossing 
Source: Own photos

Figure 4.16: Raw (left) and destriped (right) CHRIS Images (20.06.06, nadir view)
Source: Own work / ESA
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within the Images only structures bigger than the pixel size of the CHRIS-Images of 17 m were 

selected. A photo was taken of the location and the surrounding of each GCP and a sketch map 

was drawn. The red arrows in the photos in figure 4.17 show the exact point where the GCP was 

set. The arrows on the photos were created in the office in Urganch in the evening after the GCP-

acquisition to incorporate the information of the quickly drawn sketch maps directly into higher 

quality information. The GPS points were downloaded using GPS TrackMaker software, saved as 

txt-file, imported to Excel and complemented with additional information such as photo number, 

number of GCP and point type. The result was imported as X,Y - Data to ArcGIS, reprojected to 

standardized  projection  used  in  the  Khorezm  project  (Pulkovo  1942  using  the  Geographic 

transformation No. 7) and saved as shape-file. The result is shown in figure 4.18. Since the spatial 

extent of the multiangular images differed (see also figures 4.22 and 4.23), additional GCPs were 

collected  in  a  wider  surrounding  area  to  allow  proper  georeferencing  of  all  acquired  satellite 

images. However, the focus of the GCP point collection was to capture suitable points in close 

vicinity of the field sites.
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Figure 4.18: Map of the collected Ground Control Points with satellite  image;  
Source: Own map created with ArcGIS 9.1
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The georeferencing of the Proba-1/CHRIS – Images was performed with kind support by Richard 

Fuchs, bachelor student from Jena University who did an internship at DLR. The results shown in 

this chapter were created in a co-production. 

The georeferencing was carried out using ENVI 4.1 / IDL6.1. To identify the exact position of each 

GCP in the 17 x 17m resolution satellite image, different sources were taken simultaneously into 

account, including the GPS-Points in shapefile-Format in ArcGIS 9.1, the photos of the GCP´s of 

the GCP´s  location and Google Earth.

Following this procedure all  GCP´s lying within  the borders of  the 

image  where  identified  and  adjusted  until  an  optimum  fit  was 

achieved for all.  Using a low Root Mean Square Error (RMSE) as 

guidance. The verification of the optimum fit with the validation fields 

and the GCP´s had the highest  priority,  afterwards the fitting with 

streets, settlements and the irrigation system was checked. Table 6 

givs an overview of the results of the georeferencing of all images.

After verification of suitable GCP data collection, a second degree 

polynomial  transformation  using  nearest  neighbour  analysis  was 

applied. Due to the different angles, the 36° and 55° images had a 

varying  resolution  and  needed  a  resampling  to  fit  the  17x17m 

resolution  of  the  nadir 

image to be comparable. 

The  results  were 

transferred to ArcGIS 9.1 

as GeoTiff-Format.
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Figure 4.20: Screenshot of Google Earth zoomed 
to GCP location

Figure 4.19: ENVI 4.1 Magnifier Window with 14x Zoom 
of GCP

Figure 4.21: Photo of 
corresponding  location of 
GCP

Figure 4.22: Images acquired at 
11.06.06 (-55° is not available)

Table 4.5: Results of Georeferencing

Source: Own work /internship report Richard Fuchs
-55 -36 0 (nadir) 36 55

RMSE GCP´s RMSE  GCP´s RMSE GCP´s RMSE GCP´s RMSE  GCP´s
11.06.06 n/a n/a 0,029717 20 0,237194 21 0,039764 21 0,036731 23
20.06.06 0,036795 22 0,047063 27 0,047681 23 0,028421 25 0,046306 24
28.06.06 0,055519 24 0,444662 25 0,437286 19 0,027268 23 0,036234 23
07.07.06 0,038230 26 0,019168 24 0,102996 21 0,045018 25 0,035177 27
17.07.06 0,048868 28 0,051576 20 0,084418 24 0,063859 24 0,043628 27
02.08.06 n/a n/a 0,086166 20 0,056017 16 0,046227 19 0,043611 19

Date
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Figure 4.23: Proba-1/CHRIS images acquired at the specified dates and their spatial fitting 
Source: Own work / internship report Richard Fuchs
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In order to show the different spatial coverages of the satellite images, all images were imported 

into ArcGIS 9.1 and overlayed using different colours for each image (figure 4.26)  The black dots 

symbolize  the  location  of  the  GCPs  and  the  four  yellow  ones  represent  the  location  of  the 

validation fields. The blue areas represents the coverage of the +/- 55°, the green of the +/-36° and 

the red one shows the coverage of the nadir image. The differing shape of the images occurs 

mainly in the upper image parts which is due to few GCPs in this parts, thus,resulting in distortions. 

These image areas are out of the area of interest and did not effect the spatial congruence of the 

image with the fields where the validation measurements were taken. 

 4.5.4 Atmospheric Correction of Proba-1 / CHRIS images
 4.5.4.1 Spectral reference targets
In  order  to correct  atmospheric  influences on the Proba-1/CHRIS-Satellite-

Images the ground reflectance of one target was measured with the ASD field 

spectrometer (described in Chapter 4.1.2.1). An approximately 500 x 200 m 

big sandy field (fig. 4.25) with almost no vegetation was selected from which 

reflectance was  measured on 14.06.06.  This area was  covered by almost 

every Proba-1/CHRIS Image, except the nadir, -36° and -55° images of the 

02.08.06.

 4.5.4.2 Targets for validation of atmospheric correction
To validate the  outcome of  the atmospheric  correction  the reflectance  of 

different  targets  was  measured  during  and  shortly  after  the  satellite 

overpasses. Fields with different land uses near the validation fields were 

selected, including a rice field (top), two cotton fields with different developed 

plants, a wheat field and one alfalfa field (fig. 4.24). Due to the harvest of the 

wheat field during the second overpass a change of the landuse took place. 

For the third and fourth image acquisition the wheat field was converted into 

a new rice field with very few tiny transplanted plants and next to the alfalfa 

field another former wheat field was transformed to a small bare soil field. 

The reflection of both was collected during last two satellite overpasses.  
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Figure 4.25: Sandy Bare Soil Field, Khorezm Uzbekistan
Source: Own Pictures

Figure 4.24: Pictures  Top 
to Bottom: Rice, Cotton,  
Wheat, Alfalfa, fresh Rice 
and Bare Soil Fields in 
Uzbekistan 
Source: Own Pictures
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The reflectance measurements during the satellite  overpasses (except  11.06.06 and 07.07.06) 

were always taken on the same fields (shown on the pictures in figure  4.24) and each time all 

measurement locations were photographed and marked by GPS. The additional data like landuse, 

density of  vegetation and plant height was written in therefore prepared forms and afterwards 

transferred to Excel. These Excel files were linked with the GPS points and imported as attribute 

table to ArcGIS 9.1 (see maps below). Now all information available for each GPS point is easily 

accessible (see screenshot of  attribute table,  fig.  4.30, and figures  4.26 to  4.29).  The pictures 

acquired  on  11.06.06  and  07.07.06  were  provided  additionally  by  ESA that´s  why  no  ground 

control reflectance measurements were collected on these days. These datasets were used for the 

validation of the atmospheric correction. But all these targets have one big problem in common: 

their surface exhibits different degree of heterogeneity which produces varying reflectance that 

would  lead to inaccuracies in  the comparison with  the reflection  of  the atmospheric  corrected 

satellite images. Therefore some preprocessing of the collected spectra was necessary.
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Figure 4.28: GPS - Reference - Points 02.08.06   
Source: Map created with ArcGIS 9.1

b)

Figure 4.29: GPS - Reference - Points 17.07.06   
Source: Map created with ArcGIS 9.1

Figure 4.27: GPS - Reference - Points 28.06.06 
Source: Map created with ArcGIS 9.1

Figure 4.26: GPS - Reference - Points 20.06.06  
Source: Map created with ArcGIS 9.1



Data and Methods

 4.5.4.3 Preprocessing of the collected spectra for validation
After all the steps described in chapter 4.1.2.2 were completed the spectra were grouped in one 

Spectral  Library  for  each  GPS point  and  averaged.  The same process  was  repeated  for  the 

different landuse type to get one averaged signal for each date and landuse to be able to control 

the result of the atmospheric correction. Therefore the necessary graphs were exported as ASCII – 

.txt – Files to be used in ATCOR.

For verifying the result of the atmospheric image correction and for estimation of conversion factors 

for LAI, the area share of cotton plants relative to soil area was investigated in detail. In the study 

site the cotton plants were planted in a row distance of 60 cm. At an early growing stage (28.06.06) 

the spatial coverage of cotton leaves was relatively small (plants were less than around 25 cm in 

diameter and 20 cm in height), leading to higher reflectance information from the soil within the 

furrows compared to that of the sparse vegetation. In order to generate a vegetation signal for 

cotton fields covered by Proba-1/CHRIS pixels the following reflectance targets were measured 

 Bare Soil

 Cotton plants

 Cotton plants mixed with grass

 Soil between two cotton plants

The spatial share of cotton and soil was estimated by the following method:

 mosaic all overview photos available per plot to one big image and import it to ArcMAP

 classify the photos in green / soil / shadow area shares and perform reclassification

 look at the new attribute table and look at the pixel count for each class
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Figure 4.30: Attribute Table of the GPS-points collected on 02.08.06    
Source: Own work with ArcGIS 9.1

b)
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 set the pixel-count into ratio to get information on the spatial share of plants and soil.

 Simplify this ratio to one digit 

 Search for Pixels of the Proba-1/CHRIS-Image containing more than one GPS – Point

 Load all collected spectra into ENVI

 Identify all GPS-Points within one Pixel

 Look for all relating spectra for each Pixel and put them together in one spectral library (slb)

 Average the new created slb and save the MEAN for each Pixel in a new slb

 Name the slb after the corresponding GPS-Points

The result  should be a good estimation of the real  reflection of  the surface reflection within a 

Proba-1/CHRIS pixel. Zarco-Tejada 2005 (S.4) used a similar method to estimate the variability 

within vine yards. They used high resolution aerial photos, but as cotton is not as large as vine and 

only a small area is planned to be examined in this study, the overview photos were considered to 

be adequate for the estimation of the area shares.  

Example for 28.06.06:

Figure 4.31: Pasted Pictures for 28.06.06 
Source: Own pictures

     

Figure 4.32: Classification with ArcMAP 
Source: Own work with ArcMAP 9.1

   

       At 5 spots 2 spectras collected and averaged as “between cotton plants”
        Soil reflectance in the shade and bright sunlight each 10 times and averaged separately
        Cotton plant reflection 10 spectra per plant averaged, sometimes mixed with grass

Result of this classification: 1:3:1 one part shaded soil, three parts sunny soil, one part plant cover

This classification process was repeated for all 4 days, but with 6 randomly selected nadir photos 

of the plants. The results are shown in table 4.6.

Table 4.6: Percentage of Plant / Soil Coverage and correction factors for LAI
Source: Own work with ArcGIS

Stage1 Stage2 Stage3 Stage4

Plant 2,5 3,1 3,5 2,2

Soil 4,6 4 3,6 1,3

Resulting Factor 0,543 0,775 0,97 1,692
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 4.5.4.4 ATCOR Module and settings
To fulfil the atmospheric correction the ATCOR module for  ENVI / IDL 4.1 created by Dr. Rudolf 

Richter at DLR was used. With the ATCOR option “inflight calibration” the first image from 11.06.06 

was  used  to  generate  the  calibration  file  for  the  37  channels  of  CHRIS  Mode  5  using  the 

reflectance collected on the sandy bare soil field described in chapter 4.4.2.1. The settings for this 

are shown in figure 4.33.

Figure 4.33: Inflight calibration for the nadir image of 20.06.06 with ATCOR    Source: own work

The spectrum of the reference target (sandy field) was collected from the satellite image and the 

spectrum is set as a reference for the corresponding pixel in the image. The selected area is part 

of the cyan area in the Zoom window of Figure 4.33 shown above.
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 4.5.4.5 Atmospheric Correction – Processing
After creating a new calibration file the atmospheric correction for all 28 images started with the 

following settings:

The visibility was set per default to 23.0 Km and changed only for some of the 36° and 55° images.

All the other values for all images can be taken from table 8.1 in the appendix.

 4.5.4.6 Atmospheric Correction – Results and Validation
The  results  and  the  validation  of  the  atmospheric  correction  was  performed  following  two 

approaches. The first one is the visual comparison of the corrected image with the source. The 

second one is to test the corrected image using the spectra that were collected in the field at the 

same time as  the image was  acquired.  Therefore  the  spectra  were  prepared as  described  in 

chapter 4.5.5. Using the “Display Spectra” option of ATCOR on one screen and the corresponding 

ArcGIS – map ( fig. 4.18 shown in chapter 4.5.3) on the other screen, the pixel from which the 
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Figure 4.34: settings for the atmospheric correction with ATCOR      
Source: Own work
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spectra were collected, were identified and the two graphs were compared. The fit of these two 

graphs can be used as a measure for the accuracy of the atmospheric correction. Sometimes the 

shape of the graphs is similar but not all wavebands showed a perfect fit. To measure the quality of 

the fit, the standard derivation of the collected spectra for validation was taken into account. If the 

discrepancy of the two compared spectra is lower than the minimum and maximum boundaries of 

the collected spectra, the fit was accepted. As an example demonstration the comparison of the 

images is shown for one image only.  For the other images the resulting corrected images are 

presented only. The band combination of all images was set to Band 17, Band 12 and Band 4 for 

R,G,B for easier comparison.

The  first  image  was  acquired  at  11.06.06  and  provided  as  a  additional  image  by  ESA. 

Unfortunately no ground reflectance measurements took place at that day. The image is presented 

in figure 4.35.

On the 20.06.06 the first reflectance measurements took place in the fields. The results of the 

atmospheric correction are shown in figure 4.37. 

On 28.06.06  all  measurements  took place and the results  of  the atmospheric  correction  were 

tested as shown in figures 4.38 to 4.40 and the resulting image in figure 4.36.  The white graphs in 

figure 4.39 represents the spectrum taken out of the satellite image for the specified landuse and 

the green graphs are the means of the referring ground spectra, which are presented in fig.  4.38 

and 4.40. The fit of alfalfa is not considered as good match, because the white graph is higher than 
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Figure 4.35: Nadir Proba-1/CHRIS  Image 
collected  11.06.06 atmospheric corrected

Figure 4.37: Nadir Proba-1/CHRIS Image 
collected 20.06.06 atmospheric corrected

Figure 4.36: Proba-1/CHRIS  nadir Image 
aquired 28.06.06 after atmospheric 
correction
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Figure 4.39:  Graph out of Image (white) and reference spectra (green) for specified targets  28.06.06

Figure 4.38: Statistics of the Mean of Alfalfa and Wheat reflectance spectra 
Source: Own work with ENVI 4.1

Figure 4.40: Two variants of spectral mixture for cotton 28.06.06
Source: Own work with ENVI

b)



Data and Methods

the maximum graph of the corresponding ASD measurements. The good fit of the bare soil and 

wheat  graphs is  obvious.  As described in  chapter  4.5.5.2  the row structure,  the varying  plant 

development and the high part of soil signal of the cotton fields made it difficult to mix a matching 

spectra. The differences between high disturbed and pure cotton signal are shown in figure 4.40. 

The  spectrum  extracted  from  the  Proba-1/CHRIS  satellite  image  shows  a  fit  somewhere  in 

between. Important is the very good fit in the area from 680 nm to 900 nm. The part of the graph 

between 400 and 600 nm is varying due to different spatial distributions of soil and plant signal. 

The image from 07.07.06 was  an additional  images acquisition by  ESA.  Therefore  no ground 

reflectance was measured, but the spectra collected on 28.06.06 were taken to control the results 

of the atmospheric correction shown in figure 4.41. 

On the 16.07.06 all ground measurements took place and the verification of the corrections was 

done the  same way  as  shown for  28.06.06.  The nadir  image is  shown  in  figure  4.43 as  an 

example.

All ground measurements were fulfilled on 02.08.06, but only  the nadir image is presented in 

figure 4.42. 
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Figure 4.43: Proba-1//CHRIS nadir Image 
16.07.06 after atmospheric correction

Source: Own work with ENVI 4.1

Figure 4.42: Proba-1/CHRIS nadir Image 
02.08.06 after atmospheric correction

Source: Own work with ENVI 4.1

Figure 4.41: Proba-1/CHRIS nadir Image 
07.07.06 after atmospheric correction

Source: Own work with ENVI 4.1
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 4.5.4.7 Example of different view angles of Proba-1/CHRIS - 16.07.06
In order to investigate the influence of different view angles on chlorophyll and LAI estimation, one 

complete scene (Fig. 4.45 to 4.47) with higher growth stage of the cotton plants was used out of 

the time-series to test the influence of the different CHRIS angles on VIs (Chapter 5.3.3).
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Figure 4.45: Proba-1/CHRIS Satellite Image -55°, 16.07.06

Source: Own work with ENVI 4.1

Figure 4.44: Proba-1/CHRIS Satellite Image 
-36°, 16.07.06

Source: Own work with ENVI 4.1

Figure 4.46: Proba-1/CHRIS Satellite Image +36°,  
16.07.06

Source: Own work with ENVI 4.1

Figure 4.47: Proba-1/CHRIS Satellite Image +55°, 16.07.06

Source: Own work with ENVI 4.1
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 4.5.5 Biophysical and biochemical measurements of cotton
 4.5.5.1 LAI and chlorophyll determination in the field

In  addition  to  the  reflectance  measurements,  biophysical  measurements  as  described  for  the 

fertilizer trial plots were carried out on the four fields in Amir Temur Shirkat (compare figure 3.1c). 

The measurements in the cotton fields were taken in a homogeneous area within each of the four 

selected fields.  A distance of  ca.  20 m to  each side of  the field  was  chosen to  avoid mixed 

reflectance signals on the pixels of the Proba-1/CHRIS sensor due to adjacent cotton and other 

land uses. The measurements were taken following a more or less X-shaped sampling path with 

measurements ca. every 15 m. Each measurement point was marked by GPS. Plant height, crown 

width, number of buds, LAI, and SPAD values were collected, averaged in different height levels of 

the plant and entered in field data forms. This procedure was repeated on all four validation fields 

within two days before or after each satellite image acquisition. This was done for the fpur image 

acquisition dates. Back in the office LAI data was downloaded using LAICOR´s FV2000 Version 

1.04 Software and saved as txt-File. The GPS data was also downloaded using GPS TrackMaker 

software, exported as txt-File, imported into Excel and all the collected descriptive information was 

added as attribute information to each corresponding point. Afterwards the whole file was saved as 

txt-File  and imported as  X,Y-Data  to  ArcMap.  The point  signature  in  the maps of  figure  4.48 

present the GPS-dataset where measurements took place at each time step. This information was 

then used to relate the measured LAI and chlorophyll data in the field with the calculated data of 

the satellite images. 
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 4.5.5.2 Calculating Vegetation Indices based on Proba-1/CHRIS Images
The calculation of vegetation indices was carried out using the ASTools (Dorigo et al. 2006). This 

tool  is  able to calculate 60 different  VIs  from both spectral  libraries and satellite  images. The 

resulting  VIs  are  stored  in  spectral  libraries  or  as  an  output  image with  the  VIs  as  separate 

channels, respectively. With the spectral information provided by the 36 channels of the Proba-

1/CHRIS Mode 5 sensor it was possible to calculate 49 different VIs, of which 38 were chosen as 

probably suitable. They were calculated for every stage and data aggregation. The details on the 

most important VIs were described in chapter 2.2. 

The newly created image with VI information was saved as GEOTIFF-File and imported to ArcGIS 

9.1. Now the distribution of each VI can be shown as a graduate colours map. A map for each time 

step is shown in figures 5.33 and 5.34. For relating the VIs of the satellite image with the LAI and 

chlorophyll  measured in the field, only the VI-information of these pixels that cover exactly the 

spatial dimension of the measurement area was taken into consideration. The information of every 
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Figure 4.48: Overview GPS, SPAD and LAI collection Validation Fields

Source: Own work with ArcMap 9.1
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pixel  from all  channels representing VIs was transformed into an attribute table using a zonal 

statistics tool that was created for application with ERDAS Imagine 8.7 by Michael Bock from DLR. 

As input into this tool a shapefile with rectangular polygons (vector grid) of the same geographic 

projection, a multiple of the spatial dimension as the raster pixels, and the same spatial extent as 

these raster pixels that cover the measurement area was prepared. The multiple dimension of the 

spatial pixel dimension was set in this study to 2x2 raster cells in order to reduce the influence of 

the spatial variability of LAI and chlorophyll within each pixel. These polygons were created using 

ArcGIS  9.1  and  the  Hawth´s  Tool  extension  (Hawthorne  2006).  Every  new  created  polygon 

covered exactly 4 raster cells of the image that contained the VIs. Only those polygons containing 

GPS points indicating the field measurements were selected and saved in a new shapefile. The 

ERDAS zonal statistics tool calculated the mean and standard derivation for every channel of all 

raster cells that were within the boundaries of one polygon and attached the results to the attribute 

table of a newly created shape file. For establishing the relationship between the VIs from satellite 

imagery and the measured biochemical data, the mean of all measured LAI and chlorophyll values 

at those GPS-Points that were covered by a raster grid of the created polygon was computed. 

Therefore the attribute tables were exported as txt - Files and imported to Excel to perform this 

calculation. The results were added in ArcGIS 9.1 to each of the shape files as dbf – File. Finally, 

the  relationship  between  VIs  and  LAI  on  one  side  and  VIs  and  Cab  on  the  other  side  was 

determined by regression analysis following the statistical procedures described in chapter 4.6 

 4.6 Statistical and spatial analyses at leaf, plant and 
regional scale

All  data  measured  on  the  field  and  extracted  from  satellite  images  were  compiled  in  one 

standardized GIS database to  generate  a geographically  referenced and complete dataset  for 

statistical and spatial analyses, especially on the regional scale. Statistical analysis were used to 

determine the relationship between VIs and Cab-content of the leaves or plants based on SPAD 

measurements. The statistics were calculated for each temporal stage at the three different spatial 

scales (leaf, plant, region) as well as for different data aggregations (e.g. according to nitrogen 

levels of plots of the fertilizer trial plots) at the plant scale. Afterwards the results of the different 

temporal  stages,  spatial  scales  and  data  aggregations  were  compared  with  each  other  to 

investigate whether certain VIs show stable prediction power over time, space or aggregation level. 

At the regional scale the spatial distribution of the VIs and the resulting Cab-content was analysed 

using ArcGIS 9.1 and the results printed as maps. 
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 4.6.1 Statistical analyses of LAI and Cab prediction by VIs
The statistical basics, including minimum, maximum, mean and standard deviation were calculated 

for all the datasets described in the previous chapters using Excel. These values were used to 

calculate the range, coefficient of variation and total variability for each dataset and for different 

aggregations within one or between different datasets. The coefficient of variation was calculated 

as standard derivation / mean * 100 as a normalized variability indicator for comparison between 

different datasets. The results of these statistics were printed in Excel as scatter plots and used for 

a first screening of the data. Only some extraordinary high or low values were removed as outliers 

after  a  critical  examination.  For  the  examination,  all  available  data  were  taken  into  account, 

including the handwritten field data forms.  This screening was done for the data collected on the 

ground as well as for the Vegetation Indices calculated based on the Proba-1/CHRIS images or 

ASD reflectance data.

To link the  SPAD to the Cab, all  SPAD values measured on leaf scale were displayed in Excel 

scatter plots with the corresponding Cab contents determined by the laboratory. Using Excel the 

coefficients of determination for different types of regressions were calculated and the best fits 

were identified. The corresponding equation was compared with the one calculated for the dataset 

collected by Rücker et al. in 2005. The results of this comparison are shown in chapter 5.1.

Using this resulting equation all  SPAD values collected on plant and field scale were transferred 

into  Cab –  values  µg  cm-2.  Scatter  plots  were  printed  for  each  VI  -  Cab combination  and  the 

regression equation and the coefficient of determination were calculated. For each dataset the 

coefficients of determination were interpreted according to the strength of the relationship following 

the guidelines of  Hamilton (1990).  The interpretation scheme is shown in table  4.7. Using this 

method the best fitting VIs determining LAI and Cab were identified for each dataset. The achieved 

fit was classified using the classes given in table 4.7. 

Table 4.7: Rules of thumb for coefficient of determination estimation and interpretation
              Source: Hamilton 1990, Table 14.5

Coefficient of determination (R²) Interpretation Classification

1,0 Perfect positive (negative) relationship Not applicable

1,0 > R² > 0,64 Strong positive (negative) relationship Group 1

0,64 > R² > 0,25 Moderate positive (negative) relationship Group 2

0,25 > R² > 0,04 Weak positive (negative) relationship Group 3

0,04 > R2 > 0 No relationship Group 4
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 4.6.2 Transferability of relationships
Based on the classification of  R2 values into groups reflecting  the strength of  the relationship 

between VI and LAI or Cab, the membership of VIs to specific groups was investigated in detail. 

Specifically it was investigated, whether certain VIs show higher relationships with with LAI or Cab 

over temporal stages, spatial scales and data aggregation. As a result of this classification the best 

fitting VIs are shown for each dataset and stage. In chapter 5.4 the results of all datasets were 

evaluated  and  the  best  fitting  VIs  selected.  After  that  the  LAI  and  leaf  chlorophyll  content  at 

regional scale was calculated by applying the in the regression equations for the selected VIs on 

the satellite images. 

 4.6.3 Validation of the regional LAI and Cab estimations
The validation of the resulting regression equations took place at regional scale. Therefore the 

regression equations for the best fitting coefficients of determination to estimate Cab or LAI by VIs 

were used to predict the LAI or leaf chlorophyll content of the fields and compare the predicted 

values with the results of the ground measurements. 
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5.Results and Discussion
 5.1 Leaf Scale SPAD calibration and leaf chlorophyll 

estimation by Vegetation Indices
 5.1.1 SPAD Calibration
The investigations at leaf scale were performed to determine the relation between SPAD-value, VI 

calculation based on ASD reflectance data and corresponding Cab -content of cotton leaves. After 

checking the results of the chlorophyll extraction from the laboratory, it was found that the standard 

deviation and coefficient of variation were relatively high for some leaves (table 4.7). Furthermore 

the data showed that the number of chlorophyll extractions per leaf varied considerably from one to 

six samples per leaf. Moreover, as the total number of leaf samples was only 33 the range of 33.8 

– 58.9 SPAD values was relatively small. Due to the higher standard variations, irregularities in the 

laboratory and the relatively small  data range, the suitability of this data set for calibrating the 

SPAD in order to transfer SPAD values during later measurement stages when both lower and 

higher chlorophyll content is expected, is not given. Instead, the calibration dataset collected by 

Rücker (2006) in late August 2005 had a population of 100 and a very high range of the SPAD 

values from 3,26 to 70,24. Thus, the established regression based on the latter dataset was used 

for  transferring  SPAD  values  to  chlorophyll  a+b  content.  The  corresponding  equation  is 

Cab=0,0008⋅SPAD
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Figure 5.1: Scatter Plot for the remaining 21 
leaves
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Figure 5.2: Scatter Plot for the combined 
2005 and 2006 data
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Table 5.1: Results of Laboratory at Leave Scale with Mean, STDV and CV

1,1 0,0260 25,95
1,2 0,0242 0,0251 0,0145 57,8445 24,17 25,06
2,1 0,0398 39,82
2,2 0,0415 0,0271 0,0235 86,6563 41,47 27,1
3,1 0,0362 36,18
3,2 0,0302 0,0221 0,0194 114,1029 30,23 22,14
4,1 0,0330 32,97
4,2 0,0359 0,0230 86,8359 0,0199 35,89 22,95
5,1 0,0340 33,96
5,2 0,0389 0,0243 0,0212 87,1953 38,89 24,28
6,1 0,0290 29,04
6,2 0,0294 0,0195 0,0169 86,6067 29,37 19,47
7,1 0,0330 33,02
7,2 0,0264 0,0198 0,0175 88,1892 26,42 19,81
8,1 0,0338 33,78
8,2 0,0427 0,0255 0,0225 88,3519 42,69 25,49
9,1 0,0542 54,24
9,2 0,0638 0,0393 0,0344 87,4429 63,75 39,33

10,1 0,0742 74,16
10,2 0,0849 0,0530 0,0462 87,1941 84,91 53,02

11 0,0405 40,55
12 0,0246 24,64
13 0,0507 50,71
14 0,0355 35,5
15 0,0336 33,61
16 0,0287 28,73
17 0,0426 42,58
18 0,0429 42,86
19 0,0406 40,63
20 0,0560 55,99
21 0,0413 41,33
22 0,0295 29,52

23,1 0,0306 30,56
23,2 0,0303 0,0203 0,0176 86,6056 30,26 20,27
24,1 0,0348 34,82
24,2 0,0283 28,35
24,3 0,0274 0,0226 0,0154 68,2487 27,36 22,63
25,1 0,0199 19,9
25,2 0,0343 34,26
25,3 0,0283 28,28
25,4 0,0237 0,0212 0,0130 61,3353 23,68 21,22
26,1 0,0286 28,56
26,2 0,0276 27,56
26,3 0,0281 28,12
26,4 0,0295 0,0228 0,0127 55,9911 29,53 22,75
27,1 0,0384 38,45
27,2 0,0423 42,28
27,3 0,0348 34,77
27,4 0,0407 40,69
27,5 0,0419 41,94
27,6 0,0437 0,0346 0,0155 0,0536 43,73 34,55
28,1 0,0409 40,92
28,2 0,0449 44,86
28,3 0,0464 46,41
28,4 0,0478 47,78
28,5 0,0466 46,57
28,6 0,0475 0,0391 0,0174 0,0682 47,45 39,14

29 0,0513 51,34
30 0,0411 41,07

31,1 0,0337 33,71
31,2 0,0308 0,0215 0,0187 86,8674 30,79 21,5

32 0,0470 47

Leaf 
ID

 Lab. Result 
Cab in mg cm -²

Mean Cab in 
mg cm -²

Standard 
Derivation

Coefficient of 
Variation

Lab. Result 
C

ab
 in µg cm -²

Mean C
ab

 in 
µg cm -²

n.a. n.a. n.a. n.a.
n.a. n.a. n.a. n.a.
n.a. n.a. n.a. n.a.
n.a. n.a. n.a. n.a.
n.a. n.a. n.a. n.a.
n.a. n.a. n.a. n.a.
n.a. n.a. n.a. n.a.
n.a. n.a. n.a. n.a.
n.a. n.a. n.a. n.a.
n.a. n.a. n.a. n.a.
n.a. n.a. n.a. n.a.
n.a. n.a. n.a. n.a.

n.a. n.a. n.a. n.a.
n.a. n.a. n.a. n.a.

n.a. n.a. n.a. n.a.

b)
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 5.1.2 Chlorophyll estimation by vegetation indices
The reflectance at leaf scale was collected with the ASD field spectrometer from leaves that were 

placed once on white (strongly reflecting) and then on black (strongly absorbing) background. For 

these  measurements  twenty 

additional  leaf  measurements 

of  SPAD and reflectance with 

the ASD were taken two weeks 

after the first data collection, in order to overcome the problems that occurred with the 33 leaf 

dataset. The statistics for this dataset are shown in table 5.2 indicating a relatively small standard 

derivation and coefficient of variation.

Using a tool for  ENVI / IDL that was written by 

Wouter Dorigo (2006) the reflectance excluding 

the  transmittance  was  calculated for  each leaf. 

The  different  spectral  reflections  of  a  leaf 

measured while positioned on a white or a black 

background  as  well  as  the  results  for  the 

transmittance and adjusted reflectance is shown 

for  one example  leaf  in figure  5.3. The graphs 

show the highest reflectance values for the leaf 

measured on white background (black signature), 

because the measured reflectance includes the 

reflectance of the leaf and the backscatter of the transmission. In contrast the reflectance of a leaf 

measured while positioned on a strongly absorbing black background (brown signature) is much 

lower. The actual leaf reflectance (dark green signature) has values between the reflectance based 

on black background and the transmittance. 

Based on the adjusted reflectance data, the VIs were computed using the ASTools in ENVI. The 

statistics for this dataset are shown in table 8.2 in the Appendix.  The coefficient of determination 

for each calculated  VI is given in figure  5.4. Although the highest determined R² at  leaf scale 

reaches almost 0.64, this estimation of Cab is overall relatively low compared to sources cited in the 

literature amounting to ca. 0.8 (Blenk 2005). The major difference of this study is that all data were 

gathered under field conditions whereas the research found in the literature was conducted under 

laboratory conditions. The measurement in the field suffered from suboptimum illumination due to 

changing atmospheric conditions (clouds) that caused a reduction of the number of measurements 

per target. Since the measurement was non-destructive, the leaves were not cleaned and partly 

covered by dust and sand due to wind erosion, which alters the reflection properties. All these 
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Table 5.2: Statistics of the used leave reflection dataset
 n Max STD CV
20 40,6 63,2 22,6 53,215 6,225 11,698
20 32,48 51,00 18,52 43,00 4,90 11,698

Min Range Mean
 SPAD ( )

C
ab 

(µg cm-²)

Figure 5.3: Comparison of white, black and adjusted reflectance 
and transmittance

Source: Own work with ENVI 4.1
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Results and Discussion

constraints that could only partly be controlled during the measurements in the field together with 

the small sampling number of only 20 samples might have caused generally lower relationships 

between the VIs and the measured SPAD values. 

Considering the relative performance, the coefficients of determinations range from 0,002 to 0,64. 

To ease the comparison the VIs were grouped into three classes representing different levels of fits 

according  to  Hamilton  (1990).  The  first  group,  the  one  with  the  relative  best  fit  (moderate 

relationship), includes the R²-values of following VIs: LWVI1, GI, LWVI2, MSI, CAI, MCARI2 and 

MTVI2. The second group contains the R² of the VIs with a lower fit  range (weak correlation). 

These are NDVI, RVI, the whole SAVI family, RDVI, TCARI, MCARI, MTCI, REIP1, Cab1 and all 

LAI´s.  The last  group are the ones with  almost  no correlation.  These are CARI,  LCI,  SR705, 

mND705, DGVI2, NDNI,  NDLI,  CSI2,  DWSI5, SWRLI and Cab2. The ones not  mentioned are 

somewhere in between group two and three.

The classification of VIs into groups shows that often cited VIs such as MCARI2, MTVI2 were also 

in this study among these VIs showing the relatively best performance to predict Cab.  Relatively 

lower relationships were given mainly by the broadband vegetation indices such as NDVI, RVI and 

the SAVI family, and at a lower relationship with the other chlorophyll related VIs such as TCARI, 

MCARI. 

To partly overcome the constraints of the field study, future research should focus on increasing 

the number of leaf samples. An increase of the number of SPAD-measurements, a more spatially 

distributed sampling within each leaf as well as conduction of the research under absolutely cloud-

free  conditions  may  also  provide  better  results.  This  can  only  be  managed  if  the  plants  are 

harvested after each measurement day and the leaves put into a suitable freezer, to guarantee a 
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Figure 5.4: Coefficients of Determination for determining Cab  by VIs at Leaf Scale
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Results and Discussion

longer measurement period of about one week. Or an easier procedure to conduct the reflectance 

measurements will  be developed to avoid the time consuming adjustments and changes of the 

background  materials.  The  best  solution  would  be  to  use  a  laboratory  meeting  international 

standardized criteria.

 5.2 Plant scale multi – temporal LAI and leaf chlorophyll 
estimation on fertilizer plots

 5.2.1 Plant scale LAI and leaf chlorophyll estimation overview
At plant scale, reflectance, LAI, and chlorophyll data were measured taking all leaves grouped at 

different layers of cotton plants that were cultivated in plots with different fertilizer rates in a field 

trial at four growing stages.  The descriptive statistics of measured LAI and Cab for each stage are 

shown in table 5.3. The LAI values of the fertilizer trial capture a wide range from 0,09 in stage 1 to 

6,08 in stage 4. The chlorophyll values capture also a wide range from 20 µg cm-2 to 50 µg cm-2, 

whereas the SPAD values range from 

22  to  63,3.  This  high  range  indicate 

both  the  increase  of  biochemical  and 

biophysical  parameters  with  time,  but 

also  the  response  of  the  different  N 

application rates. 

For each stage the descriptive statistics 

of the VIs are presented in tables 8.3 to 

8.6  in the Appendix. 
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Table 5.3: Statistics for LAI and Cab for Fertilizer Trial Plots on plant scale

Max STD CV
LAI ( ) 1 0,09 1 0,91 0,49 0,21 42,34

1 25,2 50,64 25,44 41,78 4,04 9,66
SPAD( ) 1 31,5 63,3 31,8 52,23 5,05 9,66
LAI ( ) 2 0,13 1,9 1,77 0,79 0,32 41,11

2 13,92 36,88 22,96 31,57 3,38 10,71
SPAD ( ) 2 17,4 46,1 28,7 39,46 4,22 10,71
LAI ( ) 3 0,35 4,91 4,56 1,48 0,94 63,24

3 17,6 40,38 22,78 31,46 3,34 10,61
SPAD ( ) 3 22 50,48 28,48 39,33 4,17 10,61
LAI ( ) 4 0,45 6,08 5,63 3,61 1,44 39,84

4 31,07 48,96 17,89 42,4 3,11 7,33
SPAD 4 38,84 61,2 22,36 53 3,88 7,33

Stage Min Range Mean

C
ab 

(µg cm-²)

C
ab 

(µg cm-²)

C
ab 

(µg cm-²)

C
ab 

(µg cm-²)
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Results and Discussion

 5.2.2 Plant scale LAI and leaf chlorophyll estimation at stage 
level

The coefficients of determination resulting from the regressions of VIs against LAI or Cab are shown 

in table 5.4 and  5.5, respectively.  

Averaged over all stages and plants measured in the fertilizer plots the mean R² – value for LAI 

estimation by VIs is with 0,096 low, the range with 0,32 high, the minimum with 3*10 -7 very low, the 

maximum with 0,32 at a medium level within the moderate correlation group (after Hamilton 1990). 

The R² - values for the Cab / VIs regressions are within a range from 1*10-6 to 0,41 with an average 

of 0,053 and a standard derivation of 0,07. These values are, compared to the results at leaf scale, 

smaller. They are a sign for the low vegetation coverage combined with a high diversity of plant 

development.

The causes of such relatively lower correlation between VIs and LAI or Cab may be due to the very 

small sized fertilizer trial plots, in which border effects affected almost every measurement with the 

ASD  field  spectrometer.  Partly  the  captured  reflectance  was  from  plants  and  soil  of  the 

neighbouring plots. In addition, with five plants per plot, 20 plants per nitrogen level, the statistic 

population per fertilizer level was relatively low, but the maximum possible within the tight schedule 

of the field campaign. The photos in figures 5.5 to 5.8 provide an impression of the FTP´s for each 

stage. The coefficients of determination for the regression of the VIs with LAI and Cab are shown for 

all  stages as  bar  charts  in  figure  5.9 and  5.10,  respectively.  The performance  of  the  VIs  for 

predicting LAI and Cab was assessed for each stage based on the classification of Hamilton (1990) 

given in table 4.7.
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Table 5.5: Statistics of Coefficients of Determination for determining Cab 

by VIs at Plant Scale

R² Min Max Mean STD Range
Stage 1 0,000001 0,4097 0,0652 0,1216 0,4097
Stage2 0,0007 0,0788 0,0264 0,0174 0,0781
Stage3 0,0069 0,2652 0,0910 0,0780 0,2583
Stage4 0,00002 0,1668 0,0284 0,0475 0,1668
Stage 1-4 0,000001 0,4097 0,0528 0,0661 0,4097

Table 5.4: Statistics of Coefficients of Determination for determining LAI 
by VIs at Plant Scale

R² Min Max Mean STD Range
Stage 1 0,0000003 0,0772 0,0353 0,0243 0,0772
Stage2 0,0065 0,3189 0,1640 0,0932 0,3124
Stage3 0,0002 0,2554 0,1333 0,0696 0,2552
Stage4 0,0002 0,1795 0,0509 0,0485 0,1793
Stage 1-4 0,0000003 0,3189 0,0959 0,0589 0,3189
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Performance assessment of VIs predicting LAI at plant scale at stage 1 (20.06.06):
Overall, the relationship between VIs and LAI at stage 1 was weak. The best LAI prediction was 

achieved by TCARI (R² =0,077). In a relative performance assessment, the VIs of the CARI family 

show the best correlation, followed by the VIs of the SAVI family with SAVI and MSAVI (R²= 0,06) 

together  with  DGVI1 & 2,  MTVI1  & 2 and LAI7  to  10.  PRI,  mND705 and REIP4 showed no 

relationship having R² values of  around 10-6.  The R²  of  not  mentioned VI´s are somewhere in 

between group two and three. 

Performance assessment of VIs for predicting LAI at plant scale at stage 2 (28.06.06):
Moderate correlation between VIs and LAI at plant scale during stage 2 was achieved by the VIs 

including LCI (R²=0,319), DWSI5 (0,311) and many others (RVI, NDWI, SAVI2, OSAVI, TSAVI, 

SR705, MND705, CSI2, MSI, LWVI1 & 2, LAI7, LAI9 within a range of R² from 0,20 to 0,29). The 

following VIs had weak correlations (R² ranging from 0,19 to 0,13): SAVI, MSAVI, RDVI, MCARI2, 

MTCI, GI, REIP1, NDWI_MIR, LAI8 and Cab. The VI´s MCARI, TCARI and SWIRVI showed 

almost no correlation with R² ranging between 0,0171 and 0,0065. 
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Figure 5.5: Close Photo of a fertilizer trial plot at stage 1 
(20.06.06)

Figure 5.6: Close Photo of a fertilizer trial plot at stage 2 
(28.06.06)

Figure 5.7: Close Photo of a fertilizer trial plot at stage 3 
(16.07.06)

Figure 5.8: Close Photo of a fertilizer trial plot at stage 4 
(02.08.06)
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Figure 5.9: Coefficients of Determination for determining LAI  by 
VIs at Plant Scale

Canopy Scale 
all Nitrogen Levels
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Figure 5.10: Coefficients of Determination for determining Cab by 
VIs at Plant Scale
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Performance assessment of VIs for predicting LAI at plant scale at stage 3 (16.07.06):
A moderate relationship between VIs and LAI at stage 3 was only indicated by one VI comprising 

LCI. However, with an R² of 0.25 the assignment of this VI is just at the lower boundary of the 

performance assessment group. Within the weak correlation level, but just at a slightly lower R² 

level (0,25 to 0,20) than LCI was ranked, a large group of VIs included the VIs LCI, MTCI, SR705, 

mND705, REIP1, CSI2, NDWI_MIR, MSI, DWSI5, LAI10 and Cab. Within the same group, but at a 

R² range between 0,17 and 0,11 were the SAVI-family,  NDVI, MTVI2, DGVI1 and LWVI1 & 2. 

Almost no correlation showed TCARI and MCARI (R² = 0,0002). 

Performance assessment of VIs for predicting LAI at plant scale at stage 4 (02.08.06):
Weak correlation between LAI and VIs was for the VIs comprising MSI (0,18), NDWI_MIR (0,16) 

and LWVI2 (0,14) followed by VIs with R² values ranging from 0,12 to 0,10 including MTCI, REIP1, 

LWVI1, DWSI5, LAI10 and Cab. The VIs TCARI, MCARI and GI showed almost no fit (R² around 

0,001).

Performance assessment of VIs for predicting Cab at plant scale at stage 1 (20.06.06):
The prediction of Cab by VIs at stage 1 was moderate with MTCI, REIP1, LAI10, Cab reaching 

highest R² values around 0,4. Weak correlation with R² – values around 0,14 was for VIs such as 

nMD705, PRI and LCI . The VIs DGVI1, TSAVI, SAVI2 and NDVI show almost no correlation (R² 

around 10-5).

Performance assessment of VIs for predicting Cab at plant scale at stage 2 (28.06.06):
Overall, the relationship between VIs and Cab at stage 2 was weak. The maximum R² was given by 

LWVI2 with R² = 0,0788. Within the same weak correlation group, further VIs such as MSI, CSI2, 

LCI,  OSAVI  and  NDVI  ranged  from  0,0575  to  0,0426.  The  SWIRVI  and  NDNI  showed  no 

correlation with R² = 0,0008.

Performance assessment of VIs for predicting Cab at plant scale at stage 3 (16.07.06):

A moderate relationship between VIs and Cab at stage 3 was shown by MTCI, LCI, REIP1 & 4, 

LAI10 and Cab with R²-values ranging from 0,27 to 0,21. Weak correlation between Cab and VIs 

was found for SR705, mND705, CSI2, NDWI_MIR, MSI and LWVI1 with R² values ranging from 

0,19 to 0,11. No correlation showed the VIs SWIRVI, MCARI, TCARI (R² – values ranging from 

0,0069 to 0,0076). 

Performance assessment of VIs for predicting Cab at plant scale at stage 4 (02.08.06):
Weak correlation between Cab and VIs was indicated with the best VIs including Cab and REIP1 

having R² values around 0,17 followed by LAI10 and MTCI with similar R². Almost no fit showed 

MCARI1, MTVI1, TVI and RDVI with R² around 10-5. 
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 5.2.3 Plant Scale LAI and leaf chlorophyll estimation on nitrogen 
levels

As shown in chapter 5.2.2 the variability  of  the cotton plant  development,  LAI and chlorophyll 

values within and among the fertilizer plots is relatively high. To reduce this variability and to check 

if there is a dependence on the different nitrogen application levels, the measured LAI and Cab 

data were aggregated according to the nitrogen application levels and for temporal stage. The 

statistics for these aggregated datasets are shown as an overview in table  5.6. The LAI data, 

partitioned according to N-levels and stage, showed a smaller range, STD and CV than datasets 

partitioned  according  to  stage  only 

(compare  table  5.3).  A  similar 

behaviour was recognized for the Cab 

data.  This  indicates  the  impact  of 

different  N  application  rates  on 

development of plant growth resulting 

in specific LAI and Cab development. 

To  compare  the  performance  of  the 

relationship between VIs and LAI and 

VIS and Cab over different stages and 

N-levels the respective R² values are 

compared in vertical-bar charts. For an 

easier  comparison  the  charts  were 

sorted by stages and the charts for the 

different  nitrogen levels  for  LAI  /  VIs 

and  Cab /  VIs  are  presented  on  the 

same page in figures 5.11 to 5.18. 

Overall,  the  performance  of  the 

relationship  between  LAI  and  VIs 

considering  the  datasets  aggregated 

according  to  nitrogen  levels  and 

stages is with a mean R² of 0,26 and 

a  maximum  R²  of  0,77  much  better 

than  considering  the  values  for  the 

whole  stages  stages only  with  0.096 
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Table 5.6: Statistics for LAI and Cab for Fertilizer Trial Plots on Plant Scale 

Stage N-Level Min Max Range Mean STD CV

1

0 20 36,8 49,1 12,3 43,5 4,1 9,32
150 19 36,5 50,1 13,6 44,1 3 6,82
200 20 40,2 50,6 10,5 43,6 2,6 5,99
250 15 33,5 49,7 16,2 42,7 4 9,27

2

0 19 28,9 35,1 6,2 32,5 1,6 4,98
150 20 29,1 36,9 7,8 33,4 2,1 6,34
200 20 30 35,1 5,1 32,4 1,6 4,88
250 20 29,1 34,5 5,4 32,6 1,5 4,67

3

0 19 25,8 33,8 8 30,7 2,5 7,99
150 10 31,3 36,8 5,6 33,6 1,5 4,51
200 20 29,8 40,4 10,5 32,9 2,4 7,17
250 15 27,5 37 9,4 31,9 2,5 7,71

4

0 20 32,8 48,7 15,9 41,2 3,7 9,05
150 20 38,2 46,2 8 42,5 2,2 5,24
200 20 37,1 47 9,9 42,6 2,7 6,27
250 20 37,8 47,9 10,2 43 2,6 6,13

LAI

1

0 14 0,23 0,97 0,74 0,42 0,19 45,85
150 10 0,13 0,78 0,65 0,51 0,22 43,44
200 15 0,09 0,93 0,84 0,46 0,26 56,43
250 9 0,16 0,88 0,72 0,45 0,24 52,85

2

0 19 0,36 0,96 0,6 0,69 0,16 23,93
150 20 0,53 1,06 0,53 0,76 0,15 20,43
200 20 0,51 1,5 0,99 0,86 0,36 41,97
250 20 0,39 1,7 1,31 0,87 0,34 38,72

3

0 19 0,86 1,64 0,78 1,21 0,19 15,3
150 10 0,82 1,86 1,04 1,37 0,32 23,18
200 20 0,89 4,44 3,55 1,6 0,88 54,81
250 15 0,55 3,55 3 1,83 0,83 45,59

4

0 20 1,31 5,52 4,21 3,76 1,05 27,82
150 20 1,3 5,37 4,07 4,06 1,22 30,09
200 20 0,73 5,65 4,92 4,01 1,51 37,74
250 20 1,81 6,08 4,27 3,89 1,47 37,84

LAI ( ) Cab   
 (µg cm-²)

 Sample 
Number1)

Cab

b)

1) the sample number decreased for some datasets, due to zero LAI 
values, caused by LICOR2000 errors (stage 1) and SPAD  
measurements (stage 3 N250, N150) acquired using a dirty Minolta 
SPAD-502 with wrong values as a result. 



Results and Discussion

and 0.32 for mean and maximum R2, respectively (compare table 5.3). Similar improvements were 

noticed for the relationships between VIs and Cab, when data were aggregated to nitrogen and 

stage levels with a mean R² of 0,19 and a maximum R²  of 0,66. Therefore compare table  5.5 

where mean R² is 0.053 and a maximum R² is 0.41 for relationships between VIs and Cab for data 

aggregation according to stages only. These findings further support the theory that the different 

nitrogen applications had a significant influence on the development of  cotton plants, LAI and Cab 

distribution. 

The performance of each VI to predict LAI and Cab in the different N application rates and stages is 

described in the following sub-chapters. The corresponding R² values for the VIs that showed the 

best relationships are given in brackets after respective VIs in the later text. 
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 5.2.3.1 Plant scale LAI and Cab estimation at nitrogen levels at stage 1
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Figure 5.12: Coefficients of Determination for determining Cab 

by VIs at Plant Scale, Stage 1
Figure 5.11: Coefficients of Determination for determining LAI 
by VIs at Plant Scale, Stage 1
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Results and Discussion

Performance assessment of VIs for predicting LAI at different N - levels at stage 1
At the first stage (20.06.06) the prediction power of VIs to estimate LAI of cotton plant canopies in 

different fertilizer application rates was strong ( R² > 0.64)  with the highest prediction power for 

plants growing on plots with Nitrogen Level 250. At this N-level, strong correlations were found for 

five VIs including SR705 (0,75), LCI (0,70), CSI2 (0,68), SAVI2 (0,67) and LAI8 (0,65). Most of the 

VIs showed moderate correlation from which six VIs (LAI9, LAI7, DWSI5, MTVI2, MCARI2 and 

OSAVI) with R² values higher than 0,6, whereas the majority had R²- values higher than 0,5. Weak 

correlation was found for one VI (PRI with R² of 0,056), whereas Cab, LAI10, the REIP´s and MTCI 

had no correlation with LAI at this stage.

The second best relationships between VIs and LAI with moderate correlations were found for 

plants from nitrogen level 200 plots. The corresponding VIs included SR705 (0,46), LCI (0,44), 

NDWI_MIR (0,44), DWSI5 (0,42) and CSI2 (0,42) and 25 other VIs with lower R² values but higher 

than R² = 0.25. Weak correlations were found for 14 VIs, and no correlation was only shown by 

LWVI1 (0,014).

Moderate correlations, but at a lower range than at N-level 200 was indicated for Nitrogen Level 0 

with the VIs LWVI1 (0,43), DGVI5 (0,35), TVI (0,34), MTVI1 (0,33), MCARI1 (0,33) and CAI (0,28). 

At this N-level 29 VIs had weak correlations, while 5 VIs (LCI, GI, NDWI_MIR, LWVI2, DWSI5) 

showed no correlation to LAI.

At Nitrogen Level 150 only weak correlations were reached with maximum R²-Values of 0,21 (LCI), 

0,19 (LWVI1 and 0,17 (NDVI) while 16 other VIs had even weaker correlations. No correlation was 

indicated for 24 VIs. 

Performance assessment of VIs for predicting Cab at different N-levels at stage 1
Similar as for LAI the best correlations of VIs with Cab were found for plants on Nitrogen Level 250. 

However, the best correlations were only moderate with LCI (0,61), CSI2 (0,57), mND705 (0,54), 

SR705 (0,53) and OSAVI (0,41) having highest values among 20 other VIs that had R² values 

above 0.25. Weak correlation was indicated by 13 VIs while no correlation was shown for only 2 

(LWVI1 and CAI) VIs.

LAI predictions for plants from Nitrogen Level 150 showed for the VIs LAI8, LAI9 (both 0,47), LAI7 

(0,45) SAVI2,  MSAVI ( both 0,42) the second best performance besides 23 other VIs with  R2 

values higher than 0.25. Weak correlation had nine VIs (MTCI, REIP´s, NDWI_MIR, LWVIs, LAI10, 

Cab and SWIRVI) and no correlation only by three VIs (GI, PRI, CAI).

Considering Nitrogen Level 0 had moderate correlation between the VIs NDWI_MIR (0,44), MSI 

(0,41) and Cab besides further 16 VIs with R² values of > 0.25. Weak correlation was achieved by 

20 VIs, while no correlation was indicated for two VIs (LWVI1 and REIP4).

Plants grown on Nitrogen Level 200 had the overall lowest (weak) correlation between VIs and Cab 
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over the different N-levels in stage 2 with SWIRVI (0,24), mND705, LAI9, SAVI2, RVI (all 0,22) and 

MTVI2, MCARI2, NDWI_MIR, LAI8 (all 0,21) besides 15 other VIs. MTCI, REIP1, LWVIs LAI10 

and Cab showed almost no correlation  

 5.2.3.2 Plant Scale LAI and Cab estimation on Nitrogen Levels at stage 2
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Figure 5.14: Coefficients of Determination for determining LAI 
by VIs at Plant Scale, Stage 2
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Figure 5.13: Coefficients of Determination for determining Cab 

by VIs at Plant Scale, Stage 2
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Performance assessment of VIs for predicting LAI at different N-levels at stage 2
Strong correlation between VIs and LAI at stage 2 was found for plants grown in plots with nitrogen 

level 250 with VIs including LAI7 (0,75), LAI8 & LAI9 (0,74), SAVI2, MTVI2 & MCARI2 (0,7), RDVI, 

MSAVI & OSAVI (0,69) and SAVI (0,68). Moderate correlation was indicated for almost all other 

VIs, except for SWIRVI, CAI, PRI, MTCI and REIP4 (weak correlation) and LAI10, Cab, REIP1 (no 

correlation).

Moderate correlation between VIs and LAI was indicated for 23 VIs measured on plants from N-

level 200 plots with VIs showing highest values GI (0,59), DWSI5 (0,58), RVI (0,55), SAVI2 (0,55), 

TSAVI (0,53). Weak correlation was achieved by 11 VIs and no correlation had 4 VIs (Cab, LAI10, 

SWIRVI, CAI, REIP1, MTCI).

Considering nitrogen level 150 moderate correlations had CSI2 (0,55), TSAVI, LCI, SR705 & NDVI 

(0,54)  and  SAVI2  (0,52).  Weak correlations  had  19  VIs  and  4  VIs  had  no  correlation  to  LAI 

(SWIRVI and LWVI2).

Nitrogen Level 0 showed the poorest performance for VIs predicting LAI in canopies with 9 VIs 

having moderate correlation of a medium performance level within this group (PRI (0,5), LCI (0,48), 

CSI2 (0,37) and SR705 (0,35)). 18 VIs had weak correlation and 13 VIs no correlation 

Performance assessment of VIs for predicting Cab at different N-levels at stage 2
On stage 2 the coefficients of determination for estimating Cab by VIs calculated for data collected 

on plots with Nitrogen Level 200. With R² = 0,65 the LCI was the only member of group 1, but with 

0,63 (CSI2) and 0,62 (SR705) the top inhabitants of group 2 were almost as high. In total, group 2 

contained 14, group 3 13 and group 4 12 coefficients of determination.

The  second  best  performance  showed  the  dataset  related  with  Nitrogen  Level  0  with  25 

coefficients inhabiting group 2. The best were for OSAVI (0,54), SAVI2 (0,53), LAI8 (0,51), LAI9 & 

RDVI (0,5) and LAI7, SAVI & MSAVI (0,48). Group 3 contained 13 and group 4 with the ones for 

LAI10, Cab and REIP1 only 3 coefficients with almost no correlation.

Nitrogen Level 250 showed 8 members in group 2, as top scorers LCI (0,31),  SR705 & CSI2 

(0,29), RVI (0,27) and SAVI2, MTCI & Cab (0,26). With 28 the most coefficients of determination of 

this level were grouped in group 3. Group 4 contained the ones for SWIRVI, REIP4, MCARI and 

TCARI.
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 5.2.3.3 Plant Scale LAI and Cab estimation on Nitrogen Levels at stage 3
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Figure 5.15: Coefficients of Determination for determining LAI 
by VIs at Plant Scale, Stage 3
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Figure 5.16: Coefficients of Determination for determining Cab 

by VIs at Plant Scale, Stage 3
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Performance assessment of VIs for predicting LAI at different N-levels at stage 3
The best performance (strong correlation) of VIs for estimating LAI by VIs at stage 3 was for the 

nitrogen level 150 dataset with the VIS including CSI2 & NDWI_MIR (0,77), DWSI5(0,75), SR705 

(0,72)  and nMD705 (0,66).  20 VIs  showed a moderate,  13 VIs  weak  and 2  VIs  (MCARI and 

TCARI) weak correlation.

Strong correlation, but with lower values as for N-level 150 was given for VIs estimating LAI for 

plants on Nitrogen Level 250 with mND705 (0,72), DWSI5 (0,7) and NDWI_MIR (0,66). Moderate 

correlations were shown for almost all other VIs (31). Only PRI, REIP4, CAI and the LWVIs had a 

weak  correlation.  There  were  no  VIs  with  no  correlation,  that´s  why  the  overall  correlation 

performance is best for this dataset.

At nitrogen level 200 strong correlations were found for MTCI & LCI (0,58), LAI10 (0,57), SR705 

(0,54)  and  Cab  (0,52),  which  were  among  22  other  VIs  within  this  correlation  group.  Weak 

correlation had 16 VIs, and no correlation only GI and REIP4.

Moderate correlation of a relatively lower regression performance was shown for 15 VIs including 

LAI8 (0,37), RDVI (0,36), SAVI & DGVI1 (0,35) and MCARI1, MTVI1&TVI (0,34) as the best VIs. 

Weak correlation was given for 24 VIs and no correlation was for one VI (PRI). 

Performance assessment of VIs for predicting Cab at different N-levels at stage 3
As for estimating LAI the VIs with the best correlations between VIs and Cab were for nitrogen level 

150.

The second best correlations were found for plants on nitrogen level 0 with 4 VIs including MTCI, 

Cab, REIP1 and LAI10 (all 0,29). Weak correlations were obtained for 9 VIs and 27 VIs had no 

correlation. 

Nitrogen level 250 showed three VIs with moderate correlation at the lowest performance level 

including the LWVIs (both 0,28) and RVI (0,25). Weak correlation was given by 15 VIs with NDVI 

(0,19) as best. The remaining 22 VIs had no correlation.

Nitrogen Level 200 had a moderate correlation of VIs with Cab, but with lower values, NDVI (0,27), 

TSAVI  (0,26)  and  RVI  (0,25).  Therefore  VIs  with  weak  correlation  (25  VIs)  and  VIs  with  no 

correlation 15 VIs indicated a slightly better overall performance than the coefficients of N-Level 

250. 

80

b)



Results and Discussion

 5.2.3.4 Plant Scale LAI and Cab estimation on Nitrogen Levels at stage 4
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Figure 5.17: Coefficients of Determination for determining LAI 
by VIs at Plant Scale, Stage 4

R²
0 0,64

NDVI

RVI

SAVI

SAVI2

MSAVI

OSAVI

TSAVI

RDVI

TVI

MTVI1

MTVI2

TCARI

MCARI

MCARI1

MCARI2

MTCI

LCI

SR705

mND705

GI

PRI

REIP1

REIP4

DGVI1

DGVI2

NDNI

NDLI

CAI

CSI2

NDWI_MIR

MSI

LWVI1

LWVI2

DWSI5

SWIRVI

LAI7

LAI8

LAI9

LAI10

Cab

Nitrogen Level 0
Nitrogen Level 150
Nitrogen Level 200
Nitrogen Level 250

0,04 0,25

Figure 5.18: Coefficients of Determination for determining Cab 

by VIs at Plant Scale, Stage 4
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Performance assessment of VIs for predicting LAI at different N-levels at stage 4
The estimation of LAI by VIs performed poorest for the last stage. Moderate correlation was only 

indicated for some VIs in certain nitrogen levels with highest R² - values of around 0,45.

Nitrogen  level  0  had  a  moderate  correlation  of  VIs  with  LAI  for  17  VIs  including  DWSI5  & 

NDWI_MIR (0,45),  CAI (0,43),  MSI (0,42),  GI (0,35)  and SR705 (0,34) as the best  performer. 

Weak correlation was for 15 VIs, while 8 VIs had no correlation.

At nitrogen level 150 15 VIs had moderate correlation with LAI with REIP1, LCI & Cab (0,45), 

DWSI5 & LAI10 (0,42) and MTCI (0,4) as best performer. Weak correlation was obtained by 19 VIs 

and no correlation was given by 6 VIs ( TVI, MTVI1, MCARI1, DGVI2, NDNI, SWIRVI).

Performance assessment of VIs for predicting Cab at different N-levels at stage 4
The VIs for the estimation of Cab showed the best fit for the last stage for nitrogen level 250 with 19 

VIs having a moderate correlation, including TVI, MTVI1, MCARI1 & DGVI1 (all 0,5), DGVI2 (0,47) 

and SWIRVI (0,46) among the best performer. Weak correlation were found for 9 VIs and 14 VIs 

had no correlation.

Nitrogen level 200 had VIs that showed the second best correlation to Cab, with LCI & CSI2 (0,49), 

SR705 (0,42)  and NDVI  & TSAVI (0,39).  Weak correlation was  for  15 VIs  and 8 VIs  had no 

correlation.

Moderate correlation was given by 10 VIs, including PRI (0,35), SAVI2 & LAI9 (0,29) and MTVI2 & 

MCARI2 (0,27) . 19 VIs had weak correlation and 11 VIs had no correlation. Thus the VIs applied 

to nitrogen level 0 performed slightly better than the VIs that were applied to nitrogen level 150.

Nitrogen level 150 showed with 3 coefficients [MCARI & TCARI (0,42), LWVI 0,27)] a moderate 

correlation, 28 VIs had a weak correlation and 8 VIs no correlation.

 5.2.4 Summary and discussion of  LAI and Cab estimation at 
plant scale

At plant scale the dataset including all measurements per stage showed a relatively poor overall 

performance for predicting both, LAI and Cab by VIs (fig.  5.9). Comparing the figures  5.11,  5.13, 

5.15 and  5.17 showing  the coefficients  of  determination  for  predicting LAI  by VIs  grouped by 

nitrogen levels and stages the heterogeneity of the performance of the VIs on the fertilizer trial 

plots becomes evident. Some VIs show a good performance for one N-level, especially for N-level 

250, but a poor one for another one at the same stage.

The exception was stage 2. At this stage most VIs showed their best performance for most N-

levels. The plant growth as shown in figure  5.6 gives insight into a potential reasoning for this 

behaviour. At stage 2 the early growth stadium had passed. The plants were developing their first 

nodes and further leaves were emerging. The plant growth and leaf development in the different 
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plots was relatively homogeneous as the different fertilizer application rates were just being taken 

up by the plants and could not yet have a strong impact. Thus, LAI was relatively best predicted by 

VIs at this stage compared to the first and the two later stages.

At stage 1 the plants were in the early development phase and only few leaves had emerged, the 

reflection from the vegetation was still very weak compared to the reflection from the surrounding 

soil  (compare  fig.  5.5).  Thus,  the reflection  captured by field spectrometer  above small  plants 

represented a more dominant soil reflectance with weak vegetation signal. This spectral reflection 

situation and the VIs, developed mainly for conditions with a more dominant vegetation coverage 

may explain their weak performance for predicting LAI at this stage. The exception was N-level 250 

with a very good performance of most VIs, because these plants were further developed and their 

growth was more homogeneous. 

At stage 3 plant size and number of leaves were in general further developed over all plots due to 

advanced growth stage (compare figure 5.7). The plant size and leaf development variation among 

the plots increased to a different extent due to the impact of different fertilizer application rates. The 

plots receiving less fertilization showed an increase of the coefficients of determination for stage 3 

for most VIs, the plots with the highest fertilizer application rate a slight decrease. The dataset 

containing all measurements per stage indicates this rise of diversion by a decrease of the R²-

values for most VIs.

At stage 4 plant growth and increase of plant coverage had further developed (compare figure 5.8). 

The same happened to the range of  LAIs within each plot,  because the variation of the plant 

development  in  each  plot  increased,  too.  This  high  variation  was  strengthened  by  not 

homogeneously distributed fertilizer application and irrigation water within the small plots, resulting 

in an high within plot variability of plant growth. This may be the reason why the coefficient of 

determinations for the LAI / VI regressions decreased, compared to stage two and three.

The overall  best  representation  of  the  performance  of  the  datasets  was  shown  by NDVI  and 

TSAVI. These VIs were not among the very best performing VIs for any dataset, but never showed 

a  poor  correlation.  The correlation  of   NDVI  and  TSAVI  with  LAI  was  similar  to  the  average 

correlation of the other VIs of the same stage and N-level. 

Compared with the LAI, the prediction of Cab by VIs showed even higher heterogeneity for most 

stages, not only for the comparison of different data aggregations, but also within each dataset.

 For the prediction of  Cab by VIs at  plant scale,  the first  stage represented the time when the 

variation of plant development and also the variation of chlorophyll within each leaf, plant, plot and 

over all plots with different fertilizer application rates was the lowest of all four stages. Thus, with 

homogeneous leaf chlorophyll distribution in each plant and the mainly development of top leaves 

and not yet developed leaf layer structures, a relatively high correlation between VIs and Cab  was 
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achieved at this stage. 

At stage 2 the relationship between VIs and Cab was differing. This may be due to the fact that first 

leaf layers with different Cab content due to different leaf ages had developed at different locations 

within each plant, plot, and among the plots with different fertilizer application rates. VIs measured 

on plants in plots with nitrogen level 0 and 200 showed the highest correlation indices for this 

stage, N-level 150 and 250 a decrease, compared with stage 1. The overall dataset responded to 

this diversity with a very low correlation.

In stage 3, the relationship between VIs and Cab increased significantly for plants from plots with N-

level 150,  but decreased for all  other plots. The variation of the regression results of the VIs 

calculated for the different N-levels had the maximum at this stage, most likely due to development 

of different leaf layers and a corresponding higher variation of Cab values within the plants. 

At stage 4, the variability of the correlations between VIs and Cab for different N-levels decreased 

again, but the performance shown by the different VIs was very different for each N-level. While 

one group of VIs showed their best performance for plants within plots of N-level 0 or 150, other 

ones performed better for level 250 or 200.  At this stage each N-level had its own best performing 

VIs.  The overall  slightly  better  correlation than for  stage 3 was also evident  in the correlation 

results of the complete dataset (figure 5.10). 

Summarizing the plant scale analysis showed that 

– the heterogeneity within each dataset, and even more in-between, was too high to use one VI 

for a stable prediction of LAI or Cab-content. For each dataset some VIs came out as absolute 

high predictor, but no one could keep this performance over time or over all N-levels at the 

same stage. This finding may underline the empirical nature of the VIs which seam mainly 

suitable  for  a  specific  environmental  and  plant  growth  situation,  thus  the  same  VI  may 

potentially not be applied over several temporal stages or different environmental conditions 

(e.g. different plant cover due to different N-fertilization rates).

– the prediction performance was in general better for LAI than for Cab. 

– the prediction performance improved while the data variability decreased for both LAI and Cab 

when data were split up according to N-levels and temporal stage.

However, these findings must be carefully considered against several facts: 

– possible measurement inconsistencies may have occurred, such as that LAI was difficult  to 

measure for plants at an early growth stage, when only few leaves close to the ground were 

present and LICOR-2000 was difficult to position, thus leading to over- or underestimations of 

LAI-values for the whole plant.

– possible errors for LAI measurements are also likely at later growth stages, when cotton plants 

had developed many leaves,  thus LAI measurements took partly  leaves from neighbouring 
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plants into consideration that were interweaved with the actual measured plant, such as that 

LAI was difficult to measure for plants on a late growth stage and may have led to over- or 

underestimations.

– possible spatial inconsistencies of reflectance and SPAD measurements, such that reflectance 

was measured from top of the plant therefore taking reflectance mainly from visible leaves into 

consideration, while SPAD was measured for all leaves located in different layers of the plant 

and resulting values were averaged for regression with reflectance measurements.

Taking these  findings  into  consideration,  future  investigations  may be improved  by  taking  the 

following recommendations into consideration:

– In future investigations of single plants, LAI measurements at stage 1 (20.06.), which is about 

three weeks to one month after the 2-4 leaves stage, should be done by destructive leaf area 

determination or the LICOR-2000 tool using less detector rings to adjust the instrument to the 

low coverage. Alternatively and depending on the objective of the research, the measurements 

may start later, e.g. around stage 2 (28.6.) or stage 3 (16.07.) and last longer, e.g. until harvest 

(around the beginning to mid September). If for example the LAI and Cab are used as input into 

crop models for prediction of yield, then measurements at a later growth stage until the time 

just before harvest are compulsory. Early LAI and Cab measurements could be helpful for early 

predictions,  but  then  these  predictions  need  to  be  taken  with  care  considering  possible 

measurement  inconsistencies and further  changes in plant  development  deviating from the 

potential predicted yield. In contrast, if the monitoring of the response of fertilizer and water 

inputs on LAI and Cab is the focus of the research, then respective measurements should be 

timed before and after the inputs are taken up by the plant and the effect on plant LAI and Cab 

can be observed.

– It is generally advised to focus future canopy LAI measurements on measurements of canopies 

composed of multiple plants, such as that a LAI measurement is performed on several cotton 

plants within a smaller area taking also the row structure of the cotton plants into account (e.g. 

measuring  in  a  diagonal  from  one  cotton  plant  to  another  cotton  plant).  Following  this 

measurement strategy the collected data represent the LAI situation of a certain area (e.g. area 

around 1-1.5 m diagonal) which again can be used for upscaling or outscaling the results to 

larger  areas  (e.g.  the whole  measurement  plot)  or  other  areas with  similar  input  situation, 

respectively. 

– Larger  fertilizer  trial  plots  would  be  helpful,  because  water  and  fertilizer  may  be  more 

homogeneously distributed, the number of samples per plot can be increased, border effects to 

neighbouring plants could be better avoided, thus more and more precise LAI measurements 

are expected.
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– The distribution of Cab-content within different plant layers may have better accentuated a more 

homogeneous spatial distribution pattern over the different nitrogen levels and with time that 

can  be  correlated  against  respective  VIs  from  spectral  reflectance  measurements.  This 

strategy was tested on regional scale.    

 5.3 Multi – temporal LAI and Cab estimation at regional 
scale

At  a  regional  scale  the  vegetation  indices  are  no  longer  calculated  based  on  ASD  field 

spectrometer  reflectance data measured from single canopies on the ground, but  from Proba-

1/CHRIS mode 5 satellite images in order to estimate the spatial distribution of LAI and Cab within 

fields for a larger region. As described in chapter 4.5.7.2 the VIs were calculated for grid cells. The 

grid cell size was set according to the double size of one satellite image pixel (17 x 17 m)  to 34 x 

34 m (2 x 2 raster cells) to minimize border effects. 

Due  to  the  limited  spectral  information  of  the  Proba-1/CHRIS  images  it  was  not  possible  to 

calculate all 60 VIs as was done with the data gathered with ASD field spectrometer, but 38 VIs 

were  selected  and  calculated  for  four  temporal  stages.  For  performance  assessment  of  VIs 

predicting LAI  and Cab  the coefficients  of  determination for  each VI  and LAI  as well  as Cab is 

presented in vertical-bar charts sorted by date and data aggregation. The statistics for each VI, 

date and whole plant are to shown in tables 8.7 to 8.10 in the Appendix.

 5.3.1 Regional scale LAI and Chlorophyll estimation
For a comparison of the prediction power of VIs for LAI  (fig.  5.19) and Cab / VI (fig.  5.20) the 

coefficients of determination are shown for the whole plants (not taking the layer structure into 

consideration) and for all stages in two bar charts together on the same page. The numbers in 

brackets behind the VIs indicate the respective R²-values.

Performance assessment of VIs for predicting LAI
For  LAI  the  first  collected  dataset  was  at  the  second  stage  (28.06.06).  At  this  point  in  time 

moderate correlation of VIs to LAI was indicated by 32 VIs. The REIP1 (0,43), Cab1 (0,4) and 

LAI5&6, MCARI, RVI (0,39) were the best performing VIs. The vegetation indices DGVI1 (0,25), 

mND705 (0,22), PRI, REIP4 and LAI1 showed a weak correlation. No correlation was shown for 

CARI (0,014). 

At the third stage (16.07.06) almost all VIs showed moderate correlations with R² – values around 

0,5.  Among these VIs  the relative  best  correlation  with  R²  more  than 0,53  were  for  the  LAI4 

(0,5423), NDVI (0,5388), LAI1 (0,5384), mND705 (0,5382), ATSAVI (0,5377) and SAVI2 (0,5367).  

At stage 4 (02.08.06) the performance of most VIs was also moderate with R² – values 
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around 0,5, but decreased slightly, compared to stage 3. The best performing VIs were the SR705 

(0,5472),  LAI1  (0,5468)  and  mND705  (0,5465).  The  SAVI-family  also  showed  a  moderate 

correlation with R² – values between 0,46 and 0,5. 

Performance assessment of VIs for predicting Cab

At the first stage (20.06.06) most VIs showed no relationship to Cab except CARI, REIP1, REIP4, 

LAI10 and Cab1. This generally poor correlation was most likely due to low plant coverage at this 

point in time. The CARI showed a weak correlation with R² of 0,16. The REIP4 performed best for 

this stage, and increased with increasing plant development except for stage 2. 

At the second stage (28.06.06) the best correlation was achieved with R² – values of 0,27 by NDVI 

and 0,24 by MCARI1. Most of the other VIs had a weak correlation with R² – values from 0,06 to 

0,16. Only REIP4 and LAI1 showed with R² values of 0,02 no correlation.

At the third stage (16.07.06) the VIs DGVI´s (0,43), MCARI1 (0,4), TVI & MTVI1 (0,4) and 19 other 

VIs showed a moderate correlation. Only the CARI depicted no correlation. The RVI, MCARI, GI, 

PRI, REIP1 and Cab1&2 showed a weak correlation with R²-values ranging from 0,1.to 0,24.

The last stage (02.08.06) the good moderate correlation of CSI2 (0,53), mND705 (0,52), NDVI, 

ATSAVI  (0,5)  stands  out  among the  other  stages.  At  this  point  in  time  the  VIs  revealed  the 

strongest correlations for almost al VIs. In total 30 VIs showed a moderate correlation, 5 a weak 

correlation and only 3 VIs (LAI10, Cab1&2) no correlation. 
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Figure 5.20: Coefficients of Determination for estimating Cab  by 
VIs at Regional Scale, whole plants

Figure 5.19: Coefficients of Determination for estimating LAI  by 
VIs at Regional Scale, whole plants
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Results and Discussion

 5.3.2 Regional Scale LAI and Chlorophyll estimation at a vertical 
plant profile

To investigate which leaves of the plants have the highest influence on the performance of the VIs 

for predicting Cab the SPAD based Cab – values were aggregated according to different vertical 

plant layer compositions, as described in chapter 4.5.7.1. These values were aggregated from top 

to bottom, at a maximum of five layers. The statistics for LAI and Cab measurements of these 

respective plant layers or heights are shown in table  5.7. The VIs and corresponding R² values 

presented in this chapter are based on the 2 x 2 raster cell grid.  

The data on the LAI-values show that LAI increases with plant development from stage 2 to stage 

4 with mean LAIs of 1.11 to 2.47, respectively. Similarly, the total variation indicated by STD and 

CV of LAI increases with plant development, indicating increasing heterogeneity of LAI with time.

The  investigation  of  the  Cab values  shows  that  the  mean  values  increase  from  top-leaf 

measurements to measurements when the whole plant profile is considered (Low-Top) for stage 2, 

4 and partly for stage 3. For stage 1 this gradient is reversed with highest values for top-leaves and 

lowest  values for  the  whole  plant  profile.  This  indicates that  the  whole  plant  Cab content  only 
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Table 5.7: Statistics  of measured LAI and Cab for different plant stages and dates at regional scale

Height Stage Count Min Max Range Mean STDV CV
Cab 3 Top 1 31 31,80 46,28 14,48 39,17 3,67 9,37
Cab 2-3 Mid-Top 1 31 31,82 43,40 11,58 38,57 3,05 7,9
Cab 1-3 Low-Top 1 33 31,88 41,76 9,88 38,08 2,83 7,42
LAI-Corr All 2 48 0,44 2,42 1,98 1,11 0,33 30,09
Cab 4 Top 2 6 25,76 35,44 9,68 29,89 3,32 11,12
Cab 3-4 Mid1-Top 2 45 26,16 34,64 8,48 32,21 2,00 6,22
Cab 2-4 Mid2-Top 2 45 27,72 36,64 8,92 33,33 1,62 4,87
Cab 1-4 Low-Top 2 48 27,09 39,02 11,93 33,93 1,93 5,68
LAI - Corr All 3 41 0,77 3,05 2,28 1,93 0,63 32,36
Cab 5 Top 3 22 24,40 42,88 18,48 30,49 3,99 13,07
Cab 4-5 Mid1-Top 3 36 22,32 35,12 12,80 28,86 2,99 10,36
Cab 3-5 Mid2-Top 3 37 24,08 35,25 11,17 29,68 2,83 9,53
Cab 2-5 Mid3-Top 3 38 24,00 35,70 11,70 30,33 3,01 9,93
Cab 1-5 Low-Top 3 39 23,81 37,05 13,24 31,07 3,24 10,42
LAI All 4 46 0,72 5,60 4,88 2,47 1,32 53,51
Cab 5 Top 4 43 21,38 35,16 13,78 29,73 3,34 11,24
Cab 4-5 Mid1-Top 4 44 23,40 35,56 12,16 30,66 3,22 10,49
Cab 3-5 Mid2-Top 4 46 24,08 38,03 13,95 31,09 3,30 10,6
Cab 2-5 Mid3-Top 4 46 23,68 39,80 16,12 31,69 3,53 11,13
Cab 1-5 Low-Top 4 46 21,95 42,08 20,13 32,02 4,01 12,52
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estimated from top-leaf values is an under representation for stage 2, 3 and 4, but may be suitable 

for plants in stage 1. This finding is consistent with the studies of Rücker et al., (2006). Another 

gradient appeared for the total variation of Cab values in all stages with decreasing STD from top 

layers to top-mid-layers and increasing STD from top-mid-layers to top-low layers. This shows that 

the upper plant layers have leaves with more homogeneous Cab contents in leaves than lower plant 

layers. 

The bar charts in figures 5.22 to 5.24 show the coefficients of determination for predicting LAI and 

Cab by VIs. For the LAI data no other aggregation was performed, thus the description given in 

chapter 5.3.1 is true for this dataset, too, and no further description given. The bars for the LAI are 

presented again for a better comparison with the results for the coefficients of determination for 

estimating Cab by Vis.
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Figure 5.21: Overview photos of validation field 2 at a) 20.06.06 , b) 28.06.06, c)16.07.06, and d) 02.08.06 (at different locations within 
the field)
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Performance  assessment  of  VIs  for 
predicting  Cab  in  cotton  leaves  based  on 
different  aggregations  of  vertical  plant 
layers at stage 1
The VIs for the first stage showed in total no or 

only a weak correlation with Cab.

The dataset representing the Cab-values of top 

leaves showed a weak correlation for 8 VIs with 

CARI (0,16) and REIP4 (0,12) among the best 

VIs. 

The Top - Mid dataset, showed with only three 

VIs  [CARI  (0,1),  PRI  (0,12),  REIP4  (0,12)]  a 

weak  correlation,  while  all  other  VIs  had  no 

correlation. 

For the top – bottom aggregation REIP4 (0,3) 

showed, a moderate correlation with Cab, while 

CARI, REIP1, LAI10 and Cab1 had weak and 

all others no correlation with Cab. 

At  this  stage  the  plants  were  very  small 

(compare fig.  5.21a), thus the reflectance from 

the  plant  very  weak,  compared  to  the 

reflectance  from  the  soil  background.  In  a 

relative perspective, the performance of the VIs 

shows  some  interesting  distribution  pattern: 

some VIs such as the SAVI family, MCARI1 and 

MCARI2,  the  TVI,  MTVIs  and  SR705  & 

MND705 show higher correlation with Cab for the 

top  leaves  and  almost  not  correlation  for  the 

whole  plant.  Other  VIs  such  as  the  REIP´s, 

LAI10  or  Cab1  show  just  the  opposite 

behaviour.  They  perform  better  for  the  whole 

plant than only for the top leaves. 

91

Figure 5.22: Coefficients of Determination for determining Cab  by 
VIs at Regional Scale, Stage 1 (20.06.06) at different plant heights
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Performance  assessment  of  VIs  for 
predicting  Cab  in  cotton  leaves  based  on 
different  aggregations  of  vertical  plant 
layers at stage 2
At  the  second  stage  the  dataset  with  the 

aggragtaion  based  on  top  leaves  showed  for 

two VIs (NDVI 0,36, MCARI1 0,3) a moderate 

correlation  with  Cab.  All  the  other  VIs  showed 

with R²-values ranging from 0.09 to 0,04 a weak 

correlation. No correlation was shown for Cab1 

(0,01), LAI10 (0,004), REIP1 (0,008) and CARI 

(0,03). 

The dataset containing the VIs for the first two 

nodes aggregation  (Top-Mid1)  depicted for  all 

VIs  a  weak  correlation  except  for  one  (CARI 

0,004). Out of this group, MCARI (0,21), NDVI 

(0,18)  and  mND705  (0,17)  showed  the  best 

correlation.

The  absolutely  second  best,  but  overall  best 

correlation, was shown for VI correlations with 

Cab data from the Top-Mid2 dataset, which was 

created by aggregating the SPAD – values for 

the upper 3 nodes of the plants, with 31 VIs with 

R²-values  from  0,25  to  0,23  (best  SR705  & 

mND705  with  R²=0,2543  and  SAVI2  with 

0,2507). No correlation was given for CARI and 

Cab2.

The whole plants aggregation (top-bottom) 

portrayed a rather uniform performance with 34 

VIs (best MCARI1 0,24) having a weak 

correlation and only 3 VIs (LAI1, CARI & REIP4) 

having no correlation. The NDVI showed with R² 

= 0,27 the absolute best correlation and was the 

only VI for this dataset with a moderate 

correlation with Cab. 
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Figure 5.23: Coefficients of Determination for determining LAI and 
Cab  by VIs at Regional Scale, Stage 2 (28.06.06) at different plant 
heights
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Performance  assessment  of  VIs  for 
predicting  Cab  in  cotton  leaves  based  on 
different aggregations of vertical plant layers 
at stage 3
The  top  leaf  dataset  showed  for  only  6 

coefficients  [REIP1  (0,44),  REIP4  (0,43),  PRI 

(0,41),  LAI10  (0,36)  and  Cab1  (0,35)]  a 

moderate correlation with Cab. 10 VIs had a weak 

correlation with Cab with R²-values smaller than 

0,1 except for DGVI1 (0,11). 22 VIs depicted no 

correlation with Cab. 

Most VIs showed the best correlation with Cab for 

the Top-Mid1 dataset. At a nadir view the leaves 

between  these  two  nodes  or  plant  layers 

covered or shaded almost all the leaves of the 

lower nodes or plant layers. All VIs showed R²-

values higher than 0,16, except Cab2 and CARI, 

witch portrayed with 0,02 & 0,06 no correlation. 

The relationships between VIs and  Cab at data 

aggregation Top-Mid2 and Top-Mid3 showed a 

similar  performance  pattern  as  Top-Mid1,  but 

with an overall lower performance.

The dataset considering all layers together (top-

bottom) showed for Cab2, LAI2, CSI2, ATSAVI, 

TSAVI  and  NDVI  the  best  R²-values 

representing moderate correlation with Cab, but 

had overall similar or slightly higher performance 

as the datasets top-mid2, top-mid3. The VIs of 

stage  3  had  a  better  correlation  with  Cab  at 

different  plant  layer  aggregations,  whereas  the 

Vis at stage 1 performed best for mainly the top 

leaves.
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Figure 5.24:Coefficients of Determination for determining LAI  and 
Cab by VIs at Regional Scale, Stage 3 (16.07.06) at different plant 
heights
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Results and Discussion

Performance assessment  of  VIs  for  predicting 
Cab  in  cotton  leaves  based  on  different 
aggregations of vertical plant layers at stage 4
The last stage showed the highest plant coverage 

and a special distribution in the correlations of VIs 

with Cab. The Top-Mid2 aggregation showed for all 

VIs  the  highest  level  of  correlation  (moderate 

correlation),  except  for  CARI,  PRI,  the  REIP´s, 

LAI10 and the Cab´s,  which had weak correlation 

with Cab. The performance of the datasets Top, Top-

Mid1and Top-Mid3 was similar to the one of Top-

Mid2, but had lower R²-values. 

The absolute best VIs among the VIs with moderate 

correlation of the Top-Mid2 dataset were the CSI2 

(0,62),  NDVI,  ATSAVI,  TSAVI  &  LAI4  (0,6)  and 

mND705 (0,59).  MCARI1 was  with  R²  =  0,5  also 

part  of  this  group  depicting  a  strong  relationship. 

Almost  all  other  VIs  portrayed  also  a  moderate 

correlation, except CARI (0,21), REIP1 (0,19), PRI 

(0,17) which had a weak and LAI10 and the Cab´s 

witch had no correlation.

The dataset aggregated for the whole plant  layer 

structure  (top-bottom)  performed  for  some  VIs 

second best  (for REIP4 with  0,42 best).  The best 

VIs of this dataset were almost the same as for the 

Top-Mid2  dataset,  with  mND705  (0,52),  LAI, 

ATSAVI, NDVI & TSAVI (0,5). 

The good correlation between VIs and Cab for the 

Top-Mid2 dataset shows that at stage 3 the leaves 

between  three  upper  nodes  (from  top  leaves  to 

mid2 leaves) covered almost all leaves at the lower 

layers, for which the reflectance of these leaves was 

not captured by the satellite images. 
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Figure 5.25: Coefficients of Determination for determining LAI 
and Cab  by VIs at Regional Scale, Stage 4 (02.08.06) at 
different plant heights
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Overall each dataset showed its own characteristic performance of correlations between VIs and 

Cab depending on the specific plant layer structure that is typical for the corresponding growing 

stage. The best correlations were for the data aggregations according to leaves from the plant 

layers top, top-mid2, top-mid1 for the stages 1-4 

and  4,  respectively.  Furthermore,  the 

performance of correlations increases with time 

from stage 1 having overall the lowest, to stage 

4,  with  the  highest  overall  correlation 

performance. Figure 5.21 shows photos of typical 

plants for each stage.

 5.3.3 Regional scale LAI and leaf 
chlorophyll estimation in cotton 
leaves at a vertical plant profile 
with different view angles at 
stage 3

As one example for investigating the influence of 

different  Proba-1/CHRIS  view  angles  on  the 

regression performance between satellite image 

based VIs and LAI, the dataset for stage 3 was 

analysed (figure 5.26). 

The  nadir  view  shows  the  relative  best 

correlation  for  almost  all  VIs  with  moderate 

relationship  levels  of  R²  –  values  up  to  0,54 

(compare chapter 5.3.1). 

The  second  best  fit  was  shown  by  the 

coefficients of determination for estimating LAI by 

the -55° image. The R² – values of the +36° and 

the  +55°  images  showed  almost  the  same 

correlation with  only slight  differences,  but at  a 

lower  level  as  for  the  -55°  image.  The  only 

exemptions  were  the  VIs   REIP1,  LAI10  and 

Cab1 showing the best fit for the +36° image and 

PRI  and  Cab2  with  the  highest  coefficients  of 

determination  for  the  -36°  image.  But  these 
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Figure 5.26: Coefficients of Determination for determining LAI  by 
VIs at Stage 3 (16.07.06) at different view angles for whole plants
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exemptions showed only third range fits, and were not analysed any further.

 For all VIs the -36° image shows the poorest performance. However, this is likely caused by some 

difficulties  while  georeferencing  this  image,  resulting  in  a  small  distortion,  which  could  not  be 

compensated afterwards and lack of time precluded to rerun the georeferencing process. 

The best performance of the VIs based on nadir acquired images is understandable considering 

that the measurements of LAI in the field were in a straight azimuth orientation of the stem of the 

plant. However,  the different performance of correlations of VIs based on the other view angle 

images with  ground measurements  needs further  investigation taking sun and Proba-1/CHRIS 

Sensor angles into account.

Considering the estimation of Cab by VIs form different view angle Proba-1/CHRIS images, Cab of 

leaves from different aggregations of plant layers were investigated.

For the top layer (figure 5.27), the nadir image showed the absolutely best correlating VIs out of 

the VIs from all view angles to estimate Cab with six VIs having  a moderate correlation including 

CARI, PRI, REIP1&4, LAI10 and Cab1.

However, considering all VIs from all view angles, VIs based on the image with a view angle of 

+55° had mostly higher correlations than VIs based on other view angles,  including moderate 

correlations  of  PRI,  REIP1,  LAI10  and  Cab1  and  weak  correlations  of  SAVI,  SAVI2,  MSAVI, 

OSAVI, TVI, MTVI1&2, MCARI1, DGVI1&2 and LAI7 to 9. Most of the VIs based on the image with 

the view angle +36° had a similar correlation pattern than the VIs from the +55° image, but had 

mainly lower R² values.  

The CARI calculated by the -36° image showed with R² = 0,45 the absolutely best correlation for 

this dataset, but this was the only moderate correlation based on this view angle. LAI10 and Cab1 

showed with R²-values between 0,37 and 0,4 the best correlations based on the -55° and +55° 

images.

Figure 5.28 shows the coefficients of determination for VIs based on different view angle Proba-

1/CHRIS images and Cab  calculated for the first two plant layers (top-mid1).

Considering the VIs from all view angles, the nadir image based VIs showed the absolute best and 

relative highest correlation with Cab with 22 VIs having a moderate correlation performance. The 

second best correlation was achieved by the +55° and the third best by the +36° based VIs. The 

VIs based on these two images showed a similar performance as the nadir image, except for RVI, 

REIP1, LAI2&3, LAI5&6, LAI10 and Cab1 which had better correlation results based on the +55° 

image. 

The -55° image showed the second best performing R² – values for DGVI1&2 and TVI.

The -36° image had only for the PRI with R² = 0,27 the best correlation. For all other VIs this image 

had the lowest correlation.
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Figure 5.27: Coefficients of Determination for determining Cab  by 
VIs at Stage 3 (16.07.06) at different view angles for the top node
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Figure 5.28: Coefficients of Determination for determining Cab  by 
VIs at Stage 3 (16.07.06) at different view angles for first 2 nodes
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Figure 5.29: Coefficients of Determination for determining Cab  by 
VIs at Stage 3 (16.07.06) at different view angles for first 3 nodes

Figure 5.30: Coefficients of Determination for determining Cab  by 
VIs at Stage 3 (16.07.06) at different view angles for first 4 nodes
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Figure  5.29 shows the R²-values for VIs based 

on different view angle Proba-1/CHRIS images 

correlated with Cab calculated for the first three 

plant  layers  (top-mid2).  Overall  the  highest 

corellations were based on VIs calculated from 

the  +55°  image.  The second best  correlations 

were achieved by VIs from the +36° image. But 

all three performed with rather similar R²-values. 

The  -55°  image  provided  also  some  VIs  of 

higher  correlation,  especially  for  DGVI1.  The 

-36° image showed only for CARI with R² = 0,14 

the best correlation.

The R²-values for  VIs  based on different  view 

angle  Proba-1/CHRIS  images  correlated  with 

Cab calculated for the first four plant layers (top-

mid3) are shown in figure 5.30. 

The correlations of most of the VIs based on the 

nadir image had the highest R²-values, followed 

by the VIs from the +55° and +36° images. The 

VIs based on images taken under -55° and -36° 

are both sowing a significantly lower correlation 

as for the 3 plant layer aggregation.

The VIs  based on different  view angle Proba-

1/CHRIS imgaes correlated with  Cab calculated 

for the Cab-content of the whole plants based on 

VIs are presented in figure  5.31. The VIs from 

the nadir  image performed by far  best  for  this 

dataset.  As  for  the  other  datasets  the  second 

and third best fit was achieved by VIs based on 

the +55° and +36° images. The performance of 

the  -55°  and  -36°  images  was  poor  and  the 

correlation for many VIs weak.

Overall  the VIs  based on images taken under 

different view angles showed significantly different performances for estimating LAI and Cab.  In 
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Figure 5.31: Coefficients of Determination for determining Cab  by 
VIs at Stage 3 (16.07.06) at different view angles for the whole 
plants
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general, the nadir iamge based VIs showed the absolutely best correlation to Lai and Cab for all 

plant layer aggregations. For LAI the VIs based on the -55° image was second best. For Cab the 

VIs based on +55° and +36° images showed higher correlation performance with Cab for the upper 

three plant layers than the VIs based on the nadir image. The VIs based on the -55° and -36° 

images showed mainly lower correlations with Cab for the different plant layers.

 5.3.4 Summary and discussion of  LAI and Cab estimation at
 regional scale

As on plant scale a typical distribution pattern of best correlating VIs with LAI and Cab could be 

identified on regional scale, too. For these regional datasets LAI measurements started at 28.06.06 

(second stage), due to the very low plant coverage at the first stage. 

Considering Cab the measured SPAD values of cotton leaves were averaged for different vertical 

plant layers and correlated with the reflection as acquired by the Proba-1/CHRIS sensor, to identify 

which plant layers with respective leaves have the maximum influence on the spectral reflection. 

At stage 2 the plant coverage within the field was still poor, resulting in a strong influence of the soil 

reflectance from the furrows on the overall  reflectance value gained.  The resulting reflectance 

situation at stage 2 was  similar to the one of the first stage at plant scale, with dominating soil 

spectra  while  the  reflectance  from  plants  was  poor  (compare  fig.  5.21b).  Consequently  the 

performance of the VIs to predict LAI was low, as most of the VIs were developed for situations 

with a reflectance influenced stronger by vegetation.

The estimation of LAI by VIs was best at stage 3. This may explain that the increased plant growth 

at this stage resulted in a plant canopy almost fully covering the furrows between the rows of the 

cotton plants. The now strong plant signal in combination with a relatively low variance of plant 

development within fields resulted in the best correlation of most VIs with LAI for this stage.

The quality of the relationship of LAI and VIs decreased slightly for stage 4. This may be caused by 

a higher variety of plant development within and between the different fields. But the grade of 

correlation was still relatively high.

The VIs showing the absolutely best correlation for predicting LAI are given for each stage in table 

5.8.

For predicting leaf chlorophyll content by VIs the SPAD-values that were measured at the cotton 

leaves were aggregated for different vertical plant layers to investigate whether different plant layer 

compositions  have  an  influence  on  the  performance  of  the  correlation  between  VIs  and  leaf 

chlorophyll of the respective plant layers. For each stage the combination of plant layers showing 

the best correlation of the coefficients of determination for estimating leaf chlorophyll content was 

identified in the referring chapter and is shown in table 5.8. 
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Stage 1 showed a poor performance of VIs except for CARI and REIP4. As on canopy scale, the 

only reasonable explanation for this low correlation may be the weak plant coverage at this stage.

The vertical plant layer aggregation of chlorophyll  data showing the best correlation with VIs at 

stage 2  was  the top-mid2  dataset,  representing the leaves of  the  three top  plant  layers.  The 

circular placement of the leaves around the stem resulted in an almost complete coverage of the 

lowest plant layer by the higher level ones. As the lower level leaves were mainly shaded by the 

higher  level  leaves,  the  reflection  of  these  lowest  level  leaves  contributed  only  in  a  minor 

percentage to the reflection of the whole plants.

At stage 3 the largest regional dataset was examined, as in addition to the investigation of plant 

stages also the influence of different acquisition angles was examined using 4 different CHRIS – 

images that were acquired under different view angles. The different view angles showed for each 

aggregation of plant layers a different correlation, but were similar to the nadir image. For most 

plant layers and VIs the nadir image provided the best fit. Overall the best correlation was shown 

for the top-mid1 plant layer aggregation. Maybe the layer structure of the plants was slightly higher 

due to the beginning flowering, and the influence of the lower layers was shaded. 

At stage 4 almost all VIs showed a very high performance, but the ones for the top-mid 2 plant 

layer dataset were the best. At this stage the plants started developing first bolls and the coverage 

was increased by flowers at the top plant layers, while at stage 3 most plants showed a blooming 

only at the lower plant levels. This overall best correlation of all VIs and also the absolute best VIs 

for predicting Cab at stage 4 may be used for predicting cotton yield, as the early flower stage was 

indicated as most appropriate for estimating yield by reflectance as shown elsewhere (Zhao, et al., 

2007).  The overview on the best fitting correlations with the representative VIs for each stage are 

given in table 5.8.
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Table 5.8: Best performing VIs for estimating LAI or Cab-content for each stage at regional scale 
Stage Dataset VI Equation R²

2 LAI REIP1 y = -0,003x + 0,7245 0,43
3 LAI NDVI y = 0,1439x + 0,3713 0,54
4 LAI SR705 y = 0,4573x + 1,8134 0,55
1 Cab (Top-Bottom) REIP4 y = 1,1026x + 0,6721 0,3
2 Cab (Top) NDVI y = 0,016x + 0,0255 0,36
3 Cab (Top-Mid1) DGVI1 y = 10,391x – 0,0507 0,48
4 Cab (Top-Mid2) CSI2 y = -28,751x + 1,271 0,62
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 5.3.5 Selection of the best performing VIs
The correlation of VIs with LAI or Cab  - content at regional scale revealed several VIs with higher 

prediction performance. However, for practical application it would be desirable to select only two 

VIs, one for LAI and one for Cab prediction, that can be implemented in research during following 

years and in other areas within Khorezm. Therefore, three criteria for selection of the two best 

performing VIs to predict LAI and Cab at regional scale, respectively, were set up: 

1) best VI prediction performance for a specific stage

2) most stable VI prediction performance over the last 3 stages; (the dataset from stage 2  

showed almost no correlation with the data collected on the other days. Thus, the validation 

of the predictions will be performed for the last three stages of the regional dataset)

3) already tested and proofed VIs with high performance for cotton as found by other authors

The selection of VIs based on criteria 1 was done by selecting the VI with the highest R²-value for 

for each dataset and time. These indices were given in the referring chapters and for an overview 

in table 5.8.

Considering criteria 2 there were a few indices that performed stable over time, as shown in the 

preceding chapters. But which of these were tested and proofed by other authors for cotton and 

hyperspectral or at least multispectral satellite data?

For predicting  LAI by a VI the NDVI was tested and proofed by Blenk 2005 (p.104) for cotton fields 

of Uzbekistan based on MODIS satellite data. For the time period from 28.06.04  to 19.08.06 she 

found the following equation based on a dataset containing 14 samples with R² = 0,89:

LAI=3,1506⋅NDVI−0,4055
For predicting LAI or Cab-content by a VI the MCARI1 was tested and proofed by diverse authors 

and for  varying crops.  Haboudane et  al.  (2004)  used the MCARI1 to  predict  the LAI  of  corn, 

soybean and wheat, so did He et al. (2006) for mixed grassland ecosystems and Moreno (2004) 

for  diverse crops.  Wamunyima (2005) tested the MCARI1 for  the estimation of  grass biomass 

production as one of the best correlating VIs and Zarco Tejada et al. (2005(2)) tested the MCARI1 

as one of the best VIs to predict the within field variability of Cab-content and the yield of cotton 

fields located in California, USA.

Therefore, considering all three criteria, NDVI and MCARI1, for LAI and Cab prediction for cotton at 

regional scale in Khorezm, respectively, was selected in this study. The corresponding equations 

and performances are shown in table 5.9.

These equations were then used for the regional estimation (and extrapolation) of LAI and Cab over 

the whole satellite image and the different stages. 
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 5.4  LAI and Cab prediction at regional scale
The spatial distributions of LAI and leaf chlorophyll were calculated based on previously selected 

VIs (NDVI for LAI and MCARI for Cab prediction, respectively) and are shown in the figures 5.33 

and  5.34.  For  orientation within  the images 1a and 2a a bright  blue zone is  highlighted as it 

streches in the middle of the image from NW to SE just south of the black box demarcating the 

area of interest. This zone is indicating a mainly sandy area with very little dry vegetation such as 

small bushes and few patches of sparsely distributed grasses. The sandy field as described in the 

atmospheric correction section can easily be identified at the western border of this zone in images 

1a and 2a. The blue signatures on some fields on the images 2 b are indicating harvested wheat 

fields where some little grass vegetation grows between the dried stubbles. Thus, these sandy and 

harvested wheat fields were correctly mapped by low LAI values. The dark blue signatures indicate 

an LAI of 0 and can be found for the large Shavat primary irrigation channel (winding from SE to 

NW within the northern part of the images 1a and 2a and in the southern part of image 3a. Some 

dark red fields in the images 1a and 2a in figure 5.33 seem to be rice or alfalfa fields with very high 

LAI values. 

LAI (figure 5.33)

In the images series 1b, 2b and 3b the 

increase of LAI with the time can easily 

be  observed  in  the  study  fields  that 

were demarcated by field boundaries in 

black signature. The spatial distribution 

of LAI within each field can clearly be 

detected  on  the  17x17m  pixel 

resolution  images.  Field  3  shows  a 

triangular-shaped bright  area with  low 

LAI in the middle of the field. This part 

is a levelled former irrigation canal, as 

shown in figure 5.32. The smaller Field 

4  shows  higher  LAI  values.  Field  1 

shows some bluish pixels at the north-
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Figure 5.32: 28.06.06: LAI prediction combined with Drainage and Irrigation 
canal system

Table 5.9: Equations for best correlating VIs for predicting LAI and Cab per given dataset and stage

R² R² R²
LAI = 1,1334*NDVI+0,6211 0,3265 LAI = 3,7433*NDVI-0,5102 0,5388 LAI = 6,6423*NDVI-1,5643 0,5069

0,2381 0,4524 0,4949

 Stage 2 Stage 3 Stage 4
Equation Equation Equation

Cab = 7,6245*MCARI1+31,953 Cab  = 25,603*MCARI1+19,224 Cab  = 24,556*MCARI1+22,749
Cab: Top – Mid 2 dataset Cab: Top – Mid 1 dataset Cab:Top – Mid 2 dataset
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eastern border as well as in the middle part indicating lower LAI values. These parts are areas with 

varying soil  quality,  maybe due salinisation caused by a relative depression,  due to a lack of 

irrigation water caused by a slightly higher area or due to a lack of fertilizer. Field 1 shows  also the 

lowest LAI values of all four study fields most likely due to the lowest soil quality (soil bonitet of 

approximately  45),  especially  in  the  southern  part  (2b and 3b).  Compared with  the measured 

distribution shown in  the figure  5.33 1c,  2c and 3c,  the overall  spatial  patterns and seasonal 

development of LAI are consistent. However, it becomes also evident that there is considerable 

spatial variability of LAI with spatial resolution, as indicated by higher variability patterns in the 

maps showing the measured LAI.  A slight  decrease of  LAI from stage 3 to 4 shown in these 

measured LAI maps may be caused by the impact of many flowers at stage 3 resulting in an 

overestimating of LAI, additional to the failure of the plant based LAI measurements. 

The validation of these LAI patterns is described in chapter 5.5. 

Cab (figure 5.34)

The spatial distribution of the calculated Cab-content at regional scale is displayed in the GIS-maps 

presented in figure 5.34. The spatial distribution pattern shown by overview images of the 1a, 2a 

and 3a are similar to the ones for LAI. The detailed scale maps of the b) series are depicting slight 

differences in the distribution pattern compared with the overview maps for LAI shown in figure 

5.33. The spatial distribution of different Cab -concentrations can be easier identified than in the LAI 

images, though the range of the Cab – values is with 11 µgcm-2 for the first image very narrow. The 

range is increasing with  time, but  the larger spatial  pattern is for  the cotton fields still  like the 

existing of  the first  stage as shown in the last image (3b),  which provides with  44 µgcm-2 the 

highest range. 

This is maybe due to the higher sensitivity of the MCARI1 on cotton compared with the NDVI. The 

high range of the NDVI is not only based on cotton, but on all fields covering the area. The NDVI 

extreme values  are for all dates not within the cotton field boundaries, but on other fields around. 

While the extreme values of the MCARI1 are both located within the cotton fields, at least for the 

first date. At the second point in time (image 2b) the lowest values are found on other fields, but 

the highest MCARI1 values are located in Field 3 and 4. At the last date, the extreme values are 

both not located in the surveyed cotton fields, but the distribution within the field boundaries is still 

represented at a high resolution. The difference of Cab – values between stage 3 and 4 may be 

caused by in field inhomogeneities and the fact that not every time the same plant were measured.

Compared with the measured Cab concentration shown by the small rectangles in the fields of the 

c)  –  series,  the  differences  are  existing,  but  the  represented  patterns  are  showing  a  good 

correlation.  The  quality  of  this  correlation  is  analysed  and  discussed  for  both,  LAI  and  Cab 

estimation in the validation chapter.
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Figure 5.33: Regional scale LAI prediction for stages 2 to 4 
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Figure 5.34: Regional scale Cab prediction for stages 2 to 4 (Cab content given in µg cm-2)
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 5.5 Validation of LAI and Cab prediction by VIs at regional 
scale

To validate a created regression model there are according to Netes et al (1996) three basic ways 

possible: 

1. Collection of new data to check the model and its predictive ability

2. Comparison of results with theoretical expectations, earlier empirical results and simulation 

results

3. Use of holdout sample to check the model and its predictive ability

The first method is out of question, because the collection of a similar dataset would have required 

waiting until the cotton will be fully grown again. The third method is not suitable, either because 

the population of each dataset was too small  to split  in advance. All  samples were needed to 

create a more profound prediction.

The second way was identified as best suiting for the datasets of this study. For validation a new 

dataset  containing the data of  all  stages for  each field  was created,  three fields  combined to 

calculate an equation to predict the LAI and Cab  -content for the remaining one. These equations, 

shown in table 5.10 were compared together with equations created for each of the last three dates 

(table  5.9) to identify one equation showing the best correlation for estimating LAI and one for 

predicting Cab-content by VIs for the whole regional scale dataset. The power of prediction of the 

datasets used for validation is shown in scatter plots in figures  to XX. 

For the LAI datasets table  5.10 shows a increasing performance of prediction for an increasing 

aggregation.  The datasets  created  by  aggregating  three  fields  over  three  stages  showed  the 

highest coefficients of determination (0,66 – 0,49). The LAI shows a continuous development over 

time.  If  the  plants  are  growing  they  develop  more  leaves  and  the  LAI  is  increasing.  Thus  a 

changing LAI is indicating at all  stages on the same behaviour, a increase or decrease of the 

amount of leaf area. Variations within each dataset are smoothed with an increasing population. 

Compared with the literature, the high variations of this dataset were most likely caused by the 

plant based LAI data collection (chapters 4.2.3 & 4.5.5.2) instead of square meter based as done 

e.g. by Blenk (2005). Due to the high variance within the different fields at each stage the use of 

one factor of correction per stage was not adequate for all fields, especially field two. Therefore the 

data aggregations of the different fields are showing altering coefficients of determination.  This 

occurrence has to be kept in mind while evaluating the results of the validation. For validating the 

prediction of LAI by NDVI the highest level of data aggregation is used as the NDVI was proofed 

exactly for this kind of datasets by Blenk (2005).
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Note: 1) Subscript figures in the equations indicate the respective field numbers.

For the Cab datasets table  5.10 is showing a completely different behaviour of the coefficients of 

determination. The highly aggregated datasets over the whole measurement cycle (stage 2 - 4) are 

showing a very poor correlation, while the aggregation of three fields at the same stage are almost 

all high performing with a maximum R²-value of 0,6. In contrast to LAI the cotton Cab-content is not 

developing in a linear manner. The within - plant distribution of leaf Cab-content of cotton is varying 

over time (chapter 2.1). As shown in the preceding chapters regarding the plant layer datasets, the 

leaf chlorophyll content of the different plant layers is changing over time within each plant. This 

change makes an data aggregation of different stages inadequate to create a stable prediction of 

Cab-content by VIs. Furthermore the MCARI1 was proofed by Zarco-Tejada et al. (2005 (2)) as very 

sensitive to identify within field variability of Cab. To predict and monitor this within - field variability 

of the cotton fields is the main objective of this thesis. Therefore its only consequent to use the 

datasets this prediction is created with at its best. Thus the validation was fulfilled with the lowest 

aggregated datasets which means for each stage separately. The equation calculated for three 

fields of the same stage is validated with the remaining field of each. This process is repeated for 

all three stages. The resulting equation for each stage can be used to predict the Cab – content of 
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Table 5.10: Coefficients of determination for different datasets at regional scale

R² R²

 1, 2, 3 0,5360 0,0040
 1, 3, 4 0,4963 0,0154
 2, 3, 4 0,6639 0,0004
1, 2, 4 0,5210 0,0008

3,4 0,6295 0,0456
1,2 0,6400 0,0115
1 0,6719 0,0006
2 0,2181 0,3147
3 0,6712 0,0651
4 0,6587 0,2377

Aggregations of different fields within one stage:

Stage 4

1, 2, 3 0,6790 0,5795
 1, 3, 4 0,1696 0,0717
2, 3, 4 0,5661 0,4468
1, 2, 4 0,5494 0,5449

Stage 3

1, 2, 3 0,5586 0,6028
1, 3, 4 0,3248 0,4050
2, 3, 4 0,5477 0,4922
1, 2, 4 0,5499 0,0978

Stage 2

1, 2, 3 0,0448 0,2113
1, 3, 4 0,3348 0,1957
2, 3, 4 0,3725 0,3036
1, 2, 4 0,5109 0,1874

Combination 
of stages

Combi-
nation of 

fields

Predicting LAI by NDVI using the 
dataset indicated in the first two 

columns 1)

Predicting Cab by MCARI1 using the 
dataset indicated in the first two 

columns 1)

All three 
stages 

together

LAI =4,7557*NDVI1-3 – 0,6071 Cab = 1,5338*MCARI11-3 + 30,773
LAI = 4,3602*NDVI1,3,4 – 0,417 Cab = -3,2971*MCARI11,3,4 + 33,111
LAI =3,2385*NDVI2-4 – 0,1074 Cab = 0,5034*MCARI12-4 + 30,888
LAI = 4,5386*NDVI1,2,4 – 0,5107 Cab = -0,7681*MCARI11-3 +31,076
LAI = 3,3486*NDVI3,4 – 0,1023 Cab = -4,7312*MCARI13,4+34,059
LAI = 6,9463*NDVI1,2 – 1,488 Cab = 2,8137*MCARI11,2 + 29,549

All stages of 
each field 
together

LAI = 6,3411*NDVI1 – 0,8711 Cab = 0,7*MCARI11+ 31,752
LAI = 1,2138*NDVI2 + 0,5881 Cab = -16,787*MCARI12+ 32,017
LAI = 3,4539*NDVI3 -0,1623 Cab = -4,8797*MCARI13 + 34,179
LAI = 3,3076*NDVI4 – 0,0865 Cab = -22,489*MCARI14 + 39,555

LAI = 8,585*NDVI1-3 – 2,4671 Cab = 27,266*MCARI1-3 + 21,823
LAI = 5,0739*NDVI1,3,4 – 0,3955 Cab = 9,5276*MCARI11,3,4 + 29,003
LAI = 3,6479*NDVI2-4 – 0,2775 Cab = 20,312*MCARI12-4 + 23,555
LAI = 7,1602*NDVI1,2,4 – 1,8327 Cab = 27,666*MCARI11,2,4 + 21,883
LAI = 3,785*NDVI1-3 – 0,5628 Cab = 28,812*MCARI1-3 + 18,302
LAI =3,0415*NDVI1,3,4 – 0,0239 Cab = 25,681*MCARI11,3,4 + 19,114
LAI = 3,6403*NDVI2-4 – 0,4224 Cab = 24,968*MCARI12-4 + 19,442
LAI =3,9581*NDVI1,2,4 – 0,6857 Cab =15,367*MCARI11,2,4 +22,48
LAI =0,3722*NDVI1-3 – 0,8035 Cab = 7,9096*MCARI1-3 + 31,916
LAI =1,4252*NDVI1,3,4 – 0,9043 Cab = 8,4631*MCARI11,3,4 + 31,756
LAI = 1,5978*NDVI2-4 – 0,4755 Cab = 7,5266*MCARI12-4 + 31,956
LAI = 1,6917*NDVI1,2,4 – 0,5238 Cab = 7,1368*MCARI11,2,4 + 32,046
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cotton plants at this growing stage by MCARI1 calculated based on Proba-1/CHRIS hyperspectral 

satellite nadir images.

Validation of LAI prediction by NDVI
Creation of equation to calculate LAI      Validation of this equation on remaining field
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Predicting LAI for f ield 1 calculated based on 
NDVI for f ield 1 w ith the equation calculated for f ields 2,3,4

y = 1,958x - 0,6609
R2 = 0,6719
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Figure 5.35: Validation of NDVI based prediction of LAI (part 1)
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The equations calculated for the different datasets to transfer NDVI to LAI (table  5.10) are quite 

similar. The factor of gradient is ranging from 4,7557 to 3,2385 and the offset factor from -0,1074 to 

-0,6071. The factors of the equation found by Blenk 2005 are completely within these range. The 

coefficients of determination given in table 5.11 are indicating the correlation of measured LAI and 

LAI calculated by NDVI using the referring equation shown in table 5.10. As result of the validation 

process the highest of  these R²-values are indicating the best performing equation. With R² = 

0,6719 the validation made on field 1 seems to be the best, but the R² of the validation represented 

by field 3 is with R²=0,6712 almost as high. To decide which one will be the result the coefficients 

of determination of the referring equations shown in table 5.10 are taken into account. With an R² 

of 0,6639 the power of prediction of the equation validated with field 1 is significantly higher than 

the R² of 0,521 of the equation used for the validation with field 3. Therefore the resulting equation 

to transfer NDVI into LAI for the datasets of this thesis is : 

LAI t 1
=3,2385∗NDVI t1

−0,1074

with t1 = from same dataset
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Table 5.11: Results of LAI validation per field over all stages at regional scale
Field Equation R²

1 0,6719
2 0,2181
3 0,6712
4 0,6587

LAIgem = 1,958*LAINDVI + 0,6609
LAIgem = 0,2784*LAINDVI + 0,7042
LAIgem = 0,761*LAINDVI + 0,2263
LAIgem = 0,6955*LAINDVI + 0,3357

Figure 5.36: Validation pf NDVI based prediction of LAI (part 2)
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Validation of Cab prediction by MCARI1 at stage 4

Creation of equation to calculate Cab      Validation of this equation on remaining field
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Relationship of Cab and 
MCARI1 from f ields 1,2,4; stage 4
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Validation of Cab prediction by MCARI1 at stage 3
Creation of equation to calculate Cab      Validation of this equation on remaining field
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Relationship of Cab and 
MCARI1 from fields 1,2,3; stage 4
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Predicting Cab for stage 3 field 1 using 
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Validation of Cab prediction by MCARI1 at stage 2
Creation of equation to calculate Cab      Validation of this equation on remaining field
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Relationship of Cab and 
MCARI1 from fields 1,2,4; stage 3
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Relationship of Cab and 
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Predicting Cab for stage 3 field 4 using 
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Predicting Cab for stage 2 field 1 using 
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Relationship of Cab and 
MCARI1 from f ields 1,3,4; stage 2
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Predicting Cab for stage 2 f ield 4 using 
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The results of the validation of equations to transform MCARI1 into Cab-content are not as definitely 

as for LAI. One reason is for sure the small population of the datasets used for validation. Another 

reason may be the inaccuracy of +/- 3 units of the Minolta SPAD-502. If this inaccuracy is taken 

into account most coefficients of determination will increase significantly. Sripada et al. (2005) and 

Scharf & Lory (2002) are suggesting the use of relative instead of absolute values to achieve a 

more reliable indicator of N-status   calculated from data derived from aerial imagery. Maybe this 

step would be able to increase the performance of the datasets, but this has to be topic of another 

thesis. The coefficients of determination are indicating for each stage the best performing equation. 

This is the one with the highest R²-values as shown in table 5.12. The corresponding equations are 

shown in table  5.10. The equations to transfer MCARI1 into Cab-content for cotton for each date 

are:

28.06.06: Cabt1

=7,1368⋅MCARI1t1
32,046

16.07.06: Cabt1

=25,681⋅MCARI1t1
19,114

02.08.06: Cabt1

=27,666⋅MCARI1t 1
21,883

With t1 = from same dataset
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Stage Field Equation R²

4

1 0,0409
2 0,0996
3 0,3044
4 0,0958

3

1 0,2589
2 0,4485
3 0,3695
4 0,1825

2

1 0,0742
2 0,0127
3 0,3817
4 0,00005

Cab = 18,012*MCARI1 – 392,37
Cab = 1,4368*MCARI1 – 17,41
Cab = 0,3357*MCARI1 + 20,454
Cab = -0,3559*MCARI1 + 44,16
Cab = 2,2419*MCARI1 – 34,137
Cab = 1,7029*MCARI1 – 18,287
Cab = 1,9441*MCARI1 -26,079 
Cab = -0,6675*MCARI1 + 47,637
Cab = 2,1608*MCARI1 – 38,187
Cab = -0,8704*MCARI1 + 60,269
Cab = 3,0853*MCARI1 - 70,813 
Cab = 0,0289*MCARI1 + 33,13 
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6. Conclusions and Outlook
For improving crop growth and supporting targeted fertilizer application in Uzbekistan, To estimate 

LAI and Cab (indicator for crop growth and leaf nitrogen content, respectively) were estimated in 

cotton leaves of the Khorezm-127 variety by spectral vegetation indices in a site  the need of N-

fertilizer application on cotton fields  in  Uzbekistan  the Khorezm region  by remote sensing, this 

study investigated  at three different spatial scales (leaf, plant and region), and at four temporal 

stages during the growing season in 2006. The respective data were collected by a Minolta SPAD-

502 (SPAD) chlorophyll meter, a LICOR 2000 LAI – meter and an ASD field spectrometer as well 

as by hyperspectral Proba-1/CHRIS images of different view angles 

At leaf scale laboratory determined Cab - concentration was used to calibrate the SPAD by linking 

the laboratory results to the SPAD measured at the same leaf. Thereby a regression equation was 

developed and used to predict  from SPAD values cotton leaf  chlorophyll  content  at  plant  and 

regional scale.

At  plant scale the SPAD, LAI and reflectance was measured on Fertilizer  Trial  Plots with  four 

different  levels  of  nitrogen  application  during  four  temporal  stages.  The  collected  data  were 

aggregated according to plant and fertilizer  application rates.  The overall  dataset showed very 

weak correlations for almost all VIs. The datasets aggregated by fertilizer application rate (N-Level) 

showed a high variability within each plot, but some VIs correlated well with LAI or Cab at some 

stages and Nitrogen Levels. However, no VI showed a good correlation for all fertilizer stages.

At regional scale LAI and SPAD were measured on cotton plants on four farmer managed fields 

during three temporal  stages when Proba-1/CHRIS multiangular  hyperspectral  satellite  images 

covering all four fields were acquired. The LAI values were aggregated for all fields and all stages 

and  showed  with  an  increasing  data  aggregation  an  as  well  increasing  correlation  with  VIs, 

especially  with  the  NDVI  calculated  based  on  the  nadir  images.  The  SPAD  values  were 

aggregated according to vertical plant layers, and the ability of VIs from satellite images to predict 

the Cab content of different combinations of plant layers was tested. As for LAI the nadir image 

showed the best correlations for estimating Cab by VIs. As a result one plant layer combination was 

identified for each stage which proofed the best correlation for predicting Cab by VIs. Some VIs 

showed a stable correlation performance for these datasets, but as best the MCARI1 was identified 

and validated. For validation a regression equation was created that predicts Cab by MCARI1 for 

three fields and for each stage and afterwards the equation was used to predict the Cab content of 

the  fourth  field  of  the  same  stage.  The  prediction  was  then  validated  with  the  respective 

measurements on the ground. The same procedure was done for LAI and the NDVI, but with a 

dataset combining all measurements of the seasons together. 

As a result  one equation was created to  predict  LAI  by NDVI at  any of  the three stages.  To 
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calculate the Cab content by MCARI1, equations for each stage another equation were developed, 

as the distribution of Cab within the cotton plant is changing over time in a non-linear way. 

The results of plant and regional scale were incommensurable due to the different plant growth and 

the  large  heterogeneity  of  LAI  and  Cab within  the  fertilizer  trial  plots.  To  create  a  more 

homogeneous sample population the plots and thus the number of  samples per plot were too 

small.  For  further  investigations  larger  plots  are  recommended  with  may  lead  together  with 

homogeneous water and fertilizer management to more homogeneous plant development within 

each plot. Further improvements are to aggregate the SPAD values by N-Level and plant layer. For 

this the best suitable plant layers as found at regional scale in this study may be used.

For improved atmospheric corrections the reflectance measurements of a bare soil field should be 

repeated during each satellite  overpass, if  possible.  To validate the results of  the atmospheric 

correction process reflection data of few big fields, if possible cotton fields, should be measured at 

a standardized measurement height of around 2m above ground at each satellite overpass. 

The LAI and SPAD values collected on the fields should not be acquired following an X-shaped 

path, but a dense regular grid to ease the interpolation of the measured values. LAI should be 

measured per square meter and not per plant, Cab averaged at plant layers, as it was done for this 

study.

For integrating this research further into agricultural practice, the next step will be to identify critical 

chlorophyll  values,  in order  to  identify possible nutrient  deficiencies.  The Cab distribution map 

combined with a very detailed soil bonitet map may be helpful for improving the fertilizer application 

recommendations for the specific season and field. 

To cover whole region the findings may be upscaled to the 300 by 300m pixel of MERIS satellite 

data. In combination with a successful landuse classification and similar studies for other crops, 

fertiliser recommendations may be given per crop and field for whole regions at different stages 

during the season. The VIs used for this study have some big advantages, as they are relatively 

easy to calculate, thus they are directly applicable, but the comparison with the results of radiation 

transfer  models would  be very  interesting  to  evaluate the quality  of  the VIs  identified  as best 

correlating in this thesis.
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Table 8.1: Input data for atmospheric correction process ATCOR for all Proba-1/CHRIS images

Date
20.06.06 -55 53,08 195,45 21 23
20.06.06 -36 33,81 197,2 21 23
20.06.06 0 4,7 218,24 21 23
20.06.06 36 28,46 7,74 21 23
20.06.06 55 50,3 10,4 21 23
28.06.06 -55 52,26 184 22 21
28.06.06 -36 33,69 176,34 22 21
28.06.06 0 10,89 139,12 22 21
28.06.06 36 29,02 27,81 22 21
28.06.06 55 49,57 20,24 22 21
07.07.06 -55 51,52 191,83 23 41
07.07.06 -36 32,34 190,62 23 26
07.07.06 0 3,91 170,34 23 21
07.07.06 36 26,73 15,46 23 26
07.07.06 55 48,16 13,86 23 41
16.07.06 -55 51,9 199,01 24 41
16.07.06 -36 32,96 203,2 24 41
16.07.06 0 8,01 224,29 24 21
16.07.06 36 27,44 359,54 24 41
16.07.06 55 48,31 6,77 24 41
02.08.06 -55 53,71 195,34 27 41
02.08.06 -36 34,05 197,03 27 41
02.08.06 0 4,46 218,43 27 21
02.08.06 36 28,56 7,99 27 41
02.08.06 55 50,05 10,51 27

View angle 
nominal 
[degree]

Observation 
zenith angle 

[degree]

Observation 
azimuth angle 

[degree]

Solar zenith 
angle 

[degree]
Visibility 

[Km]

n.a.
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Table 8.2: Statistics for Leaf Scale computed for VIs  and Cab

Max CV R²
NDVI 0,64 0,85 0,21 0,73 0,06 7,94 0,4366
RVI 4,52 12,5 7,98 6,8 1,95 28,72 0,4828
SAVI 0,51 0,65 0,14 0,57 0,04 6,49 0,4148
SAVI2 3,41 6,69 3,28 4,54 0,82 17,99 0,4741
MSAVI 0,51 0,7 0,19 0,59 0,05 8,3 0,4402
OSAVI 0,58 0,75 0,18 0,66 0,05 7,16 0,4368
TSAVI 0,59 0,83 0,24 0,7 0,07 9,47 0,4382
ATSAVI -0,24 -0,14 0,11 -0,2 0,03 -14,74 0,4339
RDVI 0,48 0,61 0,13 0,54 0,03 6,45 0,4127
TVI 22,7 29,24 6,55 26,37 1,78 6,77 0,3201
MTVI1 0,57 0,75 0,18 0,67 0,05 6,97 0,3433
MTVI2 0,51 0,79 0,27 0,63 0,07 10,45 0,5179
CARI 0,25 0,42 0,17 0,33 0,05 14,48 0,9160
TCARI 0,13 0,25 0,11 0,19 0,03 15,35 0,4134
MCARI 0,04 0,08 0,04 0,06 0,01 15,33 0,4116
MCARI1 0,57 0,75 0,18 0,67 0,05 6,97 0,3425
MCARI2 0,51 0,78 0,27 0,63 0,07 10,44 0,5169
MTCI 1,39 2,58 1,19 1,85 0,3 16,12 0,3697
LCI 0,3 0,44 0,14 0,36 0,03 8,48 0,0251
SR705 2,63 4,27 1,64 3,34 0,38 11,31 0,0308
mND705 0,62 0,79 0,18 0,68 0,04 6,44 0,1395
GI 0,34 0,71 0,37 0,55 0,09 15,94 0,5877
PRI -0,07 -0,01 0,05 -0,04 0,01 -30,86 0,3183
REIP 0,72 0,72 0 0,72 0 0,15 0,4330
REIP 0,7 0,72 0,01 0,71 0,01 0,75 0,2854
DGVI1 0,35 0,43 0,08 0,4 0,02 6,25 0,2699
DGVI2 0,01 0,01 0 0,01 0 8,01 0,0668
NDNI 0,14 0,19 0,05 0,18 0,01 7,31 0,0024
NDLI 0,05 0,07 0,02 0,05 0 9,06 0,0247
CAI -0,01 0 0,01 -0,01 0 -36,06 0,5046
CAI2 -0,37 -0,18 0,19 -0,28 0,05 -15,99 0,2917
CSI2 0,23 0,38 0,15 0,3 0,03 11,18 0,0439
NDWI_MIR 0,53 0,66 0,14 0,58 0,03 5,16 0,0232
MSI 0,45 0,6 0,15 0,55 0,04 6,82 0,5301
LWVI1 0,01 0,03 0,02 0,02 0 22,73 0,6384
LWVI2 0,03 0,08 0,04 0,05 0,01 18 0,5483
DWSI5 1,57 1,94 0,37 1,69 0,09 5,06 0,0784
SWIRVI 1,66 2,54 0,88 2,09 0,23 10,99 0,3519
SWIRLI 0,11 0,41 0,3 0,25 0,09 34,47 0,1797
SWIRSI -1,03 -0,32 0,71 -0,68 0,19 -27,52 0,4303
LAI 1 2,48 3,73 1,25 3,02 0,34 11,22 0,4366
LAI 2 2,99 4,69 1,7 3,62 0,45 12,32 0,4616
LAI 3 1,57 3,61 2,04 2,15 0,5 23,17 0,4828
LAI 4 2,22 2,96 0,74 2,6 0,22 8,45 0,3968
LAI 5 0,83 4,62 3,79 1,91 0,93 48,59 0,4828
LAI 6 0,98 3,58 2,59 1,72 0,63 36,85 0,4828
LAI 7 1,46 3,93 2,48 2,27 0,56 24,88 0,5260
LAI 8 1,62 3,63 2,02 2,42 0,5 20,43 0,4305
LAI 9 5,79 13,3 7,51 8,5 1,8 21,13 0,4561
LAI 10 2,47 4,97 2,5 3,63 0,65 17,8 0,3918

3,65 3,86 0,21 3,76 0,05 1,44 0,4331
9,55 26,82 17,28 16,24 4,44 27,34 0,1440

Total: 20 
Leaves Min Range Mean StdV

Ca+b
Ca+b
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Table 8.3: Statistics for plant scale dataset for VIs and LAI / Cab Stage 1 (20.06.06) 

Total: 134 Max STDV CV R² LAI
NDVI 0,28 0,77 0,48 0,58 0,08 14,48 0,00005 0,00120
RVI 1,79 7,51 5,72 3,93 1,05 26,75 0,00007 0,00001
SAVI 0,17 0,6 0,43 0,42 0,07 17,42 0,00003 0,00020
SAVI2 1,4 4,73 3,33 2,86 0,6 21,02 0,00001 0,00020
MSAVI 0,15 0,62 0,47 0,41 0,08 20,25 0,00005 0,00010
OSAVI 0,22 0,67 0,45 0,5 0,08 15,25 0,00000 0,00040
TSAVI 0,11 0,73 0,62 0,51 0,1 20,03 0,00006 0,00110
ATSAVI -0,42 -0,18 0,24 -0,28 0,04 -15,24 0,00002 0,00090
RDVI 0,16 0,57 0,4 0,4 0,07 17,26 0,00002 0,00050
TVI 4,85 28,82 23,97 17,2 4,41 25,64 0,00200 0,00005
MTVI1 0,11 0,73 0,62 0,44 0,11 26,22 0,00220 0,00010
MTVI2 0,1 0,64 0,54 0,4 0,1 24,64 0,00220 0,00000
CARI 0,01 0,39 0,38 0,19 0,07 38,75 0,00020 0,00130
TCARI 0,04 0,25 0,21 0,14 0,04 29,75 0,09620 0,00700
MCARI 0,01 0,08 0,07 0,05 0,01 29,83 0,09570 0,00700
MCARI1 0,11 0,73 0,62 0,44 0,11 26,27 0,00220 0,00010
MCARI2 0,1 0,64 0,54 0,39 0,1 24,69 0,00210 0,00000
MTCI 1,14 2,31 1,16 1,72 0,26 15,13 0,35180 0,04990
LCI 0,15 0,4 0,25 0,29 0,04 14,64 0,09250 0,02210
SR705 1,47 3,54 2,07 2,42 0,37 15,2 0,04010 0,01080
mND705 0,3 0,7 0,4 0,55 0,06 11,12 0,11700 0,02270
GI 0,52 1,16 0,64 0,8 0,1 13,19 0,02020 0,01310
PRI -0,12 -0,03 0,08 -0,06 0,02 -24,4 0,10930 0,00960
REIP 0,71 0,72 0,01 0,72 0 0,17 0,33340 0,04590
REIP 0,7 0,72 0,02 0,72 0,01 0,8 0,11610 0,00050
DGVI1 0,09 0,45 0,36 0,27 0,06 24,06 0,00040 0,00020
DGVI2 0 0,01 0,01 0,01 0 25,11 0,00010 0,00120
NDNI 0,05 0,2 0,15 0,13 0,03 21,79 0,00010 0,00030
NDLI 0,02 0,06 0,05 0,04 0,01 21,77 0,02280 0,02280
CAI -0,01 0,01 0,02 -0,01 0 -31,76 0,00760 0,03460
CAI2 -0,35 -0,04 0,31 -0,17 0,06 -36,46 0,00005 0,00280
CSI2 0,28 0,68 0,4 0,42 0,06 15,31 0,03460 0,01180
NDWI_MIR 0,21 0,68 0,46 0,49 0,08 16,94 0,01530 0,00250
MSI 0,45 0,79 0,34 0,57 0,06 10,22 0,00750 0,00001
LWVI1 0,02 0,03 0,01 0,02 0 12,18 0,00270 0,02720
LWVI2 0,03 0,08 0,05 0,06 0,01 22,61 0,01970 0,00050
DWSI5 1,09 1,95 0,86 1,52 0,15 9,71 0,00020 0,00070
SWIRVI 0,57 2,17 1,6 1,39 0,35 25,47 0,00920 0,00050
SWIRLI -0,29 0,33 0,62 0,03 0,13 420,08 0,02680 0,00030
SWIRSI -0,72 0,58 1,3 -0,08 0,27 -331,16 0,00360 0,00080
LAI 1 0,41 3,22 2,81 2,12 0,49 23,01 0,00005 0,00120
LAI 2 1,7 3,86 2,16 2,71 0,4 14,81 0,00001 0,00050
LAI 3 0,87 2,33 1,46 1,42 0,27 18,72 0,00003 0,00020
LAI 4 0,83 2,75 1,91 1,97 0,34 17,24 0,00004 0,00100
LAI 5 -0,47 2,25 2,72 0,54 0,5 92,33 0,00000 0,00040
LAI 6 0,09 1,95 1,86 0,79 0,34 43,41 0,00000 0,00040
LAI 7 0,32 2,32 1,99 1,01 0,38 37,63 0,00330 0,02060
LAI 8 0,25 2,79 2,54 1,08 0,46 42,55 0,00010 0,02460
LAI 9 1,25 9,35 8,1 4,02 1,48 36,84 0,00020 0,00030
LAI 10 1,85 4,61 2,76 3,34 0,63 18,96 0,34630 0,04980

3,56 3,83 0,27 3,73 0,06 1,59 0,33340 0,04590
2,43 34,77 32,33 19,45 6,57 33,78 0,14320 0,01890

Min Range Mean R² Cab

Ca+b
Ca+b
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Table 8.4: Statistics for plant scale dataset for VIs and LAI / Cab  Stage 2 (28.06.06)

b)

Total: 140 Max CV R² LAI
NDVI 0,46 0,84 0,37 0,68 0,08 11,39 0,0426 0,2232
RVI 2,73 11,36 8,64 5,59 1,78 31,89 0,0236 0,2483
SAVI 0,28 0,64 0,36 0,5 0,06 12,82 0,0395 0,1831
SAVI2 1,99 5,81 3,82 3,76 0,82 21,75 0,0329 0,2573
MSAVI 0,25 0,68 0,43 0,5 0,08 15,44 0,0374 0,1913
OSAVI 0,36 0,73 0,36 0,59 0,07 11,42 0,0472 0,2279
TSAVI 0,35 0,82 0,47 0,63 0,09 14,35 0,0461 0,2272
ATSAVI -0,33 -0,15 0,18 -0,23 0,04 -16,94 0,0443 0,2292
RDVI 0,27 0,6 0,34 0,47 0,06 12,73 0,0383 0,1835
TVI 9,19 31,73 22,54 21,24 4,07 19,14 0,0192 0,0923
MTVI1 0,23 0,81 0,58 0,54 0,1 19,35 0,0183 0,0907
MTVI2 0,21 0,73 0,52 0,51 0,09 18,49 0,0324 0,1879
CARI -0,02 0,39 0,41 0,2 0,09 43,72 0,0063 0,0009
TCARI 0,08 0,25 0,17 0,17 0,03 20,22 0,0095 0,0247
MCARI 0,03 0,08 0,06 0,05 0,01 20,24 0,0097 0,0247
MCARI1 0,23 0,81 0,58 0,54 0,1 19,37 0,0184 0,0911
MCARI2 0,21 0,73 0,52 0,51 0,09 18,52 0,0326 0,1882
MTCI 1,3 2,19 0,88 1,72 0,15 8,96 0,0105 0,1414
LCI 0,23 0,44 0,22 0,33 0,04 11,1 0,0447 0,2943
SR705 1,92 4,21 2,29 2,87 0,42 14,63 0,0329 0,2763
mND705 0,43 0,69 0,25 0,6 0,04 6,38 0,0303 0,2145
GI 0,43 0,98 0,55 0,66 0,1 15,73 0,0260 0,1870
PRI -0,12 -0,03 0,09 -0,06 0,02 -25,33 0,0126 0,0205
REIP 0,71 0,72 0 0,72 0 0,09 0,0095 0,1307
REIP 0,7 0,72 0,01 0,72 0 0,36 0,0177 0,0565
DGVI1 0,15 0,48 0,33 0,33 0,06 18,23 0,0211 0,0962
DGVI2 0 0,01 0,01 0,01 0 19,4 0,0138 0,0747
NDNI 0,08 0,21 0,13 0,16 0,02 15,42 0,0007 0,0477
NDLI 0,02 0,06 0,04 0,04 0,01 14,9 0,0228 0,0228
CAI -0,01 0 0,01 -0,01 0 -24 0,0061 0,0358
CAI2 -0,36 -0,08 0,28 -0,23 0,05 -21,61 0,0002 0,0939
CSI2 0,24 0,52 0,28 0,36 0,05 14,24 0,0456 0,2538
NDWI_MIR 0,29 0,69 0,39 0,56 0,06 9,76 0,0199 0,1917
MSI 0,42 0,73 0,31 0,52 0,04 8,4 0,0575 0,2699
LWVI1 0,02 0,04 0,02 0,03 0 15,39 0,0520 0,2426
LWVI2 0,02 0,09 0,07 0,06 0,01 18,9 0,0788 0,2397
DWSI5 1,2 2,11 0,91 1,7 0,15 8,96 0,0396 0,3003
SWIRVI 0,76 2,55 1,78 1,66 0,31 18,45 0,0008 0,0147
SWIRLI -0,21 0,45 0,66 0,14 0,11 77,4 0,0027 0,0244
SWIRSI -0,99 0,39 1,38 -0,28 0,24 -87,26 0,0002 0,0102
LAI 1 1,46 3,65 2,19 2,7 0,45 16,65 0,0426 0,2232
LAI 2 2,21 4,54 2,34 3,27 0,5 15,37 0,0337 0,2372
LAI 3 1,11 3,32 2,2 1,84 0,45 24,69 0,0236 0,2483
LAI 4 1,51 2,95 1,44 2,38 0,31 13,14 0,0443 0,2150
LAI 5 -0,02 4,08 4,1 1,33 0,85 63,48 0,0236 0,2483
LAI 6 0,4 3,21 2,81 1,33 0,58 43,59 0,0236 0,2483
LAI 7 0,49 3,21 2,73 1,52 0,53 34,88 0,0206 0,0206
LAI 8 0,46 3,46 3 1,67 0,6 36,1 0,0246 0,0246
LAI 9 1,94 12,04 10,1 5,96 1,99 33,33 0,0249 0,1999
LAI 10 2,24 4,33 2,09 3,27 0,36 11,04 0,0071 0,1288

3,62 3,81 0,2 3,73 0,03 0,9 0,0095 0,1306
6,96 29,79 22,84 18,06 4,99 27,62 0,0003 0,0139

Min Range Mean StdV R² Cab

Ca+b
Ca+b
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Table 8.5: Statistics for plant scale dataset for VIs and LAI / Cab  Stage 3 (16.07.06)

Total: 128 Max CV R² LAI
NDVI 0,54 0,91 0,368 0,750 0,060 8,03 0,0388 0,11410
RVI 3,37 21,24 17,867 7,568 2,589 34,21 0,0112 0,08160
SAVI 0,39 0,7 0,309 0,567 0,060 10,54 0,0731 0,17060
SAVI2 2,56 8,83 6,261 4,723 0,945 20,01 0,0337 0,14950
MSAVI 0,38 0,79 0,410 0,584 0,075 12,88 0,0696 0,17360
OSAVI 0,47 0,81 0,342 0,661 0,057 8,56 0,0671 0,17070
TSAVI 0,47 0,9 0,431 0,718 0,070 9,76 0,0443 0,12190
ATSAVI -0,29 -0,11 0,188 -0,188 0,030 -16,08 0,0492 0,13900
RDVI 0,37 0,67 0,298 0,536 0,056 10,51 0,0721 0,16950
TVI 15,17 35,52 20,350 24,503 4,121 16,82 0,0487 0,11150
MTVI1 0,39 0,91 0,516 0,623 0,105 16,87 0,0444 0,10410
MTVI2 0,37 0,87 0,502 0,602 0,089 14,83 0,0478 0,13870
CARI -0,2 0,34 0,539 0,127 0,105 82,36 0,0045 0,00180
TCARI 0,11 0,27 0,156 0,184 0,032 17,43 0,0028 0,00080
MCARI 0,04 0,09 0,052 0,061 0,011 17,43 0,0027 0,00080
MCARI1 0,39 0,91 0,516 0,622 0,105 16,87 0,0446 0,10450
MCARI2 0,37 0,87 0,502 0,602 0,089 14,83 0,0480 0,13920
MTCI 1,31 2,42 1,104 1,741 0,243 13,96 0,2430 0,20710
LCI 0,24 0,47 0,225 0,366 0,040 10,99 0,1890 0,24310
SR705 2,13 4,74 2,603 3,224 0,460 14,27 0,1038 0,19980
mND705 0,49 0,71 0,215 0,614 0,043 7,01 0,1822 0,18780
GI 0,28 0,83 0,547 0,587 0,095 16,28 0,0045 0,03140
PRI -0,15 -0,04 0,107 -0,080 0,018 -22,53 0,0264 0,00060
REIP 0,72 0,72 0,005 0,717 0,001 0,14 0,2548 0,19610
REIP 0,7 0,72 0,014 0,717 0,003 0,49 0,1896 0,05740
DGVI1 0,23 0,54 0,310 0,378 0,062 16,43 0,0578 0,12720
DGVI2 0,01 0,01 0,007 0,008 0,001 17,71 0,0447 0,11090
NDNI 0,12 0,22 0,104 0,164 0,021 12,63 0,0431 0,09950
NDLI 0,03 0,05 0,024 0,043 0,004 10,05 0,0228 0,02280
CAI -0,01 0 0,006 -0,005 0,001 -23,27 0,0145 0,02090
CAI2 -0,38 -0,16 0,220 -0,271 0,043 -15,78 0,0273 0,10620
CSI2 0,21 0,47 0,258 0,316 0,044 13,99 0,1399 0,19900
NDWI_MIR 0,49 0,74 0,257 0,626 0,043 6,9 0,0901 0,18440
MSI 0,34 0,57 0,231 0,459 0,038 8,16 0,1038 0,21140
LWVI1 0,02 0,05 0,026 0,031 0,005 14,47 0,1200 0,11500
LWVI2 0,05 0,11 0,066 0,074 0,011 15,56 0,0596 0,09060
DWSI5 1,48 2,4 0,918 1,899 0,150 7,89 0,0667 0,17670
SWIRVI 1,18 2,47 1,288 1,786 0,275 15,4 0,0117 0,04290
SWIRLI -0,01 0,42 0,432 0,193 0,096 49,84 0,0101 0,04370
SWIRSI -0,94 0,12 1,055 -0,374 0,222 -59,46 0,0123 0,04180
LAI 1 1,92 4,07 2,146 3,134 0,352 11,23 0,0388 0,11410
LAI 2 2,51 5,4 2,884 3,786 0,482 12,74 0,0273 0,10850
LAI 3 1,28 5,84 4,561 2,348 0,661 28,15 0,0112 0,08160
LAI 4 1,83 2,96 1,133 2,663 0,214 8,04 0,0513 0,10630
LAI 5 0,28 8,77 8,487 2,274 1,230 54,08 0,0112 0,08160
LAI 6 0,61 6,42 5,807 1,972 0,841 42,66 0,0112 0,08160
LAI 7 0,86 5,36 4,500 2,121 0,691 32,56 0,0206 0,02060
LAI 8 0,84 5,04 4,194 2,414 0,774 32,07 0,0246 0,02460
LAI 9 3,29 19,03 15,738 8,452 2,629 31,1 0,05 0,17900
LAI 10 2,31 4,87 2,560 3,313 0,562 16,97 0,24 0,20130

3,63 3,85 0,225 3,730 0,051 1,38 0,25 0,19620
8,21 37,45 29,246 18,290 4,926 26,94 0,04 0,03640

Min Range Mean StdV R² Cab

Ca+b
Ca+b
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Table 8.6: Statistics for plant scale dataset for VIs and LAI / Cab  Stage 4 (02.08.06)

Total: 144 Max CV R² LAI
NDVI 0,53 0,96 0,430 0,770 0,078 10,13 0,0048 0,11410
RVI 3,23 45,72 42,492 9,433 6,469 68,57 0,0026 0,00320
SAVI 0,41 0,75 0,339 0,614 0,059 9,56 0,0010 0,04290
SAVI2 2,57 11,4 8,831 5,377 1,503 27,96 0,0030 0,01270
MSAVI 0,4 0,86 0,455 0,643 0,077 11,97 0,0023 0,03850
OSAVI 0,47 0,85 0,375 0,696 0,063 9,1 0,0034 0,02040
TSAVI 0,46 0,95 0,494 0,743 0,088 11,82 0,0049 0,00540
ATSAVI -0,3 -0,08 0,218 -0,175 0,038 -21,81 0,0043 0,00790
RDVI 0,39 0,73 0,341 0,582 0,057 9,76 0,0006 0,04500
TVI 17,3 42,57 25,271 27,472 4,256 15,49 0,0005 0,04890
MTVI1 0,44 1,09 0,649 0,701 0,109 15,58 0,0006 0,05100
MTVI2 0,38 0,94 0,569 0,658 0,099 15,12 0,0088 0,03090
CARI -0,82 0,39 1,212 0,010 0,180 1877 0,0217 0,01460
TCARI 0,03 0,31 0,274 0,191 0,042 22,03 0,0253 0,00160
MCARI 0,01 0,1 0,093 0,063 0,014 22,22 0,0244 0,00160
MCARI1 0,44 1,09 0,649 0,700 0,109 15,57 0,0006 0,05100
MCARI2 0,37 0,95 0,572 0,658 0,099 15,13 0,0088 0,03080
MTCI 1,18 2,76 1,577 1,813 0,314 17,29 0,1192 0,06420
LCI 0,27 0,51 0,237 0,385 0,051 13,36 0,0462 0,04450
SR705 2,13 5,62 3,491 3,356 0,667 19,87 0,0133 0,02340
mND705 0,43 0,73 0,300 0,611 0,057 9,35 0,0451 0,02730
GI 0,21 0,93 0,720 0,601 0,140 23,32 0,0300 0,00330
PRI -0,18 -0,04 0,146 -0,075 0,025 -33,57 0,0610 0,00920
REIP 0,71 0,72 0,007 0,718 0,001 0,19 0,1436 0,07650
REIP 0,7 0,72 0,019 0,717 0,003 0,48 0,0837 0,03560
DGVI1 0,28 0,65 0,377 0,429 0,064 14,96 0,0000 0,05090
DGVI2 0,01 0,01 0,009 0,009 0,002 16,94 0,0005 0,03500
NDNI 0,13 0,22 0,097 0,167 0,020 12,17 0,0023 0,03280
NDLI 0,04 0,06 0,026 0,049 0,005 10,67 0,0228 0,02280
CAI -0,01 0 0,008 -0,005 0,002 -32,29 0,0046 0,04310
CAI2 -0,38 -0,15 0,229 -0,287 0,053 -18,33 0,0042 0,01580
CSI2 0,18 0,47 0,292 0,309 0,057 18,51 0,0108 0,02610
NDWI_MIR 0,53 0,8 0,275 0,681 0,045 6,65 0,0082 0,12770
MSI 0,28 0,5 0,225 0,399 0,043 10,81 0,0156 0,15800
LWVI1 0,03 0,07 0,041 0,041 0,008 18,36 0,0301 0,10810
LWVI2 0,08 0,18 0,108 0,118 0,019 16,05 0,0285 0,13510
DWSI5 1,67 3,21 1,549 2,135 0,251 11,75 0,0000 0,09850
SWIRVI 1,03 2,5 1,467 1,768 0,275 15,58 0,0081 0,00380
SWIRLI -0,08 0,45 0,531 0,182 0,098 53,92 0,0087 0,00760
SWIRSI -0,94 0,21 1,153 -0,365 0,222 -60,72 0,0075 0,00220
LAI 1 1,83 4,34 2,510 3,248 0,455 14,02 0,0048 0,00430
LAI 2 2,45 6,09 3,635 3,984 0,693 17,4 0,0049 0,00470
LAI 3 1,24 12,09 10,848 2,824 1,651 58,47 0,0026 0,00320
LAI 4 0,27 2,96 2,692 2,633 0,375 14,25 0,0014 0,00003
LAI 5 0,21 20,4 20,184 3,160 3,073 97,24 0,0026 0,00320
LAI 6 0,56 14,37 13,810 2,578 2,102 81,54 0,0026 0,00320
LAI 7 0,88 7,04 6,165 2,642 1,076 40,73 0,0206 0,02060
LAI 8 0,95 7,34 6,388 3,202 1,128 35,24 0,0246 0,02460
LAI 9 3,69 25,84 22,150 10,953 3,854 35,19 0,0005 0,03150
LAI 10 2,04 6,3 4,266 3,612 0,794 21,99 0,1285 0,07140

3,59 3,93 0,341 3,753 0,067 1,79 0,1436 0,07650
5,63 78,01 72,376 19,279 9,942 51,57 0,0116 0,00030

Min Range Mean StdV R² Cab

Ca+b
Ca+b

b)



Appendix

133

Table 8.7:  Statistics  for regional scale dataset for VIs and Cab Stage 1 (20.06.06)

Stage 1 Min Max Range Mean STDV CV
NDVI 0,07 0,41 0,34 0,2 0,09 44,29 0,0091
RVI 1,16 2,43 1,27 1,53 0,3 19,52 0,0121
SAVI 0,05 0,28 0,22 0,14 0,06 41,77 0,0010
SAVI2 1 1,89 0,89 1,28 0,21 16,51 0,0036
MSAVI 0,05 0,25 0,21 0,12 0,05 42,48 0,0002
OSAVI 0,06 0,34 0,28 0,17 0,07 42,93 0,0039
TSAVI -0,13 0,3 0,42 0,03 0,11 335,55 0,0045
ATSAVI -0,54 -0,36 0,18 -0,47 0,05 -10,04 0,0118
RDVI 0,05 0,26 0,21 0,13 0,06 41,94 0,0012
TVI -0,29 9,21 9,5 3,59 2,56 71,25 0,0001
MTVI1 -0,04 0,23 0,26 0,07 0,07 102,99 0,0013
MTVI2 -0,03 0,2 0,23 0,06 0,06 104,63 0,0031
CARI 0,12 0,19 0,07 0,17 0,02 9,54 0,1601
TCARI -0,03 0,05 0,08 0 0,02 1030,2 0,0370
MCARI -0,01 0,02 0,03 0 0,01 1000,7 0,0295
MCARI1 -0,04 0,23 0,26 0,07 0,07 102,99 0,0013
MCARI2 -0,03 0,2 0,23 0,06 0,06 104,63 0,0031
SR705 1,13 1,96 0,83 1,41 0,21 15,01 0,0036
mND705 0,1 0,4 0,31 0,23 0,09 37,79 0,0000
GI 1,05 1,33 0,29 1,24 0,07 5,71 0,0214
PRI -0,11 -0,08 0,03 -0,09 0,01 -8,35 0,0261
REIP 0,72 0,73 0,01 0,72 0 0,3 0,1363
REIP 0,71 0,73 0,02 0,71 0,01 0,79 0,3012
DGVI1 0,03 0,16 0,13 0,08 0,03 40,49 0,0003
DGVI2 0 0,02 0,01 0,01 0 46,88 0,0001
CSI2 0,52 0,88 0,37 0,73 0,1 14,38 0,0029
LAI 1 -0,83 1,15 1,97 -0,09 0,51 -600,5 0,0092
LAI 2 1,32 2,05 0,73 1,54 0,17 11,33 0,0115
LAI 3 0,71 1,04 0,32 0,81 0,08 9,46 0,0122
LAI 4 0,07 1,31 1,24 0,53 0,32 60,48 0,0094
LAI 5 -0,77 -0,17 0,6 -0,59 0,14 -23,93 0,0121
LAI 6 -0,11 0,3 0,41 0,01 0,1 937,35 0,0121
LAI 7 0,2 0,47 0,27 0,28 0,06 22,56 0,0034
LAI 8 0,12 0,45 0,33 0,21 0,07 34,6 0,0010
LAI 9 0,81 1,98 1,17 1,16 0,27 23,38 0,0000
LAI 10 5,49 29,65 24,16 10,35 4,86 46,92 0,1064
Ca+b 3,89 4,34 0,45 4,05 0,11 2,7 0,1478
Ca+b 1 101,86 100,86 19,58 28,46 145,33 0,0015
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Table 8.8: Statistics for regional scale dataset for VIs and LAI / Cab Stage 2 (28.06.06)

Stage 2 Min Max Range Mean STDV CV R² LAI
NDVI 0,12 0,49 0,37 0,3 0,11 37,13 0,0919 0,2044
RVI 1,28 2,91 1,63 1,94 0,48 24,65 0,1190 0,2177
SAVI 0,09 0,36 0,27 0,23 0,08 36,75 0,0831 0,2024
SAVI2 1,11 2,3 1,19 1,62 0,35 21,82 0,1101 0,2171
MSAVI 0,08 0,35 0,26 0,21 0,08 38,15 0,0847 0,2043
OSAVI 0,11 0,43 0,32 0,27 0,1 36,93 0,0882 0,2042
TSAVI -0,06 0,41 0,46 0,18 0,14 79,85 0,0905 0,2060
ATSAVI -0,52 -0,32 0,19 -0,42 0,06 -14,25 0,0880 0,2002
RDVI 0,09 0,34 0,26 0,22 0,08 36,75 0,0828 0,2031
TVI 1,5 14,08 12,59 8,17 4,03 49,35 0,0727 0,2015
MTVI1 0,01 0,35 0,34 0,18 0,11 58,08 0,0748 0,1966
MTVI2 0,01 0,3 0,29 0,15 0,09 60,14 0,0850 0,2019
CARI 0,15 0,22 0,07 0,19 0,01 7,47 0,0168 0,0004
TCARI -0,02 0,08 0,09 0,03 0,03 90,69 0,0350 0,2035
MCARI -0,01 0,03 0,03 0,01 0,01 90,64 0,0956 0,1794
MCARI1 0,01 0,35 0,34 0,18 0,11 58,08 0,0748 0,1966
MCARI2 0,01 0,3 0,29 0,15 0,09 60,14 0,0850 0,2019
SR705 1,23 2,26 1,03 1,7 0,32 19,04 0,0939 0,2244
mND705 0,17 0,47 0,3 0,34 0,1 30,46 0,0571 0,1950
GI 0,97 1,29 0,32 1,15 0,09 8,15 0,1005 0,1879
PRI -0,1 -0,07 0,03 -0,08 0,01 -9,65 0,0487 0,1171
REIP 0,72 0,73 0,01 0,72 0 0,17 0,2331 0,0588
REIP 0,71 0,72 0,01 0,71 0 0,41 0,0257 0,0301
DGVI1 0,06 0,24 0,18 0,16 0,06 36,52 0,0693 0,1984
DGVI2 0,01 0,03 0,02 0,01 0,01 45,58 0,0892 0,2142
CSI2 0,44 0,81 0,37 0,61 0,12 19,4 0,0722 0,2021
LAI 1 -0,53 1,6 2,13 0,51 0,65 127,57 0,0916 0,2044
LAI 2 1,39 2,3 0,9 1,78 0,27 15,14 0,1130 0,2159
LAI 3 0,74 1,16 0,42 0,91 0,12 13,41 0,1191 0,2179
LAI 4 0,25 1,61 1,36 0,91 0,41 45,69 0,0943 0,2060
LAI 5 -0,71 0,06 0,78 -0,4 0,23 -57,3 0,1191 0,2177
LAI 6 -0,07 0,46 0,53 0,14 0,16 107,81 0,1185 0,2173
LAI 7 0,23 0,67 0,44 0,41 0,13 32,04 0,1049 0,2113
LAI 8 0,15 0,71 0,56 0,38 0,17 44,22 0,1118 0,2181
LAI 9 0,94 2,91 1,97 1,77 0,59 33,42 0,1048 0,2153
LAI 10 4,7 13,72 9,03 6,95 1,53 22,06 0,1034 0,0934
Ca+b 3,84 4,15 0,31 3,95 0,06 1,48 0,1199 0,0963
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Table 8.9: Statistics for regional scale dataset for VIs and LAI / Cab Stage 3 (16.07.06)

Stage 3 Min Max Range Mean STDV CV R² LAI
NDVI 0,43 0,82 0,38 0,64 0,12 18,73 0,5388 0,2718
RVI 2,53 9,93 7,39 5,32 2,27 42,61 0,5094 0,1692
SAVI 0,28 0,55 0,27 0,41 0,08 18,65 0,5200 0,3866
SAVI2 1,94 5,23 3,3 3,26 0,95 29,24 0,5367 0,2584
MSAVI 0,25 0,57 0,31 0,4 0,09 22,13 0,5118 0,3784
OSAVI 0,35 0,68 0,33 0,52 0,1 18,39 0,5436 0,3416
TSAVI 0,32 0,79 0,47 0,57 0,14 25,3 0,5439 0,2866
ATSAVI -0,35 -0,16 0,19 -0,25 0,06 -22,74 0,5377 0,2967
RDVI 0,27 0,52 0,26 0,39 0,07 18,56 0,5288 0,3734
TVI 9,19 20,83 11,64 14,6 3,26 22,36 0,4673 0,4025
MTVI1 0,22 0,52 0,3 0,36 0,08 23,16 0,4673 0,3995
MTVI2 0,21 0,58 0,37 0,37 0,11 28,55 0,5228 0,3298
CARI 0,02 0,13 0,1 0,09 0,03 29,06 0,0789 0,0002
TCARI 0,05 0,1 0,05 0,08 0,02 19,87 0,4721 0,0468
MCARI 0,02 0,03 0,02 0,03 0,01 19,79 0,4294 0,1812
MCARI1 0,22 0,52 0,3 0,36 0,08 23,16 0,4673 0,3995
MCARI2 0,21 0,58 0,37 0,37 0,11 28,55 0,5228 0,3298
SR705 1,97 4,82 2,86 3,14 0,79 25,2 0,5264 0,3010
mND705 0,37 0,66 0,3 0,52 0,08 16,19 0,5382 0,3478
GI 0,56 1,07 0,51 0,85 0,16 18,84 0,4884 0,1417
PRI -0,16 -0,1 0,06 -0,12 0,01 -12,3 0,0010 0,0985
REIP 0,72 0,72 0 0,72 0 0,14 0,0426 0,2109
REIP 0,7 0,72 0,02 0,71 0,01 0,79 0,0563 0,2789
DGVI1 0,16 0,34 0,17 0,24 0,05 19,97 0,4336 0,4317
DGVI2 0,02 0,04 0,02 0,03 0,01 22,14 0,4342 0,4114
CSI2 0,21 0,51 0,3 0,34 0,09 25,34 0,5265 0,3753
LAI 1 1,29 3,51 2,23 2,48 0,7 28,17 0,5384 0,2721
LAI 2 2,11 4,32 2,21 3,12 0,7 22,32 0,5420 0,2167
LAI 3 1,06 2,95 1,89 1,77 0,58 32,61 0,5094 0,1691
LAI 4 1,4 2,9 1,51 2,22 0,48 21,75 0,5423 0,2723
LAI 5 -0,12 3,4 3,51 1,2 1,08 89,35 0,5095 0,1692
LAI 6 0,34 2,74 2,4 1,24 0,74 59,36 0,5096 0,1693
LAI 7 0,47 1,85 1,38 0,94 0,38 39,85 0,4777 0,2776
LAI 8 0,45 2,09 1,64 1,07 0,46 42,71 0,4948 0,3139
LAI 9 1,96 7,49 5,53 3,92 1,51 38,55 0,4623 0,3223
LAI 10 3,75 6,4 2,65 5,15 0,79 15,23 0,0449 0,2221
Ca+b 3,77 3,93 0,16 3,86 0,05 1,2 0,0439 0,2416
Ca+b 30,22 51,68 21,46 37,13 3,76 10,12 0,0031 0,2021
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Table 8.10: Statistics for regional scale dataset for VIs and LAI / Cab Stage 4 (02.08.06)

b)

 

Stage 4 Min Max Range Mean STDV CV R² LAI
NDVI 0,35 0,8 0,45 0,61 0,14 23,46 0,5069 0,5006
RVI 2,1 8,92 6,82 4,98 2,04 41,01 0,4548 0,4188
SAVI 0,24 0,53 0,3 0,4 0,09 21,71 0,4786 0,4624
SAVI2 1,67 4,89 3,22 3,16 0,94 29,78 0,4807 0,4479
MSAVI 0,22 0,55 0,33 0,39 0,1 24,42 0,4696 0,4477
OSAVI 0,3 0,66 0,37 0,5 0,11 22,36 0,5026 0,4892
TSAVI 0,22 0,77 0,54 0,54 0,17 31,91 0,5074 0,4997
ATSAVI -0,39 -0,17 0,22 -0,26 0,07 -26,66 0,5062 0,5007
RDVI 0,23 0,51 0,28 0,38 0,08 21,8 0,4827 0,4678
TVI 6,77 19,46 12,69 13,72 3,61 26,34 0,4307 0,4248
MTVI1 0,17 0,49 0,32 0,34 0,09 27,16 0,4266 0,4333
MTVI2 0,14 0,54 0,39 0,35 0,11 32,54 0,4705 0,4667
CARI 0,01 0,13 0,12 0,06 0,03 44,17 0,3525 0,1708
TCARI 0,02 0,1 0,08 0,07 0,02 26,9 0,1577 0,2216
MCARI 0,01 0,03 0,03 0,02 0,01 27 0,1321 0,1321
MCARI1 0,17 0,49 0,32 0,34 0,09 27,16 0,4266 0,4333
MCARI2 0,14 0,54 0,39 0,35 0,11 32,54 0,4705 0,4667
SR705 1,65 4,44 2,79 2,98 0,84 28,3 0,5472 0,4810
mND705 0,29 0,64 0,35 0,49 0,1 21,28 0,5465 0,5176
GI 0,64 1,24 0,6 0,93 0,16 17,57 0,3488 0,4241
PRI -0,15 -0,09 0,06 -0,12 0,02 -12,89 0,2201 0,1826
REIP 0,72 0,73 0,01 0,72 0 0,26 0,3289 0,2175
REIP 0,7 0,73 0,02 0,71 0,01 0,88 0,3897 0,4233
DGVI1 0,14 0,32 0,18 0,23 0,05 22,63 0,4245 0,4025
DGVI2 0,01 0,03 0,02 0,02 0,01 28,47 0,4103 0,4023
CSI2 0,23 0,61 0,38 0,37 0,12 32,18 0,5468 0,5310
LAI 1 0,79 3,4 2,6 2,33 0,84 35,99 0,5070 0,5009
LAI 2 1,87 4,14 2,26 3,02 0,72 23,78 0,4908 0,4668
LAI 3 0,95 2,69 1,74 1,69 0,52 30,91 0,4548 0,4188
LAI 4 1,08 2,85 1,77 2,13 0,58 27,23 0,5062 0,4988
LAI 5 -0,32 2,92 3,24 1,05 0,97 92,78 0,4548 0,4187
LAI 6 0,2 2,41 2,22 1,13 0,66 58,67 0,4548 0,4188
LAI 7 0,38 1,59 1,21 0,87 0,32 36,98 0,4181 0,4044
LAI 8 0,36 1,93 1,57 1,05 0,44 41,56 0,4393 0,4077
LAI 9 1,67 6,87 5,2 3,87 1,4 36,17 0,4198 0,3870
LAI 10 3,89 15,66 11,76 6,06 2,46 40,66 0,0008 0,0006
Ca+b 3,78 4,2 0,42 3,9 0,09 2,38 0,0150 0,0157
Ca+b 29,99 56,34 26,35 39,05 6,59 16,87 0,0110 0,0017
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