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Summary 
Uncontrolled coal seam fires occur in all major coal producing countries world 

wide. Apart from causing considerate economic loss, they constitute multiple 

environmental hazards ranging from local to global scale. China, one of the most 

affected countries has an estimated annual loss of 20 - 30 Mio tons of coal per year. The 

associated CO2 emissions contribute up to 0.2 % to the worldwide anthropogenic 

release of this green house gas.  

Ongoing research activities on coal fires in the Wuda Coal Field in Inner 

Mongolia Autonomous Region, North Western China, incorporate remote sensing, field 

geological and geophysical data in development of fire detection and monitoring 

strategies. In this thesis, which is part of this project a framework was developed 

combining GIS and Dempster-Shafer Theory of Evidence to estimate fire probability 

based on fire indicators extracted from these data.   

The employed indicators were thermal anomalies extracted from LandSat 7 

satellite imagery, surface cracks and mining activity features digitized from Quickbird 

satellite imagery, surface temperature measurements, distribution of subsurface mining 

and occurrence of coal seams. Fire probability maps were generated as distance 

functions to the respective indicator features, the geometry of which was derived from 

expert knowledge. The probability maps were then combined according to Dempster’s 

Rule of Combination to generate belief, plausibility and belief interval maps for the 

hypotheses „fire“ and „no fire“. Validation against the distribution of coal fire areas 

mapped in recent field investigations showed that the combined evidence from the 

complete data base reproduce location and extent of the known fires. Indicators were 

evaluated with respect to their contribution to the fire detection capability of the 

developed probability analysis tool. Field temperature measurements were identified to 

be the most important contributor followed by thermal anomalies from LandSat 7 

Enhanced Thematic Mapper data. The remainder of the data was not capable of 

resolving single coal fire areas. For the most probable transfer scenario incorporating 

mainly data derived from earth observation, detectability of fires will hinge on their 

expression in thermal satellite imagery.  

This study demonstrated that the combination of probability theory and GIS is a 

suitable and readily adaptable method to aggregate evidence on coal fires providing the 

basis for establishing priority schemes for coal fire extinguishing activities. 
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Zusammenfassung 
Unkontrollierte Kohleflözbrände treten weltweit in allen Ländern mit bedeutender 

Kohleförderung auf. Sie richten dort nicht nur beträchtlichen wirtschaftlichen Schaden 

an, sondern stellen eine vielfältige, von lokalem bis hin zu globalem Maßstab reichende 

Umweltbedrohung dar. Der jährliche Verlust an förderwürdiger Kohle wird für China, 

das zu den am stärksten betroffenen Ländern gehört, auf 20 – 30 Mio. Tonnen beziffert. 

Die damit verbundenen CO2 Emission machen bis zu 0,2 % der jährlichen 

anthropogenen Gesamtemissionen dieses Treibhausgases aus. 

Im Rahmen aktueller Forschungsaktivitäten an Kohlebränden in der Wuda 

Kohlebergbauregion (Nordwest-China, Autonome Region Innere Mongolei) werden 

basierend auf geologischen Felduntersuchungen und Erdbeobachtungsdaten 

Feuererkennungs- und Überwachungsstrategien entwickelt. Gegenstand dieser Arbeit 

war die Integration von feuerrelevanten Indikatoren, die aus diesen Daten abgeleitet 

werden können,  in  ein GIS gestütztes Modell der Feuerwahrscheinlichkeit. 

In den auf der Dempster-Shafer Theory of Evidence basierenden Ansatz wurden 

sechs Indikatoren einbezogen: aus LandSat 7 Daten extrahierte thermale Anomalien, 

von hochauflösenden Quickbird Daten abdigitalisierte Oberflächenrisse und über tage 

sichtbare Indizien für Bergbauaktivität, Messungen der Oberflächentemperatur, sowie 

die Verbreitung von Untertagebau und Kohleflözen. Für die Indikatoren wurden 

Feuerwahrscheinlichkeitskarten generiert, wobei die Wahrscheinlichkeit als eine 

Funktion der Distanz interpretiert wurde. Die Geometrie dieser Funktion wurde aus 

Expertenwissen abgeleitet. Die Wahrscheinlichkeitskarten wurden gemäß der Dempster 

Regel kombiniert um Belief, Plausibility und Belief Interval Karten für die Hypothesen 

„Feuer“ und „kein Feuer“ zu erstellen. Die Validierung gegen eine im Rahmen jüngster 

Kartierarbeiten entstandenen Brandaktivitätskarte zeigte eine gute Übereinstimmung der 

modellierten Feuerwahrscheinlichkeit mit Lage und Ausdehnung der bekannten 

Brandzonen im Untersuchungsgebiet.  In einer Sensitivitätsanalyse wurden die 

Indikatoren mit dem größten Beitrag zur Vorhersagerichtigkeit der Methode  ermittelt. 

Die Oberflächentemperatur Messungen erwiesen sich dabei als der Datensatz mit dem 

größten Einfluss, gefolgt von den thermalen Anomalien. Die übrigen Datensätze tragen 

nicht signifikant zur Auflösung einzelner Brandzonen bei. Im wahrscheinlichsten 

Transfer Szenario, das vorwiegend auf Satellitendaten beruht, wird die Detektierbarkeit 
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von Feuern wesentlich von ihrer Ausprägung als Anomalien in thermalen 

Satellitendaten abhängen.  

Die vorliegende Arbeit zeigte, dass die Kombination von Wahrscheinlich- 

keitstheorie und GIS eine geeignete und beliebig anpassbare Methode darstellt um 

thematisch vielschichtige Information über Kohlefeuer zu aggregieren. Die abgeleiteten 

Feuerwahrscheinlichkeitskarten können als Basis für die Koordinierung von 

Löschaktivitäten dienen. 
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1. Introduction 

1.1 Coal fires 

Today, uncontrolled coal seam fires constitute an environmental and economic 

problem of global extent. They occur in coal mining areas in many countries worldwide, 

including China, India, Russia, the United States, Australia and at a smaller scale also in 

Europe (WALKER, 1999). China is among the countries most seriously affected by coal 

fires. The country is leading with respect to coal production, consumption and export 

and its energy supply is highly dependant on coal. An estimated 20 to 30 Mio tons of 

coal is burnt by uncontrolled coal fires each year and the tenfold amount is lost, as 

adjacent coal becomes inaccessible (KÜNZER, 2005). Given a market price (North 

Western Europe) of 70 US Dollars per ton in 2004 (BP, 2005) the economic loss sums 

up to 21 Billion US Dollars.  

Moreover, the economic loss coal fires pose serious environmental hazards. On 

local scale gaseous (in particular the toxic compounds nitrogen oxides (NOx), carbon 

monoxide (CO) and sulphur dioxide (SO2)) and solid combustion products are massive 

contamination sources for both the air and the groundwater. Intake of toxic substances 

through inhalation, ingestion with agricultural crops or drinking water seriously 

threatens health of mine workers and residents. Moreover, subsidence caused by 

subsurface volume loss can be a threat to buildings and infrastructure. Last but not least 

several hundred mine workers are killed each year in mining accidents which are often 

fire related (KÜNZER, 2005).  

On global scale coal fires contribute considerably to emission of the greenhouse 

gas nitrogen dioxide (CO2) and, to a smaller extent, methane (CH4) and nitrous oxide 

(N2O). According to recent estimations emissions by Chinese coal fires account for 12 

% of total Chinese coal based CO2 emissions and up to 0.2 % of global annual 

emissions induced by burning of fossil fuels (KÜNZER ET AL, IN REVIEW).   

Ignition and perpetuation of coal fires depend on the presence of the factors fuel, 

oxygen and energy. In the case of coal seam fires, left over coal debris and the unmined 

seam provide the fuel, while oxygen is supplied by the air circulating through 

ventilation systems and natural cracks. With respect to the energy essential for ignition 

of a coal seam fire, three sources are known: anthropogenic activity, natural hazards and 

spontaneous combustion (WALKER, 1999). Coal mining is the prime anthropogenic 
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ignition source and risks are especially high in less developed countries. In these 

countries, careless use of explosives or open fire combined with low security standards 

is often encountered in small private or illegal coal mines. Another cause of mine fires 

may be the misuse or improper maintenance of mechanical and electrical mining 

equipment. Major natural ignition causes are lightening strike at coal seam outcrops or 

forest- and bush fires. Spontaneous combustion is the most common cause for coal fires. 

The term refers to a chain of reactions triggered by the adsorption of oxygen at large 

surface of the porous medium coal. Due to the exothermic character of this reaction heat 

is produced. When heat production exceeds dissipation of the heat, the temperature rises 

and above a threshold of approximately 80 °C the process accelerates finally leading to 

combustion of coal (WALKER, 1999). Coal fires not only occur in coal seams but also in 

coal waste piles or in coal heaps. According to their causes, depth and activity status 

coal fires can be further distinguished (Table 1).   

 
Table 1.1: Classification of coal fires after ZHANG (2004) 

First Class Second Class Attributes 

Coal seam fire 
Natural coal fire 

Coal mine fire 

Surface/Underground or Subsurface 

Paleo/Recent 

Coal heap fire 
Coal Waste fire 

Coal stockpile fire 
Extinct, dormant, active 

 
 

The enormous destructive potential of coal fires explains the urgent need to 

develop methodologies for detection, monitoring and extinction of fires. Coal fires in 

China have recently been subject to extensive research activities. Because of the large 

areal extent of the phenomenon and the remoteness of many coal fields, much of the 

work was focused on the capability of remote sensing to detect fires (VAN GENDEREN & 

GUAN 1997; ZHANG, X. 1998; WANG 2002; ZHANG, J. 2004; KÜNZER, 2005). 

  

 

1.2 Project context 

In 2003 the joint Sino German on coal fires was launched. The project “Coal Fire 

Research – A Sino German initiative (http://www.coalfire.caf.dlr.de/intro_en.html) 

(8.4.2006) is funded by the German ministry of Education and Science (BMBF) and the 
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Chinese Ministry of Science and Technology (MOST). The German Remote Sensing 

Data Center (DFD) of the German Aerospace Center (DLR) is in charge of coordinating 

the initiative. The project is addressing the problem of coal fires from a 

multidisciplinary point of view. Remote sensing, geology, geophysics, chemistry and 

mining technology contribute to investigations on  

- detection and quantification of coal fires,  

- thermo dynamical and rock mechanical modelling of fires,  

- simulation of the spontaneous combustion process,  

- geophysical signature of fires and  

- environmental impacts of fires. 

 

The overall goal is to provide the scientific basis and techniques allowing for 

development of efficient assessment, monitoring and extinction strategies for coal fires 

in China. Remote sensing and airborne geophysical investigation provide information 

on surface and depth distribution of potential subsurface combustion zones, while 

modelling activities promote understanding of the in situ processes. The planned 

extinction activities are explicitly intended to support the Kyoto Process by reducing 

fire induced greenhouse gas emissions. They can now be accredited in the framework of 

the "Clean Development Mechanism" and the reduction of gas emissions can be traded 

as "Certified Emission Reductions".  

  

 

1.3 Aim and objectives of this thesis 

One of the initial project goals was to integrate results from different research 

views. Up to now some steps in this direction have been undertaken in the realm of 

chemical, thermo dynamical and mechanical modelling. Another step is the 

implementation of a data warehouse at DFD, where the resulting data sets are currently 

being collected and managed (HIRNER, 2005 PERS. COMM.). By allowing for storage of 

multiple data formats and user defined querying the warehouse promotes the exchange 

of research results among the project partners. Yet, most data sets are still in a proto 

type phase and as to now no concept for an automated procedure integrating the 

different data formats and thematic information on fires has emerged. This procedure is 

to play a key role in developing fire risk assessment strategies applicable to different 
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coal mining areas in China. It should provide easy to use and comprehensible decision 

support for fire extinguishing activities. The approach developed in this thesis 

constitutes a GIS based framework for such an procedure. Accordingly, the goals 

specific to this thesis were on the conceptual level 

1. to find a synthetic parameter capable to abstract fire relevant information from 

different data sets, 

2. to find a GIS based method to model and visualize the spatial distribution of this 

parameter.  

On the implementation level goals were 

3. to find an adequate way to deal with uncertainty in the available data,  

4. to investigate whether fires in the study area can be located more accurately by 

combining information from multiple data sets, 

5. to ensure transferability of the approach to other coal fire areas. 

Achievement of the latter goal could not be verified due to the lack of data for transfer 

regions. 

The at hand thesis is structured into seven chapters. Chapter 2 contains a short 

description of geologic and mining related characteristics of the study area. In chapter 3 

different probabilistic approaches, Fuzzy Set Theory, Bayesian Probability Theory and 

Dempster-Shafer Theory of Evidence (DST) are introduced to deal with uncertainty in 

decision making. Furthermore recent advances in theory and geo related application of 

probability theory with focus on DST are briefly summarized. Chapter 4 presents the 

data sets incorporated in this thesis. Based on general considerations concerning the 

decision problem associated with coal fires Chapter 5 describes the methodology to 

model coal fire probability. Chapter 6 introduces the software used to implement the 

theoretical model. In chapter 7 results for the study area are presented and expected 

results for different transfer scenarios are discussed. Chapter 8 contains a brief 

conclusion and recommendation for further research  
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2. Study area 
 

Three coal fields in the northern coal mining belt in China were chosen as areas of 

interest within the research initiative. Among these, the Wuda area is investigated most 

thoroughly. Geologic and mining related data is available for the area along with 

abundant field data on coal fire characteristics. It was therefore selected as study area in 

the frame of this thesis. 

 

  

2.1 Geographic location and Geology 

The Wuda area includes Wuda coalfield and its surrounding areas in the Inner 

Mongolia Autonomous Region (figure 2.1). Wuda coalfield is located at 39°28’-

39°34’North and 106°36’40’’-106°38’41’’East, and extends 10 km from North to South 

and 3-5 km from East to West, covering an area of 35 km2. It is framed by the Yellow 

River in the East and the Helan mountain range in the South. Tectonically, the coalfield 

comprises a synclinal structure holding a total reserve of 630 Mio tons of coal. The coal 

originates from Permian times (GIELISCH, 2004). Of the total deposits, exploitable 

reserves are stated to be 27 Mio tons. Altogether 27 coal seams are found in the 

coalfield, 12 of which are featuring a stable distribution and are therefore mined 

throughout the whole field. Average thickness of these seams is 33.6 m and common 

dip angles range between 5 and 15 °. Coal is mined within three independent coal 

mining fields. From these fields three different quality types of coal - fat coal, cooking 

coal and steam coal - are being extracted (ZHANG, 2004). 

 

 

2.2 Coal Mining 

Since commercial mining started in 1958, 120 megatons had been mined by 2000. 

Large scale mining is mainly in the hand of the state but partially also performed by 

private business (ZHANG, 2004). Herein, mechanized longwall methods are applied to a 

maximum depth of 300 m, whereas the average depth is 100 m below ground surface 

level (GIELISCH, 2004). Private small scale mining is permitted since 1980. However, 

many of the formerly more than 100 small scale mines are now abandoned after coal 
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fires had made mining too dangerous. Since mine entries and ventilation systems were 

often sealed off improperly, these abandoned mines still constitute risk areas for 

spontaneous combustion of coal seams.   

 
 

Figure 2.1: Location of the study area in China. The lower left frame shows the Wuda syncline 

serving as test area for fire probability analysis. Source: KÜNZER (2004) 
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2.3 Coal fires and coal fire related features 

The predominant type of coal fire in the Wuda area is the one of a subsurface coal 

mine fire.   At present 16 such fires are known in the Wuda coalfield covering 3.07 km² 

or 8.8 % of the total coal mining area. Eight coal seams are burning in depths of up to 

100 metres, although most fires are closer to the surface (ZHANG, 2004). Starting from 

the abandoned cavities (called “goafs”) which result from longwall mining, they are 

spreading along these goafs and into the unexploited seams as long as oxygen supply is 

sufficient. Oxygen supply is provided by the ventilation system built during exploitation 

of the respective zone or by cracks due to collapse of the overburden.  

Coal fire generated geomorphologic features are a wide spread phenomenon. They 

include burnt pits, crack systems and pyrometamorphic minerals (figures 2.2 and 2.3). 

Burnt pits form when a coal fire occurs at the outcrop of a coal seam with a large dip 

angle, whereas cracks result from subsidence due to fires burning along seams with 

gentle dip angle. Pyrometamorphic minerals form in the rock adjacent to extraordinary 

hot fires. If they are exposed on the surface, their yellow - redish colours are often 

visible in high to medium resolution satellite data (KÜNZER, 2005).  Common features 

observable at cracks are smoke exhalations and a strong rise in temperature in up to one 

meter distance from the crack. These features are typical for fires burning close to the 

surface. (ZHANG, 2004; KÜNZER, 2005) 
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Figure 2.2 : Near surface coal fire and pyrometamorphic rock. 

Photos : C. Kuenzer 09/2002 

 

 

 
 

Figure 2.3: Coal fires and their related features. 1 Coal seam; 2 Ash; 3 Pyrometamorphic rock; 4 

Crack; 5 Burnt pit; 6 Longwall mining; 7 Pillar; 8 Subsidence 9 Surface coal mine fire; 10: 

Subsurface coal seam fire; 11: Surface natural fire. Source: ZHANG (2004) 
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3. Theoretical background 

3.1 Dealing with uncertainty in decision making  

Decision making is based on a theoretical model of the real world. However, 

information incorporated in modelling reality tends to be inaccurate, incomplete or 

ambiguous. Therefore, uncertainty is inevitable in the decision making process. 

Considering this process as a set membership problem is a useful perspective from 

which to understand the source and role of uncertainty. The decision frame or frame of 

discernment contains all decision alternatives (or hypotheses) under consideration and 

evidence is information through which set membership of an entity in the decision set 

can be evaluated. Thus, the decision making process contains three basic elements 

where uncertainty can occur: the evidence, the decision set and the relation that 

associates the two (EASTMAN, 2003). The latter one of these types, which can be 

denoted as decision rule uncertainty, belongs to the category of uncertain set 

membership expression, known as fuzzy measure. The term fuzzy measure includes 

fuzzy sets, Bayesian probabilities and the beliefs and plausibilities of Dempster-Shafer 

Theory (DST). 

 

  

3.1.1 Fuzzy Set Theory and Multi Criteria Evaluation (MCE) 

Fuzzy sets are sets without sharp boundaries meaning that the transition between 

membership and non membership of an entity in the set is gradual. A fuzzy set is 

characterized by a fuzzy membership grade that ranges from zero to one, indicating a 

continuous increase from non membership to complete membership. This contrasts with 

the crisp set exhibiting sharp boundaries. However, a crisp set can also be seen as a 

special case of a fuzzy set where fuzzy membership changes instantaneously from zero 

to one. 
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Figure 3.1: Membership functions for crisp and fuzzy sets 

 
Fuzzy sets are commonly used in representing continuous variables in decision 

problems related to Multi Criteria Evaluation (MCE) (EASTMAN, 2003). MCE is 

primarily concerned with how to combine the information from several criteria to form 

a single index of evaluation. In case of boolean criteria or constraints, the solution 

usually lies in the union or intersection of conditions. However, criteria are often based 

on continuous phenomena and require fuzzy representation. Fuzzified criteria are then 

combined using Weighted Linear Combination (WLC) or Ordered Weighted Average 

(OWA). In WLC criteria are weighted and products of the criterion score with the 

respective criterion weight are summarized.  Establishing factor weights resorts to the 

pair-wise comparison technique. OWA uses criterion weights similar to the WLC 

method but in addition a set of order weights assigned to the rank order position of 

factor values for a given location (SAHOO ET AL, 2001; MALCZEWSKY, 1999) 

  

 

3.1.2 Bayesian probability theory 

When complete information is available or assumed, the primary tool for the 

evaluation of the relationship between the indirect evidence and the decision set is 

Bayesian probability theory which is based on Bayes Theorem (EASTMAN, 2003). Bayes 

Theorem defines a rule on how to combine new evidence about a hypothesis along with 

prior knowledge to arrive at an estimate of the likelihood that the hypothesis is true. In 

the notation of probability theory this is  
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( ) ( ) ( )
( ) ( )∑ ⋅

⋅
=

i ii hphep
hphep

ehp        (Eq.1) 

Where 

p(h|e)  =  the probability of the hypothesis being true given the evidence  

  (posterior probability) 

p(e|h)  =  the probability of finding that evidence given the hypothesis being true 

   (conditional probability) 

p(h)    =  the probability of the hypothesis being true regardless of the evidence  

  (prior probability)  

 

 

3.1.3 Dempster-Shafer Theory of Evidence (DST) 

The Dempster-Shafer Theory of Evidence (DST) is based on Dempster`s work on 

the generalization of Bayesian lower and upper probabilities (DEMPSTER, 1967). The 

lower and upper probabilities represent the belief and plausibility, respectively, that a 

given body of evidence supports a particular hypothesis (SHAFER, 1976). DST defines 

hypotheses in a hierarchical structure developed from a basic set of hypotheses {A, B, 

C} that form the frame of discernment or decision frame { }ABCACABCBA ,,,,,=Θ .  

 

[A] [B] [C]

[A,B] [A,C] [B,C]

[A,B,C]

[A] [B] [C]

[A,B] [A,C] [B,C]

[A,B,C]

 
Figure 3.2: Frame of discernment for three singleton hypotheses 

 

[A], [B], [C] are called singleton hypotheses because each of them only contains one 

element. 

The power set of Θ  is denoted by 

        { }Θ⊂=Θ A2           (Eq. 2)  

where A is a subset of Θ .  

A function [ ]1,02: →Θm  is called a Basic Probability Assignment (BPA) when 
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( ) 0=∅m            (Eq. 3) 

and  

( )∑
Θ⊂

=
A

Am 1           (Eq. 4) 

The function m (“mass of belief”) is a measure of belief committed to each hypothesis. 

The total belief committed to a hypothesis H is given by  

 ( ) ( )∑
⊂

=
HA

AmHBel .       (Eq. 5)  

The function Bel: [ ]1,02 →Θ  is called a Belief Function (Bel) over Θ  if it satisfies the 

conditions: 

( ) 0=∅Bel           (Eq. 6) 

( ) 1=ΘBel           (Eq. 7) 

And for every positive integer n and every collection of hypotheses A1, A2 ,…, An of a 

subset of Θ  

( ) ( ) ( )
{ }
∑

∅≠
⊂

∈
+ ∩−≥∪∪

I
nI

iIi
I

n ABelAABel
...1

1
1 1*...     (Eq. 8) 

   

The Plausibility function Pl: [ ]1,02 →Θ  is defined using the Belief Function Bel as: 

( ) ( )HBelHPl −= 1 , 

( ) ( )∑ ∑
Θ⊂ ⊂

−=
A HA

AmAm , 

( )∑
∅≠∩

=
HA

Am   Θ⊂∀H   where H  is the negation of H    (Eq. 9) 

Belief and plausibility represent the lower and upper boundary of the commitment to H. 

Metaphorically speaking belief denotes all the accumulated “hard” evidence in support 

of H, whereas plausibility represents the grade to which H cannot be rejected.  

The degree of uncertainty about H is thus represented by the difference  
 

( ) ( )HBelHPl − .                   (Eq. 10) 

The difference is called belief interval. When the degree of uncertainty equals 0, then 

( ) ( ) 1=+ HBelHBel ,                 (Eq. 11) 
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which is the Bayesian probability. The relationship between belief, plausibility and 

belief interval is illustrated in figure 3.3 

 

10
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Disbelief
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10

Belief

Plausibility

Disbelief
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Figure 3.3: Relationship between belief, plausibility and belief interval 

  

Belief Functions representing distinct bodies of evidence can be combined by 

means of Dempster’s rule of combination which implies the orthogonal sum of the 

belief functions: 

 ( ) ( ) ( ) ( )∑
=∩Θ⊂

−−=
HBABA

BmAmkHm
:,

21
11                 (Eq. 12)  

where 

( ) ( )∑
∅=∩Θ⊂

=
BABA

BmAmk
:,

21                    (Eq. 13)  

K is the amount of total probability committed to disjoint (contradictory) subsets of 

Θ and therefore represents a measure of conflict between two bodies of evidence. When 

k equals to 1, the bodies of evidence are completely contradictory and their orthogonal 

sum does not exist. 

A geometric interpretation of the orthogonal sum is shown in figure 3.4. Ai and Bj 

are subsets of Θ associated with BPAs. They are called focal elements of the belief 

functions s1 = {A1,…,Ai} and s2 = {B1,…,Bj}. The width of the columns and rows is 

proportional to the BPA associated with the focal element. Each intersection is assigned 

the product of the corresponding masses and the contributions of coincident 

intersections are summed. 
 



 3. Theoretical background 

14 

 
Figure 3.4: Dempster’s rule of combination . From Cuzzolin (2004). 

 

3.1.4 Key differences  

In contrast to Fuzzy Set Theory, Bayes and Dempster-Shafer logics are both 

concerned with the substantiation of crisp sets. Fuzziness in the latter two relate to the 

relationship between the evidence and the decision set, the strength of which is in doubt. 

The primary difference between Bayes and DST concepts is characterized by the way of 

dealing with the absence of evidence: Bayes considers the absence of evidence in 

support of a hypothesis to constitute evidence in the support of the counter hypothesis, 

whereas DST does not. Thus, despite the fact that both consider the decision frame to be 

exhaustive, DST considers the possibility of ignorance whereas Bayes does not 

(EASTMAN, 2003). DST also includes multi element hypotheses in recognition of the 

fact that evidence often supports the combination of hypotheses without the ability to 

further distinguish between their subsets.  

 

 

3.2 State of knowledge 

3.2.1 Recent advances in DST 

ZADEH (1984) demonstrated the limitations of the Dempster’s rule of combination 

in the case of highly conflicting evidence. He presented an intriguing example of a 

patient who is examined by two physicians. Physician A diagnoses meningitis (M) with 

99% probability whereas physician B diagnoses concussion (C) with 99% probability. 

Both agree on a low probability of 1% for a brain tumor (T). According to equation 12 
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the degree of conflict k is 0.9999, and the normalization factor 1 - k is 0.0001. Using DS 

rule of combination, the following results are obtained:  
 

Table 3.1: Beliefs in Zadeh’s physician patient example 

 
m A m B Dempster’s  

Rule 

Max operator 

(YAGER, 2004) 

Meningitis (M) 0.99 0.00 0.00 0.497 

Brain tumor (T) 0.01 0.01 1.00 0.005 

Concussion (C) 0.00 0.99 0.00 0.497 

Θ 0.00 0.00 0.00 0.000 

Ø 0.00 0.00 0.00 0.000 

 

These results are counterintuitive, as 99.99% evidence is neglected due to conflict. To 

overcome this problem, various approaches have been presented. The rule proposed by 

DUBOIS & PRADE (1988) proposed to transfer conflicting belief masses to the union of 

the respective supported hypotheses whenever the intersection of these hypotheses 

produces an empty set. DEZERT & SMARANDACHE (2003) employed what they called a 

hyper power set. The hyper power set also includes the union and intersection of 

hypotheses to allow for paradoxical information. Given a frame of discernment Θ = {A, 

B} with only two singleton hypotheses, then probability assignment has to satisfy the 

condition 
 

 ( ) ( ) ( ) ( ) 1=∩+∪++ BAmBAmBmAm                (Eq. 14)  

 

Hence, in contrast to original DST, the elements of the frame of discernment have not 

necessarily to be mutually exclusive. JØSANG (2002) introduced a consensus operator 

replacing traditional Dempster rule of combination. Given contradictory opinions of two 

independent observers after two different observation periods, this operator in a 

figurative way represents the opinion an imaginative agent would have after having 

observed the process during both periods. YAGER (2004) proposed the use of disjunctive 

operators, which are less strict. Equations 11 and 12 are modified accordingly as 
  

( ) ( ) ( ) ( )[ ]∑
=∩Θ⊂

−−=
HBABA

BmAmkHm
:,

21
1 max1                  (Eq. 15)  
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( ) ( )[ ]∑
∅=∩Θ⊂

=
BABA

BmAmk
:,

21max                  (Eq. 16)  

 

In the physician – patient example, the new diagnosis would then be  

 

m A,B(M) = 0.497,  mA,B (C) = 0.497 ,  mA,B (T) = 0.005  (see table 3.1). 

 

Up to now no consensus has emerged as to which of the proposed methods are to 

use in case of highly conflicting evidence (CORGNE ET AL, 2003). It is common practice 

to estimate the degree of conflict beforehand and to set a threshold level beyond which 

the decision delivered by Dempster’s rule is refuted. This of course raises the question 

of how to define this threshold. Usually, past experience or expert knowledge are 

involved in determining the threshold (CORGNE ET AL, 2003). However, when ignorance 

is assumed, the original combination rule gives reliable results.  Table 3.2 shows the 

results for the above example given a minimum amount of ignorance. 

 
Table 3.2: Beliefs in the physician patient example when ignorance is assumed 

 

 

 

 

 

 

 

 

 

 
 
 

3.2.2 Brief overview: application of probability theory in spatial 
problems 

Methods of handling uncertainty are increasingly gaining access to spatially 

related decision support. This is especially true for the Fuzzy Set Theory that is broadly 

applied in multi criteria analysis techniques such as MCE (EASTMAN, 2003). But as to 

now less attention has been paid to decision rule uncertainty. Whereas Bayes and 

Dempster-Shafer theories are already routinely being applied to decision problems in 

 
Physician A Physician B Dempster’s 

Rule 

Meningitis (M) 0.98 0.00 0.490 

Brain tumor (T) 0.01 0.01 0.015 

Concussion (C) 0.00 0.98 0.490 

Θ 0.01 0.01 0.005 

Ø 0.00 0.00 0.000 
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various fields, in particular micro electronics to medicine, they are not yet fully 

established in spatial geographical decision problems. Some approaches to combine 

probabilistic models with GIS origin in the field of geologic hazard mapping and 

resource exploration. The weights of evidence method initially developed by BONHAM-

CARTER ET AL. (1988, 1989) for evaluation of gold bearing potential is a spatial 

interpretation of Bayes Theorem. Within this framework probabilities are based on 

spatial relation between the features used as indicators or predictors and known gold 

deposits. The approach is therefore also denoted as data-driven, in contrast to 

knowledge-driven approaches, which derive probabilities exclusively from expert 

knowledge on the relationship between the indicators and the event or hypothesis to be 

predicted (CARRANZA & HALE, 2002).  LEE & CHOI (2004) used this model to evaluate 

landslide susceptibility based on multiple geologic, geomorphologic and landcover 

factors (“predictors”) in a GIS. Weights for the predictors were derived from Bayesian 

posterior probabilities for a landslide event to occur within or outside the predictor 

pattern. The posterior probability was quantified by the degree of spatial intersection 

between documented landslide occurrences and the area where the predictor is present. 

Weights were finally summed to form the susceptibility maps. Other applications of this 

theory to mineral potential mapping can be found in CHUNG & FABBRI (1993). 

CARRANZA & HALE (2002) combined evidential belief functions of spatial geological 

evidences to evaluate gold bearing potential. Belief functions are modified Dempster-

Shafer belief functions which take into account the spatial relationship of an evidential 

data layer and known gold deposits on one side and the relationship among the subsets 

of spatial evidences within an evidential data layer on the other side. Practically, 

zonated distance maps for the evidence features were intersected with known gold 

deposits to derive weights for different proximity zones. A similar approach was used to 

map porphyry copper potential (TANGESTANI & MOORE, 2002). HUBERT-MOY ET AL. 

(2002) estimated the winter season land cover pattern in an intensively cultivated region 

based on multiple geo- and cultivation related indicators, which they fused according to 

Dempster-Shafer Theory of Evidence. Probability weights for the indicators were 

derived combining expert knowledge and time series of past landcover data obtained 

from remote sensing.  

Rising awareness for uncertainty in decision making is also reflected in recent 

developments on the GIS software market. IDRISI KilimanjaroTM software by Clarks 

Labs, a GIS mainly designed for analysing raster data features a sophisticated decision 
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support toolset including the modules Fuzzy to generate probabilities and belief to carry 

out Dempster-Shafer Analysis on specified input data (EASTMAN, 2003). 

 

 

3.3 Summary 

Three methods to deal with decision rule uncertainty were introduced: Fuzzy Set 

Theory, Bayes Theorem and DST. Whereas fuzzy sets denote the uncertainty in the 

definition of a criterion, Bayesian and Dempster-Shafer Theories apply to cases where 

the evidence does not directly and perfectly imply the decision set under consideration. 

Both logics define a set of decision alternatives denoted as hypotheses and combine 

different pieces of evidence to determine membership of an entity in the hypothesis. 

However, they differ in the way of dealing with absence of evidence. 

Recent research has revealed the weakness of Dempster-Shafer rule of 

combination in dealing with highly conflictive evidence. Different approaches to 

overcome this problem were briefly discussed. 

Finally, a brief overview on applications of both theories was given with focus on 

spatial decision problems, in particular geohazard mapping and geological resource 

mapping.  
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4. Data sets 

4.1 Surface Temperature Measurements 

In three field campaigns in 2003, 2004 and 2005 temperature measurements were 

conducted by DFD scientists in the vicinity of known and assumed fire locations. A 

hand held infrared radiometer was used, which allows for measurement of temperatures 

by measuring the radiant temperature of a body. The radiant temperature is a measure 

for the electromagnetic radiation resulting from collisions between the particles in 

random motion denoted as Brownian motion. It is linked to the kinetic temperature via 

the emissivity of the emitting body. The kinetic or internal temperature in turn expresses 

the strength of the Brownian motion.  

Sample design was not based on regular or statistical pattern, instead 

measurements were made at fractures or cracks encountered during the field inspection. 

Measurements were repeated in a few day’s interval to account for different soil 

moisture and wind conditions and maximum and average temperatures were noted. The 

exact coordinates of the measurement points were determined with a pocket GPS and 

transferred into an ESRI point shape file together with the temperature values. 

 

 

4.2 Thermal anomalies 

All matter radiates energy at thermal infrared wavelengths (3 to 15µm). For an 

object at a constant kinetic temperature, the radiant energy varies as a function of 

wavelength. With increasing temperature, the total amount of radiant energy increases 

and the radiant energy peak shifts towards shorter wavelength. This shift is described by 

Wien’s displacement law. Thermal anomalies induced by subsurface fires in the study 

area range between 30 °C (303 K) which is only few degrees above the daytime 

background, and more than 300 °C ( ~ 573 K) (ZHANG 2004; HIRNER, 2005 PERS. 

COMM.). 
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Figure 4.1: Spectral distribution curves of energy radiated from black body radiators at different 

temperatures. From ZHANG (2004)  

Figure 4.1 shows that at temperatures below 100°C (~ 373 K), emission in the near 

(NIR 0.75 – 1.5 µm) and middle (MIR 1.5 - 3 µm) infrared is not significant. Moreover, 

the reflective part of the solar radiation increasingly masks the emitted radiation in the 

NIR domain. Hence, the thermal infrared (3 - 100 µm) has proved to be most suitable to 

detect both, low as well as high amplitude thermal anomalies in thermal remote sensing 

data (ZHANG, 2004). The Enhanced Thematic Mapping (ETM+) sensor on board 

LandSat 7 (LS7) records thermal infrared radiation in the spectral band 10.4 to 12.5 µm 

(band 6) with a spatial resolution of 60 m. The band is located in a part of the TIR range 

where the incoming solar radiation is not absorbed by the atmosphere (atmospheric 

window) 

The raw (DN-value) LS7 band 6 image serves as input for an algorithm to 

automatically extract coal fire induced thermal anomalies (ZHANG, 2004). Using a 

moving window technique, pixels are classified as anomalous according to their 

position in the subset histogram. The threshold for separation of anomalous pixels is 

derived from a detailed analysis of the thermal signature of known coal fires in LS7 

ETM+ data and then determined dynamically for the respective subset histogram. 

Anomalous pixels are clustered based on neighbourhood analysis. Anomaly clusters 

caused by different sources, such as uneven solar heating, water bodies or industry are 

removed by investigation of statistical parameters of the clusters in comparison to their 



 4. Data sets 

21 

background. The result is a bit map with the value 1 for anomalous pixels and zero for 

the background. In the underlying thesis a bit map derived from a LS7 ETM+ night 

scene of the Wuda Region acquired in 2003 was used. Night time data is especially 

suitable because of the absence of solar heating effects. The bit map was converted into 

an ESRI polygon shape file using the Arc Toolbox Raster to Feature Conversion Tool. 

 

 

4.3 Cracks 

Cracks were digitized in ArcMap from a Quickbird scene of the study area 

acquired in 2003. The panchromatic channel has a spatial resolution of 0.6 m which is 

sufficient to detect linear objects with a width of a few decimetres, given they have a 

length of several metres. The width of fire and mining induced cracks in the Wuda 

syncline varies between 0.1 and 2.5 m; their length can reach up to 1000 metres.  
 

 
Figure 4.2: Fire induced cracks in the Wuda coal field (A) and on the Quickbird panchromatic 

Scene acquired in 2003 (B) Photo: C. Kuenzer  
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4.4 Longwall mining 

Long wall mining is a common mining technique used in the Wuda mining area. 

A cutting head moves back and forth across a panel of coal some hundred m in width 

and up to two thousand metres in length (figure 4.3). The cut coal falls onto a flexible 

conveyor for removal. (UMWA, 2005) The roof in the remaining goafs (“gobs”) isn’t 

supported any longer, which often leads to collapse of the overburden. At surface large 

area subsidence of up to 14 m in vertical direction can be observed (LITSCHKE, 2005 

PERS. COMM.) 

 

 
Figure 4.3: Longwall mining technique. Source: UMWA (2005) 

 

The shapes of the goafs were digitized from an analogue mining map and provided as 

ESRI polygon shape file by LITSCHKE (2005). The map was provided by the Shenhua 

Group Corporation, the mining company operating the Wuda mines. 

 

 

4.5 Mining activity 

Mining activity was derived from the year 2003 Quickbird panchromatic scene 

through visual interpretation. Recognizable features related to mining activity include 

coal storage and coal waste piles, mining entrances and cliffs produced by open cast 

mining (figure 4.4). Each of the identified features was marked by a point on the 

satellite image and the points with their geometric properties were stored in ESRI point 

shape file format. 
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Figure 4.4: Mining related surface features visible in the Quickbird panchromatic Scene of 2003 

 

 

4.6 Coal seam outcrops 

A geological map of the Wuda syncline was available from the Shenhua Group 

which clearly showed the delineation of coal seam outcrops. These outcrops were 

digitized in ArcMap and stored in a ESRI line shape file. The sedimentology was 

studied in field trips by DMT scientists in 2003 (GIELISCH, 2004). 

 

 

4.7 Known fires 

Information about location and extent of subsurface coal fires in the Wuda coal 

mining area is based on knowledge of local mining engineers and mine administrators 

who have already been monitoring fires over the past decade. In 2000 an assessment of 

the fire boundaries by aerial photography and GPS measurements was undertaken on 

the Chinese side (KÜNZER, 2005). Thermal field measurements and borehole drillings 

completed these activities. In the years 2003 to 2005 scientists from DFD conducted 

extensive temperature measurement campaign at known fire locations to actualize the 

fire extents and to study fire dynamics (KÜNZER & HIRNER 2005 PERS. COMM.). The 

aggregated information was available as fire extent polygons in ESRI shape file format. 
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Within this thesis the known fires serves as “ground truth” data to validate the results of 

fire probability evaluation. 

 

 

4.8 Summary 

Six data sets indicative for coal fires were incorporated in this thesis:  

- measured surface temperatures collected during field campaigns in the study 

area, 

- thermal anomalies automatically extracted from LS7 TIR data, 

- surface cracks digitized from Quickbird satellite imagery, 

- distribution of subsurface mining activity digitized from maps, 

- surface features of mining activity digitized from Quickbird satellite imagery 

- and occurrence of coal seam outcrops digitized from maps. 

A map with the year 2004 status of existing fires, compiled from combined field 

investigation and aerial photography was used for validation of the results.   
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5. Conceptual framework and methodology  
Modelling occurrence and distribution of coal fires can be viewed as a decision 

problem. In particular, the decision pertains to the question if a given spatial 

geographical entity (e.g. a raster cell) is a member of the elements (here the assumptions 

that a fire is present or absent) in the decision set. The indicators described in chapter 4 

then constitute the evidence upon which the membership of an entity in the decision set 

is determined. The decision set it self is crisp if there are only two meaningful decision 

alternatives concerning the presence of a fire: “yes” or “no”. These alternatives 

correspond to the hypotheses within probability theory. Uncertainty here emerges in the 

relation between the evidence and the decision set, as will be discussed in detail in 

section 5.3.2. Generally speaking, the available evidence is often weak or even 

ambiguous and the absence of evidence in favour of one hypothesis can’t be used as 

evidence for the counter hypothesis. Considering this, DST constitutes a suitable 

approach to model coal fire probabilities. Uncertainty is then translated into a 

probability for the hypothesis to be true given the evidence. Furthermore, probabilities 

and their aggregated form belief constitute the demanded parameter to abstract fire 

relevant information from the different data sets. 

Other models to be considered in the framework of modelling fire probabilities 

are MCE or Bayesian probability theory. In MCE, decision rule uncertainty might be 

expressed through criterion weights, too. Weak indicators corresponding to high 

uncertainty would then be assigned low criterion weights and vice versa. Yet, the 

superiority of DST compared to MCE is based on the fact that not every available 

indicator has to be used as evidence for the presence of a fire. Instead, ambiguous or 

weak indicators such as distribution of coal deposits can also be used as evidence for the 

counter hypothesis, absence of a fire, in turn further refining evidence for the hypothesis 

„fire“. If coal seam distribution was to be incorporated in an overlay technique it could 

only be assigned a weak probability for the hypothesis „fire“, thus providing only little 

additional information. 

 Although Bayesian probability theory accounts for uncertainty in the decision set 

membership it doesn’t allow for ignorance. Ignorance is associated with the majority of 

the present indicators, however.  The presence of a crack for example points to a fire 

with a probability p higher than zero and lower than one. According to Bayes the 
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remainder of the probability 1- p has to be taken as evidence for the absence of a fire. 

This is in contradiction to reality, for it is known that  

- not every fire produces cracks, 

- cracks are caused by other processes than fires and 

- cracks might simply have been ignored in the satellite data.  

In other words cracks simply don’t let for statements as to the absence of a fire.  

Consequently the remainder of the probability 1- p resulting from presence of a crack 

can not be assigned to one of the singleton hypotheses. It rather represents the portion of 

ignorance in the decision process. 

  

 

5.1 Modelling uncertainty in spatial data 

Applying DST to spatial decision problems means introducing an additional 

spatial component of uncertainty into the relation between the evidence and the 

hypothesis. Not only might a given indicator point to a hypothesis with a probability 

less than one, this probability will also vary with the distance from the indicator 

features. This is particularly true in the context of coal fires, where the characteristics of 

the indicators can only be retrieved from the surface whereas the inducing fire is located 

within unknown distance below the surface. The indicator features (from which 

evidence is derived) are linked to their cause (upon which statements are to be made) 

via distant effects through the spatial dimension, which is not accessible to 

measurement. It is the particular geometric expression of these distant effects that 

constitutes the actual source for spatial uncertainty. Probability distribution at surface 

can then be seen as a consequence of projecting the three dimensional spatial relation 

between evidence features and source into the surface plane.  

Within the scope of this study probability has been defined in terms of the 

probability for a fire being located perpendicular underneath a considered location (e.g. 

a raster cell). In terms of probability theory, the value assigned to each raster cell 

denotes the probability or grade to which this cell is a member of the considered 

decision set element or hypothesis. The membership is a function of distance which is 

illustrated in figure 5.1. 
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Figure 5.1: Membership function for the crack data set 

 
 
This definition principally does not imply any information about the fire depth. 

However, as will be explained in section 5.3.2 the temperature measurements allow for 

assumptions about the fire depth to a certain degree. Hence, where this indicator mainly 

contributes to a high belief in the presence of a fire, proximity to the surface can be 

assumed.  

Fires are a three dimensional phenomenon and so is the probability for these fires. 

However, because indicators included in this study were available only as two 

dimensional feature data, fire probability was modelled in two dimensions. 

 

 

5.2 Setting up the frame of discernment  

The decision space in the at hand decision problem contains two basic or 

singleton hypotheses: “fire” or “no fire”. Within the frame of DST the union of these 

singleton hypotheses, which represents incomplete knowledge within the decision, has 

to be considered, too. The frame of discernment is presented in figure 5.2. 

 

[fire/nofire]

[fire] [nofire]

[fire/nofire]

[fire] [nofire]
 

Figure 5.2: Frame of discernment for the decision problem in the context of coal fire probability 

modelling 



 5. Conceptual framework and methodology 

28 

5.3 Generation of probability maps 

Dealing with uncertainty in spatial modelling requires spatial representation of 

this uncertainty. In terms of DST, probabilities assigned to the evidence and beliefs and 

plausibilities are then represented as spatial distributions. Management and visualization 

of spatial information through maps is one of the expressed strengths of GIS.  On this 

background maps were expected to be a suitable medium to visualize the single and 

combined evidence from fire indicators. 

 

 

5.3.1 Determination of basic probability weights 

A key issue is to derive probability weights for a given evidence dataset to reflect 

decision rule uncertainty. As discussed in section 3.2.2, two possibilities come into 

question: a data-driven or a knowledge-driven approach. The former approach derives 

possibilities based on the relation between the evidence features and the known fire 

locations which, in its simplest form can be expressed as  
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SATASm ∅≠∩
= ,                  (Eq. 17)  

where 

 m(Si) is the probability mass given by the evidence Si 

A(Si) is the total area of the evidence Si pointing to the hypothesis under    

          consideration; 

A(T) is the area where the hypothesis is known to be true. 

However, this approach requires at least two dimensional data. This is true only for the 

longwall mining and the thermal anomaly data, which are polygon feature type. The 

remainder of the data comprises point or line feature type. For these data types, 

topological measures based on the ratio of evidence features lying within or touching 

the known fire zones and the total feature number could be employed. Both approaches 

require a priori knowledge on existing fire zones. Although this knowledge is available 

for the study area, it can’t be presumed for potential transfer regions. To make the the 

algorithm transferable to less intensely investigated coal mining areas probability 

weights should therefore not depend on knowledge of existing fires.  
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In contrast, a knowledge-driven approach takes into account the causal relations 

between evidence data and the supported hypothesis. Taking the crack evidence data as 

an example, it is known that both, subsurface fires and subsurface mining have to be 

equally considered. Thus, when prior information on existing coal fires and distribution 

of underground mining is missing, an equal probability for both causes is intuitive. 

Probability weights within this study were derived using a simple knowledge-

driven approach. Basically, indicators were classified and weighted according to the 

degree to which an indicator points to a hypothesis. The degree or strength takes into 

account the number of possible causes for the evidence features to occur. In identifying 

possible causes expert knowledge came into play. Technically, the maximum 

probability was divided by the number of these causes. Hence, a first class indicator 

characterized by a basic probability of one must satisfy the condition of mono causality 

with respect to coal fires. This implies a zero decision rule uncertainty. A second class 

indicator can have two or more causes one of them being a coal fire. Decision rule 

uncertainty ranges between zero and one and the probability mass is reduced according 

to the number of plausible causes. Finally, a third class indicator rather constitutes a risk 

factor than a direct indicator and is assigned an fixed value of 0.25 for the probability 

mass. Table 5.1 shows the classification of the available data sets. 
 

Table 5.1: Classification scheme for coal fire relevant indicators used in this thesis 

 

 

 

 

 

 

 

 

 

 

 

 

The chosen approach helps to ensure transferability through equally weighting any of 

the possible causes as long as absence of priori knowledge about the abundance of the 

causes is assumed. 

 

fire nofire 

Class Evidence set BPA Evidence set BPA 

1- 
unambiguous 
indicator 

surface 
temperature data 1 Coal deposits 1 

2 - ambiguous 
indicator 

thermal 
anomalies, 
cracks 

0.5 
 

  

3 - weak 
indicator or 
indirect 
indicator 

longwall mining, 
mining activity 0.25 
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5.3.2 Assigning spatial probability functions to the datasets  

The following chapter deals with the spatial component of uncertainty. This 

component results in probability distributions the geometry of which was derived from 

expert knowledge. First, the physical relation between coal fires and the respective 

evidence features will be described for a given data set. Conclusions for the geometric 

characteristics of the probability distribution will then drawn in a second step. Finally 

the procedure to generate the input probability map for the Dempster-Shafer analysis 

from an evidence feature dataset will be highlighted. This procedure generally involved 

distance raster creation from the feature dataset and subsequent standardization of the 

distances to values ranging from the respective maximum probability to zero. In doing 

so, a specific fuzzy membership function was used expressing the respective geometric 

relation between indicator features and combustion zone. The prototype flow scheme is 

given in figure 5.3.  

The core geoprocessing functions mentioned in the following sections will be 

described in section 6.1.2. 
 
 

 
Figure 5.3: Flow scheme for probability map generation in ArcGIS ModelBuilder 

 

 

Cracks 

As a result of the combustion process mass is lost in the form of gaseous 

combustion products mainly carbon oxides. The emerging voids cause mechanical 

stress in the adjacent rock leading to collapse and subsidence of the overburden. 

Depending on the magnitude of the subsidence and the rock type, cracks can develop. 

As previously explained coal mining is another cause for subsidence related cracks. It is 

very difficult to distinguish between these two types of cracks on the Quickbird image 

without prior knowledge of the location of sub surface fires or mining activity. Cracks 
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were therefore considered as ambiguous indicator for the hypothesis „fire“ with a basic 

probability mass of 0.5.   

The schematic illustration in figure 5.4 shows the geometric relation between the 

subsurface fire front and its induced surface cracks. The maximum angle α enclosed by 

the plumb line between the fire front and top ground surface and the line connecting the 

fire front and the most distant crack in propagation direction of the fire front is 45° 

(ZYBELL, TU BERGAKADEMIE FREIBERG 2005 PERS. COMM.). Assuming a common fire 

depth of up to 75 m (GIELISCH, 2004) implies that the fire front can be located anywhere 

within 75 m distance around a given crack. Translated into probabilities, every crack is 

surrounded by a circular zone of 75 m where the probability for a subsurface fire to 

occur within a depth of 75 m is 0.5. As the occurrence of fires is assumed to decrease 

below depths of 75 m, so does the probability for a fire to be situated outside the 75 m 

zone. The probability map therefore comprises a 75 m buffer zone with a constant 

probability value of 0.5 and a linear transition zone of another 75 m where the 

probability value diminishes to zero. 

 
Figure 5.4: Geometric relation between the subsurface fire front and surface cracks 

 
The distance raster for the crack dataset was created with the Euclidean Distance 

Tool of Spatial Analyst in ArcGIS. It was then converted into a probability raster using 

the Spatial Analyst Single Output Map Algebra Tool. The conditions were : 

- for distance < 75 assign constant value of 0.5; 

- for 75 < = distance < 150 assign result of (distance - 150 / (- 150); 
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- for distance > = 150 assign constant value of 0.      

 

In the above as well as in the following map algebra syntaxes, distance denotes 

the cell value in the Euclidean distance raster generated from the respective input shape 

file. The corresponding map algebra syntax can be found in table A1 in the appendix. 

 
 

Temperature measurements at the surface 

Two mechanisms are responsible for the transport of energy produced by a 

subsurface fire to the surface: convective transport by the exhaust gases and conduction 

through the cape rock. Convection produces a strong thermal signal with very small 

spatial extent and is bound to cracks and funnels. Conduction is much slower and tends 

to produce a less distinct thermal signal with rather large area. For a given surface 

element temperatures significantly higher than those of the background are a clear 

evidence for the presence of a subsurface fire. Although the presence of a fire is not in 

doubt, the exact position of the combustion zone is more difficult to determine. 

Conclusions as to the position of the fire front can only be drawn from the magnitude of 

the temperature anomaly. Despite of low amplitude variations due to wind speed, wind 

direction and recent precipitation patterns (LITSCHKE, 2005; HIRNER, 2005 PERS. 

COMM.), fire depth is the factor with the strongest influence on the measured 

temperature anomaly. Thus, high temperatures are a strong evidence for a near surface 

fire with strong oxygen supply, whereas poorly expressed temperature anomalies point 

to a greater fire depth. Principally, the temperature data were assigned a basic 

probability mass for the hypothesis „fire“ of 1 which might strongly be modified 

according to the value of the recorded temperature, however.  

Determination of the probability distribution was based on the assumption that 

temperatures were mainly measured at cracks. Therefore, the geometric relationship 

between cracks and the combustion zone has to be true in general also for the 

temperature data. However, the magnitude of the anomaly yields some information on 

the fire depth to be considered. Since the fire depth controls the range where cracks can 

principally occur (figure 5.4) the probability emanating from a temperature 

measurement has to be modified according to the magnitude of the measured 

temperature. For example, cracks produced by fires close to the surface are restricted to 

a smaller radius around the combustion zone. Hence, for measurement points with high 
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temperatures the probability for the fire front to be located within close horizontal 

distance to this point approximates one. The probability mass is in a figurative way 

concentrated in a small area with high values around the point. The reverse conclusions 

can be drawn for low temperature observations: the fire front can now be assumed in 

greater depths and the probability that it is located exactly below the crack where the 

measurement took place decreases.  

Technically, the probability function comprised two components. A 75 m buffer 

zone with constant probability value of 0.75 and an adjacent transition zone of 75 m 

with decreasing probabilities takes into account the geometric relationship between the 

combustion zone and the cracks. The constant value of 0.75 reflects the fact that 

coincidence of a crack and a measured temperature anomaly is a stronger evidence for 

the presence of a fire than a crack alone. Moreover, an element was included that 

modifies the zone with constant value of 0.75 according to the measured temperature. 

That is depending on the temperature the probability emanating from a measurement 

point is enhanced or reduced within the initial zone boundaries, resulting in a final range 

between ~ 0.4 and 1 

The workflow for generating the probability map from temperature field data 

deviated from the general scheme. In detail, the following steps were included: 

- Creation of an Euclidean distance raster from the temperature data shape file. 

- Conversion of the Euclidean distance raster into a probability applying the 

following conditions map algebra 

o for distance < 75 assign constant value of 0.75; 

o for 75 < = distance < 150 assign result of (distance - 150 / (- 100); 

o for distance > = 150 assign constant value of 0.           

 

Note, that the same diameters as for the crack data were used, since most of the 

measurements took place at cracks!  

- Creation of a kernel density raster from the maximum temperature measured at 

each data point. The search radius was set to 200 m to ensure a smoothend 

distribution. Normalization of the density raster cell values to a range of 0 to1. 

- Summation of the density raster and the probability raster and normalization of 

the result to a range of 0 to 1 according to equation 20 to obtain the final 

probability raster. 
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The process is summarized in figure 5.5 
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Figure 5.5: Flow scheme for probability map generation from temperature data in ModelBuilder 

 

 

Thermal anomalies  

Thermal anomalies in the LS7 data result from energy flux to the surface induced 

by the subsurface fire source. However, other sources account for thermal anomalies, 

too. Of these non fire sources, solar heating and water surface effects can be quite 

efficiently reduced through employment of night time data and filtering (ZHANG, 2004). 

Not every non fire induced anomaly can be removed, however. This is especially true 

for urban or industrial heat sources which tend to display geometric properties similar to 

the one of a coal fire. Both constitute rather punctual sources with high heat 

concentration (e.g. industrial chimneys). Because of this ambiguity thermal anomalies 

were regarded as class 2 indicator for the hypothesis „fire“ with a basic probability mass 

of 0.5. 

Field studies on coal fires showed that anomalies produced by coal fires are 

mainly expressed as hot exhaust gas emissions at cracks (ZHANG, 2004). They 

commonly do not exceed some few meters distance from the crack, meaning that 

anomalies commonly cover sub pixel area on medium resolution satellite imagery. Yet, 

an anomaly with sub pixel area can theoretically only be detected if its temperature is 

large enough to raise the average temperature of the pixel above the detection threshold 
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of the sensor. This threshold is given by the sensor’s radiometric resolution, which can 

then be converted into a threshold temperature difference (VAN GENDEREN & GUAN, 

1997). For LS7 data it has been demonstrated that for an anomaly to be detected a 

temperature of 438 K (165 °C) and an area of 40 m² is necessary (ZHANG, 2004). 

Considering that during field campaigns anomalies were found to be rather small area 

implies that  

- anomalous pixels tend to represent very hot heat sources resulting from fires    

covering a much larger area underground and therefore  

- anomalous pixels tend to underestimate the real fire extent. 

 

Moreover anomalies consisting of more than one pixel were assumed to be caused 

by one coherent fire area.  Accordingly, the interior of the anomaly clusters was 

assigned a constant probability value of 0.5 on the probability map. Around the clusters 

a transition zone of 60 m corresponding to the size of one LS7 pixel with linear 

decreasing probability was generated to account for possible underestimation of the fire 

extent. 

Probability map generation for the thermal anomalies was based on Euclidean 

distance to the thermal anomaly clusters. The distance raster was converted into a 

probability raster through map algebra according to the conditions: 

- for distance = 0 assign constant value of 0.5; 

- for 0 < distance < = 60 assign (distance - 60) / (-120); 

- for distance > 60 assign constant value of 0. 

 

 

Longwall mining  

The goafs represent areas of high ignition risk. The longwall mining technique 

used in the Wuda Syncline leaves a solid layer of coal on the bottom of the exploited 

panels (GIELISCH, 2004), supplying the fuel for coal fires. Leftover coal debris from 

mechanical machining of the seam is especially prone to self ignition due to the small 

particle size and the corresponding high surface area (WALKER, 1999). Cracks 

developing attendant to subsidence serve as vents for the circulation of air thus 

accelerating spontaneous combustion. In summary, conditions for self ignition of coal in 

the goafs are ideal. Despite this, presence of goafs rather represents a fire risk indicator 
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than a direct fire indicator, the goafs were therefore classified as class 3 indicator with a 

basic probability mass of 0.25 for the hypothesis „fire“. 

 The area covered by the goafs was assigned a constant probability of 0.25. 

Around the goafs, a transition zone of 100 m with linear decreasing probability allows 

for the fact that fires might have spread to the surrounding unmined seam. Given a 

maximum propagation speed of a fire front of 40 m yr-1, (WESSLING, LEIBNITZ 

INSTITUTE FOR APPLIED GEOSCIENCE 2005 PERS. COMM.) the transition zone allows for a 

two and a half years long undetected spreading of a fire.  

The probability map was generated from the Euclidean distance to the mapped 

goafs using the below conditions: 

- for distance = 0 assign constant value of 0.25; 

- for 0 < distance < = 100 assign (distance - 100) / (- 400); 

- for distance > 100 assign constant value of 0.  

 
 
Mining Activity 

Mining activity is the prime precondition for underground coal fires in Wuda. It 

was discussed that inadequate mining techniques leaving solid coal and coal debris 

promote spontaneous combustion. In addition poorly sealed mine openings and 

ventilation shafts allow air circulation accelerating the self heating process and 

providing oxygen supply for the fire. Especially where information on the exact extent 

and location of the mined area underground is missing (which is the case for the private 

operated mining) mining activity features give a hint for enhanced fire probability. 

Since the mining activity data has to be considered as a risk factor rather than a concrete 

fire indicator, it was classified as a class 3 indicator and assigned a basic probability for 

the hypothesis „fire“ of 0.25. 

Most mining related surface infrastructure is located in close vicinity of the coal 

outcrops. The risk emanating from these features can only proceed in dip direction of 

the seams, since the fire can only burn into the seam. The zone of enhanced fire 

probability can only extend in the same direction. The probability for a fire emanating 

from a mining activity feature was assigned a constant value of 0.25 within a 100 m 

radius. Outside this buffer the probability decreases to zero within another 100 m, which 

is indicated by a linear fuzzy transition zone. Both zones only stretch into the dip 

direction of the coal seam. A radius of 100 m takes into account the common inability to 
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determine the exact position of the mining activities (e.g. the mine entrance or the cliff 

of the open cast mining). Moreover, the zones allow for subsurface features like mining 

tunnels departing from the entrance, which are not visible in the satellite data. 

In deriving the probability maps from mining features it had to be ensured that 

probability only propagates in direction of coal seams. To allow for asymmetrical 

propagation of distance the Cost Distance Function of Spatial Analyst (see appendix for 

details on this function) was used. The cost raster was generated manually by digitizing 

the outline of the outermost coal seam. The boundary polygon was then converted into a 

raster with the Feature to Raster Conversion Tool (see section 6.1.2 for details on this 

function) in the ArcToolbox. Because of the synclinal structure, the coal seams show 

centroclinal strike, which means that the seams extend towards the middle of the ear 

shaped syncline. The outermost seam then also outlines the boundary of the coal 

deposits. The raster obtained from the boundary polygon was reclassified using the 

Reclassify Function of Spatial Analyst with the interior of the syncline assigned low 

cost weight and the outside high cost weight to form the cost raster used in cost distance 

analysis. The resulting cost distance raster was finally converted into a probability map 

using the following conditions:  

- for distance < = 100 assign constant value of 0.25; 

- for 100 < distance < = 200 assign result of (distance - 200) / (- 400); 

- for distance > = 200 assign constant value of 0.   
 

 

Coal deposits 

Subsurface coal fires can only occur inside coal seams. Therefore, where the 

presence of coal deposits can be excluded, a zero probability for a coal fire can be 

assumed. Conversely, the presence of coal seams doesn’t imply the presence of a coal 

fire. Consequently, the distribution of coal was used as a class one indicator for the 

hypothesis „no fire“. Notably this implies a basic probability of one for this hypothesis 

being true where coal deposits are absent. 

  

 Determining the area of the coal deposits with the possibility to host coal fires 

involved three constants in addition to the mapped coal seam outcrops: 

- the strike which shows the centroclinal direction of a fold (GIELISCH, 2004) 
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- the fall (dip angle) of the seams which varies between 5 and 30° (GIELISCH, 

2004) 

- the maximum depth of 150 m coal fires can reach due to limited oxygen supply 

(JIA & SUN IN KÜNZER, 2005).  

The maximum horizontal distance (z) from the seam outcrops where fires can occur are 

obtained by  
 

)tan(
)(

dipangle
firedepthMAXz =                    (Eq. 19)  

 

 
Figure 5.6: Buffer zone around coal seam outcrops 

 
It was assumed that starting from a depth of 75 m fires are increasingly unlikely. Thus, 

a buffer zone of 850 m corresponding to a minimum dip angle of 5° and a depth of 75  

m was created around the seam outcrops with a zero belief in the hypothesis „no fire“. 

Adjacent to the buffer lies a transition zone with increasing belief in the hypothesis „no 

fire“ reaching a value of 1 at the distance of 1700 m corresponding to a minimum dip 

angle of 5° and a depth of 150 m.  

The same cost distance function already used for the mine activity data was 

employed to generate the distance raster. By applying the conditions given below the 

cost distances were then converted into probabilities. 
 

- for distance < = 850 assign constant value of 0; 
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- for 850 < distance < = 1700 assign result of (distance – 850) / 850; 

- for distance > 1700 assign constant value of 1.  
 

 

Table 5.2 sums up the indicators and the constraints limiting their prediction value for 

the given hypothesis. 
 

Table 5.2: Evaluation of indicators with respect to their prediction value for coal fires 

Indicator Constraints 

Temperature 

measurements 

enhanced surface temperatures prove the existence of a subsurface 

fire but give only limited hint about the actual fire location   

Thermal anomalies Thermal anomalies in LS7 data can have other causes than a fire 

Not every fire produces a thermal anomaly in LS7 data 

Cracks Cracks can also be caused by underground mining 

Not every subsurface fire produces cracks 

Longwall mining Subsurface fires often occur in the goafs, but they do not inevitably 

have to occur there 

Mining activity Most subsurface fires occur in the wake of mining activity, but 

mining activity doesn’t inevitably trigger fires  

Coal seams subsurface fires can only occur in coal seams 

  

 

5.4 Combining the evidence 

The probability maps expressing the evidence from the respective indicators were 

then combined according to Dempster’s original combination rule (equation 12). The 

orthogonal sum honours the rule that the sum of all BPAs must equal one anytime 

(LORUP, 1999). Only two maps can be combined at a time, additional maps are 

combined with the higher aggregated results in successive steps. The order of 

combination doesn’t play a role, since the combination rule is commutative (SHAFER, 

1976). Table 5.3 illustrates the procedure of combining two probability maps supporting 

the hypothesis „fire“. The assignable probability mass m per indicator is one. Hence, the 

remainder of m not assigned to the hypothesis „fire“ has to be allocated to the frame of 

discernment Θ, which represents the inability to make a decision for either of the 

hypotheses. The orthogonal sum implies successive multiplication of focal elements 
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which are subsets of Θ associated with nonzero values of m. To obtain the aggregated 

mass for the hypothesis „fire“, all products with a non empty set for the intersection of 

the hypothesis under consideration were summed, which is hinted in the last row of 

table 5.3. Practically, the probability maps were multiplied and the multiplication results 

summed using map algebra with the (prototype) syntax: 
 

support fire = [probability map A] * [probability map B] +  

(1 - [probability map B]) * [probability map A]  

+ (1 - [probability map A]) * [probability map B]           (Eq. 20)       
       

To calculate the difference (1 - [probability map]) a constant raster with the value 1 was 

generated using the Create Constant Raster Tool of Spatial Analyst. 
 

Table 5.3: Orthogonal summation of concurrent evidence. After (LORUP, 1999) 

Evidence A [fire] 

Orthogonal sum ⊕  m[fire] Θ = 1- m[fire] 

m[fire] [fire] · [fire] = A Θ · [fire] = B 

Θ = 1- m[fire] [fire] · Θ = C Θ  · Θ = D 

Evidence B[fire]

Maggr[fire] = A + B + C 

 

In calculating the final belief in the hypothesis „fire“, the aggregated probability maps 

for the hypothesis „fire“ had to be combined with the probability map for the hypothesis 

„no fire“ resulting from coal distribution data. These two probability maps represent 

conflicting evidence, therefore normalization according to equation 12 was needed. 

Computation of the resulting belief map is illustrated in table 5.4. 
 

Table 5.4: Orthogonal summation of conflicting evidence. After (LORUP, 1999) 

Evidence A [fire] 

Orthogonal sum ⊕  M[fire] Θ = 1- m[fire] 

M[nofire] [fire] · [nofire] = A Θ · [nofire] = B 

Θ = 1- m[nofire] [fire] · Θ = C Θ  · Θ = D 

Evidence B 

[nofire] 

Belief[fire] = C/(1-A) 

Belief[nofire] = B/(1-A) 

 

The general map algebra syntax was: 
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belief fire = (1 – [coal probability map]) *  

[final probability map fire] / (1 – [coal probability map] *  

[final probability map fire])                                                  (Eq. 21) 

   

The denominator in equation 27 the term after the minus is k, the degree of conflict. 

Generating the final belief map for the hypothesis „no fire“ required combining 

the aggregated probability map for the hypothesis „fire“ and the probability map for the 

hypothesis „no fire“. According to the last row of table 5.4 computation employed the 

map algebra syntax:  

 

Belief nofire = (1 – [final probability map fire]) *  

[coal probability map] / (1 – [coal probability map] *  

[final probability map fire])                               (Eq. 22)        

 

The plausibility and belief interval maps were then calculated according to equations 9 

and 10. The syntaxes can be viewed in table A.1 in the appendix and are not listed here. 

Figure 5.7 sums up the work flow for Dempster- Shafer analysis within this thesis. 
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Figure 5.7: Flow model for implementing Dempster-Shafer Analysis 
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5.5 Vector versus raster format 

In general, two types of data models are distinguished for representing spatial data 

in GIS: vector and raster. Data sets in vector format are entities represented by multiple 

pairs of coordinates while one coordinate tuple/triple represents one point. By 

connecting points, lines can be generated, thus a line in vector format is represented by 

a number of coordinate tuples/triples along its length. Polygons can be generated by 

connecting the line back to the starting point. A set of coordinates at the corners of the 

polygon defines its spatial component. In the geo relational model each of the objects of 

a vector layer has a unique identifier which points to its attributes stored in an attached 

table. In the geodatabase model objects are stored as rows of a table containing their 

spatial and thematic attributes. The objects stored in vector format have a definite 

spatial relation denoted as topology, which allows spatial analysis on geographical data. 

Data sets in raster format are stored in a two-dimensional matrix of uniform grid 

cells or pixels. These pixels are usually square or at least rectangular. In the raster data 

structure the only topology is cell adjacency. The value of each pixel represents the 

thematic information at a given location. Due to the fact that each pixel represents only 

one value, the resolution of the provided information depends on the cell size of the 

raster image. 

The vector model undoubtedly has its strength in representing discrete real world 

objects. For representing continuous phenomena such as elevation or distance, the raster 

model is commonly chosen. The probabilities as well as beliefs and plausibilities of 

Dempster-Shafer are a continuous phenomenon, for they are functions of the distance to 

the features indicating a hypothesis. Therefore, a raster based approach was considered 

most suitable for generating fire probability-, belief, plausibility and belief interval 

maps. 
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5.6 Handling multi source and resolution data 

The incorporated data was derived from sources with different scale and spatial 

resolution (table 5.5). For the satellite data the spatial resolution, which is the sensor 

resolution, as well as the geometric accuracy can be estimated. The latter is derived 

from the Root Mean Square Error (RSME) during geometric image correction. For the 

map derived data the spatial resolution was approximated by the scan resolution. The 

spatial resolution of the field data was estimated based on the geometric accuracy of the 

used GPS. 

 
Table 5.5: Metadata for the indicators used in this thesis 

Dataset Source Spatial 
Resolution/

Geometric 
accuracy 

Date 

Temperature 

measurements 

Handheld infrared 

radiometer 

georeferencing by GPS  

 

10 – 20 m 2005 

Thermal 

anomalies  

Landsat 7 ETM+  TIR 

band 

60 m < 30 m 2003 

Cracks Quickbird panchromatic 

channel 

0.6 m < 2 m 2003 

Mining Activity Quickbird panchromatic 

channel 

0.6 m < 2m 2003 

Longwall mining 

activity 

Analogue map 1: 10000 ~1 m 
unknown ~ 2000 

Coal seams Analog map 1: 10000 ~1 m unknown ~ 1980 

Known fire areas 

Synthesis from spatial 

photography, 

temperature 

measurements and 

borehole drillings 

georeferencing by GPS 

 

10 – 20 m 2004 

 

Geological and mining maps were available as photocopies from the original maps in 1: 

10000 scale. Given a scan resolution of 300 dpi the resolution of the fotocopy can be 

estimated by  

 

10000 cm / (300 lines / 2.54 cm) = 0.85 m line-1  
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Thus the coal seam and longwall mining data can be assumed to have a spatial 

resolution of about 1 m. The pocket GPS used to georeference temperature 

measurements has a geometric accuracy of 10 m to 20 m given an advantageous 

geometric constellation of satellites (http://www.garmin.de/Produktbeschreibungen 

/iQue3600.php) (12.04.06). This was assumed to be the spatial resolution range for the 

surface temperature field data. The cracks and mining activity data as well as the 

thermal anomaly data have a resolution according to the sensor resolution of 0.6 and 60 

m, respectively. The geometric accuracy was < 2 and < 30 m, respectively (KÜNZER, 

2005) 

The target resolution depends on both, the scale and resolution of the incorporated 

data and the application scale. For an application of the algorithm in the context of a 

regional to larger scale monitoring strategy a spatial resolution of 100 m would be 

reasonable for two reasons: first, satellite imagery is likely to constitute the only source 

to derive fire indicators from and second, probability maps with this resolution would 

be a sufficient basis for the coordination of fire extinguishing activities in the field. 

Once a fire is pinpointed in the field with an accuracy of around 100 m the exact 

location can quickly be determined by borehole drillings. More often, the fire can 

already be located by means of its physical signs at surface. However, in the at hand 

case study the extensive fine resolution data base and the local scale of the study area 

justify a fine target resolution. To demonstrate the capability of the algorithm to 

reproduce known fire areas in the study area a resolution of 10 m was considered a good 

compromise within the resolution range of the available data and sufficient to resolve 

the shape of all fires.  

 

 

5.7 Spatial reference 

Assigning one standardised geographical reference to a set of different data layers 

in a GIS is the precondition for establishing topology between features of the different 

layers. This in turn is the basis for all inter - layer spatial analysis. As reference for all 

input, intermediate and output data, the Quickbird scene of the study area was chosen. 

The projection parameters are: 

Coordinate system: WGS_84_UTM_Zone_48_North 

False easting:  500000 
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False northing: 0 

Central meridian: 105 

Scale_Factor:  0.9996 

Latitude of origin: 0 

Datum:  D_WGS_1984 

Linear unit:   1 meter 

The input shape files were projected manually using the Feature Projection tool in the 

Arc Toolbox. The output raster maps were assigned the coordinate system specified in 

the input dialog of the application. 

 

 

5.8 Summary 

It was demonstrated that determination of coal fire probability can be viewed as a 

decision problem that can be effectively handled by the logic of DST. Based on general 

considerations on uncertainty modelling in spatial data, the procedure of transferring 

DST to coal fire probability modelling was described. First the frame of discernment 

was defined, which consisted of the hypotheses “fire” and “no fire”. Basic probabilities 

were then assigned to the datasets in a knowledge-driven approach considering the 

degree to which the indicator points to the supported hypothesis. Third, probability 

maps were generated for the datasets incorporating expert knowledge on the geometric 

relationship between the evidence features and the fire front. Finally, probability maps 

were combined according to Dempster’s rule. The output maps were assigned a cell size 

of 10 m and projected in UTM WGS 84 coordinates. 
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6. Implementation 
The Dempster-Shafer algorithm was implemented in an integrated ESRI ArcGIS 

and Visual Basic .NET (VB.NET) environment. It was distributed as standalone 

executable to be run in an ArcGIS 9.x / Windows XP environment. 

 

 

6.1 Software used 

6.1.1 ArcGISTM 9.1 Spatial Analyst  

Software ArcGIS 9.1 of ESRI was used as GIS environment since this is the 

standard GIS software at DFD. LORUP (1999) has already demonstrated the potential of 

the predecessor software, ArcView GIS, to model DS beliefs and plausibilities. ArcGIS 

offers a rich set of tools to compile, author, analyze, map and visualize information with 

spatial reference. 

The Spatial Analyst extension for ArcGIS is designed to perform spatial 

operations on raster data sets. It can be accessed via loading the extension into the 

ArcMap menu or via the Arc Toolbox Spatial Analyst functions. The main functions 

integrated in the application are described below. 

 

Euclidean Distance Analysis 

The Euclidean distance function calculates the distance from each cell in the raster 

to the closest source. The output raster cells are assigned the value of this calculated 

straight line distance in projection units of the raster to the closest specified source. 

Both, raster and vector files are accepted as source files. The distance is measured from 

cell centre to cell centre. 

 

Cost Distance Analysis 

The cost distance function is similar to Euclidean distance function, but instead of 

calculating the actual distance from one point to another, the cost functions determine 

the shortest weighted distance (or accumulated travel cost) from each cell to the nearest 

member in the set of source cells or features. The weighted distance functions use cost 

units instead of geographic units. Two input parameters are required: the cost raster 

provides the weight values for the raster cells; the source file provides the raster cells or 
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features constituting the source. On the output raster each cell is assigned the 

accumulative cost to the closest source cell or feature. For a detailed description of the 

algorithm the reader is referred to the ArcGIS Desktop help. 
 

Kernel density analysis 

Kernel density calculates the density of features in a circular neighbourhood of 

defined radius around each output raster cell. Conceptually, the kernel density function 

fits a smoothly curved surface over each feature. The surface value is highest at the 

location of the feature, and diminishes with increasing distance from the feature, 

reaching 0 at the search radius distance from the feature. The volume under the surface 

equals the population field value for the feature, or 1 if no population field is specified. 

The bigger the search radius the smoother the kernel density surface, for the field value 

for each feature is spread over a wider area. The density at each output raster cell is 

calculated by adding the values of all the kernel surfaces where they overlay the raster 

cell centre. Kernel density analysis can be operated on both, point and line features. 

  

Map Algebra Analysis 

Map Algebra is the language to perform mathematical operations, conditional 

statements, and local, focal, zonal, global, and application functions on raster data. The 

building blocks for the Map Algebra language are objects, actions, and qualifiers on the 

actions. Objects either store information or are values. They are inputs for computation 

or can be storage locations for output. Actions that can be performed on input objects 

are operators and functions. Operators perform mathematical computations within and 

between input objects. The set of operators is composed of arithmetical, relational, 

boolean, bitwise, logical operators and combinatorial operators. Functions allow for 

analysis in different spatial domains. Local functions pertain to a single raster cell and 

include e.g. trigonometric, algebraic or statistical functions. Focal functions manipulate 

the value of a raster cell dependent on the values of a defined neighbourhood. Zonal 

functions perform analysis on disjunctive raster cells with defined common value.  

Global functions calculate values for a raster cell based on full raster context. Euclidean 

distance is an example for a global function. Application functions are developed for 

specific tasks such as hydrologic modelling. Qualifiers are parameters that control how 

and where an action is to take place. A detailed description of the map algebra 

functionality can by found in the ArcGIS desktop help. 
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The Spatial Analyst functions described were incorporated in the code by 

referencing ESRI ArcObjects libraries.  

 

 

6.1.2 ArcObjects TM 

ArcObjects is the development platform for the ArcGIS familiy of applications. It 

is based on Microsoft Component Object Model (COM) technology. ArcGIS 

geoprocessing functionality can be accessed and integrated into any COM-compliant 

programming software.   

Geoprocessing functionality provided by ArcObjects was used as building blocks 

of the Dempster-Shafer analysis tool developed in this thesis. 

 

 

6.1.3 Visual Basic 2005 Express Edition TM and Visual Basic .NET 

Visual Basic 2005 Express Edition is the latest release of Microsoft’s 

programming environment for the programming language VB.NET. VB.NET has 

evolved from its predecessor Visual Basic to obtain full object orientation. It is now one 

of the languages supported by the Microsoft .NET framework.  The .NET framework 

2.0 is the implementation of the Common Language Infrastructure standard by  

Microsoft. It consists of a runtime environment (the Common Language Runtime CLR) 

and a set of class libraries (the Framework Class Library). The CLR is capable of 

compiling and executing code written in different languages, such as C++, C# and Java.  

A free trial version of Visual Basic 2005 Express Edition was used to write code 

implementing the Dempster-Shafer algorithm.  

 

 

6.2 Description of the Dempster-Shafer analysis tool  

The tool performs Dempster-Shafer belief modelling on specified input data. In a 

simple graphical interface the user is asked to specify the data sets to be incorporated in 

the analysis by providing their file names and paths. Only ESRI Shape format is 

accepted.  Crack and anomaly data are mandatory input. Any of the other data sets are 
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optional. Moreover, the user is asked to specify the output extent, the output projection 

and the output directory. 

The assignment to one of the two hypotheses “fire” or “no fire” as well as the 

respective basic probability mass is preassigned in the code. However, the user can 

change the geometry of the probability distribution in a configuration file in .txt format 

containing the diameters of the buffer and transition zones and the output cell size in a 

defined order. 

 

 
Figure 6.1: Graphical user interface 

 

The application is structured into form modules, controller modules and a function 

module. The form modules collect the input information. The controller modules test 

for the input made by the user and determine the program flow accordingly. The 

function module performs distance analysis, map algebra operations, raster creation and 

data management operations. Its functions are called from the form or controller 

modules passing in specific variables. Thus modularity of the code is assured. Table 

A.1in the appendix lists the core spatial analyst functions. Data management functions 

include check for availability of Spatial Analyst licence, conversion to permanent raster 
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files and an overwriting function in case a file with the specified name already exists in 

the directory. 

All intermediate files that is the distance-, probability-, belief-, plausibility- and 

belief interval maps are written to the specified output directory. Figure 6.2 resumes the 

basic program flow. 

Data Input

Create 
constant raster,

anomaly probability raster,
crack probability raster

Combine all
support „fire“

Create 
temperature 

probability raster
[Yes]

Temperature file 
has been 
specified ?

[No]

Longwall 
polygon file 
has been 
specified ?

Create Long
wall probability 

raster[Yes]

[No]

Mining 
activity file 
has been 
specified ?

Create mining 
activityprobability 

raster[Yes]

Combine all 
support „fire“

Combine all 
support „fire“ 

Combine all 
support „fire“ 

[No]

Coal file 
has been 
specified ?

Create coal 
probability 

raster

Calculate 
belief „fire“,

belief „no fire“

[Yes]

[No]

Calculate 
plausibility „fire“,

plausibility „no fire“,
belief interval „fire“,

belief interval „no fire“

 
Figure 6.2: Program flow in UML notation 

 

 

6.3 Summary 

ArcGIS 9.1 was used as GIS environment to implement raster based DS belief 

modelling. Spatial Analyst, an extension for ArcMap provided raster based 

geoprocessing functionality incorporated in code development. The functions were 

embedded into the code by referencing the respective ArcObjects 9.1 components. The 

code was written in VB.NET using the Visual Basic 2005 Express Edition developing 

environment.  
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The application generates probability maps from fire indicators specified by the 

user, as well as belief-, plausibility and belief interval maps for the hypotheses “fire” 

and “no fire”. The resulting maps are written out as ESRI grids. 
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7.  Results and discussion 

7.1 Probability maps 

Figure 7.1 shows the probability maps for the 6 selected indicators. Increasing 

probability for the respective hypothesis to be true is visualized through increasingly 

dark colour. The respective input feature data is superimposed to demonstrate the 

geometry of the probability function. On the maps supporting the hypothesis “fire” 

(figures 7.1 A to D and F) probability is decreasing with increasing distance from the 

features. On the map derived from coal seam distribution probability increases with 

distance, since this data set is supporting the hypothesis “no fire” (Figure 7.1 E).  

A closer look on the probability map generated from field temperature 

measurement (detail frame in Figure 7.1 B) reveals the effect of the kernel density 

function.  The initial buffer is marked by the medium grey zone with constant diameter. 

Within this zone, darker areas mark higher probability for a fire as suggested by clusters 

of high values in the temperature data. Zones of brighter grey values mark lower 

probability corresponding to lower magnitude for the measured temperature. 

The detail frames in figures 7.1 E and F highlight the effect of the cost distance 

function. Since the boundary of the coal deposits is outlined by the outermost coal seam 

outcrop, the probability for the hypothesis „no fire“ provided by the coal seam 

distribution increases within short distance outside this seam (Figure 7.1 E detail 

frame). In contrast, in direction of the strike, the buffer and transition zones are much 

broader. The same is true also for the mining activity features. A major part of mining 

activity is found along the outcropping seams. Fire probability emanating from these 

features also abruptly decreases outside the outermost outcropping seam (Figure 7.1 F 

detail frame).  

Comparison with the mapped coal fires (Figure 7.1 G) shows that except for the 

field temperature measurements, the single indicators do not reflect location and extent 

of the fire zones in the study area.   
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Figure 7.1 : Probability maps derived from crack data (A), field temperature measurements (B), 

thermal anomalies (C), longwall mining data (D), coal seam distribution (E) and mine activity 

data (F). Location of known fires 2004 (G) 



 7.  Results and discussion 

56 

7.2 Dempster-Shafer analysis results 

In the following section the results of DS analysis are presented. It was discussed 

in chapter 3.2.1 that Dempster’s original combination rule is known to yield unexpected 

results in the case of highly conflicting evidence. When the degree of conflict converges 

to one, the term (1 - k) in the denominator of equation 12 converges to zero and the 

orthogonal sum doesn’t exist. Figure 7.2 shows the distribution of k. It is obvious that 

conflict only occurs outside the syncline as a result of contradictory evidence from coal 

and thermal anomaly data. On one hand absence of coal deposits within 150 m below 

top ground surface strongly suggest rejection of the hypothesis „fire“, on the other hand 

occurrence of thermal anomalies implies a contradictory probability that this hypothesis 

might be true. In this case contradiction is presumably due to anthropogenic heat 

sources causing the thermal anomalies in the TIR Band of LS7.  

However, in a two hypotheses decision problem under the assumption of 

ignorance, Dempster’s rule yields reasonable results in any but the case of complete 

contradiction. This is demonstrated in table 7.1, which shows the result for belief in the 

hypotheses “fire” and “no fire” for various hypothetic conflict situations. The 

conflicting belief masses for a given raster cell are found in the outer row and column. 

The complement to 1 is assigned to the frame of discernment (not shown). The inner 

rows and columns give the results with the belief “no fire” in the upper right and the 

belief “fire” in the lower left of each field. 
 

Table 7.1: Results for belief in both hypotheses under various degrees of conflict 

m(no fire) Bel(No Fire)  

Bel(Fire) 0,5 0,9 0,99 1,0 

0,5 0,333

0,333 

0,818

0,091 

0,980

0,010 

1 

0 

0,9 0,091

0,818 

0,474

0,474 

0,908

0,083 

1 

0 

0,99 0,010

0,980 

0,083

0,908 

0,497

0,497 

1 

0 

m(fire) 

1,0 0 

1 

0 

1 

0 

1 

Not def. 

Not def. 
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To conclude, Dempster’s original combination rule will deliver reasonable results 

estimating coal fire probability for the degree of conflict within the data for the study 

area. 
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Figure 7.2: Degree of conflict in the study area 

 

 

7.2.1 Belief in the hypothesis „fire“  

All maps shown in the upcoming chapters are displayed using the same colour 

ramp and the stretch type “histogram equalize” to allow for comparability. Figure 7.3 

shows the belief map for the hypothesis „fire“. It was explained in section 3.1.3 that 

belief denotes the accumulated evidence for the hypothesis „fire“. The map shows 

distinct zones of strong belief in the presence of a subsurface fire in good agreement 

with known fire locations. The year 2004 status of the fire extents is marked by red 
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polygons. Except for fire 10 each of the known fires is reflected as a zone of strong 

belief. More over, in the case of large area fires such as fires 7, 8, 11 and 12, the area is 

largely reproduced by the shape of the calculated local belief maxima. In particular, 

high belief magnitude is found in the vicinity of fires 3, 8, 11, 12, 18, which is in perfect 

agreement with findings from field visits in 2004 and 2005. Visible and sensible signs 

for intense fire activity were then reported for fires 11 and 12, the former of which was 

not accessible due to heat production and danger of collapse of the overburden (HIRNER, 

2005 PERS. COMM.). 
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Figure 7.3: Belief map generated for the the hypothesis „fire“ 
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The detail view of fire 12 illustrates the inherent character of the Dempster-Shafer rule 

of combination to reinforce belief in a hypothesis in the case of concurrent evidence. 

Here, evidence deriving from the presence of cracks, high surface temperatures and 

thermal anomaly expression in the LS7 TIR band each strongly indicate the presence of 

a subsurface fire. In the centre of the year 2004 outline of fire 12 they overlap to form a 

local “hot spot” of believe. 

 

 

7.2.2 Belief in the hypothesis „no fire“ 

Since evidence for the hypotheses „fire“ and „no fire“ is spatially disjoint, 

combination of the conflicting pieces of evidence doesn’t modify the initial belief in the 

hypothesis „fire“ given by the coal distribution data. Hence, the belief map is identical 

with the probability map for the coal distribution data (figure 7.1 E), showing high 

belief outside the outermost outcropping seam of the syncline and zero belief in the 

interior of the syncline. The zero belief inside the syncline has to be interpreted as 

inability to make any statements concerning the absence of coal fires. Notably, this 

doesn’t automatically imply a high belief in the presence of a fire in this area.  
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Figure 7.4: Belief map generated for the hypothesis „no fire“ 

 

7.2.3 Plausibility for the hypotheses „fire“ and „no fire“ 

Figures 7.5 and 7.6 show the plausibility maps for the hypotheses „fire“ and „no 

fire“, respectively. As already discussed, the plausibility represents the grade to which a 

hypothesis cannot be rejected.  

The only evidence which allows for a rejection of the hypothesis „fire“ is given by 

the distribution of coal seams. However “fire” can only be rejected where coal deposits 

are absent, that is outside the syncline. Inside the syncline evidence neither for nor 
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against the presence of a fire can be inferred from presence of coal deposits. 

Mathematically, plausibility is the remainder after subtracting the belief map for “no 

fire” from a constant raster with value 1. The plausibility map „fire“ therefore 

constitutes the complement to the belief map „no fire“, exhibiting constant high values 

inside the syncline and zero values outside the outermost coal seam outcrop. 

Conversely, the plausibility for the hypothesis „no fire“ is complementary to the belief 

map „fire“ meaning that high plausibility for „no fire“ corresponds to low belief in 

„fire“ and vice versa. 
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Figure 7.5: Plausibility map generated for the hypothesis „fire“ 
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Figure 7.6: Plausibility map generated for the hypothesis „no fire“ 

 

7.2.4 Belief interval maps for the hypotheses “fire” and “no fire” 

The belief interval maps for both hypotheses are shown in figures 7.7 and 7.8. It is 

striking that on the belief interval map „fire“, lowest values are found inside as well as 

outside the syncline. Minima inside the syncline correspond to local maxima on the 

belief map “fire”. This is due to the fact that uncertainty about the hypothesis „fire“ is 

zero where strong evidence points to the presence of a fire. Uncertainty about the 

hypothesis „fire“ also adopts zero values if both, the corresponding belief and 
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plausibility are zero, which is the case outside the syncline. A zero belief interval 

outside the outermost seam outcrop indicates the lack of direct evidence for the 

presence of a fire concomitant with the presence of undoubted evidence for the absence 

of a fire.  
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Figure 7.7: Belief interval map generated for the hypothesis „fire“ 

 

It is further remarkable that the belief interval map „no fire“ is identical to the one 

for the hypothesis „fire“. Here, zero uncertainty outside the syncline result from 

maximum values in the corresponding belief and plausibility maps. Maximum values of 

belief result from direct evidence through the absence of coal deposits. Maximum 
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values of plausibility are due to the fact that evidence to reject the hypothesis „no fire“ 

outside the syncline is zero.  In contrast, low uncertainty inside the syncline coincides 

with strong belief for „fire“. This is comprehensible given that both, the belief and the 

plausibility for „no fire“ must be low where the presence of a fire is very likely.  
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Figure 7.8: Belief interval map generated for the hypothesis „no fire“ 
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7.3 Sensitivity Analysis 

To predict the performance of the DS algorithm when applied to transfer areas it 

is substantial to identify the key indicators for its capability to detect subsurface coal 

fires. In this context the contribution of indicators with critical availability is of 

particular interest. For transfer areas, the data base is very likely to be less 

comprehensive. In particular, field data such as temperature measurements, coal seam 

distribution and extent of goafs, as well as geological and fire related expert knowledge 

might not be available. Indeed, a more realistic scenario is to assume that only satellite 

derived data such as thermal anomalies, cracks, mine activity along with some 

geological field data (e.g. the range of coal deposits) will be available for fire 

probability analysis. Focus on the contribution of field temperature measurements as 

indicator was suggested by an additional reason. Since a considerable number of 

measurements were made at known fire locations, it was not possible to test the results 

of the algorithm against data from a truly independent source whenever temperature 

data were included.  

But not only the data base will differ from the one used in this case study, 

different geological and mining related conditions might also require an adjustment of 

the geometric constants used in the spatial probability functions. This pertains to the 

geometric relations between the combustion zone and surface cracks as well as to the 

maximum depth of coal fires and the sedimentology of coal seams. 

In the sensitivity analysis performed within this thesis, the influence of the 

incorporated data sets was evaluated by means of creating belief maps for different 

transfer scenarios with varying data input. In doing so, the respective data set under 

consideration and additionally the field temperature data set were omitted at a time. In 

addition, test runs with modified probability functions were carried out. Influence on the 

detection capability of the algorithm was defined based on the degree to which known 

fire areas are reflected by spatially congruent and distinct belief maxima on the belief 

map for the hypothesis „fire“. To quantify the influence, difference images were created 

from the resulting belief maps given full data input and incomplete data input, 

respectively. The absolute differences were preferred to percentage differences to avoid 

misleading high percentages resulting from changes at locations with low initial belief 

values. The maps discussed in the following sections refer to the belief in the hypothesis 

„fire“. 
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7.3.1 Transfer scenario: sparse or no field temperature data 

To investigate the influence of the temperature data, a random selection was 

generated comprising 1/8 of the initial measurement points. The free extension Hawth’s 

Analysis Tools for ArcGIS 9.x was used for generating the selections. (download from 

http://www.spatialecology.com/htools (29.11.05)) 

Figure 7.9 A shows the belief map as resulting from employment of the randomly 

selected temperature data points. It is striking that the area of the local belief maxima 

has decreased distinctively, which results in the extent of these fires being poorly 

reflected. This is true in particular for fire 8, the lower part of which is not covered. The 

fire zones 6 a, 7, 10 and 12 in contrast are not represented by distinct maxima at all. The 

difference map (Figure 7.9 B) shows loss of belief in the vicinity of all fires. Observable 

belief gains on this map are due to internal effects of the kernel density function. If all 

temperature data is omitted, changes are even more pronounced (figures 7.9 C and D). 

Maximum belief values are below one and extensive loss of belief occurs in the range of 

virtually all known fires. With decreasing maximum probability values separability of 

the fires from their background is deteriorating significantly.  Most of the known fires 

fall into a wide range zone with moderately enhanced probability, which is interspersed 

with local maxima resulting from thermal anomalies.  

Altogether, field temperature data is a crucial indicator for the detection capability 

of the algorithm. Without these data, some fires are not reproduced in their full extent or 

even not detected at all in the study area. Thus, in the related transfer scenario, a 

considerate number of fires will not be detected. More over, the extent of fires might be 

underestimated. 
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Figure 7.9: Belief maps employing 12.5% of the intial temperature data points (A) and for missing 

temperature data (C). Difference rasters for the respective belief map and the belief map 

given full data input (B and D) 
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7.3.2 Transfer scenario: no LS7 ETM+ thermal anomaly and field 
temperature data 

Figure 7.10 A and B show the belief and difference maps for the hypothesis „fire“ 

when both, the anomaly data and the temperature data are missing. The known fires are 

contained within a widespread zone of moderately enhanced probability due to 

cumulative belief from crack, mine activity and long wall mining data. Although cracks 

constitute a direct fire indicator, they prove to be rather unspecific with respect to 

spatial extent. Hence, individual fires are not separated from their background. Looking 

at the difference map, the combined contribution of the anomaly and temperature data 

becomes even more evident: the loss of belief in the hypothesis „fire“ is predominantly 

concentrated on the area of the known fires. It can therefore be concluded that thermal 

anomalies, apart from the temperature data, constitute the indicator with the highest 

contribution to the capability of the algorithm to detect fires. 

In a transfer scenario with both data sets missing, the algorithm will most 

probably not be capable to locate existing fires. Belief maps based on this database 

express fire ignition risk rather than probabilities for existing fires.  

 

 

7.3.3 Transfer scenario: no crack and field temperature data 

The belief map in Figure 7.10 C was created omitting temperature and crack data. 

It is obvious, that the crack data contributes extensively in the range of medium to high 

belief. The remaining belief resulting from longwall mining and mine activity data only 

form a background of weakly enhanced belief. Known fires are reproduced as local 

belief maxima only where thermal anomalies coincide with the area of these fire. Thus 

fires 3, 5, 11 and 12 and parts of fire 8 and 10 can still be identified on the belief map, 

whereas fires 6, 7, 12, 14 and 18 are not detected at all. It is also questionable if the full 

extent of fire 8 would be discerned during field inspection. Likewise, the difference map 

(figure 7.10 D) shows that the combined loss of belief through exclusion of crack and 

temperature data is rather large in area, with some local maxima in the range of the 

known fire areas.  

In summary, cracks are not crucial with respect to fire detection. In a transfer 

scenario where crack and field temperature data are absent, fire detection hinges on the 
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thermal anomaly data, which might allow for detection of fires with strong thermal 

expression at surface.  
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Figure 7.10: Belief maps for missing thermal anomaly and temperature data (A) and for missing 

crack data plus temperature data (C). Difference rasters for the respective belief map and the 

belief map given full data input (B and D) 
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7.3.4 Transfer scenario: no longwall mining or mining activity and field 
temperature data 

The belief maps (figures 7.11 A and C) show that both datasets do not contribute 

significantly to the fire detection capability of the algorithm. Regardless of which data set is 

omitted, it is the thermal anomalies that allow for a reproduction of some of the known fire 

areas, in particular fires 3, 5, 11 and 12. Fires 6, 7, 12, 14 and 18 are not detected and only 

small portions of fires 8 and 10 are reproduced. Belief loss is predominantly low with maxima 

(figures 7.11 B and D) due to the lack of temperature data.  Again, thermal anomalies account 

for the detection capability in the underlying transfer scenario implying that fires with weak 

thermal surface expression might be ignored.  
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Figure 7.11: Belief maps for missing longwall mining and temperature data (A) and missing mine activity 

data and temperature data (C). Difference rasters for the respective belief map and the belief map 

given full data input (B and D) 

 

 

7.3.5 Transfer scenario: no coal seam and field temperature data 

The maps in figures 7.12 A and B were generated without the coal seam distribution 

and the field temperature data. The belief map „fire“ is not shown, for exclusion of the coal 

data set doesn’t modify the belief in this hypothesis. This is due to the fact that evidence for 

the hypothesis „fire“ and “no fire” is spatially disjoint. Belief „no fire“ is zero, since coal data 

constitutes the only evidence for this hypothesis. Consequently, plausibility for the hypothesis 

„fire“ is one, since the plausibility is constrained by the belief in the counter hypothesis, “no 

fire”. The plausibility map „no fire“ differs from the one given full data input only due to the 

missing temperature data. Noteworthy differences concern the belief interval maps. 

Comparing the respective maps for included (figures 7.12 C and D) and omitted (figures 7.12 

A and B) coal seam distribution data, it becomes evident that the coal seam data reduces 

inconclusiveness outside the outermost outcropping coal seam. If evidence from the coal seam 

distribution is missing the belief interval for both hypotheses equals one in acknowledgement 

of the fact that evidence for neither of the hypothesis is present outside the syncline.  
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Figure 7.12: Belief interval maps for missing coal seam distribution and temperature data for the 

hypothesis „fire“ (A) and the hypothesis „no fire“ (B) compared to the corresponding belief interval 

maps given full data input (C and D) 
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Of course, conclusions drawn from the study area are not particularly significant for 

transfer areas, since evidence for and against the hypothesis “fire” might not be spatially 

disjoint. Incorporation of information on coal deposit distribution in this case will modify 

belief in the presence of a fire, which will be discussed in the next section. 

 

 

7.3.6 Transfer scenario: different geometric constants 

Figure 7.13 A shows the resulting belief map for the hypothesis „fire“ given a 

maximum fire depth of 75 m (initial value 150 m) and bisected zones of enhanced probability 

around mining activity and longwall mining features (initial value 100 m). The position of 

existing fires is rendered by belief maxima, while the extent of the fires, in particular that of 

fires 6, 7 and 8 is reproduced significantly worse. It can therefore be concluded that variation 

of the geometric constants has a considerable influence on the capability of the algorithm to 

estimate fire extents. This implies that although retrieval of the fire extent is limited, 

localization of fires will not be significantly be impeded in the given transfer scenario. 
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Figure 7.13: Belief map for the hypothesis „fire“ under the assumption of a maximum fire depth of  75 m 

(A) and difference to the initial belief map when a maximum fire depth of 150 m is assumed (B). 
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Figure 7.14 A shows the belief map when dip angles of the seams steeper than 20° are 

assumed. This implies a reduction of the zero probability and transition zones for the 

hypothesis “no fire” to ~ 400 m (initial value 1700 m) around the coal seam outcrops. 

Conversely, the zone with zero belief for the hypothesis “fire” extends further into the 

syncline. Conflicting evidence now occurs inside the syncline as indicated by the blue (zero 

value) areas in figure 7.14 B. Belief “fire” less than one is in a figurative way absorbed by 

coinciding probability of 1 for the absence of a fire (see also table 7.1). If probability for the 

absence of a fire is not zero, the belief in the hypothesis “fire” is reduced accordingly. In the 

transfer scenario the coal data is likely to differentiate belief distribution by locally weakening 

belief in the hypothesis “fire” and to confine the area to be searched for fires. 
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Figure 7.14: Belief map for the hypothesis „fire“ under the assumption of a maximum fire depth of  150 m 

and a shallowest dip angle of ~ 20° (A) and difference to the initial belief map (B). 

 

 

7.3.7 Most probable transfer scenario 

Figure 7.15 shows the resulting belief map for missing field temperature and longwall 

mining data. This was argued to be the most probable transfer scenario. Fires 3, 5, 11, 12 and 
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small parts of fires 8 and 10 are detected, whereas fires 6 and 14 are not detected at all. Fires 

7, 10, 13, 18 and a large part of fire 8 coincide with zones of moderately enhanced belief, 

which yet show a spread far beyond the area of these fires. The detection capability of the 

algorithm hinges on the combined evidence from thermal anomalies and cracks. It can 

therefore be expected that fires expressed through both, large area and/or intense thermal 

anomalies and surface cracks will unambiguously be detected. Detectability of fires 

characterised by one of the two indicators will depend on the abundance of non fire causes for 

the respective indicator. In areas with sparse settlement and limited subsurface mining activity 

belief maxima through one of these indicators might be pronounced enough to qualify as 

priority area for further investigation. Even if anomalies and cracks do not allow for detection 

of existing fires belief maps can serve to identify areas with enhanced fire risk. Anyway, 

interpretation of belief maps and subsequent derivation of action plans will always be subject 

to the individual objectives of the interpreter. Last but not least the financial and technical 

resources will be a key factor in this context. 
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Figure 7.15: Belief map for the most probable transfer scenario 

 

7.4 Evaluation with respect to the goals defined 

It has been discussed that uncertainty is inherent in the available data and this 

uncertainty can effectively been handled by DST. Probabilities used as basic information level 

in DST have proven to be a suitable parameter to abstract and standardize fire relevant 

information delivered by the different indicators. In addition, the current chapter showed that 

the logic of summing the evidence according to DST can effectively be implemented in a GIS 

based framework. Therefore, the main goals on the conceptual level were achieved. 
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With respect to the goals on the implementation level it can be summed that the belief 

map for the hypothesis “fire” combining all available evidence reproduces the known fire 

areas significantly better than the isolated probability maps. Assuming that there was no prior 

information, the existing fires in the study area could very effectively be pinpointed in the 

field using the belief map as a guide. Therefore, The belief map for the hypothesis „no fire“ 

supports these activities in that search for fire sources can be focused on a smaller area. The 

plausibility maps here do not yield utilizable visual information, since the evidence for both 

hypotheses is spatially disjoint. Important conclusions can also be drawn from the belief 

interval maps. As information gain by additional evidence is highest in places where belief 

and plausibility for one hypothesis diverge most, these will be the areas of interest when 

further investigation reveals new evidence. Thus, belief-, plausibility- and belief interval maps 

are a suitable visualization solution promoting  

- intuitive information on probable fire locations and fire risk areas even of 

geographically untrained viewers 

- and hands on orientation for fire extinguishing activities in the field. 

Ensuring transferability of the DS analysis tool was a further goal specified in section 

1.3. Extent of the available data and the geometry of the probability functions are the 

parameters likely to differ in the transfer case. It was shown that in the most probable transfer 

scenario with respect to the available data base the tool can be expected to detect fires with 

strong thermal expression at surface and in addition to  provide information on fire risk 

throughout the study area.  Varying geometric constants will in the first row pertain to the 

crack and the coal seam distribution data which might significantly modify their role and 

contribution in belief modelling for the hypothesis “fire”.  In acknowledgement of both 

moments of variance the application implementing the algorithm allows for choice of input 

data sets as well as geometric constants which can be adjusted to the situation in the 

respective transfer area. 

 

 

7.5 Summary  

Apart from the field temperature data, known fire areas are not reproduced by the 

probability maps based on single indicator data. In contrast, local maxima in the belief maps 

for the hypothesis „fire“, which are based on combined evidence from six selected indicators 

reproduce location and extent of the known fire areas very well. Belief in the hypothesis „no 
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fire“ is high where coal deposits are absent. This map may be used to confine the search area 

for fires. The plausibility maps are complementary to the respective belief maps for the 

counter hypothesis. They do not yield additional information. The belief interval maps are 

identical for both hypotheses showing low values where belief in either of the hypotheses is 

strong. They give a hint where information gain can be expected to be highest when new 

evidence emerges.  

The performance of the algorithm in transfer scenarios with different available data 

bases and geometry of the probability functions was investigated. In doing so, the field 

temperature data were identified to be the most important contributor to detection capability. 

Thermal anomalies allow for a reproduction of at least part of the known fire areas, although 

their extent is not accurately reflected. The remainder of the evidence supporting the 

hypothesis „fire“ doesn’t allow for a separation of fires from the background. The coal seam 

distribution data will influence the belief in the presence of a fire, if evidence for the two 

hypotheses is spatially conjunct. Bisection of the maximum fire depth results in narrower 

zones of enhanced probability. Fires are still pinpointed but their extent tends to be 

underestimated. Under a realistic scenario for the available data base, which will 

predominantly consist of data derived from earth observation, the capability of the algorithm 

in transfer areas to detect fires is likely to be limited. However, belief maps can be employed 

to estimate fire risk. 
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8. Conclusions and recommendations for further 
research 
Dempster-Shafer theory of evidence has proven to be a suitable approach to estimate 

probability for subsurface coal fires derived from multiple geo related indicators. Inherent 

uncertainty in the relationship of the evidence and the decision alternatives - presence or 

absence of a fire - can be modelled effectively by Dempster-Shafer type belief functions.  

Given the data base available for the study area, virtually all existing subsurface coal 

fires can be detected with good accuracy by the DS-based algorithm developed in this thesis. 

The generated belief maps reproduce location and extent of the fires.  For potential transfer 

areas the availability of field temperature and thermal anomaly data will be a key factor 

determining fire detection capability of the algorithm. Both data sets were found to contribute 

the bulk to coal fire detection in the study area. In a realistic transfer scenario where 

predominantly remote sensing derived data are available, a lower performance of the 

algorithm can therefore be expected. Likewise, the choice of the geometry of the probability 

distribution has proved to influence fire detection capability. Expert knowledge used to 

determine probability functions is area specific and has to be adjusted to the specific situation 

in the transfer area. 

One focus for further research therefore is to apply the algorithm to a transfer area based 

on a reduced database and employing modified geometry of probability distributions. The 

results should then be verified by means of field inspection or, if available, by comparison 

with known fire locations. In addition, future research has to prove if new evidence can 

compensate for the lack of precise field data. Ongoing research at Bundesanstalt für 

Geowissenschaften und Rohstoffe (BGR) (SCHAUMANN, 2005 PERS. COMM.) on geophysical 

signatures of coal fires seems promising in this context. Field experiments in the Wuda area 

showed that sub surface fires can be correlated with high sub surface conductivities. Further 

research is on the way studying the possible relationship to the magnetic properties of the 

rock. Both parameters lend themselves to airborne observation by plane or helicopter, which 

implies that they might constitute an additional high resolution indicator with coverage in the 

local to regional range.  

Identification of fire zones in the study area was based on visual interpretation of the 

belief maps. Visual separability of belief maxima on the other hand depends on the display 

modus chosen and is subject to individual perception. In an operational use of the algorithm, 

more reliable and comprehensible separation criteria are desirable.  Hence, a further research 

topic is to develop such criteria. One quantitative approach could be the generation of 
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additional threshold maps supportive to the belief maps. The threshold value could be derived 

from statistical analysis of the belief values representing known fire areas. 
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Appendix 

A.1 Manual for Dempster-Shafer anlysis tool 

Objective/Purpose 

Performing Dempster-Shafer belief modelling on specified input data sets. 

Generation of belief, plausibility and belief interval raster maps to model and visualize 

coal fire probability. 

 

 Platform specification 

The application has been tested on Microsoft Windows XPTM operating system 

with ArcGIS 9.1. Additional requirements are Service Pack 2 for Windows XP as well 

as the Microsoft .NET framework 2.0 installed on the machine.  

 

Development environment 

Visual Basic 2005 Express Edition and ArcObjects 9.1 distributed as executable. 

 

Description of auxiliary files and output files  

The files listed below are generated and stored in the working directory 

- EucD*VB  =  distance raster for the respective feature data set  

- *ProbVB   =   probability raster for the respective feature data set 

- Ker200VB, KerNormVB, TempProbVB = intermediate results from the 

kernel density function used to generate the probability map from 

temperature data 

- Aggr*SupFire  =  the results from combining the different belief masses for 

the hypothesis fire 

The final results are 

- FinBel(No)Fire   =  final belief in the hypothesis (no)fire 

- Plaus(No)Fire     =  plausibility for the hypothesis (no)fire 

-  Inter(No)Fire     =  belief interval for the hypothesis (no)fire 
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 Table A1: List of functions based on map algebra  

 

 

Function Purpose Syntax Result 

(eucdist_cra < 75) * 0.5 + ((eucdist_cra >= 75) AND 
(eucdist_cra < 150)) * (eucdist_cra - 150) / (0 - 150) + 
(eucdist_cra >= 150) * 0 

Fire probability map derived 
from crack data 

(eucdist_temp < 75) * 0.75 + ((eucdist_temp >= 75) 
AND (eucdist_temp < 150)) * (eucdist_temp - 150) / (0 
- 100) +  
(eucdist_cra >= 150) * 0                                      

Fire probability map derived 
from field temperature 
measurements 

 
CON([eucdist_ano] == 0, 0.5,  
([eucdist_ano] > 0 AND [eucdist_ano] <= 60) *  
(([eucdist_ano] - 60) / (0 - 120)) + (([eucdist_ano] > 
60) * 0)) 
 

Fire probability map derived 
from thermal anomalies in 
LS7 band 6 data 

CON ([eucdist_long] == 0, 0.25, ([eucdist_long] > 0 
AND  
[eucdist_long] <= 100) * (([eucdist_long] - 100)  
/ (0 - 400)) + (([eucdist_long] > 100) * 0)) 

Fire probability map derived 
from distribution of longwall 
mining activity 

 (costdis_act <= 100) * 0.25 +  
((costdis_act > 100) AND (costdis_act <= 200)) *  
((costdis_act - 200) /  
(0 - 400)) + (costdis_act > 200) * 0          

Fire probability map derived 
from distribution of surface 
mining related features 

Single Output 
Map Algebra 

Standardization of the 
Euclidean distance raster 
generated from the respective 
data set 

 (CostDis_Coal <= 850) * 0 +  
((CostDis_Coal > 850) AND (CostDis_Coal <= 1700)) * 
((CostDis_Coal - 850) / 850)  
+ (CostDis_Coal > 1700) * 1  

Fire probability map derived 
from distribution of coal 
deposits 
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Table A1 continued: List of functions based on map algebra  

 

 
 
 
 
 
 
 
 
 

Function Purpose Syntax Result 

Orthogonal summation of 
probabilities supporting “fire” 

probability map A * probability map B + (1 - probability 
map B) * probability map A + (1 - probability map A) * 
probability map B 
(prototype syntax) 

Aggregated probability map 
“fire” 

(1 – coal probability map) * final probability map fire  
/ (1 – coal probability map * final probability map fire) Belief map “fire” Orthogonal summation of  

aggregated probabilities 
“fire”and “no fire” 
 (1 – final probability map fire) * coal probability map / 

(1 – coal probability map * final probability map fire)  
Belief map “no fire” 

1 – belief_nofire Plausibility map “fire”  

1 – belief_fire Plausibility map “no fire”  

Plausibility_fire – belief_fire Belief interval map “fire”  

 

Generation of plausibility and 
belief interval maps 

Plausibility_nofire – belief_nofire Belief interval map “no fire” 


