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Abstract

This work deals with the possibilities and limitations for carrying out a flood risk assessment in 
regions with no or scarce available input data (at the example of the city of Carrefour in Haiti) for 
for a calculation software and also compares the performance of two very different tools (“Hydro-
As-2D” with “Sturzflut” extension for adding pluvial rainfall into the model, hierarchical filling-
and-spilling algorithm “Safer-RAIN”) against each other.

The work evaluates a series of different global precipitation datasets (namely CMORPH, MSWEP 
and ERA5-Land as well as GPEX) originating from remote sensing techniques a) against each other 
and  b)  against  station  data,  led  by  the  US National  Oceanic  and  Atmospheric  Administration, 
namely GHCN-D and the point precipitation frequency estimates from the Hydro-meteorological 
Design Studies Center (HDSC) of the US National Weather Service NOAA.

They are built of the same database like GHNC-D, but with the difference that hourly and sub-
hourly durations (until the 5-min interval) are included as well. This matters in the case of this 
work, as the relevant rainfall duration for the AOI is one hour maximum, presumably below that. So 
IDF statistics for 3 hours and upwards (like GPEX offers) alone will not do the full job for this area.

While the first three of them are mere precipitation datasets, the GPEX dataset differs from the 
others  mentioned  here  in  form of  offering  IDF curves,  providing information  on the  intensity, 
duration and frequency (IDF) of extreme precipitation events. Via an R script, the information in the 
very  big  netCDF files  could  be  extracted,  evaluated  and  compared  with  station  data  from the 
neighbouring island of Puerto Rico and the nearest station in the Dominican Republic. This served 
also as validation for assigning a certain rainfall sum R a certain return period T.

After evaluating these possible data sources for rainfall against each other resp. against the station 
data, a pluvial flood calculation has been carried out in both toolsets and for three different rainfall  
scenarios (50mm, 90mm and 130 mm, each in 1h). Regarding the flood extent and the average 
water depth, differences in the results are very apparent and are due to the different methodologies 
used in the toolsets.

As an outlook, a proposal is made on how these tools could help local Government authorities and 
citizens  to  be prepared for  future  heavy rainfall  events  by means of  the  calculation  of  several 
rainfall intensities and their specific impact on the urban area (delineation of the most flood-prone 
an areas, the expected water depth, conclusion on safe areas) and maximise the reusability of the 
collected data.
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1. Introduction

According to the Washington based World Resources Institute, in a global view, in the last 40 years, 
flood events have caused over $1 trillion in economic losses and more than 220,000 people lost 
their lives1. Global flood damages have increased sharply in this period, mainly driven by growth of 
population and economic activities in flood-prone areas (Winsemius et al., 2016). Alone in the year 
2021, the amount of global economic loss caused by flooding reached 105 billion U.S. dollars, 
according to a report  of Hamburg-based researcher Madhumitha Jaganmohan2.  In the European 
Union, according to data of the European Environmental Agency EEA, the total reported economic 
losses  caused  by  weather  and  climate-related  extremes  between  1980  and  2020  amount  to 
approximately EUR 487 billion (at 2020 values) accounting for about 80% of the monetary losses 
over that period.3

Haiti, rated as the poorest country in the Western hemisphere, is especially vulnerable to a series of 
natural disasters, namely earthquakes, draught and floods, the latter due to Hurricanes crossing the 
island as well  as ordinary heavy precipitation events. In 2016, from Oct 4 th until  Oct 6th,  cat-5 
hurricane Matthew has struck Haiti hard, especially the Tiburon peninsula in the south-west of the 
country.  About 2.1 million people had been affected with an official  death toll  of 546 citizens, 
200.000 buildings being destroyed and an estimated monetary damage of 2.8 billion US$4.

But not only hurricanes strike the island of Hispaniola, together with the exceptionally high relief 
energy (in most areas, terrain rises very steeply from the coastline to the back country) and the 
excessive deforestation in Haiti, heavy precipitation events due to tropical thunderstorms, which can 
occur in the “rainy seasons” from April to June and September to November, are a severe threat to 
the often informal  settlements,  too.  Primary forest,  which is  defined by the FAO as “naturally 
regenerated  forest  of  native  species,  where  there  are  no  clearly  visible  indications  of  human 
activities and the ecological processes are not significantly disturbed”, has shrunk in Haiti from 
already low 4.4% in 1988 to almost zero (0.32%) in the year 2016, (Hedges et al., 2018)

Main reasons for deforestation in Haiti are the enormous pressure on land-use for self-sufficient 
farming in combination with the use of charcoal as primary energy source. The nearly complete loss 
of primary forest  is  fatal  during heavy precipitation events,  where the small,  ephemeral  creeks 
(“Ravines”) quickly turn into dangerous torrents, carrying significant amounts of sediment due to 
erosive processes in the watersheds (Heimhuber et al., 2015).

But the frequent floods are – together with all other numerous problems of natural, political and 
economic origin – a heavy burden and constant threat to the residents living in flood prone areas on 
often  insufficient  building  fabric.  Together  with  the  lacking  financial  resources  of  the  Haitian 
Government as well as the municipalities to protect the buildings in an adequate way, it is essential 
to at least identify the most flood prone spots, to enable the governmental bodies as well as the 

1 Press release from April 23rd 2020, https://www.wri.org/news/release-new-data-shows-millions-people-trillions-
property-risk-flooding-infrastructure (access on 2022-07-23)

2 https://www.statista.com/statistics/510894/natural-disasters-globally-and-economic-losses/   (access on 2022-08-10)
3 https://www.eea.europa.eu/ims/economic-losses-from-climate-related   (access on 2022-08-10)
4 https://www.nhc.noaa.gov/data/tcr/AL142016_Matthew.pdf  ,  https://reliefweb.int/report/haiti/haiti-iom-appeal-

haiti-hurricane-matthew-9-october-2016 (access on 2022-08-11)
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rescue services and Non-Governmental aid organisations like Medicins Sans Frontières (MSF), who 
run a hospital in the city of Carrefour (situated near the capital Port-au-Prince) which had already 
been endangered by flooding in the past.

This is also the personal background of this work – Dr. Lorenz Wendt from the GeoHUM research 
laboratory in Salzburg arranged the contact with MSF for me, and in regular discussions, the area of 
interest  for this  thesis  work had been defined. The focus lies not only on the flood calculation 
(under tightened conditions, which means dealing with scarce input data) itself,  but also on the 
comparison  of  a  merely  GIS  based  flood  routing  algorithm  called  “Safer_RAIN”  and  a 
conventional, commercial 2d hydraulic simulation software (“Hydro-As-2d”).

Figure 1: Flood damage in Haiti, August 2022. Photo: Haiti Civil Protection (https://floodlist.com/america/haiti-floods-
august-2022, access on 2022-08-11)

1.1. The specific situation in Haiti
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1.1.1 Data Scarcity

I still remember very well a term my Columbian professor told us to memorize when I was a young 
student at the University of Economics in Vienna: “La escasez de los recursos”, the scarcity of  
resources,  human beings  almost  always have to  deal  with.  In  the case  of  Haiti,  input  data  for  
accurate and validated flood risk calculation is scarce. There are not many gauges for discharge and 
precipitation, and the ones that do exist are to the time being not publicly available. High-resolution 
Digital Elevation Models out of airborne LIDAR data or drone flights in most areas simply do not 
exist.

Nevertheless, accurate high-resolution terrain models with a pixel width of 2m or below are really 
crucial  for an accurate delineation of flood prone areas both for GIS-based algorithms like the 
hierarchical filling-and-spilling approach (“Safer_RAIN”, (Samela et al., 2020) used in this work as 
well as for hydrodynamic flood calculation software using the shallow water equations like Hydro-
As-2d, Flo-2d, Jflow, Mike, Lisflood-FP and others (Dimitriadis et al., 2016).

For being able to compare two different computational approaches, 2d hydrodynamic with GIS data 
only as input and the merely GIS-based approach “Safer_RAIN”, I was able to use LIDAR point 
cloud data of Carrefour itself plus the surrounding areas near the coast. This is due to data gained 
for a humanitarian research mission carried out by the world bank some years ago. The data is 
available  via the platform opentopography.org,  an open data portal  for LIDAR data around the 
globe,  point  cloud data  as well  as Digital  Terrain Models (DTMs) and Digital  Surface Models 
(DSMs).

The data has been made publicly available only last year, before, there had been nothing more than 
SRTM or ASTER data, which is comparably poor in accuracy as well as resolution, especially for 
flood calculation (i.e. ASTER data is surface data, so the tree cover is part of the digital elevation 
model. This is of course suboptimal for flood simulation).

Data availability is significantly poorer when it comes to precipitation data, discharge data and / or 
high-resolution satellite images for validation of flood extent, if it comes to real life rain events  
which happened in the past. Data of in-situ meteorological stations could not be obtained for this 
work, even though I had been in contact with MSF in the form of regular discussions and progress  
reports at least every 2 months for almost the whole year 2021. The GI department of MSF enquired 
data from the Haitian government officials, but it was not possible to obtain any station data. For 
this reason, the only solution was to use one of the global precipitation data models, where data is 
gained via remote sensing (mostly radar data) and compare it with available station data “nearby” 
(which means either the Dominican Republic or Puerto Rico).

High-resolution satellite images, soil data and land cover as well as data on building outlines (for 
setting up the hydraulic 2d model as well as the GIS-based calculation for Safer_RAIN) are hard to 
acquire. Open Street Map data, which is an excellent data source for traffic routes and buildings at  
least in Europe and North America, works well for the road network in Haiti, but not for buildings. 

Buildings  are  eventually  available  via  Open  Street  Map,  although  the  quality  of  data  is  very 
inconsistent in these areas – there are districts with good quality data, and in other, hardly any 
buildings have been digitized. This is especially the case in the Bidonvilles, roughly translatable 
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with slums, which often originate out of spontaneous disaster refugee camps (Hannemann, 2014). 
But the integration of buildings is essential for accurate calculations of flood routing and -extent, 
regardless of which method (GIS vs. hydrodynamic) we use.

1.1.2 Deforestation & pressure for land use

Deforestation is long since a big issue in Haiti. To understand the reasons for this, it is necessary to  
undertake  a  small  crash  course  into  Haitian  history.  Christopher  Columbus  founded  his  first 
settlement, “La Navidad”, in the year 1492 on the North coast of today´s Haiti, then inhabited by 
the indigenous Taíno peoples.

By the early 17th century, French colonists started planting sugar cane, coffee and other crops in a 
large scale, which made the island extremely profitable for the white upper class as well as for 
Mainland France. In the 1780s, the French colony of “Saint Domingue” produced about half of all  
the sugar and coffee consumed in Europe and the Americas  (Ferrer, 2012) and became central to 
France’s economic strength, yielding about 500 million livres in revenues a year, with more than 
400.000 slaves imported from West Africa (Cantir, 2017). “On the eve of the revolution, the French 
colony produced more than the Spanish and British colonies combined, with its 793 sugar, 3117 
coffee, 789 cotton, 3150 indigo, 54 cacao, 182 guildiveries, and 370 fours a chaux plantations and 
more  than 1,500 ships  that  transported  goods  to  Europe”  (Obregón 2018:  p  601).  For  all  the 
plantations, significant amounts of forest areas had to be cleared.

After the first (and only) successful slave revolution in the world taking place in Haiti 1791, black 
leader  Jean-Jacques  Dessalines  declared  sovereignty  from  France  in  1804.  After  21  years  of 
political unrest and 10 years of unsuccessful negotiations, King Charles X of France set “the French 
part  of  Santo  Domingo”  (Today´s  Haiti  and  the  Dominican  Republic  had  been  united  in  one 
republic at that time) a last ultimatum with extremely harsh economic conditions and the physical 
threat of 14 army ships docked in Port-au-Prince in exchange for a formal recognition of political 
independence (Obregón 2018).

Haitian President Boyer could only chose between war and economic surrender, with the French 
crown demanding  the  enormous  sum of  150  million  francs  indemnity  for  the  lost  plantations 
payable in yearly rates. The indemnity amounted to five times France ́s total annual budget and ten 
times as  much as  the  United  States  paid  Napoleon for  purchasing  the  state  of  Louisiana  (F50 
million, (Obregón, 2018).

This sum was effectively unpayable and severely hampered economic development (until 80% of 
Haiti's government spending had been debt repayment, as money had also been borrowed from 
French and later US Banks at high interest rates, called “Haiti´s double-debt”) and, most important 
in this context,  also led to further deforestation.  Lumber was one of the most valuable income 
sources, and any source of revenues was desperately needed for debt repayment.

Other factors for the vast deforestation in Haiti are the massive use of charcoal as the predominant 
source of energy for cooking and – if needed – heating and the land use pressure. According to a 
world bank study from 2018, Charcoal consumption in the capital Port-au-Prince with an estimated 
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population of 2.6 million inhabitants for the urban agglomeration in the year 20185, sums up for 
almost 440,000 tons per year, accounting for almost half of the entire consumption in Haiti which is 
about 950.000 tons per year (Tarter et al. 2018).

Population in Haiti has tripled between the years 1960 and 20216, and the vast majority of the rural 
population still relies on subsistence farming. But in contrast to population growth, land resources 
are finite and fertile arable land is scarce – so again, forest areas had been cut down as a result.

Today, estimations for forest cover in Haiti vary quite a lot, between 3% for the year 2006 (Dolisca 
et  al.,  2007) and 21% for the year  2015  (Pauleus and Aide,  2020),  depending not only on the 
definition of the word “forest” (tree height, percentage of canopy) but also which type of tree cover 
is considered to count as forest (primary forests only versus inclusion of secondary forests and 
shrubland). Table 1 gives a good overview on different studies on forest cover and their underlying 
forest definition, carried out in the timespan from 1972-2015.

One can easily see that the definition of the term forest is not at all uniform and therefore has a huge 
impact on the estimated percentage of forest cover. Also the source of information (usually freely 
available satellite images with LANDSAT as pioneer and therefore leading source of information) 
and its spatial resolution and temporal availability has influence on the estimations.

But generally, it can be stated that one can see the difference in tree cover density between Haiti and 
the neighbouring Dominican Republic in most areas at one glance in Google Earth (see Figure 3 on 
page 18). This fact is also reflected by world bank statistics, where a reported forest cover of 44.4% 
in the Dominican Republic in the year 2020 is juxtaposed by a forest cover of 12.6% in Haiti.  
Following the world bank statistics, forest area in Haiti has even shrunk from already low 13.9% in 
the year 1990, whereas it has significantly grown from 33% in the Dominican Republic in the year 
19907 (see Figure 2).

And alone from that, one can guess that surface flow originating from heavy rainfall events does 
pose  a  problem,  as  terrain  is  generally  very  steep  and  mountainous  in  the  whole  Island  of 
Hispaniola. Together with rather unfavourable geologic conditions (mostly limestone, which leads 
to shallow soil horizons vulnerable to erosion as soon as the protective vegetation cover is gone), 
the ongoing process of deforestation is a big issue in Haiti.

5 Source: https://reliefweb.int/report/world/worlds-cities-2018 (access on 2022-07-07)
6 Source: https://data.worldbank.org/indicator/SP.POP.TOTL?end=2021&locations=HT-DO&start=1960&view=chart 

(access on 2022-07-07) 
7 Source: https://data.worldbank.org/indicator/AG.LND.FRST.ZS?locations=HT-DO (access on 2022-07-07)
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Table 1: Different studies on forest cover estimations and forest definition (Pauleus and Aide, 2020, p. 15)

Figure 2: Forest area (% of land area) in Haiti, Dominican Republic (World bank, 
https://data.worldbank.org/indicator/AG.LND.FRST.ZS?locations=HT-DO, access on 2022-07-07 )
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Figure 3: Google Earth Satellite Images in the border region between Haiti and the Dominican Republic (image 
centre at ~ 19°04’ N / 71°44' W, left: Haiti, right: Dominican Republic, access on 2022-09-15)

1.1.3 Hurricanes & heavy rainfall events

Flood hazards and flood damage in Haiti have mainly two origins: First, the hurricane season, and 
second, the rainy season which is for the most areas in fact twofold – the first one occurring from 
March to May and the second one occurring from August to October (see(Klar et al., 2014)Figure
4). While hurricanes are large-scale and slowly moving and thus mostly affecting a big area, the two 
rainy seasons account for the occurring small-scale heavy rainfall events.

Being located in the centre of the North Atlantic hurricane belt, Haiti is frequently exposed to strong 
tropical storms and hurricanes. During the cyclonic season, Haiti is primarily subject to tropical 
waves  and  local  and  regional  disturbances  (fairly  organized  storms),  which  are  sometimes 
influenced by the Inter-tropical Convergence Zone (ITC) and carried from east to west by trade 
winds. These low pressure systems can lead to tropical cyclogenesis and evoke cyclonic systems 
producing abundant rainfall and strong winds, which can be qualified in terms of their intensity and 
structure (Mora et al. 2010).

In addition to these synoptic-scale disturbances, Haiti can also be affected by orographic-convective 
systems (storms)  at  regional  or  local  level,  strengthened  by local  effects  like  the  mountainous 
landscape. This often leads to very severe flooding and landslides and / or debris flow caused by 
spatially limited, but nevertheless heavy and intense rainfalls in a limited area (Mora et al., 2010).
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Figure 4: Average monthly rainfall at Port-au-Prince (station Damien, n= 68, 1927 until 2002, Heimhuber et al., 
2015, p. 3839)

In recent decades, Haiti has also been deeply affected by global climate change causing longer dry 
seasons, periods of extended drought, erratic seasonal rains and increased frequency and severity of 
tropical storms (Smucker et al., 2017). Haiti has a long row of hurricanes crossing the country, as 
well  as  heavy  precipitation  events  in  the  two  rainy  seasons,  which  become  more  and  more 
precarious due to the low percentage of forests, high soil erosion and generally poor soil conditions, 
a high percentage of imperviousness in urban areas (very high building density) and the steep relief.  
All  these factors together account for an extremely high runoff coefficient in most parts  of the 
country, which makes high precipitation amounts even worse.

The widespread absence of bigger rivers (with the exception of the Artibonite river), together with 
the  factors  mentioned above  make  Haiti  extremely  vulnerable  to  pluvial  floods,  which  fill  the 
otherwise dry  ravines (gullies)  with water  very quickly and also lead to extensive spontaneous 
overland flow.  As a result, we have recurring reports on pluvial flood damage causing casualties 
and  damage to the usually bad building substance (see Figure 5).

Figure 5: Report on a flash flood event in Ouest Departement of Haiti (https://floodlist.com/america/haiti-flash-floods-
ouest-department-june-2019 , access on 2022-07-15)

Table 2 shows some selected hurricane and / or heavy rain events in Haiti and their consequences:
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Table 2: Selected hurricane and / or heavy rain events in Haiti (data source: https://floodlist.com, manual evaluation of 
reported flood incidents concerning Haiti, access on 2022-07-15) 

1.1.4 Steep Slopes & soil erosion

Before the arrival of Columbus, the people of the Taíno called their land “Ayiti”, meaning “Flower 
of high land”, which can also be translated as “Mountainous land”8. Indeed, Hispaniola as a whole 
and Haiti in particular is a very mountainous island with steep slopes, high mountains and deep 
gorges and valleys, for that reason, soil erosion originating from loss of forest areas counts double – 
as well as the steep terrain intensifies erosion on its own. In most areas of Haiti, terrain rises steep 
and quickly as one goes inland coming from the sea and this is also the case in the area of interest of 
this work, the city of Carrefour. At the same time, the widespread absence of sewage systems and 
waste collection impose big hygienic problems in case of flooding due to heavy rainfall as well.

As already pointed out in chapter  1.1.2, Haiti has almost completely lost its primary forest cover. 
Though there exist secondary forests and shrubland, excessive tree harvesting for charcoal and the 
widespread agricultural  use of  steep slopes have radically  transformed the natural  landscape in 
Haitian watersheds. These two factors radically decreased the infiltration capacity and exposed the 
population to both acute erosion upstream and severe flooding downstream.

Another hazard caused by deforestation together with slope gradients of over 20° (which occur very 
often in Haiti) are landslides and debris flow / debris avalanches. Forest canopies serve as natural 
buffers against wind and rain and the roots of trees help keeping the granular soil from shifting.  
Deforestation has led to landslides becoming a major concern, especially during the rainy season. 
Figure 6 shows the correlation between slope angle and occurred landslides – the number of pixels 
with landslides starts to rise significantly at slope angle of ~15° (26%) and reaches its top at around 
35° (70%). Many hill slopes in Haiti fall into this category.

8 https://haitihub.wordpress.com/2015/10/08/how-haiti-got-its-name-a-reminder-this-columbus-day/   
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Figure 6: Empirical distribution functions of slope gradient in pixels from landslide area vs. non-landslide area (Davis, 
Chung and Ohlmacher 2006, p. 1123)

1.1.5 Humanitarian situation & context

Since the enormous reparation payments Haiti had been urged into by the former colonial power 
France in the 19th century, Haiti has always been a poor country in economic context. This seems 
somewhat paradox, as the French colony of Saint Domingue was called “pearl  of the Antilles” 
before – but this was valid for the white upper class of French land owners only. In fact, Haiti´s  
natural resources of rich forest vegetation and fertile soil  had been ruthlessly exploited and the 
enormous economic wealth of a minority as well as the French crown had been gained on the back 
of  millions  of  enslaved  women  and men  deported  from West  Africa  for  forced  labour  on  the 
sugarcane and other plantations.

In July 2021, the elected Haitian president Jovenel Moïse has been assassinated and since that, the 
state of the in many aspects already dysfunctional political system has become even worse. Gang 
crime9, corruption, an underdeveloped and heavily indebted economy10, widespread poverty and an 
analphabetism  rate  of  over  30%  of  the  total  population11,  sparse  agricultural  resources  in 
combination with a rapidly growing population and high vulnerability to natural disasters, namely 
hurricanes and earthquakes, sound like the “perfect storm” of challenges for a country.

The multidimensional challenges for Haiti also extends to the lack of spatial planning, combined 
with uncontrolled and rapidly increasing urban expansion, often in shanty towns (“Bidonvilles”) in 

9 Source: https://www.derstandard.at/story/2000127786881/bandenkrieg-bringt-haiti-an-den-rand-der-anarchie 
(Newspaper article in Austrian newspaper “Der Standard”, access on 2022-07-28)

10 Source: https://admin.lenouvelliste.com/images/kiosk/2022-07-23/1658553495_7.jpg (access on 2022-07-28)
11 Source: Haiti-Education: Cri d’alarme face au taux d’analphabétisme, https://www.alterpresse.org/spip.php?

article20589 (access on 2022-07-28)
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the surroundings of the capital city of Port-au-Prince. By 2017, approximately 56% of Haiti's total 
population of then 10.3 million people (2021: 11.5 million12)lived in the capital city of Port-au-
Prince (Posner and Georgakakos 2017).

Often, the unorganised informal settlements emerge out of natural disasters like the catastrophic 
earthquake of 2010, where according to official estimates 316,000 people lost their lives, over one 
million were left homeless and whole cities have been levelled13. It is obvious that these informal 
settlements are especially vulnerable to natural disasters like hurricanes and floods, as the building 
substance is mostly very bad and the localities of the Bidonvilles are usually unfavourable, either on 
steep slopes  or  near  the coast  or  ravines,  making them especially  vulnerable  to  landslides  and 
floods.

Medicins Sans Frontières, shortly MSF, run several hospitals in the Port-au-Prince, Carrefour and 
Leogane area (as well as in other cities), some of them regularly in danger of being flooded. This 
work  should  be  a  contribution  for  raising  awareness  and  estimating  the  potential  damage  and 
endangered lives in case of a severe flood. Additionally, as central research question, it should be 
examined, whether cost-efficient and fast online tools for assessing (here: pluvial) flood risk could 
be an alternative to cost- and time intensive hydraulic 2d calculations.

12 Source: https://data.worldbank.org/indicator/SP.POP.TOTL?end=2021&locations=HT&start=1960&view=chart 
(access on 2022-07-28)

13 Source: https://www.britannica.com/event/2010-Haiti-earthquake (access on 2022-07-28)
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1.2. Aims and objectives

1.2.1 Methodological approach

How can one get reliable flood delineation results in an economically deprived region like Haiti? 
Where input data is scarce in general and data sources for the calibration and, even more important, 
the validation, of the calculated results are even more scarce or they are simply not available?

This  is  indeed  a  methodological  problem,  where  much  time  and brain  work  has  run  into  this 
academic thesis.  How can I assess the validity of my results, if I cannot get any in-situ data from 
rain gauges and / or discharge volumes?

In my 7-year engineering practice in the consulting engineer office IBH, pluvial as well as fluvial 
flood calculations have been part of my daily business. But, unlike in Haiti, for model calibration, 
we used discharge curves, rain gauges and the national dataset of design precipitation14, edited by 
the Austrian federal government.

Basically, the workflow for obtaining accurate and methodologically valid results of flood extents 
(and water depth) for different return periods respectively different rainfall intensities is described 
in  Figure  7 as  well  as  in  detail  in  the  following  main  chapters  2(Study area  and data)  and  3 
(Methods and concepts).

The main input for both modelling approaches (Hydro-As-2D with “Sturzflut” extension as well as 
the GIS-based hierarchical filling-and-spilling algorithm  “Safer_RAIN”) for this work is

• high-resolution digital terrain model (2m pixel size, originating from LIDAR data, in this 
case it was built directly out of the original point cloud)

• land cover data (gained out of OpenStreetMap and satellite images)

• building outlines (gained directly  out  of  the LIDAR point  cloud,  as OSM data is  very 
inconsistent here)

• rainfall  data (as  no  in-situ  data  sources  have  been  available,  derived  from the  global 
datasets MSWEP & ERA5-Land and NOAA station / IDF data for Puerto Rico)

Roughness  coefficient  (important  parameter  for  flow velocity)  has  been  set  according to  land 
cover,  while  infiltration rate  has  been  set  to  zero  to  account  for  the  very  low  potential  for 
infiltration in case of heavy precipitation events in combination with a high gradient,  poor soil 
conditions, a very low tree cover and a high degree of imperviousness in the urban areas.

Concerning the  simulated  precipitation,  it  is  good practice  to  calculate  at  least  three  different 
scenarios based on different return periods. In this case I have calculated three different rainfall 
scenarios with 50, 90 and 130mm in one hour. But how can I assess a certain return period, if 
neither in-situ rainfall gauge data nor design precipitation data are available for the area of interest?

14 https://ehyd.gv.at/   
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For model validation (see Chapter 3.2), my thesis advisor Korbinian Breinl first suggested to use 
remote  sensing  (radar)  datasets,  like  the  Copernicus  ERA5-Land climate  reanalysis  dataset15. 
Although this  is  a  well  proven and globally  available  dataset,  it  has  shown (see  chapter  2.3.6 
and3.2.1) that in the case of the station Maria Montez International Airport, Dominican Republic 
(the nearest rain gauge to Haiti), the rainfall sum for 24h for Hurricane Matthew was about 2-3 
times lower than the measured (point)  precipitation,  so even regarding an area reduction factor 
(ARF, see chapter 3.2.2) of ~0.9 for the grid cell size of ERA5-Land and the duration of 24h, this 
does not explain the huge delta between the two datasets.

To compare data of more than one station alone (which might lead to a chance finding),  NOAA 
point precipitation frequency estimates (PPFE) for the orographically similar region around the 
city of Ponce in the neighbouring island of Puerto Rico16 was collected, evaluated and compared 
against  the  remote  sensing  datasets  MSWEP and  ERA5-Land.  For  this  reason,  COOP hourly 
precipitation data17 of Ponce (South coast of Puerto Rico) has been collected, compared to the time 
series (annual maxima) of the PPFE data and after a successful matching between COOP and PPFE 
data, juxtaposed with the remote sensing datasets MSWEP and ERA5-Land (see Chapter 3.2.1 and 
3.2.3 for more detailed information on this).

Model calibration (see Chapter 3.3) could be done either via comparing the discharge curve (or at 
least the peak value on river X of a certain rain event) of a gauge somewhere at the bottom of the 
catchment or a smaller subcatchment to the discharge curve in the 2d model or via comparing the 
flood extent to aerial or satellite images; in case of absence of both also to (geotagged) ground 
photographs.  Unfortunately,  neither  suitable  satellite  images  nor  geotagged ground photographs 
have been available either for this work, despite intensive research from my side and from side of 
MSF. With other words: model calibration like it is usually done could not be carried out in this  
work.

Satellite images have to be very high in resolution to be useful for this aspect; unfortunately, we 
have to deal with the problem that pluvial floods occur generally very quickly and do not last long 
(unlike fluvial floods in big rivers, for example). The steep terrain with hills and mountains rising 
directly behind the coast even accelerates the flow velocity, so the chance to get a photo from an 
event – with little or no clouds – is indeed very small. Although I found a high resolution image of a 
flood event in Carrefour from the year 2019, the image had a cloud cover of 90% and thus was not 
suitable for any flood extent analysis. 

Nevertheless, despite the experienced problems in calibrating both flood models (the hydrodynamic 
2d model as well as the GIS-based Safer_RAIN model), it was possible to calculate a reasonable 
and accurate flood extent for certain amounts of precipitation, at least with the Hydro-As-2d model.  
The filling-and-spilling algorithm, on which Safer_RAIN is based, has methodological problems 
with our area of interest, which I was not aware of when the decision from MSF fell on the city of  
Carrefour – more on this in Chapter 4.3. 

15 https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview   (access on 2023-03-04)
16 https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_map_pr.html   (access on 2022-11-15)
17 https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00988   (access on 2022-11-15)
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The two last major steps in the flowchart consist of

• the GIS intersection of (available) OSM layers of critical infrastructure (schools, hospitals) 
with  the  calculated  flood extent  and  the  maximum water  depth  for  the  final  flood  risk 
assessment and

• the comparison of the results (water depth, flood extent) of the hydrodynamic commercial 
software Hydro-As-2d and the GIS-based filling-and-spilling algorithm “Safer_RAIN” as 
well  as  the  elaboration  of  each models  strengths  and weaknesses  and its  suitability  for 
pluvial flood calculations in data scarce regions in general and the chosen area of interest in 
particular.

To sum it  up,  though the  terrain  model  was pretty  good in  resolution,  I  was experiencing the 
phenomenon of “data scarcity” in many other aspects, from rain gauges to discharge curves, from 
adequate  satellite  images  to  ground  photos,  which  means  the  only  possible  way  to  go  was  a 
pragmatic approach of evaluating the data sources which are available (in this case: NOAA point 
precipitation data for Puerto Rico and the globally available ERA5-Land dataset) and use them for a 
basic validation of the model.

The usual calibration process, where the 2d model is fine-tuned via rain gauge data and discharge 
curves, could not be applied in this case. For this reason, I left the old version of the flowchart (see 
Figure  7)  intentionally  in  the  diagram and  only  crossed  the  part  of  the  “normal”  flood model 
calibration with red lines, to point out the difference between the usual workflow for this aspect and 
the chosen approach for this work, as a consequences of the external limitations (data scarcity).
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Figure 7: Flow diagram and decision tree for this work
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1.2.2 Central research questions

This master thesis has two central research questions, the first being a methodological question and 
the second being a comparative one:

First, how can precise and spatially high-resolution flood calculations be carried out in areas 
with scarce input data? This issue is being addressed via the example of the town of Carrefour, 
Haiti.

Background  for  this  research  question  is  the  high  vulnerability  of  many  Haitian  towns  and 
settlements to (pluvial) floods and the connection between the Salzburg-based Christian-Doppler-
laboratory “GEOHUM” (“Earth Observation for Humanitarian Action”), which closely cooperate 
with the NGO Medicins Sans Frontières (MSF), who run several hospitals in Haiti.

Second, what are the differences in flood hazard calculation between an easy-to-setup merely 
GIS based approach (“Safer_RAIN”), which can be calculated via a global web platform and a 
conventional 2d hydrodynamic flood calculation, carried out with the industry standard software 
“HYDRO-AS 2d” combined with the “Sturzflut” extension developed by University of Innsbruck 
(Klar et al., 2014, see chapter 3.4.5)?

The thematic background for this second research question lies in my 7-year-professional activity in 
consulting engineer IB Humer GmbH from 2014-2021, where I have been working with Hydro-As-
2D / Sturzflut regularly and also collaborated with gecosistema srl, an Italian SME, in several EU-
funded research projects (“SWITCH-ON”, "SaferPLACES"). Gecosistema and the University of 
Bologna together  developed  a  new GIS-based hierarchical  filling-and-spilling  approach  for  the 
modelling of pluvial floods, called “Safer_RAIN” (Samela et al., 2020 , see chapter 3.4.6.)

The scientific background is a DEM-based hierarchical filling-and-spilling algorithm, where the 
accumulating rainfall is routed via a D-8 algorithm (see  Figure 64 in chapter  3.4.6) into the next 
sink  until  it´s  fully  covered  with  water.  Then,  accumulating  water  is  routed  into  the  next 
downstream sink or generally lower laying areas (Samela et al. 2020). 

The advantage of this approach is an easy and very fast delineation of flood prone areas in case of 
heavy precipitation events, where the algorithm delivers good results (preferably rather flat areas). 
The applicability and accuracy of this approach shall  be examined in comparison to a standard 
hydrodynamic flood calculation, carried out with the commercial hydrodynamic-numerical software 
“Hydro-As 2d”18.

18 https://www.hydrotec.de/software/hydro-as-2d/   (access on 2022-10-02)
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2. Study area and data

2.1. Carrefour: A coastal densely populated city

The area of interest is the municipal area of Carrefour, located directly west of the Haitian capital  
Port-au-Prince.  Carrefour  can  be considered  as  a  suburban city,  resembling  a  patchwork of  13 
villages. The population of Carrefour was 511,000 inhabitants in the 2015 census, making it the 
second-most  populous  city  in  the  country19.  Its  administrative  area  has  the  size  of  165  km², 
stretching from north  to  south in  a  length  of  ~20 km and ~10 km in  east-west  direction.  The 
northern, coastal part is densely populated, whereas the southern upcountry parts are rural with a 
low population density. So although the population density of 3,096 inhabitants per km² is already 
high for the total municipal area, one has to keep in mind that the actual urban area, where more 
than 95% of the total population are living, amounts to no more than 30 km², which leads to a “felt”  
population density of around 16,000 inhabitants per km² (Vienna, Austria: 4,700 inh./km²).

Figure 8: View of Carrefour (eastern part) down from the hills 
(https://ayibopost.com/wp-content/uploads/2020/05/carrefour-2000x1125c.jpg, access on 2022-10-05)

19 Source: Institut Haitien de statistique et d’informatique (IHSI), https://ihsi.gouv.ht/ Demographic detail report from 
year 2015 is not available on the site, but an archived version can be found under 
https://web.archive.org/web/20151106110552/http://www.ihsi.ht/pdf/projection/
Estimat_PopTotal_18ans_Menag2015.pdf (access on 2022-10-05)
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Many  parts  of  Carrefour´s  today´s  agglomeration  are  deprived  areas  and  informal  settlements, 
(bidonvilles) with a very high population density. They originate from the rural exodus of the past 
30 years and out of natural disasters like the catastrophic earthquake of 2010.

Concerning the terrain morphology, the central parts of the urban area is situated on an alluvial fan 
of the Rivière Froide, which produces a slight but steady gradient form South to North (see Figure
9). The hills adjacent to the urban area reach altitudes of 300 to 600 metres. This special terrain 
morphology  will  play  an  important  role  in  the  flood  calculation  via  the  filling-and-spilling 
algorithm “Safer_RAIN”, more to this in chapter 4.2.

The Rivière Froide itself is deeply cut into the relief of the fan with an average slope height of 
according to the LIDAR dataset of 5-10 meters (Figure 87), which makes inundations out of the 
river not impossible, but rather unlikely. This has also been confirmed by the MSF staff, which I 
have been in contact throughout the whole period of this work.

So  the  bigger  problems  and  inundation  threats  lie  in  the  small  ravines (gullies)  as  well  as 
spontaneous overland flow coming down from the surrounding hills in case of a heavy precipitation 
event. In contrast to the main river Rivière Froide, which has a continuous channel flow throughout 
the year, the smaller ravines are leading water only after rainfall events and lie dry the rest of the 
year.

Due to these facts and due to the limited calculation capacity of the used software, I decided to limit 
my calculations to the urban areas of Carrefour plus the surrounding hills, from the western border 
to the neighbouring commune of Gressier until the border to Haiti´s capital Port-au-Prince, and in 
north-south direction from the Gulf of Gonave until the ridge (watershed) of the rising hills in the 
south (red outline of the AOI in Figure 10). The valley of Rivière Froide has been cut south of the 
city districts of Dufour / Vieux Caille.

The resulting area of interest has a size of 43 km², from which about 50% belongs to the poorly  
inhabited back country, which is important to include in the flood calculations until the watershed. 
The whole catchment of the Rivière Froide river (yellow outline in Figure 10) has a size of 62 km², 
with by far the largest part of it (more than 90%) outside of urban Carrefour and the upper parts 
belonging to the municipalities of Petionville and Kenscoff.

The river has a broad river bed with wide gravel bars in the middle section, which are able to retard 
and flatten the discharge peak in case of a heavy rain event covering the whole catchment. Also, the 
shape  of  the  catchment  with the  “bottleneck” at  the  knee  of  the  river,  where  it  turns  its  flow 
direction from west to north with hardly any drainage from the left river side, does not speak for a 
sharply rising and falling discharge peak.
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Figure 10: Area of interest (red), Catchment of Rivière Froide (yellow) and city borders of Carrefour (blue)

2.2. Terrain model (LIDAR)

Surprisingly enough, the most crucial input data for all flood calculations, a digital terrain model in 
high resolution, was not the most difficult ingredient to obtain. This is due to the fact that there have 
been carried out two LIDAR missions in Haiti:

The first  one took place in the year 2010 in response to the January 12th magnitude 7.0 Haiti 
earthquake  and  covered  the  highly  impacted  areas  of  Port-au-Prince,  Delmas,  Carrefour  and 
Leogane20, and the second in the years 2014-2016, this time covering the whole state of Haiti21. 
Both  of  them  have  been  published  on  the  leading  Open  Data  portal  for  LIDAR  data, 
OpenTopography.org,  but  as  usual,  the  devil  is  in  the  details,  which  will  be  illustrated  in  the 
following paragraphs.

20 World Bank - ImageCat Inc. - RIT Haiti Earthquake LiDAR dataset. Distributed by OpenTopography. 
https://doi.org/10.5069/G96Q1V50. Dataset access on 2021-12-05

21 HaitiData, The World Bank (2021). Haiti Digital Terrain Model 2014 - 2016. Distributed by OpenTopography. 
https://doi.org/10.5069/G9GX48R8. Dataset access on 2021-11-08
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Figure 11: Extent of the Point Cloud LIDAR Data (black) in the AOI (red)

2.2.1 Point-cloud data: Deriving a DTM with buildings

For the 2010 dataset, the original point-cloud data is available, which has proven to be very useful, 
as one can derive the outlines of the buildings from it although the point density is rather low with  
3.4 points per m² in average22. Via this process, two issues could be solved at once: First, we have a 
high-resolution digital terrain model, and second, the buildings with 16 m² and more are integrated 
in it. The only disadvantages are that the data is rather old (considering the dynamic of formal and 
informal settlement expansion in the urban areas) and that it does not cover the whole area, as can 
be seen in Figure 11.

The whole process in obtaining the DTM can be described as follows:

(1) Choosing the right population: The LIDAR point cloud is only poorly classified; out of a 
population of 2,847,342,691 points, only 5,938 (that is 0.0002 %!) are indeed classified as 
buildings, and not more than 11.6% are classified as ground points (last echo), whereas 87% 
are  unclassified23.  To  get  useful  results,  you  can´t  filter  out  only  ground  points  plus 
buildings, which would be the easiest way otherwise, but rather consider all points and use a 
suitable interpolation method for converting the point cloud data into a continuous raster 
surface.

22 https://portal.opentopography.org/datasetMetadata?otCollectionID=OT.072010.32618.1   (access on 2021-12-05)
23 https://portal.opentopography.org/datasetMetadata?otCollectionID=OT.072010.32618.1   (access on 2021-12-05)
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(2) Selecting the best suitable interpolation algorithm:  Given the facts above, we need to 
trick a bit on the interpolation algorithm. If we choose a standard algorithm like IDW, the 
buildings and streets are represented the best way. But we also have a lot of trees and other 
vegetation in our output then, which is especially obstructive in the river- and channel beds 
as  well  as  the  valley  grounds.  Here,  we  would  have  countless  “dams”  consisting  of 
vegetation which interferes with a consistent drainage behaviour. So I chose “minimum” 
instead, the cell values of raster cell X is represented by the minimum z value of all LIDAR 
points per raster cell.

In this manner, we do get some bias in our data (underestimation of z values per raster cell),  
streets and riverbeds are generally over-represented in the model (broader than they are), 
whereas  buildings  are  under-represented  (smaller  than  they  are)  due  to  the  Zmin 
interpolation algorithm. But this is the only way to keep vegetation to a large extent out of 
our terrain data.

(3) Selecting  the  best  suitable  interpolation  resolution:  Now  that  we  have  a  suitable 
interpolation method (min z), we have to find the best compromise for calculation capacity, 
building accuracy and a minimum of disturbing vegetation in our digital terrain model. This 
was indeed a trial-and-error technique, as illustrated in  Figure 12 – I first went for a 1m 
resolution, but the amount of cells to calculate in the flood scenarios is 4 times higher than 
with a 2m resolution, and our AOI amounts to 43 km² anyway, which means 43 million cells 
with 1m resolution, but only 10.75 million cells with a 2m resolution, which indeed makes a 
difference for all calculations.

But  even  more  important  is  the  minimisation  of  vegetation,  and  even  with  the  Zmin 
interpolation, we still had a lot of tree canopy in the resulting DTM, which is of course bad 
for all flood calculations. A 2 meter resolution with Zmin as interpolation method turned 
out to be the  best compromise between still  capturing the basic outline of the building 
substance with a minimum of included tree canopy.
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Figure 12: LIDAR: Comparison of different resolutions and interpolation techniques (red circles: tree canopy, to be 
minimized)
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2.2.2 Integer DTM: Reducing the “rice terraces”

The 2016 dataset covers all of Haiti, but has a severe disadvantages for serving as terrain model for 
flood calculations:  the  data  type  of  the  DTM (point  cloud data  is  not  accessible)  available  on 
OpenTopography is  integer,  which leads to some kind of “Chinese rice terrace landscape” and 
produces senseless results for flood calculation if it is used as it is, as illustrated in Figure 14. The 
integer data type maybe a good way to save storage size compared to the float32 data type as it has 
no decimals,  but  this  leads  to  the  paradox  situation  that  although  the  DTM is  consistent  and 
covering the whole area, for this task, its highly likely to produce error-prone results in flood extent 
and water depth, unless it is extensively preprocessed (see Chapter 3.4.1). The terrain height of all 
objects is expressed in whole meters, all decimal values are cut – and in fact, for a continuous 
surface like a DTM, this procedure is very problematic.

To be able to use the DTM nevertheless, it has been preprocessed in the following steps(see Figure
13):

Figure 13: Preprocessing of the Integer DTM

Via this  “downsampling” to  a  lower resolution  and afterwards  “upsampling” again  to  a  higher 
resolution (2m to be consistent with the chosen point cloud output), the terrace landscape can be 
blurred  and  smoothened  a  bit,  so  that  the  water  in  the  GIS-  and  2d  model  is  able  to  flow 
downstream.

To our advantage, the more important urban areas, as well as the flatter areas near the coast, are all  
covered by the 2010 point-cloud data, so we need the integer DTM only for some steep areas in the 
back country, until the watershed is reached. But this amounts for less than 20% of the total AOI 
(see Figure 11)
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Figure 14: Hill shade of the Integer DTM from HaitiData.org in Carrefour

2.3. Rainfall data: Sources and data formats

Obtaining rainfall data was one of the toughest tasks for this work and hence one of the “core areas” 
of the widespread data scarcity. Whilst there are numerous global gridded precipitation datasets 
available by now,  ground truth in form of rain gauge station data was not available for this 
work.  Also, not every global precipitation dataset is  suitable for the estimation of precipitation 
extremes. Figure 16 on the following page gives an overview on some available datasets (the table 
dates from the paper on the MSWEP dataset published in 2017, so ERA5-Land and GPEX are not 
included in it, as they are of more recent origin).

The selection of dataset described in the following chapters is based upon a preselection of the most 
important global precipitation datasets at the time of elaborating this thesis and is non-exhaustive, 
as one could easily write not only a master thesis, but a whole dissertation on this topic alone. It 
concentrates on recent datasets which are eligible for the derivation of precipitation extremes plus 
two relevant local data sources (UHM / Haitian Government, NOAA / US National Oceanic and 
Atmospheric Administration for the neighbouring island of Puerto Rico).

It is important to note that while ground station based precipitation data like the NOAA datasets 
are commonly distributed in  ASCII data format (TXT / CSV), all  satellite based precipitation 
(CMORPH, MSWEP, ERA5-Land) or extreme value datasets (GPEX) are available only either in 
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GRIB (GRIdded Binary / General Regularly-distributed Information in Binary form) or in NetCDF 
(network Common Data Form) data format. Both are multidimensional binary formats with time 
and i.e. altitude levels as third and fourth dimension (see Figure 15). QGIS can read both GRIB and 
NetCDF via the mesh module for data visualization, while the scripting languages  Python and R 
can access the data directly and calculate and export exactly what the user needs.

Figure 15: internal structure of a netCDF file - similar for GRIB files 
(https://docs.geoserver.geo-solutions.it/edu/en/_images/exampleNetCDF.png, access on 2023-01-04)

GRIB is the WMO (World Meteorological Organisation) standard binary format for the exchange 
and distribution of gridded datasets and exists in multiple editions: While GRIB edition 1 (GRIdded 
Binary)  is  only  still  in  use for  aviation weather  forecast  at  this  day,  GRIB Edition 2 (General 
Regularly-distributed  Information  in  Binary  Form)  is  in  broad  use  as  the  standard  format  for 
numerical weather prediction model output.  Both editions of GRIB are designed for the timely 
dissemination of large volumes of gridded data.24

Essential abilities of the GRIB format are:

• The ability to store multiple variables in a single file, such as temperature, precipitation, 
humidity, and wind speed

• The ability to store data at multiple levels of the atmosphere, such as surface-level data and 
data at different heights above the surface (height as dimension)

• The ability to store data at  multiple forecast times,  allowing users to view how weather 
conditions are expected to change over time (time as dimension)

24 https://www.eumetsat.int/formats    (access on 2023-01-04)
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NetCDF is “a machine-independent, self-describing, binary data format standard for exchanging 
scientific data, including climate and weather data. It is designed for platform independent, self-
describing data storage, with the intent that users can understand the data without the need for 
external resources and access it efficiently in its entirety or in portions.”25

NetCDF  was  developed  by  the  Unidata  Program  Center  at  the  University  Corporation  for 
Atmospheric Research (UCAR) and is widely used in the atmospheric and oceanic sciences, as well 
as other fields such as hydrology, ecology, and geology. NetCDF files consist of a header and a data 
section,  with  the  header  containing  metadata  about  the  data,  such  as  variable  names,  units, 
dimensions, and attributes, and the data section containing the actual numerical data (see Figure 15)

Some of the key features of the NetCDF format include26:

• Support  for  multidimensional  arrays,  allowing  data  to  be  organized  into  a  variety  of 
dimensions, such as time, latitude, longitude, and depth

• Support for metadata, including variable names, units, and other attributes, which can be 
used to describe the data and make it easier to interpret

• Support for compression, which can be used to reduce the size of large datasets and make 
them easier to store and transfer

• Support for parallel I/O, which allows multiple processes to read and write data to a NetCDF 
file simultaneously, improving performance for large-scale data analysis

But not only in data storage format, ground-based gauge data and raster-based sensor data gained 
via satellite remote sensing do differ. There is also a big difference in the way, the data is gained: 

• Rain  gauge  data is  punctual  data  and  therefore,  hydrologists  speak  of  “point 
precipitation”.

• In  contrary,  satellite  gained  remote  sensing  datasets,  who  measure  the  accumulated 
precipitation for a certain spatial unit (grid cell) during a certain time period (time step),  
calculate average precipitation amounts valid for exactly one grid cell.

◦ For example, the ERA5-Land parameter “total precipitation in m” is defined as the 
“accumulated liquid and frozen water, comprising rain and snow, that falls to the Earth's 
surface. It is the sum of large-scale precipitation (…) at spatial scales of the grid box or 
larger and convective precipitation (...) at spatial scales smaller than the grid box.”27

Finally, an important note can be found in the description of the ERA5-Land “total precipitation” 
parameter:

25 https://www.eumetsat.int/formats   (access on 2023-01-04)
26 https://www.unidata.ucar.edu/software/netcdf/   (access on 2023-01-04)
27 https://apps.ecmwf.int/codes/grib/param-db?id=228   (access on 2023-01-04)
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“Care should be taken when comparing model parameters with observations, because 
observations  are  often  local  to  a  particular  point  in  space  and  time,  rather  than 
representing averages over a model grid box.”28

This leads us to the concept of the area reduction factor (ARF). In hydrology, the ARF is a key 
parameter in the design for hydrological extremes. Simplified, the ARF takes into account the fact 
that the intensity of a precipitation event is indirect proportional to the size of affected area and 
the duration of the precipitation event (amongst other factors, like the return period, seasonality 
and prevailing type of precipitation, see Chapter  3.2.2): The bigger the area, and the shorter the 
duration, the higher the ARF applied on point precipitation data.

The  remote  sensing  datasets  which  measure  precipitation  via  radar,  summarize  the  measured 
precipitation  to  the  area  of  the  spatial  resolution,  which  automatically  levels  and averages  the 
precipitation amount for the grid cell X and duration D. If the dataset has a spatial resolution of 
0.1*0.1 degrees, the corresponding grid cell has a length of approximately 11.1*10.5 kilometres at 
18.5°N, which accounts for an area of 116.25 square kilometres.

According to technical literature (see Breinl et al., 2020, p. 680, Svensson and Jones, 2010, p. 5, 
Langousis, 2005, p. 12) for a duration of D= 1 hour and an area of ~100 km²,  the ARF can be 
assumed with a value between 0.6 and 0.7- which means you have to multiply rain gauge data by 
~0.65 to be able to compare the data to grid cell data valid for the whole area. Or, in the other  
direction: multiply the remote sensing dataset values with this resolution with 1.55, to be able to 
compare it with in-situ point precipitation data from a rain gauge. More on this in Chapter 3.2.2.

28 https://apps.ecmwf.int/codes/grib/param-db?id=228   (access on 2023-01-04)
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2.3.1 Haitian Government: UHM / CNIGS

The  official  Government  institution  for  collecting  rainfall  data  in  Haiti  is  the  Unité  Hydro-
Météorologique d'Haïti (UHM)29. It is stated on the web portal, that the institution is leading an own 
network of  automated rain gauge stations  throughout  the country,  also some papers  refer  to it.  
Unfortunately, the link to it leads nowhere, and I did not receive any response to my inquiries for 
data.

The  Centre  national  de  l'information  géo-spatiale  (CNIGS)30 offers  5  datasets  combined  with 
precipitation on the HaitiData.org portal:

• dataset “pluie 3-5 octobre 2016”: 24h precipitation sums of Hurricane Matthew hitting the 
west of the island31, see Figure 17, Figure 21 and Figure 25)

• datasets “Annual Precipitations (Min/Max/Average) 1998 2010 NATHAT TRMM 34B2”: 
Annual minimum / maximum / average precipitation sum between 1998 and 201032

• dataset “Haiti Meteorology Rain Stations NATHAT CNM Point”: Location of Haitian rain 
gauges, but with no data combined.33

Unfortunately, this does not lead us far neither for a model validation, nor for a calibration (as we 
don´t have discharge sums), nor for being able to estimate a typical return period of i.e. 5, 30 or 100 
years. For this, we need long-time observation data in a smaller time interval, not monthly, yearly or 
daily,  although daily is better  than nothing. But heavy precipitation events causing spontaneous 
overland flow are typically short-term events, lasting for one or two hours, maybe three, but seldom 
more.

It would make sense to calculate a “hurricane scenario” on the data provided, after a cross-check of 
the precipitation sums with other data sources, but that would go beyond the scope of this work. For 
defining a certain return period, the data is not very helpful, as we neither have certainty on the data 
accuracy, nor is it possible to classify the event in relation to other precipitation events.

A problem of the “pluie 3-5 octobre 2016” dataset is the fact that the precipitation amounts seem to 
be interpolated between the particular community sections. The rain gauge station network in Haiti 
is not very dense, so the interpolation between gauge data alone contains major uncertainties in data 
accuracy. Moreover,  the single value for each administrative area (on community section level) 
leads to a systematic bias compared to the actual rainfall distribution, as we have – again, like in the 
integer DTM – a “rice terrace effect” in the data, divided into irregular areas at that. So for sure, this 
data has to be handled with the utmost care.

29 https://www.meteo-haiti.gouv.ht/index.html  , access on 2023-02-07
30 http://www.cnigs.ht/  , access on 2023-02-07
31 https://haitidata.org/layers/geonode_data:geonode:pluie3_5_octobre2016  , access on 2023-02-07 
32 https://haitidata.org/search/?limit=5&offset=0&title__icontains=precip  , access on 2023-02-07
33 https://haitidata.org/layers/geonode_data:geonode:hti_meteorology_rainstations_nathat_cnm_point  , access on 

2023-02-07 

------------------------------------------------------------------------------------------------------------------------
2. Study area and data 2.3. Rainfall data: Sources and data formats

http://www.cnigs.ht/
https://haitidata.org/layers/geonode_data:geonode:hti_meteorology_rainstations_nathat_cnm_point
https://haitidata.org/search/?limit=5&offset=0&title__icontains=precip
https://haitidata.org/layers/geonode_data:geonode:pluie3_5_octobre2016
https://www.meteo-haiti.gouv.ht/index.html


UNIGIS Master Thesis 42 Andreas Reithofer 106713
------------------------------------------------------------------------------------------------------------------------

Figure 17: Rainfall Data Hurricane Matthew 2016: Maximum precipitation in 24h (data source: 
https://haitidata.org/layers/geonode_data:geonode:pluie3_5_octobre2016 ; access on 2022-10-10)

2.3.2 CMORPH (Climate Prediction Center Morphing Technique)

The CMORPH (Climate Prediction Center Morphing Technique) dataset ranges from 60°N to 60° S 
and has a spatial resolution of 0.25 degrees  (Joyce et al. 2004) and a temporal resolution of 0.5 
hours. The dataset had been developed by the Climate Prediction Center (CPC) of the US National 
Oceanic and Atmospheric Administration (NOAA) and is based on passive microwave and infrared 
data  (Joyce  et  al.  2004).  It  provides  information  on  both  the  amount  and  distribution  of 
precipitation, and is widely used for a variety of purposes, including the development of climate 
models, the assessment of drought conditions, and the study of extreme precipitation events.

Roughly, there are two available products: First, the raw microwave-only data, which are based on 
the  corresponding  satellite  measurements  only  (see  Figure  18),  and  second,  the  bias-corrected 
product, which includes in situ based sources (Figure 19). Bias in the raw CMORPH is removed 
through Probability Density Function (PDF) matching against the CPC daily gauge analysis over 
land and through adjustment against the pentad GPCP merged analysis over ocean (Xie et al. 2017).
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Figure 18: Flowchart for the CMORPH RAW satellite precipitation estimates (Xie et al., 2017, p. 
1620)

Figure 19: Flowchart for the CMORPH bias correction procedure (Xie et al., 2017, p. 1626)
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The data can be downloaded either in a special binary format at the NOAA FTP server 34 or in 
netCDF or even ASCII format (for smaller datasets, i.e. a narrow region or just a few time steps) at  
the Climate Data Library of Columbia University35. 

CMORPH does not deliver a rain amount X for a certain return period Y itself, this must be done 
manually via extreme value statistics (i.e. GEV, Gumbel, etc.) with the downloaded datasets; of 
course, the more data, the better. To give a hint whether the data would be suitable in this region for 
a  statistical  evaluation,  I  downloaded  the  corresponding  dataset  (daily  mean  in  mm/h)  for  the 
timespan of October 2nd to 6th 2016, where Hurricane Matthew crossed the western peninsula of 
Haiti from South to North.

Though our AOI of Carrefour was not in the centre of the hurricane track, at least according to (the 
only freely available) dataset of Haitian authorities on HaitiData.org, there still should have taken 
place substantial precipitation with a 24h maximum between 180 and 250 mm on Oct 4 th 2016 – 
which corresponds to an average rainfall intensity of 7.5 to 10.5 mm/h (see Figure 21). CMORPH 
data shows rainfall intensities between 3.5 and 4.7 mm/h for our AOI (see Figure 20), so by factor 2 
smaller rainfall intensities than the UHM / CNIGS ground based data.

Keeping in mind that, the area reduction factor (ARF, see Chapter 3.2.2) for an area of around 730 
km² (corresponding grid cell in CMORPH – 0.25*0.25 degrees, which are equivalent to ~26*28 km 
at the latitude of 18.5 degrees North36) and a duration of 24 hours can be assumed with a value of 
0.9 according to different literature sources (see  Breinl et al., 2020, p. 680,  Svensson and Jones, 
2010, p. 5,  Langousis, 2005, p. 12), the intensities in CMORPH are still considerably lower than 
those of Haitian Government authorities, which presumably refer to interpolated rain gauge data.

Concerning the rainfall pattern as such, the pattern of CMORPH is quite similar and consistent with 
the UHM / CNIGS picture – the region with the highest amounts of rainfall lies in the Departement  
du Sud, around the city of Les Cayes. This corresponds to reports on floodlist.com, where the Les 
Cayes region was reported to have been hit hardest by Hurricane Matthew37.

34 ftp.cpc.ncep.noaa.gov   (access on 2023-02-10)
35 http://iridl.ldeo.columbia.edu/   (access on 2023-02-10)
36 The factor, by which the degrees of longitude (starting from 40,075 km earth circumference / 360 degress = 111.1 

km at the equator) have to be mulitiplied with, are equivalent to the cosinus of the corresponding latitude. Therefore  
applies: degrees longitude at 18.5° North (AOI) = 111.1 * cos (18.5) = 105.36 km; 0.25° lon at 18.5°N = 26.34 km

37 https://floodlist.com/america/hurricane-matthew-causes-deaths-haiti-dominican-republic   (access on 2022-10-07) 
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Figure 20: NOAA NCEP CPC CMORPH daily calculated mean in mm/h for 4 Oct 2016 (data source: 
http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP/.CPC/.CMORPH/.daily_calculated/.mean/.morphed/.cmorph/, 
access on 2023-02-14)
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Figure 21: Average rainfall intensity in mm/h on Oct 4th (Daily precip. / 24) according to the CNIGS dataset

2.3.3 MSWEP (Multi-Source Weighted-Ensemble Precipitation)

The  MSWEP (Multi-Source  Weighted-Ensemble  Precipitation)  dataset  is  “the  first  fully  global 
precipitation dataset with a 0.1° resolution derived by optimally merging a range of gauge, satellite, 
and reanalysis estimates” (Beck et al., 2019). It is a global, historic precipitation dataset (1979–until 
present) with a 3-hourly temporal and 0.1° spatial resolution and “combines gauge-, satellite-, and 
reanalysis-based data to provide reliable precipitation estimates over the entire globe” (Beck et al. 
2019).

The data is free to use for non-commercial purposes and can be downloaded from a Google Drive 
via registration at  http://www.gloh2o.org/mswep/. To examine the data, I downloaded the data for 
the  timespan  3rd to  5th October  2016  (Hurricane  Matthew)  for  our  AOI  in  Carrefour  and  the 
neighbouring provinces.

The pattern for Oct 4th (daily precipitation sum) is again similar, with very high precipitation sums 
up to 750 mm for 24 hours in the Western peninsula mountain region inland of coastal city Les 
Cayes (see Figure 24)– here in this region, the precipitation sums are considerably higher than in 
CMORPH (around twice the values of CMORPH, where the highest precipitation sum for Oct 4 th 

2016 amounts for ~350mm / 24h).
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But  this  delta  in  precipitation  amounts  does  not persist  until  our  AOI  in  Carrefour  resp.  the 
catchment of Rivière Froide: Here, CMORPH has values between 85 and 120 mm for 24h. MSWEP 
has similar values here, between 85 and 105 mm for the whole day, compared to 180 – 250 mm 
according to the Haitian dataset (see Figure 25). The resolution of MSWEP is higher, and it includes 
more data products and ground datasets than CMORPH, which is the older product.

MSWEP has a grid cell size of ~115 km² (0.1*0.1 degrees, which are equivalent to ~10.5*11.1 km 
at the latitude of 18.5 degrees North ) in these latitudes, which accounts for an area reduction factor 
(see Chapter 3.2.2) of 0.9 – 0.95 for the duration of 24h (Langousis, 2005), so not much of the delta 
in absolute sums between MSWEP and UHM/CNIGS in our AOI Carrefour can be explained with 
that. But as long as we don´t know the ground truth in our area (the origin of the UHM / CNIGS 
data  for Hurricane Matthew based on the smallest  administrative units  is  unclear),  it´s  only an 
assumption which product is better in reproducing accurate rainfall sums. For this reason, only the 
differences between the remote sensing products and the Haitian dataset can be shown here, without 
being able to define the most accurate dataset.

Looking on the  pattern  of  the  highest  precipitation  amounts  in  Figure  24 seems –  taking  into 
account  the hurricane storm path and the topography of the island (highest rainfall  sum in the 
mountains) – quite plausible, in any case more than the rainfall pattern of the CNIGS data (see 
chapter 2.3.1).

Figure 22: Performance of MSWEP according to their producers (http://www.gloh2o.org/mswep/, access on 2023-
02-12)
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Figure 23: Flowchart of the main processing steps to produce MSWEP V2 (source: BECK et al. 2019)
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Figure 24: Gloh2o MSWEP v2 daily precipitation for 4 Oct 2016

Figure 25: Daily precipitation on Oct 4th according to CNIGS / HaitiData.org

------------------------------------------------------------------------------------------------------------------------
2. Study area and data 2.3. Rainfall data: Sources and data formats



UNIGIS Master Thesis 50 Andreas Reithofer 106713
------------------------------------------------------------------------------------------------------------------------

Figure 26: Storm path of Hurricane Matthew in 2016 combined with daily precipitation sum on Oct 4th 2016 according 
to MSWEP v2

2.3.4 GPEX (Global Precipitation Extremes)

The  GPEX (Global  Precipitation  Extremes)  dataset,  published  as  research  data  by  TU  Delft38 
(Gruendemann et al., 2020) is a global collection of data related to extreme precipitation events. 
The dataset provides information on extreme precipitation events at both global and regional scales, 
and is used by researchers, water resource managers, and government agencies to inform decision-
making related to extreme precipitation and its impacts.

It differs from the two other datasets mentioned before (MSWEP & CMORPH) in the fact that  
GPEX explicitly provides information on the intensity, duration and frequency (IDF) of extreme 
precipitation events and is used for a variety of purposes, including the assessment of flood risk, the 
design of water resource infrastructure, and the development of climate models.

GPEX  is,  like  the  other  datasets,  a  hybrid  dataset  based  on  satellite  observations,  rain  gauge 
measurements and numerical weather prediction models. GPEX is strongly based upon the MSWEP 
dataset, so it has the same spatial resolution of 0.1 arc degrees. All IDF curve information is based 
on the precipitation amounts calculated by MSWEP (38 years of data  availability,  so n=38).  It 
works with 3 different extreme values distributions, namely the widespread Generalized Extreme 
Value (GEV) distribution, the Peak-Over-Threshold (POT) method and the Metastatistical Extreme 

38 https://data.4tu.nl/articles/dataset/GPEX_Global_Precipitation_EXtremes/12764429   (access on 2023-02-15)
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Value (MEV) distribution  (Gründemann et  al.,  2021) While  the first  two methods only use the 
largest events to estimate precipitation extremes, the MEV distribution “includes all precipitation 
events, leads to smoother spatial patterns of local extremes” (Gründemann et al. 2021). 

The data is processed and quality-controlled to ensure its accuracy and consistency, and is available 
for the following return periods and durations:

• return periods: 2, 5, 10, 20, 39, 50, 100, 200, 500, 1000 years

• durations: 3, 6, 12, 24, 48, 72, 120 and 240 hours

If we take a closer look into the AOI Carrefour / the Rivière Froide catchment, the GEV distribution 
shows 24h precipitation amounts of 350mm in the coastal region and almost 500mm in the Upper 
part of the Rivière Froide Catchment for the 100 year return period (see Figure 27). According to 
the GPEX GEV data,  the  precipitation  sum of  Hurricane  Matthew on Oct  4th 2016 (basis  24h 
rainfall sum) in our AOI was not more than a T2 to T5 event (2 to 5 years return period, see Figure
28).

This could actually reflect reality well, as the actual hurricane storm path was about 200km away in  
the very west of the Tiburon Peninsula, in the Grad Anse Department (see  Figure 26). The rain 
event will indeed have been of minor importance to the Carrefour area, also, there are no reports of 
floods and damages for this area concerning Hurricane Matthew. 

The paper of  (Gruendemann et al.,  2020) states that “the traditional Generalized Extreme Value 
(GEV) distribution and Peak-Over-Threshold (POT) methods, which only use the largest events to 
estimate precipitation extremes, are not spatially coherent. The recently developed Metastatistical 
Extreme Value (MEV) distribution, that includes all precipitation events, leads to smoother spatial 
patterns of local extremes”. 

I examined the MEV distribution as well, and for the Hurricane Matthew event, it showed for the 
Carrefour AOI similar (although continuously lower) values for:

• the lower return periods (i.e. for T5)

• for the raster cells in low-lying areas, which corresponds to the cells with lower absolute 
precipitation amounts

whereas for the other combinations, so higher return periods, i.e. T100, and mountainous raster cells 
with high absolute precipitation amounts (and thus also high rainfall intensity values in the IDF 
curves), the delta between GEV and MEV distribution is approximately the ratio 1:0.6 (see Figure
29 in contrast to Figure 27).
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Figure 27: GPEX GEV estimates for a 24h / T100 rain event (data source: Gruendemann et al., 2020)
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Figure 28: GPEX GEV estimates for a 24h / T5 rain event (data source: Gruendemann et al., 2020)

Figure 29: GPEX MEV estimates for a 24h / T100 rain event (data source: Gruendemann et al., 2020)
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Via libraries and packages in the scripting languages Python and R, it is also possible to access 
the data in the netCDF files directly, without visualization in a GIS client, and to evaluate and 
further process the data included. In this manner, with help of the “extRemes” library for R, I was 
able to derive IDF curves (see Chapter 3.2.3 for more detailed information on this) from the GPEX 
values  (GEV and  MEV distribution)  and  compare  them  against  each  other  as  well  as  to  the 
manually  fitted  GEV quantiles  in  R  from  the  observed  annual  maxima  of  the  corresponding 
duration (see Figure 30 and Appendix 6.1 Extraction of IDF Curves from GPEX dataset).

The results confirm the first impression illustrated above, the MEV distribution (taking into account 
all precipitation events instead of the annual maxima only) shows consistently lower values for all 
durations and return periods, but especially for the higher return periods. This makes sense when 
regarding the  methodology of  the MEV distribution,  which  takes  into  account  all  precipitation 
events of a certain region and time period, unlike the GEV or Gumbel distribution, which take into 
account only the annual maxima. But it is not possible to tell, if the derived values for i.e. a T100  
event with duration 24 hours are more accurate with this approach, with the (few) information we 
have.
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Figure 30: MEV estimates vs. GEV estimates (GPEX dataset) for Durations 3h, 6h, 12h and 24h and return periods T2, 
T5, T10, T50 and T100 (data source: Gruendemann et al., 2020)
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2.3.5 ERA5-Land

The land component of the fifth generation of European ReAnalysis Data, short  ERA5-Land, is 
provided by the European Centre for Medium-Range Weather Forecasts  (ECMWF) in Reading, 
UK. The dataset is described as 

“a (climate)  reanalysis  dataset  providing a consistent  view of  the evolution of  land 
variables  over  several  decades  at  an  enhanced  resolution  compared  to  ERA5.  (..) 
Reanalysis  combines  model  data  with  observations  from  across  the  world  into  a 
globally complete and consistent dataset using the laws of physics. Reanalysis produces 
data that goes several decades back in time, providing an accurate description of the 
climate of the past.” (“ERA5-Land hourly data from 1981 to present,” 2019, p. 5).

It is a high-resolution, multi-variable climate reanalysis dataset that provides information on various 
atmospheric, land-surface and cryosphere variables over land areas from the year 1950 to the near 
present. The data covers a wide range of variables including temperature, precipitation, humidity, 
wind speed and direction, surface pressure, soil moisture and more,  providing a comprehensive 
view of the Earth's land-surface and atmospheric conditions. The data is available for scientific 
research as  well  as  for  operational  weather  forecasting  and climate analysis  and is  widespread 
among the scientific community, especially Europe.

ERA5-Land does not assimilate observations directly. Each segment or stream is initialized with 
meteorological fields from ERA5. Air temperature, humidity, and pressure are corrected using a 
daily  lapse rate derived from ERA5. Subsequently,  the land surface model is  integrated in  24h 
cycles providing the evolution of the land surface state and associated water and energy fluxes 
(Muñoz-Sabater et al., 2021).

Figure 31 hows a diagram of the algorithm used for each 24 h production cycle of the ERA5-Land 
dataset:
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Figure 31: Environment of the ERA5-Land dataset (Muñoz-Sabater et al., 2021, p. 4352)

ERA5-Land produces a total of 50 variables describing the water and energy cycles over land. A 
main advantage of ERA5-Land compared to ERA5 and the preceding model ERA-Interim is the 
horizontal resolution, which is enhanced globally to 0.1 degrees (latitude: 11.1 km, longitude: 10.5 
km at  18.5°N) compared to  30 km in ERA5 or  80 km in ERA-Interim,  whereas  the temporal 
resolution is hourly like in ERA5 (Muñoz-Sabater et al., 2021). 

Table 3 gives a good overview on the characteristics of the three ERA datasets:

Table 3: Key parameters of ERA-Interim, ERA5, and ERA5-Land (Muñoz-Sabater et al., 2021, p. 4356)
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The parameter in use for the purpose of this work is called “total precipitation” (see Table 4) and is 
measuring 

“Accumulated liquid and frozen water, including rain and snow, that falls to the Earth's 
surface. It is the sum of large-scale precipitation (that precipitation which is generated 
by  large-scale  weather  patterns,  such  as  troughs  and  cold  fronts)  and  convective 
precipitation (generated by convection which occurs when air at lower levels in the 
atmosphere is warmer and less dense than the air above, so it rises). (..) This variable is 
accumulated from the beginning of the forecast time to the end of the forecast step. 
The units of precipitation are depth in metres. It is the depth the water would have if it 
were spread evenly over the grid box. Care should be taken when comparing model 
variables with observations, because observations are often local to a particular point 
in space and time, rather than representing averages over a model grid box and model 
time step.” 39

The exact citation is important in this case, as for me at the first glance, the hourly precipitation 
values were not self-explaining. Indeed, a closer look at the parameter description40 had proven to 
be valuable: The “total precipitation” parameter is cumulative for 24 hours, with the maximum (of 
the day before) reached at 00:00 UTC. In other words: From 01:00 to 00:00 of the next day, the  
hourly  precipitation  sums  are  cumulative  and  if  you  are  really  interested  in  hourly  rainfall 
intensities, you first have to deduct the precipitation sum of the time step before:

Table 4: Parameter description of ERA5-Land for "total precipitation" 
(https://confluence.ecmwf.int/pages/viewpage.action?pageId=197702790, access on 2023-03-21)

To explore  the  dataset  and  its  characteristics,  I  chose  once  again  the  rain  event  of  Hurricane 
Matthew on Oct 4th 2016 in Haiti. The ERA5-Land dataset does  not cover the whole area of the 
Carrefour AOI, as only grid cells which fall entirely onto land mass are covered, whereas grid cells 
on the coastline or in maritime areas do not have data.

Extrapolating  from  the  neighbouring  grid  cells  in  the  east  and  south,  ERA5-Land  shows 
precipitation sums between 120 and 150 mm for the whole day41 in our AOI of Carrefour (see 
Figure 32) and the Rivière Froide catchment, which is a bit higher than the values of CMORPH (85-
120 mm for 24h, Figure 20) and MSWEP (85-105 mm for the whole day, Figure 24), but still lower 
than the stated 180–250 mm according to the Haitian dataset (see  Figure 25). Accounting for the 
ARF (see  Chapter  3.2.2)  with  a  value  of  ~0.9  for  D=24h and  A=100 km²,  the  values  can  be 
multiplied with 1.11, which leads to precipitation sums of 130-165 mm for the whole day in our 
AOI – not too far away from the 180-250 mm of the CNIGS/UHM dataset from Haiti.

39 https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.e2161bac?tab=overview   (access on 21-03-2023)
40 https://confluence.ecmwf.int/pages/viewpage.action?pageId=197702790   (access on 21-03-2023)
41 Muñoz Sabater, J., (2019): ERA5-Land hourly data from 1981 to present. Copernicus Climate Change Service 

(C3S) Climate Data Store (CDS). (access on 04-01-2023), 10.24381/cds.e2161bac 
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Looking at the pattern of the 24h precipitation sums (Figure 32), the absolute maximum in the 
western region of the Tiburon peninsula, near centre of the hurricane track (see  Figure 26), has 
significantly lower values in ERA5-Land (around 350 mm for 24 hours) than in the Haitian dataset 
(between 500 and 600 mm in 24h, see Figure 25) and in the MSWEP dataset (up to 800 mm in 24h, 
see Figure 24). 

Taking into account the ARF with a value of ~0.9 (see Breinl et al., 2020, p. 680, Svensson and  
Jones, 2010, p. 5, Langousis, 2005, p. 12) for D=24h and A=100 km², the values can be multiplied 
with 1.11, which leads to a maximum precipitation sum of ~390 mm for the whole day in the  
Western Tiburon Highlands – still quite far away from the 500-600 mm of the CNIGS/UHM dataset 
or the 700-800 mm from MSWEP.

Figure 32: Copernicus ERA5-Land precipitation for 2016-10-05 00:00 UTC 

2.3.6 NOAA Global Historical Climatology Network-Daily (GHCN-D)

The  National  Oceanic  and  Atmospheric  Administration  (NOAA)  of  the  US  Department  of 
Commerce provides several precipitation datasets that can be useful for various applications. As 
data  of  the  existing  rain  gauge  network  in  Haiti  is  presently  not  available,  the  NOAA station 
network may serve as an alternative to acquire reliable precipitation data from a region nearby to 
Haiti – and compare it to the global remote sensing datasets mentioned before.
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For all US States and territories (therefore including the neighbouring island of Puerto Rico), there 
are even point precipitation frequency estimates available, and this will play an important part in the 
model validation in chapter 3.2.3. 

The  Global  Historical  Climatology Network –  Daily (GHCN-D,  Menne et  al.  2012)  dataset 
integrates daily  climate observations from approximately 30 different  data  sources.  The current 
version 3 was released in September 2012 and contains station-based measurements from well over 
90,000 land-based stations worldwide, about 2/3 of which are for precipitation measurement only. 

“GHCN-Daily (..) will function as the official archive for daily data from the Global 
Climate Observing System (GCOS) Surface Network (GSN) and is particularly  well 
suited  for  monitoring  and  assessment  activities  related  to  the  frequency  and 
magnitude of extremes. The total of 1.4 billion data values includes 250 million values 
each for maximum and minimum temperatures, 500 million precipitation totals, and 200 
million observations each for snowfall and snow depth. Station records, some of which 
extend  back  to  the  19th  century,  are  updated  daily  where  possible  and are  usually 
available one to two days after the date and time of the observation.”42

The data  can be downloaded at  no cost  either from the NCEI Climate Data Online Portal43 or 
directly from the HTTP Server44. For Haiti, there is no data available, but for the neighbouring state 
of  the  Dominican  Republic.  The  nearest  rain  gauge  to  the  AOI  in  Carrefour  is  the  station 
DRM00078482  MariaMontezIntl  –  the  airport  of  Santa  Cruz  de  Barahona,  140km in  easterly 
direction of Carrefour.

For Hurricane Matthew (04-10-2016),  both CMORPH and ERA5-Land have precipitation sums 
between 90 and 100 mm there (see Figure 33), whereas MSWEP has a rainfall sum of 60 mm. The 
GHCN-D dataset (Menne et al., 2012a) shows for the day after (05-10-2016) the precipitation sum 
of 263.9 mm (see  Table 5), which is at least more than double the value of all remote sensing 
datasets.  So  even  when  accounting  the  ARF,  which  can  be  assumed  with  0.9-0.95  for  24h 
precipitation values,  see Chapter  3.2.2,  the point precipitation data from this trusted in-situ 
source is double than triple the values of the available remote sensing datasets.

Table 5: GHCN-D dataset for station DRM00078482 Maria Montez International Airport, DR (data source: 
https://www.ncei.noaa.gov/pub/data/ghcn/daily/by_station/ )

42 https://www.ncei.noaa.gov/pub/data/cdo/documentation/GHCND_documentation.pdf   (access on 2023-03-25)
43 https://www.ncei.noaa.gov/cdo-web/search?datasetid=GHCND   (access on 2023-03-25)
44 https://www.ncei.noaa.gov/pub/data/ghcn/daily/   (access on 2023-03-25)
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Figure 33: ERA5-Land 24h precipitation in m for 04-10-2016 (red dot = station DRM00078482)
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3. Methods and concepts

3.1. Data scarcity and the consequences

As it has been particularised in the last main chapter as well as in the introduction, the issue of input 
data scarcity is a crucial factor for flood modelling in our area of interest. But the pluvial flood 
simulation requires knowledge of how much rain is likely to fall within a certain amount of time 
and over a specific area.

One pragmatic solution in this case could be the ignorance of the missing station-based data and 
either  just  rely  on the remote  sensing  datasets  or  simply  run a  set  of  different  scenarios  for  a 
precipitation event P during time period (duration) D, regardless of a classification to a certain 
return period T. In fact,  this  approach can be argued as long as there is  any station-based data 
available in the area, to which the different rainfall scenarios can be compared with – making it an 
inductive approach to  what  is  potentially  going to  happen if  a  rainfall  event  with precipitation 
amount P will reoccur in the future.

Nevertheless, there are ways and possibilities to assess a certain return period T to a design event 
with rainfall intensity P/D, to stick to the variables assigned above. As in-situ station data was not  
available for Haiti, the chosen approach was to compare the remote sensing datasets with station 
data and point precipitation frequency charts from the south coast of Puerto Rico, where conditions 
should be somewhat similar to our area of interest – not too far away (about 600km beeline), with a  
similar topography (coastal area with quickly rising terrain in the back country).

3.2. Model validation

3.2.1 Remote sensing datasets vs. station-based datasets: ERA5-Land 
and MSWEP v2 vs. GHCN-D

As already thematically mentioned in the previous chapter 2.3, the data comparison between station 
based ground-truth data and remote sensing gridded dataset is not as trivial as maybe expected, not 
only due to different data formats, but also due to different areas of reference (point data vs. area 
average) and other factors, which lie in the specific methodology of each remote sensing dataset.

To be able to decide which dataset will fulfil the aim of providing the most reliable data source for 
this work, I take a closer look at the comparison between station based data (on the example of the 
NOAA daily precipitation dataset GHCN-D) and two remote sensing datasets (namely ERA5-Land 
and MSWEP v2).

On January 6th 1992, there had been a major pluvial flood event in the Southern and central parts of 
Puerto Rico, according to a report of the USGS:

“Severe flooding affected at least 40 municipalities in Puerto Rico during January 5-6, 
1992. A combined weather system, consisting of a cold front and an upper level trough, 
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produced 24-hour total rainfall of as much as 20 inches on the island's mountainous 
interior. Rainfall intensities for 1-, 2-, 3-, and 6-hour durations exceeded previously 
recorded island-wide maximum values.” (Torres-Sierra, 1996:1)

20 inches (around 500 mm) of rain in 24 hours have been measured in the island's interior, at the 
stations “Toro Negro Forest” and “Cayey 1E”. But also on the coastline, at station “Ponce 4E”, 
there had been measured 8.30 inches (210 mm) in 24 hours.  The idea is  now to juxtapose the 
precipitation amounts of the USGS report of 1996 with the online data from GHCN-D, the data 
from ERA5-Land and from MSWEP.

The first check, internal sync between the 1996 USGS report (Figure 34) and the NOAA GHCN-D 
online data archive45 could be completed successfully:  The stations in question could be easily 
selected in the online portal and downloaded as a single CSV dataset, which afterwards had been 
converted into a point shape-file for better visual comparison, with daily precipitation sums as well 
as the calculated cumulative rainfall sum for both days.

Based on the cumulative rainfall for both days, contour lines with a virtual raster resolution of 0.01° 
(~1km)  and  2  inch  equidistance  had  been  created  in  the  GI-Software  “SAGA-GIS”  via  the 
interpolation algorithm “Multilevel Bspline”46. The precipitation pattern created from the contour 
lines (see Figure 35)looks for the most part quite similar to Figure 34: two maxima in the mountains 
near  the  Southern  coast  and  low  precipitation  sums  in  the  Northern  part,  especially  in  the 
Northwest.

Figure 34: Isolines: Cumulative precip. over PRC Jan 5/6, 1992 (data compiled by NOAA, (Torres-Sierra, 1996, p. 12)

45 https://www.ncei.noaa.gov/maps/daily/   (access on 2023-03-26)
46 https://saga-gis.sourceforge.io/saga_tool_doc/2.2.5/grid_spline_4.html   (access on 2023-04-06)
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Figure 35: Isolines and station data: Cumulative precip. over PRC Jan 5/6, 1992 (data source: 
https://www.ncei.noaa.gov/maps/daily/ - access on 2023-03-26)

It must be pointed out that NOAA daily station data seems to measured not from 00:00 to 24:00, but 
from 08:00 AM day 1 to 08:00 AM day 2. This makes the comparison with satellite based datasets 
more difficult, as some of the remote sensing precipitation data may fall in the day before / day after 
compared to the station data and vice versa – but the sum of the 2 days (1992-01-05 and 1992-01-
06) can be compared.

The comparison with  ERA5-Land turned out to be  completely unsuccessful: The rainfall event 
simply does not exist as such in ERA5 datasets, neither in ERA5, nor in ERA5-Land (see Figure
37), whatever the reason may be. The maximum 24h sum is only 40 mm in case of ERA5-Land and 
about the same value in the ERA5-reanalysis dataset, which is by no means even close to being in 
the range, where it should be according to the rain gauge data. Of course, this may be bad luck in 
this case.

MSWEP v2 (Figure 38) on the other hand shows both a plausible pattern which is well in sync 
by and large  with the interpolated rainfall sums based on  GHCN-D (Figure 35) respectively the 
USGS report (Figure 34) and precipitation amounts which are mostly not too far away from the 
rain gauge sums, in the case of station RQC00667292 Ponce 4E even a match: Ponce 4E (some 
kilometres in NE direction from the city of Ponce) had measured 211 mm of daily rainfall on Jan 6 th 

1992 and 5 mm of precipitation on Jan 5th, summarizing to 216 mm in total for both days. MSWEP 
daily precipitation sum on Jan 6th 1992 is 219 mm for the same area. 

------------------------------------------------------------------------------------------------------------------------
3. Methods and concepts 3.2. Model validation

https://www.ncei.noaa.gov/maps/daily/


UNIGIS Master Thesis 65 Andreas Reithofer 106713
------------------------------------------------------------------------------------------------------------------------

At  the  precipitation  maxima  in  the  mountains, for  the  central  region  around  stations 
RQC00660040 ACEITUNA WATER TREATMENT PLANT (393.7 mm for both days, 100% of it  
on Jan 6th) and RQC00662336 CERRO MARAVILLA (355.6 mm for both days, thereof 304.8 mm 
on Jan 6th), MSWEP v2 delivers a (linear interpolated) daily precipitation sum of 275 mm for station 
ACEITUNA and 180 mm for station CERRO MARAVILLA. Regarding an ARF of 0.9 for a 24h 
duration and a dataset resolution of ~100 km², the by ARF 0.9 reduced GHCN-D station data (355 
mm for ACEITUNA and 275 mm for CERRO MARAVILLA) is factor 1.3 the MSWEP v2 data in 
case of station ACEITUNA and factor 1.5 in case of station CERRO MARAVILLA.

By  exporting  the  vertices  of  the  GRIB  mesh  in  QGIS  and  comparing  them  via  the  “Nearest 
Neighbour” algorithm to the station data, it is possible to analyse the differences of the GHCN-D 
station dataset and the MSWEP v2 dataset in a more systematic way:

Figure 39 shows the delta between the daily precipitation sum (Jan 6th 1992) of MSWEP v2 dataset 
vertices  (resolution  = 0.1  degrees)  and the  rainfall  amounts  measured  in  situ  by  the  GHCN-D 
station  network – reduced by ARF = 0.9 (100 km² /  24h duration,  see Chapter  3.2.2).  In the 
arithmetic average, the MSWEP dataset precipitation is about 80% of the reduced (ARF 0.9) 
GHCN-D station data (see Figure 40) which seems like quite a good value for me.
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t

Figure 36: Natural Neighbour interpolation (0.1 degrees), isolines and station data: Cumulative precip. (mm) over PRC 
Jan 5/6, 1992
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Figure 37: ERA5-Land Total precipitation (m), 0.1 degrees, isolines and station data: Cumulative precip. (mm) over 
PRC Jan 5/6, 1992
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Figure 38: MSWEP v2: Daily precipitation sum in mm on Jan 6 1992 (vertices plus linear interpolation), GHCN-D 
isolines and station data: Cumulative precip. (mm) over PRC Jan 5/6, 1992
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Figure 39: MSWEP v2 versus GHCN-D: Nearest MSWEP v2 vertex to GHCN-D rain gauge (big dots): % of reduced 
precipitation sum (value MSWEP v2 = x % of station value GHCN-D * 0.9)
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Figure 40: Histogram of the divergences of MSWEP v2 to reduced GHCN-D station data (nearest MSWEP vertex to 
station) in % of GHCN-D

3.2.2 Point precipitation and area reduction factor (ARF)

The Areal Reduction Factor (ARF) is a key parameter in the design for hydrological extremes. Point 
rainfalls are only representative for a limited area, and for larger areas, the area-average rainfall 
amount is likely to be smaller than at the point of the maximum observed depth. The estimation of 
areal reduction factors is concerned with the relationship between the point precipitation and the 
area-average rainfall (Svensson and Jones, 2010).

The use of ARFs is convenient as networks of rain gauges with long series, which are needed for 
accurate rainfall frequency estimation, are generally sparse (not only in Haiti) and hence often do 
not allow for an appropriate characterisation of the associated spatial rainfall patterns.

Generally spoken, the ARF can be defined as follows:

“For a basin of area A, the ARF is the ratio between the area-average rainfall intensity 
over a duration D with return period T and the point rainfall intensity for the same D 
and T.” (Langousis, 2005)

In other words: High ARF values show a rather small difference between point precipitation and the 
area-average rainfall and vice versa. It is important to note that there is no uniform method for the 
calculation of the ARF. 

The ARF has been found to vary with

• the concerned area

• the duration

• the return period
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• the dominant terrain type (mountains vs. flat areas)

• the predominant weather type and seasonality

Traditionally, ARF estimates are based on empirical methods (US Weather Bureau method, annual 
maxima centred method etc.), but more recently, a range of analytical methods have been applied.

 Figure 41 and Figure 42 show different empirical approaches of defining the ARF:

Figure 41: ARF curves (Leclerc and Schaake, “US Weather Bureau method”) for durations of 1, 3, 6, and 24 hours and 
areas up to 10,000 km² (Langousis, 2005, p. 12)

Figure 42: ARFs for precipitation in the UK presented in the Flood Studies Report NERC 1975 (Svensson and Jones, 
2010, p. 4)

------------------------------------------------------------------------------------------------------------------------
3. Methods and concepts 3.2. Model validation



UNIGIS Master Thesis 72 Andreas Reithofer 106713
------------------------------------------------------------------------------------------------------------------------

Concerning the last factor mentioned above, BREINL, MÜLLER-THOMY and BLÖSCHL point 
out  in  their  paper  (2020)  that  the  prevailing  precipitation  type  (strati-form vs.  convective)  has 
significant impact on the ARF as well:

“Results  indicate  that  the  ARFs  decay  faster  with  area  in  regions  of  increased 
convective activity than in regions dominated by stratiform processes. Low ARF values 
occur where and when lightning activity (as a proxy for convective activity) is high, but 
some areas with reduced lightning activity exhibit also rather low ARFs as, in summer, 
convective rainfall can occur in any part of the country.  ARFs tend to decrease with 
increasing return period,  possibly because the contribution of convective rainfall  is 
higher. The results of this study are consistent with similar studies in humid climates 
and provide new insights regarding the relationship of ARFs and dominating rainfall 
processes.” (Breinl et al., 2020)

Via a complex geo-statistical procedure (variogram modelling and block kriging), BREINL et al. 
show at the example of Austria that the ARF may also be determined from seasonality (more 
convective precipitation in the summer leads to lower ARF values, which is a higher delta between 
point precipitation and area-average rainfall) as well as from (micro-) climatic aspects (areas with 
dominating stratiform rainfall, like the Bregenzer Wald region in Vorarlberg, tend to have higher 
ARF values – so a lower delta between point precipitation and area-average rainfall – than areas 
with high lightning activity like parts of Styria (see Figure 43).

But  as  different  and  inhomogeneous  all  these  approaches  may  be,  it  is  possible  to  draw  two 
essential conclusions which are extremely important for this work:

• For the duration of 24h and an area of ~100 square kilometres (approx. the cell size of 
the  remote  sensing  rainfall  datasets  MSWEP and  ERA5-Land)  where  the  comparison 
between station based (point precipitation) data in the form of GHCN-D and area-average 
rainfall  in  the  form of  ERA5-Land  and  MSWEP has  been  made,  all  methods  of  ARF 
calculation show similar values, between 0.9 and 0.95, regardless of all other parameters 
like return period and seasonality. In other words, the ARF is not the crucial parameter 
to explain the observed difference here.

• For the duration of 1h, the situation is different: For the same area (100 km²), the ARF 
varies between 0.7 (US Weather bureau method), 0.8 (UK Flood Studies Report) and 0.75-
0.90  (Breinl  et  al.,  2020:680,  depending on return  period,  region and seasonality).  This 
means that vice versa, the precipitation amounts of the hourly ERA5-Land dataset can 
be multiplied by 1.25 on average to account for the ARF. But again,  also for the 1h 
duration, the ARF is not able to explain the observed difference between ERA5-Land and in 
situ station-based data.
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Figure 43: ARFs for different return periods, seasons and regions. Comparisons are shown for (a),(b) two return periods, 
(c),(d) two regions, and (e),(f) summer and winter (Breinl et al., 2020, p. 680)

3.2.3 Rainfall statistics (IDF Curves)

IDF (Intensity-Duration-Frequency) Curves are an important concept in hydrology, being one of the 
most commonly used tools in water resources management, flood calculation, civil engineering and 
water resource planning. They are a graphical representation of the relationship between rainfall 
intensity I, duration d, and frequency (= return period) T for a specific location: They are typically 
plotted with rainfall intensity on the y-axis and duration on the x-axis (see Figure 44).
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 IDF curves are used to quantify the probability of a particular rainfall event occurring at a specific 
location and are often used in the design and analysis of water resource infrastructure such as storm 
water systems, drainage systems, and flood protection structures (Koutsoyiannis et al., 1998). 

Figure 44: Example for a typical graphical representation of IDF Curves (here: present IDF curve for Bangkok 
metropolis station using annual maximum series from 3 hour rainfall depth from 1981 – 2010, (Shrestha, 2013, p. 30)

Derivation of IDF curves generally relies on the availability of long-term historical precipitation 
data and consists in fitting an extreme values distribution (mostly either the Generalized Extreme 
Value distribution, short GEV, or the Gumbel Distribution) to extreme rainfall values. Rain gauges, 
providing long records of precipitation data, are traditionally used to estimate IDF curves at the 
gauge  locations.  Nevertheless,  the  representativeness  of  gauge-derived  IDFs  decreases  moving 
away from the gauge location and no or very sparse information is available for the many ungauged 
locations of the Earth. (Marra et al., 2017)

Nevertheless,  owing to  the  sparseness  of  gauge  networks  worldwide  (especially  in  developing 
countries), this approach raises important issues when design applications either require information 
at local scale or on basis of short to very short rainfall durations, or in both cases.

In the case of this work, both factors play an important role: For the AOI of Carrefour, we 
have data scarcity

• in  space (no  rain  gauge  in  Carrefour,  other  existing  Haitian  gauge  data  currently  not 
available)

• in  time (most  remote  sensing  rainfall  datasets  measure  daily  or  3  hourly  –  with  the 
exemption of ERA5-Land, which offers an hourly precipitation value)

As a consequence, we are stuck between a rock and a hard place in case of our AOI: Either we are 
choosing available but distant rain gauge data (in this case this would be the Dominican Republic or 
the US Oversea  territory  of  Puerto  Rico),  or  we opt  for  IDF analysis  built  on remote  sensing 
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datasets  only – which differ  significantly in  most  cases  from in-situ  data  sources,  as had been 
elaborated in chapter 3.2.1 and only one dataset has hourly resolution (ERA5-Land).

In order to find the best compromise for this  work,  I chose to  compare the (MSWEP-based) 
GPEX dataset (which explicitly provides information on IDF of extreme precipitation events) to 
IDF curves available from NOAA for the island of Puerto Rico, of two different grid cells at the 
South coast around the city of Ponce, which has a very similar topography (quickly rising hills and 
mountains after the shoreline).

GPEX is strongly based upon the MSWEP dataset, so it has the same spatial resolution of 0.1 arc 
degrees. All IDF curve information is based on the precipitation amounts calculated by MSWEP (38 
years of data availability, so n=38). The GPEX data (Gruendemann et al., 2020) has been extracted 
via the same R script (see Appendix  6.2) which has been used already for the comparison of the 
Haitian CNIGS/UHM dataset of the precipitation during Hurricane Matthew in the year 2016, only 
adapted for a different region.

To get an overview of the GPEX dataset in the Ponce region, I extracted 10 grid cells parallel the 
coast line (see Figure 45) and compared them a) with the station rainfall sums of the January 1992 
rain event (to get an idea about the local precipitation regime in case of a heavy rain event) and b) 
with the point precipitation frequency estimates47 (Bonnin et  al.,  2008) from the NOAA HDSC 
dataset48.

The Hydro-meteorological Design Studies Center (HDSC) of the US National Weather Service 
NOAA offers detailed point precipitation frequency estimates from all rain gauges nationwide. They 
are built of the same database like GHNC-D, but with the difference that hourly and sub-hourly 
durations (until the 5-min interval) are included as well. This matters in the case of this work, as, 
like mentioned before, the relevant rainfall duration for AOI is one hour maximum, presumably 
below that (see Chapter 3.4.2). So IDF statistics for 3 hours and upwards (like GPEX offers) alone 
will not really help us in this case. They must be extrapolated and compared with another data 
source, this will be the HDSC point precipitation frequency estimates.

47 https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_map_pr.html   (access on 2023-04-10)
48 https://hdsc.nws.noaa.gov/pub/hdsc/data/pr/   (access on 2023-04-10)
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Figure 45: NOAA GHCN-D / HDSC stations (with precip values of 1992-01 rain event), GPEX GEV values for D=24h, 
T=100yrs (stations in red outline: chosen for comparison GPEX to NOAA / HDSC precipitation frequency estimates).
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For  the comparison between GPEX and HDSC, I  chose  the two stations  “PONCE 4 E” (21m 
altitude, 18.0258°N / -66.5253° W) and “CERRO MARAVILLA” (1220m altitude, 18.1547° N / --
66.5619°  W),  which  lie  in  neighbouring  GPEX grid  cells  and  from which  I  believe  that  they 
represent the possible lower and upper boundary of the precipitation regime in the Carrefour AOI 
quite  well  –  “PONCE  4”  for  the  urban  area  of  Carrefour  along  the  coast  and  “CERRO 
MARAVILLA” for the uphill region at the watershed (though twice as high here, so orographic 
rainfall sums will be higher here than at the watershed of the Carrefour AOI).

Furthermore, both stations have time series with sub-daily measurements down to the duration of 
one hour (only a part of the PRC station network has sub-daily rainfall measurement) and in the 10 
extracted grid cells of the GPEX dataset, the two grid cells where the stations are situated, also 
represent the upper and the lower boundary of all values (see Figure 45), so it will be an interesting 
and representative evaluation.

Looking at the annual maxima (time series available for the 1h duration for 33 years, 1971-2003)49, 
the highest value in the records for the 1h duration is 2.8 inches / 71.1 mm, but the time series ends 
in the year 2003, so any heavy precipitation event after that is not included.

3.2.3.1 IDF Statistics: GPEX vs. HDSC for station “PONCE 4E” (PRC)

The point precipitation frequency estimates for PONCE 4E are delivered together with the upper 
and lower boundary of the 90% confidence interval (see Table 6):

Table 6: NOAA HDSC Precipitation frequency (PF) estimates for station "PONCE 4E" (18.0258° N / 66.5253° W) 
(data source: https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_map_pr.html,  (access on 2023-04-10)

For the station PONCE 4E (see figures 46, 47, 48, 49), the comparison looks like this:

49 https://hdsc.nws.noaa.gov/pub/hdsc/data/_TimeSeries_stations/PR_66-7292_ams.txt   ((access on 2023-04-10)
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Figure 46: IDF Curves for T2 / T5 / T10 / T20 / T39 / T50 / T100 for GPEX gridcell with centroid at 18.05°N / -
66.53°W – time range 3h until 72h (data source: 

At the  upper boundary of the durations (72h), the GPEX dataset has the curves of the return 
periods  pretty  tight  to  each other  between 2.0 (T2)  and 4.6 (T100) mm/h,  whereas  the  HDSC 
station-derived dataset delivers intensities between 2.0 (T2) and 8.0 (T100) mm/h. So the intensities 
are the same between GPEX and HDSC for T2/72h, but quite different for T100/72h (HDSC with  
roughly twice the value of GPEX).

For the 24h duration, GPEX sees the intensities between 4.0 (T2) and 11.6 (T100) mm/h; HDSC 
station  data  supplies  intensities  between  4.0  (T2)  and  16.0  (T100)  mm/h.  The January  1992 
rainfall  event  (210 mm at  PONCE station  in  24h = 8.75  mm/h in  average) would  therefore 
classify as a ~T30 rain event in GPEX, but only as a ~T10 rain event in the HDSC station data 
from PONCE 4E.

At the duration of 3h (=lower boundary of GPEX dataset), GPEX has values between 13.2 (T2) 
and 43.6 (T100) mm/h, whereas HDSC delivers values between 24.0 (T2) and 50.0 (T100) mm/h – 
so unlike at the 72h duration, at the 3h duration, the rainfall intensity per hour is almost twice the  
value of HDSC in GPEX for the 2-year return period, whereas the values are quite similar for the 
100 years return period.
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Figure 47: IDF Curves for T2 / T5 / T10 / T25 / T50 / T100 for NOAA HDSC station “PONCE 4E” (18.03°N / -
66.53°W) – time range 3h until 72h (data source: 

For being able to compare the GPEX and the HDSC dataset even below the officially delivered 3h 
duration of GPEX, it was necessary to extrapolate the curve of every return period backwards in  
LibreOffice  Calc  to  get  values  of  the  1  hour  duration.  All  rainfall  frequency  functions  are 
exponential functions, unfortunately, the function behind the GEV fitted values in the GPEX dataset 
cannot be extracted, only the values themselves. So I fitted the extrapolation curve in Calc via a 
“normal” exponential function: At the example of the T100 curve, the extrapolation curve has the 
function f(x) = 97.431823 * x ^ -0.697255 and a determination coefficient R² of 0.994680 (see 
Figure 48).

Of course,  data  extrapolations  are  always risky and fraught  with uncertainty,  but  it  is  the only 
method I could think of to at least get a rough impression of the difference between the two datasets 
at the 1h duration, which will be used for the flood calculation in the AOI Carrefour.
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Figure 48: IDF Curves for T2 / T5 / T10 / T20 / T39 / T50 / T100 for GPEX gridcell with centroid at 18.05°N / -
66.53°W – time range 0.25h until 12h (data source: Gruendemann et al., 2020; values between 0.25h and 3h are 
extrapolated via exponential functions)

Taking  into  account  these  uncertainties,  for  the  duration  of  1  hour,  the  extrapolated  GPEX 
dataset delivers rainfall intensities between 25 mm/h for the T2 return period (35 mm/h for T5) and 
97.5  mm/h  for the  T100 return  period  for  D=1h,  whereas  HDSC delivers  rainfall  intensities 
between 56 mm/h for T2 (65 mm/h for T5) and  91 mm/h for T100. So for the 100-year return 
period, the delta between the two datasets would not be significant (in both cases between 90 and 
100 mm/h), whereas for the lower return periods T2 and T5, GPEX values are only about half the 
values of HDSC.

For  T50,  the  extrapolated  GPEX dataset  returns  a  rainfall  intensity  of  78  mm/h for  the  1h 
duration, whereas HDSC returns an intensity of 85 mm/h for D=1h.
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Figure 49: IDF Curves for T2 / T5 / T10 / T25 / T50 / T100 for NOAA HDSC station “PONCE 4E” (18.03°N / -
66.53°W) – time range 0.25h until 12h (data source: Bonnin et al., 2008)

3.2.3.2 IDF Statistics: GPEX vs. HDSC for station “CERRO MARAVILLA” (PRC)

The point precipitation frequency estimates for CERRO MARAVILLA are delivered together with 
the upper and lower boundary of the 90% confidence interval (see Table 7):

Table 7: NOAA HDSC Precipitation frequency (PF) estimates for station "CERRO MARAVILLA" (18.1547° N / -
66.5619° W) (data source: https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_map_pr.html,  (access on 2023-04-10)
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For the station CERRO MARAVILLA (see figures 50, 51, 52, 53), the comparison looks like this:

Also for grid cell Nr. 4 (see Figure 45), which covers the area of CERRO MARAVILLA station, at 
the upper boundary of the durations (72h), the GPEX dataset has the curves of the return periods 
pretty tight to each other between 2.5 (T2) and 7.7 (T100) mm/h, whereas the HDSC station-derived 
dataset delivers intensities between 3.0 (T2) and 12.0 (T100) mm/h. So again, the intensities are 
almost  the  same between  GPEX and HDSC for T2/72h,  but  quite  different  for T100/72h 
(HDSC with almost twice the value of GPEX).

For the 24h duration, GPEX sees the intensities between 5.1 (T2) and 19.8 (T100) mm/h; HDSC 
station  data  supplies  intensities  between  6.0  (T2)  and  28.0  (T100)  mm/h.  The January  1992 
rainfall event (305 mm at CERRO MARAVILLA station in 24h = 12.7 mm/h in average) would 
therefore classify as a ~T25 rain event in GPEX, but again, only as a ~T10 rain event in the  
HDSC station data from PONCE 4E.

At the duration of 3h (=lower boundary of GPEX dataset), GPEX has values between 16.6 (T2) and 
63.4 (T100) mm/h, whereas HDSC delivers values between 38.0 (T2) and 84.0 (T100) mm/h – so 
this time, at the 3h duration, the rainfall intensity per hour in the HDSC station dataset is more than 
double the value of GPEX for the 2-year return period, whereas the values are quite more similar 
for the 100 years return period (HDSC value = GPEX value * 1.33).

Figure 50: IDF Curves for T2 / T5 / T10 / T20 / T39 / T50 / T100 for GPEX grid cell with centroid at 18.15°N /  
66.53°W –  time  range  3h  until  72h.  Note  the  different  scale  on  y-axis  compared  to  Figure  46.  (data  source: 
Gruendemann et al., 2020)
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Figure  51: IDF Curves for T2 / T5 / T10 / T25 / T50 / T100 for NOAA HDSC station “CERRO MARAVILLA” 
(18.15°N / -66.56°W) – time range 3h until 72h (data source: Bonnin et al., 2008)

The extrapolation of the GPEX value in LibreOffice Calc did not fit that good in case of the Cerro 
Maravilla  grid cell  (see  Figure 52) -  but  again,  taking into account  these uncertainties,  for the 
duration of 1 hour, the extrapolated GPEX dataset delivers rainfall intensities between 32 mm/h 
for the T2 return period (45 mm/h for T5), almost 120 mm/h for T50 and a value in the range 
between 150 and 160 mm/h for the T100 return period for D=1h, whereas HDSC delivers rainfall 
intensities between 76 mm/h for T2 (84 mm/h for T5) and 124 mm/h for T100. So this time, for 
the 100-year return period, the delta between the two datasets would be significant (155 mm/h in 
GPEX vs. 124 mm/h in HDSC). For the return periods of T2 and T5, the delta is even higher:  
GPEX values are again only about half the values of HDSC.
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Figure  52: IDF Curves for T2 / T5 / T10 / T20 / T39 / T50 / T100 for GPEX gridcell with centroid at 18.15°N / -
66.53°W – time range 0.25h until  12h (data source:  Gruendemann et  al.,  2020; values  between 0.25h and 3h are  
extrapolated via exponential functions)

For  T50,  the  extrapolated GPEX dataset  returns  a  rainfall  intensity  of  120 mm/h for  the  1h 
duration, whereas HDSC returns an intensity of – and this is interesting – 113 mm/h for D=1h. In 
Figure 53, one can clearly see the “bump” between the durations 1 hour and 2 hours, here, in the 
higher return periods, the curve progression is a bit unusual and suggests the suspicion that for the 
T50 and the T100 return period, either the 1h value is too low or the 2h value is too high.

Looking at the annual maxima (time series available for the 1h duration for 29 years)50, the highest 
value in the records for the 1h duration is 3.4 inches / 86.3 mm, but the time series ends in the year  
2003, so any heavy precipitation event after that is not included.

Summarizing the results of the two stations PONCE 4E and CERRO MARAVILLA, these are 
the key conclusions:

• All  GPEX dataset  values  for  the duration 3h have to be multiplied by a  factor  of 1.25 
(inverse of 0.8) to account for the ARF of ~0.8 (~100 km² grid cell area, see Chapter 3.2.2) 
→ GPEX * 1.25 = HDSC. The same is valid for the extrapolated 1h duration (ARF of ~0.7)  
values, only with the factor 1.4 (inverse of 0.7)  → GPEX * 1.4 = HDSC

• For the lower boundary of the GPEX dataset durations (3h), the lower return periods (T2-
T10), regarding an ARF of 0.8 for direct comparison to the station derived HDSC dataset, 
have a delta of ~ factor 1.5, the higher return periods (T50, T100) by factor ~1.2

50 https://hdsc.nws.noaa.gov/pub/hdsc/data/_TimeSeries_stations/PR_66-2336_ams.txt   (access on 2023-01-11)
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Figure  53: IDF Curves for T2 / T5 / T10 / T25 / T50 / T100 for NOAA HDSC station “CERRO MARAVILLA” 
(18.15°N / -66.56°W) – time range 0.25h until 12h (data source: Bonnin et al., 2008). Note the “bump” at D=2h!

• Taking into the account the extrapolation until the duration of 1h, for PONCE 4E, the T100 
intensity does not differ a lot between GPEX and HDSC – regarding an ARF of 0.7, GPEX 
(97.5 mm/h) would be even considerably higher than HDSC (91 mm/h + 0.7 = 64 mm/h). 
For  the  mountain region,  with example CERRO MARAVILLA, the  extrapolated GPEX 
values (~150 mm/h) is already higher than the HDSC data (125 mm/h), including an ARF of 
0.7, the difference is increasing to factor 1.7.

• As the extrapolation of the IDF curves of the GPEX dataset can not be seen as a reliable 
method for deriving rainfall intensities for design precipitation and therefore has been 
done illustration reasons only, the  decision for the used rainfall intensities in the design 
precipitation for the  flood simulation in Chapter 4 will be made upon the  HDSC  point 
precipitation frequency estimates of the two stations Ponce 4 E and Cerro Maravilla and 
the rainfall evaluation of the Damien rain gauge in Port-au-Prince (see following chapter 
3.2.3.3) carried out by (Heimhuber et al., 2015).

3.2.3.3 IDF Statistics: station “Damien”, Port-au-Prince, Haiti

In the year 2015, Heimhuber et al., 2015 have carried out a study on flood risk assessment for the 
informal settlement of “Onaville” in the cul-de-sac plain north of Port-au-Prince. Therefore, (then 
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available) rain gauge data from the station of Damien, basing on 68 years of observation (1927-
2002) has been evaluated with the resulting IDF Curve in Figure 54:

Figure 54: (a) Average monthly rainfall at Damien rain gauge (n=68, 1927-2002) and (b) IDF-curves for 
Damien station 

The rainfall intensities for the duration of 1h in Figure 54 (~110 mm/h for the T100 return period, 
~85 mm/h for T25, ~55 mm/h for T5) are similar to the intensities of the two stations Ponce 4E and 
Cerro Maravilla at the Puertorican South coast, as well as to the extrapolated GPEX data in Ponce.
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3.3. Model calibration

For pluvial flood model calibration, the gold standard would be the availability of three essential 
parameters:

• Rain gauge data with a temporal resolution of at least 15 min or higher

• At least one discharge gauge at a downstream location with a temporal resolution of at least 
1 hour or higher OR adequate satellite images / ground photographs, from which the peak of 
the flood extent can be estimated

• Either the existence of acknowledged design precipitation data or the availability of long-
term rainfall data of at least one gauge in or near the area of interest, with the same temporal 
resolution like stated above (15 min or higher), to build IDF curves (see chapter 3.2.3)

With all three of these, you are able to a) calibrate and furthermore also validate your flood model 
and b) with the help of extreme value statistics, classify previous precipitation events for a certain 
probability of recurrence, commonly known as return period.

In the case of Haiti, I had none of these three parameters at my disposal (with the exception of the  
Damien rain gauge dataset described in Chapter 3.2.3.3, but the data source behind this IDF curve 
was not available for me, so I could not evaluate this by myself).

Although there is an existing rain gauge network in Haiti, it was not possible to obtain any data,  
neither for me, nor for MSF. As mentioned before, the Haitian state is currently undergoing a deep 
crisis  and  therefore  its  administration  has  to  fight  with  many  problems  at  the  same  time,  so, 
understandably,  answers  to  and  data  for  my  academic  research  topic  would  not  have  priority 
number one. So I had to look for alternatives.
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3.4. Pluvial flood modelling

All  input  parameters  described  in  the  following  chapters  (DTM  including  buildings,  rainfall, 
roughness and infiltration) are exactly the same for both types of flood calculation, the “classic” 2d 
hydrodynamic calculation via the – in German speaking countries widely used – flood calculation 
software  “Hydro-As-2D”51 as  well  as  the  merely  GIS-based  filling-and-spilling  algorithm 
“Safer_RAIN” (Samela et al., 2020).

All input variables are – as far as possible – deliberately kept simple to enable the best possible 
comparison of the two approaches. For this reason, for example, and also due to the fact that soil 
conditions are generally very poor in the AOI, infiltration has been set to zero. Of course, there will 
be  some  infiltration  in  case  of  a  heavy  to  extreme  rain  event  like  in  the  scenarios,  but  as 
imperviousness in the urban part of the AOI is high, soil seepage capacity and tree cover both are 
very  low,  the  percentage  of  total  precipitation  which  infiltrates  the  soil  instead  of  turning into 
overland flow will neglectable.

3.4.1 Model input: DTM, buildings

Like already described before, the DTM of the AOI consists of two different datasets, both of them 
being LIDAR data. Around 90% of the AOI are covered with the LIDAR point cloud data of the 
2010 survey52, whereas the rest is covered by the newer survey carried between 2014 and 2016 53 
(see Figure 11 in chapter 2.2). Unfortunately, the point cloud data is not accessible and the gridded 
DTM / DSM data is available in integer data type only (see Chapter 2.2.2).

This was quite a challenge, as the integer DTM “as is” had proven to be unfeasible to serve as basis 
for  any flood calculation,  due to  the  “rice terrace effect”,  where  the  water  accumulated at  the 
terraces in the 2d flood model, building ponds there instead of a steady flow downhill (see Figure
14).

But on the other hand, the availability of the point cloud data for the coastal urban region of the 
Carrefour AOI allowed the integration of buildings directly into the DTM as the point-cloud was 
poorly classified anyway and therefore predestined to kill two birds with one stone: Firstly get a 
suitable DTM for the flood calculation with a minimum of vegetation in it, and secondly, integrate 
the building structure. Via the “Zmin” algorithm, where the interpolation between the single LIDAR 
points  rely  on  the  lowest  Z values  of  overlapping  or  nearby LIDAR points,  we still  have  the 
building structure reproduced quite well, with at the same time a minimum of disturbing vegetation 
in the raster cell (see Chapter 2.2.1 / Figure 12 and Figure 56 on the next page)

51 https://www.hydrotec.de/software/hydroas/   (access on 2023-04-12)
52 https://portal.opentopography.org/datasetMetadata?otCollectionID=OT.072010.32618.1   (access on 2021-12-05)
53 https://portal.opentopography.org/datasetMetadata?otCollectionID=OT.082021.32618.1   (access on 2021-11-08)
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Figure 55: Manual terrain preprocessing: removing of bridges in the DTM

But not everything could be automated – the preparation of a hydraulic terrain model is lengthy and 
sometimes arduous as well, as in many cases, items have to be corrected manually. This begins at 
the removal of bridges, which is absolutely essential a sine qua non to avoid false and misleading 
results in the flood calculation (see Figure 55) and leads until the filling of void pixels, where there 
had been no valid LIDAR point in the 4 m² raster cell and therefore z values are invalid. 
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Figure 56: interpolation of the unclassified point cloud to a 2m pixel size raster DTM, with minimum z values of the 
point cloud per grid cell, still representing the building structure with a minimum of vegetation in it

3.4.2 Input: Rainfall

The time of concentration Tc (time required for runoff to travel from the hydraulically most distant 
point in the watershed to the outlet) matters for any hydrodynamic flood calculation, be it 1D or 
2D  (not for the fill-and-spill algorithm which is used by “Safer_RAIN”, as flow velocity is not 
calculated in this approach!), where flow velocity is calculated in the simulation. In engineering 
practise, a wide range of different equations are available for the computation of Tc, which leads to 
significant variability and uncertainty in the estimation (Ravazzani et al., 2019).

In  the  case  of  our  AOI  Carrefour,  where  all  catchments  of  the  “ravines”  have  3-5  km²  area 
maximum and where we have a steep relief on plus, Tc is definitely well below one hour – but there 
are  hardly  any  global  or  local  datasets  available  for  rainfall  durations  below  one  hour,  and 
furthermore, the “SAFER PLACES” platform only allows calculations of rainfall durations of 1h 
upwards, so I chose the one hour duration for the pluvial flood scenario.

------------------------------------------------------------------------------------------------------------------------
3. Methods and concepts 3.4. Pluvial flood modelling



UNIGIS Master Thesis 91 Andreas Reithofer 106713
------------------------------------------------------------------------------------------------------------------------

Figure 57: Illustration for the time of concentration (source: 
https://directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content=27002.wba, 
access on 2023-04-08)

Tc is dependant not only from size and shape of the catchment (see Figure 57), but also from slope 
and terrain roughness (Strickler / Manning, see Figure 58 and following chapter  3.4.3), which all 
have a big influence on how fast the peak of the flood wave will reach the outlet of the catchment. 

Figure 58: Flow velocity as dependant variable from Slope and Roughness (Manning). 
National Handbook of Engineering, 
https://irrigationtoolbox.com/NEH/Part630_Hydrology/NEH630-ch15draft.pdf, p. 15-
6, access on 2023-04-08)
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Merging all the information of the previous chapters into one single pot, I decided to carry out three 
different flood scenarios for our AOI Carrefour:

• Scenario of a frequent rain event (return period T2/T5, 50 mm of rainfall in 60 minutes)

• Scenario of a rare rain event (return period T30/T50, 90 mm of rainfall in 60 minutes)

• Scenario of an extreme rain event (return period T100 / T200, 130 mm of rainfall in 60 
minutes)

The not-unique quotation of a single return period is in full intent, as in my estimation, it is simply 
not possible to assign a certain rainfall intensity in mm/h a unique return period with the prevailing 
data situation – the unknown parameters, first and foremost an available, coherent and long-term 
time series of a rain gauge nearby the AOI, are too much to state a certain rainfall intensity I as 
unique amount for return period T. But, as it had been shown in the chapters  2.3 and  3.2, it  is 
possible to narrow down the probable range of rainfall intensities I for return period T, or, vice 
versa, the range of return periods T for a certain rainfall intensity I in mm/h.

Why vice versa? Because in the flood simulation, I cannot give a range of possible rainfall amounts  
as input, each model run, whether via Hydro-As-2D or via the "SaferPLACES" platform, needs a 
certain rainfall amount in a certain duration as input variables. So this is the compromise for a data 
scarce region.

3.4.3 Input: Roughness, soil and infiltration

Roughness coefficient is an essential parameter for every flood calculation, as it is – together with 
slope – the critical parameter for flow velocity. In the Anglo-Saxon world, the common parameter 
is  the  Manning  coefficient,  whereas  in  German  speaking  countries,  the  Strickler  coefficient  is 
prevailing. But anyway, Manning coefficient is just the reciprocal of the Strickler coefficient (Ks 

Strickler = 1/n manning), so the conversion between both is not a rocket science.

The  Gauckler–Manning coefficient n is an  empirically derived coefficient, which depends on 
surface roughness, hydraulic radius and stream slope:

(Landesanstalt für Umweltschutz Baden-Württemberg, 2002, p. 12)

where applies: 

vm = average flow velocity
k St = Strickler roughness coefficient
n = Gauckler-Manning roughness coefficient
R = hydraulic radius
IE = stream slope (hydraulic gradient)
When field inspection is not possible (like in this work), the prevailing method to determine n or kSt 

is to use photographs of river channels where n has been determined using Gauckler–Manning's 
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formula. As I don´t have photographs either, and as I am examining overland flow on the floodplain 
instead of channel flow only, I used the available orthoimages to determine the Strickler coefficient.

The Strickler coefficient is common in German speaking countries and the possible value range is 
between 1 (extremely rough surface) and 100 (extremely smooth surface), whereas the Manning 
scale is between 0.01 for extremely smooth surfaces and 1.00 for an extremely rough surface, see 
Table 8.

Again, like in many fields in hydrodynamic engineering, there is not a single scale determining 
which surface / land cover has which exact Strickler or Manning coefficient, as this is empirical  
science where 10 authors are likely to have 10 (at least slightly different) determinations of which 
surface has which roughness coefficient.

Table 8: Empirical collection of Strickler roughness coefficients (Landesanstalt für Umweltschutz Baden-
Württemberg, 2002, p. 48)

In this work, the used Strickler coefficients are very low (see Figure 59) due to the fact that almost 
all  of the water in the model is surface runoff (instead of river or channel flow). The Strickler 
coefficients used for both models (Safer-RAIN and Hydro-As-2D / Sturzflut) are as follows:

• forest areas: 5

• shrubland: 9

• urban areas with low building density: 3
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• urban areas with high building density: 6

• roads: 50

• water areas (sea): 100

These mostly very low Strickler coefficients may look not in row with the values stated in Table 8, 
but indeed, they have proven to be adequate during my 7-year practise in pluvial flood calculations 
at Humer consulting engineer via calibration of rainfall-runoff models where rain gauge data as well 
as discharge data have been available (Humer et al., 2015, seeTable 9).

Table 9: Benchmark table for Strickler coefficients used in a flood model validation during my working experience at 
Humer consulting (Humer et al., 2015, p. 167)
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Figure 59: Strickler coefficients dependant on land cover used in both flood models (Hydro-As-2D / Sturzflut and 
Safer_RAIN)
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3.4.4 Input: Vegetation, imperviousness and land cover

All these three parameters affect the roughness coefficient, but under real world conditions, the 
infiltration into soil as well. Normally, for the pluvial flood function of the hydrodynamic Hydro-
As-2d model, there are two types of infiltration parameters:

• initial loss in mm (the proportion of precipitation percolating soil at the beginning of the rain 
event instead of running off as overland flow)

• infiltration rate in mm/h (the proportion of precipitation percolating continuously, not only 
at the very beginning of the rainfall duration.)

For Safer_RAIN, infiltration has to be deducted beforehand, model input is netto rainfall. In the 
case of our AOI, I have set the infiltration rates (both initial as well as continuous) intentionally to 
zero, as soil conditions are generally very poor here. Of course, there will be some infiltration in 
case of a heavy to extreme rain event like in the scenarios, but as imperviousness in the urban part 
of the AOI is high, soil seepage capacity and tree cover both are very low, the percentage of total 
precipitation  which  infiltrates  the  soil  instead  of  turning  into  overland  flow  can  be  seen  as 
neglectable (see Figure 60).

Furthermore, especially for extreme rain events, the role of forest / vegetation cover according to 
Posner and Georgakakos, 2017 remains scientifically controversial.  The authors argue that there 
would be an increasing body of evidence that while forests may do a great job in reducing floods for 
small  to moderate storms, this  effect  is  increasingly reduced as precipitation events increase in 
magnitude  (Posner  and  Georgakakos,  2017) Last  but  not  least,  the  model  assumption  of  not 
determining a fixed infiltration rate facilitates the comparison between Safer_RAIN and Hydro-As-
2d.
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Figure 60: land cover in the AOI Carrefour, derived from OSM (street network) and orthoimages (all other land cover 
classes). Note the very low forest share and high degree of urban areas with high impervousness.

3.4.5 Hydrodynamic 2d flood model: “Sturzflut” extension for software 
“Hydro-As-2d”

There is not one methodology for running a hydrodynamic flood model (1D, 2D, coupled 1D/2D, 
finite volumes method vs. finite elements method vs. finite difference method,..) and to state the 
whole theoretical knowledge base of the underlying numerical mathematics on the solving of partial 
differential equations (namely the shallow-water equations) would go far beyond the scope of this 
work,  therefore,  reference is  made in this  context  to  the corresponding technical  literature (i.e. 
Baumann et al., 2006).

But a very short theory discussion on the used approach for the modelling shall be given here. In the 
year 2015, during my professional work expertise at Humer consulting engineer in the province of 
Upper  Austria,  I  was  involved  in  the  validation  (Humer  et  al.,  2015) of  an  extension  called 
“Sturzflut”  (meaning “flash flood”)  for  the then  current  version  of  the 2d hydrodynamic  flood 
simulation software “Hydro-As-2d”, developed by the Unit of Hydraulic Engineering at University 
of Innsbruck one year before (Klar et al., 2014).

Hydro-As-2d uses the finite volumes method (FVM) for the solving of the shallow-water-equations. 
The FVM is  a  simulation  method  in  which  the  calculation  area  is  divided into  discrete  small  
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volumes during discretisation. The simulation focuses on the balance equation for each of these 
volumes  (Baumann et al., 2006). The advantage of the finite volumes method is a maximum in 
stability during the computation process, also in case of steep and rapidly changing gradients.

At that time, when the extension had been developed (2014), most 2D hydrodynamic models did 
not  allow for  distributed  rainfall  as  input  nor  were  there  any  types  of  soil/surface  interaction 
implemented as in hydrological models (that has changed in the meantime, new 2d models like 
JFLOW have been developed and others like Hydro-As-2d have integrated this ability in newer 
versions).

Therefore, the 2D hydrodynamic model of Hydro-As-2d (depth-averaged flow equations using the 
finite  volume  discretization),  was  extended  to  accept  direct  rainfall  enabling  to  simulate  the 
associated runoff formation. Rainfall is introduced via the modification of water levels at fixed time 
intervals (Klar et al., 2014, see Figure 61).

Figure 61: technical functionality of the Hydro-As-2d extension “Sturzflut”: (a) Temporal decomposition approach; (b) 
exemplary inflow hydrograph with indicated sub-period boundaries (Klar et al., 2014, p. 3)

In this way, it is possible to add rainfall at the beginning of every internal time step (in the range of 
some seconds) of the 2d model – the script stops the hydrodynamic flood calculation after each time 
step, adds rainfall amount X, which is defined via an input table, deducts infiltration rates (spatially 
variable), if they are defined in the input, and then starts the simulation again – until it stops again 
after the next time step, for adding rainfall and deducting infiltration and the loop continues, until 
the end of the calculation time.54 The rainfall added into the hydrodynamic calculation model 
can be spatially and temporarily variable.

It was my own work in the year 2015 to validate this extension in two small catchments (with an 
area of 24 km² and 30 km²) in Upper Austria, were we had rain gauge data with 5 min temporal 
resolution  and  discharge  curves  of  two  gauges  available,  which  acted  as  the  outlet  of  the 
catchments. With the Roughness Coefficients and loss rates stated in Table 9, I managed to get the 

54 The chosen rainfall duration is in most cases lower than the chosen calculation time, as normally, you want to go 
sure that at least the peak of the flood wave has reached the bottom of the valley or catchment – otherwise, if the 
calculation stopped before, 
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following results (see Figure 62), which fit the discharge curve of the two gauges (thick dark blue 
line) quite well:

Figure 62: Discharge curves: gauges of Waldzell and Mettmach (AT, dark blue thick line) )vs. discharge curves attained 
in the "Sturzflut" validation runs (Humer et al., 2015, p. 168)

3.4.6 GIS-based flood model: Filling-and-spilling algorithm 
“Safer_RAIN”

Given  the  steadily  increasing  availability  of  LiDAR  high-resolution  DEMs,  several  studies 
highlighted the potential of fast-processing DEM-based methods, such as the Hierarchical Filling-
&-Spilling  algorithm (HFSA).  Samela  et  al.,  2020 developed  a  fast-processing  HFSA,  named 
Safer_RAIN,  that  enables  mapping  of  pluvial  flooding  in  large  urban  areas  by  accounting  for 
spatially  distributed  rainfall  input  and infiltration  processes  through  a  pixel-based  Green-Ampt 
infiltration model.

The  idea  behind  HFSAs  is  to  identify  pluvial-flooded  areas  on  the  basis  of  nested 
surface  depressions  extracted  from high-resolution  DEMs;  the  volume  of  rainfall  is 
accumulated  in  depressions  and,  as  they  are  filled,  water  spills  downstream  to 
depressions  located  at  lower  elevations.  HFSAs  can  be  classified  as  “non-source 
flooding”, meaning that all  points where the elevation is below a given water level 
belong to the flooded area. (Samela et al., 2020, p. 4)

Figure 63 shows the workflow for flood modelling via the “Safer-RAIN” algorithm:
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Figure 63: Safer_RAIN work flow, distinguishing between DEM preprocessing (on top) and pluvial flood simulation 
(below) (Samela et al., 2020, p. 4)

The “Safer_RAIN” algorithm is based on the following assumptions:

• Drainage direction is identified according to the D8 method (see Figure 64)

• Overland flow dynamics is neglected

• Net-rainfall volume accumulates into the nested depression system according to the capacity 
and hierarchical structure of depressions themselves

• Spatial distribution of rainfall may be variable

• Terrain may be considered impermeable, but infiltration rates may also be defined

Figure 64: D8 algorithm flow directions (in use in “Safer-RAIN”, 
(Wang et al., 2014, p. 3)
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The DEM preprocessing requires the identification of: (i) first-level depressions (here referred to as 
blue-spots) and depression volumes (i.e. depressions G and H in Figure 65) through the application 
of  a  DEM pit-filling  algorithm;  (ii)  blue-spot  pour-points  (i.e.,  the  lowest-lying  cell  along  the 
depression upper edge), from where water would pour out if the depression is filled up with water; 
(iii) blue-spot contributing watersheds; (iv) the derivation of the upstream/downstream relationships 
and flow paths between pourpoints according to the D8 method (Samela et al., 2020).

“Safer_RAIN” implements an original flooding phase that identifies partially flooded areas for a 
given rainfall volume by considering all the intermediate levels (see Figure 66). This is achieved via 
a bottom-up level-set method used for quantifying partial filling in nested higher-level depressions:

(i) the method starts from an empty condition (see step (a) in Figure 66 the blue-spot is empty); (ii) 
according to their vertical hierarchy, higher-lever nested depressions are gradually filled from the 
bottom; (iii) gradual filling is performed step-by-step, considering in turn depressions with same 
hierarchical order until they are completely filled (Samela et al., 2020).

Figure 65: Schematic representation of the “Safer_RAIN” HFSA: (a) nested-depression system, and (b) blue-spots G 
and H under fully-filled conditions with illustration of the second-level depressions (F, C, D and E) and third-level 
depressions (A and B) (Samela et al., 2020, p. 5)

According to  (Samela et al., 2020), “Safer_RAIN” is able to compute flooded areas very fast, as 
DEM preprocessing is run only once and it fully characterizes the hierarchy for filling and spilling 
processes.  Considering  that,  differently  from  a  hydrodynamic  model,  it  does  not  model  flood 
dynamics, it can produce an underestimation of maximum water levels; moreover, it does not allow 
for obtaining indication on timing and velocity.
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Figure  66: Example of four different intermediate steps (from a to d) in the application of the bottom-up level-set 
depression  flooding  phase:  dry  domain  (a),  bottom-up  level-set  methods  for  partial  filling,  while  simulating  the 
flooding resulting from a given rainfall event (c,d). (Samela et al., 2020, p. 6)

This makes a very important difference to all hydrodynamic flood calculations: There is no flow 
velocity in the model, and therefore, I can neither get any estimation on when the flood peak will 
reach grid cell or mesh node XY, nor can I produce a map with “maximum depth” of each all output 
intervals (i.e.  5, 10 or 15 minutes), where the peak flood extent (peak inundation depth) all all 
output intervals is shown in one map, pretending they are happening all at the same time (which is  
not possible of course).

But this theoretical state of a simultaneous maximum water depth (and  therefore also flood extent) 
is a key visual aid for assessing flood prone areas. There is an equivalent in the HFSA approach, 
which is the final state of the calculation run (flood extent + water depth at the last time step /  
output interval), but especially in areas with a certain gradient, this can be quite misleading, when 
water is routed down via D8 flow algorithm from grid cell to grid cell and there are no or hardly any 
depressions in this area. Let´s keep this important fact in mind, when we take a look at the results in 
chapter 4.

3.4.7 Benchmark calculation with a raster-based 2d hydrodynamic 
software: LISFLOOD-FP 8.0

Before choosing Hydro-As-2d with the “Sturzflut” extension for the calculation of the 2d hydro-
dynamic benchmark for the Carrefour AOI, the idea was to use an also raster based approach, so 
that  I  could evaluate on raster-based flood algorithm against  the other.  The tool  of choice was 
LISFLOOD-FP, in its current version 8.0. I knew the flood software from a test run against Hydro-
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As-2d during my time at Humer Engineering, and in the small catchment in Upper Austria where I 
tested it, the results had been quite good and fitted well with the Hydro-As-2d results.

But, how life plays out, the results in this case (AOI Carrefour) have been totally different, and most 
notably simply unusable (see chapter 4.1.4). But let´s start at the beginning and state some key facts 
on LISFLOOD-FP. The software is a pioneer in the area of raster-based 2d hydrodynamic flood 
calculation; i.e. the nowadays successful hydrodynamic 2d flood software “JFlow”, raster-based as 
well, has its mathematical roots in LISFLOOD-FP.  Lamb et al., 2009 have found a way how to 
bring  the  abilities  of  LISFLOOD-FP into  a  very  fast  and  efficient  computation  via  massive 
parallelization on GPU cores. Like some of the possible computation variants in LISFLOOD-FP 
(i.e. the “Acceleration” solver, which had been used here in this work for the AOI), JFlow 

“..uses a simplified form of the full 2D hydrodynamic equations, but captures the main 
controls on flood routing for shallow, topographically driven flow. It is thus easier to set 
up and quicker to run than full 2D hydrodynamic codes.”(Bradbrook, 2006, p. 79)

In its version 8.0, LISFLOOD-FP offers both full 2d hydrodynamic flood calculations regarding all 
terms of the shallow-water-equations (solvers ‘FV1’ and ‘DG2’as well as ‘Roe’, see Table 10) as 
well  as  several  simplified,  less  CPU-intensive  calculation  methods  (solvers  ‘Routing’,  ‘Flow-
limited’, ‘Adaptive’ and ‘Acceleration’), which neglect some or even all (‘Routing’) terms of the 
shallow-water-equations (SWE). It shall be noted in this context, that even when two solvers both 
make use of all terms of the SWE, results can be different nevertheless, as it is also important which 
approach of solving the partial differential equations in hydraulics they use – finite volume or finite 
elements.

Table 10: Available solvers for floodplain (overland) flow calculation in LISFLOOD v8.0 (user manual LISFLOOD-FP, 
v 8.0, p. 11, available online at https://publications.jrc.ec.europa.eu/repository/bitstream/JRC78917/
lisflood_2013_online.pdf, access on 2023-04-10)

Regarding the effectiveness and performance of the single solvers, Table 11 shows the differences 
in computation time in dependence of the chosen solver:
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Table 11: Solver runtimes at grid spacings of 1x = 50 m, 1x = 20 m and 1x = 10 m. ACC, FV1-CPU 
and DG2-CPU solvers are run on a 16-core CPU; FV1-GPU and DG2-GPU solvers are run on a single 
GPU. (Shaw et al., 2021, p. 3591)
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4. Results

4.1. Hydrodynamic model (Hydro-As-2D)

All 2d hydrodynamic flood calculation model runs have been carried out with the same calculation 
time of 120 minutes, which is exactly double the duration of the design precipitation event (60 
minutes). By this means, it is ensured that the peak of the flood wave resulting from the design 
rainfall event has reached the bottom of our AOI, which is the shoreline to the Caribbean sea in our 
case. 

The rainfall had been added intentionally in the simple and hypothetical form of a “block rainfall”, 
which characterized as a hypothetical rainfall event, where the intensity stays the same for the 
whole duration, from minute one to minute 60 (see  Figure 67).  Even though this is a mere 
model  assumption,  it  facilitates  the  comparability  between  the  two  flood  calculation 
approaches (2d  hydrodynamic  versus  the  merely  GIS-based  hierarchical  filling-and-spilling 
algorithm),  as  the  HFSA (“Safer_RAIN”)  is  not  able  to  calculate  temporarily  variable  rainfall 
intensities, so for the HFSA, every rainfall input is always block rainfall.

Figure 67: Intensity and duration of the three rainfall scenarios calculated in both models: frequent rain event with 
return period T2/T5, 50 mm in 60 minutes; rare rain event with return period T30/T50; 90 mm in 60 minutes and 
extreme rain event with return period T100/T200, 130 mm in 60 minutes
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In  the  "SaferPLACES"  pilot  sites  platform55,  where  the  operating  team  of  Italian  consulting 
engineer company GECOsistema srl56 kindly added the AOI Carrefour to its test sites57, the rainfall 
duration is  60 minutes with no additional  hour for all  water in the model  to reach the bottom 
(shoreline),  as the HFSA automatically calculates as long as the rainfall volume added into the 
model has reached its final stage – so either into various smaller and bigger pits (see Figure 66) or 
out of the model domain (the borderline of the area is open for passing water in the model, so no 
accumulation of water in front of an imaginary model borderline).

In the 2d hydrodynamic flood calculation with Sturzflut / Hydro-As-2d, from minute 60 to minute 
120, no additional rainfall is added any more into the model, but the existing water still continues its 
way downwards. For hydrodynamic flood models, this is very important, as the flood wave should 
reach (respectively pass) the very bottom of the model area, for that the maximum water depth and 
flood extent can be delineated.

The following maps of the flood results show

• Frequent  rain  event (T2  /  T5,  50mm in  1h):  maximum water  depth  of  all  time  steps 
(calculation in Hydro-As-2D / Sturzflut extension), whole AOI (Figure 68)

• Frequent  rain  event (T2  /  T5,  50mm in  1h):  maximum water  depth  of  all  time  steps 
(calculation in Hydro-As-2D / Sturzflut extension), Carrefour urban area (Figure 69)

• Rare  rain  event (T30  /  T50,  90mm  in  1h):  maximum  water  depth  of  all  time  steps 
(calculation in Hydro-As-2D / Sturzflut extension), whole AOI (Figure 70)

• Rare  rain  event  (T30  /  T50,  90mm  in  1h):  maximum  water  depth  of  all  time  steps 
(calculation in Hydro-As-2D / Sturzflut extension), Carrefour urban area (Figure 71)

• Extreme rain event (T100 / T200, 130mm in 1h): maximum water depth of all time steps 
(calculation in Hydro-As-2D / Sturzflut extension), whole AOI (Figure 72)

• Extreme rain event (T100 / T200, 130mm in 1h): maximum water depth of all time steps 
(calculation in Hydro-As-2D / Sturzflut extension), Carrefour urban area (Figure 73)

Summarizing, the simulation of the rainfall events with Hydro-As-2D and the “Sturzflut” extension 
worked very well, the results look realistic and give a good impression of which areas are in danger  
at which rainfall intensity (and also when the peak inundation will be reached, if one looks through 
the results of each output interval).

Flow velocity is  calculated in the simulations as well, but as there is  no counterpart in Safer-
RAIN to compare it to, the velocity model output (although important for the practitioner, as flow 
velocity has a major impact on possible flood damage in steep areas) has not been reviewed for 
this work.

55 http://54.164.155.9/webgis/   (access on 30-03-2023)
56 https://gecosistema.com/   (access on 30-03-2023)
57 http://54.164.155.9/webgis/Haiti/   (access on 30-03-2023)
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The results also show clearly that the main inundation risk in Carrefour is indeed not coming 
out of the river Rivière Froide, but from the small ravines (narrow streams which are dried-up 
during most of the time and only lead water after rainfall events) with a rather small catchment area 
between 0.5 and 5 square kilometres, but a mostly steep to very steep slope and therefore a very 
quick response to every precipitation event (see figures 68 until 73 on the next pages).

------------------------------------------------------------------------------------------------------------------------
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4.1.1 Frequent rain event (T2/T5, 50 mm in 60 minutes)

Figure 68: Frequent rain event (T2 / T5, 50mm in 1h): maximum water depth of all time steps (calculation in Hydro-As-
2D / Sturzflut extension), whole AOI
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Figure 69: Frequent rain event (T2 / T5, 50mm in 1h): maximum water depth of all time steps (calculation in Hydro-As-
2D / Sturzflut extension), Carrefour urban area
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4.1.2 Rare rain event (T30/T50, 90 mm in 60 minutes)

Figure 70: Rare rain event (T30 / T50, 90mm in 1h): maximum water depth of all time steps (calculation in Hydro-As-
2D / Sturzflut extension), whole AOI
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Figure 71: Rare rain event (T30 / T50, 90mm in 1h): maximum water depth of all time steps (calculation in Hydro-As-
2D / Sturzflut extension), Carrefour urban area
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4.1.3 Extreme rain event (T100/T200, 130 mm in 60 minutes)

Figure 72: Extreme rain event (T100 / T200, 130mm in 1h): maximum water depth of all time steps (calculation in 
Hydro-As-2D / Sturzflut extension), whole AOI

------------------------------------------------------------------------------------------------------------------------
4. Results 4.1. Hydrodynamic model (Hydro-As-2D)



UNIGIS Master Thesis 113 Andreas Reithofer 106713
------------------------------------------------------------------------------------------------------------------------

Figure 73: Extreme rain event (T100 / T200, 130mm in 1h): maximum water depth of all time steps (calculation in 
Hydro-As-2D / Sturzflut extension), Carrefour urban area
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4.1.4 Benchmark calculation with “LISFLOOD-FP”

As  already  mentioned,  the  solver  used  for  the  test  runs  in  LISFLOOD-FP  had  been  the 
“Acceleration” solver, which I had used before in my work practice and where I knew how to 
proceed and prepare the dataset. “Acceleration” neglects the term of the convective acceleration in 
the SWE, whereas the other terms (friction, water slopes, local acceleration) are included, see Table
10 in Chapter 3.4.7.

But  unfortunately,  this  solver  has  a  methodological  problem  when  used  in  steep  reliefs  in 
combination with a  high amount  of precipitation – the model  became highly unstable  after  ~4 
minutes rainfall with an intensity of 92 mm/h in my test runs, also with other rainfall intensities and 
durations (with 50 mm/h as minimum intensity), see Figure 74 and Figure 75.

Figure 74: Testrun with LISFLOOD v8.0, I= 92mm/h, solver 'Acceleration': model beginning to become unstable at 
output interval 3 (= after 15 minutes), beginning to produce big "flood waves"

So, although I had already used LISFLOOD-FP in my engineering practise with the same solver 
algorithm  successfully  in  other  (flatter)  areas  with  similar  rainfall  intensities,  I  came  to  the 
conclusion that,  for steep reliefs like it is the case in many areas of Haiti  and also in our AOI 
Carrefour, LISFLOOD-FP with the “Acceleration” solver cannot be the tool of choice.
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Figure 75: Testrun with LISFLOOD v8.0, I= 92mm/h, solver 'Acceleration': model highly unstable at output interval 4 
(= after 20 minutes), producing enormous "flood waves"

4.2. GIS-based model (HFSA “Safer_RAIN”)

On the "SaferPLACES" Web platform for all pilot sites58 (most of them being cities in Europe, the 
project  is  co-funded by the “Climate-KIC” initiative from the European Commission),  the AOI 
Carrefour  had been uploaded and can  be tested  there  by oneself  (see  Figure 76),  with a  basic 
knowledge  on  GIS  and  hydrology  sufficient  to  run  an  instant  calculation  on  your  own.  The 
calculation itself is very quick, the results are ready in some minutes, or even seconds (depending 
on the size of the area and the rainfall amount).

So we have a very clear advantage in calculation velocity for “Safer_RAIN” compared to the 2d 
hydrodynamic calculation in Hydro-As-2D, which lasted for about 48 hours for each scenario run. 
Even clearer becomes this advantage when using the global platform (Figure 77):

If  we suppose,  we have  no  ready-to-use  raster  or  mesh dataset  with  the  DTM, the  roughness 
coefficient, the infiltration rate and the rainfall intensity, then this global platform is a super fast 
way to get a first impression on what the possibly endangered areas in case of flooding are. 

58 http://54.164.155.9/webgis/   (access on 30-03-2023)
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Furthermore, the  platform is not limited to the calculation of pluvial flood hazards; also the 
fluvial and a possible coastal flood hazard can be calculated in some minutes or seconds, and they 
can be calculated each of them for its own or combined together, with a multiple hazard map as 
result.

Figure 76: Screenshot of the "SaferPLACES" pilot area "Haiti" (=AOI Carrefour)

Figure 77: Screenshot of the "SaferPLACES" global platform, where an AOI of own choice can be defined and 
calculated throughout the world
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But,  on  the  other  hand,  the  precise  function  of  the  HFSA  (hierarchical  filling-and-spilling 
approach) is very important for the interpretation of the results. As the algorithm works (like the 
name suggests) with the filling of sinks and the spilling over their edge, as soon as it is filled with 
water, the non-existence of sinks in a terrain with a continuous gradient seems to cause serious 
problems for the algorithm, as there basis from where the filling begins, is missing. When no water 
accumulates in local depressions, but rather all the water in the model is just being routed 
downwards  by the  D-8 flow algorithm,  the  flood extent  and water depth in  the  result  is  
accordingly low or simply not present.

This is the case in the AOI Carrefour – we can remember from Chapter 2.1 that the urban centre 
of Carrefour is situated on an alluvial fan, where the slope is continuously falling from south to 
north. So apart from some minor local depressions, this are conceivably unfavourable conditions for 
the HFSA to achieve good and reliable results. I was not aware of this fact when the AOI had been  
suggested by MSF, but I saw it later on the basis of the calculations.

The results  from the calculation via the HFSA “Safer_RAIN” can either be viewed in the web 
platform directly or exported as a GeoTIFF raster file. For the maps of the comparison, I chose the 
latter, as it enables me to display all results from both tools (Hydro-As-2d and Safer_RAIN) in the 
same way, with the same colour attributes.

The following maps of the flood results show

• Frequent  rain  event (T2  /  T5,  50mm  in  1h):  Final  water  depth  (Calculation  in 
"SaferPLACES"web platform), whole AOI (Figure 78)

• Frequent  rain  event (T2  /  T5,  50mm  in  1h):  Final  water  depth  (Calculation  in 
"SaferPLACES"web platform), Carrefour urban area (Figure 79)

• Rare  rain  event (T30  /  T50,  90mm  in  1h):  Final  water  depth  (Calculation  in 
"SaferPLACES"web platform), whole AOI (Figure 80)

• Rare  rain  event  (T30  /  T50,  90mm  in  1h):  Final  water  depth  (Calculation  in 
"SaferPLACES"web platform), Carrefour urban area (Figure 81)

• Extreme  rain  event  (T100  /  T200,  130mm  in  1h):  Final  water  depth  (Calculation  in 
"SaferPLACES"web platform), whole AOI (Figure 82)

• Extreme  rain  event (T100  /  T200,  130mm  in  1h):  Final  water  depth  (Calculation  in 
"SaferPLACES"web platform), Carrefour urban area (Figure 83)
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4.2.1 Frequent rain event (T2/T5, 50 mm in 60 minutes)

Figure 78: Frequent rain event (T2 / T5, 50mm in 1h): Final water depth (Calculation in "SaferPLACES"web platform), 
whole AOI
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Figure 79: Frequent rain event (T2 / T5, 50mm in 1h): Final water depth (Calculation in "SaferPLACES"web platform), 
Carrefour urban area
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4.2.2 Rare rain event (T30/T50, 90 mm in 60 minutes)

Figure 80: Rare rain event (T30 / T50, 90mm in 1h): Final water depth (Calculation in "SaferPLACES"web platform), 
whole AOI
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Figure 81: Rare rain event (T30 / T50, 90mm in 1h): Final water depth (Calculation in "SaferPLACES"web platform), 
Carrefour urban area
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4.2.3 Extreme rain event (T100/T200, 130 mm in 60 minutes)

Figure 82: Extreme rain event (T100 / T200, 130mm in 1h): Final water depth (Calculation in "SaferPLACES"web 
platform), whole AOI
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Figure 83: Extreme rain event (T100 / T200, 130mm in 1h): Final water depth (Calculation in "SaferPLACES"web 
platform), Carrefour urban area
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4.2.4 Benchmark calculation for extreme rain event (T100/T200, 130 mm 
in 60 minutes): Rimini (IT)

As mentioned, the Carrefour AOI has conceivably unfavourable conditions for the HFSA to achieve 
good and reliable results. So, to remain fair to the tool and the algorithm as such, there shall shortly 
be described a counterexample with a totally different terrain, the city of Rimini (Italy). This area 
has been validated against the benchmark calculation of Hydro-As-2d with the “Sturzflut” extension 
(Figure 84), and I am able to confirm the good results in this case, as I carried out the benchmark 
calculation to “Safer_RAIN” with Hydro-As-2D in the year 2020 by myself.

The results of “Safer_RAIN” are of course not identical to the 2d hydrodynamic calculation, but 
they deliver a generally good accordance for the flood extent, as has also been presented in the 
paper from (Samela et al., 2020):

“We  present  the  first  applications  of  the  algorithm  to  two  case  studies  in  Northern  Italy. 
Safer_RAIN  output  is  compared  against  ground  evidence  and  detailed  output  from  a  2D 
hydrological and hydraulic numerical model (overall index of agreement between Safer_RAIN and 
2D benchmark model: sensitivity and specificity  up to 71% and 99%, respectively), highlighting 
potential and limitations of the proposed algorithm for identifying pluvial flood-hazard hotspots 
across large urban environments.” (Samela et al., 2020)

Figure  84: Rimini  case study: flooding phase output.  (a–c)  Water  depth maps obtained under the assumptions of 
spatially uniform rainfall and impervious terrain and relative to three different synthetic rainfall depths (color-scale 
represents water depth values). (d–f) Comparison between Safer_RAIN and Hydro_AS-2D outputs: images report a 
classification of pixels into false positive (FP), true positive (TP), false negative (FN), and true negative (TN) (Samela 
et al., 2020, p. 12)
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Indeed, calculating the Rimini area via the “Safer_RAIN” HFSA on the "SaferPLACES" platform, 
the results are totally different to the results of the Carrefour area (see  Figure 85 and Figure 86), 
which illustrates the huge impact of the DTM on the final result in this case.

As the  filling-and-spilling algorithm largely depends on the form of the terrain, where the 
calculation  is  carried  out,  this  input  parameter  is  also  far  more  important  than  in  any 
hydrodynamic flood calculation. So for the HFSA, everything rises and falls with the DTM. If the 
DTM is suitable (rather flat, at least some local depressions, where water can accumulate in the 
model), the results are generally good, if the DTM is not suitable like in Carrefour, with either a  
high slope gradient or generally no or only very few local depressions, the result will be poor.

Figure 85: Extreme rain event (130mm in 1h): Final water depth, pluvial flood scenario only (Calculation in 
"SaferPLACES"web platform), benchmark calculation for city area of Rimini, Italy
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Figure 86: Extreme rain event (130mm in 1h): Final water depth, combined fluvial and pluvial flood scenario 
(Calculation in "SaferPLACES"web platform), benchmark calculation for city area of Rimini, Italy

4.3. Comparison: GIS-based vs. hydrodynamic

As  already  mentioned  in  the  introduction,  the  filling-and-spilling  algorithm,  on  which 
“Safer_RAIN” is based, has to compete with a methodological issue in our area of interest. This is  
due to the fact that the whole algorithm is based upon sinks, the filling of sinks and the spilling out 
of sinks. In many (rather flat) urban areas around the world, this is not a problem, as there are 
always areas where water can accumulate in the model.

But in the case of Carrefour, the majority of the city is situated on the alluvial fan of the Rivière  
froide river, and due to the steep terrain in general, we hardly have any really flat areas or bigger 
local depressions in the area, like there are i.e. in the counterexample of Rimini (almost flat terrain, 
railroad embankment acting as natural barrier, where the water can perfectly accumulate). This fact 
of course has a big impact on the results in “Safer_RAIN”.

The major  difference between the two tools  is  in  my evaluation the non-consideration of  flow 
velocity and dynamics as such in the “Safer_RAIN” hierarchical filling-and-spilling approach. If 
overland flow is only routed via D-8 algorithm and the calculation of the inundation areas and water 
depth as such is done via a “backwards-approach”, where the grid cells are inundated due to water 
accumulation in local depressions, the algorithm automatically has an issue with steeper terrains 
including  a  continuos  gradient  and  no  or  only  few  physical  barriers  like  road  and  railway 
embankments and small natural hills.

Table 12 shows a comparison of the inundation extent (definition of inundated area: water depth of 
1 cm or higher) and the average water depth for all three scenarios:
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Return period Rainfall duration in h Hydro-As-2d / Sturzflut Safer_RAIN HFSA
Flood extent in km² T 2 / T 5 50 1 5.156 0.704

T 30 / T 50 90 1 8.811 0.718
T 100 / T 200 130 1 11.115 0.724

Average water depth in m T 2 / T 5 50 1 0.071 0.055
T 30 / T 50 90 1 0.111 0.061
T 100 / T 200 130 1 0.143 0.064

Maximum water depth in m T 2 / T 5 50 1 6.410 5.969
T 30 / T 50 90 1 7.501 6.819
T 100 / T 200 130 1 8.942 6.819

Rainfall amount in 
mm

Table 12: Comparison on flood extent, mean and maximal water depth (reference Hydro-As-2d: DepthMax = 
aggregated maximum of all time steps, reference “Safer_RAIN” = depth at last time step, as DepthMax cannot be 
calculated in the HFSA) between Hydro-As-2d / Sturzflut and Safer_RAIN

One can easily see that the differences are not only obvious in visual form via the maps, but of 
course also here in the statistics. Therefore, the mesh output of Hydro-As-2d has been converted 
into raster format with the “Safer-RAIN” output grid as reference grid, so that the pixel centre is 
exactly the same. 

The most obvious facts for the AOI Carrefour are:

• The flood extent is between 86% and 93% (130mm rainfall event: 11.11 km² in Hydro-As-
2D but only 0.72 km² in “Safer_RAIN”) smaller via the “Safer_RAIN” calculation than in 
the Hydro-As-2D calculation

◦ The difference is becoming bigger with increasing rainfall intensity

◦ In Hydro-As-2D, flood extent increases by 71% between the 50mm frequent rain event 
and the 90mm rare rain event, and by 116% between the 50mm frequent rain event and 
the 130mm extreme rain event

◦ In “Safer-RAIN”, flood extent only increases by 2.0% between the 50mm frequent rain 
event and the 90mm rare rain event, and by 2.7% between the 50mm frequent rain event 
and the 130mm extreme rain event

• The average (arithmetic mean, water depth 0.01m and higher) water depth is between 22% 
and 55% (130mm rainfall event: 0.143m in Hydro-As-2D but only 0.064m in Safer_RAIN) 
smaller via the “Safer_RAIN” calculation than in the Hydro-As-2D calculation

◦ The difference is significantly becoming bigger with increasing rainfall intensity

◦ In Hydro-As-2D, the average water depth increases by 56% between the 50mm frequent 
rain event and the 90mm rare rain event, and by 101% between the 50mm frequent rain 
event and the 130mm extreme rain event

------------------------------------------------------------------------------------------------------------------------
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Return period
Flood extent in km² T 2 / T 5 50 -86.34

T 30 / T 50 90 -91.85 70.87 1.99
T 100 / T 200 130 -93.49 115.55 2.71

Average water depth in m T 2 / T 5 50 -22.54
T 30 / T 50 90 -45.05 56.34 10.91
T 100 / T 200 130 -55.24 101.41 16.36

Maximum water depth in m T 2 / T 5 50 -6.88
T 30 / T 50 90 -9.09 17.02 14.24
T 100 / T 200 130 -23.74 39.50 14.24

Rainfall amount in 
mm

difference: Safer_RAIN 
in % of Hydro-As-2d

Hydro-As-2D: Diff  90 / 
130 mm to 50mm %

HFSA: Diff  90 / 
130mm to 50mm %
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◦ In “Safer-RAIN”, the average water depth only increases by 11% between the 50mm 
frequent  rain  event  and the  90mm rare  rain  event,  and by 16% between the  50mm 
frequent rain event and the 130mm extreme rain event, which is a very low increase in 
comparison to Hydro-As-2D

• The  maximum water depth is between 17% and 40% (130mm rainfall event: 8.94m in 
Hydro-As-2D but only 6.82m in Safer_RAIN) smaller via the “Safer_RAIN” calculation 
than in the Hydro-As-2D calculation

◦ The difference is becoming bigger with increasing rainfall intensity

◦ In  Hydro-As-2D,  the  maximum  water  depth  increases  by  17%  between  the  50mm 
frequent  rain  event  and the  90mm rare  rain  event,  and by 40% between the  50mm 
frequent rain event and the 130mm extreme rain event

◦ In “Safer-RAIN”, the average water depth increases by 14% between the 50mm frequent 
rain event and the 90mm rare rain event, and also by 14% between the 50mm frequent 
rain event and the 130mm extreme rain event

These differences in raw numbers of course can also be seen visually at the first glance by looking 
at the result maps. But, at this point, it  is very important to draw once again the attention to a  
fundamental difference between the two flood calculation approaches: The concept of time.

As described in chapter  3.4.5, Hydro-As-2D is a hydrodynamic model solving the shallow-water-
equations  via a finite-volumes method and thus working with flood dynamics.  So we basically 
know how much water is passing through a cross section during which time span – a discharge 
curve for every virtual cross section X can be calculated out of the 2d model. As we know the water  
depth for every output interval (in the case of this work: every 5 minutes / 300 seconds), we can 
easily aggregate the water depths of all  output intervals into one single output,  where only the 
maximum of all output intervals is being displayed (the so-called “DepthMax”).

The methodology of the hierarchical filling-and-spilling algorithm used in “Safer-RAIN” does not 
allow this, as the model is GIS-based and not hydrodynamic. This fundamental difference lies in the 
very  nature  of  the  approach,  and  in  rather  flat  areas  with  low  flow  velocities  and  water 
accumulating  in  local  depressions,  the  approach  is  a  competitive  alternative  to  a  conventional 
hydrodynamic flood calculation, as the benchmark calculations for the Italian city of Rimini showed 
(Samela et al., 2020). 

But in the case of a terrain like in Carrefour, with very steep hills rising directly after the coastline  
and a continuously rising terrain between the coast and the foot of the hill slopes, the algorithm 
clearly has a methodological problem. The surface flow is very fast, and just as fast as the water has 
come, it is gone, like a quickly passing flood wave. I would like to illustrate this in the next maps, 
which show the water depth of the extreme rainfall scenario (T100 / T200, 130 mm in 1h) in the  
Hydro-As-2d / Sturzflut model at different time steps (output intervals), namely at 15 min (Figure
87), 30 min (Figure 88), 60 min (Figure 89) and 120 min (Figure 90).
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It illustrates how fast the pluvial flood wave is moving through the city of Carrefour – having the 
peak inundation in most parts of the city at the 60 minutes time step, directly after the block rainfall 
event stopping after 60 minutes, and then draining quickly into the sea.

So, if we took the water depth after 120 minutes as basis for the comparison of the two approaches, 
things would look different: the flood extent as well as the water depth is already much lower then 
than at the peak inundation after 60 minutes. And this basis for the comparison has also been set for 
the Rimini benchmark  (Samela et al., 2020):  Here, the water depth of the  last time step of the 
“Sturzflut” / Hydro-As-2D model has been compared with the water depth in “Safer-RAIN”, not the 
aggregated maximum water depth of all time steps.

In the case of Rimini, the difference between the maximum water depth and the water depth of the 
last time step is much lower, as the calculation ended directly after the block rainfall event in the 
model and the terrain is totally different (almost flat, with local depressions due to road at railway 
embankments). But here, in Carrefour, the time component makes a huge difference.

Figure 87: Water Depth in Sturzflut / Hydro-As-2d model (extreme rainfall scenario, 130mm in 1h, at TS 15 min)
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Figure 88: Water Depth in Sturzflut / Hydro-As-2d model (extreme rainfall scenario, 130mm in 1h, at TS 30 min)

Figure 89: WaterDepth in Sturzflut / Hydro-As-2d model (extreme rainfall scenario, 130mm in 1h, at TS 60 min)
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Figure 90: WaterDepth in Sturzflut / Hydro-As-2d model (extreme rainfall scenario, 130mm in 1h, at ts 120 min)

4.4. Flood risk assessment for buildings and critical 
infrastructure

The  second  objective  of  this  work  was  a  flood  risk  assessment  for  buildings  and  critical 
infrastructure in Carrefour at different flood scenarios. Due to the methodological problems of the 
HFSA in the area of interest, I only took the results of the hydrodynamic calculation as basis for the 
evaluation. 

First step was to define which amenities should fall under this category and then, in a second step, 
extract its position. My chosen approach was to extract this information from OpenStreetMap via 
the QGIS plug-in “QuickOSM”, which enables the user to export exactly the desired data from 
OSM as a separate layer into QGIS in no time – as long as the information is available in OSM, we  
are depending on user generated content in the case of OSM.

This  approach  worked  amazingly  well  for  the  extraction  of  critical  infrastructure  (defined  as 
schools,  kindergartens  /  nursery schools  and hospitals  /  clinics,  but  rather  bad  for  the building 
substance as a whole (see chapter  2.2.1) – for the whole city of Carrefour, there are only 15351 
buildings documented in OSM, which might be about 10%, but not more. A possible solution could 
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be an object-based image analysis (OBIA) of high-resolution satellite images, but that would have 
gone  beyond  the  scope  of  this  work,  which  focuses  on  the  data  fundamentals  and  the  model 
comparison. For this reason, I deliberately limited the evaluation to the available OSM data.

For the AOI is a whole, out of OSM could be extracted the following data as basis for the floor risk  
assessment:

• 15,351 buildings
• 34 clinics / hospitals
• 258 educational facilities, ranging from kindergarten over primary and secondary school 

until college / university.

Figure 91: Critical infrastructure (schools, hospitals) extracted out of OpenStreetMap

The extracted data is shown in Figure 91. The next step was to convert the aggregated maximum 
water depth (Hydro-As-2D output) from mesh data format into raster format and to reclassify it into 
3 different depth classes:

• 0.1 – 0.5 meter
• 0.5 – 1.0 meter
• > 1.0 meter
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The intersection between the different depth classes (derived from the hydrodynamic calculation 
with Hydo-As-2D / Sturzflut add-on, reclassified aggregated maximum depth of all time steps), the 
3 rainfall scenarios (50mm, 90mm and 130 mm) and the 2 layers with the amenities of the critical 
infrastructure  (“Schools”:  schools,  kindergartens  /  nursery  schools,  colleges,  universities; 
“Hospitals”: hospitals and clinics) brought the following results (see Table 13):

Table 13: Evaluation of flood-endangered buildings, schools and hospitals (source data: 
OpenStreetMap / QuickOSM)

Table  13 shows  a  sharp  increase  in  affected  critical  infrastructure especially  between  the 
frequent rainfall scenario (T2/5, 50mm in 1h)  and the rare rainfall scenario – the number of 
affected schools, hospitals and buildings in the depth class 0.1-0.5m roughly doubles, whereas the 
increase between the latter scenario and the extreme rainfall scenario is lower, especially in the 
depth class 0.1-0.5m. 

The absolute number of affected buildings is not representative, as the buildings contained in 
OSM are distributed randomly, just as it had been digitized by OSM volunteers (see Figure 92). A 
better and most notably more consistent distribution of all buildings could be obtained via an object 
based image analysis.  But still, also the number of affected buildings in this statistic speaks a 
clear language –  the  number  of  inundated  buildings  has  a  sharp  increase  in  all  depth  classes 
especially between the frequent rainfall scenario (T2/5, 50 mm in 1h) and the rare rainfall scenario 
(T30/50, 90 mm in 1h), with a factor between 1.5 and 2.
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Figure 92: Buildings extracted from OSM - note the irregular (random) distribution

The maps of affected critical infrastructure show the following results:

• maximum water depth in Sturzflut / Hydro-As-2d model: frequent rainfall scenario (T2/5, 
50 mm in 1h), intersection with critical infrastructure (schools, hospitals – see Figure 93)

• maximum water depth in Sturzflut / Hydro-As-2d model:  rare rainfall scenario (T30/50, 
90 mm in 1h), intersection with critical infrastructure (schools, hospitals – see Figure 94)

• maximum  water  depth  in  Sturzflut  /  Hydro-As-2d  model:  extreme  rainfall  scenario 
(T100/200, 130 mm in 1h), intersection with critical infrastructure (schools, hospitals – 
see Figure 95)
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Figure 93: maximum water depth in Sturzflut / Hydro-As-2d model: frequent rainfall scenario (T2/5, 50 mm in 1h), 
intersection with critical infrastructure (schools, hospitals)
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Figure 94: maximum water depth in Sturzflut / Hydro-As-2d model: rare rainfall scenario (T30/50, 90 mm in 1h), 
intersection with critical infrastructure (schools, hospitals)
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Figure 95: maximum water depth in Sturzflut / Hydro-As-2d model: rare rainfall scenario (T100/200, 130 mm in 1h), 
intersection with critical infrastructure (schools, hospitals)
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5. Discussion of results, conclusion and outlook

5.1. Strengths and Weaknesses of each model

As already pointed out in the previous chapters, the two toolsets for calculating pluvial flood hazard 
and -risk are basically very different, in methodology a well as in the focus and the abilities. In my 
opinion,  the  hierarchical  filling-and-spilling  algorithm  “Safer_RAIN”  has  the  following 
strengths (S) and weaknesses (W):

• S: It  is  very efficient  in  calculation speed as well  as  in  the necessary preparation work 
(global platform is available for the whole world, although with limitations in resolution and 
accuracy).

• S: “Safer_RAIN” is good in computing the flood hazard in flat or rather flat terrain, and is 
well suited for flat urban areas.

• S: Not the HFSA as such, but the platform "SaferPLACES" is able to combine different risk 
scenarios, namely fluvial, pluvial and coastal flood hazard.

• S: It is very cost efficient in comparison to either buying a very expensive software license 
for commercial hydrodynamic flood calculation software, be this Hydro-As-2d or Jflow.

• S: Also persons, who are no experts in the fields of hydrology, hydraulics and geographic 
information systems (GIS) are able to carry out the flood hazard calculations. Nevertheless, 
a certain degree of technical expertise  in  this  fields  is  necessary to  give the calculation 
model a reasonable input and therefore enable the tool to potentially deliver a reasonable 
output (otherwise, the “garbage-in-garbage-out” principle will strike).

• W:  The  HFSA  “Safer_RAIN”  has  a  serious  methodological  weakness  in  the  flood 
calculation  for  areas  with  a  certain  gradient,  when  there  are  no  or  hardly  any  local  
depressions in the DEM which is used for the calculation. In extreme cases, this may lead to 
very  few  and  low  inundation  areas  in  the  model,  which  can  lead  to  a  dangerous 
misinterpretation of the result, if the person who carried out the analysis has no technical 
expertise in the field of flood hazard calculation and blindly relies on the results.

• W: The algorithm and therefore also the tool are not able to deliver flow velocity, which is 
an  important  variable  in  assessing  the  flood  hazard.  For  the  same reason,  it  is  neither 
possible to give an estimation on when a certain area will be flooded in rainfall scenario X. 
We only that it will be inundated or not.

The 2d finite-volumes hydrodynamic tool “Hydro-As-2D” with the “Sturzflut” extension in 
my opinion, has the following strengths (S) and weaknesses (W):

• S: 2d hydrodynamic flood calculation software which consider all  terms of the shallow-
water-equations is the  current technical state-of-the-art tool for assessing pluvial flood 
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hazard. It is accurate and able to deliver reasonable results also in steep areas and / or areas 
with no depressions.

• S: 2d hydrodynamic flood calculation software can provide information not only on flood 
extent and the water depth at the final stage of the calculation, but also for the maximum 
depth of all time steps aggregated in one dataset, as well as the probable time, when an area 
X in is danger of being inundated, and of course flow velocity.

• S: Therefore, also further analysis can be made, when the preparatory work is done and the 
model is  ready for use.  So the high initial  investment can pay off via the possibility to 
calculate follow-on-products.

• W: The necessary effort for the preparatory work is very high, the scarcer the data sources 
are, the higher the effort for finding useable datasets. A lot of manual correction work may 
incur  in  the  DTM  preprocessing  (like  the  removal  of  bridges,  or  correcting  narrow 
streambeds, where a DTM with poor resolution my produce errors).

• W:  The  software  licenses  for  the  hydrodynamic  tools  are  very  cost-intensive,  as  it  is 
specialist  software with high requirements and a low number of users in comparison to 
standard software for the mass market.

• W: The calculation itself is very computationally intensive, needs a lot of CPU and GPU 
power and RAM. Currently, I am not aware of any cloud solutions for the calculation.

5.2. Cost-benefit ratio & fitness for purpose

From the point of view of the AOI Carrefour, the HFSA “Safer_RAIN” is not a very good option for 
assessing the flood risk /  flood hazard of the area in case of heavy precipitation events,  as the 
algorithm is not able to deliver good and reliable results in terrains like this, with a steady gradient 
and only a few sinks / local depressions.

Also LISFLOOD-FP had serious problems with flood calculation for this terrain, at least with the 
“Acceleration” solver, where one term of the shallow-water-equations is being left out.

So in fact, for the Carrefour AOI and places with similar topography, there is actually only one 
alternative  out  of  the  three  evaluated  toolsets:  The Hydro-As-2D software  with  the  “Sturzflut” 
extension, which was able to deliver good and reliable results.

5.3. Conclusion and Outlook

Let us remember our two central research questions from chapter 1.2.2:

First, how can precise and spatially high-resolution flood calculations be carried out in areas with 
scarce input data?
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As it had been shown, performing precise and spatially high-resolution flood calculations in areas 
with scarce input data can be very challenging, but this work has shown several steps that can be 
taken to tackle this issue:

• Use of remote sensing datasets: The remote sensing rainfall datasets experience a rapid 
change and development and the methodology and the sensors are becoming more and more 
an alternative to the exclusive use of in-situ-station data only. But one has to be careful 
when comparing the different products with each other and take into account concepts like 
the area reduction factor (ARF).

• For  the  vectorization  of  buildings,  object-based  image  analysis  (OBIA)  would  most 
probably lead to better results than the buildings extracted out of OpenStreetMap, as this 
user-generated  content  often  has  huge  data  gaps  in  data  scarce  regions.  However,  the 
extraction of critical infrastructure delivered credible results in the Carrefour AOI.

• Validation of the results is often a problem, when there are no local data sources against 
which they can be validated. Again, remote sensing may be an option for this, if one is able 
to find a suitable satellite image of the (preferably) peak flood extent (which may be very 
challenging, as rainfall cause the existence of clouds, and clouds are bad when you would 
like to have a clear sight on the ground. If you are lucky enough to find one, then the model 
output can be validated against the measured extent coming out of the DOPs. The same 
would be possible with geo-tagged photographs. Unfortunately, neither suitable sat images 
nor geo-tagged photographs have been available for this work and the AOI Carrefour. For a 
perfectly validated flood calculation model, you would make use of rain gauge station data, 
a  discharge  curve  out  of  local  river  gauges  for  the  validation  of  the  model  and  high-
resolution satellite images and / or geotagged photographs from the situation on the ground.

• This is also a question of focus: Which results am I expecting from my analysis? Do I need 
data  output  with  a  very  high  resolution  and  accuracy  or  do  I  just  want  to  get  a  first  
impression of flood-prone areas in case of a heavy rain event, and a DTM with 20 or 30 
meters grid cells and the assumption of block rainfall and impermeable soil will be enough? 
Do I need the output of flow velocity? Is it important to know the time of inundation for my 
area? All these are important factors for the decision making, which product is most likely to 
get me to my research goal.

And second, what are the differences in flood hazard calculation between an easy-to-setup merely 
GIS based approach (“Safer_RAIN”), which can be calculated via a global web platform and a 
conventional 2d hydrodynamic flood calculation, carried out with the industry standard software 
“HYDRO-AS 2d”?

• This question has been answered in high detail in the previous chapters – the differences 
between the two approaches lie in the methodology and mathematics on which they are 
basing. While Hydro-As-2D is a full 2D hydrodynamic modelling software, considering all 
terms  of  the  shallow-water-equations,  the  hierarchical  filling-and-spilling  algorithm 
“Safer_RAIN”  works  completely  different  on  a  merely  GIS-based  calculation  of  flood 
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extent and water depth out of the filling and spilling of sinks and local depressions from the 
rainfall added into the model.

• This of course may have serious impacts on the resulting flood extent and water depth (other 
parameters cannot be compared, as the HFSA only delivers there two), especially when the 
terrain of the survey area is not flat and has a constant gradient, where the water added into 
the model quickly leaves the domain instead of accumulating in sinks and local depressions. 
The resulting  difference in  these two parameters  (flood extent  and water  depth)  can  be 
tremendous, as shown in Table 12. 

• Simplified, all merely GIS-based flood calculation approaches have one Achilles' heel in 
common: the extremely high dependence from the underlying DTM. The success of the 
algorithm is highly dependant from the quality and accuracy, and, in case of “Safer_RAIN”, 
also from the morphology of the terrain, whereas in 2d hydrodynamic models, other factors 
like roughness coefficient, infiltration (though both of these two parameters are integrated in 
“Safer-RAIN”), flow velocity and concentration time have a big influence on the result as 
well;  the  dependence  on  the  underlying  DTM  as  lower  than  in  merely  GIS-based 
approaches.

In my estimation, for data-scarce regions like our AOI Carrefour and Haiti as a whole, it could 
be a good way to

• bundle the effort for data extraction: tackle the initial effort once, get good and reliable 
datasets for the whole island of Hispaniola

• validate against existing data-sources with known quality standards,

• recycle collected data: re-use the collected and evaluated data sources as much as you can

• make use of different rainfall scenarios: set the focus on the calculation of several rainfall 
scenarios with different durations and intensities (i.e. rainfall intensities ranging from 50 to 
130 mm/h),  compare them with past  events  (via  ground data  if  available  and remote 
sensing datasets like MSWEP or ERA5/ERA5-Land) to get a classification of which rainfall 
scenario  corresponds  to  which  historical  flood event  (if  there  have  been  any)  and then 
calculate them all at once. By this manner, responsible bodies and local authorities have a 
good foundation for delineating

◦ a)  “No-build-areas”: areas where there should better be a ban on the construction of 
new buildings or where special regulations become enacted, i.e. the construction of low 
walls to prevent water from entering the building

◦ b) “High-danger-areas”: delineate the most flood-prone areas for rainfall events of the 
past and possible rainfall events in the future

◦ c) “Safe areas”: delineate the least flood prone areas, where can people be evacuated to 
from inundated neighbourhoods, which areas are suitable for the construction of  critical 
infrastructure like hospitals and schools,
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◦ d) “safe and unsafe passages”: which roads are highly likely to be inundated at which 
rainfall scenario? Which roads on the other hand will most probably still be able to pass?

◦ c)  “the  time  factor”:  When  will  the  most  flood  prone  areas  be  in  danger? 
Hydrodynamic models have the advantage that one (indirect) model output is time of 
inundation, which enables the local authorities and the rescue forces to assess when a 
certain building, area or road passage is in acute danger of getting flooded.
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6. Appendix

6.1. Extraction of IDF Curves from GPEX dataset

Figure 96: Position of the GPEX raster cells

6.1.1 GEV (GPEX) estimates vs. GEV fitted from observed values in 
GPEX dataset
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Figure 97: GEV (GPEX) estimates vs. GEV fitted from observed values in GPEX dataset

6.1.2 GEV (GPEX) estimates vs. MEV (GPEX) estimates:
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Figure 98: GEV (GPEX) estimates vs. MEV (GPEX) estimates

6.1.3 MEV (GPEX) estimates vs. GEV fitted from observed values in 
GPEX dataset:
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Figure 99: MEV (GPEX) estimates vs. GEV fitted from observed values in GPEX dataset
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6.2. R Script used for the evaluation and of netCDF files and 
extraction of IDF Curves
library(ncdf4) library(RColorBrewer) library(rgdal) library(rgeos) library(extRemes) library(rnoaa) 
library(readxl) library(raster)  ################################################# # Reading, 
buffering and transforming shapefiles  ################################################# UG = 
readOGR(dsn = "c:/UNIGIS_MSc/MASTERTHESIS/DATA/Regen/GPEX/BB_15_gridcells.shp") 
crsmerc=CRS("+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0") #UG = spTransform(UG, crsmerc) 
#UG=UG(8:9,) # Departments Ouest and Sud-Est #https://de.wikipedia.org/wiki/D
%C3%A9partements_von_Haiti  AOI = readOGR(dsn = 
"c:/UNIGIS_MSc/MASTERTHESIS/DATA/GIS/hti_boundaries_international_cnigs_polygon/AOI.shp") 
AOI_buff=gBuffer(AOI,width=0.2) crsmerc=CRS("+proj=longlat +datum=WGS84 +ellps=WGS84 
+towgs84=0,0,0") #AOI = spTransform(AOI, crsmerc) #AOI_buff = spTransform(AOI_buff, crsmerc) 
#AOI_buff=gBuffer(AOI,width=0.1)  EZG = readOGR(dsn = 
"c:/UNIGIS_MSc/MASTERTHESIS/DATA/GIS/hti_boundaries_international_cnigs_polygon/EZG_wgs84.shp") 
EZG_buff=gBuffer(EZG,width=0.2) crsmerc=CRS("+proj=longlat +datum=WGS84 +ellps=WGS84 
+towgs84=0,0,0") #EZG = spTransform(EZG, crsmerc) #EZG_buff = spTransform(EZG_buff, crsmerc)  
plot(UG,border="black") plot(EZG,add=T,border="blue") plot(EZG_buff,add=T,border="lightblue") 
plot(AOI,add=T, border="red") plot(AOI_buff,add=T,border="orange")  ############### # open netcdf 
############### #Data are here 
#https://opendap.4tu.nl/thredds/catalog/data2/fig/12764429/4/catalog.html  ncpath <- 
"c:/UNIGIS_MSc/MASTERTHESIS/DATA/Regen/GPEX/data_old/" ncname <- "GPEX_extremes"  ncfname <- 
paste(ncpath, ncname, ".nc", sep="") ncin <- nc_open(ncfname) print(ncin)  ncpath_val <- 
"c:/UNIGIS_MSc/MASTERTHESIS/DATA/Regen/GPEX/data_old/" ncname_val <- "GPEX_parameters"  ncfname_val 
<- paste(ncpath_val, ncname_val, ".nc", sep="") ncin_val <- nc_open(ncfname_val) print(ncin_val)  # 
extract lat and lon lon <- ncvar_get(ncin,"lon") nlon <- dim(lon) #head(lon) lat <- 
ncvar_get(ncin,"lat") nlat <- dim(lat) #head(lat)  lon_val <- ncvar_get(ncin_val,"lon") nlon_val <- 
dim(lon_val) #head(lon) lat_val <- ncvar_get(ncin_val,"lat") nlat_val <- dim(lat_val) #head(lat)  
################################################################# # Extract GEV estimates (15 
points, 6 durations, 8 return periods) 
################################################################# GEV_estimates=array(dim=c(15,6,8)) 
dname="gev" tmp_array <- ncvar_get(ncin,dname)  for (i in 1:8){ # return periods   print(i)   for 
(ii in 1:6){ # durations     tmp_slice <- tmp_array(i,ii,,)     r <- raster(t(tmp_slice), 
xmn=min(lon), xmx=max(lon), ymn=min(lat), ymx=max(lat),                  crs=CRS("+proj=longlat 
+ellps=WGS84 +datum=WGS84 +no_defs+ towgs84=0,0,0"))     r2=raster::crop(r,UG)     
GEV_estimates(,ii,i)=values(r2)   } }  #GEV_estimates=GEV_estimates(,,c(1,2,3,4,6,7)) # limit to 
2,5,10,20,50,100,200 yrs  
############################################################################ # Here I write out the 
GEV quantiles from the paper as CSV for each grid cell  
############################################################################ for (i in 1:15)
{   data_out=as.data.frame(round(sweep(GEV_estimates(i,,),1,c(3, 6, 12, 24, 48, 72),"/"),2))   
rownames(data_out)=paste(c(3,6,12,24,48,72),"h",sep="")   
colnames(data_out)=paste(c(2,5,10,20,39,50,100,200),"yrs",sep="")   
write.csv(data_out,paste("c:/UNIGIS_MSc/MASTERTHESIS/DATA/Regen/GPEX/n15_GEV_grid 
cell_",toString(i),"_quantiles_intensities_mmh",".csv",sep=""),quote = F) }  
################################################################# # Extract MEV estimates (15 
points, 6 durations, 8 return periods) 
################################################################# MEV_estimates=array(dim=c(15,6,8)) 
dname="mev" tmp_array <- ncvar_get(ncin,dname)  for (i in 1:8){ # return periods   print(i)   for 
(ii in 1:6){ # durations     tmp_slice <- tmp_array(i,ii,,)     r <- raster(t(tmp_slice), 
xmn=min(lon), xmx=max(lon), ymn=min(lat), ymx=max(lat),                  crs=CRS("+proj=longlat 
+ellps=WGS84 +datum=WGS84 +no_defs+ towgs84=0,0,0"))     r2=raster::crop(r,UG)     
MEV_estimates(,ii,i)=values(r2)   } }   
############################################################################ # Here I write out the 
MEV quantiles from the paper as CSV for each grid cell  
############################################################################ for (i in 1:15)
{   data_out=as.data.frame(round(sweep(MEV_estimates(i,,),1,c(3, 6, 12, 24, 48, 72),"/"),2))   
rownames(data_out)=paste(c(3,6,12,24,48,72),"h",sep="")   
colnames(data_out)=paste(c(2,5,10,20,39,50,100,200),"yrs",sep="")   
write.csv(data_out,paste("c:/UNIGIS_MSc/MASTERTHESIS/DATA/Regen/GPEX/n15_MEV_grid 
cell_",toString(i),"_quantiles_intensities_mmh",".csv",sep=""),quote = F) }   
############################################################################################ # 
Extract Annual maxima (38 years,15 points,8 durations) and calculate GEV quantile manually 
############################################################################################ 
amax=array(dim=c(38,15,8)) dname="annual_maximum" tmp_array <- ncvar_get(ncin_val,dname)  for (i in 
1:38){ # years   print(i)   for (ii in 1:8){ # durations     tmp_slice <- tmp_array(i,ii,,)     r <- 
raster(t(tmp_slice), xmn=min(lon_val), xmx=max(lon_val), ymn=min(lat_val), ymx=max(lat_val),         
crs=CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs+ towgs84=0,0,0"))     
r2=raster::crop(r,UG)     amax(i,,ii)=values(r2)   } }  # Here we fit the GEV ourselves to compare 
the quantiles with the published values (code above) library(extRemes) 
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GEV_fit_estimates=array(dim=c(15,8,6)) for (i in 1:15){   print(i)   for (ii in 1:8){ # durations    
gev_fit=extRemes::fevd(amax(!is.na(amax(,i,ii)),i,ii),#/dur_hour(ii),
                           type="GEV",method="Lmoments")
                           #type="Gumbel",method="MLE")
    gev_RP <- return.level(gev_fit, conf = 0.05, return.period= c(2,5,10,20,39,100))
    GEV_fit_estimates(i,ii,)=gev_RP
  }
}

####################################################
# Compare IDF from GEV (GPEX) to IDF from GEV (fitted in R from observed values)
####################################################
# Check if estimates and fitted GEVs are similar 
dim(GEV_estimates)
dim(GEV_fit_estimates)

plot(GEV_estimates,GEV_fit_estimates,xlab="estimates from GPEX",ylab="estimates from fitted GEV to 
amax")
abline(0,1)

#############################################
# Other plot as points and lines and as PDF #
#############################################
# set duration and return period values
dur_hour=c(3, 6, 12, 24, 48, 72, 120,240)
rp=c(2,5,10,20,39,100)
cols=c("blue","red","green","magenta","lightblue","yellow")

# create a PDF file to save the plots - page 1
pdf("c:/UNIGIS_MSc/MASTERTHESIS/DATA/Regen/GPEX/GEV_stats_01.pdf", width=8.27,height=11.69) # size 
of DIN-A4
par(mfrow=c(3,2))

# loop through each grid cell - cells 1-6 for page 1
for (st in 1:6){
  i=6
  plot(c(3, 6, 12, 24),GEV_fit_estimates(st,1:4,i)/dur_hour(1:4),ylim=c(0,50),col=cols(6),
       xlab="Duration (h)",ylab="Intensity (mm/h)",main=paste("Grid cell ",toString(st)," of 
15",sep=""))
  lines(c(3, 6, 12, 24),GEV_estimates(st,1:4,i)/dur_hour(1:4),col=cols(6))
  
  # create a legend for the plot
  legend_text=c("2yrs","5yrs","10yrs","20yrs","50yrs","100yrs","GEV value fitted","GEV value GPEX")
  pos=legend(15,50,legend_text,           #15,68,legend_text,
             bty = "n",lty=c(rep(NA,6),1,1),cex=rep(1,8),pt.bg = 
"white",pch=c(rep(1,6),1,NA),lwd=c(rep(NA,6),NA,1),
             bg="white",ncol=1,x.intersp=0.1,y.intersp=1,col=c(cols,1,1))
  
  # loop through each return period
  for (i in 5:1){
    points(c(3, 6, 12, 24),GEV_fit_estimates(st,1:4,i)/dur_hour(1:4),
           xlab="Duration (h)",ylab="Intensity (mm/h)",col=cols(i))
    lines(c(3, 6, 12, 24),GEV_estimates(st,1:4,i)/dur_hour(1:4),col=cols(i))
  }
}
dev.off() #saves the pdf

# create a PDF file to save the plots - page 2
pdf("c:/UNIGIS_MSc/MASTERTHESIS/DATA/Regen/GPEX/GEV_stats_02.pdf", width=8.27,height=11.69) # size 
of DIN-A4
par(mfrow=c(3,2))

# loop
 through each grid cell - cells 7-12 for page 2
for (st in 7:12){
  i=6
  plot(c(3, 6, 12, 24),GEV_fit_estimates(st,1:4,i)/dur_hour(1:4),ylim=c(0,50),col=cols(6),
       xlab="Duration (h)",ylab="Intensity (mm/h)",main=paste("Grid cell ",toString(st)," of 
15",sep=""))
  lines(c(3, 6, 12, 24),GEV_estimates(st,1:4,i)/dur_hour(1:4),col=cols(6))
  
  # create a legend for the plot
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  legend_text=c("2yrs","5yrs","10yrs","20yrs","50yrs","100yrs","GEV value fitted","GEV value GPEX")
  pos=legend(15,50,legend_text,           #15,68,legend_text,
             bty = "n",lty=c(rep(NA,6),1,1),cex=rep(1,8),pt.bg = 
"white",pch=c(rep(1,6),1,NA),lwd=c(rep(NA,6),NA,1),
             bg="white",ncol=1,x.intersp=0.1,y.intersp=1,col=c(cols,1,1))
  
  # loop through each return period
  for (i in 5:1){
    points(c(3, 6, 12, 24),GEV_fit_estimates(st,1:4,i)/dur_hour(1:4),
           xlab="Duration (h)",ylab="Intensity (mm/h)",col=cols(i))
    lines(c(3, 6, 12, 24),GEV_estimates(st,1:4,i)/dur_hour(1:4),col=cols(i))
  }
}
dev.off() #saves the pdf

# create a PDF file to save the plots - page 3
pdf("c:/UNIGIS_MSc/MASTERTHESIS/DATA/Regen/GPEX/GEV_stats_03.pdf", width=8.27,height=11.69) # size 
of DIN-A4
par(mfrow=c(3,2))

# loop through each grid cell - cells 13-15 for page 3
for (st in 13:15){
  i=6
  plot(c(3, 6, 12, 24),GEV_fit_estimates(st,1:4,i)/dur_hour(1:4),ylim=c(0,50),col=cols(6),
       xlab="Duration (h)",ylab="Intensity (mm/h)",main=paste("Grid cell ",toString(st)," of 
15",sep=""))
  lines(c(3, 6, 12, 24),GEV_estimates(st,1:4,i)/dur_hour(1:4),col=cols(6))
  
  # create a legend for the plot
  legend_text=c("2yrs","5yrs","10yrs","20yrs","50yrs","100yrs","GEV value fitted","GEV value GPEX")
  pos=legend(15,50,legend_text,           #15,68,legend_text,
             bty = "n",lty=c(rep(NA,6),1,1),cex=rep(1,8),pt.bg = 
"white",pch=c(rep(1,6),1,NA),lwd=c(rep(NA,6),NA,1),
             bg="white",ncol=1,x.intersp=0.1,y.intersp=1,col=c(cols,1,1))
  
  # loop through each return period
  for (i in 5:1){
    points(c(3, 6, 12, 24),GEV_fit_estimates(st,1:4,i)/dur_hour(1:4),
           xlab="Duration (h)",ylab="Intensity (mm/h)",col=cols(i))
    lines(c(3, 6, 12, 24),GEV_estimates(st,1:4,i)/dur_hour(1:4),col=cols(i))
  }
}
dev.off() #saves the pdf

####################################################################################################
#
# Compare IDF from GEV (GPEX) to IDF from MEV (GPEX) and IDF from GEV (fitted in R from obs values) 
#
####################################################################################################
#
# Check if GEV estimates and MEV estimates are similar / Check MEV estimates to fitted GEVs
dim(GEV_estimates)
dim(MEV_estimates)
dim(GEV_fit_estimates)

plot(GEV_estimates,MEV_estimates,xlab="GEV estimates GPEX",ylab="MEV estimates GPEX")
abline(0,1)

plot(MEV_estimates,GEV_fit_estimates,xlab="MEV estimates GPEX",ylab="estimates from fitted GEV to 
amax")
abline(0,1)

###############################################
# IDF curves MEV to GEV and MEV to fitted GEV #
###############################################
# set duration and return period values
dur_hour=c(3, 6, 12, 24, 48, 72, 120,240)
rp=c(2,5,10,20,39,100)
cols=c("blue","red","green","magenta","lightblue","yellow")

# create a PDF file to save the plots - page 4
pdf("c:/UNIGIS_MSc/MASTERTHESIS/DATA/Regen/GPEX/GEV_stats_04.pdf", width=8.27,height=11.69) # size 
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of DIN-A4
par(mfrow=c(3,2))

# loop through each grid cell - cells 1-6 for page 4
for (st in 1:6){
  i=6
  plot(c(3, 6, 12, 24),GEV_estimates(st,1:4,i)/dur_hour(1:4),ylim=c(0,50),col=cols(6),
       xlab="Duration (h)",ylab="Intensity (mm/h)",main=paste("Grid cell ",toString(st)," of 
15",sep=""))
  lines(c(3, 6, 12, 24),MEV_estimates(st,1:4,i)/dur_hour(1:4),col=cols(6))
  
  # create a legend for the plot
  legend_text=c("2yrs","5yrs","10yrs","20yrs","50yrs","100yrs","GEV value GPEX","MEV value GPEX")
  pos=legend(15,50,legend_text,           #15,68,legend_text,
             bty = "n",lty=c(rep(NA,6),1,1),cex=rep(1,8),pt.bg = 
"white",pch=c(rep(1,6),1,NA),lwd=c(rep(NA,6),NA,1),
             bg="white",ncol=1,x.intersp=0.1,y.intersp=1,col=c(cols,1,1))
  
  # loop through each return period
  for (i in 5:1){
    points(c(3, 6, 12, 24),GEV_estimates(st,1:4,i)/dur_hour(1:4),
           xlab="Duration (h)",ylab="Intensity (mm/h)",col=cols(i))
    lines(c(3, 6, 12, 24),MEV_estimates(st,1:4,i)/dur_hour(1:4),col=cols(i))
  }
}
dev.off() #saves the pdf

# create a PDF file to save the plots - page 5
pdf("c:/UNIGIS_MSc/MASTERTHESIS/DATA/Regen/GPEX/GEV_stats_05.pdf", width=8.27,height=11.69) # size 
of DIN-A4
par(mfrow=c(3,2))

# loop through each grid cell - cells 7-12 for page 5
for (st in 7:12){
  i=6
  plot(c(3, 6, 12, 24),GEV_estimates(st,1:4,i)/dur_hour(1:4),ylim=c(0,50),col=cols(6),
       xlab="Duration (h)",ylab="Intensity (mm/h)",main=paste("Grid cell ",toString(st)," of 
15",sep=""))
  lines(c(3, 6, 12, 24),MEV_estimates(st,1:4,i)/dur_hour(1:4),col=cols(6))
  
  # create a legend for the plot
  legend_text=c("2yrs","5yrs","10yrs","20yrs","50yrs","100yrs","GEV value GPEX","MEV value GPEX")
  pos=legend(15,50,legend_text,           #15,68,legend_text,
             bty = "n",lty=c(rep(NA,6),1,1),cex=rep(1,8),pt.bg = 
"white",pch=c(rep(1,6),1,NA),lwd=c(rep(NA,6),NA,1),
             bg="white",ncol=1,x.intersp=0.1,y.intersp=1,col=c(cols,1,1))
  
  # loop through each return period
  for (i in 5:1){
    points(c(3, 6, 12, 24),GEV_estimates(st,1:4,i)/dur_hour(1:4),
           xlab="Duration (h)",ylab="Intensity (mm/h)",col=cols(i))
    lines(c(3, 6, 12, 24),MEV_estimates(st,1:4,i)/dur_hour(1:4),col=cols(i))
  }
}
dev.off() #saves the pdf

# create a PDF file to save the plots - page 6
pdf("c:/UNIGIS_MSc/MASTERTHESIS/DATA/Regen/GPEX/GEV_stats_06.pdf", width=8.27,height=11.69) # size 
of DIN-A4
par(mfrow=c(3,2))

# loop through each grid cell - cells 13-15 for page 6
for (st in 13:15){
  i=6
  plot(c(3, 6, 12, 24),GEV_estimates(st,1:4,i)/dur_hour(1:4),ylim=c(0,50),col=cols(6),
       xlab="Duration (h)",ylab="Intensity (mm/h)",main=paste("Grid cell ",toString(st)," of 
15",sep=""))
  lines(c(3, 6, 12, 24),MEV_estimates(st,1:4,i)/dur_hour(1:4),col=cols(6))
  
  # create a legend for the plot
  legend_text=c("2yrs","5yrs","10yrs","20yrs","50yrs","100yrs","GEV value GPEX","MEV value GPEX")
  pos=legend(15,50,legend_text,           #15,68,legend_text,
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             bty = "n",lty=c(rep(NA,6),1,1),cex=rep(1,8),pt.bg = 
"white",pch=c(rep(1,6),1,NA),lwd=c(rep(NA,6),NA,1),
             bg="white",ncol=1,x.intersp=0.1,y.intersp=1,col=c(cols,1,1))
  
  # loop through each return period
  for (i in 5:1){
    points(c(3, 6, 12, 24),GEV_estimates(st,1:4,i)/dur_hour(1:4),
           xlab="Duration (h)",ylab="Intensity (mm/h)",col=cols(i))
    lines(c(3, 6, 12, 24),MEV_estimates(st,1:4,i)/dur_hour(1:4),col=cols(i))
  }
}
dev.off() #saves the pdf

####################################################################################################

# create a PDF file to save the plots - page 7
pdf("c:/UNIGIS_MSc/MASTERTHESIS/DATA/Regen/GPEX/GEV_stats_07.pdf", width=8.27,height=11.69) # size 
of DIN-A4
par(mfrow=c(3,2))

# loop through each grid cell - cells 1-6 for page 7
for (st in 1:6){
  i=6
  plot(c(3, 6, 12, 24),GEV_fit_estimates(st,1:4,i)/dur_hour(1:4),ylim=c(0,50),col=cols(6),
       xlab="Duration (h)",ylab="Intensity (mm/h)",main=paste("Grid cell ",toString(st)," of 
15",sep=""))
  lines(c(3, 6, 12, 24),MEV_estimates(st,1:4,i)/dur_hour(1:4),col=cols(6))
  
  # create a legend for the plot
  legend_text=c("2yrs","5yrs","10yrs","20yrs","50yrs","100yrs","GEV value fitted","MEV value GPEX")
  pos=legend(15,50,legend_text,           #15,68,legend_text,
             bty = "n",lty=c(rep(NA,6),1,1),cex=rep(1,8),pt.bg = 
"white",pch=c(rep(1,6),1,NA),lwd=c(rep(NA,6),NA,1),
             bg="white",ncol=1,x.intersp=0.1,y.intersp=1,col=c(cols,1,1))
  
  # loop through each return period
  for (i in 5:1){
    points(c(3, 6, 12, 24),GEV_fit_estimates(st,1:4,i)/dur_hour(1:4),
           xlab="Duration (h)",ylab="Intensity (mm/h)",col=cols(i))
    lines(c(3, 6, 12, 24),MEV_estimates(st,1:4,i)/dur_hour(1:4),col=cols(i))
  }
}
dev.off() #saves the pdf

# create a PDF file to save the plots - page 8
pdf("c:/UNIGIS_MSc/MASTERTHESIS/DATA/Regen/GPEX/GEV_stats_08.pdf", width=8.27,height=11.69) # size 
of DIN-A4
par(mfrow=c(3,2))

# loop through each grid cell - cells 7-12 for page 8
for (st in 7:12){
  i=6
  plot(c(3, 6, 12, 24),GEV_fit_estimates(st,1:4,i)/dur_hour(1:4),ylim=c(0,50),col=cols(6),
       xlab="Duration (h)",ylab="Intensity (mm/h)",main=paste("Grid cell ",toString(st)," of 
15",sep=""))
  lines(c(3, 6, 12, 24),MEV_estimates(st,1:4,i)/dur_hour(1:4),col=cols(6))
  
  # create a legend for the plot
  legend_text=c("2yrs","5yrs","10yrs","20yrs","50yrs","100yrs","GEV value fitted","MEV value GPEX")
  pos=legend(15,50,legend_text,           #15,68,legend_text,
             bty = "n",lty=c(rep(NA,6),1,1),cex=rep(1,8),pt.bg = 
"white",pch=c(rep(1,6),1,NA),lwd=c(rep(NA,6),NA,1),
             bg="white",ncol=1,x.intersp=0.1,y.intersp=1,col=c(cols,1,1))
  
  # loop through each return period
  for (i in 5:1){
    points(c(3, 6, 12, 24),GEV_fit_estimates(st,1:4,i)/dur_hour(1:4),
           xlab="Duration (h)",ylab="Intensity (mm/h)",col=cols(i))
    lines(c(3, 6, 12, 24),MEV_estimates(st,1:4,i)/dur_hour(1:4),col=cols(i))
  }
}
dev.off() #saves the pdf
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# create a PDF file to save the plots - page 9
pdf("c:/UNIGIS_MSc/MASTERTHESIS/DATA/Regen/GPEX/GEV_stats_09.pdf", width=8.27,height=11.69) # size 
of DIN-A4
par(mfrow=c(3,2))

# loop through each grid cell - cells 13-15 for page 9
for (st in 13:15){
  i=6
  plot(c(3, 6, 12, 24),GEV_fit_estimates(st,1:4,i)/dur_hour(1:4),ylim=c(0,50),col=cols(6),
       xlab="Duration (h)",ylab="Intensity (mm/h)",main=paste("Grid cell ",toString(st)," of 
15",sep=""))
  lines(c(3, 6, 12, 24),MEV_estimates(st,1:4,i)/dur_hour(1:4),col=cols(6))

 
 # create a legend for the plot
 legend_text=c("2yrs","5yrs","10yrs","20yrs","50yrs","100yrs","GEV value fitted","MEV value GPEX")
 pos=legend(15,50,legend_text,           #15,68,legend_text,
 bty = "n",lty=c(rep(NA,6),1,1),cex=rep(1,8),pt.bg = 
"white",pch=c(rep(1,6),1,NA),lwd=c(rep(NA,6),NA,1),
 bg="white",ncol=1,x.intersp=0.1,y.intersp=1,col=c(cols,1,1))
  # loop through each return period
 for (i in 5:1){
 points(c(3, 6, 12, 24),GEV_fit_estimates(st,1:4,i)/dur_hour(1:4),
 xlab="Duration (h)",ylab="Intensity (mm/h)",col=cols(i))
 lines(c(3, 6, 12, 24),MEV_estimates(st,1:4,i)/dur_hour(1:4),col=cols(i))
 }
}
dev.off() #saves the pdf
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