

Master Thesis
submitted within the UNIGIS MSc programme

Interfaculty Department of Geoinformatics - Z_GIS

University of Salzburg

“Assessing Aviation Safety comparing Fire

related TFR NOTAMS in the U.S. to

Satellite based Fire Patterns from

OroraTech Wildfire Service”
by

Dipl.-Met.(FH) Christopher Heers
106658

A thesis submitted in partial fulfilment of the requirements of

the degree of

Master of Science – MSc

Advisor:

Dr. Lorenz Wendt

Lachendorf, September 15, 2022

I

Acknowledgment

Thanks to Dr. Lorenz Wendt for motivating me and accompanying me through this topic. It has been

an exciting journey to combine my origin from aviation with content of the UNIGIS MSc program.

Data was provided by the OroraTech GmbH. You have been curious, responsive, and supportive.

Working with you has been awesome. A special thanks goes to Max Helleis for being available all the

time and a Jupyter Notebooks crash course.

Sincere thanks are given to Felix Schmidt for being the one colleague that has been able of keeping

track of my code.

Thanks to the UNIGIS team for preparing me for this.

To Nicole Klotz: Thank you for recommending UNIGIS.

To my family: Thank you for continuous inspiration and support and for bearing my absence.

Christopher Heers

Lachendorf, September 15, 2022

II

Science Pledge

I hereby declare that the thesis is entirely the result of my work. I have cited all sources I have used in

my thesis and indicated their origin. This thesis was not previously presented to another examination

board and has not been published.

Christopher Heers

Lachendorf, September 15, 2022

III

Contents
Figures ... V

Tables ... VIII

1. List of Abbreviations ... 1

2. Abstract ... 2

3. Introduction .. 4

3.1. OroraTech Wildfire Service ... 6

3.2. Notices to Airmissions and Temporary Flight Restrictions ... 10

3.3. Aerial Firefighting .. 10

3.4. Study Area: 10 Flight Information Regions in the western U.S. ... 12

3.5. Contribution, Research Questions and Overview ... 12

4. Data and Methods .. 14

4.1. Data ... 14

4.1.1. Fire Clusters from OroraTech as Polygons .. 14

4.1.2. NOTAM Texts describing TFRs .. 16

4.1.3. Locations of Firefighter Planes as Point Data ... 20

4.1.4. The Study Area as FIRs derived from Map Image Layer ... 21

4.2. Methods .. 23

4.2.1. From Text to GeoJSON: Turning TFRs to a spatial Data Format 23

4.2.2. Defining Appropriateness of a TFR ... 28

4.2.3. Exploring the Datasets .. 29

4.2.4. The Time between Fire Detection and TFR Issue .. 37

4.2.5. Coverage Quality Assessment ... 40

4.2.6. Safety of actual Fire Fighting Aircraft .. 42

4.2.7. Completeness of TFR-Fire-Correspondence ... 43

5. Results and Discussion .. 44

5.1. Results and Discussion of the Time Gap between Fire Detection and TFR Issue 44

5.2. Results and Discussion of Coverage Quality Assessment ... 46

5.3. Results and Discussion of Safety of actual Fire Fighting Aircraft .. 48

5.4. Results and Discussion of Completeness of TFR-Fire-Correspondence 50

6. Conclusion ... 51

6.1. Concerning the Time Gap between Fire Detection and TFR Issue Time 51

6.2. Concerning Coverage Quality.. 51

6.3. Concerning safety of actual Fire Fighting Aircraft... 52

6.4. Concerning Completeness of TFR-Fire-Correspondence .. 53

6.5. Prospect of future Work and Data Application... 53

IV

7. References .. 55

8. Appendix ... 59

8.1. GitHub ... 59

8.2. Scripts and Code ... 59

8.2.1. Relating 4.1.4, The Study Area as FIRs .. 60

8.2.2. Relating 4.2.1, From Text to GeoJSON .. 61

8.2.3. Relating 4.2.3, Exploring the Datasets .. 75

8.2.4. Relating 4.2.4, The Time Gap between Fire Detection and TFR Issue 80

8.2.5. Relating 4.2.5, Coverage Quality ... 90

8.2.6. Relating 4.2.6, Safety of actual Fire Fighting Aircraft.. 105

8.2.7. Relating 4.2.7 Completeness of TFR-Fire-Correspondence .. 109

8.3. Tables containing Time Gap between Fire Detection and TFR Issue 113

8.4. Coverage Quality Log .. 118

8.5. No-TFR-Data-Documentation ... 122

8.6. VBA Log ... 129

V

Figures

Figure 1 The total wildfire extent increases in the U.S. .. 4

Figure 2 Radar chart comparing fire detection systems in six categories .. 6

Figure 3 A fire cluster in the northwest of Spokane shown in the Wildfire Service web app 9

Figure 4 Movement patterns during aerial firefighting from

https://graphics.reuters.com/CALIFORNIA-WILDFIRE/AIRCRAFT/bdwpkzmyyvm/ 12

Figure 5 A fire cluster polygon in ArcGIS Pro .. 15

Figure 6 On FAA NOTAM Search webpage, open the dropdown menu to access Archive Search 18

Figure 7 Archive Search allows looking for NOTAMs active on a single date for a single location only,

here at the beginning of the thesis´ time frame on August 1st for Los Angeles FIR (ZLA) 18

Figure 8 Archive Search has filter capabilities to choose TFR NOTAMs only .. 19

Figure 9 Filtered results can be downloaded as XLS files clicking the button in the top right corner of

the Archive Search page ... 19

Figure 10 The filtered results are listed with those being crossed out where the end date has been

reached ... 19

Figure 11 Having clicked a NOTAM in the list (Figure 10), the History tab allows for accessing the full

text also of a cancelled NOTAM .. 20

Figure 12 Screenshot (to show formatting issues) of an XLS file containing TFRs, downloaded from

FAA NOTAM Search / Archive Search ... 20

Figure 13 Obstacles blocking signals, making aircraft at low level “disappear” form ADS-B datasets. 21

Figure 14 10 FIRs, blue: 2015 ICAO free dataset, dark red: Polygon Feature Class, drawn based on the

ICAO dataset. .. 22

Figure 15 FIRs displayed in OroraTech´s Wildfire Service ... 22

Figure 16 Power Queries does not recognize a column containing the NOTAM text 23

Figure 17 Screenshot from the log file created to keep an overview over files processed by the VBA

script. Here, a dataset for ZHU, 2021-08-01 is either missing or no TFR was active that day (the latter

was the case, see 8.5) ... 23

Figure 18 Power Queries is launched via Data → Get Data→ From File→ From Folder 24

Figure 19 To concatenate all TFR data, Combine & Transform Data is selected running Power

Queries. ... 24

Figure 20 From the accessed sample file, the All NOTAMs sheet is selected. The preview on the right

is composed according to the sample´s content. In this case of FIR KZLC, the column names are not

recognized properly. ... 25

Figure 21 PowerQueries recognizing the original column names correctly ... 25

Figure 22 With Power Queries started, the Advanced Editor can be launched 25

Figure 23 Click Close & Load to add a sheet filled with the concatenated data 26

Figure 24 Resulting Excel sheet with unique TFR occurrence over the observed time frame 26

VI

Figure 25 The sheet with all TFRs is still linked to its source and can either be refreshed or unlinked

to maintain data integrity ... 26

Figure 26 TFR full text as an example for a “national defense airspace” TFR not completed or

contemplated by this research ... 28

Figure 27 TFR full text as an example for a” space OPS area” TFR not completed or contemplated by

this research .. 28

Figure 28 Airspace classes, numbers in feet; graphic from FAA

https://www.faa.gov/uas/recreational_fliers/where_can_i_fly/airspace_101/media/airspace_classes

_large.jpg .. 29

Figure 29 Distribution of fire types with regard to Table 3: [0] is unclassified, [1] is fire, [5] is forest,

these should reoccur in later results. [4] is false detection and all remaining types are artificial and

more or less static heat sources that are not expected to cause a TFR. .. 30

Figure 30 Fire clusters are overlaid on the TFRs, which may be issued across FIR borders. Possibly

repeated, but in any case overlapping and close-by TFRs and fire clusters can be found. A few TFRs

(here from KZSE) appear to have been issued without a fire cluster. .. 31

Figure 31 Derived for all circular TFRs: Histogram showing the distribution of Radius. 220 of 247

circular TFRs have a radius of 5 nautical miles and more ... 32

Figure 32 The entire dataset of aircraft state vectors within the study area visualized in ArcGIS Pro

below TFR polygons. Firefighting aircraft concentrate in the western U.S. as well as the TFRs.

Represented like this, there is not yet a structure recognizable. ... 33

Figure 33 A Spatial Join of Fire Clusters polygons on aircraft_states points adds fire cluster attributes

to all points met (left). When Keep All Target Features is checked, a new Select by Attributes must be

made to keep only points where a polygon matched (right). .. 34

Figure 34 Convert Time Field produces a Date field that can be compared. 34

Figure 35 Selecting points by attribute in between oldest and newest acquisition time provides a

point set for fire fighting aircraft being over presumably active fires .. 35

Figure 36 Features To JSON setting to export the aircraft point data over presumably ongoing fires 35

Figure 37 The dark red trajectory (built from state vectors found over active fires only and not yet

split) shows a Boeing 737 being used across four different FIR and several fire clusters and TFRs.

With ICAO identifier a0956b and callsign N137CG, this is actually one of the planes depicted in Aerial

firefighting - Wikipedia (picture by Bidgee/ Robert Myers, published under CC Creative Commons —

Attribution-ShareAlike 3.0 Unported — CC BY-SA 3.0) .. 36

Figure 38 Firefighter plane “TNK52” is represented by state vector point data and trajectory,

originally found via Spatial Join with the fire cluster as a first guess. The solid arrow indicates flight

direction. Most possibly on its way to the (by then) small fire (yellow polygon, gathered via API), the

plane´s ADS-B signal is blocked by a ridge since 01:47:15 UTC when it has already entered the green

TFR, that is not yet effective. (The separate flight track with the four vertices does not belong to

TNK52 but to a8401a. TNK52 is a Convair CV580, converted from a CV340, an aircraft designed in the

1950s. a8401a is a Beechcraft B200, a small but younger plane with a ceiling more than twice the

one of the CV580, so no wonder that the B200 can appear via ADS-B while the CV does not.) 37

VII

Figure 39 A graph (not a model) representing the steps within Get_Detection-Issue-Time_Gap.ipynb

to calculate timespans between a fire cluster´s detection and acquisition time and TFR issue time.

After a first guess, response fire clusters from API are used. ... 39

Figure 40 A graph (not a model) representing the steps within Get_TFR-

exceeding_Fires_from_API.ipynb to collect TFRs that can be considered inappropriate from an aerial

firefighting perspective. A follow up Get_Events_from_Fires_from_API.ipynb then deliver lists of

TFRs and fire events .. 41

Figure 41 Spatial Join settings to connect TFRs to aircraft trajectories .. 42

Figure 42 Features To JSON setting to export trajectories dataset that has the TFRs joined 42

Figure 43 The fire cluster with the id 20213789 would be omitted in the results (Table 14) if the API

request from the used script had only looked backwards from the issue date of the TFR. Instead, the

large cluster to the north (id 21250885) from September would become tied to NOTAM 1/7243

because it intersects it. Going forward a few hours as well now leads to both ids being listed in Table

14. ... 45

Figure 44 Screenshot of results for ZFW in ArcGIS Pro: All three TFRs from the Attributes pane were

issued as the green-filled circle, which does not contain the entire orange fire cluster being active

during these TFRs´ effective time ... 46

Figure 45 Multiple TFRs (green) issued over the three months in close vicinity with numerous, still

unbuffered fire clusters (orange) that already overlap the TFRs can be found in Seattle FIR (KZSE).

These clusters do cause a bloated first guess geodataframe. .. 48

Figure 46 Movements of fire fighting aircraft inside TFRs (69%), out of effective time (18%) and

totally uncovered (13%) .. 48

Figure 47 The map shows a part of California within Oakland FIR (KZOA). Trajectories distinct from

TFRs but related to active fire clusters (within their detection time range) are shown. The movement

patterns show that the aerial firefighters were not just passing by the fires by chance. 49

Figure 48 With the same scope as in Figure 45, resulting buffered fire clusters with detection time

within formerly overlapped (or contained) TFR´s active time become numerous. For this screenshot

the buffer size is exaggerated to ca. 3.5 miles to demonstrate the effect of possible multiple

intersects leading to the large case values from Text 3 at 8.4 and aircraft buffered fire clusters as

aircraft acting areas covering (almost) entire TFRs they do not “belong” to. 52

VIII

Tables

Table 1 List of satellites incorporated into Wildfire Service ... 7

Table 2 List of Wildfire Service active fire detection algorithms and products 8

Table 3 The cluster types and the according value of the “types” attribute within OroraTech´s fire

cluster data ... 16

Table 4 Results of manual revision of cancelled TFRs... 27

Table 5 Statistics of Radius from all circular TFRs ... 32

Table 6 Results of coverage quality assessment ... 47

Table 7 TFRs that do not have a fire cluster associated ... 50

Table 8 Calculated timespans in minutes since fire detection and acquisition until TFR issue date for

FIR Denver (KZDV). 1 fire cluster could not get tied to a TFR (9 clusters are with 27 TFRs being

considered). .. 113

Table 9 Calculated timespans in minutes since fire detection and acquisition until TFR issue date for

FIR Ft Worth (KZFW). 0 fire clusters could not get tied to a TFR (1 cluster is with 3 TFRs being

considered). .. 113

Table 10 Calculated timespans in minutes since fire detection and acquisition until TFR issue date for

FIR Los Angeles (KZLA). 6 fire clusters could not get tied to a “first” TFR (15 clusters are with 39 TFRs

being considered). .. 113

Table 11 Calculated timespans in minutes since fire detection and acquisition until TFR issue date for

FIR Salt Lake (KZLC). 55 fire clusters could not get tied to a “first” TFR (51 clusters are with 94 TFRs

being considered). .. 113

Table 12 Calculated timespans in minutes since fire detection and acquisition until TFR issue date for

FIR Minneapolis (KZMP). 0 fire clusters could not get tied to a “first” TFR (4 clusters are with 10 TFRs

being considered). .. 114

Table 13 Calculated timespans in minutes since fire detection and acquisition until TFR issue date for

FIR Oakland (KZOA). 29 fire clusters could not get tied to a “first” TFR (50 clusters are with 94 TFRs

being considered). .. 115

Table 14 Calculated timespans in minutes since fire detection and acquisition until TFR issue date for

FIR Seattle (KZSE). 103 fire clusters could not get tied to a “first” TFR (111 clusters are with 224 TFRs

being considered). It occurs 9 (10 if a 9 minute value is considered as well) times that TFR is issued

before knowing about it from satellite data can be possible. Like for 1/3308, this may be due to fires

spotting downwind that produce new fire cluster ids .. 116

1

1. List of Abbreviations
ARTCC Air Route Traffic Control Center, operated by

→FAA; identified by → ICAO location indicator;
location to issue a →TFR via →NOTAM

EPA Environmental Protection Agency in the United
States

FAA Federal Aviation Administration, regulates U.S.
aviation, responsible for U.S. →FIRs

FIR Flight Information Region, a division of airspace,
identified by an →ICAO location indicator.
Responsibility is delegated by →ICAO to other
authorities like →FAA

ICAO International Civil Aviation Organization, a
United Nations organization, defines and
provides standards for civil aviation, from
→NOTAM format (not yet applied in the U.S.) to
four letter location indicators, e.g. for →FIRs,
and planes / transponders (ICAO 24-bit address)

NIFC National Interagency Fire Center, supports
emergency response with a focus on wildfires;
consists of eight agencies, home of National
Wildfire Coordinating Group →NWCG

NM Nautical mile of 1852 meters, used in →TFR
texts; not to be confused with the statute (or
road) mile of 1609,34 meters, used for flight
visibility and map scale bars in this research

NOTAM Notice To Air Missions (sometimes Notice To
Airmen), describes any conditions (other than
weather) that can be hazardous to aviation. Is
provided by aviation authorities.

NWCG National Wildfire Coordinating Group,
establishes standards for coordinated wildfire
operation procedures, has 11 member agencies

TFR Temporary Flight Restriction, a means with
regulatory character to temporary close an
airspace. Provided as →NOTAM text containing
either a coordinate and a radius or an array of
coordinates defining the closed area and
explanatory text giving the reason.

2

2. Abstract
As a result of climate change, wildfires have become more dangerous, larger and more expensive than

they have ever been before. Aerial firefighting is crucial for containing spreading wildfires. But it

causes pilots to reach the limit of their skills. For risk prevention, airspace can be dedicated to fire

fighting and temporary become closed for other traffic. As there can be no physical signposting

mounted in the sky, knowing the when and where is necessary for preflight of other pilots. This is

achieved by a Notice-to-Airmissions- or NOTAM-system that issues temporary flight restrictions

(TFRs). TFRs close the airspace for manned aircraft as well as for drones.

The goal of this study was to examine the relation between satellite-based fire observation data and

restricted airspace for aerial firefighting to assess safety of the involved aircraft. Early and precise

airspace restriction allows aerial firefighters to focus on their mission and prevents them from collision

with drones and other aircraft. The study area was defined to be the 10 westerly U.S. flight information

regions (FIRs). Fire cluster polygons from that study area were considered active fires and drawn from

OroraTech´s Wildfire Service. OroraTech is a NewSpace startup, founded in Munich in 2018. Their

Wildfire Service provides early detection and real-time monitoring of fires, combining data from earth

observation and weather satellites. Data can be consumed as GeoJSON via manual export and via an

API. A complete set of TFR texts from the Federal Aviation Administration FAA via online NOTAM

Archive for the study area was converted into GeoJSON format successfully, combining manual

downloading with VBA, Power Queries and Python with GeoPandas. Aircraft state vectors (aircraft

locations) of aerial fire fighters were available since August of 2021. Thus, the examined time frame

was chosen to be August until (and including) October 2021.

All gathered data was examined then in ArcGIS Pro to design workflows to answer questions of

spatiotemporal relations: How long does it take until a TFR is issued for a fire? Applying Python with

GeoPandas and involving requests to OroraTech´s API, a model was created to find the first TFR issued

for each fire event. Then, lists showing the timespan between fire detection and TFR issue time were

generated. Out of 240 fires for which a first TFR got identified, 214 fires (89%) had been detected by

the Wildfire Service prior to TFRs issue time.

Does a TFR area cover enough area to conduct aerial firefighting safely? A Python script, again with

GeoPandas and requests to OroraTech´s API, delivered TFRs and fire events, where the aerial fire

fighting area had not been covered properly.

These workflows only combining fire cluster and TFR polygons provided locations and times via both,

fire cluster ids and TFR NOTAM numbers. These indicate potential cases where aerial firefighters had

to work without a protective TFR dedicating the airspace to just firefighting.

Is the presence of aerial firefighters in the vicinity of a fire covered by a TFR? State vectors of 60 fire

fighting aircraft within the observed time frame were analyzed. ArcGIS, Python with GeoPandas and

this time, MovingPandas as well, were applied to unveil true situations where these aircraft had to

operate unsheltered. 13.4% of the aircraft movements had not been flown in an airspace dedicated

to only fire fighting aircraft. 42 of the 60 aircraft considered here had been uncovered by a TFR at least

once within the observed three months.

The completeness of TFR-fire-correspondence was examined to indicate that using fire clusters from

the OroraTech as a kind of benchmark for the TFRs was justifiable.

All in all, there is room for improvement in airspace restriction for aerial firefighting and data from

OroraTech can foster further research and TFR management and thus enhance aviation safety.

3

Keywords: Active fire detection , aerial firefighting , air tanker , aviation safety , flight restriction ,

forest fire , hot spot detection , NOTAM , spatiotemporal analysis , TFR , wildfire

4

3. Introduction
Dangerous and large wildfires, as a result of climate change, have been predicted for the United States,

Tang et al. (2015, p. 19). Data collected by the United States Environmental Protection Agency (EPA)

documents the increasing wildfire extent and the surge in damage wildfires are causing, US EPA

(2021), see Figure 1.

Figure 1 The total wildfire extent increases in the U.S.

Dealing with wildfire suppression, Wotton et al. (2017, p. 3) recaps a classification of fires describing

the limit of ground resources without aerial support (and also the limit of the latter). With aerial

firefighters being crucial, their safety within the concerned airspace is to be granted. Satellite data

considered as actual fires here was compared to airspace restrictions to find out if aerial firefighters

had been working without being in danger to collide with other aircraft or drones. With the availability

of near-real-time fire detection data from OroraTech, the idea arose to make a first step to evaluate

a possible application that requires currentness of data: The timely reservation of airspace to safely

perform aerial firefighting. This research can help authorities to decide whether they can use

OroraTech data to effectively assign temporary flight restriction zones faster than by the current

procedures.

5

This thesis tries to unveil certain spatiotemporal conditions. In geographic information science, this

has been done for a long time now with point data, e.g. Knox & Bartlett (1964). For polygon data that

is involved in all analyses here, only few methods are known to manage the time factor, Robertson et

al. (2007, p. 209). To represent specifically wildfires, YUAN (1997, p. 732ff) identifies four conceptual

models (Text 1). Models 2 and 3 apply for vector data like it was used here1. Originally meant for GIS

layers, these were used to characterize the data from OroraTech (4.1.1).

All cited regulations and directives have been read regarding U.S. airspace. This chapter summarizes

the state of research concerning active fire detection, starting with a few words on OroraTech Wildfire

Service. The following section introduces the terms needed in connection with airspace reservation.

Then it is time to dedicate some lines to those, whose safety is on trial here: Aerial firefighters.

Regarding Ostermann et al. (2020), to enable reproducibility, all used Python scripts are provided as

Jupyter Notebooks, see Kluyver et al. (2016). Other code shown inside the thesis is included without

line numbering, so it can be copied “ready to use”. Absolute file paths are contained but evaded

wherever possible. Geoprocessing tool settings are provided as screenshots to not miss any checkbox

or other detail.

1 Model description uses the term “fire run” which is defined as “The rapid advance of the head of a fire with a
marked change in fire line intensity and rate of spread from that noted before and after the advance” -
https://inciweb.nwcg.gov/terminology/

“1. Locational snapshots: layers of cells (spatial objects) are linked to points in time (temporal

objects) and attributes of fuel moisture content, slope, etc. (semantic objects).

2. Fire entities: a fire event (a semantic object) is linked to a set of points or duration in time

(temporal objects) and areas of fire runs (spatial objects).

3. Entity snapshots: fire events (semantic objects) are linked to a point in time (a temporal

object) and areas of fire runs (spatial objects); note that entity snapshots differs from fire

entities because entity snapshots temporally aggregate all fire runs from the start of a fire event

to the time specified.

4. Fire mosaics: a set of landscape patches (spatial objects) is linked to points in time (temporal

objects) and attributes of vegetation types, evidence of burns, etc. (semantic objects).”

Text 1 Conceptual models for fire representation in a GIS layer, from YUAN (1997).

https://inciweb.nwcg.gov/terminology/

6

3.1. OroraTech Wildfire Service
For early forest fire detection, satellite data is the first choice concerning coverage area while there is

room for improvement in response time compared to other systems. Barmpoutis et al. (2020, p. 14)

provide a radar chart comparing different systems, see Figure 2.

Figure 2 Radar chart comparing fire detection systems in six categories

Founded 2018 in Munich, the OroraTech GmbH provides satellite based near real time active fire

detection data via its Wildfire Service. With regard to the incorporated satellites and sensors, Hantson

et al. (2013) documented opportunities and limitations of MODIS (Moderate Resolution Imaging

Spectroradiometer) hotspot data, comparing it to burned areas. Schroeder et al. (2014, pp. 94–96) did

an assessment for VIIRS (Visible Infrared Imaging Radiometer Suite) showing more accurate fire spread

information than MODIS (however, not quantifying their results but providing images) and even

challenging VIIRS with a 1.25 m radius experimental fire burning at ~ 1000 K that got detected during

nighttime.

One current data source for fire detection is the EU’s European Forest Fire Information System (EFFIS),

European Commission (n.d.-b). EFFIS relies on MODIS and VIIRS, European Commission (n.d.-a). The

NASA and USDA Forest Service initiative “Fire Information for Resource Management System” (FIRMS)

provides hotspots from MODIS and VIIRS as well2. A third source is FIRECAST3, also relying on MODIS

and VIIRS and additionally offering to filter by confidence. With MODIS and VIIRS being the oldest

instruments in use for hot spot detection, the concept of OroraTech to bring these together with all

available recent work is considered to be a success. OroraTech offers data from more satellites, more

algorithms and a sophisticated web application interface:

As of July 2022, the Wildfire Service incorporates 21 satellites (Table 1). SLSTR from SENTINEL,

evaluated by Wooster et al. (2012), is involved as well as Landsat 8 that has proven its usability,

assessed by Schroeder et al. (2016, p. 218). OroraTech uses existing algorithms side by side with

contextual thresholding algorithms developed in-house. Table 2 shows the algorithms and third-party

products in use. The Wildfire Service will soon get strengthened by OroraTech´s own nanosatellites to

2 FIRMS: https://firms.modaps.eosdis.nasa.gov/usfs/
3 FIRECAST: https://firecast.conservation.org/DataMaps/LiveView

https://firms.modaps.eosdis.nasa.gov/usfs/
https://firecast.conservation.org/DataMaps/LiveView

7

facilitate real-time response and reach a minimum viable constellation by the end of 20234,

compensating in all categories that Barmpoutis et al. (2020) distinguished. The first of its kind satellite

was successfully launched in January 2022 and will become part of a fleet of 100 satellites over the

following years. The Wildfire Service rejects false positives, aggregates spatiotemporal hotspots and

builds clusters identifying coherent fire pixels5. These fire clusters were used in this thesis, as well as

OroraTech´s API to access a fire cluster´s composition of hotspots within a certain time interval, where

this became necessary. Figure 3 Shows a fire cluster from the Wildfire Service and its web application

interface, using only data from polar orbiting satellites. That particular fire cluster was examined later

in detail exploring the datasets in section 4.2.3.2.

Table 1 List of satellites incorporated into Wildfire Service

Satellites incorporated into Wildfire Service

Polar orbiting Geostationary

AQUA GK2A

FENGYUN-3D GOES-16

LANDSAT-8 GOES-17

LANDSAT-9 Himawari-8

Met-Op-B Meteosat-8

Met-Op-C Meteosat-9

NOAA-20 Meteosat-10

SENTINEL-2A Meteosat-11

SENTINEL-2B

SENTINEL-3A

SENTINEL-3B

SUOMI-NPP

TERRA

4 Press release: https://ororatech.com/wp-content/uploads/2022/01/OroraTech-Press-Release-First-Satellite-
Launch.pdf
5 https://ororatech.com/wildfire-service/

https://ororatech.com/wp-content/uploads/2022/01/OroraTech-Press-Release-First-Satellite-Launch.pdf
https://ororatech.com/wp-content/uploads/2022/01/OroraTech-Press-Release-First-Satellite-Launch.pdf
https://ororatech.com/wildfire-service/

8

Table 2 List of Wildfire Service active fire detection algorithms and products

Wildfire Service active fire detection algorithms and products

Algorithm or product Reference

OT-S (OroraTech-Sentinel in-house) Based on Wooster et al. (2012)

OT-V (OroraTech-VIIRS in-house) Based on Schroeder & Giglio (2017)

OT-SWIR (OroraTech in-house) Based on Schroeder et al. (2016)

OT-AI (OroraTech in-house) Based on de Almeida Pereira et al. (2021)

MODIS-Collection6-Active-Fire-
Product

Giglio et al. (2016) and
https://www.earthdata.nasa.gov/learn/find-data/near-real-
time/firms/mcd14dl-nrt

VIIRS-Active-Fire-Product Schroeder et al. (2014) and
https://www.earthdata.nasa.gov/learn/find-data/near-real-
time/firms/viirs-i-band-375-m-active-fire-data

SENTINEL-FRP Wooster et al. (2012) and https://www.eumetsat.int/S3-
NRT-FRP

GOES (ABI-L2-FDCF-M6 ABI Level 2
Fire/Hot Spot Characterization
product)6

Hall et al. (2019) and
https://data.noaa.gov/dataset/dataset/noaa-goes-r-series-
advanced-baseline-imager-abi-level-2-fire-hot-spot-
characterization-fdc

SRSS-Himawari-87 https://www.eorc.jaxa.jp/ptree/documents/README_H08_
L2WLF.txt

EUMETSAT_FIRG /
EUMETSAT_FIRC8

https://www-cdn.eumetsat.int/files/2020-04/pdf_fir_pg.pdf

6 GOES is the U.S. geostationary weather satellite program. No hotspots generated from geostationary
satellites ´data were used in this research
7 Himawari is a Japanese geostationary satellite, and its data was not used in this research
8 These products are derived from data of European geostationary satellites not covering the U.S.

https://www.earthdata.nasa.gov/learn/find-data/near-real-time/firms/mcd14dl-nrt
https://www.earthdata.nasa.gov/learn/find-data/near-real-time/firms/mcd14dl-nrt
https://www.earthdata.nasa.gov/learn/find-data/near-real-time/firms/viirs-i-band-375-m-active-fire-data
https://www.earthdata.nasa.gov/learn/find-data/near-real-time/firms/viirs-i-band-375-m-active-fire-data
https://www.eumetsat.int/S3-NRT-FRP
https://www.eumetsat.int/S3-NRT-FRP
https://data.noaa.gov/dataset/dataset/noaa-goes-r-series-advanced-baseline-imager-abi-level-2-fire-hot-spot-characterization-fdc
https://data.noaa.gov/dataset/dataset/noaa-goes-r-series-advanced-baseline-imager-abi-level-2-fire-hot-spot-characterization-fdc
https://data.noaa.gov/dataset/dataset/noaa-goes-r-series-advanced-baseline-imager-abi-level-2-fire-hot-spot-characterization-fdc
https://www.eorc.jaxa.jp/ptree/documents/README_H08_L2WLF.txt
https://www.eorc.jaxa.jp/ptree/documents/README_H08_L2WLF.txt
https://www-cdn.eumetsat.int/files/2020-04/pdf_fir_pg.pdf

9

Figure 3 A fire cluster in the northwest of Spokane shown in the Wildfire Service web app

10

3.2. Notices to Airmissions and Temporary Flight Restrictions
A s there can be no road signs mounted somewhere in the sky, pilots need to consume aeronautical

information concerning their route before they take off. Notices to Airmissions (NOTAM) provide

many kinds of information. One is the Temporary Flight Restriction (TFR) that temporarily closes an

airspace or restricts its usage to certain purposes. The NOTAM system is also used to restrict airspace

for aerial firefighting in case of wildfires, FAA (2022a), FAA (2021). Authorities are obliged to monitor

all issued wildfire TFR, USDA, Forest Service (2021). The TFRs can have circular or polygonal shape and

can cover multiple fire events by intention. The goal for authorities is not more NOTAM data, but high

precision: Hoeft et al. (2005, p. 92) mention the overwhelming information amount that pilots receive

before takeoff, which has a negative impact on flight safety. Safety is improved by reduction of

bumped up briefing packages9. There have been incidents, also within the data examined here, that

TFRs got cancelled even before they became effective (valid), thereby populating the NOTAM system

without having any meaning.

National Wildfire Coordinating Group (2018, p. 7) points out that TFRs have regulatory character, in

contrast to advisory NOTAMS. This is the basis for law enforcement against any violators, be it pilots

of drones/unmanned aircraft systems (UAS) or pilots of manned aircraft. With wildfires being events

attracting media and other airborne spectators, a timely issued information and deterrent against

misbehavior seems necessary: It is a fact that especially UAS traffic has disrupted several aerial

firefighting activities year after year10. Drone pilots can easily inform themselves via app11 – but only,

if proper TFRs exist at all.

National Wildfire Coordinating Group (2018, p. 112f) advises to issue a wildfire TFR with a radius of at

least 5 nautical miles (NM) while it is recommended at the same time, to tailor TFRs to the individual

incident´s needs. Consequently, a TFR can have a circular or an angular shape. Currently, the process

of a TFR creation is complex: It involves a form to be filled out and sent by the responsible local

authority or agency12, then the requested TFR needs to pass a list of criteria determining its need and

the TFR´s extent can finally become subject to negotiations with the FAA, National Wildfire

Coordinating Group (2018, p. 111ff). The National Wildfire Coordinating Group (2022a, p. 118) rates

hazards in connection with TFR (e.g. if TFR is not promoted properly or an incident expands) as

“catastrophic” in severity. This is reason enough to study the accuracy of wildfire related TFRs.

3.3. Aerial Firefighting
The basic wildfire-fighting strategy is described by Mutthulakshmi et al. (2020, p. 646): By aerial water

bombing, it is possible to temporary contain the spread of a fire by creating holding lines. These persist

as long as the water, foam or (the mostly red) fire retardant does reduce the flammability of the

vegetation. So, aircraft are rarely capable of putting out a fire entirely, but their key ability is to

9 https://www.avweb.com/aviation-news/icao-updates-effort-to-clean-up-notam-garbage/
10 Interfering drones reports:
 2016 https://www.cnbc.com/2016/07/26/feds-turn-up-the-heat-in-the-fight-against-drones-interfering-in-
wildfires.html
 2017 https://www.popularmechanics.com/technology/gadgets/a27273/drones-stopping-aerial-firefighting/
 2018 https://www.popularmechanics.com/flight/drones/a21599465/drones-interrupt-fire-fighting-wildfires/
 2019 https://weather.com/news/news/2019-11-02-drones-grounded-firefighting-aircraft-maria-fire

11 FAA app https://www.faa.gov/uas/getting_started/b4ufly
12 TFR request form is available here: https://www.nwcg.gov/sites/default/files/committee/docs/iasc-
interagency-tfr-request-form.pdf

https://www.avweb.com/aviation-news/icao-updates-effort-to-clean-up-notam-garbage/
https://www.cnbc.com/2016/07/26/feds-turn-up-the-heat-in-the-fight-against-drones-interfering-in-wildfires.html
https://www.cnbc.com/2016/07/26/feds-turn-up-the-heat-in-the-fight-against-drones-interfering-in-wildfires.html
https://www.popularmechanics.com/technology/gadgets/a27273/drones-stopping-aerial-firefighting/
https://www.popularmechanics.com/flight/drones/a21599465/drones-interrupt-fire-fighting-wildfires/
https://weather.com/news/news/2019-11-02-drones-grounded-firefighting-aircraft-maria-fire
https://www.faa.gov/uas/getting_started/b4ufly
https://www.nwcg.gov/sites/default/files/committee/docs/iasc-interagency-tfr-request-form.pdf
https://www.nwcg.gov/sites/default/files/committee/docs/iasc-interagency-tfr-request-form.pdf

11

maintain control over a wildfire (early detected, at its best) until ground forces can reach it. The

aircraft fly the so called “initial attack”13

Various types of aircraft are in use to perform aerial firefighting. From helicopters to a Boeing 737 all

sizes and types are observed within the data used here. Unlike in commercial aviation, firefighting

aircraft pilots must take care of separation (meaning, to keep a secure distance to other aircraft), so

even if they are among themselves, airspace coordination is fundamental to preserve safety, National

Wildfire Coordinating Group (2022a, p. 93). Amongst others, this is a reason to set up a Fire Traffic

Area (FTA) with a horizontal radius of 5 NM and 2500 feet vertical extension, National Wildfire

Coordinating Group (2022b). Another characteristic of aerial firefighting is the altitude, low as 60

meters, to fly at while dropping water. The bigger the aircraft, the more unusual it is for it to fly at

close-to-ground-altitudes. While having reached an experimental stage recently, nighttime aerial

firefighting is still not a common practice14 due to its riskiness.

Even before UAS hit the airspace, back in 1998 surveyed aerial firefighting personnel considered

airspace intrusion being a risk, USDA FOREST SERVICE, DEPARTMENT OF INTERIOR (1998, p. 7). The

same study describes the workload of fire fighting pilots being at the upper limits of human capability,

so there is no room for any distraction caused by uninvolved aircraft. UAS are considered an aircraft

as well by the FAA and must not intrude a TFR, National Wildfire Coordinating Group (2018, p. 130).

In recent years, UAS have repeatedly delayed or even hampered aerial fire fighting operations (see

also above in section 3.2).

Aside from dropping water or fire retardants, an aerial supervision is performed (and mandatory

under certain circumstances). National Wildfire Coordinating Group (2022a, p. 36) attaches

importance to visibility which must meet FAA Visual Flight Rules (VFR). The following link and Figure 4

show typical patterns of movement during aerial firefighting:

https://graphics.reuters.com/CALIFORNIA-WILDFIRE/AIRCRAFT/bdwpkzmyyvm/.

13As described in https://priceonomics.com/does-using-airplanes-to-put-out-forest-fires/
14Nighttime aerial firefighting needs technical improvements allowing for higher drop altitudes,
https://www.optimistdaily.com/2020/01/aerial-firefighting-at-night-is-now-possible-with-new-high-altitude-
drop-system/, and/or better night vision, https://aerialfiremag.com/2020/03/23/night-aerial-firefighting-
taking-the-fight-24-7/

https://graphics.reuters.com/CALIFORNIA-WILDFIRE/AIRCRAFT/bdwpkzmyyvm/
https://priceonomics.com/does-using-airplanes-to-put-out-forest-fires/
https://www.optimistdaily.com/2020/01/aerial-firefighting-at-night-is-now-possible-with-new-high-altitude-drop-system/
https://www.optimistdaily.com/2020/01/aerial-firefighting-at-night-is-now-possible-with-new-high-altitude-drop-system/
https://aerialfiremag.com/2020/03/23/night-aerial-firefighting-taking-the-fight-24-7/
https://aerialfiremag.com/2020/03/23/night-aerial-firefighting-taking-the-fight-24-7/

12

Figure 4 Movement patterns during aerial firefighting from https://graphics.reuters.com/CALIFORNIA-
WILDFIRE/AIRCRAFT/bdwpkzmyyvm/

3.4. Study Area: 10 Flight Information Regions in the western U.S.
Flight Information Regions (FIR) are divisions of airspace to allow for administration and air traffic

control. The study area being the western part of the United States is due to this EPA data showing

the most annual burned acreage there, US EPA (2021). Data from three months, August 2021 until

October 2021 was collected here. A map is provided in Figure 14 in the corresponding data section

4.1.4.

3.5. Contribution, Research Questions and Overview
This thesis can show to airspace authorities whether incorporating data from OroraTech facilitates

their activities fostering aviation safety. Readers from the GIS community find out about application

of their work to the aviation domain. The results can unveil situations, where a TFR was not

appropriate and could not guarantee aircraft safety. This study is research for relations between

satellite detected fire clusters (considered actual fires), state vectors (locations) of known aerial

firefighting planes and fire related TFR:

(1) Complete TFR data of 10 FIRs from August to October 2021 got examined and converted from text
into a spatial data format. (2) Rules for appropriateness of a TFR were defined. Questions and
objectives were:

(3) The now available datasets got explored to gather an understanding of the relation between fires,
fire fighting aircraft and TFRs.

(4) How long was the timespan between satellite detection and TFR issue time? If this took too long,
the initial attack was probably launched while there was no safe airspace provided.

https://graphics.reuters.com/CALIFORNIA-WILDFIRE/AIRCRAFT/bdwpkzmyyvm/
https://graphics.reuters.com/CALIFORNIA-WILDFIRE/AIRCRAFT/bdwpkzmyyvm/

13

(5) Did a TFR area cover enough area to conduct aerial firefighting safely? Did TFR area cover fire
pattern plus minimum VFR flight visibility (1 or 3 miles, according to airspace)? If a TFR was not setup
properly or a fire spread out of it, the TFR might not have protected firefighting aircraft anymore.

(6) Evaluate whether or how often the presence of aerial firefighters in the vicinity of a fire was not
covered by a TFR. With state vectors of 60 firefighting aircraft detected in the vicinity of active fires
available, their actual safety during multiple aircraft movements was assessed.

During the work with the data, the impression arose that TFRs could be issued at erroneous

coordinates or OroraTech´s Wildfire Service provides no fire clusters for these coordinates. So, the last

objective was:

(7) Did each TFR have a corresponding fire cluster? A TFR without a fire cluster was likely issued in the

wrong place or may indicate a blind spot of OroraTech´s Wildfire Service. The completeness of TFR-

fire-correspondence was examined. Putting TFRs on trial, the suitability of the compared fire clusters

should be acceptable.

The upcoming chapter 4 describes the data and its acquisition in section 4.1, followed by methods

used (section 4.2). The methods section explains how TFR texts were turned into spatial data format

and which steps were necessary to answer the objectives. Finally, results are presented and discussed

(chapter 5), before the conclusion (chapter 6) that gives a summary and provides ideas for further

research. Chapter 7 holds the references. Chapter 8 is the appendix, containing code, a GitHub link,

produced tables and data logs.

14

4. Data and Methods
The first section of this chapter describes the data used in this thesis, going through the four input

data types and sources one after another. The second section explains the workflow, the tools used

and the careful considerations that must be made.

4.1. Data
Only the fire clusters from OroraTech could directly be displayed in a GIS or undergo spatial operations

with Python modules. All other data had to be converted to vector data first. But that is not the only

reason, why fire clusters from OroraTech are valuable. TFR NOTAMs are plain text and fire fighting

aircraft comes as point data while FIRs are to be traced from ArcGIS Map Viewer to gather polygons.

Aircraft state vectors (aircraft locations) of aerial fire fighters were available since sometime in July of

2021. Thus, the examined time frame was chosen to be August until (and including) October 2021 for

all data incorporated by this thesis.

4.1.1. Fire Clusters from OroraTech as Polygons
Before data from OroraTech got on hand, “classic” fire perimeters were available. For the study area

here, the National Interagency Fire Center (NIFC) is responsible and publishes fire perimeters15. They

can be expected to be more precise than hotspot data from satellites, so there is a need to explain

why they were not used here. The fire perimeters have an essential disadvantage: Concerning

decisions on airspace restriction, fire perimeter data suffers from its idleness. Perimeters are created

from GPS walks (in case of small fires) as well as from satellite images even months after the event.

Robertson et al. (2007) conducted a case study of the 2003 Ball Creek Fire with dense data from a local

authority, where fire perimeter data from approximately every second day was available. But this

temporal resolution is still ineligible for imposing or supervising airspace restrictions. Furthermore,

fire perimeters may be incomplete. Several events from 2021 are still not covered yet by NIFC fire

perimeters created until May 2022 which is documented by the perimeter attribute “Polygon Create

Date”.

Fire clusters from OroraTech are assembled from fire detections by multiple satellites. For this study,

data from polar orbiting satellites was chosen. Their consistent higher accuracy16 compared to

geostationary satellites leads to applicable fire clusters for a decent comparison to TFRs. Data was

provided in GeoJSON format, either from manual export from a web map interface or via an API17.

Speaking in conceptual models for GIS layers (see Text 1), the manual export was rather an “Entity

Snapshot” representing the largest aggregation of hotspots at the end of the configured timeframe,

while the API allowed for going towards “Fire Entities”, being able to fetch each fire cluster within

each timeframe (within the temporal resolution of the satellite data). A manually exported dataset

over the whole observation time will be referred to as “three-month-dataset” while results from API

requests will be mentioned as “current” or just “API data” in this study. Figure 5 shows a fire cluster

polygon in ArcGIS Pro.

15 NIFC fire perimeters: https://data-nifc.opendata.arcgis.com/datasets/nifc::wfigs-wildland-fire-perimeters-
full-history/explore?location=44.044862%2C-116.209075%2C6.66
16 VIIRS has a spatial resolution of 375 m and is capable of detecting even small fires, as mentioned in the
introduction at 3.1, while thermal channels from geostationary satellites are at 2-5 kilometers.
17 Having an account for the Wildfire Service, the API documentation can be found here:
https://app.ororatech.com/api

https://data-nifc.opendata.arcgis.com/datasets/nifc::wfigs-wildland-fire-perimeters-full-history/explore?location=44.044862%2C-116.209075%2C6.66
https://data-nifc.opendata.arcgis.com/datasets/nifc::wfigs-wildland-fire-perimeters-full-history/explore?location=44.044862%2C-116.209075%2C6.66
https://app.ororatech.com/api

15

Figure 5 A fire cluster polygon in ArcGIS Pro

The available attributes include a cluster id. Another important attribute is confidence which can take

a value between 0 and 1 (in tenth part increments). Basically, it describes how certain it is that an

actual fire got detected. This work followed recommendation from OroraTech to use a minimum

confidence value of 0.5 for analysis of historical data. Further attributes are oldest and newest

acquisition as datetime objects, which means when a fire got captured by a satellite, and oldest and

newest detection, which means, when the data was downlinked and processed, so one could have

known about the fire from then from the satellite data. (The gap between acquisition and detection

is the timespan OroraTech aims to minimize by its own nanosatellites. Currently, for Sentinel-2, this

may be up to 12 hours). An important detail (for 5.1) is the technical functionality of the API:

Requesting OroraTech´s API uses acquisition time of single hotspots for filtering (while the oldest

acquisition time of a fire cluster always remains the same acquisition time of its very first hotspot.

When hotspots within the filtered acquisition time range are found, it dynamically fetches the

corresponding oldest detection time (which can lead to oldest detection times in the future, from a

search window´s perspective). Such API requests were used here (4.2.4 and 4.2.5). Concerning the

shape, a fire cluster consists of circular polygons derived from the detected hotspots (attribute:

num_fires) which are based on the ground sampling distance (GSD) of the detecting satellites. A types

attribute whose values are assigned by OroraTech´s user community, describes the source of a fire

cluster. Values and meaning are listed by Table 3.

16

Table 3 The cluster types and the according value of the “types” attribute within OroraTech´s fire cluster data

Cluster Type Value

Empty 0

Fire 1

Industry 2

Volcano 3

FalseDetection 4

Forest 5

Cropland 6

Grassland 7

Structure 8

Factory 9

Steel 10

Flare 11

Cement 12

Peat 13

Natural 14

NaturalOther 15

Reflection 16

Solar 17

Sun 18

Processing 19

4.1.2. NOTAM Texts describing TFRs
Complete TFR data from 10 flight information regions (FIR) during August to October 2021 got

examined. The U.S. TFR NOTAMS are issued in a format called “domestic”. That means, they do not

have to comply entirely with ICAO rules. Automatically processing the domestic format in

consequence needed flexible parsing algorithms. If only a contact information changes, a TFR is

cancelled and a new one is issued, most likely in the same location.

4.1.2.1. How to read a TFR NOTAM

An original TFR NOTAM text from the assessed dataset is provided with Text 2.

17

The NOTAM gets decoded according to Order 7930.2, FAA National Headquarters (2021):

!FDC states, this is a flight data center NOTAM (and thus regulatory).

1/8922 ZSE WA: Number “1” tells the issue year – 2021 here. “8922” is a sequential number. Together

they represent a kind of ID (within ten years). “ZSE WA” reveals, the TFR is within airspace taken care

of by the Seattle Air Route Traffic Control Center (ARTCC ZSE, equals: FIR KZSE) and the restriction is

found in the state Washington (WA)

AIRSPACE 22NM NW OF SPOKANE, WA..: This a NOTAM of type “AIRSPACE” (not to be confused with

its subtype described in the following paragraph that can be “TEMPORARY FLIGHT RESTRICTIONS” but

“AIRSPACE” once more as well), so it provides information about an area. This area is centered

approximately 22 nautical miles northwest of the city of Spokane, Washington.

TEMPORARY FLIGHT RESTRICTIONS WI AN AREA DEFINED AS 7NM RADIUS OF 475345N1174830W

(GEG319021.2) SFC-7500FT. – So, this is a TFR. “WI” means within. The area affected in this case is a

circle with 7 NM radius around a WGS84 DMS coordinate. In brackets follows a coordinate format

relative to a navigation aid/beacon or airport, here 21.2 NM int the direction of 319 degrees from

Spokane airport, location indicator (K)GEG (this may not accurately match the given coordinate). Then,

the vertical bound is given as SFC (surface) up to 7500 feet above mean sea level.

TO PROVIDE A SAFE ENVIRONMENT FOR FIRE FIGHTING AVIATION OPS. PURSUANT TO 14 CFR

SECTION 91.137(A)(2) TEMPORARY FLIGHT RESTRICTIONS ARE IN EFFECT. THE WASHINGTON

DEPARTMENT OF NATURAL RESOURCES – Key sentence with justification and authority citation,

followed by responsible authority: Washington Department of Natural Resources.

TEL 509-685-6900 OR FREQ 126.8250/THE FORD CORKSCREW FIRE IS IN CHARGE OF THE OPS.

SEATTLE /ZSE/ ARTCC TEL 253-351-3698 IS THE FAA CDN FACILITY. Provides contact information via

phone and radiocommunication. Ford Corkscrew Fire is the fire brigade or contractor in charge, Seattle

ARTCC is the FAA coordinating (CDN) facility.

DLY 1600-0400 2108161600-2109010400EST The NOTAM (and therefor the TFR) is active daily from

1600 to 0400 UTC, in 2021 from August 16th, 1600 UTC to September 1st, 0400 UTC, where “EST”

means “estimated”. (With Spokane, WA being 7 hours behind UTC during summer, this means, most

of the daylight time is covered which goes with the fact that most aerial firefighting is performed in

broad daylight.)

!FDC 1/8922 ZSE WA..AIRSPACE 22NM NW OF SPOKANE, WA..

TEMPORARY FLIGHT RESTRICTIONS WI AN AREA DEFINED AS 7NM

RADIUS OF 475345N1174830W (GEG319021.2) SFC-7500FT. TO

PROVIDE A SAFE ENVIRONMENT FOR FIRE FIGHTING AVIATION OPS.

PURSUANT TO 14 CFR SECTION 91.137(A)(2) TEMPORARY FLIGHT

RESTRICTIONS ARE IN EFFECT. THE WASHINGTON DEPARTMENT OF

NATURAL RESOURCES

TEL 509-685-6900 OR FREQ 126.8250/THE FORD CORKSCREW FIRE IS

IN CHARGE OF THE OPS. SEATTLE /ZSE/ ARTCC TEL 253-351-3698 IS

THE FAA CDN FACILITY. DLY 1600-0400 2108161600-2109010400EST

Text 2 An original TFR NOTAM text, here for a circular polygon defining a radius
around a center coordinate

18

4.1.2.2. How to obtain TFR NOTAMs

Current and active TFRs in a spatial format are provided by a dedicated FAA webpage18. Cirium´s

laminardata provides even API access19 to current data, cost free for only a couple of weeks though.

Visiting these sources on daily basis does not grant a complete TFR dataset (and not a meaningful

sample size either). So, it was decided to acquire historical data.

Historical temporary flight restrictions were accessed via FAA FNS NOTAM Search webpage20. The

Archive Search (Figure 6) displays NOTAMs that were active for a selected location (FIR in this case)

on a selected date (Figure 7).

Figure 6 On FAA NOTAM Search webpage, open the dropdown menu to access Archive Search

Figure 7 Archive Search allows looking for NOTAMs active on a single date for a single location only, here at the beginning of
the thesis´ time frame on August 1st for Los Angeles FIR (ZLA)

With a sample size of 10 FIRs over three months, August to October 2021, this search could have up

to 920 possible result sets. Those were filtered to contain TFR only (Figure 8).

18Current TFRs, download as shape file one at a time: https://tfr.faa.gov/tfr2/list.jsp
19Laminardata NOTAM ad TFR API https://developer.laminardata.aero/documentation/notamdata/v2
20 FAA FNS NOTAM Search https://notams.aim.faa.gov/notamSearch/nsapp.html#/

https://tfr.faa.gov/tfr2/list.jsp
https://developer.laminardata.aero/documentation/notamdata/v2
https://notams.aim.faa.gov/notamSearch/nsapp.html#/

19

Figure 8 Archive Search has filter capabilities to choose TFR NOTAMs only

A functionality to download to as Excel .xls file (Figure 9) was used. Manually downloading 31 files of

one month for one FIR took about 8 minutes. Days with no TFR being active within an FIR were

documented (see appendix 8.5).

Figure 9 Filtered results can be downloaded as XLS files clicking the button in the top right corner of the Archive Search page

Concerning the filtered results, the downloaded file did contain the full NOTAM texts except for those

that were only listed as “CANCELLED BY FDC…”, like number 1/9094 shown below (Figure 10).

Figure 10 The filtered results are listed with those being crossed out where the end date has been reached

20

These cancelled NOTAMs had to be revisited one by one, manually opening the history tab (Figure 11)

to include their full text into the study. Because NOTAMs do appear on multiple dates until reaching

end or cancel date, this revision was be performed later from a dataset clean of duplicates (4.2.1).

Figure 11 Having clicked a NOTAM in the list (Figure 10), the History tab allows for accessing the full text also of a cancelled
NOTAM

Downloaded XLS files were named using a timestamp of their creation by default. The top rows

contained some metadata within only one field per row while column headers were located below

(Figure 12).

Figure 12 Screenshot (to show formatting issues) of an XLS file containing TFRs, downloaded from FAA NOTAM Search /
Archive Search

4.1.3. Locations of Firefighter Planes as Point Data
OroraTech has collected positional data from fire fighting aircraft. This point data was provided as a

CSV file and could be gathered in OroraTech´s cooperation with The OpenSky Network21. All aircraft

having a transponder for Automatic Dependent Surveillance–Broadcast (ADS-B) can be tracked.

Attributes of the point data (among others) were the aircraft ID, direction, velocity, GPS altitude and

a timestamp (to the split second, in UTC).

ADS-B is not capable of delivering complete trajectories of active firefighters, especially for the most

critical low level flight phase when the signal to SSR antenna (or other receivers) is blocked by

obstacles, Lilly et al. (2021, p. 2), see (Figure 13).

21The OpenSky Network - Free ADS-B and Mode S data for Research (opensky-network.org)

https://opensky-network.org/

21

Figure 13 Obstacles blocking signals, making aircraft at low level “disappear” form ADS-B datasets22.

4.1.4. The Study Area as FIRs derived from Map Image Layer
Collection of TFR data, as the entire area of interest, was based on flight information regions (FIR). FIR

data from 2015 got viewed cost free via ArcGIS Map Viewer23. Current data is only available at a high

cost24.

Based on the free ICAO data, vector data got created by hand (Figure 14) to later be able to define

areas of interest (AOI) to export fire clusters from OroraTech Wildfire Service. Scope was the entire

perimeter of the 10 western U.S. FIRs to match the TFR AOI´s shape (Figure 15). To define AOIs/export

regions, the Wildfire Service is capable of reading WKT. Export regions in WKT were produced in ArcGIS

Pro from the FIR polygons (see Jupyter Notebook Gain_FIRs_as_WKT.ipynb within appendix 8.2.1 and

on GitHub).

22 Figure published under https://creativecommons.org/licenses/by/4.0/, Available from:

https://www.researchgate.net/figure/An-aircraft-at-a-low-altitude-is-difficult-to-track-with-ADS-B-Mode-S-

where-the-terrain_fig1_350130867

23 https://uia.maps.arcgis.com/apps/mapviewer/index.html?webmap=724dfc8916604483a0ab06b4f3cbe57f
24 See ICAO store https://store.icao.int/en/data/flight-information-regions-fir

https://creativecommons.org/licenses/by/4.0/
https://www.researchgate.net/figure/An-aircraft-at-a-low-altitude-is-difficult-to-track-with-ADS-B-Mode-S-where-the-terrain_fig1_350130867
https://www.researchgate.net/figure/An-aircraft-at-a-low-altitude-is-difficult-to-track-with-ADS-B-Mode-S-where-the-terrain_fig1_350130867
https://uia.maps.arcgis.com/apps/mapviewer/index.html?webmap=724dfc8916604483a0ab06b4f3cbe57f
https://store.icao.int/en/data/flight-information-regions-fir

22

Figure 14 10 FIRs, blue: 2015 ICAO free dataset25, dark red: Polygon Feature Class, drawn based on the ICAO dataset.

Figure 15 FIRs displayed in OroraTech´s Wildfire Service

25 2015 ICAO free dataset available via https://gis.icao.int/arcgis/rest/services/FIRWORLD/MapServer

https://gis.icao.int/arcgis/rest/services/FIRWORLD/MapServer

23

4.2. Methods
This section starts explaining, how TFR NOTAM texts got parsed and converted into GeoJSON format

(4.2.1). The thought process behind considering a TFR “appropriate” or not is explained (4.2.2). The

following exploration (4.2.3) already contains its results to be able to proceed to the upcoming three

analyses building the core of the thesis (4.2.4, 4.2.6 and 4.2.5). The final analysis started from the TFR

side and checked the fire cluster data looking for TFRs where no fire cluster could be detected (4.2.7).

4.2.1. From Text to GeoJSON: Turning TFRs to a spatial Data Format
TFRs were downloaded as Excel Workbooks (4.1.2.2). It was not possible to easily concatenate the

downloaded files using Power Queries at this stage. For instance, with the original structure, the eighth

column containing the NOTAM text was not recognized reliably (Figure 16).

Figure 16 Power Queries does not recognize a column containing the NOTAM text

To be able to handle these files, a Visual Basic Module was coded (8.2, Code 2). It was meant to save

the downloaded files with a filename derived from the metadata in an FIR-related folder and to get

rid of the first four lines resulting in the column headers being the top row. The macro wrote a log to

discover mistakes possibly made during the repetitive task of switching date and downloading (Figure

17). The full log is provided by section 8.6 and together with 8.5 it proves that every day within the

observed timespan was visited via NOTAM Search, thus making the TFR dataset complete.

Figure 17 Screenshot from the log file created to keep an overview over files processed by the VBA script. Here, a dataset for
ZHU, 2021-08-01 is either missing or no TFR was active that day (the latter was the case, see 8.5)

With the files prepared by the VBA macro, Power Queries was used to add a Source column as well as

to remove duplicates from the NOTAM # column. In a new .xlsx file, the daily data was gathered from

where it was stored locally (Figure 18).

24

Figure 18 Power Queries is launched via Data → Get Data→ From File→ From Folder

Selecting Combine and Transform Data (Figure 19), and then the All NOTAMs sheet (Figure 20), the

following process was based on what Power Queries fetched from the sample file within the location.

When it recognized the original column names (Figure 21), in Power Queries Editor the Advanced

Editor (Figure 22) was started right away, 8.2-Code 3 was pasted and the folder location adjusted.

Figure 19 To concatenate all TFR data, Combine & Transform Data is selected running Power Queries.

25

Figure 20 From the accessed sample file, the All NOTAMs sheet is selected. The preview on the right is composed according
to the sample´s content. In this case of FIR KZLC, the column names are not recognized properly.

Figure 21 PowerQueries recognizing the original column names correctly

Figure 22 With Power Queries started, the Advanced Editor can be launched

With the example of KZLC (Figure 20), that started with numbered columns only, also duplicates

needed to be removed first, then the first row had to be used as headers and after that the first Source

column got its name and values were cleaned of file endings. If this occurred, 8.2-Code 4 had to be

used and adjusted.

After the proper code was run, Close & Load (Figure 23) added a sheet and filled it with the NOTAM

data (Figure 24).

26

Figure 23 Click Close & Load to add a sheet filled with the concatenated data

Figure 24 Resulting Excel sheet with unique TFR occurrence over the observed time frame

At this point the resulting sheet was still linked to its data sources (Figure 25).

Figure 25 The sheet with all TFRs is still linked to its source and can either be refreshed or unlinked to maintain data integrity

Those NOTAM texts that got omitted within the downloaded .xls files due to cancellations were

revisited manually. Table 4 shows how many wildfire related TFRs (containing string “FIRE FIGHTING”)

were additionally discovered this way.

27

Table 4 Results of manual revision of cancelled TFRs

FIR Amount
of
manually
revisited
TFR

Amount of
manually
discovered
wildfire-
related TFR

NOTAM numbers revisited manually, wildfire-related in red

KZAB 16 0 1/1201; 1/5325; 1/8503; 1/0049; 1/2525; 1/7151; 1/0369; 1/0700; 1/0993; 1/2141;
1/3204; 1/4079; 1/4615; 1/9027; 1/9028; 1/9026

KZDV 12 9 1/1585; 1/2974; 1/3132; 1/3161; 1/3169; 1/3190; 1/5720; 1/0214; 1/4623; 1/6295;
1/8503; 1/0442

KZFW 12 1 1/4670; 1/9383; 1/0462; 1/1638; 1/1887; 1/1888; 1/4017; 1/4020; 1/5573; 1/6252;
1/9732; 1/9677

KZHU 14 0 1/9853; 1/3990; 1/4554; 1/1569; 1/2581; 1/2320; 1/5695; 1/6776; 1/9530; 1/1767;
1/2036; 1/2647; 1/9234; 1/9235

KZKC 39 0 1/8566; 1/0925; 1/0927; 1/1478; 1/2946; 1/3819; 1/3991; 1/5055; 1/2472; 1/3723;
1/7072; 1/0604; 1/0613; 1/1408; 1/2634; 1/3089; 1/5790; 1/6995; 1/6922; 1/9130;
1/0021; 1/1479; 1/1486; 1/2957; 1/4165; 1/6517; 1/6226; 1/8027; 1/8029; 1/8032;
1/1519; 1/1520; 1/2246; 1/2254; 1/2302; 1/3689; 1/4926; 1/5655; 1/5656

KZLA 5 1 1/3840; 1/2493; 1/3109; 1/6221; 1/1924;

KZLC 61 18 1/9211; 1/7269; 1/8960; 1/1237; 1/1602; 1/1603; 1/2502; 1/2500; 1/2930; 1/2499;
1/3834; 1/4559; 1/4821; 1/4779; 1/7013; 1/8240; 1/8070; 1/8455; 1/9072; 1/0288;
1/0247; 1/0248; 1/3522; 1/5550; 1/1401; 1/5325; 1/5324; 1/5322; 1/5321; 1/5297;
1/4755; 1/5401; 1/5420; 1/5400; 1/5421; 1/5399; 1/5398; 1/5395; 1/5392; 1/5360;
1/5887; 1/2758; 1/2763; 1/2762; 1/2753; 1/3499; 1/7972; 1/1795; 1/1794; 1/1793;
1/1796; 1/2644; 1/3687; 1/3686; 1/3704; 1/5271; 1/6847; 1/6846; 1/8768; 1/9429;
1/9430;

KZMP 39 0 1/9698; 1/1457; 1/3184; 1/4121; 1/4421; 1/5282; 1/6082; 1/6097; 1/6105; 1/6085;
1/9725; 1/0984; 1/1953; 1/2503; 1/4926; 1/4757; 1/5536; 1/7505; 1/8332; 1/9225;
1/6919; 1/0049; 1/0120; 1/1570; 1/1791; 1/3361; 1/5427; 1/4999; 1/8036; 1/8034;
1/1766; 1/3181; 1/4442; 1/4950; 1/4947; 1/4888; 1/7947; 1/8403; 1/9717

KZOA 9 2 1/7851; 1/9462; 1/0429; 1/0428; 1/3128; 1/5713; 1/9523; 1/3898; 1/6160

KZSE 22 15 1/7785; 1/9106; 1/3048; 1/8961; 1/9568; 1/1480; 1/1396; 1/3196; 1/3836; 1/4930;
1/5421; 1/5729; 1/7243; 1/1622; 1/8794; 1/9376; 1/2073; 1/2581; 1/2585; 1/3886;
1/8874; 1/6506

The revisited NOTAMS were parsed and converted into GeoJSON format by a Python script, one file

per FIR. The script can be found as Jupyter Notebook Fire_NOTAM_to_spatial.ipynb in the appendix

(8.2-Code 5). This script contains a few provisions for sanity checking. And these paid off: Different

notations of the radius for circular TFRs (which got finally parsed correctly) could get implemented

writing the script.

Multi-part NOTAMs could occur with only one of their parts and were not completed in the dataset as

they usually do not result from fires but are issued for other reasons like defining “national defense

airspace” close to the Mexican border (Figure 26) or “space OPS area” for Houston FIR (Figure 27).

Kansas City FIR (KZKC) and Houston FIR (KZHU) turned out not to have a single wildfire related TFR

issued.

28

Figure 26 TFR full text as an example for a “national defense airspace” TFR not completed or contemplated by this research

Figure 27 TFR full text as an example for a” space OPS area” TFR not completed or contemplated by this research

4.2.2. Defining Appropriateness of a TFR
The following considerations were made to define an appropriateness of a TFR for aerial firefighting,

based on section 3.3. First, talking of fires as polygons, firefighting aircraft are not dropping their load

on centroids but right outside along the edges. So, a TFR should keep these edges clear of other traffic.

The distance for this is determined by visibility, as it is key for fire fighting aircraft operations. A Fire

Traffic Area (FTA) with its vertical extension of 2500 feet usually touches two different airspace classes,

“G” and “E” (see Figure 28).

29

Figure 28 Airspace classes, numbers in feet; graphic from FAA
https://www.faa.gov/uas/recreational_fliers/where_can_i_fly/airspace_101/media/airspace_classes_large.jpg

To fly without air traffic control, just seeing where to go and avoiding other aircraft, is called operating

under Visual Flight Rules (VFR). Under VFR, moving in class E airspace requires a minimum visibility of

3 statute miles26, while doing so in class G requires a minimum visibility of 1 statute mile (SM), FAA

(2022b). Thus, it was decided that a TFR is considered appropriate, if not only the original edges but

also fire clusters buffered by these minimum visibility values remain contained by a TFR. Where

applicable, three runs of the related scripts were made, one with 3 statute miles buffer, one with 1

statute mile buffer and one with the original fire cluster size.

4.2.3. Exploring the Datasets
All input data was turned into a spatial data format where necessary. Then, datasets were loaded into

ArcGIS Pro to get an overview and to gather statistics where necessary.

26 To make things more complicated (for European, non-aviation, non-nautics affiliate readers) this does not
equal nautical miles. 1 statute mile = 1609.344 meters.

30

4.2.3.1. Fire Clusters and TFRs explored

The manually exported fire cluster data from OroraTech was already delivered in GeoJSON format.

Considering the types in the dataset, only 56 of the 2926 fire clusters are assigned another permanent

or artificial heat source such as flare or solar, Figure 29 shows the distribution according to the types

from Table 3. The input dataset was not cleaned with regard to types, the type-attribute remained

included in resulting datasets to unveil surprises.

Figure 29 Distribution of fire types with regard to Table 3: [0] is unclassified, [1] is fire, [5] is forest, these should reoccur in
later results. [4] is false detection and all remaining types are artificial and more or less static heat sources that are not
expected to cause a TFR.

How the TFR NOTAM texts became polygons is described in 4.2.1 on page 23. The tool JSON To

Features brought them into ArcGIS Pro. To add all eight datasets at once, a small script was used

(Add_TFRs_from_geojson.ipynb). A map section shows the fire clusters on top of TFRs in Figure 30.

Getting on track of this here, it turned out that TFR issuing ARTCCs (and therefor TFR “locations”) did

not always stick to their geographical FIR boundaries. Thus, it appeared that the entire fire cluster

dataset had to be used by the following workflows, even though only one FIR´s TFRs were later

concerned at a time. As found in some FIRs, ongoing fire activity and multiple TFRs issued lead to

overlapping polygons. This was taken care of in the design of the analysis workflows. The fact that

some TFRs seemed to be issued without a corresponding fire cluster caused the last objective to be

worked on: A TFR without corresponding fire had possibly been issued in the wrong place or may still

indicate a blind spot of OroraTech´s Wildfire Service.

31

Figure 30 Fire clusters are overlaid on the TFRs, which may be issued across FIR borders. Possibly repeated, but in any case
overlapping and close-by TFRs and fire clusters can be found. A few TFRs (here from KZSE) appear to have been issued without
a fire cluster.

Figure 30 does also show circular as well as angular shapes of the TFRs. By design of the script

(Fire_NOTAM_to_spatial.ipynb), angular shaped TFRs got a radius of 0. From a merged dataset (ArcGIS

Pro Merge tool on all TFR layers), all 295 angular TFRs were sorted out27. Then, to assure that the

above appropriateness-decision from 4.2.2 did not become self-fulfilling prophecy, statistics of TFR

radius were provided for the remaining 247 circular areas, shown here by Table 5 and Figure 31. The

smallest TFR has a radius of 1 NM, the largest has a radius of 12 NM. Less than 10% (27 circular TFRs)

have a radius below 5 NM. Hence, the appropriateness-decision to use 1 and 2 statute miles for a

buffer was not expected to skew results right from the start.

27 We already get the scent that they are shaped to fit a “fire cluster´s need” or to contain more fires. But there
are circular TFRs with a smaller radius than the recommended minimum of 5 NM (NWCG).

32

Table 5 Statistics of Radius from all circular TFRs

Statistics of Radius from all circular TFRs

Count Min [NM] Max [NM] Mean Median

247 1 12 5.7 5

Figure 31 Derived for all circular TFRs: Histogram showing the distribution of Radius. 220 of 247 circular TFRs have a radius
of 5 nautical miles and more

33

4.2.3.2. Aircraft state vectors explored

The original dataset contains only aircraft that are known for being used for firefighting. Received CSV

file was converted into GeoJSON format by a Python script (Aircraft_States_to_GeoJSON.ipynb). State

vectors are generally point data. Visualizing 384370 points in Arc GIS Pro (Figure 32 , via tool JSON To

Features) yielded the following insights: Firefighting aircraft movement in 2021 concentrated in the

western U.S. as well as the TFRs and fires, as expected from US EPA (2021) data.

Figure 32 The entire dataset of aircraft state vectors within the study area visualized in ArcGIS Pro below TFR polygons.
Firefighting aircraft concentrate in the western U.S. as well as the TFRs. Represented like this, there is not yet a structure
recognizable.

To get a better overview, the dataset was narrowed down by joining fire clusters on aircraft states

with a 3 miles search radius (see 4.2.2) and then keeping only those, where the state vector timestamp

is within a fire´s acquisition time range. Necessary steps within ArcGIS Pro are shown in Figure 33,

Figure 34 and Figure 35. This created a first guess dataset of aircraft close to fires which were actually

burning at that time. Then, it could be decided whether objective (5), did a TFR area cover enough

area to conduct aerial firefighting safely, was to be tackled at all.

34

Figure 33 A Spatial Join of Fire Clusters polygons on aircraft_states points adds fire cluster attributes to all points met (left).
When Keep All Target Features is checked, a new Select by Attributes must be made to keep only points where a polygon
matched (right).

Figure 34 Convert Time Field produces a Date field that can be compared.

35

Figure 35 Selecting points by attribute in between oldest and newest acquisition time provides a point set for fire fighting
aircraft being over presumably active fires

Keeping as much data as possible for as long as possible lead to static heat sources still being included.

Therefore, only rows with type attribute [0] unclassified, [1] fire and [5] forest were kept. The result

looked promising: Applying Summary Statistics on the aircraft id showed at least 60 different aircraft

represented by more than 1 point.

To foster a better understanding, an attempt to create trajectories with MovingPandas was made,

Graser (2019) and Graser & Dragaschnig (2020), see Aircraft_ovr_fires_to_trajectories.ipynb. The goal

was to create a countable instance like “flights” or “aircraft movements” for following analysis. This

needed an export from ArcGIS Pro as GeoJSON file in advance (Figure 36).

Figure 36 Features To JSON setting to export the aircraft point data over presumably ongoing fires

The script produced connected trajectories per plane, as well as split trajectories using a minimum

gap size of 1 hour to create separate aircraft movements because it turned out that especially huge

planes are sent to locations across several FIRs (Figure 37).

36

Figure 37 The dark red trajectory (built from state vectors found over active fires only and not yet split) shows a Boeing 737
being used across four different FIR and several fire clusters and TFRs. With ICAO identifier a0956b and callsign N137CG, this
is actually one of the planes depicted in Aerial firefighting - Wikipedia (picture by Bidgee/ Robert Myers, published under CC
Creative Commons — Attribution-ShareAlike 3.0 Unported — CC BY-SA 3.0)

Reading the split trajectories back to ArcGIS Pro completed the picture, as explained with the following

example (and Figure 38): TFR 1/8595 got issued at 01:21 UTC becoming effective at 02:00 UTC due to

a fire close to Chamokane Creek in the northwest of Spokane. At 01:47 UTC an approaching firefighter

plane (ICAO 24 id c01aeb, callsign: TNK52) disappeared in a valley (or crossing a ridge, most probably

to an ADS-B blind spot as explained in 4.1.3). At 02:35 the firefighter appeared again, considering the

3-mile vicinity of the entire cluster. As a matter of fact, the aircraft entered a 7 NM TFR shortly before

it became effective. As this random sample shows, it is worth an attempt to examine safety of actual

fire fighting aircraft to look for them being guarded by TFRs.

https://en.wikipedia.org/wiki/Aerial_firefighting
https://creativecommons.org/licenses/by-sa/3.0/

37

Figure 38 Firefighter plane “TNK52” is represented by state vector point data and trajectory, originally found via Spatial Join
with the fire cluster as a first guess. The solid arrow indicates flight direction. Most possibly on its way to the (by then) small
fire (yellow polygon, gathered via API), the plane´s ADS-B signal is blocked by a ridge since 01:47:15 UTC when it has already
entered the green TFR, that is not yet effective. (The separate flight track with the four vertices does not belong to TNK52 but
to a8401a. TNK52 is a Convair CV580, converted from a CV340, an aircraft designed in the 1950s. a8401a is a Beechcraft
B200, a small but younger plane with a ceiling more than twice the one of the CV580, so no wonder that the B200 can appear
via ADS-B while the CV does not.)

4.2.4. The Time between Fire Detection and TFR Issue
How long was the airspace potentially unsafe for an initial attack? The idea was to first create a relation

between fire clusters and TFRs. As educated guess to start with, the three-month-fire-clusters (from

manual export) and TFRs were spatially joined by predicate ‘intersect’. From these TFR-intersecting

fire clusters, their oldest detection and acquisition time prior to the intersected TFR issue time had to

be considered. To respectively request these fire clusters in their shape and with their acquisition and

detection time prior to a TFR being issued, OroraTech´s API was used. The payload (data to submit)

for API requests for parts of fire clusters being active needed a bounding box and a timeframe. The

bounding box was derived from the three-month-fire-clusters. Timeframe bounds were determined

by a number of minutes before TFR´s issue time and the issue time itself, plus going forward a few

hours as well to match also the clusters known from ground information that got acquired via satellite

shortly after TFR issue time. As the exported three-month fire clusters might touch close-by TFRs that

were not meant to be issued for them, only the relation between API results and TFRs was to be

considered. That required another spatial join by predicate ‘intersect’. Sometimes multiple TFRs had

been issued for the same fire event. This analysis treated the very first TFR, so duplicates of fires with

later TFRs were dropped28. Then, a “current” fire cluster´s oldest detection and acquisition time could

28 However, as TFRs are not linked in any way, follow-up TFRs for the same event could hardly be identified but
expectedly produced greater numbers here.

38

be subtracted from the TFR issue time. The analysis was performed via Python, see Jupyter Notebook

Get_Detection-Issue-Time_Gap.ipynb or the appendix at 8.2.4. Figure 39 shows the necessary steps

as flowchart. The calculations were made to answer the following questions:

TFR issue time - oldest_acquisition How much time did it take at least until a TFR was issued since

there had actually been a fire?

TFR issue time - oldest_detection How much time did it take at least until a TFR is issued since one

could have known about it from OroraTech´s data.

For both questions only a minimum timespan (“at least”) could be calculated: Generally, it is possible

that a fire burns for a while until a satellite passes at all or until a satellite pass happens while cloud

cover allows for discovering a hotspot.

The search period before TFR´s issue time was set to 24 hours (1440 minutes), as request result

clusters needed to get narrowed down to not touch nearby TFRs and it was assumed that longer

waiting times before issuing a TFR had been intended. Fires with an older oldest_acquisition time were

removed from the start as an initial attack on these fires was likely to have been dropped already

before the observed time frame. It was found that a search period after TFR´s issue time set to 6 hours

(360 minutes) was capable to match also clusters known from ground information that had been

acquired via satellite after TFR issue time.

Results from TFRs issued in July before the observed time frame may suffer from a boundary value

problem and should not be taken for granted because the API request bounding box did possibly not

cover older hotspots. These TFRs could accidentally have become the first TFR of a fire cluster that

was detected later. Knowing this, the old TFRs needed to get purged here right from the start.

An alternate, less complicated run was tried with a script not incorporating the API request. The results

here were similar for trustworthy values but contained more false matches for areas with overlapping

patterns. The script is available via GitHub as well (version 2 of Jupyter Notebook Get_Detection-Issue-

Time_Gap.ipynb). The fact that TFRs do become issued beyond and across FIR borders (see 4.2.3.1)

can skew results of the chosen per-FIR-approach. But an API request for all data at once requires much

more time (with a consistent internet connection). The less complicated version can be run on a

dataset containing all TFRs at once.

39

Figure 39 A graph (not a model)
representing the steps within
Get_Detection-Issue-
Time_Gap.ipynb to calculate
timespans between a fire
cluster´s detection and
acquisition time and TFR issue
time. After a first guess, response
fire clusters from API are used.

40

4.2.5. Coverage Quality Assessment
Did a TFR area cover enough area to conduct aerial firefighting safely? The developed method is based

on the following thoughts: Crowley et al. (2019, p. 305f) showed non-linear growth of the fire

perimeter. The shape of a fire can temporally be a multipolygon: Secondary fires can get ignited by

spotting downwind of the main fire before fires merge again, Martin & Hillen (2016). Thus, if a safety

issue was to be assumed from the comparison of TFR to any fire cluster from the tree-month-dataset,

the comparison was necessary to be done again with the fire cluster composed of hotspots being

active within a TFR´s valid timeframe.

The objective was to discover situations where a TFR did not cover the area which fire fighting aircraft

operations needed, regarding appropriateness definition (4.2.2). Input data were the TFR polygons

within an FIR and the exported three-month fire clusters. Then, OroraTech´s API was used to request

those parts of fire clusters being active within TFR valid times. These were compared then. In detail:

The fire clusters from the tree-month period were used as first guess. They got buffered by visibility

as explained in (4.2.2). Therefore, three runs (0 SM, 1 SM and 3 SM) were performed. Two spatial joins

by predicates ‘overlap’ and ‘contains’29 delivered those TFR candidates that needed a closer look. An

accurate fire cluster at a TFR´s valid timeframe was collected via OroraTech´s API: The payload (data

to submit) for API requests for parts of fire clusters being active needed a bounding box and a

timeframe. The bounding box was derived from the fire clusters, timeframe bounds were limited by

TFR´s cancel or expiration time and its effective time. The API request results got buffered again. If

there was an overlap between TFRs and API request results (or again a containment), then those TFRs

could be considered inappropriate from an aerial firefighting perspective. A graph of what the script

was planned to do is shown in Figure 40. The resulting geodataframe was then written to a GeoJSON

file and event counts were logged to a text file.

The code is attached as Get_TFR-exceeding_Fires_from_API.ipynb and can also be visited on GitHub

or the within the appendix at 8.2.5.

Depending on the situation, this resulting GeoJSON file may have contained duplicates. Follow -up

task was to remove those and write the particular column to a csv list to show those fire cluster ids or

TFR numbers, where a (buffered) fire cluster had gone outside the TFR (see

Get_Events_from_Fires_from_API.ipynb).

Then, to assure that no result (no TFR assessed) was interfered by artificial heat sources or a false-

positive, one last small script was applied to count for mismatching types (considering Table 3):

Get_Types_from_exceeding_Fires.ipynb.

29 GeoPandas refers to shapely predicates which can be found here:
https://shapely.readthedocs.io/en/stable/manual.html#binary-predicates

https://shapely.readthedocs.io/en/stable/manual.html#binary-predicates

41

Figure 40 A graph (not a model)
representing the steps within Get_TFR-
exceeding_Fires_from_API.ipynb to collect
TFRs that can be considered inappropriate
from an aerial firefighting perspective. A
follow up
Get_Events_from_Fires_from_API.ipynb
then deliver lists of TFRs and fire events

42

4.2.6. Safety of actual Fire Fighting Aircraft
How often was the presence of aerial firefighters in the vicinity of a fire not covered by a TFR? Having
limited the fire fighting aircraft´s state vectors to those most likely being connected to active fires
during data exploration (4.2.3.2) lead to split trajectories. So, these were already available for the
following analysis. 641 aircraft movements were counted within the observed 10 FIRs within 3
months. The basic question was whether there had been TFRs intersecting the trajectories, being
effective during flight time of the trajectories. Having started already with ArcGIS Pro, the Spatial Join
was performed there (Figure 41).

Figure 41 Spatial Join settings to connect TFRs to aircraft trajectories

Where the output for the Join_Count was equal to 0, a firefighter aircraft movement without TFR
coverage was found. For the other rows, date calculations were necessary. This would have meant
cumbersome steps in ArcGIS Pro with the need to convert dates and select by attributes multiple
times. Such calculations were done for the previous objective (4.2.4) in Python, so the data got
exported to GeoJSON (Figure 42) and the task was continued with
Get_Dates_Aircraft_and_TFRs.ipynb. Here, a function tagged those flights within a TFR´s effective
time and those which were not. Clean of duplicates, these were then counted.

Figure 42 Features To JSON setting to export trajectories dataset that has the TFRs joined

43

4.2.7. Completeness of TFR-Fire-Correspondence
Did each TFR have a corresponding fire cluster? The merged TFR dataset from exploration (4.2.3.1)
was reused and processed to GeoJSON in ArcGIS Pro via tool Features To JSON. A second three-month-
dataset of fire clusters, this time at the lowest confidence (thus, containing more polygons) was
prepared. Then, starting with the formerly used three-month-dataset of fires at a confidence of 0.5
and more, a Python script was run to do the following:

• Spatially left join (intersect) all TFRs and fires with the TFRs in first place, identifying solitary
TFR without a fire.

• Sort out eventually erroneous TFRs that are cancelled before becoming effective,

• Sort out TFRs issued before fire cluster timeframe (starting 08/01/2021 00:00 UTC) because
their comparison is prone to suffering from the boundary value problem that simply no fire
clusters are fetched from July.

• The remaining TFRs are now spatially left joined (intersect) on the second three-month-
dataset of fire clusters at 0.1 confidence.

• From the created geodataframe those TFRs are picked that still have no fire cluster id
associated. These are written into a results GeoJSON file that can be examined.

The Python script is provided by Compare_TFRs_to_Fireclusters.ipynb.

44

5. Results and Discussion
Results of the steps from the Methods section (4.2) are presented and discussed here. Results from

4.2.1From Text to GeoJSON: Turning TFRs to a spatial Data Format, 4.2.2 Defining Appropriateness of

a TFR and 4.2.3 Exploring the Datasets were prerequisite for the treatment of the follow up objectives

and thus already presented within their subsections. In summary, only 8 of 10 FIRs contained fire

related TFRs.

(Objective 1) Complete TFR data of 10 FIRs from August to October 2021 got examined and converted

from text into a spatial data format: 542 TFRs were identified and converted into spatial format. The

created TFR dataset can be considered complete, screenshots of locations and date where and when

no effective TFR was found are attached to the appendix in 8.5. Generated TFR polygons do occur on

a map for the first time within this thesis in Figure 30.

(Objective 2) Concerning appropriateness of a TFR, it can be decided to run the script assessing

coverage quality (4.2.5) with the original fire cluster size as well as with buffer sizes of 1 and 3 statute

miles.

(Objective 3) During exploration it turned out that these buffer sizes were not prone to producing

predefined results, but valuable results could be expected. Available aircraft state vectors remained

at a usable sample size of 60 aircraft which had performed presumably 641 movements also when

data was spatially and temporally limited to ongoing fires, so the safety of these fire fighting aircraft

could be assessed in 4.2.6.

5.1. Results and Discussion of the Time Gap between Fire Detection and TFR Issue
(Objective 4) How long was the timespan between satellite detection and TFR issue time? The script

used here (Get_Detection-Issue-Time_Gap.ipynb) generated a result list per FIR considering the first

TFR issued for a fire cluster. With the parameters defining the time looked forwards and backwards

from a TFR´s issue time set to 24 hours backwards and 6 hours forwards, the appended tables were

created. The two columns “Timespan Detection” and “Timespan Acquisition” contain calculated

values as minutes (while the geodataframe from the script has additional “d days hh:mm:ss” format)

and are presented and uploaded to GitHub as Excel Workbooks for convenience. This is the time, how

long it took until an airspace around a fire was secured for firefighting aircraft. “Timespan Detection”

refers to the moment, since data was sent and processed and one could actually have known about

the fire, while “Timespan Acquisition” refers to the moment when a satellite recorded the fire cluster

for the very first time finding its first hotspot. With KZAB having had no intersecting TFRs and KZKC

and KZHU having had no wildfire TFRs at all, the result set consists of seven tables (Table 8: KZDV,

Table 9: KZFW, Table 10: KZLA, Table 11: KZLC, Table 12: KZMP, Table 13:KZOA, Table 14: KZSE, all

appended in section 8.3).

There were incidents where a TFR was issued based on ground information while satellites had not

discovered a fire yet. So, a TFR dedicated to a fire cluster might have become issued hours before the

cluster appeared within OroraTech´s data. If this had happened more hours before TFR issue time than

it was set via parameter of the script, the cluster was omitted from the results list because the API

request going back from the TFR issue time did not retrieve it. This case is represented by a large

negative value in the results tables with no better temporal matching of the same TFR. Within the API

request, going forward a few hours as well could also match these cases, a screenshot of an example

is provided by Figure 43. This way, reasonable (up to half a day) negative values imply, that the TFR

had been issued before a satellite acquired it (Timespan Acquisition) and/or before one could have

known about it from satellite data (Timespan Detection). Out of 240 fires, there were only 18 incidents

45

where a TFR had been issued before a satellite acquired a fire and 26 incidents where a TFR had been

issued before the Wildfire Service could detect and inform about a fire. In the data, there are 3

occasions that a TFR was issued within 1 hour after a satellite had acquired the fire. So, for 219 of

these fires, a TFR was probably issued hours after a satellite had acquired the fire, meaning it took

hours, until the airspace was secured for aerial firefighting. It is not known whether this was due to

complications in TFR creation process or due to late discovery of the fire via the currently utilized

means. See Conclusions at 6.1 for some more in-depth thoughts.

Figure 43 The fire cluster with the id 20213789 would be omitted in the results (Table 14) if the API request from the used
script had only looked backwards from the issue date of the TFR. Instead, the large cluster to the north (id 21250885) from
September would become tied to NOTAM 1/7243 because it intersects it. Going forward a few hours as well now leads to
both ids being listed in Table 14.

Multiple occurrences of the same TFR had to stay allowed within the results (intended by regulations,

see 3.2). The fire with the smallest absolute values in acquisition and detection timespan was most

probably the event that triggered the TFR. To not pretend a certainty that cannot be guaranteed,

duplicated TFRs were not removed from the results set.

The listed fire type shows that none of these first response TFRs has been issued for a known false

alarm or permanent hotspot while the latter has become unlikely during script development because

fire clusters with an old acquisition time were dropped anyway.

46

5.2. Results and Discussion of Coverage Quality Assessment
(Objective 5) Did a TFR area cover enough area to conduct aerial firefighting safely? If a TFR is not

setup properly or a fire spreads out of it, the TFR may not protect firefighting aircraft anymore. There

were cases where an unbuffered fire cluster was not totally covered by a TFR. Regarding minimum

flight visibility (compare 4.2.2), the amount of inappropriate TFRs did even rise. The applied script

(Get_TFR-exceeding_Fires_from_API.ipynb) logged the numbers per TFR and buffer size (as visibility-

distance) as shown in Table 6. The simplest case occurred in Ft Worth FIR (ZFW): 1 fire event got 3

consecutive TFRs issued of which none was sized appropriately to contain the fire cluster during TFR

effective time (Figure 44). The full result log is appended as Text 3 within 8.3.

Figure 44 Screenshot of results for ZFW in ArcGIS Pro: All three TFRs from the Attributes pane were issued as the green-filled
circle, which does not contain the entire orange fire cluster being active during these TFRs´ effective time

47

Table 6 Results of coverage quality assessment

FIR TFRs
evaluated

TFRs cancelled
before being
effective

Buffer
Distance
[SM]

TFRs where a fire
leaves it

fire events leaving
a TFR

ZDV 28 1 0 1 1

1 1 1

3 5 3

ZFW 3 1 0 3 1

1 3 1

3 3 1

ZLA 40 0 0 12 5

1 23 14

3 37 32

ZLC 114 1 0 34 24

1 43 37

3 61 81

ZMP 10 1 0 5 2

1 7 2

3 7 2

ZOA 99 2 0 71 34

1 89 92

3 96 162

ZSE 247 7 0 145 75

1 180 177

3 208 298

If multiple fire clusters and TFRs overlapped, the arising interim geodataframe got many rows, which

happened more often in Seattle FIR (KZSE, screenshot in Figure 45) and Oakland FIR (KZOA). This led

to large result counts and even more fire events leaving a TFR than TFRs had been included. So, a

follow-up script (Get_Events_from_Fires_from_API.ipynb) was coded to provide GeoJSON output and

a list containing resulting fire cluster ids and NOTAM numbers. This can enable authorities that have

detailed knowledge about intentions behind a single TFR to investigate further. None of the results

was influenced by artificial (permanent) heat sources or false positives,

Get_Types_from_exceeding_Fires.ipynb checked for such types.

48

Figure 45 Multiple TFRs (green) issued over the three months in close vicinity with numerous, still unbuffered fire clusters
(orange) that already overlap the TFRs can be found in Seattle FIR (KZSE). These clusters do cause a bloated first guess
geodataframe.

5.3. Results and Discussion of Safety of actual Fire Fighting Aircraft
(Objective 6) How often was the presence of aerial firefighters in the vicinity of a fire is not covered

by a TFR? Figure 46 shows rounded results as pie chart.

Figure 46 Movements of fire fighting aircraft inside TFRs (69%), out of effective time (18%) and totally uncovered (13%)

49

Splitting trajectories of 60 fire fighting aircraft led to 641 aircraft movements that were examined. The

trajectories were created from aircraft locations not exceeding a distance of 3 miles from the three-

month-fire-clusters. Only aircraft locations with a timestamp in between oldest and newest fire

detection were considered. As of Get_Dates_Aircraft_and_TFRs.ipynb, 439 (ca. 69%) of the aircraft

movements were within a spatially joined TFR´s effective time. These movements were considered as

conducted in safe conditions. 116 (ca. 18%) aircraft movements were within TFRs spatially but not

within any TFR´s effective time. A TFR issue had probably been too late here. 86 (ca. 13%) aircraft

movements were not covered by any TFR at all. Because the trajectory IDs still contain the aircraft id,

it can be said that within the 86 totally uncovered movements 42 of the 60 aircraft had to operate at

least once outside of any TFR coverage with all the dangers that this implies. Pilots of drones and

manned aircraft were not knowing that the firefighters were there. An excerpt from the data is

depicted in Figure 47.

Figure 47 The map shows a part of California within Oakland FIR (KZOA). Trajectories distinct from TFRs but related to active
fire clusters (within their detection time range) are shown. The movement patterns show that the aerial firefighters were not
just passing by the fires by chance.

Whether all uncovered trajectories were indeed dedicated to firefighting at that moment when the

state vectors were captured remains uncertain. For how many of the uncovered aircraft movements

this state was intended or just a lack of the complicated request and creation process was not

examined in this study.

No fire related trajectories were found within the two FIRs that did not have fire related TFRs issued

(Houston KZHU and Kansas City KZKC).

50

5.4. Results and Discussion of Completeness of TFR-Fire-Correspondence
(Objective 7) Did each TFR have a corresponding fire cluster? The used Python script (Jupyter
Notebook Compare_TFRs_to_Fireclusters.ipynb) detected 56 TFRs that could not be tied to a fire id
from the tree-month-dataset at 0.5 confidence. None of these TFRs had been cancelled before they
became effective, so they were not to be considered erroneous. 17 TFRs had already been issued prior
to the observed timespan. They were dropped from examination because related fire clusters were
not necessarily contained within examined dataset starting observation August 1st.

From the remaining 39 questionable TFRs, fire clusters at lower confidence down to 0.1 were found
at least spatially related for 36 TFRs (out of originally 542 TFRs). Finally, for 3 TFRs, no associated fire
cluster was found. From the created geodataframe, those TFRs were picked that still had no fire cluster
id associated. These were written into a results GeoJSON file to be examined. Table 7 holds the details.

Table 7 TFRs that do not have a fire cluster associated

FIR NOTAM Issue_Date Location from NOTAM
Text

Center Coordinates
from NOTAM Text

ZSE 1/9095 08/01/2021 1555 22NM S MEDFORD 420048N1225724W

ZAB 1/5987 10/20/2021 2254 23NM SE OF TUCSON 314232N1105136W

ZAB 1/6009 10/21/2021 0034 23NM SE OF TUCSON 314232N1105136W

51

6. Conclusion
The goal was to examine the relation between satellite-based fire observation data and restricted

airspace for aerial firefighting to assess safety of the involved aircraft. A study area was defined to be

the 10 westerly U.S. FIRs. Fire cluster polygons from that study area to be considered active fires were

drawn from OroraTech´s Wildfire Service. A complete set of TFR texts from the FAA NOTAM Archive

for the study area was turned into GeoJSON format successfully, combining manual downloading with

VBA, Power Queries and Python. It was possible to overcome data quality issues by code and with

manual effort. Aircraft state vectors (aircraft locations) of aerial fire fighters have been available since

July of 2021. Thus, the examined time frame was chosen to be August until (and including) October

2021.

Available datasets were explored in a what-you-see-is-what-you-get-fashion with ArcGIS Pro to enable

for designing the following workflows. It was found that, to gather enumerable entities, aircraft state

vectors needed to become connected to trajectories which got then split at every 1-hour time gap to

represent aircraft movements.

6.1. Concerning the Time Gap between Fire Detection and TFR Issue Time
Concerning the time gap between fire detection and TFR issue time, the results set was not narrowed

down or evaluated any further. Out of 240 fires, a first TFR was issued prior to fire dates 18 times

concerning acquisition and 26 times concerning detection. For the other captured cases, it took

several minutes up to days until a TFR provided a safe environment for aerial fire fighting operations.

Longer waiting times before a TFR got issued might depend on the single case or the complicated

creation process. It was possibly the case that aviation operations were planned to take place later,

due to weather conditions or lacking resources. Also, the fact that most aerial firefighting is usually

conducted during daytime was not yet incorporated: A fire detected at night might not require

immediate action. TFRs occurring only once within the results might deliver skewed timespan values

due to the TFR originally being issued for a fire cluster that had lower confidence than the used 0.5-

dataset. TFRs issued across FIR borders caused confusion here. An example is fire cluster id 21370680

that received attention from both sides: KZLA and KZOA with the first TFR issued from KZOA side. This

has led to a skewed result in the KZLA data (Table 10). For negative values, the related fire might have

occurred within an already existing TFR. The outcome here has become a model approximating the

true fire and TFR combinations. This model does produce outliers but will improve along with

OroraTech´s data density when the nanosatellites start work in near future. Up to now it seems not

eligible to compute one overall result.

6.2. Concerning Coverage Quality
A number of mismatching combinations of fire clusters and TFRs was discovered and logged (Text 3 at

8.4). Where the spatial relation of fire clusters and TFRs was 1:1, results are trustworthy. This was not

found to be the case within all FIRs so it was not eligible to compute one overall result as valid

percentage.

It is not known when in its lifetime a TFR became inappropriate. A follow up inspection in a GIS must

be made to know whether a subsequent TFR was issued. Did the buffered fire cluster intersect with

another TFR that got issued later than the first one? This question is still open.

When multiple fire clusters and TFRs occurred close together (compare Figure 45 showing obvious

issues during evaluation of coverage quality), result counts could get flawed, when buffered fire

clusters had multiple overlaps or might even contain entire TFRs (Figure 48). An issue with the

designed workflow is, that a bounding box was needed by the API to retrieve the current fire clusters.

52

Scanning this boundary box might lead to more response results as a request per fire cluster id would.

An improvement to the API to provide fire entity snapshots just via id and timeframe could be helpful.

Or this could possibly become solved with an entirely changed workflow, storing even more data to

create time slices to perform the analysis. If a dedicated join attribute to connect fire clusters and TFRs

(in another way than spatially) could be invented for future data, a clear assignment would be possible

as well.

Figure 48 With the same scope as in Figure 45, resulting buffered fire clusters with detection time within formerly overlapped
(or contained) TFR´s active time become numerous. For this screenshot the buffer size is exaggerated to ca. 3.5 miles to
demonstrate the effect of possible multiple intersects leading to the large case values from Text 3 at 8.4 and aircraft buffered
fire clusters as aircraft acting areas covering (almost) entire TFRs they do not “belong” to.

Also, factual correct coverage issues found here might not necessarily mean a danger or could have

even been intended: If wind direction was considered, it would be conceivable that considering not

the entire fire area but a downwind section of it is the correct place to issue a TFR.

6.3. Concerning safety of actual Fire Fighting Aircraft
There is no information about whether an absence of airspace dedication has been intended in any or

even all the observed cases. However, only 68.5% of the fire fighter aircraft movements within 3

statute mile vicinity of an active fire were made under TFR protection while 31.5% were not. These

distribute as follows: 18.1% were made in an only previously or afterwards covered area, 13.4%

movements were flown in an area not covered at all. 42 of the 60 aircraft considered here were

uncovered by a TFR at least once within the observed three months.

For higher accuracy, it would be applicable to involve all airspace classes: A flight considered

uncovered so far may have been conducted in a controlled airspace (categories “B”, “C”, “D”, compare

Figure 28) close to an airport. There, it is air traffic control taking care of aircraft separation. And UAS

pilots have to acquire permission to fly there.

53

6.4. Concerning Completeness of TFR-Fire-Correspondence
Fire cluster data from OroraTech can be considered not entirely complete but dense enough for this

research with only 3 TFRs not related. With the provided information, the cause can be investigated.

Example:

For the assumed fire in Seattle FIR (ZSE) in Oregon, 22 nautical miles south of Medford, meteorological

data from the nearest airport (KMFR, Rogue Valley International-Medford Airport) can be retrieved

via ogimet.com:

http://www.ogimet.com/display_metars2.php?lang=en&lugar=KMFR&tipo=ALL&ord=REV&nil=SI&f

mt=html&ano=2021&mes=07&day=31&hora=08&anof=2021&mesf=08&dayf=01&horaf=20&minf=5

9&send=send

With skies being “CLR” most of the time around TFR issue time, cloud cover will not be the reason for

probably missing a fire with satellite detection. Satellite orbits can be checked next then.

6.5. Prospect of future Work and Data Application
All in all, this research copes with two kinds of linkage problems: Neither are consecutive TFRs linked

in any way with each other, nor are the causative events connected to one or more TFRs. The question

can be raised, whether a higher percentage of aerial firefighter movements could be conducted under

coverage of an appropriate TFR, if a consistent database of fire events was involved into the TFR

creation process. From a research perspective, it would be a good reason to link wildfire TFRs to

OroraTech´s fire cluster identifiers right from the start: This would enable for more detailed research

as well as for managing wildfire TFRs. Satellite data can serve as uniform source for monitoring

airspace restrictions. This does already seem reasonable with the current satellite data available: Out

of the 240 fires for which a first TFR got identified, 214 fires (89%) had been detected by the Wildfire

Service before a TFR was issued, at least with the applied model parameters. Yet, not all fires were

covered by the Wildfire Service as fast as some TFRs got issued. But the cube satellites that will be

launched in the future are expected to improve data density a lot.

Improved satellite fire monitoring can have indirect impact on airspace management for aerial

firefighting. The satellite data is supposed to help simulating fires like Mutthulakshmi et al. (2020) did.

This, in turn, helps improving fire fighting strategies. Additionally, TFRs could be issued based on fire

spread forecasts one day.

To improve the situation of the coverage quality of the TFRs, one could check the radius size of the

circular TFRs, whether the detected issues occur statistically accumulated at certain, especially small

radius sizes (e.g., below the recommended 5 NM minimum).

Considering the number of aircraft, a sample size of currently 60 could be increased to gather more

robust results. At least the result set narrows down a list to probably start a case study, contacting the

companies and authorities the 60 aircraft belong to. The operations from state vector exploration

(4.2.3.2) are worth being put into a script as well. Another GIS approach could be the following:

Excluding the issue with ADS-B blind areas for low flying aircraft over structured terrain for a moment,

findings from Olive et al. (2020) could be used to identify actually fire fighting aircraft even more

precisely from the results gathered by this thesis.

If the overall TFR creation process has to stay as is, at least an automatic fill out of the TFR request

form could be designed: https://www.nwcg.gov/sites/default/files/committee/docs/iasc-

interagency-tfr-request-form.pdf

http://www.ogimet.com/display_metars2.php?lang=en&lugar=KMFR&tipo=ALL&ord=REV&nil=SI&fmt=html&ano=2021&mes=07&day=31&hora=08&anof=2021&mesf=08&dayf=01&horaf=20&minf=59&send=send
http://www.ogimet.com/display_metars2.php?lang=en&lugar=KMFR&tipo=ALL&ord=REV&nil=SI&fmt=html&ano=2021&mes=07&day=31&hora=08&anof=2021&mesf=08&dayf=01&horaf=20&minf=59&send=send
http://www.ogimet.com/display_metars2.php?lang=en&lugar=KMFR&tipo=ALL&ord=REV&nil=SI&fmt=html&ano=2021&mes=07&day=31&hora=08&anof=2021&mesf=08&dayf=01&horaf=20&minf=59&send=send
https://www.nwcg.gov/sites/default/files/committee/docs/iasc-interagency-tfr-request-form.pdf
https://www.nwcg.gov/sites/default/files/committee/docs/iasc-interagency-tfr-request-form.pdf

54

OroraTech´s Wildfire Service provides more data attributes than used here. One is the fire radiative

power. Using this data, another potential research goal can be, whether and when it can be foreseen,

if aerial firefighting becomes necessary for a fire pattern.

For the future, there is room for improvement in airspace restriction for aerial firefighting and data

from OroraTech can foster both, further research and TFR management, and thus enhance aviation

safety.

55

7. References
Barmpoutis, P., Papaioannou, P., Dimitropoulos, K., & Grammalidis, N. (2020). A Review on Early

Forest Fire Detection Systems Using Optical Remote Sensing. Sensors, 20(22), 6442.

https://doi.org/10.3390/s20226442

Crowley, M. A., Cardille, J. A., White, J. C., & Wulder, M. A. (2019). Multi-sensor, multi-scale,

Bayesian data synthesis for mapping within-year wildfire progression. Remote Sensing

Letters, 10(3), 302–311. https://doi.org/10.1080/2150704X.2018.1536300

de Almeida Pereira, G. H., Fusioka, A. M., Nassu, B. T., & Minetto, R. (2021). Active fire detection in

Landsat-8 imagery: A large-scale dataset and a deep-learning study. ISPRS Journal of

Photogrammetry and Remote Sensing, 178, 171–186.

https://doi.org/10.1016/j.isprsjprs.2021.06.002

European Commission. (n.d.-a). Copernicus EMS - EFFIS - Active Fire Detection. Retrieved March 24,

2021, from https://effis.jrc.ec.europa.eu/about-effis/technical-background/active-fire-

detection

European Commission. (n.d.-b). Copernicus EMS - EFFIS - Brief History. Retrieved March 30, 2021,

from https://effis.jrc.ec.europa.eu/about-effis/brief-history

FAA. (2021, December 2). ENR 5.1 Prohibited, Restricted, and Other Areas. Aeronautical Information

Publication.

https://www.faa.gov/air_traffic/publications/atpubs/aip_html/part2_enr_section_5.1.html

FAA. (2022a, March 21). 14 CFR 91.137—Temporary flight restrictions in the vicinity of

disaster/hazard areas. https://www.ecfr.gov/current/title-14/chapter-I/subchapter-F/part-

91/subpart-B/subject-group-ECFRe4c59b5f5506932/section-91.137

FAA. (2022b, June 2). 14 CFR 91.155—Basic VFR weather minimums.

https://www.ecfr.gov/current/title-14/chapter-I/subchapter-F/part-91/subpart-B/subject-

group-ECFR4d5279ba676bedc/section-91.155

56

FAA National Headquarters. (2021, December 2). FAA Order 7930.2S.

https://www.faa.gov/air_traffic/publications/atpubs/notam_html/

Giglio, L., Schroeder, W., & Justice, C. O. (2016). The collection 6 MODIS active fire detection

algorithm and fire products. Remote Sensing of Environment, 178, 31–41.

https://doi.org/10.1016/j.rse.2016.02.054

Graser, A. (2019). MovingPandas: Efficient Structures for Movement Data in Python. GI_Forum 2019,

Volume 7, 54–68. https://doi.org/10.1553/giscience2019_01_s54

Graser, A., & Dragaschnig, M. (2020). Exploring movement data in notebook environments. 5.

Hall, J. V., Zhang, R., Schroeder, W., Huang, C., & Giglio, L. (2019). Validation of GOES-16 ABI and

MSG SEVIRI active fire products. International Journal of Applied Earth Observation and

Geoinformation, 83, 101928. https://doi.org/10.1016/j.jag.2019.101928

Hantson, S., Padilla, M., Corti, D., & Chuvieco, E. (2013). Strengths and weaknesses of MODIS

hotspots to characterize global fire occurrence. Remote Sensing of Environment, 131, 152–

159. https://doi.org/10.1016/j.rse.2012.12.004

Hoeft, R. M., Kochan, J. A., & Jentsch, F. (2005). A Human Factors Analysis of the Current U.S. Notices

to Airmen (NOTAM) System. The International Journal of Aviation Psychology, 15(1), 91–109.

https://doi.org/10.1207/s15327108ijap1501_5

Kluyver, T., Ragan-Kelley, B., Perez, F., Granger, B., Bussonnier, M., Frederic, J., Kelley, K., Hamrick, J.,

Grout, J., Corlay, S., Ivanov, P., Avila, D., Abdalla, S., Willing, C., & [Unknown, J. (2016,

January 1). Jupyter Notebooks – a publishing format for reproducible computational

workflows.

Knox, E. G., & Bartlett, M. S. (1964). The Detection of Space-Time Interactions. Journal of the Royal

Statistical Society. Series C (Applied Statistics), 13(1), 25–30.

https://doi.org/10.2307/2985220

Lilly, B., Cetinkaya, D., & Durak, U. (2021). Tracking Light Aircraft with Smartphones at Low Altitudes.

Information, 12(3), 105. https://doi.org/10.3390/info12030105

57

Martin, J., & Hillen, T. (2016). The Spotting Distribution of Wildfires. Applied Sciences, 6(6), 177.

https://doi.org/10.3390/app6060177

Mutthulakshmi, K., Wee, M. R. E., Wong, Y. C. K., Lai, J. W., Koh, J. M., Acharya, U. R., & Cheong, K. H.

(2020). Simulating forest fire spread and fire-fighting using cellular automata. Chinese

Journal of Physics, 65, 642–650. https://doi.org/10.1016/j.cjph.2020.04.001

National Wildfire Coordinating Group. (2018). NWCG Standards for Airspace Coordination. 171.

National Wildfire Coordinating Group. (2022a, January). NWCG Standards for Aerial Supervision.

https://www.nwcg.gov/publications/505

National Wildfire Coordinating Group. (2022b). NWCG Fire Traffic Area (FTA).

https://www.nwcg.gov/sites/default/files/publications/pms-505d.pdf

Olive, X., Sun, J., Lafage, A., & Basora, L. (2020). Detecting Events in Aircraft Trajectories: Rule-Based

and Data-Driven Approaches. Proceedings, 59(1), 8.

https://doi.org/10.3390/proceedings2020059008

Ostermann, F., Nüst, D., Granell, C., Hofer, B., & Konkol, M. (2020). Reproducible Research and

GIScience: An evaluation using GIScience conference papers [Preprint]. Geographic

Information Sciences. https://doi.org/10.31223/X5ZK5V

Robertson, C., Nelson, T. A., Boots, B., & Wulder, M. A. (2007). STAMP: Spatial–temporal analysis of

moving polygons. Journal of Geographical Systems, 9(3), 207–227.

Schroeder & Giglio. (2017). Visible Infrared Imaging Radiometer Suite (VIIRS) 750 m

Active Fire Detection and Characterization Algorithm Theoretical

 Basis Document 1.0. NASA.

https://viirsland.gsfc.nasa.gov/PDF/VIIRS_activefire_750m_ATBD.pdf

Schroeder, W., Oliva, P., Giglio, L., & Csiszar, I. A. (2014). The New VIIRS 375m active fire detection

data product: Algorithm description and initial assessment. Remote Sensing of Environment,

143, 85–96. https://doi.org/10.1016/j.rse.2013.12.008

58

Schroeder, W., Oliva, P., Giglio, L., Quayle, B., Lorenz, E., & Morelli, F. (2016). Active fire detection

using Landsat-8/OLI data. Remote Sensing of Environment, 185, 210–220.

https://doi.org/10.1016/j.rse.2015.08.032

Tang, Y., Zhong, S., Luo, L., Bian, X., Heilman, W. E., & Winkler, J. (2015). The Potential Impact of

Regional Climate Change on Fire Weather in the United States. Annals of the Association of

American Geographers, 105(1), 1–21. https://doi.org/10.1080/00045608.2014.968892

US EPA, O. (2021, April). Climate Change Indicators: Wildfires [Reports and Assessments].

https://www.epa.gov/climate-indicators/climate-change-indicators-wildfires

USDA, Forest Service. (2021). Interagency Aviation Information Bulletin No. IA IB 21-06.

USDA FOREST SERVICE, DEPARTMENT OF INTERIOR. (1998). NATIONAL STUDY OF TACTICAL AERIAL

RESOURCE MANAGEMENT TO SUPPORT INITIAL ATTACK AND LARGE FIRE SUPPRESSION.

https://www.fs.usda.gov/sites/default/files/media_wysiwyg/tarms.pdf

Wooster, M. J., Xu, W., & Nightingale, T. (2012). Sentinel-3 SLSTR active fire detection and FRP

product: Pre-launch algorithm development and performance evaluation using MODIS and

ASTER datasets. Remote Sensing of Environment, 120, 236–254.

https://doi.org/10.1016/j.rse.2011.09.033

Wotton, B. M., Flannigan, M. D., & Marshall, G. A. (2017). Potential climate change impacts on fire

intensity and key wildfire suppression thresholds in Canada. Environmental Research Letters,

12(9), 095003. https://doi.org/10.1088/1748-9326/aa7e6e

YUAN, M. (1997). Use of knowledge acquisition to build wildfire representation in Geographical

Information Systems. International Journal of Geographical Information Science, 11(8), 723–

746. https://doi.org/10.1080/136588197242059

59

8. Appendix

8.1. GitHub
It is planned to provide access to code via GitHub at

https://github.com/weatherfire/Master-Thesis

8.2. Scripts and Code
VBA, Power Queries and Python were used in this thesis.

A word on Python:

Python 3.10.4 was used and managed via Anaconda conda 4.12.0.

From Anaconda Prompt, the first module installed: Geopandas requires

(ENVIRONMENT) C:\PATH>conda config --env --add channels conda-forge

(ENVIRONMENT) C:\PATH>conda config --env --set channel_priority strict

(ENVIRONMENT) C:\PATH>conda install python=3 geopandas

Installation of other imported modules is straightforward via

conda install -c conda-forge MODULENAME

PyCharm (https://www.jetbrains.com/pycharm/) and Jupyter Notebooks (https://jupyter.org/) were

used for development and documentation here. The latter can be installed via coda as well. A .bat

file can be created as “desktop starter” with the following (example) content:

call C:\anaconda3\Scripts\activate ENVIRONMENT

jupyter notebook

Python code converted from Jupyter Notebooks is available here while it is recommended to visit

the original at GitHub.

pandoc jupyter_file.ipynb -s -o new_word_file.docx is used to append

readable and copyable Jupyter Notebook content here (except for

Aircraft_ovr_fires_to_trajectories.ipynb).

https://github.com/weatherfire/Master-Thesis
https://www.jetbrains.com/pycharm/
https://jupyter.org/

60

8.2.1. Relating 4.1.4, The Study Area as FIRs
The study area gets retrieved by Get_FIRs_as_WKT.ipynb as Code 1, with omitted code parts (~60

pages WKT) indicated by […].

A script to be run in ArcGIS Pro to gather WKT from FIR feature class

Printing feature classes in the current gdb helps what to choose in the next step

for fc in arcpy.ListFeatureClasses():
 print(fc)

_25811702_2022_01_24_22_36_14
_25811702_2022_01_24_22_36_14_MultipleRingBuffer
FIRs_NA_3line_FeatureToPolyg
FIRs_FeatureToPolyg
FIRs_Boundary
FIRs_FeatureToPolyg_Dissolve

Iterating through the feature class enables for either one (Boundary of all FIRs) or multiple
WKT outputs

 for row in arcpy.da.SearchCursor("FIRs_FeatureToPolyg_Dissolve", ["OID@",
"SHAPE@WKT"]):
 # Print feature ID
 print("FIRs_FeatureToPolyg_Dissolve", " Feature {}:".format(row[0]))
 # Print geometry as WKT
 print (row[1])

FIRs_FeatureToPolyg_Dissolve Feature 1:
MULTIPOLYGON (((-95.146720886059995 49.380138397369194, […], -95.146720886
059995 49.380138397369194)))

 for row in arcpy.da.SearchCursor("FIRs_FeatureToPolyg", ["OID@", "SHAPE@W
KT"]):
 # Print feature ID
 print("FIRs_FeatureToPolyg", " Feature {}:".format(row[0]))
 # Print geometry as WKT
 print (row[1])

FIRs_FeatureToPolyg Feature 1:
MULTIPOLYGON (((-91.308334351049439 31.912502288949554, […], -91.308334351
049439 31.912502288949554)))
FIRs_FeatureToPolyg Feature 2:
MULTIPOLYGON (((-95.366569519467703 35.871002197293649, […], -95.366569519
467703 35.871002197293649)))
FIRs_FeatureToPolyg Feature 3:
MULTIPOLYGON (((-101.74999999980014 36.500000000000057, […], -101.74999999
980014 36.500000000000057)))
FIRs_FeatureToPolyg Feature 4:
MULTIPOLYGON (((-113.71666717524988 37.799999236575559, […], -113.71666717
524988 37.799999236575559)))
FIRs_FeatureToPolyg Feature 5:
MULTIPOLYGON (((-89.750000000399666 40.000000000199918, […], -89.750000000
399666 40.000000000199918)))
FIRs_FeatureToPolyg Feature 6:

61

MULTIPOLYGON (((-121.25000000039967 41.000000000000057, […], -121.25000000
039967 41.000000000000057)))
FIRs_FeatureToPolyg Feature 7:
MULTIPOLYGON (((-104.2500000001998 45.116668701099741, […], -104.250000000
1998 45.116668701099741)))
FIRs_FeatureToPolyg Feature 8:

MULTIPOLYGON (((-114.32132720998271 49.000835418220049, […], -114.32132720
998271 49.000835418220049)))

FIRs_FeatureToPolyg Feature 9:
MULTIPOLYGON (((-122.20121765177316 49.002441405946172, […], -122.20121765
177316 49.002441405946172)))

FIRs_FeatureToPolyg Feature 10:
MULTIPOLYGON (((-95.150306701592967 49.382999420486897, […], -95.150306701
592967 49.382999420486897)))

Code 1 Get_FIRs_as_WKT.ipynb to be run in ArcGIS Pro to gather WKT from FIR feature class

8.2.2. Relating 4.2.1, From Text to GeoJSON
Downloaded Excel files are turned to clean TFR lists by VBA (Code 2). After running VBA, Power

Queries used to “concatenate” the per-day-lists to per-FIR-results (Code 3, Code 4). The Jupyter

Notebook Fire_NOTAM_to_spatial.ipynb (Code 5) contains everything else to turn the TFR texts

from Excel to a GeoJSON.

 Sub Clean_TFR_List_RunOnAllFilesInFolder()

 'Prerequisite: Set a reference to Microsoft Scripting Runtime by using

 'Tools > References in the Visual Basic Editor (Alt+F11)

 Dim strFolderName As String, eApp As Excel.Application, strFileName As String

 Dim wb As Workbook, ws As Worksheet, currWs As Worksheet, currWb As Workbook

 Dim objFileDialog As Object: Set objFileDialog =

Application.FileDialog(msoFileDialogFolderPicker)

 'variables for FileSystemObject (FSO) loop

 Dim objFSO As FileSystemObject

 Dim objFolder As Folder

 Dim objFile As File

 'start from this macro containing Workbook

 Set currWb = ActiveWorkbook: Set currWs = ActiveSheet

 'Select dialog: Folder in which all files are stored; start in path of this

macro containing Workbook

 objFileDialog.Title = "Select a folder"

 objFileDialog.InitialFileName = currWb.Path

 If objFileDialog.Show = -1 Then

 strFolderName = objFileDialog.SelectedItems(1)

 End If

 'Create an instance of the FSO

 Set objFSO = CreateObject("Scripting.FileSystemObject")

 'Get the selected folder from dialog to obj

 Set objFolder = objFSO.GetFolder(strFolderName)

62

 'If selected folder does not contain files, exit the sub

 If objFolder.Files.Count = 0 Then

 MsgBox "No files were found...", vbExclamation

 Exit Sub

 End If

 'Create a separate Excel process that is invisibile

 Set eApp = New Excel.Application: eApp.Visible = False

 'No "Do While" with Dir possible as Dir content is subject to change,

 'so NO strFileName = Dir(strFolderName & "*.xls")

 'and NO Do While strFileName <> ""

 'BUT: Loop through each file in the folder using For / FSO

 For Each objFile In objFolder.Files

 'Update status bar to indicate progress

 Application.StatusBar = "Processing " & strFolderName

 'Open new Workbook to contain cleaned data

 Set wb = eApp.Workbooks.Open(strFolderName + "\" + objFile.Name)

 ' Core task to clean TFR list

 ' Compose a filename from location and date, clear top 4 lines, save

as... and log what has been saved

 ' From this Excel Workbook: Path to logfile and data storage:

/K***/***_YYYY_MM_DD.xls

 ' Keyboard Shortcut: Can be defined personally via GUI

 'Create variables from target (= to be cleaned) Workbook top line

 'That range contains 3 letter location and date of TFRs being

valid/requested

 Dim strFilenameLoc As String

 strFilenameLoc = wb.ActiveSheet.Range("A1").Value

 Dim strFilenameDat As String

 strFilenameDat = wb.ActiveSheet.Range("A1").Value

 'Set the later path to data storage

 Dim strPath As String

 'Fetch datetime for logfile

 Dim strLogtime As String

 strLogtime = Now

 'Get 3 letter location behind '

 strFilenameLoc = Right(Left(strFilenameLoc, (InStr(strFilenameLoc, "'")

+ 3)), 3)

 'Start search for date (of TFRs being valid/requested) behind the

location

 strFilenameDat = Replace(strFilenameDat, "'" + strFilenameLoc + "'",

"")

 strFilenameDat = Right(Left(strFilenameDat, (InStr(strFilenameDat, "'")

+ 10)), 10)

 'Create path when filenames are properly set

 strPath = ThisWorkbook.Path + "\K" + strFilenameLoc

 'Write location and datetime to a log

 Call Module1.Txt_Append(ThisWorkbook.Path + "\VBA_Log.txt", strLogtime

+ " : " + strFilenameLoc + ", " + strFilenameDat)

 'clean row 1-4, select top left cell of target wb

 wb.ActiveSheet.Rows("1:4").Delete

 wb.ActiveSheet.Range("A1").Select

63

 'Make directory K*** if none exists for the current file

 If Len(Dir(strPath, vbDirectory)) = 0 Then

 MkDir strPath

 MsgBox "Directory Created Successfully : " & vbCrLf & strPath,

vbInformation, "VBA MkDir Function"

 End If

 'Save target wb

 wb.SaveAs fileName:=strPath + "\" + strFilenameLoc + "_" +

strFilenameDat + ".xls" _

 , FileFormat:=xlExcel8, Password:="", WriteResPassword:="", _

 ReadOnlyRecommended:=False, CreateBackup:=False

 'Close opened worbook w/o saving

 wb.Close SaveChanges:=False

 Debug.Print "Processed "; strFolderName + "\" + objFile.Name

 'End of loop

 Next objFile

 'Quit invisible Excel process

 eApp.Quit

 Set eApp = Nothing

 'Clear statusbar and inform of macro completion

 Application.StatusBar = ""

 MsgBox "Completed executing macro on all workbooks"

End Sub

'--

' Procedure : Txt_Append

' Author : Daniel Pineault, CARDA Consultants Inc.

' Website : http://www.cardaconsultants.com

' Purpose : Output Data to an external file (*.txt or other format)

' If the file does not exist already it will be created automatically

' ***Do not forget about access' DoCmd.OutputTo Method for

' exporting objects (queries, report,...)***

' Copyright : The following is release as Attribution-ShareAlike 4.0 International

' (CC BY-SA 4.0) - https://creativecommons.org/licenses/by-sa/4.0/

'

' Input Variables:

' ~~~~~~~~~~~~~~~~

' sFile : Name of the file that the text is to be output to including the full

path

' sText : Text to be output to the file

'

' Usage:

' ~~~~~~

' Call Txt_Append("C:\temp\text.txt", "This is a new appended line of text.")

'

' Revision History:

' Rev Date(yyyy/mm/dd) Description

'

' 1 2011-06-16 Initial Public Release

' 2 2018-02-24 Updated Copyright

' Updated error handler

'--

Function Txt_Append(sFile As String, sText As String)

 On Error GoTo Err_Handler

 Dim iFileNumber As Integer

 iFileNumber = FreeFile ' Get unused file number

 Open sFile For Append As #iFileNumber ' Connect to the file

64

 Print #iFileNumber, sText ' Append our string

 Close #iFileNumber ' Close the file

Exit_Err_Handler:

 Exit Function

Err_Handler:

 MsgBox "The following error has occurred" & vbCrLf & vbCrLf & _

 "Error Number: " & Err.Number & vbCrLf & _

 "Error Source: Txt_Append" & vbCrLf & _

 "Error Description: " & Err.Description & _

 Switch(Erl = 0, "", Erl <> 0, vbCrLf & "Line No: " & Erl) _

 , vbOKOnly + vbCritical, "An Error has Occurred!"

 GoTo Exit_Err_Handler

End Function

Code 2 VBA to acquire clean TFR lists from downloaded Excel files

65

let

 Source = Folder.Files("D:\UNIGIS\MASTER\CreatedData\TFR\KZLC"),

 #"Filtered Hidden Files1" = Table.SelectRows(Source, each

[Attributes]?[Hidden]? <> true),

 #"Invoke Custom Function1" = Table.AddColumn(#"Filtered Hidden Files1",

"Transform File", each #"Transform File"([Content])),

 #"Renamed Columns1" = Table.RenameColumns(#"Invoke Custom Function1", {"Name",

"Source.Name"}),

 #"Removed Other Columns1" = Table.SelectColumns(#"Renamed Columns1",

{"Source.Name", "Transform File"}),

 #"Expanded Table Column1" = Table.ExpandTableColumn(#"Removed Other Columns1",

"Transform File", Table.ColumnNames(#"Transform File"(#"Sample File"))),

 #"Changed Type" = Table.TransformColumnTypes(#"Expanded Table

Column1",{{"Source.Name", type text}, {"Location", type text}, {"NOTAM #", type

text}, {"Class", type text}, {"Issue Date (UTC)", type text}, {"Effective Date

(UTC)", type text}, {"Cancel Date (UTC)", type text}, {"Expiration Date (UTC)",

type text}, {"NOTAM Condition or LTA Subject", type text}}),

 #"Removed Duplicates" = Table.Distinct(#"Changed Type", {"NOTAM #"}),

 #"Replaced Value" = Table.ReplaceValue(#"Removed

Duplicates",".xls","",Replacer.ReplaceText,{"Source.Name"}),

 #"Renamed Columns" = Table.RenameColumns(#"Replaced Value",{{"Source.Name",

"Source"}})

in

 #"Renamed Columns"

Code 3 Power Queries code to be run when columns are recognized correctly. The Source path will need to get changed if
reproduced!

let

 Source = Folder.Files("D:\UNIGIS\MASTER\CreatedData\TFR\KZLC"),

 #"Filtered Hidden Files1" = Table.SelectRows(Source, each

[Attributes]?[Hidden]? <> true),

 #"Invoke Custom Function1" = Table.AddColumn(#"Filtered Hidden Files1",

"Transform File", each #"Transform File"([Content])),

 #"Renamed Columns1" = Table.RenameColumns(#"Invoke Custom Function1", {"Name",

"Source.Name"}),

 #"Removed Other Columns1" = Table.SelectColumns(#"Renamed Columns1",

{"Source.Name", "Transform File"}),

 #"Expanded Table Column1" = Table.ExpandTableColumn(#"Removed Other Columns1",

"Transform File", Table.ColumnNames(#"Transform File"(#"Sample File"))),

 #"Changed Type" = Table.TransformColumnTypes(#"Expanded Table

Column1",{{"Source.Name", type text}, {"Column1", type text}, {"Column2", type

text}, {"Column3", type text}, {"Column4", type text}, {"Column5", type text},

{"Column6", type text}, {"Column7", type text}, {"Column8", type text}}),

 #"Removed Duplicates" = Table.Distinct(#"Changed Type", {"Column2"}),

 #"Promoted Headers" = Table.PromoteHeaders(#"Removed Duplicates",

[PromoteAllScalars=true]),

 #"Changed Type1" = Table.TransformColumnTypes(#"Promoted Headers",{{"ZLC_2021-

08-01.xls", type text}, {"Location", type text}, {"NOTAM #", type text}, {"Class",

type text}, {"Issue Date (UTC)", type text}, {"Effective Date (UTC)", type text},

{"Cancel Date (UTC)", type text}, {"Expiration Date (UTC)", type text}, {"NOTAM

Condition or LTA Subject", type text}}),

 #"Renamed Columns" = Table.RenameColumns(#"Changed Type1",{{"ZLC_2021-08-

01.xls", "Source"}}),

 #"Replaced Value" = Table.ReplaceValue(#"Renamed

Columns",".xls","",Replacer.ReplaceText,{"Source"})

in

 #"Replaced Value"

Code 4 Power Queries code to be run when columns are not recognized correctly. The Source path AND “ZLC” location
indicator occurrences will need to get changed if reproduced!

66

A Python 3 Script to extract coordinates and radius (if present) from a TFR list and turn them into
GeoJSON

import pandas as pd
import re
import geopandas as gpd
from shapely.geometry import Point, Polygon, LineString

ZDV : AS4 NM RADIUS, ZHU FIREFIGHTING <-are no wild fire related TFR but NTL DEFENCE AIRSPACE,
ZKC has no FIRE FIGHTING at all

##specify file location and name
#3 letter location indicator, reused within all created files
#possible values: ZAB ZDV ZFW ZHU ZKC ZLA ZLC ZMP ZOA ZSE
tfr =r"ZSE"
#path and filename
path=r"D:\UNIGIS\MASTER\CreatedData\TFR\\"
tfr_list = tfr + r"_2021_All_Aug-Oct_revisited.xlsx"

#read the Excel Workbook
df = pd.read_excel(path + tfr_list)

df

 Source Location NOTAM # Class Issue Date (UTC) \
0 ZSE_2021-08-01 ZSE 1/3680 Airspace 07/22/2021 1205
1 ZSE_2021-08-01 ZSE 1/6739 Airspace 07/10/2021 0110
2 ZSE_2021-08-01 ZSE 1/3581 Airspace 07/22/2021 0057
3 ZSE_2021-08-01 ZSE 1/7262 Airspace 07/12/2021 0114
4 ZSE_2021-08-01 ZSE 1/2358 Airspace 07/20/2021 0513
..
253 ZSE_2021-10-04 ZSE 1/7554 Airspace 10/04/2021 1448
254 ZSE_2021-10-07 ZSE 1/1515 Airspace 10/07/2021 2152
255 ZSE_2021-10-17 ZSE 1/4201 Airspace 10/17/2021 1216
256 ZSE_2021-10-17 ZSE 1/4257 Airspace 10/17/2021 1527
257 ZSE_2021-10-31 ZSE 1/0057 Airspace 10/31/2021 1603

 Effective Date (UTC) Cancel Date (UTC) Expiration Date (UTC) \
0 07/22/2021 1400 08/19/2021 0523 09/22/2021 0500
1 07/10/2021 1400 08/17/2021 0450 09/10/2021 0500
2 07/22/2021 1500 08/16/2021 0147 09/22/2021 0330
3 07/12/2021 1300 08/15/2021 1012 09/12/2021 0500
4 07/20/2021 1400 08/12/2021 0510 09/20/2021 0500
..
253 10/04/2021 1500 10/15/2021 1441 10/18/2021 0500
254 10/07/2021 2230 10/08/2021 2059 10/14/2021 1423
255 10/17/2021 1500 10/20/2021 0202 11/17/2021 0300
256 10/17/2021 1530 10/17/2021 2107 10/18/2021 0500
257 10/31/2021 1600 10/31/2021 2210 11/01/2021 0030

 NOTAM Condition or LTA Subject
0 !FDC 1/3680 ZSE MN..AIRSPACE 7NM N THOMPSON FA...
1 !FDC 1/6739 ZSE MT..AIRSPACE 9NM S OF TROY, MT...
2 !FDC 1/3581 ZSE ID..AIRSPACE 20NM SE OF LEWIST...
3 !FDC 1/7262 ZSE ID..AIRSPACE 5NM NE OF KELLOGG...

67

4 !FDC 1/2358 ZSE MT..AIRSPACE 5NM N OF TROY, MT...
.. ...
253 !FDC 1/7554 ZSE OR..AIRSPACE 24NM E OF ROSEBUR...
254 !FDC 1/1515 ZSE OR..AIRSPACE 27NM W OF SUNRIVE...
255 !FDC 1/4201 ZSE CA..AIRSPACE 35NM EAST OF CRES...
256 !FDC 1/4257 ZSE OR..AIRSPACE AURORA, OR..TEMPO...
257 !FDC 1/0057 ZSE OR..AIRSPACE CENTERVILLE, WA.....

[258 rows x 9 columns]

def get_coordinates(row):
find all substrings with 6 digits before N and 7 digits plus W = 8
 sub_coords = "\w{6}N\w{8}"
 coordinates = re.findall(sub_coords,row["NOTAM Condition or LTA Subjec
t"])
 coords_list = []
 for coord in coordinates:
 #replaces old coordinates = row["NOTAM Condition or LTA Subject"].
findall(sub_coords)
 #north
 deg_lat = coord[:2]
 min_lat = coord[2:4]
 sec_lat = coord[4:6]
 dd_lat = float(deg_lat) + float(min_lat)/60 + float(sec_lat)/(60*6
0)

 #west
 deg_lon = coord[7:10]
 min_lon = coord[10:12]
 sec_lon = coord[12:14]
 dd_lon = -1*(float(deg_lon) + float(min_lon)/60 + float(sec_lon)/(
60*60))

 coords_list.append((dd_lon,dd_lat))

 return coords_list

df["Coordinates"]=df.apply(get_coordinates,axis=1)

df["Coordinates"]

0 [(-115.26666666666667, 47.68333333333333)]
1 [(-115.9675, 48.34)]
2 [(-116.82194444444444, 46.18055555555555), (-1...
3 [(-116.21361111111112, 47.68722222222222), (-1...
4 [(-116.03888888888889, 48.638888888888886), (-...
 ...
253 [(-122.58944444444444, 43.63333333333333), (-1...
254 [(-121.75416666666666, 43.916666666666664)]
255 [(-123.38333333333334, 41.78333333333333), (-1...
256 [(-120.65, 43.800555555555555)]
257 [(-120.85, 45.7625)]
Name: Coordinates, Length: 258, dtype: object

68

def get_geometry(row):
 #transform float coordinates from get_coordinates(row)
 coords = row["Coordinates"]
 #find points
 if len(coords)==1:
 geom = Point(coords[0][0],coords[0][1])
 elif len(coords)==2:
 geom = LineString(coords)
 elif len(coords)>2:
 geom = Polygon(coords)
 else:
 geom = None

 return geom
df["geometry"] = df.apply(get_geometry,axis=1)

D:\anaconda3\envs\master_env\lib\site-packages\pandas\core\dtypes\cast.py:
122: ShapelyDeprecationWarning: The array interface is deprecated and will
no longer work in Shapely 2.0. Convert the '.coords' to a numpy array inst
ead.
 arr = construct_1d_object_array_from_listlike(values)

df["geometry"]

0 POINT (-115.26666666666667 47.68333333333333)
1 POINT (-115.9675 48.34)
2 POLYGON ((-116.82194444444444 46.1805555555555...
3 POLYGON ((-116.21361111111112 47.6872222222222...
4 POLYGON ((-116.03888888888889 48.6388888888888...
 ...
253 POLYGON ((-122.58944444444444 43.6333333333333...
254 POINT (-121.75416666666666 43.916666666666664)
255 POLYGON ((-123.38333333333334 41.7833333333333...
256 POINT (-120.65 43.800555555555555)
257 POINT (-120.85 45.7625)
Name: geometry, Length: 258, dtype: object

def get_radius(row):
 #find radius
 sub_pt_radius = "\w{1,}\\.\w{1,}NM RADIUS" ## if fraction like 1.5NM R
ADIUS is given
 sub_radius = "\w{1,}NM\sRADIUS"
 sub_wr_radius = "\w{1,}NM\nRADIUS"
 sub_spNM_radius = "\w{1,} NM RADIUS"

 #check for decimal fraction, needs to be done first, otherwise 1.5NM w
ould result in 5NM
 radius = re.findall(sub_pt_radius,row["NOTAM Condition or LTA Subject"
])

 #when there is no decimal fraction, look for most common case
 if len(radius)==0:
 radius = re.findall(sub_radius,row["NOTAM Condition or LTA Subject
"])
 else:

69

 radius = radius

 #when there is a line wrap btn NM and radius, its len is still 0 inste
ad of 1:
 if len(radius)==0:
 radius = re.findall(sub_wr_radius,row["NOTAM Condition or LTA Subj
ect"])
 else:
 radius = radius

 #when there is a space btn number and NM, its len is still 0 instead o
f 1:
 if len(radius)==0:
 radius = re.findall(sub_spNM_radius,row["NOTAM Condition or LTA Su
bject"])
 else:
 radius = radius

 #if len(radius)!=0:
 #if str(radius[0]).isdigit()==False:
 #if not all([str(i).isdigit() for i in radius]):
 #if not all(chr.isdigit() for chr in radius[0]):
 # radius = "NoNumber"
 #else:
 #radius = radius

 #so far it is 5NM RADIUS or 12NM RADIUS or 2 NM RADIUS or 1.5NM RADIUS
, so cut down to the numbers
 for chars in radius:
 #one digit
 if len(chars)==10:
 radius = chars[0]
 #two digits
 elif len(chars)==11:
 radius = chars[:2]
 #fraction
 elif len(chars)==12:
 radius = chars[:3]
 #fraction and tens (not known if any)
 elif len(chars)==13:
 radius = chars[:4]
 #everything else is erroneous:
 else:
 radius = "NotParsable"

if radius.isdigit()==False:
radius = radius+"isNoNumber"
else:
radius = radius

 return radius
df["Radius"]=df.apply(get_radius,axis=1)

70

#look at ALL rows
pd.set_option('display.max_rows', None)

print(df["Radius"])

0 6
1 5
2 []
3 []
4 []
[…]
253 []
254 5
255 []
256 4
257 3
Name: Radius, dtype: object

#with Radius being a list that causes issues during JSON export,it needs t
o get changed:
df["Radius"] =df["Radius"].astype('string')

#single numbers are needed as radius instead of list residuals
def convert_radius(row):
 radius = row["Radius"]
 if radius == "[]":
 radius = 0
 return radius
df["Radius"]=df.apply(convert_radius,axis=1)

#string has still [] as values which cannot be converted to number format,
so

df["Radius"] =df["Radius"].astype('float')

#turn radius from NM to m for buffer
def radius_to_m(row):
 radius_m = row["Radius"]*1852
 return radius_m
df["Radius_m"]=df.apply(radius_to_m,axis=1)

print(df["Radius_m"])

0 11112.0
1 9260.0
2 0.0
3 0.0
4 0.0
[…]

253 0.0
254 9260.0
255 0.0
256 7408.0
257 5556.0
Name: Radius_m, dtype: float64

71

According to National Wildfire Coordination Group (2018, p. 106), Keyphrase for aerial firefighting is
TO PROVIDE A SAFE ENVIRONMENT FOR WILDLAND FIRE FIGHTING AVIATION OPERATIONS.
PURSUANT TO 14 CFR SECTION 91.137(A)(2) TEMPORARY FLIGHT RESTRICTIONS ARE IN EFFECT. So it
is decided to serch for variations of the term "FIRE FIGHTING" to identify relevant TFRs. Edit: Using
"FIREFIGHTING" as a single word was an erroneus assumption, as this keyword is used in other types
of TFR to allow firefighting aircraft.

#get reason of the TFR / whether it was firefighting
def get_reason(row):
find all substrings with FIRE FIGHTING
 keyword = "FIRE FIGHTING"
 wr_keyword = "FIRE\nFIGHTING"
single_keyword = "FIREFIGHTING"

 #find most common case
 reason = re.findall(keyword,row["NOTAM Condition or LTA Subject"])

 #find with linewrap
 if len(reason)==0:
 reason = re.findall(wr_keyword,row["NOTAM Condition or LTA Subject
"])
 else:
 reason = reason

 #find keyword written a one word
if len(reason)==0:
reason = re.findall(single_keyword,row["NOTAM Condition or LTA S
ubject"])
else:
reason = reason

 return reason

df["Reason"]=df.apply(get_reason,axis=1)

df["Reason"]

0 [FIRE FIGHTING]
1 [FIRE\nFIGHTING]
2 [FIRE FIGHTING]
3 [FIRE\nFIGHTING]
4 [FIRE FIGHTING]
[]…
253 [FIRE FIGHTING]
254 [FIRE FIGHTING]
255 [FIRE FIGHTING]
256 []
257 []
Name: Reason, dtype: object

For some of the NOTAMs, the journey ends with the following step. Those where firefighting is not
the reason or where no geometry could be parsed are rejected. They are stored to Excel Workbooks
to enable for manual review whether the above parsing was sufficient.

72

prepare dataframe for manual sanity checks in Excel
#"Reason" contains still lists so .str.len() checks for content/emptiness
df_no_fire = df[(df["Reason"].str.len() == 0)]
df_no_fire.to_excel(tfr+"_no_fire.xlsx")

The reason to purge the non-wildfire TFRs this late is, that it might be of interest to relate them to
hotspot clusters as well (in a further research).

dataframe to proceed with: "Reason" shall not be empty
df = df[(df["Reason"].str.len() != 0)]

Then it is time to create a geodataframe from the dataframe containing only fire fighting related
TFRs.

gdf = gpd.GeoDataFrame(df, crs="EPSG:4326", geometry=df["geometry"])

prepare geodataframe for manual sanity checks in Excel
gdf_no_geom = gdf[gdf["geometry"]==None]
gdf_no_geom.to_excel(tfr+"_no_geom.xlsx")

geodataframe to proceed with: Only with geometry
gdf = gdf[gdf["geometry"]!=None]

gdf

 Source Location NOTAM # Class Issue Date (UTC) \
0 ZSE_2021-08-01 ZSE 1/3680 Airspace 07/22/2021 1205
1 ZSE_2021-08-01 ZSE 1/6739 Airspace 07/10/2021 0110
2 ZSE_2021-08-01 ZSE 1/3581 Airspace 07/22/2021 0057
3 ZSE_2021-08-01 ZSE 1/7262 Airspace 07/12/2021 0114
4 ZSE_2021-08-01 ZSE 1/2358 Airspace 07/20/2021 0513
[…]
251 ZSE_2021-09-30 ZSE 1/5525 Airspace 09/30/2021 0032
252 ZSE_2021-10-03 ZSE 1/7181 Airspace 10/03/2021 0416
253 ZSE_2021-10-04 ZSE 1/7554 Airspace 10/04/2021 1448
254 ZSE_2021-10-07 ZSE 1/1515 Airspace 10/07/2021 2152
255 ZSE_2021-10-17 ZSE 1/4201 Airspace 10/17/2021 1216

 Effective Date (UTC) Cancel Date (UTC) Expiration Date (UTC) \
0 07/22/2021 1400 08/19/2021 0523 09/22/2021 0500
1 07/10/2021 1400 08/17/2021 0450 09/10/2021 0500
2 07/22/2021 1500 08/16/2021 0147 09/22/2021 0330
3 07/12/2021 1300 08/15/2021 1012 09/12/2021 0500
4 07/20/2021 1400 08/12/2021 0510 09/20/2021 0500
[…]
251 09/30/2021 1500 09/30/2021 0050 10/10/2021 0300
252 10/03/2021 1400 10/04/2021 1459 10/17/2021 0500
253 10/04/2021 1500 10/15/2021 1441 10/18/2021 0500
254 10/07/2021 2230 10/08/2021 2059 10/14/2021 1423
255 10/17/2021 1500 10/20/2021 0202 11/17/2021 0300

 NOTAM Condition or LTA Subject \
0 !FDC 1/3680 ZSE MN..AIRSPACE 7NM N THOMPSON FA...
1 !FDC 1/6739 ZSE MT..AIRSPACE 9NM S OF TROY, MT...
2 !FDC 1/3581 ZSE ID..AIRSPACE 20NM SE OF LEWIST...

73

3 !FDC 1/7262 ZSE ID..AIRSPACE 5NM NE OF KELLOGG...
4 !FDC 1/2358 ZSE MT..AIRSPACE 5NM N OF TROY, MT...
[…]
251 !FDC 1/5525 ZSE OR..AIRSPACE 12NM NE OF DETROI...
252 !FDC 1/7181 ZSE OR..AIRSPACE 24NM E OF ROSEBUR...
253 !FDC 1/7554 ZSE OR..AIRSPACE 24NM E OF ROSEBUR...
254 !FDC 1/1515 ZSE OR..AIRSPACE 27NM W OF SUNRIVE...
255 !FDC 1/4201 ZSE CA..AIRSPACE 35NM EAST OF CRES...

 Coordinates \
0 [(-115.26666666666667, 47.68333333333333)]
1 [(-115.9675, 48.34)]
2 [(-116.82194444444444, 46.18055555555555), (-1...
3 [(-116.21361111111112, 47.68722222222222), (-1...
4 [(-116.03888888888889, 48.638888888888886), (-...
[…]
251 [(-122.0375, 44.875)]
252 [(-122.60833333333333, 43.63333333333333), (-1...
253 [(-122.58944444444444, 43.63333333333333), (-1...
254 [(-121.75416666666666, 43.916666666666664)]
255 [(-123.38333333333334, 41.78333333333333), (-1...

 geometry Radius Radius_m
\
0 POINT (-115.26667 47.68333) 6.0 11112.0
1 POINT (-115.96750 48.34000) 5.0 9260.0
2 POLYGON ((-116.82194 46.18056, -116.73333 46.1... 0.0 0.0
3 POLYGON ((-116.21361 47.68722, -115.82139 47.7... 0.0 0.0
4 POLYGON ((-116.03889 48.63889, -115.79444 48.6... 0.0 0.0
[…]
251 POINT (-122.03750 44.87500) 6.0 11112.0
252 POLYGON ((-122.60833 43.63333, -122.46667 43.6... 0.0 0.0
253 POLYGON ((-122.58944 43.63333, -122.46667 43.6... 0.0 0.0
254 POINT (-121.75417 43.91667) 5.0 9260.0
255 POLYGON ((-123.38333 41.78333, -123.10000 41.7... 0.0 0.0

 Reason
0 [FIRE FIGHTING]
1 [FIRE\nFIGHTING]
2 [FIRE FIGHTING]
3 [FIRE\nFIGHTING]
4 [FIRE FIGHTING]
[…]
251 [FIRE FIGHTING]
252 [FIRE FIGHTING]
253 [FIRE FIGHTING]
254 [FIRE FIGHTING]
255 [FIRE FIGHTING]

#add possibility to check in an Excel Workbook
gdf.to_excel(tfr+"_excel_check_fire_TFRs.xlsx")

List columns "Coordinates" and "Reason" are no longer needed (and would only disturb GeoJSON
creation) and become omitted.

74

#geodataframe shall use these columns
gdf= gdf[["Source","Location", "NOTAM #", "Issue Date (UTC)", "Effective D
ate (UTC)", "Cancel Date (UTC)", "Expiration Date (UTC)", "NOTAM Condition
or LTA Subject","Radius","Radius_m","geometry"]]

#prepare buffer
gdf_buffered = gdf.copy()
gdf_buffered = gdf_buffered.to_crs("EPSG:2163")

#do buffer by radius: SHOULD be 0 for polygons, do it for all like this is
FAST
gdf_buffered["geometry"] = gdf_buffered.buffer(gdf["Radius_m"], resolution
=16)

#create geojson of gdf, points and polygons
#gdf.to_file(filename='gdf_first.geojson', driver='GeoJSON')

#create geojson of gdf_buffered, just polygons
#back to WGS84 for geojson creation
gdf_buffered = gdf_buffered.to_crs("EPSG:4326")
gdf_buffered.to_file(filename= tfr+'_fire_TFRs.geojson', driver='GeoJSON')

D:\anaconda3\envs\master_env\lib\site-packages\geopandas\io\file.py:362: F
utureWarning: pandas.Int64Index is deprecated and will be removed from pan
das in a future version. Use pandas.Index with the appropriate dtype inste
ad.
 pd.Int64Index,

#shape file of course only works with uniform geometries
#gdf_buffered.to_file('tfr+'fire_TFRs.shp', driver='ESRI Shapefile')

#plot result into new window
%matplotlib qt
world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))
world = world.to_crs("EPSG:4326")
ax = world[world.continent == 'North America'].plot(
 color='white', edgecolor='black')
gdf_buffered.plot(ax=ax, color='red')

<AxesSubplot:>

Code 5 Jupyter Notebook “Fire_NOTAM_to_spatial.ipynb”

75

8.2.3. Relating 4.2.3, Exploring the Datasets
Adding TFRs from GeoJSON is achieved by Add_TFRs_from_geojson.ipynb shown by Code 6.

For 4.2.3.2 the state vectors are converted to GeoJSON format by Aircraft_States_to_GeoJSON.ipynb

(Code 7). Moving Pandas trajectories are built by Aircraft_ovr_fires_to_trajectories.ipynb ().

A script to be run in ArcGIS Pro to import TFRs via JSON To Features

List with FIR location indicators is set up. Possible values in this research: ZAB ZDV ZFW (ZHU, ZKC
turn out having no fire TFRs) ZLA ZLC ZMP ZOA ZSE

list = ["ZAB", "ZDV", "ZFW", "ZLA", "ZLC", "ZMP", "ZOA", "ZSE"]

With a function, parameters are set and JSON To Features is called to add a TFR. jsonPath and
gdbPath need to become adjusted to reproduce.

def add_TFRs(indicator):
 jsonPath = r"D:\UNIGIS\MASTER\Scripts\\"
 gdbPath = r"C:\Users\someNAME\Documents\ArcGIS\Projects\somePROJECT\so
meGDB.gdb\\"

 jsonFile = jsonPath + indicator + "_fire_TFRs.geojson"
 featureClass = gdbPath + indicator + "_TFRs"

 arcpy.JSONToFeatures_conversion(jsonFile, featureClass)

With a loop the function to add TFRs is called

#loop to iterate through list
for i in range(0, len(list)):
 add_TFRs(list[i])

Code 6 Add_TFRs_from_geojson.ipynb

Script to turn aircraft state vector .csv to .geojson

import pandas as pd
import geopandas as gpd
import shapely.wkt

#read a dataframe from current directory
df = pd.read_csv('aircraft_states_north_america_20210801_20211101.csv')

#turn dataframe into geodataframe reading coordinates from df
geometry = df['coordinates'].map(shapely.wkt.loads)
df = df.drop('coordinates', axis=1)
gdf = gpd.GeoDataFrame(df, crs="EPSG:4326", geometry=geometry)

#write into .geojson into current directory
gdf.to_file('aircraft_states_north_america_20210801_20211101.geojson', dri
ver='GeoJSON')

Code 7 Aircraft_States_to_GeoJSON.ipynb

76

Turn points from aircraft over fires to trajectories

import geopandas as gpd
import movingpandas as mpd
from datetime import timedelta

INFO: Missing optional dependencies. To use the trajectory smoother classes please
install Stone Soup (see https://stonesoup.readthedocs.io/en/latest/#installation).

#read the point file
gdf = gpd.read_file('aircraft_over_fires_fmArcGIS.geojson')

#check gdf which timestamp column can be set as t=
gdf['timestamp_Converted']

0 1627779216000
1 1627779283000
2 1627779287000
3 1627779300000
4 1627779316000
 ...
75814 1635522884000
75815 1635462337000
75816 1635462359000
75817 1635462368000
75818 1635462388000
Name: timestamp_Converted, Length: 75819, dtype: int64

#create MovingPandas trajectory collection
#to record movement of single aircraft, 'aircraft_id' is used here
#as t timestamp do work converted timestamp from ArcGIS,
'timestamp_Converted' as well as the original one 'timestamp',
#where the original one 'timestamp' maintains the time in UTC
collection = mpd.TrajectoryCollection(gdf, 'aircraft_id', t='timestamp')

#create a gdf containing trajectories from collection
gdf_traj = collection.to_traj_gdf(wkt=False)

gdf_traj

 traj_id start_t end_t geometry length direction

0 a02862
2021-08-01

01:19:23

2021-10-16

16:05:49

LINESTRING (-121.10220

39.91300, -121.10920 39...
1.002747e+07 150.657437

1 a0956b
2021-08-06

18:18:07

2021-10-13

23:29:58

LINESTRING (-121.51430

44.58320, -121.13210 46...
6.297902e+06 173.665738

2 a09922
2021-08-14

21:32:03

2021-08-31

01:49:44

LINESTRING (-111.73000

40.73220, -111.71550 40...
6.284843e+05 200.934580

3 a0b782
2021-08-03

17:08:34

2021-09-14

17:31:29

LINESTRING (-121.89210

44.36120, -121.89560 44...
1.261385e+05 73.214255

4 a0bef0
2021-08-10

22:05:39

2021-09-06

02:34:34

LINESTRING (-120.95530

46.91770, -120.97130 46...
2.259979e+06 184.235095

77

 traj_id start_t end_t geometry length direction

5 a0c65e
2021-08-30

03:53:37

2021-09-13

06:48:29

LINESTRING (-120.12110

38.58380, -120.13630 38...
9.985536e+06 257.735492

6 a0f3ed
2021-08-25

22:07:43

2021-08-25

22:07:53

LINESTRING (-123.11360

45.27530, -123.10360 45...
7.846834e+02 89.996448

7 a0f927
2021-08-03

23:15:13

2021-09-18

01:12:07

LINESTRING (-121.83250

44.33680, -121.87410 44...
3.266750e+06 341.170917

8 a0fb5b
2021-09-10

21:41:15

2021-09-26

18:43:45

LINESTRING (-120.61540

38.56450, -120.62700 38...
1.499370e+05 315.431379

9 a0ff12
2021-08-02

22:10:48

2021-08-05

01:58:24

LINESTRING (-121.87880

44.34920, -121.88940 44...
4.026835e+05 42.676306

10 a1a588
2021-10-13

17:07:01

2021-10-17

17:25:18

LINESTRING (-120.18760

34.47170, -120.16920 34...
6.171132e+04 342.408073

11 a282ed
2021-08-20

21:49:44

2021-10-17

12:36:42

LINESTRING (-120.69850

38.58720, -120.67020 38...
3.821931e+06 171.810827

12 a2fd4d
2021-08-02

15:18:56

2021-09-13

01:23:39

LINESTRING (-121.32770

40.33380, -121.32940 40...
7.577057e+06 161.396908

13 a30104
2021-10-11

17:12:21

2021-10-16

00:46:15

LINESTRING (-121.36230

40.30180, -121.39370 40...
5.633138e+05 184.120264

14 a3bf4f
2021-08-11

21:49:34

2021-08-11

21:52:03

LINESTRING (-122.39900

47.12280, -122.39360 47...
6.104609e+03 107.110417

15 a3ca74
2021-09-12

00:23:02

2021-09-12

02:20:17

LINESTRING (-122.93570

45.88810, -122.96300 45...
4.913755e+04 246.660409

16 a40442
2021-08-03

23:08:59

2021-10-14

04:41:04

LINESTRING (-117.76140

34.20350, -117.75660 34...
7.814506e+05 241.064461

17 a42299
2021-08-04

01:41:34

2021-10-17

21:30:02

LINESTRING (-121.40270

39.92620, -121.40230 39...
4.731289e+06 159.276370

18 a492b8
2021-10-18

15:52:45

2021-10-18

18:41:19

LINESTRING (-114.34420

48.16330, -114.35030 48...
2.791873e+05 120.651492

19 a4966f
2021-10-18

16:25:54

2021-10-18

18:41:32

LINESTRING (-114.32540

48.16800, -114.33270 48...
1.812986e+05 181.951886

20 a4acf2
2021-08-16

19:16:44

2021-09-12

23:24:11

LINESTRING (-118.60240

36.25330, -118.59250 36...
7.074507e+06 202.099986

21 a4b0a9
2021-08-22

19:22:58

2021-09-26

20:56:23

LINESTRING (-120.47310

38.52980, -120.49440 38...
1.272255e+07 159.648604

22 a4b460
2021-08-01

00:53:36

2021-09-09

17:17:40

LINESTRING (-121.21740

39.88280, -121.14460 39...
2.211258e+06 343.485205

23 a4b817
2021-08-04

21:53:57

2021-09-09

00:12:16

LINESTRING (-120.95280

39.08800, -121.02390 39...
4.858450e+06 130.911888

24 a4c6f3
2021-09-01

01:22:04

2021-10-02

22:33:58

LINESTRING (-121.45800

40.44020, -122.25720 39...
7.243697e+05 153.866718

78

 traj_id start_t end_t geometry length direction

25 a4c98b
2021-08-03

23:09:39

2021-09-24

12:26:24

LINESTRING (-117.75340

34.20050, -117.75030 34...
9.631617e+04 240.691375

26 a4caaa
2021-08-04

21:30:56

2021-10-27

21:46:30

LINESTRING (-120.99420

39.08700, -120.99420 39...
5.393790e+06 86.293064

27 a4e34d
2021-08-18

20:37:59

2021-09-23

00:44:09

LINESTRING (-122.61040

38.91860, -122.60920 38...
4.620350e+06 169.572258

28 a4e704
2021-08-25

22:35:51

2021-10-16

18:53:43

LINESTRING (-120.47920

38.06080, -120.45560 38...
2.919233e+06 223.403402

29 a4ffa7
2021-08-03

21:48:51

2021-09-01

01:28:09

LINESTRING (-121.39860

39.96570, -121.41750 39...
5.360443e+05 20.000313

30 a5035e
2021-08-22

22:01:39

2021-10-16

01:36:45

LINESTRING (-120.46460

38.52900, -120.47240 38...
1.951424e+06 213.828551

31 a50acc
2021-08-22

22:41:32

2021-10-11

21:27:55

LINESTRING (-120.55970

38.52710, -120.56530 38...
2.169616e+06 265.636251

32 a50e83
2021-08-04

21:32:46

2021-09-05

23:52:51

LINESTRING (-120.99600

39.10270, -120.97310 39...
1.940371e+06 185.752648

33 a5123a
2021-08-04

01:25:08

2021-09-06

00:00:36

LINESTRING (-121.41000

39.97380, -121.41140 39...
8.480343e+05 164.418335

34 a515f1
2021-08-25

21:14:40

2021-08-28

23:36:35

LINESTRING (-117.40850

34.10340, -117.41120 34...
5.334256e+05 171.208530

35 a519a8
2021-10-28

23:05:37

2021-10-28

23:06:28

LINESTRING (-122.46510

38.58820, -122.49040 38...
5.372565e+03 259.862686

36 a51d5f
2021-08-25

21:47:54

2021-10-29

15:54:44

LINESTRING (-117.40350

34.11210, -117.41340 34...
4.265345e+06 323.899072

37 a5236f
2021-09-06

00:54:06

2021-10-17

21:42:18

LINESTRING (-120.23830

38.58700, -120.23270 38...
6.583527e+06 175.156592

38 a52726
2021-08-16

23:32:49

2021-10-01

01:34:43

LINESTRING (-118.55810

36.25140, -118.55450 36...
3.059477e+06 309.004251

39 a5324b
2021-08-04

01:30:29

2021-08-04

03:12:39

LINESTRING (-121.41080

39.99130, -121.45900 40...
2.343662e+04 349.953738

40 a53602
2021-08-03

21:43:10

2021-09-17

23:18:36

LINESTRING (-117.64470

34.18530, -117.65800 34...
1.651191e+06 299.393610

41 a539b9
2021-08-03

22:44:04

2021-10-01

01:34:04

LINESTRING (-117.73040

34.25670, -117.72580 34...
3.551684e+06 336.503492

42 a53d70
2021-08-03

22:20:14

2021-09-17

22:56:28

LINESTRING (-117.64110

34.20630, -117.66530 34...
2.243968e+06 300.129053

43 a54127
2021-08-24

01:58:48

2021-10-16

18:34:40

LINESTRING (-120.67330

38.62770, -120.66270 38...
8.860666e+05 207.672263

44 a5525c
2021-09-26

15:41:04

2021-09-29

17:13:09

LINESTRING (-121.79060

39.47960, -121.78390 39...
3.662780e+04 154.013136

79

 traj_id start_t end_t geometry length direction

45 a559ca
2021-08-25

21:29:28

2021-10-16

01:37:14

LINESTRING (-117.40000

34.19150, -117.40690 34...
1.800788e+06 309.871990

46 a55d81
2021-08-26

21:03:48

2021-10-16

18:40:38

LINESTRING (-120.39400

37.95540, -120.40680 37...
1.395105e+06 228.687886

47 a568a6
2021-08-12

00:20:21

2021-08-31

01:24:05

LINESTRING (-121.28690

39.39760, -121.29770 39...
2.234014e+05 345.970158

48 a5726d
2021-08-04

03:14:56

2021-08-12

01:56:49

LINESTRING (-121.45790

40.19510, -121.29500 39...
1.159681e+05 177.721672

49 a5c16b
2021-08-03

01:36:38

2021-10-02

19:11:35

LINESTRING (-122.84970

40.13060, -122.83940 40...
1.375791e+07 132.384464

50 a606a2
2021-08-03

21:42:23

2021-08-29

20:54:48

LINESTRING (-117.69120

34.21860, -117.69810 34...
7.504047e+05 99.847375

51 a61069
2021-08-12

02:31:04

2021-08-12

02:58:12

LINESTRING (-121.29760

39.40590, -121.29630 39...
3.725013e+02 162.572323

52 a61420
2021-08-29

16:22:14

2021-08-29

19:19:23

LINESTRING (-117.31650

33.55340, -117.32090 33...
1.583213e+05 184.435860

53 a622fc
2021-10-14

19:12:15

2021-10-14

19:59:05

LINESTRING (-121.59480

37.87290, -121.59270 37...
4.435463e+04 326.960015

54 a7d27a
2021-08-02

19:37:15

2021-10-14

18:27:07

LINESTRING (-122.73350

40.36620, -122.71820 40...
9.791285e+06 160.587649

55 a8401a
2021-08-11

02:08:55

2021-09-02

20:06:33

LINESTRING (-121.13500

46.88830, -121.12850 46...
2.449000e+06 84.648001

56 aade7f
2021-08-14

23:40:09

2021-09-17

23:34:40

LINESTRING (-121.52360

40.07420, -121.49750 40...
1.231389e+07 156.713496

57 ab4ea1
2021-08-03

22:52:00

2021-09-24

21:18:24

LINESTRING (-117.71900

34.17460, -117.71420 34...
4.027793e+05 246.842754

58 c01aeb
2021-08-16

01:45:42

2021-09-04

17:02:19

LINESTRING (-117.57890

47.89770, -117.59080 47...
2.702104e+05 270.914236

59 c044b4
2021-08-17

05:16:44

2021-08-17

05:18:28

LINESTRING (-120.85000

47.81790, -120.86380 47...
1.227591e+04 300.195364

#create geojson of gdf_traj
gdf_traj.to_file(filename='gdf_traj_orgTS.geojson', driver='GeoJSON')

D:\anaconda3\envs\master_env\lib\site-packages\geopandas\io\file.py:362: F
utureWarning: pandas.Int64Index is deprecated and will be removed from pan
das in a future version. Use pandas.Index with the appropriate dtype inste
ad.
 pd.Int64Index,
#split trajectories inti single flights of the aircraft, that currently
equals the trajectory id
split_collection =
mpd.ObservationGapSplitter(collection).split(gap=timedelta(hours=1))

#create a gdf containing trajectories from collection

80

gdf_split_traj = split_collection.to_traj_gdf(wkt=False)

gdf_split_traj

 traj_id start_t end_t geometry length direction

0 a02862_0
2021-08-01

01:19:23

2021-08-01

01:27:32

LINESTRING (-121.10220

39.91300, -121.10920 39...
8685.843986 39.598238

1 a02862_2
2021-08-18

00:49:23

2021-08-18

02:25:29

LINESTRING (-120.70470

38.60880, -120.70120 38...
227848.633706 42.060865

2 a02862_3
2021-08-18

16:21:45

2021-08-18

18:50:32

LINESTRING (-120.68580

38.66870, -120.67300 38...
140454.607426 59.589732

3 a02862_4
2021-08-18

20:32:18

2021-08-18

23:10:47

LINESTRING (-120.64180

38.73780, -120.61470 38...
219142.055673 196.493291

4 a02862_5
2021-08-19

00:18:44

2021-08-19

02:29:19

LINESTRING (-120.64740

38.73800, -120.63540 38...
230519.373323 199.050468

...

636 ab4ea1_1
2021-08-25

23:14:40

2021-08-25

23:56:29

LINESTRING (-117.49380

34.15960, -117.48480 34...
92901.243372 85.183535

637 ab4ea1_2
2021-08-26

01:03:10

2021-08-26

02:03:19

LINESTRING (-117.38040

34.14600, -117.38470 34...
125874.243672 280.121528

638 ab4ea1_3
2021-09-24

20:56:08

2021-09-24

21:18:24

LINESTRING (-118.14250

34.06280, -118.13680 34...
48010.499296 186.557200

639 c01aeb_0
2021-08-16

01:45:42

2021-08-16

02:36:10

LINESTRING (-117.57890

47.89770, -117.59080 47...
20018.906053 277.678108

640 c044b4_0
2021-08-17

05:16:44

2021-08-17

05:18:28

LINESTRING (-120.85000

47.81790, -120.86380 47...
12275.905919 300.195364

641 rows × 6 columns

#create geojson of gdf_split_traj
gdf_split_traj.to_file(filename='gdf_split_traj_orgTS.geojson',
driver='GeoJSON')

D:\anaconda3\envs\master_env\lib\site-packages\geopandas\io\file.py:362: F
utureWarning: pandas.Int64Index is deprecated and will be removed from pan
das in a future version. Use pandas.Index with the appropriate dtype inste
ad.
 pd.Int64Index,
End of script

Code 8 Aircraft_ovr_fires_to_trajectories.ipynb

8.2.4. Relating 4.2.4, The Time Gap between Fire Detection and TFR Issue
Get_Detection-Issue-Time_Gap.ipynb (Code 9) models the first TFR for a fire cluster and calculates

timespans. Get_Detection-Issue-Time_Gap_v2.ipynb is an alternative without API usage (visit GitHub

as of 8.1).

81

A script to get current fire detection times per TFR from Ororatech API

import requests
import json
import geopandas as gpd
import pandas as pd
import datetime as dt
from datetime import timedelta
import sys

#provide credentials for API access, obtain from Ororatech and insert here
APIkey = 'someSuperLongApiKey'

Get the current fires

A single hotspot is only contained in the API response, if its center is within the bounding

coordinates. So it is no clean solution to search for fires using TFR bounding boxes. Instead, fire

clusters and TFR polygons need to get joined first. Then, the boundary box of the fire cluster can be

used to spatially limit the area, where a time based search for hotspots being active before TFR issue

time can be performed to calculate time between fire detection and TFR being issued.

As it turned out that ARTCCs issue TFRs beyond their FIR´s boundary, the entire fire cluster dataset
has to be joined each time and will be read therefor. 'minutes' variable determines, how long it shall
be looked for fire clusters before TFR issue time.

##specify file location and name
#3 letter location indicator, reused within all created files
#possible values: ZAB ZDV ZFW ZLA ZLC ZMP ZOA ZSE; not ZKC and ZHU having
no wildfire TFRs
tfr =r"ZDV"
#paths and filenames
fire_path = r"D:\UNIGIS\MASTER\DownloadedData\WFS\\"
tfr_path = r"D:\UNIGIS\MASTER\Scripts\\"
out_path = tfr_path

fire_file = "wfs-area-export_FIRs_Boundary_08-102021_con_pt5.geojson"
tfr_file = tfr + r"_fire_TFRs.geojson"

#create geodataframes
gdf_fires = gpd.read_file(fire_path + fire_file)
gdf_tfrs = gpd.read_file(tfr_path + tfr_file)

#set minutes_bf as search period to look at before TFR issue date
minutes_bf = 1440
#set pos_delta as search period to look at after(!) TFR issue date
pos_delta = 360
#compose minutes for API request
minutes = minutes_bf + pos_delta

#set start date of observed datasets
obs_start = pd.to_datetime('2021-08-01')

#no spatial output is generated here
#result lists filename

82

 # for Anaconda / excel output xltw module is required: conda install -c a
naconda xlwt
result_list = out_path+tfr+'_afterDetectionTimes_list.csv'

print('Fires: '+str(len(gdf_fires.index)))
print('TFRs: '+str(len(gdf_tfrs.index)))

Fires: 2926
TFRs: 28

Purge old TFRs issued before observation time that can hardly match fire data:

gdf_tfrs = gdf_tfrs[pd.to_datetime(gdf_tfrs["Issue Date (UTC)"]) >= obs_st
art]

Remove old fires already burning before observation time frame (and that would otherwise most
probably get an accidentally intersecting younger TFR joined)

#sort out ongoing fires
#need to localize obs_start to compare to UTC format date
gdf_fires = gdf_fires[pd.to_datetime(gdf_fires["oldest_acquisition"]) >= o
bs_start.tz_localize('UTC') - timedelta(minutes = minutes_bf)]

print('Fires: '+str(len(gdf_fires.index)))
print('TFRs: '+str(len(gdf_tfrs.index)))

Fires: 2804
TFRs: 27

Join fire clusters and TFRs

As the fire clusters used so far represent the largest extent of the fires within the observed time
period (August to October 2021), without any temporal relation yet, the same fire may be tied to
multiple TFRs. For fires close to each other, issuing one large contiguous TFR is allowed, so the same
TFR might contain multiple fires as well. So the resulting geodataframe can contain a multiple of
rows compared to the origin.

Geopandas sjoin is "one to many" automatically. To look for intersect is expected to deliver many

fire clusters!

#perform join of gdfs
gdf_intersect = gpd.sjoin(gdf_fires, gdf_tfrs, how='inner', predicate='int
ersects')

change the global options that Geopandas inherits from if more shall be
displayed
pd.set_option('display.max_columns',None)
pd.set_option('display.max_rows',None)
#gdf_intersect

#If it is ever needed to join a join result again, index columns need to g
et renamend
#gdf_intersect.rename(columns = {'index_right':'old_index_right'}, inplace
= True)

This is one theoretical possible "exit point": If nothing intersects, then the resulting geodataframe
has 0 rows.

83

Number of intersections

print(len(gdf_intersect.index))

19

exit script with an empty result file if intersect geodataframe has 0 ro
ws
if len(gdf_intersect.index) ==0:
 gdf_intersect.to_csv(result_list, columns=['id'], header=['No data fro
m '+tfr])
 sys.exit(0)

ZDV : 20

Tasks to fill payload to get current fires:

To create a payload per fire per TFR, each time

A) bounding box coordinates and

B) a time period represented as (end) 'date' and duration in 'minutes' are needed. Thus, minutes are

specified globally above.

A) Bounding Box

The fire clusters intersecting any TFR are those to look for.

Bounding box coordinates are created and then added to the geodataframe.

Geopands´ .bounds delivers coordinates of the boundary boxes
gdf_bbox = gdf_intersect.bounds

gdf_bbox.head(2)

 minx miny maxx maxy
107 -105.994748 45.03517 -105.914179 45.093576
107 -105.994748 45.03517 -105.914179 45.093576

#just use pd.concat / axis=1 to append boundary box coordinates
gdf_intersect = pd.concat([gdf_intersect, gdf_bbox], axis=1)

#check attached columns, if needed
gdf_intersect.head(2)

 id age area \
107 19806634 125497 2.007181e+07
107 19806634 125497 2.007181e+07

 centroid num_fires confide
nce \
107 {'latitude': 45.060425, 'longitude': -105.961138} 140
1.0
107 {'latitude': 45.060425, 'longitude': -105.961138} 140
1.0

 newest_detection oldest_detection \
107 2021-08-05T23:17:12+00:00 2021-08-02T03:49:31+00:00

84

107 2021-08-05T23:17:12+00:00 2021-08-02T03:49:31+00:00

 newest_acquisition oldest_acquisition ... \
107 2021-08-05T20:22:41+00:00 2021-08-02T03:09:51+00:00 ...
107 2021-08-05T20:22:41+00:00 2021-08-02T03:09:51+00:00 ...

 Effective Date (UTC) Cancel Date (UTC) Expiration Date (UTC) \
107 08/05/2021 1400 08/07/2021 0427 09/30/2021 0400
107 08/05/2021 0015 None 08/05/2021 0400

 NOTAM Condition or LTA Subject Radius Radius_m \
107 !FDC 1/1635 ZDV MT..AIRSPACE 31NM SW OF BROADU... 7.0 12964.0
107 !FDC 1/1585 ZDV CANCELLED BY FDC 1/1659 ON 08/... 7.0 12964.0

 minx miny maxx maxy
107 -105.994748 45.03517 -105.914179 45.093576
107 -105.994748 45.03517 -105.914179 45.093576

[2 rows x 26 columns]

B) Get date(time) for the API request

The date from when the API goes back needs to get acquired as follows: 'date': '2021-08-16-0200' A
problem is that a TFR might have been issuded based on ground information while EO has not
discovered a fire yet. So a TFR dedicated to a fire cluster might have become issued also hours
before the cluster appears within Ororatech´s data.

A TFR might have been issued prior to sat acquisiton from ground knowledge. In cosequence, the API

request has to look forward as well.

#get (end)date for the API request
def get_apidate(row):

 enddate= row["Issue Date (UTC)"]

 #endate is 'MM/DD/YYYY hhmm' format (s string)
 #turn to 'YYYY-MM-DD-hhmm' format for API. Mind strftime() Directives
 enddate = pd.to_datetime(enddate,errors='coerce') + timedelta(minutes
= pos_delta)
 enddate = enddate.strftime('%Y-%m-%d-%H%M')

 apidate = enddate

 return apidate
gdf_intersect["APIdate"]=gdf_intersect.apply(get_apidate,axis=1)

gdf_intersect["APIdate"].head(2)

107 2021-08-05-0833
107 2021-08-05-0619
Name: APIdate, dtype: object

Perform the API request

85

A minimum confidence of 0.5 is recommended by Ororatech for analysis of historical data. 'select'
delivers additional columns. Here, the oldest detection time is needed for the timespan calculation
planned below. 'confidence' must be set to 0.4 as API looks for everything ABOVE and the initial
dataset followed Ororatech´s advice to use 0.5 for historical data. Additionally, the type is requested
(see 4.2.3.1)

def get_clusterPerAPI(row):
 #collect payload content per row
 xmin_pl = str(row["minx"])
 ymin_pl = str(row["miny"])
 xmax_pl = str(row["maxx"])
 ymax_pl = str(row["maxy"])

 date_pl = str(row["APIdate"])

 payload = {'xmin': xmin_pl,
 'ymin': ymin_pl,
 'xmax': xmax_pl,
 'ymax': ymax_pl,
 'minutes': minutes,
 'date': date_pl,
 'confidence': '0.4',
 'select': ['oldest_detection,oldest_acquisition,types']
,
 'token': APIkey}

 #the request:
 response = requests.get('https://app.ororatech.com/v1/clusters/',param
s=payload)

 #test request:
 #testpayload = {'xmin': '-117.86', 'ymin': '47.88', 'xmax': '-117.53',
'ymax': '48.00', 'minutes': '360', 'date': '2021-08-16-0200','confidence':
'0.5', 'token': APIkey}
 #response = requests.get('https://app.ororatech.com/v1/clusters/',para
ms=testpayload)

 data = response.json()
 #if data is not None does not help in case of an "empty" json
 #in that case, response.json() = {'type': 'FeatureCollection', 'featur
es': None}
 #would lead to an error trying to create a gdf from features
 if data != {'type': 'FeatureCollection', 'features': None}:
 #response json has its columns=['geometry', 'id', 'num_fires', 'ol
dest_detection', 'oldest_acquisition', 'types']
 gdf_local = gpd.GeoDataFrame.from_features(data)
 else:
 #else prepare an empty gdf for return
 gdf_local = gpd.GeoDataFrame()

 return gdf_local

series_of_gdfs = gdf_intersect.apply(get_clusterPerAPI,axis=1)
list_of_gdfs= series_of_gdfs.tolist()

86

#concat returned gdfs; empty ones are not cosidered by default
gdf_current = gpd.GeoDataFrame(pd.concat(list_of_gdfs, ignore_index=True))

#gdf_current is a geodataframe, but crs has still to be specified
gdf_current = gdf_current.set_crs("EPSG:4326", allow_override=True)

gdf_current.head(2)

 geometry id types \
0 POLYGON ((-105.98341 45.06118, -105.98321 45.0... 19806634 [1]
1 POLYGON ((-105.98341 45.06118, -105.98321 45.0... 19806634 [1]

 num_fires oldest_detection oldest_acquisition
0 140 2021-08-04T22:24:59+00:00 2021-08-02T03:09:51+00:00
1 140 2021-08-04T22:24:59+00:00 2021-08-02T03:09:51+00:00

If there is an intersect between TFRs and API request results, then those TFRs should be those which
originally "belong" to that fire. However, later and earlier TFRs may be contained here as well (if
any).They are taken care of in a minute. First, the results from the API can again contain ongoing
fires. Result would be long Timespan Acquisition and possibly trustworthy but meaningless Timespan
Detection. Thus, they get sorted out again.

#2nd sort out ongoing fires
#need to localize obs_start to compare to UTC format date
gdf_current = gdf_current[pd.to_datetime(gdf_current["oldest_acquisition"]
) >= obs_start.tz_localize('UTC') - timedelta(minutes = minutes_bf)]

#perform 2nd join of gdfs
gdf_current_intersect = gpd.sjoin(gdf_current, gdf_tfrs, how='inner', pred
icate='intersects')

gdf_current_intersect.head(2)

 geometry id types \
0 POLYGON ((-105.98341 45.06118, -105.98321 45.0... 19806634 [1]
1 POLYGON ((-105.98341 45.06118, -105.98321 45.0... 19806634 [1]

 num_fires oldest_detection oldest_acquisition \
0 140 2021-08-04T22:24:59+00:00 2021-08-02T03:09:51+00:00
1 140 2021-08-04T22:24:59+00:00 2021-08-02T03:09:51+00:00

 index_right Source Location NOTAM # Issue Date (UTC) \
0 1 ZDV_2021-08-05 ZDV 1/1635 08/05/2021 0233
1 1 ZDV_2021-08-05 ZDV 1/1635 08/05/2021 0233

 Effective Date (UTC) Cancel Date (UTC) Expiration Date (UTC) \
0 08/05/2021 1400 08/07/2021 0427 09/30/2021 0400
1 08/05/2021 1400 08/07/2021 0427 09/30/2021 0400

 NOTAM Condition or LTA Subject Radius Radius_m
0 !FDC 1/1635 ZDV MT..AIRSPACE 31NM SW OF BROADU... 7.0 12964.0
1 !FDC 1/1635 ZDV MT..AIRSPACE 31NM SW OF BROADU... 7.0 12964.0

87

Now it is important to understand what the result of API request and the 2nd intersect can be. If a 3-
month-fire-cluster intersected with more TFRs, then different oldest acquisition and detection dates
are possible to be contained in the above gdf_current_intersect. Removing duplicates concerning
fire cluster id would deliver the first TFR for each fire event then, but this leads to addtional skewed
results where a TFR overlaps multiple fire clusters (thus, also a younger fire, which does happen e.g.
in ZSE). So, another solution to narrow down results is chosen to perform the calculation for all fires
on all TFRs and then sort by the absolute value sum to keep the TFR that was issued with the lowest
temporal distance to the fire, assuming that this is the TFR intended for the fire.

set gdf_current_intersect as final gdf_result sort gdf by TFR issue date
for an interim overview
gdf_result = gdf_current_intersect.sort_values(["Issue Date (UTC)"])
gdf_result

88

A timespan between fire detection/acquisition and TFR issue time can be calculated (and turned to
minutes). Oldest detection/acquisition time is subtracted from TFR issue date.

#calculate timespans column wise
both times to calculate with are UTC but Python does not know yet
for 'Issue Date (UTC)', as the format does not indicate by "+00:00"
#pd.to_datetime(gdf_result["Issue Date (UTC)"].tz_localize('UTC')) is use
d

#.astype(int) returns an integer being sufficient as minute value

#oldest_detection
gdf_result["Calc_time_det"] = pd.to_datetime(gdf_result.loc[:,"Issue Date
(UTC)"]).dt.tz_localize('UTC') - pd.to_datetime(gdf_result["oldest_detecti
on"])
gdf_result["Timespan Detection"] = gdf_result.loc[:,"Calc_time_det"].dt.to
tal_seconds().div(60).astype(int)

#oldest_acquisition
gdf_result["Calc_time_acq"] = pd.to_datetime(gdf_result.loc[:,"Issue Date
(UTC)"]).dt.tz_localize('UTC') - pd.to_datetime(gdf_result["oldest_acquisi
tion"])
gdf_result["Timespan Acquisition"] = gdf_result.loc[:,"Calc_time_acq"].dt.
total_seconds().div(60).astype(int)

In FIRs with a lot of overlapping patterns, this leads to a lot of duplicates of fire ids and TFRs

#count duplicates (fire id)
gdf_result.duplicated(["id"]).sum()

35

#count non-duplicates
(~gdf_result.duplicated(["id"])).sum()

9

Check: duplicates of TFRs
gdf_result.duplicated(["NOTAM #"]).sum()

26

#count non-duplicates TFRs
(~gdf_result.duplicated(["NOTAM #"])).sum()

18

To filter for the most trustworthy combination (meaning: To match a fire cluster and the TFR wich
was the first one intended for it), the absolute temporal distance of a fire cluster from a TFR issue
date needs to be summed up for both, detection and acquisition, then the lowest value must be
chosen. This matches the highlighted correct cluster/TFR combination from the ZSE screenshot from
excel above.

sum up absolute times
gdf_result["Abs_time"] = gdf_result.loc[:,"Timespan Detection"].abs() + gd
f_result.loc[:,"Timespan Acquisition"].abs()

89

gdf_result = gdf_result.sort_values(["Abs_time"])
gdf_result

spec 'id' column for dropping duplicates, first occurrence and therefor
smallest Abs_time (after sorting above) is kept by default
gdf_result = gdf_result.drop_duplicates(subset=['id'])

If fire clusters for all TFRs have been fetched via API, the gdf_result has the same row count as
gdf_tfrs. But most probably, sometimes multiple TFRs had to be issued for the same fire event. So
length of gdf is not meaningful.

print(len(gdf_tfrs.index))

27

print(len(gdf_result.index))

9

Not all previously intersected fire clusters are still contained: Not for all of them a specific TFR might
have been intended.

Select fire clusters from first intersect, then check for those not repr
esented:
options = gdf_result["id"]
gdf_fires_not_found = gdf_intersect[(~gdf_intersect["id"].isin(options))
]
#print(len(gdf_fires_not_found.index))
print ('Fire clusters not incorporated: ')
(~gdf_fires_not_found.duplicated(["id"])).sum()

Fire clusters not incorporated:

1

Number of results: ZDV : 9 (as expected from checking In ArcGIS Pro)

gdf_result.head(2)

 geometry id types \
10 POLYGON ((-103.60934 44.32135, -103.60888 44.3... 20177190 [1]
14 POLYGON ((-103.49522 42.60600, -103.49501 42.6... 21594740 [0]

 num_fires oldest_detection oldest_acquisition \
10 23 2021-08-11T23:25:58+00:00 2021-08-11T21:00:13+00:00
14 781 2021-09-17T03:59:11+00:00 2021-09-16T19:15:05+00:00

 index_right Source Location NOTAM # ... Cancel Date (UTC) \
10 16 ZDV_2021-08-11 ZDV 1/5720 ... None
14 24 ZDV_2021-09-17 ZDV 1/9881 ... 09/17/2021 1812

 Expiration Date (UTC) NOTAM Condition or LTA Subjec
t \
10 08/12/2021 0400 !FDC 1/5720 ZDV CANCELLED BY FDC 1/5865 ON 08/..
.
14 11/18/2021 0200 !FDC 1/9881 ZDV NE..AIRSPACE 8NM S OF CRAWFORD..
.

90

 Radius Radius_m Calc_time_det Timespan Detection Calc_time_acq
\
10 5.0 9260.0 0 days 00:15:02 15 0 days 02:40:47
14 7.0 12964.0 -1 days +20:39:49 -200 0 days 05:23:55

 Timespan Acquisition Abs_time
10 160 175
14 323 523

[2 rows x 22 columns]

Finally, compose an output file as csv to list timespan between detection and TFR issue time

write output to file
gdf_result.to_csv(result_list, columns=['id','types', 'oldest_detection','
oldest_acquisition', 'NOTAM #','Issue Date (UTC)', 'Timespan Detection', '
Timespan Acquisition'], header=['id','Fire type', 'Fire detection','Fire a
cquisition', 'NOTAM # from '+tfr,'Issue Date (UTC)', 'Timespan Detection',
'Timespan Acquisition'], index=None, sep=' ', mode='w')

This Notebook ends here.

Code 9 Get_Detection-Issue-Time_Gap.ipynb

8.2.5. Relating 4.2.5, Coverage Quality
Get_TFR-exceeding_Fires_from_API.ipynb (Code 10) fetches all cases of fires leaving a TFR. The step

to acquire lists of fires and TFRs in question is processed by Get_Events_from_Fires_from_API.ipynb

(Code 11). A quick check of the fire cluster types is performed by

Get_Types_from_exceeding_Fires.ipynb (Code 12).

A script to get current fires per TFR from Ororatech API

and to find exceeding ones

import requests
import json
import geopandas as gpd
import pandas as pd
import sys

Get the current fires

#provide credentials for API access, obtain from Ororatech and insert here
APIkey = 'someSuperLongApiKey'

A single hotspot is only contained in the API response, if its center is within the bounding

coordinates. So it is no clean solution to search for fires using TFR bounding boxes. Instead, buffered

fire clusters and TFR polygons need to get joined first. Then, the boundary box of the fire cluster can

be used to spatially limit the area, where a time based search for hotspots being active within TFR

runtime can be performed to detect runaway fires.

As it turned out that ARTCCs issue TFRs beyond their FIR´s boundary, the entire fire cluster dataset
has to be joined each time and will be read therefor.

91

##specify file location and name
#3 letter location indicator, reused within all created files
#possible values: ZAB ZDV ZFW ZLA ZLC ZMP ZOA ZSE; not ZKC and ZHU having
no wildfire TFRs
tfr =r"ZDV"
#paths and filenames
fire_path = r"D:\UNIGIS\MASTER\DownloadedData\WFS\\"
tfr_path = r"D:\UNIGIS\MASTER\Scripts\\"
out_path = r"D:\UNIGIS\MASTER\Scripts\Exceeding\\"

fire_file = "wfs-area-export_FIRs_Boundary_08-102021_con_pt5.geojson"
tfr_file = tfr + r"_fire_TFRs.geojson"

#read geojson files
gdf_fires = gpd.read_file(fire_path + fire_file)
gdf_tfrs = gpd.read_file(tfr_path + tfr_file)

#size to buffer fires in m; 1609.344 m = 1 SM, 4828.032 m = 3 SM
buf_size = 4828.032

#output concatenates from these strings as well. Buffer size must be a str
ing for that as well
str_buf_size = str(int(buf_size/1609.344))

#output filename (if any):
outfile = out_path+tfr+'_'+str_buf_size+'SM_runaway_fires.geojson'

#logfile filename (to append some row/feature counts)
logfilename = out_path+'Fires_from_API_log.txt'

Number of evaluated TFRs per FIR, ZDV: 28

print(len(gdf_tfrs.index))

28

Appending to logfile
with open(logfilename, 'a') as logfile:
 logfile.write('Number of evaluated TFRs for '+tfr+' '+str_buf_size+' S
M: '+str(len(gdf_tfrs.index))+'\n')

Buffer fire clusters

Without any temporal relation yet, the same fire may be tied to multiple TFRs. For fires close to each
other, issuing one large contiguous TFR is allowed, so the same TFR might contain multiple fires as
well. So the resulting geodataframe can contain a multiple of rows compared to the origin. As the
fire clusters used so far represent the largest extent of the fires within the observed time period
(August to October 2021), those not leaving their TFR (after the fire cluster got buffered) can be
omitted here. This is also done to limit the amount of API requests. But those fires (plus buffer)
crossing TFR boundaries (=overlap in shapely terms) do need a closer look considering time.

Now buffer fire clusters by specified amount of statute miles to get prepared for the overlap.

#prepare buffer with a metric CRS
gdf_fires_buffered = gdf_fires.copy()

92

gdf_fires_buffered = gdf_fires_buffered.to_crs("EPSG:2163")

#perform buffer by amount of statute miles (SM), 1 SM = 1609.344 m
gdf_fires_buffered["geometry"] = gdf_fires_buffered.buffer(buf_size, resol
ution=16)

#turn CRS back
gdf_fires_buffered = gdf_fires_buffered.to_crs("EPSG:4326")

gdf_fires_buffered.head(2)

 id age area \
0 19778761 131964 1.697506e+07
1 19775166 131967 9.360254e+06

 centroid num_fires confidenc
e \
0 {'latitude': 29.051065, 'longitude': -97.286025} 47 0.
8
1 {'latitude': 43.104132, 'longitude': -102.572029} 45 1.
0

 newest_detection oldest_detection \
0 2021-08-01T11:07:57+00:00 2021-07-31T23:25:52+00:00
1 2021-08-01T11:04:44+00:00 2021-08-01T03:25:31+00:00

 newest_acquisition oldest_acquisition \
0 2021-08-01T08:36:21+00:00 2021-07-31T23:15:05+00:00
1 2021-08-01T08:32:35+00:00 2021-07-31T19:25:18+00:00

 geometry
0 POLYGON ((-97.29353 29.11033, -97.28962 29.111...
1 POLYGON ((-102.63812 43.11719, -102.63716 43.1...

Join buffered fire clusters and TFRs

Geopandas sjoin is "one to many" automatically. Inner join is needed to limit fire clusters to those
actually fulfilling the predicate.

Just to look for intersect is expected to deliver way too many fire clusters (even with unbuffered

ones).

#perform join of gdfs
#gdf_intersect = gpd.sjoin(gdf_fires, gdf_tfrs, how='inner', predicate='in
tersects')
#gdf_intersect

#If it is ever needed to join a join result again, index columns need to g
et renamend
#gdf_intersect.rename(columns = {'index_right':'old_index_right'}, inplace
= True)

gdf_runfires_bybuff = gpd.sjoin(gdf_fires_buffered, gdf_tfrs, how='inner',
predicate='overlaps')

93

This is one possible "exit point": If nothing overlaps, then the buffered fires are contained within the
TFRs and the resulting geodataframe has 0 rows. Exit is then performed after the follwoing 2 log
entries.

Within the observed data, this is the case for: ZAB

However, there is an exception for an extreme case, if the fire plus buffer has already spread over

the entire TFR, this has to be checked:

#check for buffered fire already covering entire TFR
gdf_coveringfires_bybuff = gpd.sjoin(gdf_fires_buffered, gdf_tfrs, how='in
ner', predicate='contains')

gdf_coveringfires_bybuff.head(2)

 id age area \
862 20866464 87258 2.916087e+07

 centroid num_fires confidenc
e \
862 {'latitude': 40.1618, 'longitude': -106.237305} 587 1.
0

 newest_detection oldest_detection \
862 2021-09-01T12:22:13+00:00 2021-08-29T22:24:39+00:00

 newest_acquisition oldest_acquisition ... \
862 2021-09-01T09:42:27+00:00 2021-08-29T19:31:23+00:00 ...

 Source Location NOTAM # Issue Date (UTC) Effective Date (UTC
) \
862 ZDV_2021-08-30 ZDV 1/8134 08/30/2021 0201 08/30/2021 140
0

 Cancel Date (UTC) Expiration Date (UTC) \
862 09/07/2021 1405 10/29/2021 0200

 NOTAM Condition or LTA Subject Radius Radius_m
862 !FDC 1/8134 ZDV CO..AIRSPACE 8NM NE OF KREMLIN... 3.0 5556.0

[1 rows x 22 columns]

#concatenate dataframes if buffered fires contain an entire TFR
if len(gdf_coveringfires_bybuff.index)>0:
 frames = [gdf_runfires_bybuff, gdf_coveringfires_bybuff]
 gdf_runfires_bybuff = gpd.GeoDataFrame(pd.concat(frames, sort=False))

change the global options that Geopandas inherits from if more rows/colu
mns shall be displayed
pd.set_option('display.max_columns',None)
gdf_runfires_bybuff.head(2)

 id age area \
257 19952554 121182 4.859015e+07

94

257 19952554 121182 4.859015e+07

 centroid num_fires confide
nce \
257 {'latitude': 41.527944, 'longitude': -103.350363} 635
1.0
257 {'latitude': 41.527944, 'longitude': -103.350363} 635
1.0

 newest_detection oldest_detection \
257 2021-08-09T18:11:45+00:00 2021-08-06T04:06:48+00:00
257 2021-08-09T18:11:45+00:00 2021-08-06T04:06:48+00:00

 newest_acquisition oldest_acquisition ... \
257 2021-08-09T02:55:05+00:00 2021-08-06T02:55:05+00:00 ...
257 2021-08-09T02:55:05+00:00 2021-08-06T02:55:05+00:00 ...

 Source Location NOTAM # Issue Date (UTC) Effective Date (UTC
) \
257 ZDV_2021-08-06 ZDV 1/2974 08/06/2021 1847 08/06/2021 183
0
257 ZDV_2021-08-07 ZDV 1/3125 08/07/2021 1436 08/07/2021 145
0

 Cancel Date (UTC) Expiration Date (UTC) \
257 None 08/07/2021 0400
257 08/07/2021 2018 08/08/2021 0300

 NOTAM Condition or LTA Subject Radius Radius_m
257 !FDC 1/2974 ZDV CANCELLED BY FDC 1/3037 ON 08/... 7.0 12964.0
257 !FDC 1/3125 ZDV NE..AIRSPACE 24NM SSE SCOTTSBL... 7.0 12964.0

[2 rows x 22 columns]

Number of cases where fire leaves TFR

print(len(gdf_runfires_bybuff.index))

11

ZDV (3 SM): 11

ZDV (1 SM): 5

Appending to logfile
with open(logfilename, 'a') as logfile:
 logfile.write('Number of potential cases where fire leaves TFR for '+t
fr+' '+str_buf_size+' SM: '+str(len(gdf_runfires_bybuff.index))+'\n')

Tasks to fill payload to get current fires:

To create a payload per fire per TFR, each time

A) bounding box coordinates and

B) a time period represented as (end) 'date' and duration in 'minutes' are needed.

95

A) Bounding Box

The buffered fire clusters overlapping any TFR are potentially those causing a safety threat. The
following "selection" shows, how many there are.

Select fire clusters that overlapped while being buffered to get a fire(
row) count to mention.
options = gdf_runfires_bybuff["id"]
gdf_fires_tofetch = gdf_fires[gdf_fires["id"].isin(options)]

print(len(gdf_fires_tofetch.index))

7

Number of fire events leaving TFR

ZDV (3 SM): 7

ZDV (1 SM): 1

Appending to logfile
with open(logfilename, 'a') as logfile:
 logfile.write('Number of potential fire events leaving TFR for '+tfr+'
'+str_buf_size+' SM: '+str(len(gdf_fires_tofetch.index))+'\n')

exit script with an empty result file if intersect geodataframe has 0 ro
ws
if len(gdf_runfires_bybuff.index) ==0:
 sys.exit(0)

For simplification, the work is continued with the buffered dataset. Bounding box coordinates are
added to the geodataframe.

Geopands´ .bounds delivers coordinates of the boundary boxes
gdf_bbox = gdf_runfires_bybuff.bounds

gdf_bbox.head(2)

 minx miny maxx maxy
257 -103.472792 41.444095 -103.24504 41.60568
257 -103.472792 41.444095 -103.24504 41.60568

#just use pd.concat / axis=1 to append boundary box coordinates
gdf_runfires_bybuff = pd.concat([gdf_runfires_bybuff, gdf_bbox], axis=1)

#check attached columns, if needed
gdf_runfires_bybuff.head(2)

 id age area \
257 19952554 121182 4.859015e+07
257 19952554 121182 4.859015e+07

 centroid num_fires confide
nce \
257 {'latitude': 41.527944, 'longitude': -103.350363} 635
1.0
257 {'latitude': 41.527944, 'longitude': -103.350363} 635
1.0

96

 newest_detection oldest_detection \
257 2021-08-09T18:11:45+00:00 2021-08-06T04:06:48+00:00
257 2021-08-09T18:11:45+00:00 2021-08-06T04:06:48+00:00

 newest_acquisition oldest_acquisition ... \
257 2021-08-09T02:55:05+00:00 2021-08-06T02:55:05+00:00 ...
257 2021-08-09T02:55:05+00:00 2021-08-06T02:55:05+00:00 ...

 Effective Date (UTC) Cancel Date (UTC) Expiration Date (UTC) \
257 08/06/2021 1830 None 08/07/2021 0400
257 08/07/2021 1450 08/07/2021 2018 08/08/2021 0300

 NOTAM Condition or LTA Subject Radius Radius_m \
257 !FDC 1/2974 ZDV CANCELLED BY FDC 1/3037 ON 08/... 7.0 12964.0
257 !FDC 1/3125 ZDV NE..AIRSPACE 24NM SSE SCOTTSBL... 7.0 12964.0

 minx miny maxx maxy
257 -103.472792 41.444095 -103.24504 41.60568
257 -103.472792 41.444095 -103.24504 41.60568

[2 rows x 26 columns]

B) (Part 1) Get minutes for the API request

Getting the time values for the request cannot be done on column level as the Cancel Date (UTC)
may be empty or even be before the Effective Date (UTC) if there is no longer a threat or a flight
planned.

#get minutes value for the API request
def get_minutes(row):
 startdate = row["Effective Date (UTC)"]

 enddate= row["Cancel Date (UTC)"]
 if enddate == None:
 enddate= row["Expiration Date (UTC)"]

 duration = pd.to_datetime(enddate, errors='coerce') - pd.to_datetime(s
tartdate, errors='coerce')

 minutes = duration.total_seconds()/60

 minutes = int(minutes)

 return minutes
gdf_runfires_bybuff["Minutes"]=gdf_runfires_bybuff.apply(get_minutes,axis=
1)

#column-wise calculation if it was possible
gdf_runfires_bybuff["restr_duration"] = pd.to_datetime(gdf_runfires_bybu
ff["Cancel Date (UTC)"], errors='coerce') - pd.to_datetime(gdf_runfires_by
buff["Effective Date (UTC)"], errors='coerce')
gdf_runfires_bybuff["Minutes"] = gdf_runfires_bybuff["restr_duration"].d
t.total_seconds().div(60)

97

gdf_runfires_bybuff["Minutes"].head(2)

257 570
257 328
Name: Minutes, dtype: int64

For the API, 0 or a negative value is invalid: {'message': 'Invalid range for minutes parameter'} Thus,
the related rows need to become removed

#keep only rows where "Minutes" >= 0
gdf_runfires_bybuff = gdf_runfires_bybuff[gdf_runfires_bybuff["Minutes"]>=
0]

B) (Part 2) Get date(time) for the API request

The date from when the API goes back needs to get acquired as follows: 'date': '2021-08-16-0200'

#get date for the API request
def get_apidate(row):

 enddate= row["Cancel Date (UTC)"]
 if enddate == None:
 enddate= row["Expiration Date (UTC)"]
 #if both enddate columns become read, a SettingWithCopyWarning occ
urs, which is ok

 #endate is 'MM/DD/YYYY hhmm' format (s string)
 #turn to 'YYYY-MM-DD-hhmm' format for API. Mind strftime() Directives
 enddate = pd.to_datetime(enddate,errors='coerce')
 enddate = enddate.strftime('%Y-%m-%d-%H%M')

 apidate = enddate

 return apidate
gdf_runfires_bybuff["APIdate"]=gdf_runfires_bybuff.apply(get_apidate,axis=
1)

gdf_runfires_bybuff["APIdate"].head(2)

257 2021-08-07-0400
257 2021-08-07-2018
Name: APIdate, dtype: object

Perform the API request

A minimum confidence of 0.5 is recommended by Ororatech for analysis of historical data. So,
'confidence' must be set to 0.4 as the API looks for everything ABOVE.

def get_clusterPerAPI(row):
 #collect payload content per row
 xmin_pl = str(row["minx"])
 ymin_pl = str(row["miny"])
 xmax_pl = str(row["maxx"])
 ymax_pl = str(row["maxy"])
 minute_pl = str(row["Minutes"])
 date_pl = str(row["APIdate"])

98

 payload = {'xmin': xmin_pl,
 'ymin': ymin_pl,
 'xmax': xmax_pl,
 'ymax': ymax_pl,
 'minutes': minute_pl,
 'date': date_pl,
 'confidence': '0.4',
 'select': ['oldest_detection,oldest_acquisition,types']
,
 'token': APIkey}

 #the request:
 response = requests.get('https://app.ororatech.com/v1/clusters/',param
s=payload)

 #test request:
 #testpayload = {'xmin': '-117.86', 'ymin': '47.88', 'xmax': '-117.53',
'ymax': '48.00', 'minutes': '360', 'date': '2021-08-16-0200','confidence':
'0.5', 'token': APIkey}
 #response = requests.get('https://app.ororatech.com/v1/clusters/',para
ms=testpayload)

 data = response.json()
 #if data is not None does not help in case of an "empty" json
 #in that case, response.json() = {'type': 'FeatureCollection', 'featur
es': None}
 #would lead to an error, trying to create agdf from features
 if data != {'type': 'FeatureCollection', 'features': None}:
 #columns=['geometry', 'id', 'num_fires']
 gdf_local = gpd.GeoDataFrame.from_features(data)
 else:
 #else prepare an empty gdf for return
 gdf_local = gpd.GeoDataFrame()

 return gdf_local

series_of_gdfs = gdf_runfires_bybuff.apply(get_clusterPerAPI,axis=1)
list_of_gdfs= series_of_gdfs.tolist()

#concat returned gdfs; empty ones are not cosidered by default
gdf_current = gpd.GeoDataFrame(pd.concat(list_of_gdfs, ignore_index=True))

#gdf_current is a geodataframe, but crs has still to be specified
gdf_current = gdf_current.set_crs("EPSG:4326", allow_override=True)

gdf_current.head(2)

 geometry id types \
0 POLYGON ((-103.39699 41.50449, -103.39690 41.5... 19952554 [0]
1 POLYGON ((-103.38383 41.50191, -103.38270 41.5... 19952554 [0]

 num_fires oldest_detection oldest_acquisition

99

0 635 2021-08-06T22:53:25+00:00 2021-08-06T02:55:05+00:00
1 635 2021-08-07T18:53:00+00:00 2021-08-06T02:55:05+00:00

field "types" contains list for Python. They need to be converted to str
ings,
otherwise .duplicated() or turning to GeoJSON would not work!
gdf_current["types"] = gdf_current["types"].astype('string')
remove [] to avoid confusion when this is read from GeoJSON again
gdf_current["types"] = gdf_current["types"].str.removeprefix("[")
gdf_current["types"] = gdf_current["types"].str.removesuffix("]")

gdf_current["types"].head(2)

0 0
1 0
Name: types, dtype: string

Buffer current fires

The API request results get buffered by specified (variable buf_size) amount of statute miles.

#prepare buffer with a metric CRS
gdf_current_buffered = gdf_current.copy()
gdf_current_buffered = gdf_current_buffered.to_crs("EPSG:2163")

#perform buffer by specified amount of statute miles (SM)
gdf_current_buffered["geometry"] = gdf_current_buffered.buffer(buf_size, r
esolution=16)

#turn CRS back
gdf_current_buffered = gdf_current_buffered.to_crs("EPSG:4326")

If there is an overlap between TFRs and API request results, then those TFRs can be considered
inappropriate from an aerial firefighting perspective.

gdf_result = gpd.sjoin(gdf_current_buffered, gdf_tfrs, how='inner', predic
ate='overlaps')

gdf_result.head(2)

 geometry id types \
3 POLYGON ((-107.11377 36.94489, -107.11362 36.9... 20021038 0
3 POLYGON ((-107.11377 36.94489, -107.11362 36.9... 20021038 0

 num_fires oldest_detection oldest_acquisition \
3 939 2021-08-09T23:13:52+00:00 2021-08-07T17:52:20+00:00
3 939 2021-08-09T23:13:52+00:00 2021-08-07T17:52:20+00:00

 index_right Source Location NOTAM # Issue Date (UTC) \
3 10 ZDV_2021-08-08 ZDV 1/3260 08/08/2021 1648
3 13 ZDV_2021-08-09 ZDV 1/3434 08/09/2021 0312

 Effective Date (UTC) Cancel Date (UTC) Expiration Date (UTC) \
3 08/08/2021 1700 08/09/2021 0311 08/10/2021 0300
3 08/09/2021 1300 08/12/2021 1402 09/09/2021 0300

100

 NOTAM Condition or LTA Subject Radius Radius_m
3 !FDC 1/3260 ZDV NM..AIRSPACE 47NM NE OF BLOOMF... 5.0 9260.0
3 !FDC 1/3434 ZDV NM..AIRSPACE 47NM NE OF BLOOMF... 5.0 9260.0

A TFR is also inappropriate, if it is entirely inside a fire, so the according check from above is reused

#check for buffered fire already covering entire TFR
gdf_currentcovering_bybuff = gpd.sjoin(gdf_current_buffered, gdf_tfrs, how
='inner', predicate='contains')

gdf_currentcovering_bybuff.head(2)

 geometry id types \
6 POLYGON ((-106.32305 40.16465, -106.32301 40.1... 20866464 0

 num_fires oldest_detection oldest_acquisition \
6 587 2021-08-30T18:51:21+00:00 2021-08-29T19:31:23+00:00

 index_right Source Location NOTAM # Issue Date (UTC) \
6 18 ZDV_2021-08-30 ZDV 1/8134 08/30/2021 0201

 Effective Date (UTC) Cancel Date (UTC) Expiration Date (UTC) \
6 08/30/2021 1400 09/07/2021 1405 10/29/2021 0200

 NOTAM Condition or LTA Subject Radius Radius_m
6 !FDC 1/8134 ZDV CO..AIRSPACE 8NM NE OF KREMLIN... 3.0 5556.0

#concatenate dataframes if buffered fires contain an entire TFR
if len(gdf_currentcovering_bybuff.index)>0:
 frames = [gdf_result, gdf_currentcovering_bybuff]
 gdf_result = gpd.GeoDataFrame(pd.concat(frames, sort=False))

print(len(gdf_result.index))

5

Number of results: ZDV (3 SM): 11, ZDV (1 SM): 1

Appending to logfile
with open(logfilename, 'a') as logfile:
 logfile.write('Number results for '+tfr+' '+str_buf_size+' SM: '+str(l
en(gdf_result.index))+'\n')

ATTENTION: As joined once again with all TFRs in gdf_tfrs, those TFR cancelled before being effective
will be included here! So get_minutes function is applied once more to recognize those. The Number
of occurrences gets printed below. To obtain the true count (without duplicates), this must be
applied on the input geodataframe gdf_tfrs

#apply function get_minutes from above again
gdf_tfrs["Duration_Minutes"]=gdf_tfrs.apply(get_minutes,axis=1)

print(len(gdf_tfrs[gdf_tfrs["Duration_Minutes"]<=0].index))

1

Number of TFR(s) cancelled before becoming effective: ZDV (3 SM): 1 ZDV (1 SM): 0

101

Appending to logfile
with open(logfilename, 'a') as logfile:
 logfile.write('Number of TFR(s) cancelled before becoming effective fo
r '+tfr+' '+str_buf_size+' SM: '+str(len(gdf_tfrs[gdf_tfrs["Duration_Minut
es"]<=0].index))+'\n')

gdf_result.head(2)

 geometry id types \
3 POLYGON ((-107.11377 36.94489, -107.11362 36.9... 20021038 0
3 POLYGON ((-107.11377 36.94489, -107.11362 36.9... 20021038 0

 num_fires oldest_detection oldest_acquisition \
3 939 2021-08-09T23:13:52+00:00 2021-08-07T17:52:20+00:00
3 939 2021-08-09T23:13:52+00:00 2021-08-07T17:52:20+00:00

 index_right Source Location NOTAM # Issue Date (UTC) \
3 10 ZDV_2021-08-08 ZDV 1/3260 08/08/2021 1648
3 13 ZDV_2021-08-09 ZDV 1/3434 08/09/2021 0312

 Effective Date (UTC) Cancel Date (UTC) Expiration Date (UTC) \
3 08/08/2021 1700 08/09/2021 0311 08/10/2021 0300
3 08/09/2021 1300 08/12/2021 1402 09/09/2021 0300

 NOTAM Condition or LTA Subject Radius Radius_m
3 !FDC 1/3260 ZDV NM..AIRSPACE 47NM NE OF BLOOMF... 5.0 9260.0
3 !FDC 1/3434 ZDV NM..AIRSPACE 47NM NE OF BLOOMF... 5.0 9260.0

Result may contain duplicates, due to multi join and fires overlapping TFRs more than one time.
Resulting log gets a count of entirely duplicate rows, the 'Number of TFRs where a fire leaves the
TFR' and the 'Number of fire events leaving a TFR'

#count duplicates
gdf_result.duplicated().sum()

0

#count non-duplicates
(~gdf_result.duplicated()).sum()

5

Appending to logfile
with open(logfilename, 'a') as logfile:
 logfile.write('Number of results without duplicates for '+tfr+' '+str_
buf_size+' SM: '+str((~gdf_result.duplicated()).sum())+'\n')

count non-duplicates of TFRs
(~gdf_result.duplicated(["NOTAM #"])).sum()

5

Appending to logfile
with open(logfilename, 'a') as logfile:
 logfile.write('Number of TFRs where a fire leaves the TFR for '+tfr+'

102

'+str_buf_size+' SM: '+str((~gdf_result.duplicated(["NOTAM #"])).sum())+'\
n')

count non-duplicates of fires
(~gdf_result.duplicated(["id"])).sum()

3

Appending to logfile
with open(logfilename, 'a') as logfile:
 logfile.write('Number of fire events leaving a TFR for '+tfr+' '+str_b
uf_size+' SM: '+str((~gdf_result.duplicated(["id"])).sum())+'\n'+'\n')

Considering certain columns for dropping duplicates, if wanted
#gdf_result.drop_duplicates(subset=['id', 'NOTAM #'])

Drop entire row duplicates, if wanted
#gdf_result.drop_duplicates()

Finally, compose an output file for those fires that had inappropriate TFRs, IF any

GeoJSON output
if len(gdf_result.index)>0:
 gdf_result.to_file(filename= outfile, driver='GeoJSON')

D:\anaconda3\envs\master_env\lib\site-packages\geopandas\io\file.py:362: F
utureWarning: pandas.Int64Index is deprecated and will be removed from pan
das in a future version. Use pandas.Index with the appropriate dtype inste
ad.
 pd.Int64Index,

This Notebook ends here. Follow up analysis is performed Get_Events_from_Fires_from_API to
avoid rerunning API requests when this is not necessary.

Code 10 Get_TFR-exceeding_Fires_from_API.ipynb

A Script to gain lists of TFR-exceeding fire clusters that can be revisited

import geopandas as gpd
import pandas as pd

##specify file location and name
#3 letter location indicator, reused within all created files
#possible values: ZAB ZDV ZFW ZLA ZLC ZMP ZOA ZSE; not ZKC and ZHU having
no wildfire TFRs, ZAB has no overlapping fires
tfr =r"ZDV"
#paths and filenames
in_path=r"D:\UNIGIS\MASTER\Scripts\Exceeding\\"
out_path=in_path

#size used by prior script to buffer fires in m; 1609.344 m = 1 SM, 4828.
032 m = 3 SM
buf_size = 4828.032

#output concatenates from these strings as well. Buffer size must be a str
ing for that as well

103

str_buf_size = str(int(buf_size/1609.344))

#input filename
infile = tfr+'_'+str_buf_size+'SM_runaway_fires.geojson'

#read geojson files
gdf_in = gpd.read_file(in_path + infile)

#output
result_fires = out_path+tfr+'_'+str_buf_size+'SM_result-fires.geojson'
result_TFRs = out_path+tfr+'_'+str_buf_size+'SM_result-TFRs.geojson'

#result lists filename
result_list_fires = out_path+tfr+'_'+str_buf_size+'SM_fires_results_list.c
sv'
result_list_TFRs = out_path+tfr+'_'+str_buf_size+'SM_TFRs_results_list.csv
'

Either duplicate fire clusters or TFRs must be dropped to obtain a results list

Considering column for dropping duplicate fire clusters
gdf_result_fires = gdf_in.drop_duplicates(subset=['id'])

Considering column for dropping duplicate TFRs
gdf_result_TFRs = gdf_in.drop_duplicates(subset=['NOTAM #'])

GeoJSON output fires
gdf_result_fires.to_file(filename= result_fires, driver='GeoJSON')

D:\anaconda3\envs\master_env\lib\site-packages\geopandas\io\file.py:362: F
utureWarning: pandas.Int64Index is deprecated and will be removed from pan
das in a future version. Use pandas.Index with the appropriate dtype inste
ad.
 pd.Int64Index,

GeoJSON output TFRs
gdf_result_TFRs.to_file(filename= result_TFRs, driver='GeoJSON')

D:\anaconda3\envs\master_env\lib\site-packages\geopandas\io\file.py:362: F
utureWarning: pandas.Int64Index is deprecated and will be removed from pan
das in a future version. Use pandas.Index with the appropriate dtype inste
ad.
 pd.Int64Index,

Result lists are written as single files per TFR set issued from one ARTCC

gdf_result_fires['id'].to_csv(result_list_fires, header=['Result List of F
ire IDs for '+tfr], index=None, sep=' ', mode='w')

gdf_result_TFRs['NOTAM #'].to_csv(result_list_TFRs, header=['Result List o
f TFRs for '+tfr], index=None, sep=' ', mode='w')

This Notebook ends here. A check wheter static/artificial fire types were included can be done by
Get_Types_from_exceeding_Fires.ipynb

Code 11 Get_Events_from_Fires_from_API.ipynb

104

A Script to check types of TFR-exceeding fire clusters for artificial sources

import geopandas as gpd
import pandas as pd

##specify file location and name
#3 letter location indicator, reused within all created files
#possible values: ZDV ZFW ZLA ZLC ZMP ZOA ZSE; not ZKC and ZHU having no w
ildfire TFRs, ZAB has no overlapping fires
tfr =r"ZDV"
#paths and filenames
in_path=r"D:\UNIGIS\MASTER\Scripts\Exceeding\\"

out_path=in_path

#size used by prior script to buffer fires in m; 1609.344 m = 1 SM, 4828.
032 m = 3 SM
buf_size = 4828.032

#output concatenates from these strings as well. Buffer size must be a str
ing for that as well
str_buf_size = str(int(buf_size/1609.344))

#input filename
infile = in_path+tfr+'_'+str_buf_size+'SM_result-fires.geojson'
infile_bytfr = in_path+tfr+'_'+str_buf_size+'SM_result-TFRs.geojson'

#read geojson files
gdf_in = gpd.read_file(infile)
gdf_in_bytfr = gpd.read_file(infile_bytfr)

#output
#none, just print(len(gdf_wrtypes.index))

Task is to find rows in results sets, that have an unwanted type in the origin data (compare Table 1
from the thesis)

specify a types series
#correct_types = ['0','1','5','6','7','8']
wrong_types = ['2','3','4','9','10','11','12','13','14','15','16','17','18
','19']

search for wrong types in results
gdf_wrtypes = gdf_in[gdf_in['types'].isin(wrong_types)]

print(len(gdf_wrtypes.index))

0

gdf_wrtypes_tfr = gdf_in_bytfr[gdf_in_bytfr['types'].isin(wrong_types)]

print(len(gdf_wrtypes_tfr.index))

0

105

This Notebook ends here.

Code 12 Get_Types_from_exceeding_Fires.ipynb

8.2.6. Relating 4.2.6, Safety of actual Fire Fighting Aircraft
Get_Dates_Aircraft_and_TFRs.ipynb (Code 13) handles fire related aircraft movements and TFR

times.

A script to compare trajectory datetime with TFR times

from an already joined dataset

import geopandas as gpd
import pandas as pd
import datetime as dt

#create geodataframe with file from script´s directory
gdf = gpd.read_file('TFRs_on_Trajectories.geojson')

#out files as GeoJSON within scrip directory
file_traj_noTFR = 'traj_not_in_TFR.geojson'
file_trai_not_in_TFR_time = 'traj_not_in_TFR_time.geojson'

gdf.head(2)

 OBJECTID Join_Count TARGET_FID JOIN_FID traj_id start
_t \
0 1 1 1 251 a02862_0 2021-08-01T01:19:
23
1 2 1 1 255 a02862_0 2021-08-01T01:19:
23

 end_t length direction Source ... NOTAM_
_ \
0 2021-08-01T01:27:32 8685.843986 39.598238 ZOA_2021-08-01 ... 1/886
9
1 2021-08-01T01:27:32 8685.843986 39.598238 ZOA_2021-08-03 ... 1/001
4

 Issue_Date__UTC_ Effective_Date__UTC_ Cancel_Date__UTC_ \
0 07/31/2021 0000 07/31/2021 0015 08/03/2021 1350
1 08/03/2021 0201 08/03/2021 1400 08/04/2021 0359

 Expiration_Date__UTC_ NOTAM_Condition_or_LTA_Subject
\
0 10/01/2021 0015 !FDC 1/8869 ZOA CA..AIRSPACE 24NM E OF CHICO, ...
1 09/03/2021 0400 !FDC 1/0014 ZOA CA..AIRSPACE 24NM E OF CHICO, ...

 Radius Radius_m Shape_Length \
0 0.0 0.0 0.091049
1 0.0 0.0 0.091049

 geometry
0 LINESTRING (-121.10220 39.91300, -121.10920 39...

106

1 LINESTRING (-121.10220 39.91300, -121.10920 39...

[2 rows x 21 columns]

Those aircraft movements having no TFR cover are sorted out

this cannot have duplicates
gdf_noTFR = gdf[gdf["Join_Count"]==0]

this can have duplicates in case of multiple TFRs being touched
simultaneously or multiple TFRs being issued in the same place
gdf_hasTFR = gdf[gdf["Join_Count"]!=0]

gdf_noTFR.head(2)

 OBJECTID Join_Count TARGET_FID JOIN_FID traj_id \
889 890 0 71 -1 a0956b_10
934 935 0 74 -1 a0956b_13

 start_t end_t length direction \
889 2021-09-02T22:58:49 2021-09-02T23:02:42 14191.218388 43.931943
934 2021-09-22T22:06:19 2021-09-22T22:14:54 45260.857727 282.981352

 Source ... NOTAM__ Issue_Date__UTC_ Effective_Date__UTC_ \
889 None ... None None None
934 None ... None None None

 Cancel_Date__UTC_ Expiration_Date__UTC_ NOTAM_Condition_or_LTA_Subject
\
889 None None None
934 None None None

 Radius Radius_m Shape_Length \
889 NaN NaN 0.147856
934 NaN NaN 0.471762

 geometry
889 LINESTRING (-116.78530 48.28520, -116.76590 48...
934 LINESTRING (-122.32240 38.31120, -122.33190 38...

[2 rows x 21 columns]

This many aircraft movements are not covered by TFRs:

row count of gdf_noTFR
print(len(gdf_noTFR.index))

86

just a check: Count non-duplicates (should be 555 here to end up at 555+
86 = 641 aircraft movements)
(~gdf_hasTFR.duplicated(["traj_id"])).sum()

555

107

A trajectories start_t must be within a TFR´s effective time to be covered for sure. That needs
calculation per row

gdf_gap = gdf_hasTFR

#get matching TFR
#time formats are all naive but all are known for being UTC
def get_tfrgap(row):

 tfrgap = 'not calculated'

 enddate = row["Cancel_Date__UTC_"]
 if enddate == None:
 enddate = row["Expiration_Date__UTC_"]
 #if both enddate columns become read, a SettingWithCopyWarning occ
urs, which is ok
 startdate = row["Effective_Date__UTC_"]

 traj_startdate= row["start_t"]
 traj_enddate= row["end_t"]

 #convert to datetime to calculate
 enddate_dt = pd.to_datetime(enddate)
 startdate_dt = pd.to_datetime(startdate)
 traj_startdate_dt = pd.to_datetime(traj_startdate)
 traj_enddate_dt = pd.to_datetime(traj_enddate)

 # if trajectory time was within TFR time...
 if startdate_dt <= traj_startdate_dt and enddate_dt >= traj_enddate_dt
:

 #calculate a time gap in minutes
 #this way, a negative value describes TFR being OK, the only case
considered here:
 calcdate= startdate_dt - traj_startdate_dt
 minutes = calcdate.total_seconds()/60
 minutes = int(minutes)
 # need sortable type compared to str 'not calculated':
 minutes = str(minutes)
 tfrgap = minutes

 return tfrgap

gdf_gap["TFRgap"]=gdf_hasTFR.apply(get_tfrgap,axis=1)

D:\anaconda3\envs\master_env\lib\site-packages\geopandas\geodataframe.py:1
351: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-doc
s/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
 super().__setitem__(key, value)

gdf_gap.head(2)

108

 OBJECTID Join_Count TARGET_FID JOIN_FID traj_id start
_t \
0 1 1 1 251 a02862_0 2021-08-01T01:19:
23
1 2 1 1 255 a02862_0 2021-08-01T01:19:
23

 end_t length direction Source ... \
0 2021-08-01T01:27:32 8685.843986 39.598238 ZOA_2021-08-01 ...
1 2021-08-01T01:27:32 8685.843986 39.598238 ZOA_2021-08-03 ...

 Issue_Date__UTC_ Effective_Date__UTC_ Cancel_Date__UTC_ \
0 07/31/2021 0000 07/31/2021 0015 08/03/2021 1350
1 08/03/2021 0201 08/03/2021 1400 08/04/2021 0359

 Expiration_Date__UTC_ NOTAM_Condition_or_LTA_Subject
\
0 10/01/2021 0015 !FDC 1/8869 ZOA CA..AIRSPACE 24NM E OF CHICO, ...
1 09/03/2021 0400 !FDC 1/0014 ZOA CA..AIRSPACE 24NM E OF CHICO, ...

 Radius Radius_m Shape_Length \
0 0.0 0.0 0.091049
1 0.0 0.0 0.091049

 geometry TFRgap
0 LINESTRING (-121.10220 39.91300, -121.10920 39... -1504
1 LINESTRING (-121.10220 39.91300, -121.10920 39... not calculated

[2 rows x 22 columns]

With the time gap available where possible now, those trajectories (trai_id) need to get removed,
where another occurrence of it has a value. Not till then the duplicates can get removed to count
trajectories and thus aircraft movements that were not under TFR coverage.

change the global options that Geopandas inherits from if more rows/colu
mns shall be displayed
#pd.set_option('display.max_rows',None)

#gdf gets sorted and
#duplicates must be dropped immediately before splitting the sorted gdf
gdf_gap_sorted = gdf_gap.sort_values(["TFRgap"], ascending = True).drop_du
plicates(["traj_id"])

#should be 555 here to end up at 555+86 = 641 aircraft movements,
#unique again but tagged with a minute value for TFRs being OK
print(len(gdf_gap_sorted.index))

555

#splitting the sorted gdf
gdf_gap_sorted_hascalc = gdf_gap_sorted[gdf_gap_sorted["TFRgap"]!='not cal
culated']
gdf_gap_sorted_nocalc = gdf_gap_sorted[gdf_gap_sorted["TFRgap"]=='not calc
ulated']

109

Trajectories within TFR timeframe
print('Trajectories within TFR timeframe: Count is '+str(len(gdf_gap_sorte
d_hascalc.index)))

Trajectories within TFR timeframe: Count is 439

Trajectories out of TFR timeframe
print('Trajectories out of TFR timeframe: Count is '+str(len(gdf_gap_sorte
d_nocalc.index)))

Trajectories out of TFR timeframe: Count is 116

#create geojson of questionable trajectories
 # Trajectories outside of any TFR
gdf_noTFR.to_file(filename = file_traj_noTFR, driver='GeoJSON')
 # Trajectories out of TFR timeframe
gdf_gap_sorted_nocalc.to_file(filename = file_trai_not_in_TFR_time, driver
='GeoJSON')

D:\anaconda3\envs\master_env\lib\site-packages\geopandas\io\file.py:362: F
utureWarning: pandas.Int64Index is deprecated and will be removed from pan
das in a future version. Use pandas.Index with the appropriate dtype inste
ad.
 pd.Int64Index,
D:\anaconda3\envs\master_env\lib\site-packages\geopandas\io\file.py:362: F
utureWarning: pandas.Int64Index is deprecated and will be removed from pan
das in a future version. Use pandas.Index with the appropriate dtype inste
ad.
 pd.Int64Index,

By how much TFRs for trajectories out of TFR timeframe were late cannot be said. From the
gdf_gap_sorted containing duplicates it is not (always) known, which TFR was intended for that
particular flight. So the script ends here.

Code 13 Get_Dates_Aircraft_and_TFRs.ipynb

8.2.7. Relating 4.2.7 Completeness of TFR-Fire-Correspondence
Compare_TFRs_to_Fireclusters.ipynb () handles TFRs that do not intersect a three-month-dataset

firecluster.

A script to compare TFRs to fireclusters at different confidence

import geopandas as gpd
import pandas as pd

#create geodataframe with files from script´s directory

#paths and filenames
fire_path = r"D:\UNIGIS\MASTER\DownloadedData\WFS\\"
tfr_path=r"D:\UNIGIS\MASTER\Scripts\\"

fire_file = "wfs-area-export_FIRs_Boundary_08-102021_con_pt5.geojson"
a second GeoJSON containing all fireclusters, also of low confidence, is
needed
fire_file_low_conf = "wfs-area-export_2021-08-01-2021-10-31_FIRs_Boundary_

110

08-102021.geojson"

tfr_file = "All_TFRs.geojson"

#read geojson files
gdf_fires_low = gpd.read_file(fire_path + fire_file_low_conf)

gdf_All_TFRs = gpd.read_file(tfr_path + tfr_file)
gdf_fires = gpd.read_file(fire_path + fire_file)

#output filename (if any):
outfile = 'TFRs_without_fires.geojson'

left join with predicate intersect
gdf_TFR_nofire = gpd.sjoin(gdf_All_TFRs, gdf_fires, how='left', predicate=
'intersects')

change the global options that Geopandas inherits from if more shall be
displayed
#pd.set_option('display.max_columns',None)
#pd.set_option('display.max_rows',None)

gdf_TFR_nofire = gdf_TFR_nofire[gdf_TFR_nofire["id"].isnull()]

print(len(gdf_TFR_nofire.index))

56

#gdf_TFR_nofire

Sort out eventually erroneous TFRs, cancelled before becoming effective, maybe because they were
issued in the wrong place

gdf_TFR_nofire_err = gdf_TFR_nofire[pd.to_datetime(gdf_TFR_nofire["Cancel
_Date__UTC_"]) < pd.to_datetime(gdf_TFR_nofire["Effective_Date__UTC_"])]

print(len(gdf_TFR_nofire_err.index))

0

Sort out TFRs issued before fire cluster timeframe (starting 08/01/2021 0000). Their comparison may
suffer from a boundary value problem

gdf_TFR_nofire_old = gdf_TFR_nofire[pd.to_datetime(gdf_TFR_nofire["Issue_
Date__UTC_"]) < pd.to_datetime('08/01/2021 0000')]

print(len(gdf_TFR_nofire_old.index))

17

gdf_TFR_nofire = gdf_TFR_nofire[pd.to_datetime(gdf_TFR_nofire["Issue_Date
__UTC_"]) >= pd.to_datetime('08/01/2021 0000')]

The remaining TFRs are now joined on fire clusters with a lower confidence

#If it is ever needed to join a join result again, index/ other needed col
umns need to get renamend
gdf_TFR_nofire.rename(columns = {'index_right':'old_index_right'}, inplace

111

= True)
gdf_TFR_nofire.rename(columns = {'id':'old_id'}, inplace = True)
left join with predicate intersect
gdf_TFR_nofire_low = gpd.sjoin(gdf_TFR_nofire, gdf_fires_low, how='left',
predicate='intersects')

#gdf_TFR_nofire_low

gdf_TFR_nofire_low = gdf_TFR_nofire_low[gdf_TFR_nofire_low["id"].isnull()]

print(len(gdf_TFR_nofire_low.index))

3

gdf_TFR_nofire_low

 OBJECTID Source Location NOTAM__ Issue_Date__UTC_ \
23 24 ZSE_2021-08-01 ZSE 1/9095 08/01/2021 1555
540 541 ZAB_2021-10-20 ZAB 1/5987 10/20/2021 2254
541 542 ZAB_2021-10-21 ZAB 1/6009 10/21/2021 0034

 Effective_Date__UTC_ Cancel_Date__UTC_ Expiration_Date__UTC_ \
23 08/01/2021 1615 08/01/2021 2337 10/01/2021 0500
540 10/20/2021 2245 10/21/2021 0229 10/22/2021 0230
541 10/21/2021 1400 10/22/2021 2316 11/21/2021 0300

 NOTAM_Condition_or_LTA_Subject Radius ... \
23 !FDC 1/9095 ZSE OR..AIRSPACE 22NM S MEDFORD, O... 3 ...
540 !FDC 1/5987 ZAB AZ..AIRSPACE 23NM SE OF TUCSON... 3 ...
541 !FDC 1/6009 ZAB AZ..AIRSPACE 23NM SE OF TUCSON... 3 ...

 index_right id age_right area_right num_fires_right confidence_ri
ght \
23 NaN NaN NaN NaN NaN
NaN
540 NaN NaN NaN NaN NaN
NaN
541 NaN NaN NaN NaN NaN
NaN

 newest_detection_right oldest_detection_right newest_acquisition_rig
ht \
23 NaN NaN N
aN
540 NaN NaN N
aN
541 NaN NaN N
aN

 oldest_acquisition_right
23 NaN
540 NaN
541 NaN

[3 rows x 35 columns]

112

GeoJSON output
if len(gdf_TFR_nofire_low.index)>0:
 gdf_TFR_nofire_low.to_file(filename= outfile, driver='GeoJSON')

D:\anaconda3\envs\master_env\lib\site-packages\geopandas\io\file.py:362: F
utureWarning: pandas.Int64Index is deprecated and will be removed from pan
das in a future version. Use pandas.Index with the appropriate dtype inste
ad.
 pd.Int64Index,

Code 14 Compare_TFRs_to_Fireclusters.ipynb

113

8.3. Tables containing Time Gap between Fire Detection and TFR Issue
Tables listing the calculated timespans for 5.1 are shown here. Whether all fire ids could become

tied to a TFR for an FIR is mentioned within the according table caption. Here, the tables are sorted

by “Timespan Acquisition”.

Table 8 Calculated timespans in minutes since fire detection and acquisition until TFR issue date for FIR Denver (KZDV). 1 fire
cluster could not get tied to a TFR (9 clusters are with 27 TFRs being considered).

id
Fire
type Fire detection Fire acquisition

NOTAM #
from ZDV Issue Date (UTC)

Timespan
Detection
[min]

Timespan
Acquisition
[min]

20177190 [1] 11.08.2021 23:25 11.08.2021 21:00 1/5720 08/11/2021 2341 15 160

21594740 [0] 17.09.2021 03:59 16.09.2021 19:15 1/9881 09/17/2021 0039 -200 323

20866464 [0] 29.08.2021 22:24 29.08.2021 19:31 1/8134 08/30/2021 0201 216 389

20110185 [1] 10.08.2021 22:06 10.08.2021 09:05 1/4715 08/10/2021 2143 -23 757

21978529 [0] 28.09.2021 02:56 28.09.2021 01:05 1/4157 09/28/2021 1441 704 815

19952554 [0] 06.08.2021 18:05 06.08.2021 02:55 1/2974 08/06/2021 1847 41 951

21595812 [0] 16.09.2021 23:51 16.09.2021 23:45 1/0214 09/17/2021 1854 1142 1148

20021038 [0] 08.08.2021 04:22 07.08.2021 17:52 1/3260 08/08/2021 1648 745 1375

19806634 [1] 04.08.2021 22:24 02.08.2021 03:09 1/1585 08/05/2021 0019 114 4149

Table 9 Calculated timespans in minutes since fire detection and acquisition until TFR issue date for FIR Ft Worth (KZFW). 0
fire clusters could not get tied to a TFR (1 cluster is with 3 TFRs being considered).

id
Fire
type Fire detection Fire acquisition

NOTAM #
from ZFW Issue Date (UTC)

Timespan
Detection
[min]

Timespan
Acquisition
[min]

22972697 [0] 29.10.2021 03:24 28.10.2021 19:53 1/9732 10/29/2021 2222 1137 1588

Table 10 Calculated timespans in minutes since fire detection and acquisition until TFR issue date for FIR Los Angeles (KZLA).
6 fire clusters could not get tied to a “first” TFR (15 clusters are with 39 TFRs being considered).

id
Fire
type Fire detection Fire acquisition

NOTAM #
from ZLA Issue Date (UTC)

Timespan
Detection
[min]

Timespan
Acquisition
[min]

20441640 [0] 19.08.2021 04:46 19.08.2021 00:05 1/1505 08/19/2021 0122 -204 76

21628656 [0] 17.09.2021 23:21 17.09.2021 20:55 1/0276 09/17/2021 2219 -62 83

20828697 [1] 28.08.2021 22:38 28.08.2021 19:45 1/7865 08/28/2021 2130 -68 104

21400591 [0] 11.09.2021 23:10 11.09.2021 23:05 1/6465 09/12/2021 0053 102 107

20866547 [0] 29.08.2021 22:34 29.08.2021 21:11 1/8106 08/30/2021 0024 109 192

20707731 [0] 25.08.2021 23:06 25.08.2021 20:45 1/5793 08/26/2021 0032 85 226

22238197 [0] 05.10.2021 20:43 05.10.2021 13:25 1/8397 10/05/2021 1743 -180 257

21259974 [0] 08.09.2021 12:30 08.09.2021 10:03 1/3392 09/08/2021 1948 437 584

21259975 [0] 08.09.2021 12:30 08.09.2021 10:03 1/3392 09/08/2021 1948 437 584

22441864 [5] 12.10.2021 05:58 11.10.2021 21:04 1/2241 10/12/2021 1408 489 1023

21629143 [0] 18.09.2021 00:50 17.09.2021 21:55 1/0412 09/18/2021 1730 999 1174

20294555 [0] 16.08.2021 05:01 15.08.2021 09:12 1/8642 08/16/2021 0502 0 1189

21325525 [0] 10.09.2021 05:21 10.09.2021 02:35 1/6340 09/11/2021 0155 1233 1399

20600062 [0] 26.08.2021 12:32 23.08.2021 09:13 1/5793 08/26/2021 0032 -720 3798

21370680 [1] 04.10.2021 23:03 10.09.2021 17:35 1/8397 10/05/2021 1743 1119 36007

Table 11 Calculated timespans in minutes since fire detection and acquisition until TFR issue date for FIR Salt Lake (KZLC). 55
fire clusters could not get tied to a “first” TFR (51 clusters are with 94 TFRs being considered).

id
Fire
type Fire detection Fire acquisition

NOTAM #
from ZLC Issue Date (UTC)

Timespan
Detection
[min]

Timespan
Acquisition
[min]

21637388 [0] 18.09.2021 12:41 18.09.2021 10:13 1/9128 08/16/2021 1925 -47116 -46968

20143507 [0] 11.08.2021 04:03 10.08.2021 23:45 1/4559 08/10/2021 2021 -462 -204

21662781 [0] 19.09.2021 03:53 19.09.2021 03:17 1/0458 09/19/2021 0025 -208 -172

19911782 [0] 05.08.2021 04:26 05.08.2021 03:48 1/1636 08/05/2021 0235 -111 -73

20282034 [1] 14.08.2021 22:17 14.08.2021 19:35 1/8240 08/14/2021 2112 -65 96

114

id
Fire
type Fire detection Fire acquisition

NOTAM #
from ZLC Issue Date (UTC)

Timespan
Detection
[min]

Timespan
Acquisition
[min]

22210154 [0] 04.10.2021 22:46 04.10.2021 19:58 1/7919 10/04/2021 2256 9 177

20140648 [0] 11.08.2021 02:23 10.08.2021 21:19 1/4779 08/11/2021 0026 -117 186

21159884 [0] 05.09.2021 22:24 05.09.2021 19:51 1/1940 09/05/2021 2319 54 207

19800775 [0] 01.08.2021 19:21 01.08.2021 17:05 1/9211 08/01/2021 2033 71 207

20147669 [0] 11.08.2021 10:37 11.08.2021 07:54 1/5007 08/11/2021 1133 55 218

21978554 [0] 28.09.2021 02:57 27.09.2021 22:05 1/3892 09/28/2021 0312 15 306

21119828 [0] 04.09.2021 23:59 04.09.2021 21:00 1/1740 09/05/2021 0211 131 310

20911975 [0] 30.08.2021 21:52 30.08.2021 21:45 1/8891 08/31/2021 0317 324 331

20247609 [1] 13.08.2021 22:18 13.08.2021 19:33 1/8070 08/14/2021 0126 187 352

20150354 [1] 11.08.2021 12:13 11.08.2021 09:35 1/5286 08/11/2021 1639 265 423

21556189 [0] 15.09.2021 22:15 15.09.2021 19:14 1/9243 09/16/2021 0222 246 427

22209721 [0] 04.10.2021 21:32 04.10.2021 18:12 1/7973 10/05/2021 0358 386 585

20350209 [0] 16.08.2021 18:46 16.08.2021 17:20 1/9450 08/17/2021 0348 541 627

19882731 [0] 04.08.2021 06:28 04.08.2021 05:49 1/1237 08/04/2021 1719 650 690

20362480 [1] 17.08.2021 11:04 17.08.2021 07:35 1/0288 08/17/2021 1907 482 691

20067398 [0] 09.08.2021 10:55 09.08.2021 08:31 1/3834 08/09/2021 2017 561 705

20099614 [1] 10.08.2021 07:15 10.08.2021 04:35 1/4482 08/10/2021 1850 694 854

20140219 [0] 11.08.2021 01:36 10.08.2021 20:29 1/5006 08/11/2021 1129 592 899

21635512 [0] 18.09.2021 11:58 18.09.2021 09:22 1/0478 09/19/2021 0143 824 980

21635505 [0] 18.09.2021 11:58 18.09.2021 09:22 1/0478 09/19/2021 0143 824 980

19745379 [0] 31.07.2021 12:01 31.07.2021 08:50 1/9057 08/01/2021 0204 842 1033

20030384 [1] 08.08.2021 04:22 08.08.2021 02:25 1/3360 08/08/2021 2223 1080 1197

20282666 [1] 15.08.2021 04:19 14.08.2021 20:54 1/8455 08/15/2021 1713 773 1218

19878954 [0] 04.08.2021 05:49 03.08.2021 20:10 1/1237 08/04/2021 1719 689 1268

20065134 [1] 09.08.2021 07:48 09.08.2021 04:50 1/4010 08/10/2021 0235 1126 1304

20356189 [0] 17.08.2021 11:04 16.08.2021 20:17 1/0248 08/17/2021 1846 461 1348

20356196 [1] 17.08.2021 10:24 16.08.2021 20:16 1/0247 08/17/2021 1845 500 1348

20060094 [5] 10.08.2021 01:28 08.08.2021 19:26 1/3834 08/09/2021 2017 -311 1490

21322854 [0] 10.09.2021 08:20 09.09.2021 21:06 1/6335 09/11/2021 0007 946 1620

20257260 [0] 13.08.2021 05:02 12.08.2021 20:41 1/8052 08/14/2021 0013 1150 1651

21119197 [0] 06.09.2021 02:22 04.09.2021 20:10 1/1965 09/06/2021 0245 22 1834

21512433 [0] 15.09.2021 05:17 14.09.2021 19:33 1/9243 09/16/2021 0222 1264 1848

21205055 [0] 07.09.2021 11:10 06.09.2021 17:15 1/2986 09/08/2021 0157 886 1961

22216454 [0] 05.10.2021 21:15 05.10.2021 08:13 1/9447 10/06/2021 1812 1256 2038

20184128 [0] 16.08.2021 05:18 12.08.2021 09:16 1/8052 08/14/2021 0013 -3185 2337

19811564 [0] 03.08.2021 11:05 02.08.2021 09:03 1/0786 08/04/2021 0158 892 2454

20099609 [0] 11.08.2021 12:13 09.08.2021 02:25 1/5006 08/11/2021 1129 -44 3423

21565339 [0] 18.09.2021 11:01 16.09.2021 09:59 1/0458 09/19/2021 0025 803 3745

20150353 [0] 13.08.2021 04:22 11.08.2021 09:34 1/8052 08/14/2021 0013 1190 3758

20958865 [0] 04.09.2021 12:02 01.09.2021 08:51 1/1738 09/05/2021 0210 847 5358

21159882 [1] 09.09.2021 04:57 05.09.2021 18:29 1/4755 09/09/2021 1600 662 5610

20911204 [0] 04.09.2021 05:05 31.08.2021 04:02 1/1740 09/05/2021 0211 1265 7088

20837921 [0] 04.09.2021 05:05 29.08.2021 09:47 1/1740 09/05/2021 0211 1265 9623

20874515 [0] 05.09.2021 05:25 28.08.2021 18:19 1/1738 09/05/2021 0210 -195 10550

19912174 [0] 11.08.2021 12:53 03.08.2021 18:19 1/5005 08/11/2021 1127 -86 11107

20027972 [0] 15.08.2021 23:26 07.08.2021 21:25 1/1968 09/06/2021 0415 30528 42169

Table 12 Calculated timespans in minutes since fire detection and acquisition until TFR issue date for FIR Minneapolis
(KZMP). 0 fire clusters could not get tied to a “first” TFR (4 clusters are with 10 TFRs being considered).

id
Fire
type Fire detection Fire acquisition

NOTAM #
from ZMP Issue Date (UTC)

Timespan
Detection
[min]

Timespan
Acquisition
[min]

20319754 [1] 16.08.2021 02:19 15.08.2021 20:35 1/8526 08/15/2021 2326 -173 170

20319753 [0] 16.08.2021 02:19 15.08.2021 20:35 1/8526 08/15/2021 2326 -173 170

20316730 [0] 15.08.2021 20:35 15.08.2021 18:05 1/8533 08/16/2021 0001 205 355

20286067 [0] 15.08.2021 00:11 14.08.2021 21:25 1/8419 08/15/2021 1547 935 1101

115

Table 13 Calculated timespans in minutes since fire detection and acquisition until TFR issue date for FIR Oakland (KZOA). 29
fire clusters could not get tied to a “first” TFR (50 clusters are with 94 TFRs being considered).

id
Fire
type Fire detection Fire acquisition

NOTAM #
from ZOA Issue Date (UTC)

Timespan
Detection
[min]

Timespan
Acquisition
[min]

20717535 [0] 26.08.2021 23:45 26.08.2021 09:55 1/5900 08/26/2021 0159 -1306 -476

20063924 [0] 06.08.2021 12:11 06.08.2021 09:30 1/2531 08/06/2021 0354 -497 -336

21595202 [0] 17.09.2021 04:34 17.09.2021 03:56 1/9858 09/16/2021 2359 -275 -237

20526911 [0] 21.08.2021 12:26 21.08.2021 09:49 1/2970 08/21/2021 0604 -382 -225

20218430 [0] 13.08.2021 12:17 12.08.2021 06:13 1/5863 08/12/2021 0347 -1950 -146

20710676 [0] 26.08.2021 04:48 26.08.2021 04:04 1/5900 08/26/2021 0159 -169 -125

20793006 [0] 27.08.2021 23:18 27.08.2021 18:49 1/7512 08/27/2021 1855 -263 5

20520282 [0] 21.08.2021 04:57 21.08.2021 04:08 1/2970 08/21/2021 0604 66 115

19917553 [0] 05.08.2021 12:30 05.08.2021 09:49 1/1948 08/05/2021 1326 55 216

20949700 [0] 31.08.2021 23:59 31.08.2021 21:24 1/9576 09/01/2021 0234 154 309

19909479 [0] 05.08.2021 00:03 04.08.2021 21:30 1/1637 08/05/2021 0247 163 316

19876809 [0] 03.08.2021 20:48 03.08.2021 19:54 1/0787 08/04/2021 0212 323 377

19949723 [0] 05.08.2021 23:28 05.08.2021 21:11 1/2531 08/06/2021 0354 265 402

21012977 [0] 02.09.2021 12:58 02.09.2021 11:04 1/0944 09/02/2021 1859 360 474

21160201 [0] 06.09.2021 05:03 05.09.2021 20:40 1/1974 09/06/2021 0536 32 535

20290094 [1] 15.08.2021 06:01 15.08.2021 05:19 1/8489 08/15/2021 1838 756 798

20763669 [0] 27.08.2021 12:14 27.08.2021 05:24 1/7512 08/27/2021 1855 400 810

21295112 [0] 09.09.2021 12:14 09.09.2021 09:43 1/5326 09/09/2021 2356 701 852

19816973 [0] 02.08.2021 12:38 02.08.2021 10:45 1/0014 08/03/2021 0201 802 915

20916324 [0] 31.08.2021 11:44 31.08.2021 09:11 1/9576 09/01/2021 0234 889 1042

20401721 [0] 18.08.2021 08:09 18.08.2021 05:17 1/1448 08/18/2021 2317 907 1079

20035916 [0] 08.08.2021 12:10 08.08.2021 06:16 1/3406 08/09/2021 0047 756 1110

20478906 [0] 20.08.2021 06:59 20.08.2021 06:09 1/2927 08/21/2021 0056 1076 1126

21400590 [0] 12.09.2021 04:37 12.09.2021 04:00 1/6734 09/12/2021 2253 1095 1132

19908855 [0] 05.08.2021 12:30 04.08.2021 19:50 1/2230 08/05/2021 1639 248 1248

22580917 [0] 15.10.2021 23:12 15.10.2021 20:39 1/4154 10/16/2021 1853 1180 1333

20478910 [0] 20.08.2021 06:59 20.08.2021 06:08 1/2957 08/21/2021 0430 1290 1341

20829231 [0] 29.08.2021 00:24 28.08.2021 21:30 1/8078 08/29/2021 2120 1255 1429

21370680 [1] 12.09.2021 04:37 10.09.2021 17:35 1/6390 09/11/2021 1815 -622 1479

20669980 [0] 25.08.2021 07:09 24.08.2021 18:39 1/5787 08/25/2021 2325 975 1725

19804189 [0] 02.08.2021 05:29 01.08.2021 20:46 1/0017 08/03/2021 0211 1241 1764

20226064 [0] 14.08.2021 13:00 13.08.2021 10:39 1/8177 08/14/2021 1823 322 1903

21008961 [0] 03.09.2021 05:26 02.09.2021 10:15 1/1567 09/03/2021 2346 1099 2250

21004654 [0] 03.09.2021 12:23 02.09.2021 09:24 1/1567 09/03/2021 2346 682 2301

20874510 [0] 31.08.2021 11:44 30.08.2021 09:30 1/9568 09/01/2021 0234 889 2463

20866921 [0] 31.08.2021 05:31 29.08.2021 21:12 1/9486 08/31/2021 2349 1097 3036

20353878 [0] 17.08.2021 05:18 15.08.2021 18:59 1/0550 08/18/2021 0329 1330 3389

21131007 [0] 07.09.2021 23:05 05.09.2021 10:08 1/2777 09/07/2021 2052 -133 3523

20358929 [1] 18.08.2021 11:43 16.08.2021 06:09 1/1448 08/18/2021 2317 693 3907

20753704 [0] 28.08.2021 22:55 26.08.2021 21:18 1/8060 08/29/2021 1854 1198 4175

21803467 [1] 23.09.2021 08:23 20.09.2021 18:51 1/2659 09/23/2021 1723 539 4231

19740802 [1] 03.08.2021 19:08 31.07.2021 04:05 1/0427 08/03/2021 1529 -219 5003

20560392 [0] 26.08.2021 00:13 22.08.2021 05:09 1/5900 08/26/2021 0159 105 5569

22238197 [0] 09.10.2021 11:49 05.10.2021 13:25 1/1889 10/09/2021 1506 196 5860

20441640 [0] 23.08.2021 05:00 19.08.2021 00:05 1/4219 08/24/2021 0049 1188 7243

21371987 [0] 19.09.2021 05:34 11.09.2021 09:55 1/0713 09/20/2021 0148 1213 12472

20294555 [0] 24.08.2021 22:35 15.08.2021 09:12 1/4698 08/24/2021 1453 -462 13300

21325525 [0] 22.09.2021 05:32 10.09.2021 02:35 1/2205 09/22/2021 2205 992 18449

19775538 [0] 20.08.2021 05:18 31.07.2021 20:16 1/2927 08/21/2021 0056 1177 29079

19773091 [1] 20.08.2021 06:59 31.07.2021 18:59 1/2927 08/21/2021 0056 1076 29156

116

Table 14 Calculated timespans in minutes since fire detection and acquisition until TFR issue date for FIR Seattle (KZSE). 103
fire clusters could not get tied to a “first” TFR (111 clusters are with 224 TFRs being considered). It occurs 9 (10 if a 9 minute
value is considered as well) times that TFR is issued before knowing about it from satellite data can be possible. Like for
1/3308, this may be due to fires spotting downwind that produce new fire cluster ids

id
Fire
type Fire detection Fire acquisition

NOTAM #
from ZSE Issue Date (UTC)

Timespan
Detection
[min]

Timespan
Acquisition
[min]

20832936 [0] 08.09.2021 06:04 29.08.2021 04:44 1/4930 08/11/2021 0431 -40413 -25933

21476064 [0] 16.09.2021 05:55 14.09.2021 09:48 1/7291 09/14/2021 0008 -3227 -580

19784784 [0] 01.08.2021 12:41 01.08.2021 10:14 1/9040 08/01/2021 0100 -701 -554

20646621 [0] 28.08.2021 23:09 23.08.2021 10:00 1/3308 08/23/2021 0249 -8420 -431

21251076 [0] 08.09.2021 22:31 07.09.2021 20:55 1/2287 09/07/2021 1413 -1938 -402

20477954 [0] 20.08.2021 04:14 20.08.2021 03:39 1/2176 08/20/2021 0020 -234 -199

21322852 [0] 10.09.2021 00:10 09.09.2021 21:06 1/4822 09/09/2021 1750 -380 -196

21725066 [0] 21.09.2021 12:40 21.09.2021 10:06 1/1239 09/21/2021 0856 -224 -70

20213789 [0] 13.08.2021 06:05 13.08.2021 02:35 1/7268 08/13/2021 0230 -215 -5

21325523 [0] 10.09.2021 05:21 10.09.2021 04:42 1/5509 09/10/2021 0440 -41 -2

19952934 [0] 06.08.2021 05:11 06.08.2021 04:20 1/2545 08/06/2021 0430 -41 9

19912173 [1] 05.08.2021 05:28 05.08.2021 04:41 1/1707 08/05/2021 0458 -30 16

19844481 [0] 03.08.2021 05:10 03.08.2021 03:35 1/0029 08/03/2021 0513 2 97

20908577 [1] 30.08.2021 22:23 30.08.2021 21:45 1/8794 08/30/2021 2347 83 121

21401129 [0] 11.09.2021 22:20 11.09.2021 22:15 1/6443 09/12/2021 0018 117 122

21933507 [0] 26.09.2021 20:07 26.09.2021 18:45 1/3312 09/26/2021 2128 80 162

22307054 [0] 07.10.2021 19:47 07.10.2021 18:57 1/1515 10/07/2021 2152 124 174

20176896 [0] 11.08.2021 19:56 11.08.2021 18:52 1/5661 08/11/2021 2149 112 176

20176897 [1] 11.08.2021 22:59 11.08.2021 20:10 1/5729 08/12/2021 0044 104 273

20629444 [0] 24.08.2021 00:18 23.08.2021 21:24 1/4366 08/24/2021 0208 109 283

19775538 [0] 31.07.2021 23:08 31.07.2021 20:16 1/9040 08/01/2021 0100 111 283

20318049 [0] 15.08.2021 23:40 15.08.2021 20:36 1/8595 08/16/2021 0121 100 284

20358787 [0] 16.08.2021 23:53 16.08.2021 23:45 1/9486 08/17/2021 0446 292 300

20042615 [0] 08.08.2021 13:13 08.08.2021 10:31 1/3257 08/08/2021 1604 170 332

19804186 [0] 01.08.2021 23:06 01.08.2021 20:35 1/9278 08/02/2021 0232 206 356

19841939 [0] 03.08.2021 00:10 02.08.2021 21:19 1/0023 08/03/2021 0424 253 424

19949838 [1] 05.08.2021 22:04 05.08.2021 21:12 1/2543 08/06/2021 0418 373 425

19845003 [0] 03.08.2021 06:07 02.08.2021 21:19 1/0025 08/03/2021 0427 -100 427

20035719 [0] 08.08.2021 11:28 08.08.2021 08:50 1/3257 08/08/2021 1604 275 433

20035720 [0] 08.08.2021 11:28 08.08.2021 08:50 1/3257 08/08/2021 1604 275 433

21427428 [0] 12.09.2021 23:16 12.09.2021 20:59 1/6770 09/13/2021 0428 311 448

19841942 [0] 03.08.2021 05:10 02.08.2021 21:19 1/0029 08/03/2021 0513 2 473

21006486 [0] 02.09.2021 12:37 02.09.2021 10:14 1/0914 09/02/2021 1819 341 484

19908817 [0] 04.08.2021 22:24 04.08.2021 19:52 1/1701 08/05/2021 0448 383 535

20148777 [0] 11.08.2021 12:07 11.08.2021 09:35 1/5421 08/11/2021 1911 423 575

21006483 [0] 02.09.2021 12:37 02.09.2021 10:14 1/1133 09/02/2021 2005 447 590

19916066 [0] 04.08.2021 19:51 04.08.2021 18:57 1/1704 08/05/2021 0451 539 593

20150361 [0] 10.08.2021 16:38 09.08.2021 18:39 1/4073 08/10/2021 0437 -721 597

19773092 [1] 31.07.2021 21:58 31.07.2021 17:05 1/9078 08/01/2021 0410 371 664

20954526 [0] 01.09.2021 05:07 01.09.2021 04:29 1/9869 09/01/2021 1633 685 723

21295112 [0] 09.09.2021 12:14 09.09.2021 09:43 1/5289 09/09/2021 2325 670 821

21259999 [0] 08.09.2021 12:30 08.09.2021 10:00 1/3886 09/08/2021 2345 674 824

21437171 [0] 13.09.2021 12:42 13.09.2021 10:07 1/7291 09/14/2021 0008 685 840

19882759 [0] 05.08.2021 04:27 04.08.2021 05:50 1/1480 08/04/2021 2042 -465 891

19952936 [0] 06.08.2021 05:11 06.08.2021 03:25 1/2972 08/06/2021 1834 802 908

21328845 [0] 10.09.2021 08:20 10.09.2021 05:22 1/6261 09/10/2021 2035 734 912

21168941 [0] 06.09.2021 12:24 06.09.2021 09:47 1/2133 09/07/2021 0138 793 950

20828688 [0] 28.08.2021 22:38 28.08.2021 19:52 1/7956 08/29/2021 1207 808 974

20320934 [0] 16.08.2021 07:21 15.08.2021 22:55 1/8925 08/16/2021 1513 471 977

20325699 [0] 16.08.2021 11:41 16.08.2021 08:50 1/9419 08/17/2021 0210 868 1039

20593803 [0] 22.08.2021 23:26 22.08.2021 20:55 1/3648 08/23/2021 1437 910 1061

20478906 [0] 20.08.2021 06:59 20.08.2021 06:09 1/2912 08/21/2021 0020 1040 1090

20027955 [0] 08.08.2021 00:15 07.08.2021 21:26 1/3257 08/08/2021 1604 948 1117

19812473 [0] 03.08.2021 06:07 02.08.2021 09:55 1/0029 08/03/2021 0513 -54 1157

21286336 [0] 08.09.2021 23:03 08.09.2021 20:34 1/4769 09/09/2021 1612 1028 1177

20247609 [1] 14.08.2021 05:41 13.08.2021 19:33 1/8150 08/14/2021 1556 614 1222

21253751 [0] 08.09.2021 04:20 08.09.2021 03:45 1/3937 09/09/2021 0115 1254 1289

19989128 [1] 06.08.2021 22:43 06.08.2021 19:55 1/3139 08/07/2021 1743 1139 1307

19779404 [0] 01.08.2021 05:50 01.08.2021 05:10 1/9324 08/02/2021 0506 1395 1435

117

id
Fire
type Fire detection Fire acquisition

NOTAM #
from ZSE Issue Date (UTC)

Timespan
Detection
[min]

Timespan
Acquisition
[min]

19844480 [0] 03.08.2021 05:10 03.08.2021 00:55 1/0761 08/04/2021 0100 1189 1444

20804305 [0] 28.08.2021 22:11 28.08.2021 10:06 1/7942 08/29/2021 1028 736 1461

20804299 [0] 29.08.2021 12:17 28.08.2021 10:06 1/7956 08/29/2021 1207 -10 1560

21797908 [0] 23.09.2021 05:50 22.09.2021 22:03 1/2878 09/24/2021 0104 1153 1620

21250885 [0] 07.09.2021 23:07 06.09.2021 18:49 1/2953 09/07/2021 2303 -4 1693

21168945 [0] 06.09.2021 23:41 06.09.2021 09:47 1/2277 09/07/2021 1411 869 1703

21034865 [0] 03.09.2021 12:23 02.09.2021 20:48 1/1585 09/04/2021 0230 846 1781

19909474 [0] 05.08.2021 05:28 04.08.2021 21:33 1/2528 08/06/2021 0323 1314 1789

20000795 [0] 08.08.2021 22:52 07.08.2021 10:01 1/3261 08/08/2021 1653 -359 1851

19773091 [1] 01.08.2021 05:50 31.07.2021 18:59 1/9247 08/02/2021 0206 1215 1866

21471226 [0] 15.09.2021 05:17 14.09.2021 05:00 1/8874 09/15/2021 1725 727 2184

21414211 [0] 14.09.2021 05:39 12.09.2021 09:35 1/7291 09/14/2021 0008 -331 2312

21259984 [0] 09.09.2021 13:09 08.09.2021 10:02 1/5435 09/10/2021 0106 716 2343

19849095 [0] 03.08.2021 02:04 02.08.2021 09:55 1/0760 08/04/2021 0100 1375 2344

21255610 [0] 09.09.2021 12:14 08.09.2021 05:52 1/5270 09/09/2021 2251 636 2459

20042613 [0] 09.08.2021 05:54 08.08.2021 10:32 1/4074 08/10/2021 0439 1364 2526

19886265 [0] 05.08.2021 07:28 04.08.2021 10:07 1/2543 08/06/2021 0418 1249 2530

19912172 [0] 07.08.2021 00:35 05.08.2021 04:41 1/3039 08/07/2021 0416 220 2854

19905324 [1] 06.08.2021 19:36 04.08.2021 18:57 1/3005 08/06/2021 2059 82 3001

19912619 [0] 08.08.2021 06:44 05.08.2021 01:05 1/3040 08/07/2021 0417 -1587 3071

20099608 [0] 11.08.2021 05:49 09.08.2021 18:39 1/5866 08/12/2021 0442 1372 3482

21131007 [0] 07.09.2021 23:05 05.09.2021 10:08 1/2775 09/07/2021 2041 -144 3512

19912171 [0] 06.08.2021 22:43 05.08.2021 04:41 1/3158 08/07/2021 1847 1203 3725

20220811 [0] 15.08.2021 05:28 13.08.2021 09:47 1/8637 08/16/2021 0408 1359 3980

19849606 [0] 05.08.2021 05:28 03.08.2021 09:36 1/2543 08/06/2021 0418 1369 4001

21168939 [0] 08.09.2021 12:30 06.09.2021 09:47 1/4079 09/09/2021 0516 1005 4048

21212938 [0] 09.09.2021 05:43 07.09.2021 04:56 1/5435 09/10/2021 0106 1162 4089

20753704 [0] 28.08.2021 22:55 26.08.2021 21:18 1/8057 08/29/2021 1830 1174 4151

21080530 [0] 06.09.2021 22:02 04.09.2021 08:43 1/2287 09/07/2021 1413 970 4649

19918896 [0] 08.08.2021 11:28 05.08.2021 08:56 1/3256 08/08/2021 1603 274 4746

21833219 [0] 27.09.2021 06:14 24.09.2021 05:58 1/3891 09/28/2021 0310 1256 5591

19908851 [5] 09.08.2021 04:47 04.08.2021 19:52 1/3353 08/08/2021 2036 -491 5803

20707964 [0] 30.08.2021 05:06 25.08.2021 18:59 1/8156 08/30/2021 0407 -59 6307

19849160 [0] 06.08.2021 22:53 03.08.2021 09:34 1/3158 08/07/2021 1847 1193 6312

21034862 [0] 06.09.2021 20:32 02.09.2021 20:49 1/2287 09/07/2021 1413 1060 6803

20764088 [0] 31.08.2021 04:45 27.08.2021 09:34 1/9601 09/01/2021 0337 1371 6842

20144555 [0] 16.08.2021 12:20 11.08.2021 05:05 1/9281 08/16/2021 2330 669 8304

21043347 [0] 08.09.2021 07:40 03.09.2021 09:53 1/4096 09/09/2021 0534 1313 8380

20593648 [0] 29.08.2021 00:24 22.08.2021 20:05 1/7942 08/29/2021 1028 603 9502

21718662 [0] 27.09.2021 06:14 21.09.2021 05:07 1/3891 09/28/2021 0310 1256 9962

20110035 [0] 14.08.2021 05:41 08.08.2021 04:15 1/8337 08/15/2021 0424 1362 10088

20804306 [0] 03.09.2021 05:27 27.08.2021 18:49 1/1528 09/03/2021 2053 925 10203

21714880 [0] 27.09.2021 06:14 20.09.2021 18:51 1/3891 09/28/2021 0310 1256 10578

20068735 [0] 16.08.2021 11:41 09.08.2021 09:21 1/9449 08/17/2021 0346 964 11184

19845194 [0] 03.08.2021 06:49 03.08.2021 06:09 1/4928 08/11/2021 0429 11379 11419

20353878 [0] 23.08.2021 16:57 15.08.2021 18:59 1/4366 08/24/2021 0208 550 11948

21371987 [0] 19.09.2021 05:34 11.09.2021 09:55 1/0714 09/20/2021 0151 1216 12475

20150368 [0] 20.08.2021 11:51 11.08.2021 09:34 1/2952 08/21/2021 0346 954 14051

20837946 [0] 08.09.2021 12:30 29.08.2021 09:48 1/4079 09/09/2021 0516 1005 15567

19878953 [0] 16.08.2021 05:43 03.08.2021 20:11 1/9473 08/17/2021 0434 1370 19222

19916069 [0] 05.08.2021 11:31 05.08.2021 08:56 1/2952 08/21/2021 0346 22574 22729

19740802 [1] 23.08.2021 05:58 31.07.2021 04:05 1/4366 08/24/2021 0208 1209 34442

118

8.4. Coverage Quality Log
The full log from Get_TFR-exceeding_Fires_from_API.ipynb is appended here. It contains all results

for 5.2.

Number of evaluated TFRs for ZAB 0 SM: 2

Number of potential cases where fire leaves TFR for ZAB 0 SM: 0

Number of potential fire events leaving TFR for ZAB 0 SM: 0

Number of evaluated TFRs for ZAB 1 SM: 2

Number of potential cases where fire leaves TFR for ZAB 1 SM: 0

Number of potential fire events leaving TFR for ZAB 1 SM: 0

Number of evaluated TFRs for ZAB 3 SM: 2

Number of potential cases where fire leaves TFR for ZAB 3 SM: 0

Number of potential fire events leaving TFR for ZAB 3 SM: 0

Number of evaluated TFRs for ZDV 0 SM: 28

Number of potential cases where fire leaves TFR for ZDV 0 SM: 2

Number of potential fire events leaving TFR for ZDV 0 SM: 2

Number results for ZDV 0 SM: 1

Number of TFR(s) cancelled before becoming effective for ZDV 0 SM: 1

Number of results without duplicates for ZDV 0 SM: 1

Number of TFRs where a fire leaves the TFR for ZDV 0 SM: 1

Number of fire events leaving a TFR for ZDV 0 SM: 1

Number of evaluated TFRs for ZDV 1 SM: 28

Number of potential cases where fire leaves TFR for ZDV 1 SM: 5

Number of potential fire events leaving TFR for ZDV 1 SM: 4

Number results for ZDV 1 SM: 1

Number of TFR(s) cancelled before becoming effective for ZDV 1 SM: 1

Number of results without duplicates for ZDV 1 SM: 1

Number of TFRs where a fire leaves the TFR for ZDV 1 SM: 1

Number of fire events leaving a TFR for ZDV 1 SM: 1

Number of evaluated TFRs for ZDV 3 SM: 28

Number of potential cases where fire leaves TFR for ZDV 3 SM: 11

Number of potential fire events leaving TFR for ZDV 3 SM: 7

Number results for ZDV 3 SM: 5

Number of TFR(s) cancelled before becoming effective for ZDV 3 SM: 1

Number of results without duplicates for ZDV 3 SM: 5

Number of TFRs where a fire leaves the TFR for ZDV 3 SM: 5

Number of fire events leaving a TFR for ZDV 3 SM: 3

Number of evaluated TFRs for ZFW 0 SM: 3

Number of potential cases where fire leaves TFR for ZFW 0 SM: 3

Number of potential fire events leaving TFR for ZFW 0 SM: 1

Number results for ZFW 0 SM: 3

Number of TFR(s) cancelled before becoming effective for ZFW 0 SM: 1

Number of results without duplicates for ZFW 0 SM: 3

Number of TFRs where a fire leaves the TFR for ZFW 0 SM: 3

Number of fire events leaving a TFR for ZFW 0 SM: 1

Number of evaluated TFRs for ZFW 1 SM: 3

Number of potential cases where fire leaves TFR for ZFW 1 SM: 3

Number of potential fire events leaving TFR for ZFW 1 SM: 1

Number results for ZFW 1 SM: 6

Number of TFR(s) cancelled before becoming effective for ZFW 1 SM: 1

Number of results without duplicates for ZFW 1 SM: 6

Number of TFRs where a fire leaves the TFR for ZFW 1 SM: 3

Number of fire events leaving a TFR for ZFW 1 SM: 1

Number of evaluated TFRs for ZFW 3 SM: 3

Number of potential cases where fire leaves TFR for ZFW 3 SM: 3

Number of potential fire events leaving TFR for ZFW 3 SM: 1

119

Number results for ZFW 3 SM: 6

Number of TFR(s) cancelled before becoming effective for ZFW 3 SM: 1

Number of results without duplicates for ZFW 3 SM: 6

Number of TFRs where a fire leaves the TFR for ZFW 3 SM: 3

Number of fire events leaving a TFR for ZFW 3 SM: 1

Number of evaluated TFRs for ZLA 0 SM: 40

Number of potential cases where fire leaves TFR for ZLA 0 SM: 22

Number of potential fire events leaving TFR for ZLA 0 SM: 8

Number results for ZLA 0 SM: 31

Number of TFR(s) cancelled before becoming effective for ZLA 0 SM: 0

Number of results without duplicates for ZLA 0 SM: 31

Number of TFRs where a fire leaves the TFR for ZLA 0 SM: 12

Number of fire events leaving a TFR for ZLA 0 SM: 5

Number of evaluated TFRs for ZLA 1 SM: 40

Number of potential cases where fire leaves TFR for ZLA 1 SM: 34

Number of potential fire events leaving TFR for ZLA 1 SM: 10

Number results for ZLA 1 SM: 99

Number of TFR(s) cancelled before becoming effective for ZLA 1 SM: 0

Number of results without duplicates for ZLA 1 SM: 99

Number of TFRs where a fire leaves the TFR for ZLA 1 SM: 23

Number of fire events leaving a TFR for ZLA 1 SM: 14

Number of evaluated TFRs for ZLA 3 SM: 40

Number of potential cases where fire leaves TFR for ZLA 3 SM: 59

Number of potential fire events leaving TFR for ZLA 3 SM: 15

Number results for ZLA 3 SM: 285

Number of TFR(s) cancelled before becoming effective for ZLA 3 SM: 0

Number of results without duplicates for ZLA 3 SM: 274

Number of TFRs where a fire leaves the TFR for ZLA 3 SM: 37

Number of fire events leaving a TFR for ZLA 3 SM: 32

Number of evaluated TFRs for ZLC 0 SM: 114

Number of potential cases where fire leaves TFR for ZLC 0 SM: 90

Number of potential fire events leaving TFR for ZLC 0 SM: 32

Number results for ZLC 0 SM: 122

Number of TFR(s) cancelled before becoming effective for ZLC 0 SM: 1

Number of results without duplicates for ZLC 0 SM: 111

Number of TFRs where a fire leaves the TFR for ZLC 0 SM: 34

Number of fire events leaving a TFR for ZLC 0 SM: 24

Number of evaluated TFRs for ZLC 1 SM: 114

Number of potential cases where fire leaves TFR for ZLC 1 SM: 136

Number of potential fire events leaving TFR for ZLC 1 SM: 46

Number results for ZLC 1 SM: 334

Number of TFR(s) cancelled before becoming effective for ZLC 1 SM: 1

Number of results without duplicates for ZLC 1 SM: 269

Number of TFRs where a fire leaves the TFR for ZLC 1 SM: 43

Number of fire events leaving a TFR for ZLC 1 SM: 37

Number of evaluated TFRs for ZLC 3 SM: 114

Number of potential cases where fire leaves TFR for ZLC 3 SM: 225

Number of potential fire events leaving TFR for ZLC 3 SM: 77

Number results for ZLC 3 SM: 1058

Number of TFR(s) cancelled before becoming effective for ZLC 3 SM: 1

Number of results without duplicates for ZLC 3 SM: 637

Number of TFRs where a fire leaves the TFR for ZLC 3 SM: 61

Number of fire events leaving a TFR for ZLC 3 SM: 81

Number of evaluated TFRs for ZMP 0 SM: 10

Number of potential cases where fire leaves TFR for ZMP 0 SM: 5

Number of potential fire events leaving TFR for ZMP 0 SM: 1

120

Number results for ZMP 0 SM: 9

Number of TFR(s) cancelled before becoming effective for ZMP 0 SM: 1

Number of results without duplicates for ZMP 0 SM: 9

Number of TFRs where a fire leaves the TFR for ZMP 0 SM: 5

Number of fire events leaving a TFR for ZMP 0 SM: 2

Number of evaluated TFRs for ZMP 1 SM: 10

Number of potential cases where fire leaves TFR for ZMP 1 SM: 7

Number of potential fire events leaving TFR for ZMP 1 SM: 1

Number results for ZMP 1 SM: 13

Number of TFR(s) cancelled before becoming effective for ZMP 1 SM: 1

Number of results without duplicates for ZMP 1 SM: 13

Number of TFRs where a fire leaves the TFR for ZMP 1 SM: 7

Number of fire events leaving a TFR for ZMP 1 SM: 2

Number of evaluated TFRs for ZMP 3 SM: 10

Number of potential cases where fire leaves TFR for ZMP 3 SM: 8

Number of potential fire events leaving TFR for ZMP 3 SM: 2

Number results for ZMP 3 SM: 31

Number of TFR(s) cancelled before becoming effective for ZMP 3 SM: 1

Number of results without duplicates for ZMP 3 SM: 31

Number of TFRs where a fire leaves the TFR for ZMP 3 SM: 7

Number of fire events leaving a TFR for ZMP 3 SM: 2

Number of evaluated TFRs for ZOA 0 SM: 99

Number of potential cases where fire leaves TFR for ZOA 0 SM: 159

Number of potential fire events leaving TFR for ZOA 0 SM: 43

Number results for ZOA 0 SM: 771

Number of TFR(s) cancelled before becoming effective for ZOA 0 SM: 2

Number of results without duplicates for ZOA 0 SM: 737

Number of TFRs where a fire leaves the TFR for ZOA 0 SM: 71

Number of fire events leaving a TFR for ZOA 0 SM: 34

Number of evaluated TFRs for ZOA 1 SM: 99

Number of potential cases where fire leaves TFR for ZOA 1 SM: 250

Number of potential fire events leaving TFR for ZOA 1 SM: 53

Number results for ZOA 1 SM: 1420

Number of TFR(s) cancelled before becoming effective for ZOA 1 SM: 2

Number of results without duplicates for ZOA 1 SM: 1288

Number of TFRs where a fire leaves the TFR for ZOA 1 SM: 89

Number of fire events leaving a TFR for ZOA 1 SM: 92

Number of evaluated TFRs for ZOA 3 SM: 99

Number of potential cases where fire leaves TFR for ZOA 3 SM: 404

Number of potential fire events leaving TFR for ZOA 3 SM: 65

Number results for ZOA 3 SM: 3684

Number of TFR(s) cancelled before becoming effective for ZOA 3 SM: 2

Number of results without duplicates for ZOA 3 SM: 2990

Number of TFRs where a fire leaves the TFR for ZOA 3 SM: 96

Number of fire events leaving a TFR for ZOA 3 SM: 162

Number of evaluated TFRs for ZSE 0 SM: 247

Number of potential cases where fire leaves TFR for ZSE 0 SM: 375

Number of potential fire events leaving TFR for ZSE 0 SM: 110

Number results for ZSE 0 SM: 1161

Number of TFR(s) cancelled before becoming effective for ZSE 0 SM: 7

Number of results without duplicates for ZSE 0 SM: 1047

Number of TFRs where a fire leaves the TFR for ZSE 0 SM: 145

Number of fire events leaving a TFR for ZSE 0 SM: 75

Number of evaluated TFRs for ZSE 1 SM: 247

Number of potential cases where fire leaves TFR for ZSE 1 SM: 618

Number of potential fire events leaving TFR for ZSE 1 SM: 160

121

Number results for ZSE 1 SM: 2643

Number of TFR(s) cancelled before becoming effective for ZSE 1 SM: 7

Number of results without duplicates for ZSE 1 SM: 2279

Number of TFRs where a fire leaves the TFR for ZSE 1 SM: 180

Number of fire events leaving a TFR for ZSE 1 SM: 177

Number of evaluated TFRs for ZSE 3 SM: 247

Number of potential cases where fire leaves TFR for ZSE 3 SM: 1116

Number of potential fire events leaving TFR for ZSE 3 SM: 227

Number results for ZSE 3 SM: 8727

Number of TFR(s) cancelled before becoming effective for ZSE 3 SM: 7

Number of results without duplicates for ZSE 3 SM: 6442

Number of TFRs where a fire leaves the TFR for ZSE 3 SM: 208

Number of fire events leaving a TFR for ZSE 3 SM: 298

Text 3 ZAB has no fire clusters overlapping TFRs. For all other FIRs, the eight lines per buffer distance (statute miles: SM)
provide the following:

The number of TFRs regarded, then, prior to API request of clusters acquired during TFR runtime,

the number of spatially joined polygons (overlaps plus containments) for that buffer distance,

the number of fire events from that,

the total number of spatially joined polygons (overlaps plus containments) from API for that buffer distance (which has
duplicates),

a number of TFRs to be considered as well for this because they got cancelled in advance (which may be due to not spatially
matching a ground truth fire perimeter anymore),

the number of spatially joined polygons (overlaps plus containments) from API for that buffer distance (no duplicated entire
rows) and finally

the number of TFRs being overlapped (or contained) by a fire, which has a larger value than the following, if consecutive
TFR do not consider fire growth and

the number of fire clusters that overlap (or contain) a TFR.

122

8.5. No-TFR-Data-Documentation
Screenshots of location and date where and when no effective TFR was listed in the NOTAM Archive

are provided in this section. Together with the VBA log from 8.6 they prove that fetched TFR data is

complete for all 10 FIRs over the observed timespan.

123

124

125

126

127

128

129

8.6. VBA Log
What follows is the original VBA log, starting

with ZLA without execution date and in the

opposite direction back then. Together with

the screenshots from 8.5 it proves that

fetched TFR data is complete for all 10 FIRs

over the observed timespan.

ZLA, 2021-09-23

ZLA, 2021-09-22

ZLA, 2021-09-21

ZLA, 2021-09-20

ZLA, 2021-09-19

ZLA, 2021-09-18

ZLA, 2021-09-17

ZLA, 2021-09-16

ZLA, 2021-09-15

ZLA, 2021-09-14

ZLA, 2021-09-13

ZLA, 2021-09-12

ZLA, 2021-09-11

ZLA, 2021-09-10

ZLA, 2021-09-09

ZLA, 2021-09-08

ZLA, 2021-09-07

ZLA, 2021-09-06

ZLA, 2021-09-05

ZLA, 2021-09-04

ZLA, 2021-09-03

ZLA, 2021-09-02

ZLA, 2021-09-01

ZLA, 2021-08-31

ZLA, 2021-08-30

ZLA, 2021-08-29

ZLA, 2021-08-28

ZLA, 2021-08-27

ZLA, 2021-08-26

ZLA, 2021-08-25

ZLA, 2021-08-24

ZLA, 2021-08-23

ZLA, 2021-08-22

ZLA, 2021-08-21

ZLA, 2021-08-20

ZLA, 2021-08-19

ZLA, 2021-08-18

ZLA, 2021-08-17

ZLA, 2021-08-16

ZLA, 2021-08-15

ZLA, 2021-08-14

ZLA, 2021-08-13

ZLA, 2021-08-12

ZLA, 2021-08-11

ZLA, 2021-08-10

ZLA, 2021-08-09

ZLA, 2021-08-08

ZLA, 2021-08-07

ZLA, 2021-08-06

ZLA, 2021-08-05

ZLA, 2021-08-04

ZLA, 2021-08-03

ZLA, 2021-08-02

ZLA, 2021-08-01

25.03.2022 11:50:42 : ZOA, 2021-09-01

25.03.2022 11:51:03 : ZOA, 2021-09-02

25.03.2022 11:51:10 : ZOA, 2021-09-03

25.03.2022 11:51:16 : ZOA, 2021-09-04

25.03.2022 11:51:22 : ZOA, 2021-09-05

25.03.2022 11:51:28 : ZOA, 2021-09-06

25.03.2022 11:51:35 : ZOA, 2021-09-07

25.03.2022 11:51:42 : ZOA, 2021-09-08

25.03.2022 11:51:48 : ZOA, 2021-09-09

25.03.2022 11:51:53 : ZOA, 2021-09-10

25.03.2022 11:52:00 : ZOA, 2021-09-11

25.03.2022 11:52:05 : ZOA, 2021-09-12

25.03.2022 11:52:11 : ZOA, 2021-09-13

25.03.2022 11:52:17 : ZOA, 2021-09-14

25.03.2022 11:52:25 : ZOA, 2021-09-15

25.03.2022 11:52:35 : ZOA, 2021-09-16

25.03.2022 11:52:41 : ZOA, 2021-09-17

25.03.2022 11:52:51 : ZOA, 2021-09-18

25.03.2022 11:52:58 : ZOA, 2021-09-19

25.03.2022 11:53:10 : ZOA, 2021-09-20

25.03.2022 11:53:18 : ZOA, 2021-09-21

25.03.2022 11:53:24 : ZOA, 2021-09-22

25.03.2022 11:53:31 : ZOA, 2021-09-23

25.03.2022 11:53:39 : ZOA, 2021-09-24

25.03.2022 11:53:44 : ZOA, 2021-09-25

25.03.2022 11:53:50 : ZOA, 2021-09-26

25.03.2022 11:53:58 : ZOA, 2021-09-27

25.03.2022 11:54:04 : ZOA, 2021-09-28

25.03.2022 11:54:10 : ZOA, 2021-09-29

25.03.2022 11:54:16 : ZOA, 2021-09-30

25.03.2022 11:54:22 : ZOA, 2021-10-01

25.03.2022 11:54:28 : ZOA, 2021-10-02

25.03.2022 11:54:33 : ZOA, 2021-10-03

25.03.2022 11:54:38 : ZOA, 2021-10-04

25.03.2022 11:54:44 : ZOA, 2021-10-05

25.03.2022 11:54:49 : ZOA, 2021-10-06

25.03.2022 11:54:54 : ZOA, 2021-10-07

25.03.2022 11:55:00 : ZOA, 2021-10-08

25.03.2022 11:55:06 : ZOA, 2021-10-09

25.03.2022 11:55:12 : ZOA, 2021-10-10

25.03.2022 11:55:18 : ZOA, 2021-10-11

25.03.2022 11:55:23 : ZOA, 2021-10-12

25.03.2022 11:55:29 : ZOA, 2021-10-13

25.03.2022 11:55:34 : ZOA, 2021-10-14

25.03.2022 11:55:40 : ZOA, 2021-10-15

25.03.2022 11:55:45 : ZOA, 2021-10-16

25.03.2022 11:55:52 : ZOA, 2021-10-17

25.03.2022 11:55:59 : ZOA, 2021-10-18

25.03.2022 11:56:05 : ZOA, 2021-10-19

25.03.2022 11:56:11 : ZOA, 2021-10-20

25.03.2022 11:56:18 : ZOA, 2021-10-21

25.03.2022 11:56:24 : ZOA, 2021-10-22

25.03.2022 11:56:29 : ZOA, 2021-10-23

25.03.2022 11:56:35 : ZOA, 2021-10-24

25.03.2022 11:56:43 : ZOA, 2021-10-25

25.03.2022 11:56:49 : ZOA, 2021-10-26

25.03.2022 11:56:55 : ZOA, 2021-10-27

25.03.2022 11:57:01 : ZOA, 2021-10-28

25.03.2022 11:57:06 : ZOA, 2021-10-29

25.03.2022 11:57:12 : ZOA, 2021-10-30

25.03.2022 11:57:18 : ZOA, 2021-10-31

25.03.2022 13:22:19 : ZLA, 2021-09-24

25.03.2022 13:22:28 : ZLA, 2021-09-25

25.03.2022 13:22:40 : ZLA, 2021-09-26

25.03.2022 13:22:46 : ZLA, 2021-09-27

25.03.2022 13:23:00 : ZLA, 2021-09-28

25.03.2022 13:24:13 : ZLA, 2021-09-29

25.03.2022 13:24:29 : ZLA, 2021-09-30

25.03.2022 13:24:35 : ZLA, 2021-10-01

25.03.2022 13:24:41 : ZLA, 2021-10-02

25.03.2022 13:25:01 : ZLA, 2021-10-03

25.03.2022 13:25:08 : ZLA, 2021-10-04

25.03.2022 13:25:13 : ZLA, 2021-10-05

25.03.2022 13:25:19 : ZLA, 2021-10-06

25.03.2022 13:25:25 : ZLA, 2021-10-07

25.03.2022 13:25:30 : ZLA, 2021-10-08

130

25.03.2022 13:25:36 : ZLA, 2021-10-09

25.03.2022 14:09:24 : ZLA, 2021-10-10

25.03.2022 14:21:12 : ZLA, 2021-10-11

25.03.2022 14:21:22 : ZLA, 2021-10-12

25.03.2022 14:21:28 : ZLA, 2021-10-13

25.03.2022 14:21:34 : ZLA, 2021-10-14

25.03.2022 14:21:39 : ZLA, 2021-10-15

25.03.2022 14:21:45 : ZLA, 2021-10-16

25.03.2022 14:21:51 : ZLA, 2021-10-17

25.03.2022 14:21:57 : ZLA, 2021-10-18

25.03.2022 14:22:03 : ZLA, 2021-10-19

25.03.2022 14:22:09 : ZLA, 2021-10-20

25.03.2022 14:22:14 : ZLA, 2021-10-21

25.03.2022 14:22:20 : ZLA, 2021-10-22

25.03.2022 14:22:27 : ZLA, 2021-10-23

25.03.2022 14:22:33 : ZLA, 2021-10-24

25.03.2022 14:22:40 : ZLA, 2021-10-25

25.03.2022 14:22:46 : ZLA, 2021-10-26

25.03.2022 14:22:51 : ZLA, 2021-10-27

25.03.2022 14:22:56 : ZLA, 2021-10-28

25.03.2022 14:23:03 : ZLA, 2021-10-29

25.03.2022 14:23:09 : ZLA, 2021-10-30

25.03.2022 14:23:15 : ZLA, 2021-10-31

28.03.2022 22:23:37 : ZSE, 2021-08-01

28.03.2022 22:27:39 : ZSE, 2021-08-02

28.03.2022 22:28:25 : ZSE, 2021-08-03

28.03.2022 22:28:25 : ZSE, 2021-08-04

28.03.2022 22:28:25 : ZSE, 2021-08-05

28.03.2022 22:28:25 : ZSE, 2021-08-06

28.03.2022 22:28:25 : ZSE, 2021-08-07

28.03.2022 22:28:26 : ZSE, 2021-08-08

28.03.2022 22:28:26 : ZSE, 2021-08-09

28.03.2022 22:28:26 : ZSE, 2021-08-10

28.03.2022 22:28:26 : ZSE, 2021-08-11

28.03.2022 22:28:26 : ZSE, 2021-08-12

28.03.2022 22:28:26 : ZSE, 2021-08-13

28.03.2022 22:28:27 : ZSE, 2021-08-14

28.03.2022 22:28:27 : ZSE, 2021-08-15

28.03.2022 22:28:27 : ZSE, 2021-08-16

28.03.2022 22:28:27 : ZSE, 2021-08-17

28.03.2022 22:28:27 : ZSE, 2021-08-18

28.03.2022 22:28:27 : ZSE, 2021-08-19

28.03.2022 22:28:28 : ZSE, 2021-08-20

28.03.2022 22:28:28 : ZSE, 2021-08-21

28.03.2022 22:28:28 : ZSE, 2021-08-22

28.03.2022 22:28:28 : ZSE, 2021-08-23

28.03.2022 22:28:28 : ZSE, 2021-08-24

28.03.2022 22:28:28 : ZSE, 2021-08-25

28.03.2022 22:28:29 : ZSE, 2021-08-26

28.03.2022 22:28:29 : ZSE, 2021-08-27

28.03.2022 22:28:29 : ZSE, 2021-08-28

28.03.2022 22:28:29 : ZSE, 2021-08-29

28.03.2022 22:28:29 : ZSE, 2021-08-30

28.03.2022 22:28:29 : ZSE, 2021-08-31

28.03.2022 22:28:30 : ZSE, 2021-09-01

28.03.2022 22:28:30 : ZSE, 2021-09-02

28.03.2022 22:28:30 : ZSE, 2021-09-03

28.03.2022 22:28:30 : ZSE, 2021-09-04

28.03.2022 22:28:30 : ZSE, 2021-09-05

28.03.2022 22:28:30 : ZSE, 2021-09-06

28.03.2022 22:28:31 : ZSE, 2021-09-07

28.03.2022 22:28:31 : ZSE, 2021-09-08

28.03.2022 22:28:31 : ZSE, 2021-09-09

28.03.2022 22:28:31 : ZSE, 2021-09-10

28.03.2022 22:28:31 : ZSE, 2021-09-11

28.03.2022 22:28:31 : ZSE, 2021-09-12

28.03.2022 22:28:32 : ZSE, 2021-09-13

28.03.2022 22:28:32 : ZSE, 2021-09-14

28.03.2022 22:28:32 : ZSE, 2021-09-15

28.03.2022 22:28:32 : ZSE, 2021-09-16

28.03.2022 22:28:32 : ZSE, 2021-09-17

28.03.2022 22:28:32 : ZSE, 2021-09-18

28.03.2022 22:28:33 : ZSE, 2021-09-19

28.03.2022 22:28:33 : ZSE, 2021-09-20

28.03.2022 22:28:33 : ZSE, 2021-09-21

28.03.2022 22:28:34 : ZSE, 2021-09-22

28.03.2022 22:28:34 : ZSE, 2021-09-23

28.03.2022 22:28:34 : ZSE, 2021-09-24

28.03.2022 22:28:34 : ZSE, 2021-09-25

28.03.2022 22:28:35 : ZSE, 2021-09-26

28.03.2022 22:28:35 : ZSE, 2021-09-27

28.03.2022 22:28:35 : ZSE, 2021-09-28

28.03.2022 22:28:35 : ZSE, 2021-09-29

28.03.2022 22:28:35 : ZSE, 2021-09-30

28.03.2022 22:28:35 : ZSE, 2021-10-01

28.03.2022 22:28:35 : ZSE, 2021-10-02

28.03.2022 22:28:36 : ZSE, 2021-10-03

28.03.2022 22:28:36 : ZSE, 2021-10-04

28.03.2022 22:28:36 : ZSE, 2021-10-05

28.03.2022 22:28:36 : ZSE, 2021-10-06

28.03.2022 22:28:36 : ZSE, 2021-10-07

28.03.2022 22:28:36 : ZSE, 2021-10-08

28.03.2022 22:28:37 : ZSE, 2021-10-09

28.03.2022 22:28:37 : ZSE, 2021-10-10

28.03.2022 22:28:37 : ZSE, 2021-10-11

28.03.2022 22:28:37 : ZSE, 2021-10-12

28.03.2022 22:28:37 : ZSE, 2021-10-13

28.03.2022 22:28:37 : ZSE, 2021-10-14

28.03.2022 22:28:38 : ZSE, 2021-10-15

28.03.2022 22:28:38 : ZSE, 2021-10-16

28.03.2022 22:28:38 : ZSE, 2021-10-17

28.03.2022 22:28:38 : ZSE, 2021-10-18

28.03.2022 22:28:38 : ZSE, 2021-10-19

28.03.2022 22:28:39 : ZSE, 2021-10-20

28.03.2022 22:28:39 : ZSE, 2021-10-31

31.03.2022 13:25:24 : ZLC, 2021-08-01

31.03.2022 13:25:50 : ZLC, 2021-08-02

31.03.2022 13:25:50 : ZLC, 2021-08-03

31.03.2022 13:25:50 : ZLC, 2021-08-04

31.03.2022 13:25:50 : ZLC, 2021-08-05

31.03.2022 13:25:50 : ZLC, 2021-08-06

31.03.2022 13:25:50 : ZLC, 2021-08-07

31.03.2022 13:25:51 : ZLC, 2021-08-08

31.03.2022 13:25:51 : ZLC, 2021-08-09

31.03.2022 13:25:51 : ZLC, 2021-08-10

31.03.2022 13:25:51 : ZLC, 2021-08-11

31.03.2022 13:25:51 : ZLC, 2021-08-12

31.03.2022 13:25:51 : ZLC, 2021-08-13

31.03.2022 13:25:51 : ZLC, 2021-08-14

31.03.2022 13:25:52 : ZLC, 2021-08-15

31.03.2022 13:25:52 : ZLC, 2021-08-16

31.03.2022 13:25:52 : ZLC, 2021-08-17

31.03.2022 13:25:52 : ZLC, 2021-08-18

31.03.2022 13:25:52 : ZLC, 2021-08-19

31.03.2022 13:25:52 : ZLC, 2021-08-20

31.03.2022 13:25:53 : ZLC, 2021-08-21

31.03.2022 13:25:53 : ZLC, 2021-08-22

31.03.2022 13:25:53 : ZLC, 2021-08-23

31.03.2022 13:25:53 : ZLC, 2021-08-24

31.03.2022 13:25:53 : ZLC, 2021-08-25

31.03.2022 13:25:53 : ZLC, 2021-08-26

31.03.2022 13:25:53 : ZLC, 2021-08-27

31.03.2022 13:25:54 : ZLC, 2021-08-28

31.03.2022 13:25:54 : ZLC, 2021-08-29

31.03.2022 13:25:54 : ZLC, 2021-08-30

31.03.2022 13:25:54 : ZLC, 2021-08-31

31.03.2022 13:25:54 : ZLC, 2021-09-01

31.03.2022 13:25:54 : ZLC, 2021-09-02

31.03.2022 13:25:55 : ZLC, 2021-09-03

31.03.2022 13:25:55 : ZLC, 2021-09-04

31.03.2022 13:25:55 : ZLC, 2021-09-05

31.03.2022 13:25:55 : ZLC, 2021-09-06

131

31.03.2022 13:25:55 : ZLC, 2021-09-07

31.03.2022 13:25:55 : ZLC, 2021-09-08

31.03.2022 13:25:55 : ZLC, 2021-09-09

31.03.2022 13:25:56 : ZLC, 2021-09-10

31.03.2022 13:25:56 : ZLC, 2021-09-11

31.03.2022 13:25:56 : ZLC, 2021-09-12

31.03.2022 13:25:56 : ZLC, 2021-09-13

31.03.2022 13:25:56 : ZLC, 2021-09-14

31.03.2022 13:25:56 : ZLC, 2021-09-15

31.03.2022 13:25:57 : ZLC, 2021-09-16

31.03.2022 13:25:57 : ZLC, 2021-09-17

31.03.2022 13:25:58 : ZLC, 2021-09-18

31.03.2022 13:25:58 : ZLC, 2021-09-19

31.03.2022 13:25:58 : ZLC, 2021-09-20

31.03.2022 13:25:58 : ZLC, 2021-09-21

31.03.2022 13:25:58 : ZLC, 2021-09-22

31.03.2022 13:25:59 : ZLC, 2021-09-23

31.03.2022 13:25:59 : ZLC, 2021-09-24

31.03.2022 13:25:59 : ZLC, 2021-09-25

31.03.2022 13:25:59 : ZLC, 2021-09-26

31.03.2022 13:25:59 : ZLC, 2021-09-27

31.03.2022 13:25:59 : ZLC, 2021-09-28

31.03.2022 13:25:59 : ZLC, 2021-09-29

31.03.2022 13:26:00 : ZLC, 2021-09-30

31.03.2022 13:26:00 : ZLC, 2021-10-01

31.03.2022 13:26:00 : ZLC, 2021-10-02

31.03.2022 13:26:00 : ZLC, 2021-10-03

31.03.2022 13:26:00 : ZLC, 2021-10-04

31.03.2022 13:26:00 : ZLC, 2021-10-05

31.03.2022 13:26:01 : ZLC, 2021-10-06

31.03.2022 13:26:01 : ZLC, 2021-10-07

31.03.2022 13:26:01 : ZLC, 2021-10-08

31.03.2022 13:26:01 : ZLC, 2021-10-09

31.03.2022 13:26:01 : ZLC, 2021-10-10

31.03.2022 13:26:01 : ZLC, 2021-10-11

31.03.2022 13:26:01 : ZLC, 2021-10-12

31.03.2022 13:26:02 : ZLC, 2021-10-13

31.03.2022 13:26:02 : ZLC, 2021-10-14

31.03.2022 13:26:02 : ZLC, 2021-10-15

31.03.2022 13:26:02 : ZLC, 2021-10-16

31.03.2022 13:26:02 : ZLC, 2021-10-17

31.03.2022 13:26:02 : ZLC, 2021-10-18

31.03.2022 13:26:02 : ZLC, 2021-10-19

31.03.2022 13:26:03 : ZLC, 2021-10-20

31.03.2022 13:26:03 : ZLC, 2021-10-21

31.03.2022 13:26:03 : ZLC, 2021-10-22

31.03.2022 13:26:03 : ZLC, 2021-10-23

31.03.2022 13:26:03 : ZLC, 2021-10-24

31.03.2022 13:26:03 : ZLC, 2021-10-25

31.03.2022 13:26:03 : ZLC, 2021-10-26

31.03.2022 13:26:04 : ZLC, 2021-10-27

31.03.2022 13:26:04 : ZLC, 2021-10-28

31.03.2022 13:26:04 : ZLC, 2021-10-29

31.03.2022 13:26:04 : ZLC, 2021-10-30

31.03.2022 13:26:04 : ZLC, 2021-10-31

31.03.2022 13:32:17 : ZDV, 2021-08-01

31.03.2022 13:32:22 : ZDV, 2021-08-02

31.03.2022 13:32:23 : ZDV, 2021-08-03

31.03.2022 13:32:23 : ZDV, 2021-08-04

31.03.2022 13:32:23 : ZDV, 2021-08-05

31.03.2022 13:32:23 : ZDV, 2021-08-06

31.03.2022 13:32:23 : ZDV, 2021-08-07

31.03.2022 13:32:23 : ZDV, 2021-08-08

31.03.2022 13:32:24 : ZDV, 2021-08-09

31.03.2022 13:32:24 : ZDV, 2021-08-10

31.03.2022 13:32:24 : ZDV, 2021-08-11

31.03.2022 13:32:24 : ZDV, 2021-08-12

31.03.2022 13:32:24 : ZDV, 2021-08-13

31.03.2022 13:32:24 : ZDV, 2021-08-14

31.03.2022 13:32:24 : ZDV, 2021-08-15

31.03.2022 13:32:25 : ZDV, 2021-08-16

31.03.2022 13:32:25 : ZDV, 2021-08-17

31.03.2022 13:32:25 : ZDV, 2021-08-30

31.03.2022 13:32:25 : ZDV, 2021-08-31

31.03.2022 13:32:25 : ZDV, 2021-09-01

31.03.2022 13:32:25 : ZDV, 2021-09-02

31.03.2022 13:32:25 : ZDV, 2021-09-03

31.03.2022 13:32:26 : ZDV, 2021-09-04

31.03.2022 13:32:26 : ZDV, 2021-09-05

31.03.2022 13:32:26 : ZDV, 2021-09-06

31.03.2022 13:32:26 : ZDV, 2021-09-07

31.03.2022 13:32:26 : ZDV, 2021-09-12

31.03.2022 13:32:26 : ZDV, 2021-09-13

31.03.2022 13:32:27 : ZDV, 2021-09-14

31.03.2022 13:32:27 : ZDV, 2021-09-17

31.03.2022 13:32:27 : ZDV, 2021-09-18

31.03.2022 13:32:27 : ZDV, 2021-09-19

31.03.2022 13:32:27 : ZDV, 2021-09-20

31.03.2022 13:32:27 : ZDV, 2021-09-21

31.03.2022 13:32:27 : ZDV, 2021-09-28

31.03.2022 13:32:28 : ZDV, 2021-09-29

31.03.2022 13:32:28 : ZDV, 2021-09-30

31.03.2022 13:32:28 : ZDV, 2021-10-01

31.03.2022 13:32:28 : ZDV, 2021-10-02

31.03.2022 13:32:28 : ZDV, 2021-10-03

31.03.2022 13:32:28 : ZDV, 2021-10-04

31.03.2022 13:32:29 : ZDV, 2021-10-05

31.03.2022 13:32:29 : ZDV, 2021-10-06

31.03.2022 13:32:29 : ZDV, 2021-10-07

31.03.2022 13:32:29 : ZDV, 2021-10-08

31.03.2022 13:32:29 : ZDV, 2021-10-09

31.03.2022 13:32:29 : ZDV, 2021-10-10

31.03.2022 13:32:29 : ZDV, 2021-10-11

31.03.2022 13:32:30 : ZDV, 2021-10-12

31.03.2022 13:32:30 : ZDV, 2021-10-13

31.03.2022 13:32:30 : ZDV, 2021-10-14

31.03.2022 13:32:30 : ZDV, 2021-10-15

31.03.2022 13:32:30 : ZDV, 2021-10-16

31.03.2022 13:32:30 : ZDV, 2021-10-17

31.03.2022 13:32:31 : ZDV, 2021-10-18

31.03.2022 13:32:31 : ZDV, 2021-10-19

31.03.2022 13:32:31 : ZDV, 2021-10-20

31.03.2022 13:32:31 : ZDV, 2021-10-21

31.03.2022 13:32:31 : ZDV, 2021-10-22

31.03.2022 13:32:31 : ZDV, 2021-10-23

31.03.2022 13:32:31 : ZDV, 2021-10-24

31.03.2022 13:32:32 : ZDV, 2021-10-25

31.03.2022 13:32:32 : ZDV, 2021-10-26

31.03.2022 13:32:32 : ZDV, 2021-10-27

31.03.2022 13:32:32 : ZDV, 2021-10-28

31.03.2022 13:32:32 : ZDV, 2021-10-29

31.03.2022 13:32:32 : ZDV, 2021-10-30

31.03.2022 13:32:32 : ZDV, 2021-10-31

31.03.2022 13:35:18 : ZAB, 2021-08-01

31.03.2022 13:35:23 : ZAB, 2021-08-02

31.03.2022 13:35:23 : ZAB, 2021-08-03

31.03.2022 13:35:23 : ZAB, 2021-08-04

31.03.2022 13:35:23 : ZAB, 2021-08-05

31.03.2022 13:35:23 : ZAB, 2021-08-06

31.03.2022 13:35:24 : ZAB, 2021-08-07

31.03.2022 13:35:24 : ZAB, 2021-08-08

31.03.2022 13:35:24 : ZAB, 2021-08-09

31.03.2022 13:35:24 : ZAB, 2021-08-10

31.03.2022 13:35:24 : ZAB, 2021-08-11

31.03.2022 13:35:25 : ZAB, 2021-08-12

31.03.2022 13:35:25 : ZAB, 2021-08-13

31.03.2022 13:35:25 : ZAB, 2021-08-14

31.03.2022 13:35:25 : ZAB, 2021-08-15

31.03.2022 13:35:25 : ZAB, 2021-08-16

31.03.2022 13:35:25 : ZAB, 2021-08-17

31.03.2022 13:35:25 : ZAB, 2021-08-18

31.03.2022 13:35:26 : ZAB, 2021-08-19

132

31.03.2022 13:35:26 : ZAB, 2021-08-20

31.03.2022 13:35:26 : ZAB, 2021-08-21

31.03.2022 13:35:26 : ZAB, 2021-08-22

31.03.2022 13:35:26 : ZAB, 2021-08-23

31.03.2022 13:35:26 : ZAB, 2021-08-24

31.03.2022 13:35:26 : ZAB, 2021-08-25

31.03.2022 13:35:27 : ZAB, 2021-08-26

31.03.2022 13:35:27 : ZAB, 2021-08-27

31.03.2022 13:35:27 : ZAB, 2021-08-28

31.03.2022 13:35:27 : ZAB, 2021-08-29

31.03.2022 13:35:27 : ZAB, 2021-08-30

31.03.2022 13:35:27 : ZAB, 2021-08-31

31.03.2022 13:35:28 : ZAB, 2021-09-01

31.03.2022 13:35:28 : ZAB, 2021-09-02

31.03.2022 13:35:28 : ZAB, 2021-09-03

31.03.2022 13:35:28 : ZAB, 2021-09-04

31.03.2022 13:35:28 : ZAB, 2021-09-05

31.03.2022 13:35:28 : ZAB, 2021-09-06

31.03.2022 13:35:28 : ZAB, 2021-09-07

31.03.2022 13:35:29 : ZAB, 2021-09-08

31.03.2022 13:35:29 : ZAB, 2021-09-09

31.03.2022 13:35:29 : ZAB, 2021-09-10

31.03.2022 13:35:29 : ZAB, 2021-09-11

31.03.2022 13:35:29 : ZAB, 2021-09-12

31.03.2022 13:35:29 : ZAB, 2021-09-13

31.03.2022 13:35:30 : ZAB, 2021-09-14

31.03.2022 13:35:30 : ZAB, 2021-09-15

31.03.2022 13:35:30 : ZAB, 2021-09-16

31.03.2022 13:35:30 : ZAB, 2021-09-17

31.03.2022 13:35:30 : ZAB, 2021-09-18

31.03.2022 13:35:30 : ZAB, 2021-09-19

31.03.2022 13:35:31 : ZAB, 2021-09-20

31.03.2022 13:35:31 : ZAB, 2021-09-21

31.03.2022 13:35:31 : ZAB, 2021-09-22

31.03.2022 13:35:31 : ZAB, 2021-09-23

31.03.2022 13:35:31 : ZAB, 2021-09-24

31.03.2022 13:35:31 : ZAB, 2021-09-25

31.03.2022 13:35:31 : ZAB, 2021-09-26

31.03.2022 13:35:32 : ZAB, 2021-09-27

31.03.2022 13:35:32 : ZAB, 2021-09-28

31.03.2022 13:35:32 : ZAB, 2021-09-29

31.03.2022 13:35:32 : ZAB, 2021-09-30

31.03.2022 13:35:32 : ZAB, 2021-10-01

31.03.2022 13:35:32 : ZAB, 2021-10-02

31.03.2022 13:35:33 : ZAB, 2021-10-03

31.03.2022 13:35:33 : ZAB, 2021-10-04

31.03.2022 13:35:33 : ZAB, 2021-10-05

31.03.2022 13:35:33 : ZAB, 2021-10-06

31.03.2022 13:35:33 : ZAB, 2021-10-07

31.03.2022 13:35:33 : ZAB, 2021-10-08

31.03.2022 13:35:34 : ZAB, 2021-10-09

31.03.2022 13:35:34 : ZAB, 2021-10-10

31.03.2022 13:35:34 : ZAB, 2021-10-11

31.03.2022 13:35:34 : ZAB, 2021-10-12

31.03.2022 13:35:34 : ZAB, 2021-10-13

31.03.2022 13:35:34 : ZAB, 2021-10-14

31.03.2022 13:35:35 : ZAB, 2021-10-15

31.03.2022 13:35:35 : ZAB, 2021-10-16

31.03.2022 13:35:35 : ZAB, 2021-10-17

31.03.2022 13:35:35 : ZAB, 2021-10-18

31.03.2022 13:35:35 : ZAB, 2021-10-19

31.03.2022 13:35:35 : ZAB, 2021-10-20

31.03.2022 13:35:35 : ZAB, 2021-10-21

31.03.2022 13:35:36 : ZAB, 2021-10-22

31.03.2022 13:35:36 : ZAB, 2021-10-23

31.03.2022 13:35:36 : ZAB, 2021-10-24

31.03.2022 13:35:36 : ZAB, 2021-10-25

31.03.2022 13:35:36 : ZAB, 2021-10-26

31.03.2022 13:35:36 : ZAB, 2021-10-27

31.03.2022 13:35:36 : ZAB, 2021-10-28

31.03.2022 13:35:37 : ZAB, 2021-10-29

31.03.2022 13:35:37 : ZAB, 2021-10-30

31.03.2022 13:35:37 : ZAB, 2021-10-31

31.03.2022 13:36:33 : ZHU, 2021-08-02

31.03.2022 13:36:35 : ZHU, 2021-08-03

31.03.2022 13:36:35 : ZHU, 2021-08-04

31.03.2022 13:36:35 : ZHU, 2021-08-05

31.03.2022 13:36:36 : ZHU, 2021-08-06

31.03.2022 13:36:36 : ZHU, 2021-08-07

31.03.2022 13:36:36 : ZHU, 2021-08-08

31.03.2022 13:36:36 : ZHU, 2021-08-09

31.03.2022 13:36:36 : ZHU, 2021-08-10

31.03.2022 13:36:36 : ZHU, 2021-08-11

31.03.2022 13:36:36 : ZHU, 2021-08-12

31.03.2022 13:36:37 : ZHU, 2021-08-13

31.03.2022 13:36:37 : ZHU, 2021-08-14

31.03.2022 13:36:37 : ZHU, 2021-08-15

31.03.2022 13:36:37 : ZHU, 2021-08-16

31.03.2022 13:36:37 : ZHU, 2021-08-17

31.03.2022 13:36:37 : ZHU, 2021-08-18

31.03.2022 13:36:38 : ZHU, 2021-08-19

31.03.2022 13:36:38 : ZHU, 2021-08-20

31.03.2022 13:36:38 : ZHU, 2021-08-21

31.03.2022 13:36:38 : ZHU, 2021-08-22

31.03.2022 13:36:38 : ZHU, 2021-08-23

31.03.2022 13:36:38 : ZHU, 2021-08-24

31.03.2022 13:36:38 : ZHU, 2021-08-25

31.03.2022 13:36:39 : ZHU, 2021-08-26

31.03.2022 13:36:39 : ZHU, 2021-08-27

31.03.2022 13:36:39 : ZHU, 2021-08-28

31.03.2022 13:36:39 : ZHU, 2021-08-29

31.03.2022 13:36:39 : ZHU, 2021-08-30

31.03.2022 13:36:39 : ZHU, 2021-09-01

31.03.2022 13:36:40 : ZHU, 2021-09-02

31.03.2022 13:36:40 : ZHU, 2021-09-03

31.03.2022 13:36:40 : ZHU, 2021-09-04

31.03.2022 13:36:40 : ZHU, 2021-09-05

31.03.2022 13:36:40 : ZHU, 2021-09-06

31.03.2022 13:36:40 : ZHU, 2021-09-07

31.03.2022 13:36:40 : ZHU, 2021-09-08

31.03.2022 13:36:41 : ZHU, 2021-09-09

31.03.2022 13:36:41 : ZHU, 2021-09-10

31.03.2022 13:36:41 : ZHU, 2021-09-11

31.03.2022 13:36:41 : ZHU, 2021-09-12

31.03.2022 13:36:41 : ZHU, 2021-09-13

31.03.2022 13:36:41 : ZHU, 2021-09-14

31.03.2022 13:36:42 : ZHU, 2021-09-15

31.03.2022 13:36:42 : ZHU, 2021-09-16

31.03.2022 13:36:42 : ZHU, 2021-09-17

31.03.2022 13:36:42 : ZHU, 2021-09-18

31.03.2022 13:36:42 : ZHU, 2021-09-19

31.03.2022 13:36:42 : ZHU, 2021-09-20

31.03.2022 13:36:43 : ZHU, 2021-09-21

31.03.2022 13:36:43 : ZHU, 2021-09-22

31.03.2022 13:36:43 : ZHU, 2021-09-23

31.03.2022 13:36:43 : ZHU, 2021-09-24

31.03.2022 13:36:43 : ZHU, 2021-09-25

31.03.2022 13:36:43 : ZHU, 2021-09-26

31.03.2022 13:36:43 : ZHU, 2021-09-27

31.03.2022 13:36:44 : ZHU, 2021-09-28

31.03.2022 13:36:44 : ZHU, 2021-09-29

31.03.2022 13:36:44 : ZHU, 2021-09-30

31.03.2022 13:36:44 : ZHU, 2021-10-01

31.03.2022 13:36:44 : ZHU, 2021-10-02

31.03.2022 13:36:44 : ZHU, 2021-10-03

31.03.2022 13:36:45 : ZHU, 2021-10-04

31.03.2022 13:36:45 : ZHU, 2021-10-05

31.03.2022 13:36:45 : ZHU, 2021-10-06

31.03.2022 13:36:45 : ZHU, 2021-10-07

31.03.2022 13:36:45 : ZHU, 2021-10-08

31.03.2022 13:36:45 : ZHU, 2021-10-09

31.03.2022 13:36:46 : ZHU, 2021-10-10

133

31.03.2022 13:36:46 : ZHU, 2021-10-11

31.03.2022 13:36:46 : ZHU, 2021-10-12

31.03.2022 13:36:46 : ZHU, 2021-10-13

31.03.2022 13:36:46 : ZHU, 2021-10-14

31.03.2022 13:36:46 : ZHU, 2021-10-15

31.03.2022 13:36:46 : ZHU, 2021-10-16

31.03.2022 13:36:47 : ZHU, 2021-10-17

31.03.2022 13:36:47 : ZHU, 2021-10-18

31.03.2022 13:36:47 : ZHU, 2021-10-19

31.03.2022 13:36:47 : ZHU, 2021-10-20

31.03.2022 13:36:47 : ZHU, 2021-10-21

31.03.2022 13:36:47 : ZHU, 2021-10-22

31.03.2022 13:36:48 : ZHU, 2021-10-23

31.03.2022 13:36:48 : ZHU, 2021-10-24

31.03.2022 13:36:48 : ZHU, 2021-10-25

31.03.2022 13:36:48 : ZHU, 2021-10-26

31.03.2022 13:36:48 : ZHU, 2021-10-27

31.03.2022 13:36:48 : ZHU, 2021-10-28

31.03.2022 13:36:48 : ZHU, 2021-10-29

31.03.2022 13:36:49 : ZHU, 2021-10-30

31.03.2022 13:36:49 : ZHU, 2021-10-31

31.03.2022 13:37:25 : ZHU, 2021-08-02

31.03.2022 13:38:15 : ZFW, 2021-08-01

31.03.2022 13:38:17 : ZFW, 2021-08-02

31.03.2022 13:38:17 : ZFW, 2021-08-03

31.03.2022 13:38:17 : ZFW, 2021-08-04

31.03.2022 13:38:17 : ZFW, 2021-08-05

31.03.2022 13:38:17 : ZFW, 2021-08-06

31.03.2022 13:38:17 : ZFW, 2021-08-07

31.03.2022 13:38:18 : ZFW, 2021-08-08

31.03.2022 13:38:18 : ZFW, 2021-08-09

31.03.2022 13:38:18 : ZFW, 2021-08-10

31.03.2022 13:38:18 : ZFW, 2021-08-11

31.03.2022 13:38:18 : ZFW, 2021-08-12

31.03.2022 13:38:18 : ZFW, 2021-08-13

31.03.2022 13:38:18 : ZFW, 2021-08-14

31.03.2022 13:38:19 : ZFW, 2021-08-15

31.03.2022 13:38:19 : ZFW, 2021-08-16

31.03.2022 13:38:19 : ZFW, 2021-08-17

31.03.2022 13:38:19 : ZFW, 2021-08-18

31.03.2022 13:38:19 : ZFW, 2021-08-19

31.03.2022 13:38:19 : ZFW, 2021-08-20

31.03.2022 13:38:20 : ZFW, 2021-08-21

31.03.2022 13:38:20 : ZFW, 2021-08-22

31.03.2022 13:38:20 : ZFW, 2021-08-23

31.03.2022 13:38:20 : ZFW, 2021-08-24

31.03.2022 13:38:20 : ZFW, 2021-08-25

31.03.2022 13:38:20 : ZFW, 2021-08-26

31.03.2022 13:38:20 : ZFW, 2021-08-27

31.03.2022 13:38:21 : ZFW, 2021-08-28

31.03.2022 13:38:21 : ZFW, 2021-08-29

31.03.2022 13:38:21 : ZFW, 2021-08-30

31.03.2022 13:38:21 : ZFW, 2021-08-31

31.03.2022 13:38:21 : ZFW, 2021-09-01

31.03.2022 13:38:21 : ZFW, 2021-09-02

31.03.2022 13:38:22 : ZFW, 2021-09-03

31.03.2022 13:38:22 : ZFW, 2021-09-04

31.03.2022 13:38:22 : ZFW, 2021-09-05

31.03.2022 13:38:22 : ZFW, 2021-09-06

31.03.2022 13:38:22 : ZFW, 2021-09-07

31.03.2022 13:38:22 : ZFW, 2021-09-08

31.03.2022 13:38:23 : ZFW, 2021-09-09

31.03.2022 13:38:23 : ZFW, 2021-09-10

31.03.2022 13:38:23 : ZFW, 2021-09-11

31.03.2022 13:38:23 : ZFW, 2021-09-12

31.03.2022 13:38:23 : ZFW, 2021-09-13

31.03.2022 13:38:23 : ZFW, 2021-09-14

31.03.2022 13:38:23 : ZFW, 2021-09-15

31.03.2022 13:38:24 : ZFW, 2021-09-16

31.03.2022 13:38:24 : ZFW, 2021-09-17

31.03.2022 13:38:24 : ZFW, 2021-09-18

31.03.2022 13:38:24 : ZFW, 2021-09-19

31.03.2022 13:38:24 : ZFW, 2021-09-20

31.03.2022 13:38:24 : ZFW, 2021-09-21

31.03.2022 13:38:25 : ZFW, 2021-09-22

31.03.2022 13:38:25 : ZFW, 2021-09-23

31.03.2022 13:38:25 : ZFW, 2021-09-24

31.03.2022 13:38:25 : ZFW, 2021-09-25

31.03.2022 13:38:25 : ZFW, 2021-09-26

31.03.2022 13:38:25 : ZFW, 2021-09-27

31.03.2022 13:38:26 : ZFW, 2021-09-28

31.03.2022 13:38:26 : ZFW, 2021-09-29

31.03.2022 13:38:26 : ZFW, 2021-09-30

31.03.2022 13:38:26 : ZFW, 2021-10-01

31.03.2022 13:38:26 : ZFW, 2021-10-02

31.03.2022 13:38:26 : ZFW, 2021-10-03

31.03.2022 13:38:26 : ZFW, 2021-10-04

31.03.2022 13:38:27 : ZFW, 2021-10-05

31.03.2022 13:38:27 : ZFW, 2021-10-06

31.03.2022 13:38:27 : ZFW, 2021-10-07

31.03.2022 13:38:27 : ZFW, 2021-10-08

31.03.2022 13:38:27 : ZFW, 2021-10-09

31.03.2022 13:38:27 : ZFW, 2021-10-10

31.03.2022 13:38:28 : ZFW, 2021-10-11

31.03.2022 13:38:28 : ZFW, 2021-10-12

31.03.2022 13:38:28 : ZFW, 2021-10-13

31.03.2022 13:38:28 : ZFW, 2021-10-14

31.03.2022 13:38:28 : ZFW, 2021-10-15

31.03.2022 13:38:28 : ZFW, 2021-10-16

31.03.2022 13:38:28 : ZFW, 2021-10-17

31.03.2022 13:38:29 : ZFW, 2021-10-18

31.03.2022 13:38:29 : ZFW, 2021-10-19

31.03.2022 13:38:29 : ZFW, 2021-10-20

31.03.2022 13:38:29 : ZFW, 2021-10-21

31.03.2022 13:38:29 : ZFW, 2021-10-22

31.03.2022 13:38:29 : ZFW, 2021-10-23

31.03.2022 13:38:30 : ZFW, 2021-10-24

31.03.2022 13:38:30 : ZFW, 2021-10-25

31.03.2022 13:38:30 : ZFW, 2021-10-26

31.03.2022 13:38:30 : ZFW, 2021-10-27

31.03.2022 13:38:30 : ZFW, 2021-10-28

31.03.2022 13:38:30 : ZFW, 2021-10-29

31.03.2022 13:38:31 : ZFW, 2021-10-30

31.03.2022 13:38:31 : ZFW, 2021-10-31

31.03.2022 13:38:51 : ZKC, 2021-08-01

31.03.2022 13:38:53 : ZKC, 2021-08-02

31.03.2022 13:38:53 : ZKC, 2021-08-04

31.03.2022 13:38:53 : ZKC, 2021-08-05

31.03.2022 13:38:54 : ZKC, 2021-08-06

31.03.2022 13:38:54 : ZKC, 2021-08-07

31.03.2022 13:38:54 : ZKC, 2021-08-08

31.03.2022 13:38:54 : ZKC, 2021-08-09

31.03.2022 13:38:54 : ZKC, 2021-08-10

31.03.2022 13:38:54 : ZKC, 2021-08-11

31.03.2022 13:38:54 : ZKC, 2021-08-12

31.03.2022 13:38:55 : ZKC, 2021-08-13

31.03.2022 13:38:55 : ZKC, 2021-08-14

31.03.2022 13:38:55 : ZKC, 2021-08-15

31.03.2022 13:38:55 : ZKC, 2021-08-16

31.03.2022 13:38:55 : ZKC, 2021-08-20

31.03.2022 13:38:55 : ZKC, 2021-08-21

31.03.2022 13:38:56 : ZKC, 2021-08-22

31.03.2022 13:38:56 : ZKC, 2021-08-23

31.03.2022 13:38:56 : ZKC, 2021-08-24

31.03.2022 13:38:56 : ZKC, 2021-08-27

31.03.2022 13:38:56 : ZKC, 2021-08-28

31.03.2022 13:38:56 : ZKC, 2021-08-29

31.03.2022 13:38:56 : ZKC, 2021-08-30

31.03.2022 13:38:57 : ZKC, 2021-09-02

31.03.2022 13:38:57 : ZKC, 2021-09-03

31.03.2022 13:38:57 : ZKC, 2021-09-04

31.03.2022 13:38:57 : ZKC, 2021-09-05

134

31.03.2022 13:38:57 : ZKC, 2021-09-06

31.03.2022 13:38:57 : ZKC, 2021-09-07

31.03.2022 13:38:58 : ZKC, 2021-09-08

31.03.2022 13:38:58 : ZKC, 2021-09-09

31.03.2022 13:38:58 : ZKC, 2021-09-10

31.03.2022 13:38:58 : ZKC, 2021-09-11

31.03.2022 13:38:58 : ZKC, 2021-09-12

31.03.2022 13:38:58 : ZKC, 2021-09-13

31.03.2022 13:38:58 : ZKC, 2021-09-14

31.03.2022 13:38:59 : ZKC, 2021-09-15

31.03.2022 13:38:59 : ZKC, 2021-09-16

31.03.2022 13:38:59 : ZKC, 2021-09-17

31.03.2022 13:38:59 : ZKC, 2021-09-18

31.03.2022 13:38:59 : ZKC, 2021-09-19

31.03.2022 13:38:59 : ZKC, 2021-09-20

31.03.2022 13:39:00 : ZKC, 2021-09-21

31.03.2022 13:39:00 : ZKC, 2021-09-22

31.03.2022 13:39:00 : ZKC, 2021-09-23

31.03.2022 13:39:00 : ZKC, 2021-09-24

31.03.2022 13:39:00 : ZKC, 2021-09-25

31.03.2022 13:39:00 : ZKC, 2021-09-26

31.03.2022 13:39:01 : ZKC, 2021-09-27

31.03.2022 13:39:01 : ZKC, 2021-09-28

31.03.2022 13:39:01 : ZKC, 2021-09-29

31.03.2022 13:39:01 : ZKC, 2021-09-30

31.03.2022 13:39:01 : ZKC, 2021-10-01

31.03.2022 13:39:01 : ZKC, 2021-10-02

31.03.2022 13:39:01 : ZKC, 2021-10-03

31.03.2022 13:39:02 : ZKC, 2021-10-04

31.03.2022 13:39:02 : ZKC, 2021-10-05

31.03.2022 13:39:02 : ZKC, 2021-10-06

31.03.2022 13:39:02 : ZKC, 2021-10-07

31.03.2022 13:39:02 : ZKC, 2021-10-08

31.03.2022 13:39:02 : ZKC, 2021-10-12

31.03.2022 13:39:03 : ZKC, 2021-10-13

31.03.2022 13:39:03 : ZKC, 2021-10-14

31.03.2022 13:39:03 : ZKC, 2021-10-15

31.03.2022 13:39:03 : ZKC, 2021-10-16

31.03.2022 13:39:03 : ZKC, 2021-10-17

31.03.2022 13:39:03 : ZKC, 2021-10-18

31.03.2022 13:39:03 : ZKC, 2021-10-19

31.03.2022 13:39:04 : ZKC, 2021-10-20

31.03.2022 13:39:04 : ZKC, 2021-10-21

31.03.2022 13:39:04 : ZKC, 2021-10-22

31.03.2022 13:39:04 : ZKC, 2021-10-23

31.03.2022 13:39:04 : ZKC, 2021-10-24

31.03.2022 13:39:04 : ZKC, 2021-10-25

31.03.2022 13:40:43 : ZMP, 2021-08-01

31.03.2022 13:40:47 : ZMP, 2021-08-02

31.03.2022 13:40:51 : ZMP, 2021-08-03

31.03.2022 13:40:52 : ZMP, 2021-08-04

31.03.2022 13:40:52 : ZMP, 2021-08-05

31.03.2022 13:40:53 : ZMP, 2021-08-05

31.03.2022 13:40:55 : ZMP, 2021-08-06

31.03.2022 13:40:56 : ZMP, 2021-08-07

31.03.2022 13:40:56 : ZMP, 2021-08-08

31.03.2022 13:40:56 : ZMP, 2021-08-09

31.03.2022 13:40:56 : ZMP, 2021-08-10

31.03.2022 13:40:56 : ZMP, 2021-08-11

31.03.2022 13:40:56 : ZMP, 2021-08-12

31.03.2022 13:40:57 : ZMP, 2021-08-13

31.03.2022 13:40:57 : ZMP, 2021-08-14

31.03.2022 13:40:57 : ZMP, 2021-08-15

31.03.2022 13:40:57 : ZMP, 2021-08-16

31.03.2022 13:40:57 : ZMP, 2021-08-17

31.03.2022 13:40:57 : ZMP, 2021-08-18

31.03.2022 13:40:58 : ZMP, 2021-08-19

31.03.2022 13:40:58 : ZMP, 2021-08-20

31.03.2022 13:40:58 : ZMP, 2021-08-21

31.03.2022 13:40:58 : ZMP, 2021-08-22

31.03.2022 13:40:58 : ZMP, 2021-08-23

31.03.2022 13:40:58 : ZMP, 2021-08-24

31.03.2022 13:40:59 : ZMP, 2021-08-25

31.03.2022 13:40:59 : ZMP, 2021-08-26

31.03.2022 13:40:59 : ZMP, 2021-08-27

31.03.2022 13:40:59 : ZMP, 2021-08-28

31.03.2022 13:40:59 : ZMP, 2021-08-29

31.03.2022 13:41:00 : ZMP, 2021-08-30

31.03.2022 13:41:00 : ZMP, 2021-08-31

31.03.2022 13:41:00 : ZMP, 2021-09-01

31.03.2022 13:41:00 : ZMP, 2021-09-02

31.03.2022 13:41:00 : ZMP, 2021-09-03

31.03.2022 13:41:00 : ZMP, 2021-09-04

31.03.2022 13:41:01 : ZMP, 2021-09-05

31.03.2022 13:41:01 : ZMP, 2021-09-06

31.03.2022 13:41:01 : ZMP, 2021-09-07

31.03.2022 13:41:01 : ZMP, 2021-09-08

31.03.2022 13:41:01 : ZMP, 2021-09-09

31.03.2022 13:41:01 : ZMP, 2021-09-10

31.03.2022 13:41:02 : ZMP, 2021-09-11

31.03.2022 13:41:02 : ZMP, 2021-09-12

31.03.2022 13:41:02 : ZMP, 2021-09-13

31.03.2022 13:41:02 : ZMP, 2021-09-14

31.03.2022 13:41:02 : ZMP, 2021-09-15

31.03.2022 13:41:02 : ZMP, 2021-09-16

31.03.2022 13:41:03 : ZMP, 2021-09-17

31.03.2022 13:41:03 : ZMP, 2021-09-18

31.03.2022 13:41:03 : ZMP, 2021-09-19

31.03.2022 13:41:03 : ZMP, 2021-09-20

31.03.2022 13:41:03 : ZMP, 2021-09-21

31.03.2022 13:41:03 : ZMP, 2021-09-22

31.03.2022 13:41:04 : ZMP, 2021-09-23

31.03.2022 13:41:04 : ZMP, 2021-09-24

31.03.2022 13:41:04 : ZMP, 2021-09-25

31.03.2022 13:41:04 : ZMP, 2021-09-26

31.03.2022 13:41:04 : ZMP, 2021-09-27

31.03.2022 13:41:04 : ZMP, 2021-09-28

31.03.2022 13:41:05 : ZMP, 2021-09-29

31.03.2022 13:41:05 : ZMP, 2021-09-30

31.03.2022 13:41:05 : ZMP, 2021-10-01

31.03.2022 13:41:05 : ZMP, 2021-10-02

31.03.2022 13:41:05 : ZMP, 2021-10-03

31.03.2022 13:41:05 : ZMP, 2021-10-04

31.03.2022 13:41:06 : ZMP, 2021-10-05

31.03.2022 13:41:06 : ZMP, 2021-10-06

31.03.2022 13:41:06 : ZMP, 2021-10-07

31.03.2022 13:41:06 : ZMP, 2021-10-08

31.03.2022 13:41:06 : ZMP, 2021-10-09

31.03.2022 13:41:07 : ZMP, 2021-10-10

31.03.2022 13:41:07 : ZMP, 2021-10-11

31.03.2022 13:41:07 : ZMP, 2021-10-12

31.03.2022 13:41:07 : ZMP, 2021-10-13

31.03.2022 13:41:07 : ZMP, 2021-10-14

31.03.2022 13:41:07 : ZMP, 2021-10-15

31.03.2022 13:41:08 : ZMP, 2021-10-16

31.03.2022 13:41:08 : ZMP, 2021-10-17

31.03.2022 13:41:08 : ZMP, 2021-10-18

31.03.2022 13:41:08 : ZMP, 2021-10-19

31.03.2022 13:41:08 : ZMP, 2021-10-20

31.03.2022 13:41:08 : ZMP, 2021-10-21

31.03.2022 13:41:09 : ZMP, 2021-10-22

31.03.2022 13:41:09 : ZMP, 2021-10-23

31.03.2022 13:41:09 : ZMP, 2021-10-24

31.03.2022 13:41:09 : ZMP, 2021-10-25

31.03.2022 13:41:09 : ZMP, 2021-10-26

31.03.2022 13:41:09 : ZMP, 2021-10-27

31.03.2022 13:41:10 : ZMP, 2021-10-28

31.03.2022 13:41:10 : ZMP, 2021-10-29

31.03.2022 13:41:10 : ZMP, 2021-10-30

31.03.2022 13:41:10 : ZMP, 2021-10-31

	Figures
	Tables
	1. List of Abbreviations
	2. Abstract
	3. Introduction
	3.1. OroraTech Wildfire Service
	3.2. Notices to Airmissions and Temporary Flight Restrictions
	3.3. Aerial Firefighting
	3.4. Study Area: 10 Flight Information Regions in the western U.S.
	3.5. Contribution, Research Questions and Overview

	4. Data and Methods
	4.1. Data
	4.1.1. Fire Clusters from OroraTech as Polygons
	4.1.2. NOTAM Texts describing TFRs
	4.1.2.1. How to read a TFR NOTAM
	4.1.2.2. How to obtain TFR NOTAMs

	4.1.3. Locations of Firefighter Planes as Point Data
	4.1.4. The Study Area as FIRs derived from Map Image Layer

	4.2. Methods
	4.2.1. From Text to GeoJSON: Turning TFRs to a spatial Data Format
	4.2.2. Defining Appropriateness of a TFR
	4.2.3. Exploring the Datasets
	4.2.3.1. Fire Clusters and TFRs explored
	4.2.3.2. Aircraft state vectors explored

	4.2.4. The Time between Fire Detection and TFR Issue
	4.2.5. Coverage Quality Assessment
	4.2.6. Safety of actual Fire Fighting Aircraft
	4.2.7. Completeness of TFR-Fire-Correspondence

	5. Results and Discussion
	5.1. Results and Discussion of the Time Gap between Fire Detection and TFR Issue
	5.2. Results and Discussion of Coverage Quality Assessment
	5.3. Results and Discussion of Safety of actual Fire Fighting Aircraft
	5.4. Results and Discussion of Completeness of TFR-Fire-Correspondence

	6. Conclusion
	6.1. Concerning the Time Gap between Fire Detection and TFR Issue Time
	6.2. Concerning Coverage Quality
	6.3. Concerning safety of actual Fire Fighting Aircraft
	6.4. Concerning Completeness of TFR-Fire-Correspondence
	6.5. Prospect of future Work and Data Application

	7. References
	8. Appendix
	8.1. GitHub
	8.2. Scripts and Code
	8.2.1. Relating 4.1.4, The Study Area as FIRs
	8.2.2. Relating 4.2.1, From Text to GeoJSON
	8.2.3. Relating 4.2.3, Exploring the Datasets
	8.2.4. Relating 4.2.4, The Time Gap between Fire Detection and TFR Issue
	8.2.5. Relating 4.2.5, Coverage Quality
	8.2.6. Relating 4.2.6, Safety of actual Fire Fighting Aircraft
	8.2.7. Relating 4.2.7 Completeness of TFR-Fire-Correspondence

	8.3. Tables containing Time Gap between Fire Detection and TFR Issue
	8.4. Coverage Quality Log
	8.5. No-TFR-Data-Documentation
	8.6. VBA Log

