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Abstract 

Flood mapping and damage assessments with remote sensing data became an effective 

instrument over the last decade, as it allows fast first evaluation of flood events. However, research 

in low-cost and effective flood event evaluation methods for developing countries is limited. More 

accurate information in regards to flood events would allow flood relief management to be more 

precise and efficient. A helpful proxy information to assess the number of affected people and the 

property damage is affected building structures. Through automatic extraction of building footprints 

from satellite images, vector data for building structures are now freely available for some countries 

through open-source initiatives. For example, in 2019 Microsoft published a country wide Building 

Footprint for Tanzania and Uganda. In this thesis, the intention is to figure out, if the open-source 

Building Footprint can be reliably used to create a low-cost method to assess the number of 

affected buildings during a flood event.  

Since automatically extracted building footprint data at this scale and accuracy, is relatively new, its 

usability in this kind of damage evaluation needs to be assessed to determine the accuracy of the 

results. The city of Dar es Salaam was selected as a study site as there is high quality Open Street 

Map (OSM) data available to verify the results. In order to assess the damage, two indicators were 

defined, number of affected buildings and total area covered by the affected buildings. To visualize 

the spatial distribution of the affected buildings, maps were also generated. Assessment of the 

indicators and visualization were done for both, Building Footprint and the OSM data, for 

comparison. An automatic workflow was established to calculate these indicators and generate the 

map to ensure the workflow can be reapplied elsewhere. The algorithm to determine the flood 

zones is an unsupervised change detection approach. This methodology is comparing before and 

after flood Sentinel 1 SAR satellite images by means of Google Earth Engine. An intersect 

operation between the flood zones and the Building Footprint determines the affected buildings. 

The results vary highly depending on the size and spatial distribution of the flood zones. Factors 

like the selected algorithm, acquisition dates of satellite images, land surface of the study site and 

the parameter configuration for the algorithm have a high influence on the established flood zones. 

A part from these limitations, the results indicate that in a first damage evaluation the Building 

Footprint can be an added value to assess the affected buildings. For the selected flood event, the 

indicator total area covered by the affected buildings has turned out to be more suitable than the 

indicator number of affected buildings. The Building Footprint slightly overestimated the total area 

covered by the affected buildings compared to the OSM building dataset. This overestimation is 

small and can be explained, hence the indicator can be considered valid for the selected flood 

event. On the other hand, the results for the indicator number of affected buildings from the 

Building Footprint are not persuasive. The verification dataset OSM has significantly higher 
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numbers for the affected buildings. This is caused by the fact that the Building Footprint merges 

small buildings within densely populated urban areas to a single building.  

The biggest potential for the established workflow and the Building Footprint data is most likely 

within rural areas. This is due to the fact that the flood detection algorithm is more susceptible to 

errors in urban areas and the data accuracy of the Building Footprint is lower within densely 

populated areas. 
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1 Introduction 

Worldwide floods are the most common natural disaster and result in immense economic loss 

(Ferreira et al., 2011). The exposure of poor people to floods is disproportionally higher, 

especially in urban areas on the African continent (Winsemius et al., 2018). In the future the 

frequency and intensity of floods are expected to amplify due to climate change (IPCC, 2018, 

2021). According to predictions by Hallegate et al. (2013) in 2050, solely in coastal cities, the 

annual losses due to flooding will reach a trillion US dollars. 

The impact is also compounded by the fact that, urban growth in the global south is often 

taking place in areas that are prone to floods, because of limited housing space (Braun & 

Aßheuer, 2011). This trend is particularly worrying in Africa, as the urban population is 

growing rapidly. The annual growth rates are above 3 percent and it is predicted that by 2030 

the two African cities, Luanda (Angola) and Dar es Salaam (Tanzania), will reach megacity 

status (United Nations, 2019). The Human Settlements Programme of the United Nations 

(2014) is estimating that Dar es Salaam has to accommodate more than 200’000 new urban 

dwellers per year. 

Those factors indicate that the situation in the upcoming years may become worse and it is 

therefore crucial for fast growing cities in the south to adapt to this circumstance. Better 

planning and monitoring to adapt to this fast-changing environment would be crucial in 

helping cities to adapt and accommodate population and environmental pressures. Local 

decision makers and humanitarian aid agencies depend on accurate information in regards to 

flood events as fast as possible. Besides those directly tangled actors, institutions like 

insurance companies have an interest in knowing the expected impact. 

Traditional methods that are used to quantify losses like the “The Damage, Loss and Needs 

Assessment” are often based on surveys, interviews and expert visits on site (Jovel & 

Mudahar, 2010). As a result of rapid technological changes and the availability of remote 

data, technical solutions become valued alternatives and have been used for damage 

quantification (Barnes et al., 2007; Fernandez-Galarreta et al., 2015). A current trend to 

assess damage in urban areas is to use high resolution remote sensing data either from 

satellites or UAV (Jiménez-Jiménez et al., 2020; Kakooei & Baleghi, 2017). Unfortunately, the 

needed high-resolution data for those assessments are often not available for developing 

countries, either due to high cost or missing equipment. Rahman & Di (2017) concluded, 

while providing an overview on remote sensing methods for flood mapping, further research 

is needed in low-cost and effective flood management strategy for developing countries.  

As a result of the decision by the European Space Agency (ESA) Copernicus program to 

make their data from the Sentinel satellites freely available, new opportunities for low-cost 

solution have opened up. The Sentinel 1 satellites regularly provide SAR images from around 
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the globe. SAR based flood mapping is currently the most effective option to detect flood 

zones through remote sensing (Schumann & Moller, 2015). This is due to the fact that the 

microwave signals are sensitive to water and independent from the weather conditions during 

image acquisition (Notti et al., 2018). One of the most rapid and most common SAR based 

approaches to detect inundation zones is thresholding (Zhang et al., 2020). For example, the 

United Nations Office for Outer Space Affairs (UN-SPIDER) developed different 

“recommended practices” to detect and analyze hazards. One of these workflows is an 

unsupervised change detection threshold approach for flood mapping with Google Earth 

Engine (GEE). GEE is a web platform that provides cloud computing and an extensive data 

catalog (Gorelick et al., 2017). In recent years studies like Tiwari et al. (2020) and DeVries et 

al. (2020) showed that cloud computing platforms have become more popular within flood 

mapping, as they offer easy data access and fast computing of large data amounts.  

The humanitarian sector has started to invest resources in mapping projects to enhance the 

spatial cover of relevant data. Accurate and up-to-date digitized building structures can be 

used as proxy information to evaluate the number of affected people and property damage. 

They have recognized the potential of community mapping and tools like Open Street Map 

(OSM) as a basis for data in disaster risk reduction (Scholz et al., 2018; Herfort et al., 2021). 

For example, to increase flood resilience in Dar es Salaam the community mapping project, 

“Ramani Huria”, trained volunteers to create highly accurate datasets of buildings and 

drainages (World Bank, 2016). The data was then used to create an “Atlas of Flood 

Resilience” in Dar es Salaam. One of the disadvantages of such projects is the limited range. 

Overall the inequality in data accuracy and reliability within OSM is problematic (Barron et al., 

2014; Herfort et al., 2021).  

In recent years automatic extraction of building footprints from satellite and aerial images with 

deep learning methods has made significant progress (Shu et al., 2018; Schuegraf & Bittner, 

2019; Zhao et al., 2021). A main performance increase in image recognition is based on the 

invention of residual networks, which allow to scale deep neural networks (He et al., 2016). 

Compared to manual digitalization it is less time consuming, cheaper and the inequality in 

data accuracy is smaller. In 2018 Microsoft published a US building footprint with 125 Mio. 

automatic extracted buildings from Bing Maps (Microsoft, 2018). A year later, they published 

a building footprint for Uganda and Tanzania (Microsoft, 2019). In both cases object 

classification was done by deep learning methods (Tan & Le, 2020). The US building footprint 

has already been used for several data analyses (Heris et al., 2020; Jiang, 2019).  

In this thesis, the intention is to create a method to assess the number of affected buildings 

during a flood event using the Building Footprint from Microsoft as input data. The study will 

focus on a flood event in Dar es Salaam. Verification is done by comparing the result with the 

building layer from OSM for a specific flood event. A comparison allows to answer the 
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question, can automatic extracted building footprints be used to evaluate the damage of flood 

events in different areas. If there is no significant difference in the outcomes, the method 

could be applied for other areas with less accurate OSM data availability.  

In this research, using DSM, TZ as an example, the open data Building Footprint is used to 

assess the number of affected buildings due to a flood event. 

In order to achieve this aim, the following objectives have been defined: 

1. Create a workflow to estimate the affected buildings in the study site. 

2. Verify the result by comparing it with another data source. 

3. Analyze the potential and limits of the methodology and the Building Footprint in 

damage assessment of flood events. 
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2 Methods 

The following chapter gives an overview about the selected study site and the selected flood 

event in section 2.1. A flood event was required to establish and verify the developed 

workflow. The created workflow to estimate the affected buildings is described in 2.2. The 

flood zone determination approach is explained in 2.3. The last section 2.4 describes the two 

datasets Building Footprint and OSM. 

2.1 Study Site and Flood Event 

For the following thesis the selected study site focuses on Dar es Salaam, Tanzania. It is 

centered on the districts of Ilala, Kinondoni and sections of Temeke, because these areas are 

the most heavily populated parts of Dar es Salaam. The selection is based on the population 

data provided by the Humanitarian Data Exchange Tool by the United Nations Office for the 

Coordination of Humanitarian Affairs OCHA (OCHA, 2016). According to the metadata, the 

data was originally collected by the Tanzania National Bureau of Statistics in 2012. The ward 

boundaries are based on the information from the Tanzania National Bureau of Statistics 

(NBS Tanzania, 2012). Figure 1 highlights the selected study site and the ward boundaries. 

Flood events were identified by searching in past newspaper articles, which mention heavy 

rainfalls and floods for the region Dar es Salaam. According to local newspapers heavy 

rainfalls, starting on the 12 October 2020 and peaking on the 13 October 2020, caused 

extensive flooding in Dar es Salaam (Daily News, 2020; TheCitizen, 2020). The Copernicus 

Open Access Hub indicates that Sentinel 1 took an image on the afternoon of the 13th of 

October 2020 (ESA, 2020). The fact that a satellite image is available on the day of the flood 

peak makes it a good example to examine. Consequently, this flood event was chosen as an 

example to establish a workflow and verify the results. In order to determine the inundation 

zones, the methodology also needs a reference image before the flood (details see section 

2.3). This image should be taken decidedly before a flood event starts. As a consequence, 

the time period for the before flood image was set on the first half of September 2020. Long 

term mean monthly rainfall data for Dar es Salaam shows that September is typically part of 

the dry season (Kabanda, 2018). This is confirmed by the aggregated rainfall data for 

September 2020 from the Agrometeorological Database of Tanzania. The records indicate 

less than 25 mm rainfall over the whole month (TMA, 2020).  
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Figure 1: Map of the selected study site 
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2.2 Workflow 

The aim of the workflow was to create an automatic procedure to calculate the two indicators 

number of affected buildings and total area covered by the affected buildings for the Building 

Footprint. In addition, the indicators are calculated for OSM data to help verify the quality of 

the result from the Building Footprint. A flood map is created to provide a visual result for the 

spatial distribution of the flooded areas and the affected buildings. The freeware tool QGIS 

was used to implement the workflow, details about the system set up can be found in the 

appendix in section 7.6.  

The overall process of the methodology is summarized in Figure 2. The procedure is 

managed by a Python console script “Flood Map/Indicator”. The script calls step by step other 

processing scripts and QGIS algorithms. Some actions depend on intermediate results of 

earlier tasks, hence the sequence is critical. The order is pointed out by numbers in Figure 2. 

The modular structure of the procedure has the advantage of making it easy to replace each 

module. For example, if an alternative option to determine the flood zone is available, only 

the processing script “Create flood map” has to be replaced. 

 

Figure 2: Overview of the procedure Calculation of indicators and map; order is indicated by numbers 
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The following key parameters need to be defined in the console script “Flood Map/Indicator” 

before running it:  

- Time period before flood to select image (Dates)  

- Time period to select flood image (Dates) 

- Study Site (Path to local shapefile) 

- Local Directories (Path to Building Footprint & Output Files) 

- Threshold (Number) 

- Pass Direction (Ascending or Descending) 

- Polarization (VH, VV) 

An example for the configuration of the script is described in detail in the appendix section 

7.1. 

The first algorithm called in the console script Flood Map/Indicator is the processing script 

Create Flood Map, see step number 2 in Figure 2. The script is attached in the appendix 

section 7.3. The result of the script is an inundation map based on the change detection 

approach (details see section 2.3). The script is using Google Earth Engine (GEE) to 

compare SAR satellite pre and post flood images. The initially defined parameters from the 

console script Flood Map/Indicator are handed over to the processing script and a request is 

sent to GEE. The images accessed in the Earth Engine Data Catalog are C-Band Sentinel-1 

SAR GRD (Google Developers, 2020). These images are pre-processed with the Sentinel-1 

Toolbox (Filipponi, 2019) and therefore, the only additional image processing step done was 

speckle reduction. Each pixel from the pre and post image is compared and classified 

according to the selected threshold in flood area or non-flood area.  

Furthermore, elimination of false positive values is done by comparing the flood zone with 

additional datasets. Firstly, the flood zone are compared with a dataset of water bodies that 

occur for more than 10 months per year and all flood zone pixels intersecting the waterbodies 

are removed (Google Developers, 2021; Pekel et al., 2016). Next, all inundation zones that 

are placed in areas with over 5% degrees are removed. Identification and masking out these 

areas is done by comparing the flood zones with slope information based on the 

HydroSHEDS digital elevation model (Google Developers, 2008; Lehner et al., 2008). Finally, 

flood polygons that are smaller than 10 pixels are removed. 

The flood zones are saved in the local directory defined in the console script Flood 

Map/Indicator as a TIF file. Then the TIF is converted into a SHP using the algorithm 

gdal:polygonize and invalid geometries are fixed with the algorithm fixgeometries. Finally, 
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flood polygons outside of the study site are eliminated by using the algorithm clip and the 

result saved as floodedarea.SHP in the local directory. 

To calculate the affected buildings for the verification process, the next main step in the 

console script Flood Map/Indicator is fetching the OSM buildings within the study site, see 

step number 3 in Figure 2. This is done through the processing script Fetch OSM. The script 

is based on a model designed with the QGIS model designer. A query was created to 

download OSM polygon buildings in the study site (see section 7.4.1). The query uses the 

data mining tool Overpass Turbo API to access OSM data (Raifer, 2021). The result is saved 

in the local directory.  

In order to calculate the affected buildings from the Building Footprint, the buildings for the 

study site are extracted, see step number 4 in Figure 2. The console script Flood 

Map/Indicator initiates a clip process to extract the building polygons from the Building 

Footprint and saves a copy of the data in the local directory. 

The process is continued by extracting the buildings intersecting the flood zones, see step 

number 5 in Figure 2. Hence, the intermediate results, flood zone and the buildings from the 

Building Footprint, are used as input for the algorithm extractbylocation to define the affected 

buildings. The procedure is repeated with OSM as input data to extract the affected buildings 

for the OSM dataset. Both results are saved in the local directory. 

The calculation of the indicator values is completed in the processing script Calculate 

Indicators, see step number 6 in Figure 2. The purpose of this processing script is to 

calculate the two indicators number of affected buildings and total area covered by these 

buildings. For each feature (building) in the dataset a field calculation is performed to 

determine the area of the polygon. Finally, the areas of the polygons are summed up and 

saved locally in the csv file indicatorvalues. Furthermore, the number of polygons is saved as 

well. This process is performed for the datasets Affected buildings “Building Footprint” and 

Affected buildings “OSM”. In addition, in order to receive some useful auxiliary data about the 

study site the processing script is called for the datasets: Flood Zone, Buildings “OSM”, and 

Buildings “Building Footprint”. The results are all saved in the same csv file. 

The final main step of the console script Flood Map/Indicator is adding the data, see step 

number 7 in Figure 2. Study Site, Flood Zones, Affected buildings Building Footprint, Affected 

buildings OSM are imported to the map. The data is placed in a group called Flood Event and 

appropriately formatted (names, colours, transparency). 

In order to find an optimal threshold and polarization (see section 2.3 for explanation on 

selection of threshold and polarization), six different scenarios were calculated. The 

predefined threshold in the UN-SPIDER (2020) methodology is 1.25, hence this was the 

initial value for both polarizations. The values were reduced in steps of 0.05 until 1.10 for the 
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polarization VH and until 1.20 for the polarization VV. Table 1 gives an overview about the 

input parameters. 

Table 1: Input parameters for console script Flood Map/Indicator 

Before Flood Start Date 01/09/2020 

Before Flood End Date 20/09/2020 

After Flood Start Date 10/10/2020 

After Flood End Date 17/10/2020 

Pass Direction ASCENDING 

Polarization / Threshold 
VH 1.25 1.2 1.15 1.1 

VV 1.25 1.2  

 

2.3 Flood Zone determination 

An unsupervised change detection and threshold approach was used to calculate the flood 

zones within the study site. This approach was modified from the recommended practices by 

the United Nations Office for Outer Space Affairs (UN-SPIDER, 2020). The method compares 

SAR satellite images before and after the flood. SAR satellites actively send electromagnetic 

pulses and receive the echoes of the backscatter (Moreira et al., 2013). The backscatter 

depends on the surface structure and accordingly on how smooth or rough the surface is, the 

signal appears bright or dark on the image (Lillesand et al., 2008). Therefore, the main 

element to detect flood areas while using SAR data is the shift of the surface roughness.  

The energy transmitted from SAR sensors can be classified in different microwave 

frequencies. For change detection and monitoring of areas with low to moderate vegetation 

the C- band with a frequency of 4-8 GHz is the most suitable (Meyer, 2019).  

Revisit times depend on the study site and the selected satellite. The satellite selected for the 

study site is Sentinel-1 SAR. In the case of the relevant study site (see Figure 1), only an 

ascending pass direction is covering the area completely and hence a complete image of the 

study site is only available every 12 days. In addition, a change detection approach depends 

on satellite images from the same viewing angle, when using satellite images from different 

pass direction, the comparison would lead to false positive signals (Lillesand et al., 2008). 

Sentinel-1 SAR has four different modes. Over land the Interferometric Wide swath (IW) is 

the main acquisition mode and is suitable for the purpose of flood mapping (Geudtner et al., 

2014). 

The selected polarization of the signal is an important factor and has a high influence on the 

determined inundation zone as different polarizations do not interact equally with objects on 
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the surface. This is due to the fact that on different polarimetric channels the signal for 

scattering types like rough surface scatterers, double-bounce scatterers, etc. reacts 

differently (Meyer, 2019). According to UN-SPIDER (2020) the proposed polarization for flood 

mapping is vertical transmitted and horizontal received (VH) as it is more sensitive to land 

surface changes. On the other hand, Tiwari et al. (2020) preferred vertical transmitted and 

vertical received (VV) over VH polarization. Sentinel-1 SAR is provided in single co-

polarization VV and dual-band cross-polarization VH (Google Developers, 2020). The focus 

of the research was the VH polarization, nevertheless two scenarios with the VV polarization 

were included for comparison (see Table 1).  

A key parameter in change detection approach with a threshold, is choosing an appropriate 

threshold value. Each pixel from the preflood image is compared with the post flood image 

and then classified as under or above the threshold (Meyer, 2019). The methodology of UN-

SPIDER (2020) follows a trial and error approach to define the threshold value. To avoid 

under or over classification of inundation zones, several scenarios have been calculated (see 

Table 1).  

All SAR images are affected by speckle, which occur due to several individual scatters in a 

single pixel (Lillesand et al., 2008). These speckles appear as random patterns of bright and 

dark pixels in the image. This so called “Salt and Pepper” effect, can be reduced by applying 

a filter on the image. The methodology is applying a simple local mean filter to reduce the 

speckles on the pre and post flood images.  

2.4 Datasets OSM and Building Footprint 

OSM is a free map project formed on a crowdsourcing approach. Everybody can add and edit 

content like buildings, waterways, etc. In recent years there is a growing interested from 

researches to use OSM data, as the quantity of free available data builds a huge opportunity 

(Sehra et al., 2017).  

The free available Building Footprint used in the procedure was created by Microsoft’s AI for 

Humanitarian Action program (Microsoft, 2019). The dataset includes almost 18 million 

building polygons for Tanzania and Uganda, whereas more than 11 million lay in Tanzania. 

The data is published as GeoJSON format. The building polygons were established in a two-

step process (Microsoft, 2019). Firstly, a semantic segmentation is done by using a 

Convolutional Neural Networks (CNN) to extract building pixels from satellite images. The 

CNN used is called EfficientNet B3 (Tan & Le, 2020). Secondly, polygons are built based on 

the established pixel blobs. The source of the satellite images used in the process is Bing 

Maps and therefore it is not possible to establish the exact date of the acquisition of individual 

images (Microsoft, 2019). According to Microsoft (2019) the quality of the Building Footprint is 

mostly at least as good as hand digitized buildings in OSM. They computed a precision value 
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of 94.5%, a recall factor of 61.8% and an Intersection over Union value (IoU) of 68% 

(Microsoft, 2019). However, precision, recall factor and IoU are lower in dense urban areas 

compared to rural areas (Microsoft, 2019). 

A copy of the GeoJSON file needs to be stored as a SHP file locally on the computer (see 

section 7.1). This has to be done to raise the efficiency of the procedure as it increases the 

calculation process significantly.  
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3 Results 

This chapter present the results for the indicators and the maps generated through the 

methodology. The maps allow a visual interpretation and hence give additional information 

about the spatial distribution of the flood zones and affected buildings. All areas calculated in 

the tables are listed in hectares. 

Table 2 sums up general information for the study area including the size and the number of 

buildings for the datasets OSM and Building Footprint. Furthermore, the sum of the area per 

dataset is given. Table 3 shows the area of the flood zone and the number of affected 

buildings for scenarios with VH polarization on both datasets. The results are split up by 

thresholds, 1.25, 1.20, 1.15 and 1.10. This table also lists the total area covered by the 

affected buildings. Table 4 contains the results for the scenarios with polarization VV and 

threshold 1.25 and 1.20. Again, the number of affected buildings and the total area of 

affected buildings are displayed. 

Table 3 and Table 4 illustrate that a decreasing threshold, increases the size of the flood 

zone and therefore, the number of affected buildings. This is visually confirmed in Figure 8, 

which points out the effect of the parameter threshold on the flood zone polygons. Low 

threshold values like 1.15 and especially 1.10 generate additional small inundation zones. 

Depending on selected polarization and threshold, the area classified as being flooded 

ranges between 0.26% and 0.74% of the study site. In absolute numbers total flood zone 

sizes range from 140 hectares to 411 hectares (see Table 3 & Table 4), of which the 

scenarios with VV polarization result in higher numbers than the VH polarization. For 

example, the number of flood zone polygons with a threshold 1.2 is more than 9 times higher 

for VV, whereas the summed area is only around 2.2 times higher. Hence, the VV 

polarization creates more small and medium size flood zone polygons, evenly distributed 

through the study site. The different spatial distribution of the inundation zones over the study 

site are well illustrated when comparing Figure 3 and Figure 4. The VV polarization in Figure 

4 shows conspicuously additional small and medium size flood zones distributed evenly all 

over the study site. As seen in Figure 3 and Figure 6 the main flood zones for the VH 

polarization are in the city center and along major rivers. An enlarged comparison is 

presented in Figure 5, which emphasizes the effect of the polarization on the number of flood 

polygons detected.  

Table 2 shows that the number of buildings in the OSM Building Layer is more than three 

times higher than the number of buildings in the Building Footprint Layer. On the other hand, 

the area covered by the OSM Building Layer is only around 50% higher than the area 

covered by the Building Footprint Layer. This indicates that the individual polygons of the 

Building Footprint Layer are bigger. This is confirmed in Table 3 and Table 4 by looking at the 
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numbers for affected buildings and the area that those buildings cover for each of these 

datasets. The number of affected buildings is for all scenarios significantly higher for the 

Affected buildings OSM Layer. On the other hand, the area covered by the Affected buildings 

Building Footprint Layer is always slightly higher than the total area covered by the Affected 

buildings OSM Layer.  

Table 5 shows ratio calculations for the values in Table 3 and Table 4. As mentioned above, 

the number of affected buildings is significantly higher for the OSM dataset. The ratio for the 

Affected buildings OSM Layer to Affected buildings Building Footprint Layer outlines this in a 

single number. Independent from polarization and threshold, the ratios of the number of 

affected buildings range between 200 and 300 percent. On the contrary, the ratio Area of 

Affected buildings OSM Layer to Area of Affected buildings Building Footprint Layer only 

ranges from 88.8% to 99.4%. This means even though the OSM dataset produces higher 

numbers of affected buildings, the total areas covered by the Building Footprint are slightly 

higher. This seeming contradiction can be explained by the circumstances that the study site 

and the established flood zones are mainly in areas where housing units are very densely 

packed. The Building Footprint dataset often combines several small housing units to one big 

polygon and therefore, the number of buildings is lower compared to the Buildings OSM 

Layer. This can be visually seen in Figure 7, an enlarged view from Figure 3. It shows clearly 

the difference in level of detail between the affected buildings from the OSM dataset and the 

Building Footprint. The difference between the total areas of the two datasets are for all 

scenarios less than 12%. The VV polarization shows for both thresholds an almost identical 

size for the area with differences of less than 1%. This is pointed out by the ratio Area of 

Affected buildings OSM Layer: Area of Affected buildings Building Footprint Layer in Table 5.  

 

Table 2: Overview general numbers of the study site 

Dataset Name  Number of polygons Total area of polygons in hectares 

Study Site Area  1 54'411.46 

OSM Building Layer  749'420 7'674.27 

Building Footprint Layer  236'939 4'933.98 
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Table 3: Overview Indicator values (absolute numbers) for VH polarization 

Dataset Name  Number of polygons Total area of polygons in hectares 

Affected buildings OSM 

Layer 

T
h

re
s
h

o
ld

: 
1

.2
5
 

889 31.36 

Affected buildings Building 

Footprint Layer  
408 34.03 

Flood Zone 141 140.27 

 

Affected buildings OSM 

Layer 

T
h

re
s
h

o
ld

: 
1

.2
0

 

1397 42.01 

Affected buildings Building 

Footprint Layer  
567 46.23 

Flood Zone 176 188.67 

 

Affected buildings OSM 

Layer 

T
h

re
s
h

o
ld

: 
1

.1
5
 

2363 66.95 

Affected buildings Building 

Footprint Layer  
877 75.00 

Flood Zone 269 255.01 

 

Affected buildings OSM 

Layer 

T
h

re
s
h

o
ld

: 
1

.1
0

 

4453 103.80 

Affected buildings Building 

Footprint Layer  
1522 116.85 

Flood Zone 555 369.93 
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Table 4: Overview Indicator values (absolute numbers) for VV polarization 

Dataset Name  Number of polygons Total area of polygons in hectares 

Affected buildings OSM 

Layer 

T
h

re
s
h

o
ld

: 
1

.2
5
 

8162 164.38 

Affected buildings Building 

Footprint Layer  
2894 165.33 

Flood Zone 1503 349.94 

 

Affected buildings OSM 

Layer 

T
h

re
s
h

o
ld

: 
1

.2
0

 

9163 178.34 

Affected buildings Building 

Footprint Layer  
3229 179.43 

Flood Zone 1629 411.58 

 

Table 5: Overview of ratio for indicator values 

 Polarization VH Polarization VV 

 

Threshold 

1.25 

Threshold 

1.20 

Threshold 

1.15 

Threshold 

1.10 

Threshold 

1.25 

Threshold 

1.20 

Ratio Affected buildings OSM Layer: Affected 

buildings Building Footprint Layer 
218% 246% 269% 293% 282% 283% 

Ratio Area of Affected buildings OSM Layer: 

Area of Affected buildings Building Footprint 

Layer 

92.2% 90.9% 89.3% 88.8% 99.42% 99.39% 

 

Ratio Flood Zone: Total Area 0.26% 0.35% 0.47% 0.68% 0.64% 0.76% 
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Figure 3: Map of study site, determined flood zones and affected buildings for OSM as well as Building Footprint; 
Background Google Maps; Threshold 1.2; Polarization VH 
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Figure 4: Map of study site, determined flood zones and affected buildings for OSM as well as Building Footprint; 
Background Google Maps; Threshold 1.2, Polarization: VV 
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Figure 5: Comparison of flood zones for polarization VH and VV threshold 1.25 
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Figure 6: Zoom of main flood areas and affected buildings for OSM as well as Building Footprint; Background 

Google Maps; Threshold 1.2; Polarization VH 
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Figure 7: Enlarged section of map in Figure 3 
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Figure 8: Comparison of flood zones for threshold 1.25, 1.20, 1.15, 1.10, Polarization: VH   
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4 Discussion 

The discussion is divided into three sections. The first section of the discussion focuses on 

the algorithm to establish the flood extent. The second section looks closer at the quality of 

the indicators and the calculated results. The last section focuses on the question, whether 

the established workflow and the Building Footprint could be used to evaluate the damage of 

flood events in other areas. 

4.1 Flood zone algorithm 

As shown in Table 3 and Table 4 the areas of the established flood zones vary highly 

depending on the selected parameter. The focus of this study was not to establish a new 

algorithm to determine flood zones, but rather on the usability of a Building Footprint for a 

damage assessment. Nevertheless, the calculation for the numbers of affected buildings and 

the total area of affected buildings are based on the spatial distribution and the size of the 

flood zones. Therefore, it is important to look in this first section in detail at the process of the 

algorithm to determine the flood zones.  

Sentinel 1 data was chosen in this thesis, as flood mapping is preferably done with active 

sensors. The key advantage of active sensors and therefore microwaves is that they manage 

to penetrate clouds, whereas passive sensors need a cloud free sky and this is rather seldom 

during flood events. In addition, a further advantage is active sensors do not rely on daylight. 

Schumann & Moller (2015) concluded, flood detection is only feasible with SAR imagery. On 

the other hand, Notti et al. (2018) pointed out that SAR images show only better results, 

when image acquisition is possible during the time of maximum inundation. When satellite 

images are only available a couple of days after maximum inundation, multispectral images 

showed better results for flood mapping (Notti et al., 2018). Unquestionably the pass time of 

the satellite is a key factor to get accurate results. Fortunately, the number of satellites with 

active sensors has increased over the last couple of years. In addition, further missions like 

the NASA-ISRO NISAR mission and the Biomass mission by ESA will soon provide 

additional free accessible SAR data. 

Another significant factor is the technique selected to reduce speckle noise. The selection 

should be based on the requirements of the methodology and the characteristics of the input 

data. This is because, speckle filters with high noise removal tend to cause loss of image 

details (Rana & Suryanarayana, 2019). Instead of using a simple local mean filter as in the 

UN-SPIDER (2020) methodology applied in this thesis, alternative procedures like 

(enhanced) Lee filter or (enhanced) Frost filters could be applied. Recent studies in the area 

of flood mapping are often using a Lee filter (Agnihotri et al., 2019; Tiwari et al., 2020; Zhang 

et al., 2020), nevertheless median filters are applied as well (Anusha & Bharathi, 2019). Rana 
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and Suryanarayana (2019) evaluated different SAR filter techniques for flood mapping and 

concluded the best performance for despeckling and feature preservation is reached by the 

Lee filter.  

Even the type of landscape in the study site can greatly affect which data and methodology is 

the most appropriate when analysing flood events. The backscatter effect reacts differently 

depending on the surface cover. Figure 9 displays the backscatter mechanism under non-

flood and flood conditions for different surface covers. For urban areas the double bounce 

effect is dominant under non-flood and flood conditions, however the portion of the 

backscatter is usually higher under flooded conditions (see Figure 9, red square, size of 

return arrow). The challenges for urban flood mapping with SAR are diverse. Sealed surfaces 

like roads can be misclassified due to the low backscatter difference between the before and 

after image (Mason et al., 2014). SAR are side-looking instruments, buildings in urban areas 

cause radar shadowing and layover on the images and can lead to misclassifications 

(Giustarini et al., 2013). Layovers appear bright on the satellite images, hence they are 

always classified as non-flooded but could be flooded. Shadows are the opposite, they 

appear dark on the images same as water and therefore non-flooded areas can be classified 

as flooded. In 2019 while looking at the state-of-the-art algorithms using SAR images for 

mapping flood zones, Shen et al. (2019) concluded that there is no solution yet that is fully 

satisfactory for urban flood determination. 

 

Figure 9: Backscatter from different surface covers (Schumann & Moller, 2015) 

Furthermore, it is important to remember that, even for the chosen methodology the resulting 

flood zones vary depending on the parameter settings. The two parameters, polarization and 

threshold, have a high influence on the spatial distribution of the flood zones and the total 

area covered by the flood. The selection of these parameters is crucial. This is demonstrated 
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well by comparing the results for the different polarization and thresholds (see Figure 5 & 

Figure 8).  

In the research literature there is disagreement in regards to which polarization is preferable 

for flood mapping. The proposed polarization by UN-SPIDER (2020) is VH, as it is more 

sensitive to land surface changes. On the other hand, Manavalan et al. (2017) found, for 

flooded areas within settlement, almost the same result for both polarization VH and VV. 

Other studies preferred VV polarization over VH, as it led to a higher accuracy in flood 

detection (Agnihotri et al., 2019; Tiwari et al., 2020). Due to this disagreement on which 

polarization works best, the scenarios calculated in this thesis, included VH and VV in order 

to ascertain which one is best suited for the selected flood event.  

The UN-SPIDER (2020) methodology is following a manual selection of the threshold value. 

The selection is based on a heuristic approach. According to Malinowski et al. (2015) and 

Manjusree et al. (2012) manually deriving an optimal threshold requires information from 

training samples. Here, reference points from the field or optical satellite images are used to 

verify the results and optimize the threshold value. Unfortunately, training samples for the 

study site were not available, hence this thesis calculated several scenarios with different 

threshold and polarization for the flood zone determination (see Table 1). These scenarios 

are compared in order to determine if an optimal threshold and polarization can be found. 

Threshold selection started for both polarization from 1.25, which is the predefined threshold 

in the UN-SPIDER (2020) methodology. The value was reduced in steps of 0.05 until 1.10 for 

the polarization VH. For the polarization VV a threshold of 1.2 already led to a high number of 

small flood zone polygons, most likely false positive detections and therefore scenarios with 

lower threshold were avoided. The enlarged section comparing the flood zones for 

polarization VH and VV in Figure 5 shows clearly the higher number of small flood polygons 

for VV polarization. It cannot certainly be concluded that these small inundation areas for the 

VV polarization are false positive results, but these flood zones are suspicious. Threshold 

under 1.2 are most likely leading to false positive classifications of flood zones. A visual 

analysis of the map shows an increase of small flood zone polygons for threshold 1.15 and 

1.10 (see Figure 8). The calculated indicators imply this as well, the number of flood zone 

polygons increases fast for lower thresholds. Reducing the threshold from 1.25 to 1.20 

increases the number of polygons by only 25%, whereas the number increases up to 106% 

by altering the threshold from 1.15 to 1.10. A final conclusion on the best polarization and 

threshold is not possible, but thresholds under 1.2 lead most likely to false positive flood zone 

detection. 

According to UN-SPIDER (2020) the change detection approach followed in the methodology 

leads to reliable results to determine flood zones after a major flood event. It is an 

unsupervised threshold algorithm and therefore one of the simpler approaches to establish a 
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flood extent. However, there are numerous other approaches that could be used and a one 

size fits all algorithm has not been found yet. Instead of using the UN-SPIDER (2020) 

methodology, an alternative algorithm to determine the flood zones could eliminate the step 

of threshold selection. Otsu (1979) presented an unsupervised method of automatic threshold 

selection from gray level histograms. It is still regularly used for flood mapping nowadays, for 

example in Cao et al. (2019) and Kordelas et al. (2018), as it is a simple algorithm. In recent 

studies the following approaches for flood mapping were applied and these methods reached 

reasonable results: DeVries et al. (2020) developed an algorithm to compare temporal SAR 

Z-scores with a time series of non-flood images to evaluate flood zones. Huang & Jin (2020) 

proposed a supervised change detection approach using SAR and optical images to map 

floods. Mason et al. (2021) established a change detection method to map floods in urban 

areas. Here, areas of increased backscatter, as a result of double bounce, are identified and 

further used to interpolate a flood level surface. The flood level surface is then compared with 

a digital surface model to determine the flood zone.  

It can be concluded that the establishment of flood zones, especially in urban areas, is 

difficult and a variety of error sources exist in the detection of the inundation areas. 

Furthermore, the UN-SPIDER (2020) methodology to establish flood zones is particularly 

sensitive to threshold and polarization parameter selection. A conclusive determination of 

which scenario is closest to reality without reference points from the ground is problematic.  

4.2 Meaningfulness of indicator 

Independently from the algorithm to determine the flood zones, the quality of the calculated 

indicators from the Building Footprint can be assessed based on the calculated results. The 

different results from the scenarios offer the opportunity to compare the calculated results, as 

if they would be different flood events. The only parameter changing is the determined flood 

zone. Useful calculations for the verification step are the Ratio Affected buildings OSM Layer 

to Affected buildings Building Footprint Layer and Ratio Area of Affected buildings OSM 

Layer to Area of Affected buildings Building Footprint Layer in Table 5. The assumption is, 

the closer the numbers are to each other, the better is the result. Therefore, the ratios show 

the divergence between the calculated values for the two datasets. However, some facts 

need to be considered while analysing the results: The building polygons from the public 

available OSM data for Dar es Salaam have a high level of detail, due to the community 

mapping project “Ramani Huria” in Dar es Salaam (World Bank, 2016). As a consequence, 

the data is therefore a well base for the verification process within the selected study site. 

The quality of the OSM layer outside the region of Dar es Salaam is uncertain. Herfort et al. 

(2021) revealed significant OSM data inequalities across countries and within regions. The 

most critical point to keep in mind in the verification process, while comparing the OSM 
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buildings with the buildings from the Building Footprint, are the different acquisition dates. 

The created algorithm is requesting each time up-to-date OSM building polygons. The OSM 

data was fetched on the 8 of August 2021, while calculating the result in chapter 3. On the 

other hand, as mentioned in the methodology, the Building Footprint is based on Bing Maps. 

Bing Maps is a mosaic of satellite images and the exact date of acquisition is not known. The 

publication of the Building Footprint took place on the 16 of September 2019, this means all 

images used to establish the Building Footprint are older. Optimally the comparison would be 

done with building layers from the same time frame.  

The first indicator calculated is the number of affected buildings. The number of affected 

buildings from the Building Footprint is underestimated for urban areas. As displayed in Table 

3 and Table 4 the numbers for the affected buildings from the Building Footprint are in all 

scenarios significantly lower than the numbers from the OSM data. The OSM data shows 

twice to three times higher absolute numbers for the affected buildings. The results in Table 5 

Ratio Affected buildings OSM Layer to Affected buildings Building Footprint Layer does point 

this out once more in a single number per scenario. This indicates that the data from the 

Building Footprint is not optimal for the affected building indicator. The OSM data source is a 

better option to define the exact number of buildings affected in urban areas. As mentioned in 

chapter 3, this difference is intensified by the fact that the major flood zones are in dense 

urban areas. In these areas, the Building Footprint incorrectly consolidates several small 

housing units into a single large building (see Figure 7). In this case the algorithm used to 

create the building polygons is not as precise. According to Shu et al. (2018), detection of 

small and dense buildings is a challenging task due to similarities between objects, low 

contrast with background and noise disturbance. Instead of creating several small buildings, 

the algorithm connects classified pixels next to each other into one big polygon (see Figure 

10, left image). This could be heavily influenced by the spatial resolution of the original 

satellite image being too low. A pixel can only be classified as building or non-building and if 

the distance between two houses is less than the spatial resolution of the satellite image, the 

area between the houses cannot be classified as non-building. This leads to bigger building 

polygons within dense urban areas compared to the hand digitized OSM data. A higher 

resolution satellite image would lead to a better building layer and therefore increase the 

accuracy of the indicator Affected buildings Building Footprint Layer. The algorithm used to 

extract the Building Footprint is published on GitHub (Tan & Le, 2020). Therefore, it is 

theoretically possible to establish a better Building Footprint with a high-resolution and newer 

acquisitioned satellite image.  

The second indicator is the total area of affected buildings from the Building Footprint Layer. 

The results are promising and the indicator is more suitable than the numbers of affected 

buildings. As shown in Table 3 and Table 4 the calculated areas for the affected buildings 
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from the Building Footprint are in all scenarios close to the numbers from the OSM data. In all 

calculated scenarios the difference between the Building Footprint and the OSM numbers is 

less than 12% (see Table 5). The calculated numbers for the total area of the Building 

Footprint are likely to be slightly overestimated. This can be explained through the following 

two factors: 

• As explained in the last paragraph above, in urban areas with dense buildings the space 

between houses is often classified as buildings, this increases the area of the building 

polygons (see left image in Figure 10). 

• According to the methodology all buildings that intersect with the flood zone are classi-

fied as affected buildings. The proportion that lies within the flood zone is irrelevant. 

Larger buildings, which only partly lie in the flood zone, increase the total area of the af-

fected buildings. As established the Building Footprint tends to have larger polygons than 

the OSM layer and is therefore more affected by this effect (see right image in Figure 

10). 

 

Figure 10:  left image: Difference of the building perimeter between OSM and Building Footprint 
  right image: Consequences of intersect effect for OSM and Building Footprint  

According to Table 2 the total area covered by the buildings of the Building Footprint in the 

study site is 4933.98 hectares, while the total area covered by the OSM data is around 50% 

higher (7'674.27 hectares). Therefore, it could be concluded that the comparison of the total 

area of the affected buildings between the two datasets should result in a OSM value, which 

is around 50% higher. However, as mentioned above, the acquisition dates of the two 

datasets are different. There is almost a two-year time difference and meanwhile a vast 

building process took place within the study site (United Nations Human Settlements 

Programme, 2014). This explains, at least partly, the higher total area covered by the OSM 

data. The following analysis confirms this hypothesis. Comparing the total area covered by 

buildings, the two datasets show increasing differences for wards that reside further from the 

city centre. For example, the outer ward Kwembe, where there is still plenty of building space 

available, has for the OSM data 3.3 times more area covered (336%) than for the Building 

Footprint. This is different in city centre wards like Mchikichini, where there is less space for 
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new buildings available. There the area covered by the OSM data is only 15% higher than the 

area covered by the Building Footprint. Furthermore, an important element that must be 

considered is the spatial distribution of the flood zones. Large parts of the determined flood 

zones are around the city centre wards. Therefore, the outer wards with the higher variance 

of the building area coverage between the two datasets are less relevant for this flood event.  

4.3 Transferability of the method 

In this last section, the focus is on analysing to what extent the developed methodology and 

the Building Footprint could be used to evaluate the damage of flood events in other areas.  

There is potential to use the methodology and the Building Footprint for assessing the level of 

flood damage in rural areas. The selected study site of Dar es Salaam is for the most part 

highly populated and buildings are packed densely. Here the OSM data has produced more 

accurate values for the indicator number of affected buildings. The values from the Building 

Footprint for total area of affected buildings are almost identical and hence more suitable as 

an indicator for urban areas. Nevertheless, the usage of the Building Footprint in urban areas 

relies on a regularly published up-to-date version, due to the fact that the covered area by 

buildings in large African cities can change quickly.  

As mentioned earlier the OSM data has a high level of detail for the study site, but in rural 

areas this is not always the case (Herfort et al., 2021). Moreover, the accuracy of the data in 

the Building Footprint is better in rural areas (Microsoft, 2019). According to the metadata of 

the Building Footprint, the three quality parameter of the dataset, precision, recall factor and 

IoU are higher in rural areas, particularly the recall factor and IoU (Microsoft, 2019). This can 

be observed and confirmed, even in less populated areas of the study site. Figure 11 displays 

a comparison of the Building Footprint and OSM data for a less densely populated area 

within the study site. The number of recognized buildings is almost identical. The building 

perimeters established by the Building Footprint methodology are much more accurate 

compared to dense areas (compare Figure 7 & Figure 10) and consequently the area 

covered by the Building Footprint is more precise.  

As mentioned above, several challenges in flood mapping with SAR occur mainly in urban 

areas (sealed surfaces, double bounce, shadows, etc.). Even according to UN-SPIDER 

(2020) the flood mapping methodology is limited, when it comes to detecting floods in urban 

areas. Mason et al. (2021) concluded that flood detection in rural areas with SAR images 

tend to work well. In all probability the flood zone determination process would lead to a 

better result in rural areas. Consequently, the correctness of the calculated indicators would 

increase as well.  
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Figure 11: Comparison Building Footprint and OSM for non-densely populated area, Background Map: Google 

Satellite  

The established workflow does not provide a detailed damage assessment, however the 

calculated numbers and the generated maps could be useful at giving a first overview to 

decision makers. The maps and indicators can improve monitoring and planning of activities 

after a flood event. There are several limiting factors in urban areas, however the results 

point out that the established workflow would work better for rural areas. 
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5 Conclusion 

A workflow to estimate the affected buildings based on the Building Footprint was 

successfully established. The selection of the flood mapping algorithm, satellite image 

availability and parameter configuration have a high influence on the result. The flood zone 

algorithm and parameterisation need to be considered carefully, as this is the major limiting 

factor in the methodology. Despite the possible issues in the flood detection algorithm, which 

can arise from a variety of sources, this thesis shows that the Building Footprint can be a 

useful data source for assessing the level of damage due to a flood event. The results for 

urban areas are mixed, the number of affected buildings from the Building Footprint are not 

persuasive, a better indicator is the total area covered by the affected buildings. The Building 

Footprint results in a slight overestimation of the total area covered by the affected buildings 

in urban areas. The overestimation is small and can be explained, therefore the indicator can 

be considered valid for the selected flood event. For the selected study site, the indicator 

results from OSM data are more suitable, due to higher accuracy of the OSM building 

perimeters. Presumably for urban areas in general, the OSM data should be considered as 

an alternative data source. It can be concluded that the biggest potential of the established 

workflow and the Building Footprint data are within rural areas. This is due to the fact that the 

flood detection algorithm is less sensitive to errors and the data accuracy of the Building 

Footprint is much higher compared to urban areas. 
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7 Appendix 

7.1 Configuration of Parameters 

The following section explains in detail the configuration of the script on the basis of 

polarization VV and threshold 1.25. It shows the configuration used to receive the results in 

this thesis. All configurations are conducted in the console script Flood Map/Indicator, which 

manages the overall procedure (see whole script in section 7.2).  

Line 9 defines the area of the study site. The study site must be a shapefile saved on a local 

directory of the computer and thus the file path must be specified. Line 10 sets the path to the 

Building Footprint. This needs to be a “shapefile copy” of the original GeoJSON file saved 

locally (see section 2.4). Line 10 determines the output path. All results and intermediate 

results will be saved in this folder. The script does not create a new folder, hence the folder 

has to exist already. 

9. indirstudy = 
'C:\\DokumenteKAR\\privat\\GIS\\UNIGIS\\Masterthesis\\FINALDATA\\StudyArea\\Study_Area_v3.shp' 
10. indirbuildingfootprint = 
'C:\\DokumenteKAR\\privat\\GIS/UNIGIS\\Masterthesis\\FINALDATA\\Tanzania_2019-09-
16\\Tanzania_2019-09-16.shp' 
11. outdir = 
'C:\\DokumenteKAR\\privat\\GIS\\UNIGIS\\Masterthesis\\FINALDATA\\Export\\20201013VVthreshold125' 

Line 21 and 22 set the start and end date for the time period for the preflood image or 

images. It is possible to set a longer time period, as the processing script Create Flood Map 

is using the GEE method mosaic, which composites overlapping images with the order the 

latest on top. Line 21 and 22 define the start and end date for the time period for the after-

flood image. The date of the received image should be as close as possible to the flood 

event. If the script returns several images for the determined flood period the dates should be 

modified. Figure 12 shows the python console messages after running the console script. 

The messages include metainformation for the before and after flood images, specifically the 

number of images and date of the images (see Figure 12 line 6-9). That information simplifies 

the process of potential time period corrections. 

21. 'BEFORESTART':'2020-09-01',\ 
22. 'BEFOREEND':'2020-09-20',\ 
23. 'AFTERSTART':'2020-10-10',\ 
24. 'AFTEREND':'2020-10-17',\ 

Line 25 configures the pass direction of the satellite. The parameter can either be set on 

ASCENDING or DESCENDING. As mentioned in section 2.3 only an ascending pass 

direction is covering the selected study site completely.  

25. 'PASSDIRECTION':'ASCENDING',\ 
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Line 26 defines the parameter polarization. The methodology allows to select either VV or 

VH. Line 27 determines the threshold for the change detection approach. Theoretically any 

floating-point number is possible.  

26. 'POLARIZATION':'VV',\ 
27. 'THRESHOLD':1.25,\ 

After running the script, the console messages inform the user about the progress in the 

procedure. The script is divided in 6 main steps, details in Figure 2 (numbers 2 to 7).  

 

Figure 12: Python console messages after running the console script Flood Map/Indicator 
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7.2 Python Console Script  

1. import processing 
2. import csv 
3.   
4. ###--------------------------### 
5. # INIT: Please adapt paths for Study Site, Building Footprint & and output location if nec-

essary 
6. # Set paths for files (Study area, Building footprint Tanzania, Output location) 
7. ###--------------------------### 
8.   
9. indirstudy = 

'C:\\DokumenteKAR\\privat\\GIS\\UNIGIS\\Masterthesis\\FINALDATA\\StudyArea\\Study_Area_v1.sh
p' 

10. indirbuildingfootprint = 
'C:\\DokumenteKAR\\privat\\GIS/UNIGIS\\Masterthesis\\FINALDATA\\Tanzania_2019-09-
16\\Tanzania_2019-09-16.shp' 

11. outdir = 
'C:\\DokumenteKAR\\privat\\GIS\\UNIGIS\\Masterthesis\\FINALDATA\\Export\\20201013VVthreshold
125' 

12.   
13. ###--------------------------### 
14. # Part 1: Run Processing Script "Create Flood Map" to determine flood area in study area and 

result is saved locally. 
15. # Please adapt dates for BEFORE and AFTER flood event. The efective dates of the images are 

printed in the console. One image only for after the flood is preferable. 
16. # Depending on the area the passdirection could be set on DESCENDING. Polarization and 

Threshold can be changed, but only for advanced users. 
17. ###--------------------------### 
18.   
19. processing.run("script:createfloodmap",\ 
20. {'INPUT': indirstudy,\ 
21. 'BEFORESTART':'2020-09-01',\ 
22. 'BEFOREEND':'2020-09-20',\ 
23. 'AFTERSTART':'2020-10-10',\ 
24. 'AFTEREND':'2020-10-17',\ 
25. 'PASSDIRECTION':'ASCENDING',\ 
26. 'POLARIZATION':'VV',\ 
27. 'THRESHOLD':1.25,\ 
28. 'OUTPUT': outdir}) 
29.   
30. print("\n1/6 steps done. Flood map created. Start fetching OSM data") 
31.   
32. ###--------------------------### 
33. # Part 2: Run Processing Script "Fetch OSM" to get current OSM data set for the study 

site.ENABLE_USER_SITE 
34. # Note: Depending on the size of the study site this step can take a while. 
35. ###--------------------------### 
36.   
37. outdirgpkg_osm = os.path.join(outdir, 'building_layer_osm.gpkg') 
38.   
39. processing.run("script:FetchOSM",  
40. {'study':indirstudy, 
41. 'OsmDownload':'TEMPORARY_OUTPUT', 
42. 'Package':outdirgpkg_osm, 
43. 'VERBOSE_LOG':False}) 
44.   
45. print("\n2/6 steps done. OSM layer saved. Start extracting building footprint.") 
46.   
47. ###--------------------------### 
48. # Part 3: Extract builing footprint for study area with "clip" 
49. ###--------------------------### 
50.   
51. outdirgpkg_footprint = os.path.join(outdir, 'building_layer_footprint.gpkg') 
52.   
53. processing.run("native:clip",\ 
54. {'INPUT': indirbuildingfootprint,\ 
55. 'OVERLAY': indirstudy,\ 
56. 'OUTPUT':outdirgpkg_footprint}) 
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57.   
58. print("\n3/6 steps done. Building footprint for study area extracted") 
59.   
60. ###--------------------------### 
61. # Part 4: Extract affected builing for building footprint & OSM 
62. # Extractbylocation is used to create datasets for OSM buildings within the floodzone and 

for building footprint buildings within the floodzone 
63. ###--------------------------### 
64.   
65. footprint_affected = os.path.join(outdir, 'building_layer_footprint_affected.gpkg') 
66. osm_affected = os.path.join(outdir, 'building_layer_osm_affected.gpkg') 
67. flooded_area = os.path.join(outdir, 'floodedarea.shp') 
68.   
69. try: 
70.     os.remove(footprint_affected) 
71. except OSError as e: 
72.     print("Info: footprint_affected is new") 
73.   
74. processing.run("native:extractbylocation", \ 
75. {'INPUT':outdirgpkg_footprint,\ 
76. 'PREDICATE':[0],\ 
77. 'INTERSECT':flooded_area,\ 
78. 'OUTPUT': footprint_affected}) 
79.   
80. try: 
81.     os.remove(osm_affected) 
82. except OSError as e: 
83.     print("Info: building_layer_osm_affected is new") 
84.   
85. processing.run("native:extractbylocation", \ 
86. {'INPUT':outdirgpkg_osm,\ 
87. 'PREDICATE':[0],\ 
88. 'INTERSECT':flooded_area,\ 
89. 'OUTPUT': osm_affected}) 
90.   
91. print("\n4/6 steps done. Affected buidlings detected") 
92.   
93. ###--------------------------### 
94. # Part 5: Create CSV File with relevant indicator numbers by "Calculate Indicators" script 
95. # First a header is created, after that the numbers are calculated for each layer with the 

"Calculate Indicators" script. 
96. # The results are saved in the csv. Adapt the filename of the CSV if necessary, the file is 

saved in the output folder 
97. ###--------------------------### 
98.   
99. resultcsv = os.path.join(outdir, 'indicatorvalues.csv') 
100.   
101. try: 
102.     os.remove(resultcsv) 
103. except OSError as e: 
104.     print("Info: indicatorvalues.csv is new") 
105.   
106. #Create header  
107. filecsv = open(resultcsv, "a", newline="") 
108. tupel = ("Filename","Number of polygons (buildings)","Total size of polygons in square 

m2") 
109. writer = csv.writer(filecsv) 
110. writer.writerow(tupel) 
111. filecsv.close() 
112.   
113. processing.run("script:CalculateIndicators",\ 
114. {'INPUT': osm_affected,\ 
115. 'OUTPUT': resultcsv}) 
116.   
117. processing.run("script:CalculateIndicators",\ 
118. {'INPUT': footprint_affected,\ 
119. 'OUTPUT': resultcsv}) 
120.   
121. #Please note that the calculating process for the layer "Building Footprint" needs a 

lot of time and should only be called in case you want to calculate ratios between Total and 
affected buildings, etc. 
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122. #processing.run("script:Calculate Indicators",\ 
123. #{'INPUT': outdirgpkg_footprint,\ 
124. #'OUTPUT': resultcsv}) 
125.   
126. #Please note that the calculating process for the layer "Building OSM" needs a lot of 

time and should only be called in case you want to calculate ratios between Total and af-
fected buildings, etc. 

127. #processing.run("script:Calculate Indicators",\ 
128. #{'INPUT': outdirgpkg_osm,\ 
129. #'OUTPUT': resultcsv}) 
130.   
131. processing.run("script:CalculateIndicators",\ 
132. {'INPUT': flooded_area,\ 
133. 'OUTPUT': resultcsv}) 
134.   
135. processing.run("script:CalculateIndicators",\ 
136. {'INPUT': indirstudy,\ 
137. 'OUTPUT': resultcsv}) 
138.   
139. print("\n5/6 steps done. Indicators calculated") 
140.   
141. ###--------------------------### 
142. # Part 6: Add layers to map 
143. # This last section loads the layers into the map and formats the layers. 
144. # There are two groups "Flood event" and the "Background". The background grouping as-

sumes that the 3 layers 'Google Maps', 'OSM Standard' and'Google Sat'are already loaded 
145. ###--------------------------### 
146.   
147. #Create the layer groups  
148. roottree = QgsProject.instance().layerTreeRoot() 
149. floodgroup = roottree.addGroup("Flood Event") 
150. backgroundgroup = roottree.addGroup("Background") 
151.   
152. #Moves layer into group 
153. def movelayer(groupname,name): 
154.     nameLayer = QgsProject.instance().mapLayersByName(name)[0] 
155.     myLayer = roottree.findLayer(nameLayer.id()) 
156.     myClone = myLayer.clone() 
157.     parent = myLayer.parent() 
158.     groupname.insertChildNode(0, myClone) 
159.     parent.removeChildNode(myLayer) 
160.   
161. #Add study site 
162. dsmstudyarea = iface.addVectorLayer(indirstudy,"","ogr") 
163. dsmstudyarea.setName('Study Site') 
164. dsmstudyarea.setOpacity(0.2) 
165. movelayer(floodgroup,'Study Site') 
166.   
167. #Add flood zone 
168. floodzone = iface.addVectorLayer(flooded_area,"","ogr") 
169. floodzone.setName('Flood Zone') 
170. floodzone.setOpacity(0.7) 
171. floodzone.renderer().symbol().setColor(QColor("red")) 
172. floodzone.triggerRepaint() 
173. iface.layerTreeView().refreshLayerSymbology(floodzone.id()) 
174. movelayer(floodgroup,'Flood Zone') 
175.   
176. #Add affected buildings of Building Footprint 
177. affectedhousesfootprint=iface.addVectorLayer(footprint_affected, "", "ogr") 
178. affectedhousesfootprint.setName('Affected Buildings Building Footprint') 
179. affectedhousesfootprint.setOpacity(0.7) 
180. affectedhousesfootprint.renderer().symbol().setColor(QColor("blue")) 
181. affectedhousesfootprint.triggerRepaint() 
182. iface.layerTreeView().refreshLayerSymbology(affectedhousesfootprint.id()) 
183. movelayer(floodgroup,'Affected Buildings Building Footprint') 
184.   
185. #Add affected buildings of OSM 
186. affectedhousesosm=iface.addVectorLayer(osm_affected, "", "ogr") 
187. affectedhousesosm.setName('Affected Buildings OSM') 
188. affectedhousesosm.setOpacity(0.7) 
189. affectedhousesosm.renderer().symbol().setColor(QColor("green")) 
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190. affectedhousesosm.triggerRepaint() 
191. iface.layerTreeView().refreshLayerSymbology(affectedhousesosm.id()) 
192. movelayer(floodgroup,'Affected Buildings OSM') 
193.   
194. #Move Background layers 'Google Maps', 'OSM Standard' and'Google Sat' into group Back-

ground 
195. if QgsProject.instance().mapLayersByName('Google Maps'): 
196.     movelayer(backgroundgroup,'Google Maps') 
197. if QgsProject.instance().mapLayersByName('OSM Standard'): 
198.     movelayer(backgroundgroup,'OSM Standard') 
199. if QgsProject.instance().mapLayersByName('Google Sat'): 
200.     movelayer(backgroundgroup,'Google Sat') 
201.   
202. #Zoom to study site 
203. zoomLayer = QgsProject.instance().mapLayersByName('Study Site')[0] 
204. iface.setActiveLayer(zoomLayer) 
205. iface.zoomToActiveLayer() 
206.   
207. print("\n6/6 steps done. Layers added to map")  
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7.3 Processing Script "Create Flood Map" 

1. # -*- coding: utf-8 -*- 
2.   
3. """ 
4. *************************************************************************** 
5. *                                                                         * 
6. *   This program is free software; you can redistribute it and/or modify  * 
7. *   it under the terms of the GNU General Public License as published by  * 
8. *   the Free Software Foundation; either version 2 of the License, or     * 
9. *   (at your option) any later version.                                   * 
10. *                                                                         * 
11. *************************************************************************** 
12. """ 
13.   
14. from qgis.PyQt.QtCore import QCoreApplication 
15. from qgis.core import (QgsProcessing, 
16.                        QgsFeatureSink, 
17.                        QgsProcessingException, 
18.                        QgsProcessingAlgorithm, 
19.                        QgsProcessingParameterFeatureSource, 
20.                        QgsProcessingParameterFeatureSink, 
21.                        QgsProcessingParameterFolderDestination, 
22.                        QgsProcessingParameterNumber, 
23.                        QgsProcessingParameterVectorLayer, 
24.                        QgsProcessingParameterString, 
25.                        QgsProcessingParameterFile) 
26. from qgis import processing 
27. import ee 
28. import geemap 
29. import os 
30. from ee_plugin import Map 
31. #Determine Flood Zone from SAR1 Data through GGE 
32. class CreateFloodMap(QgsProcessingAlgorithm): 
33.      
34.     INPUT = 'INPUT' 
35.     OUTPUT = 'OUTPUT' 
36.   
37.     def tr(self, string): 
38.         return QCoreApplication.translate('Processing', string) 
39.   
40.     def createInstance(self): 
41.         return CreateFloodMap() 
42.   
43.     def name(self): 
44.         return 'createfloodmap' 
45.   
46.     def displayName(self): 
47.         return self.tr('Create Flood Map') 
48.   
49.     def group(self): 
50.         return self.tr('MSC') 
51.   
52.     def groupId(self): 
53.         return 'MSC' 
54.   
55.     def shortHelpString(self): 
56.         return self.tr("Creates Polgyon with flooded area for a specific flood event (SAR 1 

data via GEE Catalog)") 
57.      
58.     #Input Parameter definition  
59.     def initAlgorithm(self, config=None): 
60.          
61.         self.addParameter( 
62.             QgsProcessingParameterFile( 
63.                 self.INPUT, 
64.                 self.tr('Study Area (.shp)') 
65.             ) 
66.         ) 
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67.         self.addParameter( 
68.             QgsProcessingParameterString( 
69.                 'BEFORESTART', 
70.                 self.tr('Start Date before'), 
71.                 defaultValue = 'yyyy-mm-dd' 
72.             ) 
73.         ) 
74.         self.addParameter( 
75.             QgsProcessingParameterString( 
76.                 'BEFOREEND', 
77.                 self.tr('End Date before') 
78.             ) 
79.         ) 
80.         self.addParameter( 
81.             QgsProcessingParameterString( 
82.                 'AFTERSTART', 
83.                 self.tr('Start Date after') 
84.             ) 
85.         ) 
86.         self.addParameter( 
87.             QgsProcessingParameterString( 
88.                 'AFTEREND', 
89.                 self.tr('End Date after') 
90.             ) 
91.         ) 
92.         self.addParameter( 
93.             QgsProcessingParameterString( 
94.                 'PASSDIRECTION', 
95.                 self.tr('Pass Direction'), 
96.                 defaultValue="ASCENDING" 
97.             ) 
98.         ) 
99.         self.addParameter( 
100.             QgsProcessingParameterString( 
101.                 'POLARIZATION', 
102.                 self.tr('Polarization'), 
103.                 defaultValue="VH" 
104.             ) 
105.         ) 
106.         self.addParameter( 
107.             QgsProcessingParameterNumber( 
108.                 'THRESHOLD', 
109.                 self.tr('Threshold'), 
110.                 type=QgsProcessingParameterNumber.Double, 
111.                 defaultValue=1.2 
112.             ) 
113.         ) 
114.         self.addParameter( 
115.             QgsProcessingParameterFolderDestination( 
116.                 self.OUTPUT, 
117.                 self.tr('Output folder') 
118.             ) 
119.         ) 
120.   
121.     #Processing 
122.     def processAlgorithm(self, parameters, context, feedback): 
123.          
124.         #Initialize library. 
125.         ee.Initialize()  
126.          
127.         #---------------------------------------------- 
128.         # KEY Variables for the flood map 
129.         #---------------------------------------------- 
130.         #Timeframe BEFORE the flood. 
131.         before_start= self.parameterAsString(parameters, 'BEFORESTART', context) 
132.         before_end= self.parameterAsString(parameters, 'BEFOREEND', context) 
133.   
134.         #Timeframe AFTER the flood. 
135.         after_start= self.parameterAsString(parameters, 'AFTERSTART', context) 
136.         after_end= self.parameterAsString(parameters, 'AFTEREND', context) 
137.   
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138.         #Set polarization 
139.         polarization_primary = self.parameterAsString(parameters, 'POLARIZATION', con-

text) 
140.         #polarization_secondary = "VV" 
141.   
142.         # Either Ascending or Descending  
143.         pass_direction = self.parameterAsString(parameters, 'PASSDIRECTION', context) 
144.   
145.         #Threshold for pixel classificaton into flood/Non flood  
146.         difference_threshold = self.parameterAsDouble(parameters, 'THRESHOLD', context) 
147.   
148.         #Path for study area 
149.         study_shp = parameters['INPUT'] 
150.         out_directory = str(parameters['OUTPUT']) 
151.          
152.         #Minimaly considered area of flood in pixels, only leave areas greater than 

minimal size area  
153.         #1 pixel = 10x10 meters 
154.         minimalsizearea=10 
155.         #Keep only pixels with less than defined value for degrees  
156.         degree = 5 
157.         #---------------------------------------------- 
158.         # End of KEY Variables for the flood Map 
159.         #---------------------------------------------- 
160.          
161.         #Convert study (shp) to Earth Engine object & create FeatureCollection 
162.         studyarea = geemap.shp_to_ee(study_shp) 
163.         aoi = ee.FeatureCollection(studyarea) 
164.       
165.         #Function checks number of images in collection 
166.         def countimages(imageCollection): 
167.             return imageCollection.size() 
168.          
169.         #Function evalutes dates of images in collection 
170.         def datesimages(imageCollection):  
171.             return imageCollection.map( lambda image : ee.Feature(None, {'date': 

image.date().format('YYYY-MM-dd')}))\ 
172.             .distinct('date')\ 
173.             .aggregate_array('date') 
174.          
175.         #For calculating flood area only one polarization is used --> best polarization 

for urban areas according to lterature is VH 
176.         collection= ee.ImageCollection('COPERNICUS/S1_GRD')\ 
177.             .filter(ee.Filter.eq('instrumentMode','IW'))\ 
178.             .filter(ee.Filter.listContains('transmitterReceiverPolarisation', polariza-

tion_primary))\ 
179.             .filter(ee.Filter.eq('orbitProperties_pass',pass_direction)) \ 
180.             .filter(ee.Filter.eq('resolution_meters',10))\ 
181.             .filterBounds(aoi)\ 
182.             .select(polarization_primary) 
183.          
184.         #Get imagecollection before flood 
185.         before_collection = collection.filterDate(before_start, before_end) 
186.         #Get imagecollection after flood 
187.         after_collection = collection.filterDate(after_start,after_end) 
188.   
189.         #Mosaic() method composites overlapping images according to their order in the 

collection (last on top) 
190.         #clip to aoi --> only works on images --> needs mosaic wouldnt work on im-

agecollection  
191.         before = before_collection.mosaic().clip(aoi) 
192.         after = after_collection.mosaic().clip(aoi) 
193.   
194.         #Apply smoothing to reduce speckle 
195.         smoothing_radius = 50 
196.         before_filtered_smoothing = before.focal_mean(smoothing_radius, 'circle', 'me-

ters') 
197.         after_filtered_smoothing = after.focal_mean(smoothing_radius, 'circle', 'me-

ters') 
198.   
199.         #Images are in Db therefore divide is more accurate 
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200.         difference_smoothing = af-
ter_filtered_smoothing.divide(before_filtered_smoothing) 

201.         #Set threshold 
202.         threshold = ee.Number(difference_threshold) 
203.   
204.         #Print number of images and dates of images before flood 
205.         countimagesbef = countimages(before_collection).getInfo() 
206.         print('Count Images "Before":', countimagesbef) 
207.         datesimagesbef = datesimages(before_collection).getInfo() 
208.         print('Dates of Images Before:', datesimagesbef) 
209.                  
210.         #Print number of images and dates of images after flood 
211.         countimagesaf = countimages(after_collection).getInfo() 
212.         print('Count Images "After":', countimagesaf) 
213.         datesimagesaf = datesimages(after_collection).getInfo() 
214.         print('Dates of Images After:', datesimagesaf) 
215.          
216.         #Classifies pixel into 0/1 according to threshold (gt=greater than)and selfmask 

removes all 0 values 
217.         flooded_difference_binary_smoothing = differ-

ence_smoothing.gt(threshold).selfMask() 
218.          
219.         #Define permanent water area in aoi min. 10 months water --> sesonality parame-

ter 
220.         swater = ee.Image('JRC/GSW1_0/GlobalSurfaceWater').select('seasonality') 
221.         swater_mask = swater.gte(10).updateMask(swater.gte(10)) 
222.   
223.         #Masking pixels: Pixels are set on transparent and excludes them for further 

process  
224.         flooded_mask = flooded_difference_binary_smoothing.where(swater_mask,0) 
225.         flooded = flooded_mask.updateMask(flooded_mask) 
226.   
227.         #Remove isolated pixels 
228.         connections = flooded.connectedPixelCount() 
229.         #Only leave areas greater than minimalsizearea ---> 1 pixel = 10x10 meters 
230.         flooded = flooded.updateMask(connections.gte(minimalsizearea)) 
231.   
232.         #Choose a DEM from GEE Catalog --> Hydrography DEM  
233.         DEM = ee.Image('WWF/HydroSHEDS/03VFDEM') 
234.         #Calculates slope, hillshade, etc from a DEM 
235.         terrain = ee.Algorithms.Terrain(DEM) 
236.         #Select slope in degrees from terrain DEM. 
237.         slope = terrain.select('slope') 
238.         #Update flooded variable and only keep areas with less than 5 degrees  
239.         flooded = flooded.updateMask(slope.lt(degree)) 
240.          
241.         #"Backup" of Vector File creation using geemap  
242.         #Attention parameter "max Pixels" depend on study area in case of Error it 

needs to be changed 
243.         flooded_vector = flooded.reduceToVectors(geometry= aoi.geometry(), scale=10, 

maxPixels = 300000000) 
244.         filename_out_geemap = os.path.join(out_directory, 'floodedareageemap.shp') 
245.         geemap.ee_export_vector(flooded_vector, filename=filename_out_geemap) 
246.          
247.         #Save Layer to output folder as TIF 
248.         filename_outtif = os.path.join(out_directory, 'floodedarea.tif') 
249.         geemap.ee_export_image(flooded, filename=filename_outtif, scale=10, re-

gion=aoi.geometry(), file_per_band=False) 
250.          
251.         #Raster to Vector by algorithm polygonize 
252.         filename_out_temp = os.path.join(out_directory, 'floodedarea_temp.shp') 
253.         try: 
254.             os.remove(filename_out_temp) 
255.         except OSError as e: 
256.             print("Info: floodedarea_temp.shp is new") 
257.          
258.         processing.run("gdal:polygonize",\ 
259.         {'INPUT':filename_outtif,\ 
260.         'BAND':1,'FIELD':'DN',\ 
261.         'EIGHT_CONNECTEDNESS':False,\ 
262.         'EXTRA':'','OUTPUT': filename_out_temp}) 
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263.           
264.         #To avoid errors due to invalid geometries, use algorithm fixgeometries 
265.         filename_out_temp1 = os.path.join(out_directory, 'floodedarea_temp1.shp') 
266.         try: 
267.             os.remove(filename_out_temp1) 
268.         except OSError as e: 
269.             print("Info: floodedarea_temp1.shp is new") 
270.          
271.         processing.run("native:fixgeometries",  
272.         {'INPUT': filename_out_temp, 
273.         'OUTPUT': filename_out_temp1}) 
274.          
275.         #Clip flood zones to study site by algorithm polygonize 
276.         filename_final = os.path.join(out_directory, 'floodedarea.shp') 
277.         try: 
278.             os.remove(filename_final) 
279.              
280.         except OSError as e: 
281.             print("Info: floodedarea.shp is new") 
282.          
283.         processing.run("native:clip",\ 
284.         {'INPUT':filename_out_temp1,\ 
285.         'OVERLAY':study_shp,\ 
286.         'OUTPUT': filename_final}) 
287.                 
288.         return {}  
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7.4 Model & Processing Script "Fetch OSM" 

Figure 13 in section 7.4.1 summarizes the established Model to fetch OSM data. The model 

was saved as a script and is shown in section 7.4.2 to allow replicability. 

7.4.1 Model 

 

Figure 13: Model Fetch OSM through Overpass Turbo API 

7.4.2 Script 

1. """ 
2. Model exported as python. 
3. Name : FetchOSM 
4. Group : MSC 
5. With QGIS : 31803 
6. """ 
7.   
8. from qgis.core import QgsProcessing 
9. from qgis.core import QgsProcessingAlgorithm 
10. from qgis.core import QgsProcessingMultiStepFeedback 
11. from qgis.core import QgsProcessingParameterVectorLayer 
12. from qgis.core import QgsProcessingParameterFileDestination 
13. from qgis.core import QgsProcessingParameterBoolean 
14. from qgis.core import QgsCoordinateReferenceSystem 
15. import processing 
16.   
17.   
18. class FetchOSM(QgsProcessingAlgorithm): 
19.   
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20.     def initAlgorithm(self, config=None): 
21.         self.addParameter(QgsProcessingParameterVectorLayer('study', 'study', 

types=[QgsProcessing.TypeVectorPolygon], defaultValue=None)) 
22.         self.addParameter(QgsProcessingParameterFileDestination('OsmDownload', 'OSM Down-

load', optional=True, fileFilter='All files (*.*)', createByDefault=True, default-
Value=None)) 

23.         self.addParameter(QgsProcessingParameterFileDestination('Package', 'package', file-
Filter='GeoPackage files (*.gpkg)', createByDefault=True, defaultValue=None)) 

24.         self.addParameter(QgsProcessingParameterBoolean('VERBOSE_LOG', 'Verbose logging', 
optional=True, defaultValue=False)) 

25.   
26.     def processAlgorithm(self, parameters, context, model_feedback): 
27.         # Use a multi-step feedback, so that individual child algorithm progress reports are 

adjusted for the 
28.         # overall progress through the model 
29.         feedback = QgsProcessingMultiStepFeedback(7, model_feedback) 
30.         results = {} 
31.         outputs = {} 
32.   
33.         # Build query inside an extent 
34.         alg_params = { 
35.             'EXTENT': parameters['study'], 
36.             'KEY': 'building', 
37.             'SERVER': 'https://lz4.overpass-api.de/api/interpreter', 
38.             'TIMEOUT': 250, 
39.             'VALUE': '' 
40.         } 
41.         outputs['BuildQueryInsideAnExtent'] = processing.run('quickosm:buildqueryextent', 

alg_params, context=context, feedback=feedback, is_child_algorithm=True) 
42.   
43.         feedback.setCurrentStep(1) 
44.         if feedback.isCanceled(): 
45.             return {} 
46.   
47.         # Download file 
48.         alg_params = { 
49.             'URL': outputs['BuildQueryInsideAnExtent']['OUTPUT_URL'], 
50.             'OUTPUT': parameters['OsmDownload'] 
51.         } 
52.         outputs['DownloadFile'] = processing.run('native:filedownloader', alg_params, con-

text=context, feedback=feedback, is_child_algorithm=True) 
53.         results['OsmDownload'] = outputs['DownloadFile']['OUTPUT'] 
54.   
55.         feedback.setCurrentStep(2) 
56.         if feedback.isCanceled(): 
57.             return {} 
58.   
59.         # buildings 
60.         alg_params = { 
61.             'INPUT': outputs['DownloadFile']['OUTPUT'], 
62.             'OPTIONS': '-sql \"select * from multipolygons\" -t_srs EPSG:3857', 
63.             'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT 
64.         } 
65.         outputs['Buildings'] = processing.run('gdal:convertformat', alg_params, con-

text=context, feedback=feedback, is_child_algorithm=True) 
66.   
67.         feedback.setCurrentStep(3) 
68.         if feedback.isCanceled(): 
69.             return {} 
70.   
71.         # Clip 
72.         alg_params = { 
73.             'INPUT': outputs['Buildings']['OUTPUT'], 
74.             'OVERLAY': parameters['study'], 
75.             'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT 
76.         } 
77.         outputs['Clip'] = processing.run('native:clip', alg_params, context=context, feed-

back=feedback, is_child_algorithm=True) 
78.   
79.         feedback.setCurrentStep(4) 
80.         if feedback.isCanceled(): 
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81.             return {} 
82.   
83.         # Reproject layer 
84.         alg_params = { 
85.             'INPUT': outputs['Clip']['OUTPUT'], 
86.             'OPERATION': '', 
87.             'TARGET_CRS': QgsCoordinateReferenceSystem('EPSG:4326'), 
88.             'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT 
89.         } 
90.         outputs['ReprojectLayer'] = processing.run('native:reprojectlayer', alg_params, con-

text=context, feedback=feedback, is_child_algorithm=True) 
91.   
92.         feedback.setCurrentStep(5) 
93.         if feedback.isCanceled(): 
94.             return {} 
95.   
96.         # Rename layer 
97.         alg_params = { 
98.             'INPUT': outputs['ReprojectLayer']['OUTPUT'], 
99.             'NAME': 'osm_buildings' 
100.         } 
101.         outputs['RenameLayer'] = processing.run('native:renamelayer', alg_params, con-

text=context, feedback=feedback, is_child_algorithm=True) 
102.   
103.         feedback.setCurrentStep(6) 
104.         if feedback.isCanceled(): 
105.             return {} 
106.   
107.         # Package layers 
108.         alg_params = { 
109.             'LAYERS': outputs['RenameLayer']['OUTPUT'], 
110.             'OVERWRITE': True, 
111.             'SAVE_STYLES': True, 
112.             'OUTPUT': parameters['Package'] 
113.         } 
114.         outputs['PackageLayers'] = processing.run('native:package', alg_params, con-

text=context, feedback=feedback, is_child_algorithm=True) 
115.         results['Package'] = outputs['PackageLayers']['OUTPUT'] 
116.         return results 
117.   
118.     def name(self): 
119.         return 'FetchOSM' 
120.   
121.     def displayName(self): 
122.         return 'Fetch OSM' 
123.   
124.     def group(self): 
125.         return 'MSC' 
126.   
127.     def groupId(self): 
128.         return 'MSC' 
129.   
130.     def createInstance(self): 
131.         return FetchOSM()  
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7.5 Processing Script "Calculate Indicators" 

1. # -*- coding: utf-8 -*- 
2.  
3. """ 
4. *************************************************************************** 
5. *                                                                         * 
6. *   This program is free software; you can redistribute it and/or modify  * 
7. *   it under the terms of the GNU General Public License as published by  * 
8. *   the Free Software Foundation; either version 2 of the License, or     * 
9. *   (at your option) any later version.                                   * 
10. *                                                                         * 
11. *************************************************************************** 
12. """ 
13. from qgis.PyQt.QtCore import QVariant 
14. from qgis.core.additions.edit import edit 
15. from qgis.PyQt.QtCore import QCoreApplication 
16. from qgis.core import (QgsProcessing, 
17.                        QgsFeatureSink, 
18.                        QgsProcessingException, 
19.                        QgsProcessingAlgorithm, 
20.                        QgsProcessingParameterFeatureSource, 
21.                        QgsProcessingParameterFeatureSink, 
22.                        QgsProcessingParameterFileDestination, 
23.                        QgsVectorLayer, 
24.                        QgsProcessingFeatureSource, 
25.                        QgsField, 
26.                        QgsExpression, 
27.                        QgsExpressionContext, 
28.                        QgsExpressionContextUtils) 
29. from qgis import processing 
30. import csv 
31.   
32. # Calculate indicator values and save into the csv file 
33. class CalculateIndicators(QgsProcessingAlgorithm): 
34.   
35.     INPUT = 'INPUT' 
36.     OUTPUT = 'OUTPUT' 
37.   
38.     def tr(self, string): 
39.         return QCoreApplication.translate('Processing', string) 
40.   
41.     def createInstance(self): 
42.         return CalculateIndicators() 
43.   
44.     def name(self): 
45.         return 'CalculateIndicators' 
46.   
47.     def displayName(self): 
48.         return self.tr('Calculate Indicators') 
49.   
50.     def group(self): 
51.         return self.tr('MSC') 
52.   
53.     def groupId(self): 
54.         return 'MSC' 
55.   
56.     def shortHelpString(self): 
57.         return self.tr("Calculates the Sum of the Features within the layer") 
58.   
59.     #Input Parameter definition  
60.     def initAlgorithm(self, config=None): 
61.      
62.         self.addParameter( 
63.             QgsProcessingParameterFeatureSource( 
64.                 self.INPUT, 
65.                 self.tr('Input layer'), 
66.                 [QgsProcessing.TypeVectorAnyGeometry] 
67.             ) 
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68.         ) 
69.                
70.         self.addParameter( 
71.             QgsProcessingParameterFileDestination( 
72.                 self.OUTPUT, 
73.                 self.tr('Output file'),  
74.                 'CSV files(*.csv)',  
75.             ) 
76.         ) 
77.      
78.     #Processing 
79.     def processAlgorithm(self, parameters, context, feedback): 
80.          
81.         #Set output directory 
82.         resultcsv = parameters['OUTPUT'] 
83.          
84.         #Input dataset for the indicator calculation  
85.         source = parameters['INPUT'] 
86.          
87.         #Define input source dataset as vector layer    
88.         layer = QgsVectorLayer(source, '', 'ogr') 
89.          
90.         #Counts number of poygons in layer 
91.         featscount = layer.featureCount() 
92.         feedback.pushInfo(str(featscount)) 
93.   
94.         #Set connection to layer and add Attribute "Calc1" with type double 
95.         prov = layer.dataProvider() 
96.         prov.addAttributes([QgsField('calc1', QVariant.Double)]) 
97.         layer.updateFields() 
98.          
99.         #Define expressions for calculation in each field 
100.         expressionarea = QgsExpression('$area') 
101.          
102.         #Define relevant layer to perform calculation 
103.         context = QgsExpressionContext() 
104.         context.appendScopes(QgsExpressionContextUtils.globalProjectLayerScopes(layer)) 
105.          
106.         #Edit layer and calculate for each feature in attribute calc1 the area 
107.         with edit(layer): 
108.             for f in layer.getFeatures(): 
109.                 context.setFeature(f) 
110.                 f['calc1'] = expressionarea.evaluate(context) 
111.                 layer.updateFeature(f) 
112.          
113.         #Calculate sum of field calc1 from all features 
114.         sumofarea= sum(filter(None,[f['calc1'] for f in layer.getFeatures()])) 
115.         feedback.pushInfo(str(sumofarea)) 
116.          
117.         #Export layername, number of feature and sum of the area of all feature into 

csv 
118.         filecsv = open(resultcsv, "a", newline="") 
119.         tupel = (source, featscount, sumofarea) 
120.         writer = csv.writer(filecsv) 
121.         writer.writerow(tupel) 
122.         filecsv.close() 
123.          
124.         return {}  
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7.6 System Setup 

The scripts and processes in the methodology were created with QGIS Version 3.20.1-

Odense and Python Version 3.9.5. The script needs the package GDAL, hence it needs to be 

installed during the QGIS installation process.  

Integrating Google Earth Engine into QGIS relies on the plugin Google Earth Engine. The 

plugin can be installed via Manage and Install Plugins. The first time the plugin is started, it 

requires an authorization token, which can be received from a personal google account.  

The processing scripts Create Flood Map is using geemap, a python package for interactive 

mapping with Google Earth Engine and helps to simplify requests for the Earth Engine 

servers. Geemap needs to be installed on the computer, hence the following command need 

to be run as administrator in the OSGeo4W Shell. 

1. Pip install geemap 

Low threshold (for example 1.10) can sporadically lead to invalid geometry polygons for the 

flood zones. To avoid errors during the extract by location algorithm, the settings for Invalid 

features filtering is set on Skip features with invalid geometries under Options in the 

processing toolbox.  

The processing scripts Fetch OSM depends on the plugin QuickOSM. The plugin can be 

installed via Manage and Install Plugins. The plugin allows to download OSM data through 

the Overpass API. 

7.6.1 Background Map 

1. #Load Basemaps as background  
2.   
3. #Create group Background 
4. roottree = QgsProject.instance().layerTreeRoot() 
5.   
6. #Load BackgroundMap into layers 
7. def LoadBackgroundMap(url, name): 
8.     rasterLyr = QgsRasterLayer("type=xyz&url=" + url, name, "wms") 
9.     QgsProject.instance().addMapLayer(rasterLyr, False) 
10.     roottree.addLayer(rasterLyr) 
11.     roottree.findLayer(rasterLyr.id()).setItemVisibilityChecked(False) 
12.   
13. #Add Basemaps 
14. linkbasemap = 'ty-

pe=xyz&url=https://mt1.google.com/vt/lyrs%3Dm%26x%3D%7Bx%7D%26y%3D%7By%7D%26z%3D%7Bz%7D&zmax
=19&zmin=0' 

15. LoadBackgroundMap(linkbasemap, 'Google Maps') 
16. linkbasemap = 'ty-

pe=xyz&url=https://mt1.google.com/vt/lyrs%3Ds%26x%3D%7Bx%7D%26y%3D%7By%7D%26z%3D%7Bz%7D&zmax
=19&zmin=0' 

17. LoadBackgroundMap(linkbasemap, 'Google Sat') 
18. linkbasemap = 'refe-

rer=OpenStreetMap%20contributors,%20under%20ODbL&type=xyz&url=http://tile.openstreetmap.org/
%7Bz%7D/%7Bx%7D/%7By%7D.png&zmax=19&zmin=0' 

19. LoadBackgroundMap(linkbasemap, 'OSM Standard') 
20.   
21. #Set one Background Map "Google Maps" on visible  
22. enableLayer = QgsProject.instance().mapLayersByName('Google Maps')[0] 
23. roottree.findLayer(enableLayer.id()).setItemVisibilityChecked(True)  
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