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Preface 

This thesis is the final work of my Master study in Geoinformatics at the UNIGIS Salzburg. It 

is a documentation of my research work, which was done between April 2019 and May 2020. 

It represents the results of a study for crop type classification using state-of-the-art Machine 

Learning and Deep Learning techniques. This thesis is written as a manuscript-based thesis as 

it questions assumptions in the current state-of-the-art and it is hence, of high interest to 

publish the results. The manuscript is written for a possible publication in the European 

Journal of Remote Sensing. This open access journal has a strong focus on articles related to 

the use of remote sensing technologies and numerous publications with agricultural 

background. Therefore, it states a suitable framework for this research.  

This thesis contains two main sections. The manuscript (section 1) considers all specifications 

of the European Journal of Remote Sensing and is ready for the submission to be published. 

The report in section 2 outlines all further technical and scientific developments and analysis 

done within this research work, that could not be included in more detail in the manuscript. 
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1. Manuscript 

Research Article 

Comparison of TempCNN and LightGBM for Crop Type Classification  

using Sentinel-2 Imagery 

Frank WILLING1, Stefan LANG2* 

1 Frank Willing; GeoVille GmbH, Sparkassenplatz 2, 6020 Innsbruck 

2 Prof. Dr. Stefan Lang; Department of Geoinformatics – Z_GIS, University of Salzburg, Hellbrunner Str. 34, A-

5020 Salzburg, Austria 

*Corresponding author. E-mail address: frank.willing@sbg.ac.at 

Abstract: High temporal, spectral and spatial resolution Sentinel-2 Satellite Image Time Series (SITS) 

enable innovative monitoring of vegetation dynamics. Although established classification algorithms 

have been successfully applied, they are supposed not to make the most of the temporal information. 

Approaches from the field of Deep Learning (DL) are designed to exploit the unprecedented temporal 

information more effectively and have already provided promising results. This study aims to evaluate 

the possibilities and limitations of Temporal Convolutional Neural Network (TempCNN) architectures 

for crop type classification in Austria. The classification accuracy of the TempCNN is compared to 

state-of-the-art Machine Learning (ML) classifier Light Gradient Boosting Machine (LightGBM). 

Initially, LightGBM is applied for crop type grouping and reference classification. Thereafter, both 

classifiers are evaluated considering heterogeneous classes, the impact of spectral and temporal feature 

engineering and the ability of spatial generalization. TempCNN did not show the expected 

improvements. On the contrary, LightGBM generally performs equivalent or better and provides more 

stable results. Under certain circumstances the complexity of DL architectures does not offer any 

advantages and therefore established ML classifiers represent a more effective method. 

Keywords: remote sensing, time series, crop type classification, Sentinel-2, LightGBM, TempCNN 
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1.1. Introduction 

1.1.1 Satellite Image Time Series Analysis 

Against the background of continuing population growth and the consequences of climate 

change, ensuring food security is becoming an increasingly complex issue. Generating 

sufficient quantities of food with high nutritional values is one of the key challenges that require 

a better understanding of the ecosystems involved and smart farming as two fundamental 

elements (Kamilaris and Prenafeta-Boldú 2018). Crop monitoring is therefore becoming 

increasingly important in the agricultural sector. Production forecasting and assessing the 

impacts of crises on food production are valuable information for decision makers. (Matton et 

al. 2015). In this context crop type classification contributes basic knowledge for more complex 

procedures like crop area estimation, crop yield forecasting or drought risk analysis on a 

regional to global scale (Kussul et al. 2016). For the investigation of these critical issues the 

agricultural sector can vastly benefit from fully free and open remote sensing data. In terms of 

crop type classification, multitemporal satellite imagery is especially valuable for 

differentiating between various crop types on the basis of their specific phenological states 

across the growing season and generally differing spectra (Kussul et al. 2016). The recently 

available high-resolution Satellite Image Time Series (SITS) from the Sentinel 2 satellites 

provide an unprecedented source of data especially for land use/cover (LULC) mapping. But 

the quality and volume of the data also increases applicability in a wide range of non-EO 

domains. The upcoming opportunities and challenges require new concepts and procedures in 

processing. This shift in paradigm is also discussed and approached under the term "big Earth 

data" (Sudmanns et al. 2020). In particular for vegetation and crop mapping tasks high temporal 

resolution combined with a high spatial resolution sets new standards. A significant increase in 

classification accuracy of established Machine Learning (ML) algorithms due to further 

detailed multi-temporal information has already been proven by different experiments (Vuolo 
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et al. 2018), (Kussul et al. 2016). Although established algorithms provide very good results for 

the analysis of SITS, they are not able to directly exploit the temporal dimension of the 

observations (Gómez et al. 2016). Innovative opportunities to use this extended basis of data 

more effectively might be provided, among others, by approaches from the field of Deep 

Learning (DL). DL is a powerful methodology from the field of ML often applied in the 

domains of object recognition or machine translation for instance. This background possibly 

improves the exploitation of the temporal dimension since certain architectures can also be 

applied to automatically extract and interpret temporal patterns (Ismail Fawaz et al. 2019). By 

adding more “depth”, in form of multiple layers to models than conventional ML algorithms, 

those approaches allow the extraction of higher complexity patterns and recently provide 

promising results exploiting spectral and spatial dimension in the agricultural domain 

(Kamilaris and Prenafeta-Boldú 2018). One of the main DL architectures generally used is the 

“Convolutional Neural Network” (CNN) (LeCun and Bengio 1998).  As SITS are a key 

component of the agricultural datasets and the focus is on objects with different phenological 

development, conventional CNN architectures are not inherently ideally suited and therefore 

must be modified to allow temporal pattern recognition (Rußwurm and Körner 2017). Out of 

this necessity “Temporal Convolutional Neural Networks” (TempCNN) were developed as one 

approach amongst others. Previous approaches applying TempCNN have proven that the 

architectures exceed current state-of-the-art ML algorithms for SITS classification by 

automatically extracting temporal features directly from training data (Pelletier et al. 2019). 

Potential improvements may be expected in terms of feature engineering. The time-consuming 

and expertise requiring task might be redundant for expert free end-to-end regimes in DL as 

architectures with a “depth” of more than two hidden layers are supposed to be complex enough 

to learn temporal feature representations from data more effectively (Zhong et al. 2019). Model 

stability and better performance on rare and/ or heterogenous crop groups might also be 

improved as a result of increased model complexity (Pelletier et al. 2019). 
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Within the pre-processing stage of a classification process, providing and interpreting detailed 

ground reference data is essential. The most comprehensive reference dataset concerning 

Austrian agricultural areas is provided by the European Commission's Directorate-General for 

Agriculture and Rural Development (DG Agriculture and Rural Development) via the Land 

Parcel Identification System (LPIS). This dataset covers all criteria for institutional 

administrations, but not yet those required in data science for an adequate classification. LPIS 

crop classes are too detailed for distinct spectral differentiations and some do not exactly fit the 

term “crop”. 

1.1.2 Aim and Objectives 

The milestone in the development of remote sensing represented by the launch of Sentinel 2 

requires a rethinking of the conventional approaches to data exploitation. The new paradigms 

in Earth Observation (EO) emerging from the combination of unprecedented amounts of data 

and highly performant analysis algorithms must be evaluated. The central aim of this work is 

to evaluate whether, and if so, how DL techniques make the classification of crops based on 

SITS analyses more performant. Specifically, the classification results of the established state-

of-the-art algorithm Light Gradient Boosting Machine (LightGBM) will be compared to those 

of an existing TempCNN architecture.  

One objective is to identify spectrally or temporally distinguishable crop type classes to make 

the complex LPIS data applicable for data scientific procedures. Thus, grouping the over 200 

classes into 15 to 20 unique and useful groups is a mandatory first operation. Therefore, several 

experimental classification processes must be executed. Based on the confusion of the 

respective classes among one another, the crop groups can be further differentiated, which 

ultimately allows the definition of groups that are as homogeneous as possible. One part of the 

objective is the application of an appropriate state-of-the-art ML algorithm and to optimize its 

prediction results based on the respective grouping to provide an appropriate reference model. 
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This also helps evaluating the dataset in terms of possible features choice, sampling, and crop 

type grouping.  

Based on these reference parameters and results, experiments with the novel TempCNN 

architecture can be implemented. These experiments include the adjusting of pre-processing 

steps like increasing temporal interpolation, regrouping of LPIS classes, and changing models 

training and testing areas. The research questions addressed are listed in the following: 

The objective in data pre-processing serves as basis for subsequent comparisons: 

- Applying LightGBM algorithm: Which is the most performant contextually useful 

grouping of classes for Austrian LPIS in 2018?  

The general question of improvement: 

- Does the TempCNN architecture outperform the LightGBM algorithm? 

is analysed considering the following aspects: 

• Does the TempCNN achieve higher accuracies in presence of less represented and/or 

spectrally heterogenous classes? 

• Can certain pre-processing steps be omitted using TempCNN? (e.g. Feature 

engineering) 

• Is the TempCNN more stable if the training data source is different from the region to 

be predicted? 

This paper is organized in 5 sections. Following the introduction to the state of research in SITS 

analysis, section 1.2 describes the Austrian area of interest (AOI), the remote sensing and 

reference data as well as the classification process used to optimize and compare ML and DL 

models. It is followed by the presentation, discussion, and conclusion of the respective results. 
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1.2. Material and Methods 

1.2.1 Study Area 

The study area is supposed to represent the entire Austrian territory, thus indicating the 

diversity of the country. To enable effective computational processing, using reduced data 

volumes, three representative AOI were selected from the regions of Oberösterreich (OÖ), 

Marchfeld (MF) in Niederösterreich and Steiermark (SM). They are not delimited but named 

based on regional borders. The AOI are separated into individual processing units for 

convenient data access and manipulation. The “Single units” (Figure 1) represent individual 

areas outside the AOI for training and testing.   

 

Figure 1: Study area split into train/ test units as well as external single units for spatial generalization checks 

and examples of LPIS and Sentinel-2 raster data 

In the west over 70% of the territory are part of the alpine region. Offering mainly pasture and 

mowing areas (Figure 2) the alpine region (Figure 1) is mostly unsuitable for cultivation and 
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excluded from further modelling procedures as it becomes unreasonably complex by varying 

topographic and agricultural conditions in most areas. 

 

Figure 2: Crop distribution in alpine and foreland Austrian regions 

Great plains in the east provide major Austrian agricultural production. Dominated by 

grasslands, cereals, and maize (Figure 2) the foreland regions (Figure 1) are agriculturally 

diversely composed and therefore well suited for AOI selection. The conditional diversity of 

soil, precipitation and cultivation practices results in varying composition of crops amongst the 

AOIs (Figure 3). While in OÖ mainly the most common crops are represented, SM and 

particularly MF are composed of a wide cultivation range including minor crops. Differing crop 

growing stages and cultivation practices challenge models capabilities and allow a detailed 

performance analysis. 
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Figure 3: Crop distribution for the 3 regions of the AOI 

1.2.2 Data 

1.2.2.1 Sentinel-2 Imagery 

The remotely sensed input dataset is composed of Sentinel 2 surface reflectance, available as 

pre-processed “bottom-of-atmosphere” Level 2A product (see RGB inset in Figure 1) acquired 

and provided under the Copernicus project initiated by the European Space Agency and the 

European Commission. The data is derived from the Multispectral Instrument (MSI) on the 

satellites “S2B” and “S2A”. The optical instrument samples 12 multispectral bands: four bands 

at 10m (Bands 2, 3, 4, 8), six bands at 20m (Bands 5, 6, 7, 8a, 11, 12), three bands at 60m 

(Bands 1, 9, 10) spatial resolution (ESA). Bands B02, B03, B04, B05, B06, B07, B08, B8A, 

B11, B12 are potentially relevant for vegetation monitoring and therefore used as features. On 

their basis Normalized Difference Index (NDVI), Normalized Water Index (NDWI) and 

Normalized Euclidean Distance (NORM) are calculated as additional features in the context of 

this work. According to (Pelletier et al. 2016) additional pre-calculation of temporal features 

considering phenological stages is not reasonable for state-of-the-art ML approaches. The 

combination of two satellites enables a high revisit frequency up to 5 days. The temporal 

resolution potentially provides 54 images for the investigation period from 01.01.2018 to 

30.09.2018. But the actual SITS is reduced mostly by winterly cloud coverage as it includes 
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only timeframes with a valid data fraction over 70%. The limiting overall intersecting dates are 

13.04.2018 to 28.09.2018. To overcome technical complications by missing data and varying 

length of SITS, they are resampled and interpolated on 8-day interval. Thus, the generated SITS 

have a consistent length of 21 equidistant timeframes.  

1.2.2.2 Ground Reference Data 

The LPIS is a geographical information system operated by several European member states. It 

records the geographical position and spatial extent of agricultural areas on reference parcel 

level based on orthophotos (Počivavšek and Ljuša 2013). Austrian LPIS for 2018 includes 

1.2.522.622 reference parcel polygons (see LPIS inset in Figure 1) covering an area of about 

3.209.479 hectares. To ensure an appropriately detailed database for administration, the 

institutions distinguish between more than 200 different crop type classes. 

1.2.2.3 Dataset Partition 

For modelling the dataset is split into training and test sets. The training set is used to train the 

individual classification algorithms. The final classification results are evaluated using the test 

set. Each AOI is further divided into smaller processing units. To ensure pixel for training and 

testing originate from different agricultural fields, about 75% of these units are assigned to 

training and about 25% to test set (Figure 1). The random sampling of pixel is executed on 

processing unit level. Only crop groups represented by at least 1000 pixel are included in the 

respective sampling process with a share of 500 pixel. As a result, there are 203.230 pixel in 

training and 74.044 in test set. 

1.2.3 Classification 

1.2.3.1 Benchmark ML Classifier 

The LightGBM algorithm (Guolin Ke et al. 2017) is applied as reference classifier for crop type 

grouping and accuracy benchmarking, representing one of today’s most popular non-DL 

algorithms. Amongst others (Ustuner and Balik Sanli 2019) received strong results applying 
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LightGBM for crop type classification, and (Krishna Moorthy et al. 2019) recently found it 

outperforming state-of-the-art algorithms Random Forest (RF) (Breiman 2001) and XGBoost 

(Chen and Guestrin 2016) for leaf and wood classification on radar data. Like the latter, 

LightGBM is an implementation of Gradient Boosting Decision Tree (GBDT) algorithm. 

Introduced by Microsoft it is supposed to optimise GBDTs computational bottlenecks. Unique 

applications, like leaf-wise tree growing for maximising loss reduction, Gradient-based One-

Side Sampling (GOSS) for increasing information gain and Exclusive Feature Bundling (EFB) 

for reducing training complexity (Guolin Ke et al. 2017), enable benchmarking results. The 

architecture is implemented using Pythons Scikit-learn package (Scikit-learn homepage, 

https://scikit-learn.org). Hyperparameters are applied following the default values of the 

corresponding package (Microsoft Corporation).  

1.2.3.2 DL Classifier 

TempCNN extend the idea of automatic feature extraction behind common CNN. 

Convolutional layers reduce features complexity and highlight patterns (LeCun and Bengio 

1998). The crux of applying an CNN architecture for the exploitation of SITS sequential data 

is to implement one-dimensional convolutional filters capable of capturing temporal patterns. 

In that context (Pelletier et al. 2019) successfully developed an effective arrangement of 

architectural components and hyperparameters in extensive studies.  

According to their results the subsequently applied architecture is composed of three 

convolutional layers including 64 units, one dense layer including 256 units and one SoftMax 

layer. The filter size is set to 5 and the dropout rate to 0.5. No pooling layers are implemented. 

Adam optimization with standard parameters and a batch size of 32 is used for training with 

number of epochs set to 10. The architecture is built using the Keras library (Keras homepage, 

https://keras.io) on top of Tensorflow (TensorFlow homepage, https://www.tensorflow.org) 

and the model is trained and evaluated using Scikit-learn package again.  
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1.2.3.3 Evaluation 

Four research questions were formulated to allow an overall assessment. Each included the 

computation of matrices and overall accuracies to evaluate the performance of the classifiers 

on the test set. Considering overall accuracy only in this case is adequate as the threshold-bound 

sampling strategy guarantees a balanced dataset (Guo et al. 2008).  

Beginning with considerably grouping LPIS classes, a first grouping based on functional 

preferences was introduced. From there, successive regrouping and synchronous evaluation of 

LightGBM classification results was required. For the subsequent comparison of the models, 

the focus first was on the overall accuracy achieved for individual heterogeneous groups. 

Second, the individual performances were evaluated with respect to feature engineering. The 

algorithms were applied on data based on either 4-day or 8-day temporal resampling range and 

on datasets both including and missing precalculated spectral features. At last the spatial 

stability was examined. The models were applied on data from single units (Figure 1) outside 

the training area sampled across the entire Austrian territory. 

1.3. Results 

1.3.1 Crop Grouping 

Step 1 introduces the group Multi use which includes LPIS classes that do not define one main 

crop. It is not intended primarily to increase the model’s accuracy, but to clearly separate crop 

groups contextually. As expected, there is no significant effect on the accuracy of the groups 

(Figure 4). In contrast, step 2 represents a significant process. At least for Grass it allows the 

accuracy to increase about 66 % (Figure 4) as it combines the grassy classes Leafy Legumes 

and/ or Grass mixture, Pasture, (Alpine-) Meadows and Grass in the latter. The strong increase 

improves overall accuracy about 6%. The following two steps also combine groups. The groups 

Poppy and Soft fruits are performing poorly because of less representation and spectral 

diversity. Therefore, they are assigned to Other in step 3. The groups Beets, Fallow land, Hop, 
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Buckwheat are even less represented and therefore not listed in figure 4. Together with Beans 

they are also assigned to Other in step 4. The final step 5 allows Grass to improve about 13% 

and thereby increases overall accuracy to about 77% (Figure 4). Here, the grassy LPIS classes: 

Once per year mow meadow (“Einmähdige Wiese”), Crop rotation- natural vegetation without 

planted vegetation (“Grünbrache”), Crop rotation - non cultivated for some time 

(“Grünlandbrache”), Different green areas (“Sonstige Grünlandflächen”) and Changing 

meadow (“Wechselwiese”) are assigned to Grass. In total, the overall accuracy increases by 

about 9% from 68% to 77%.  

 

Figure 4: Stepwise accuracy check for single crop grouping steps related to individual crop groups 
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1.3.2 Model Stability on heterogenous Groups 

Heterogeneity appears in different patterns amongst the groups (Figure 5). Other and 

Vegetables consist of numerous, spectrally varying classes. Between the actual crops of 

Orchards and Vineyards large grassy areas are common and Grass, Winter- and Summer cereals 

include classes that are subject to varying cultivation practices. In the context of the first 

potential heterogeneity category the TempCNN model slightly outperforms the LightGBM 

model for Vegetables about 4%, while the latter clearly outperforms the former for Other about 

13%. Similar results occur for the second category. LightGBM slightly outperforms TempCNN 

for Orchards about 4% and for Vineyards it is the other way around with a difference of 8 %. 

In the third category both models perform similarely, LightGBM slightly outperforming 

TempCNN for Grass about 3% and Summer cereals about 5%.  

 

Figure 5: LightGBM and TempCNN performances on heterogenous groups 

1.3.3 The Impact of Feature Engineering – Indices 

In general, both models perform similarely on datasets that do include spectral indices and those 

that do not (Figure 6). With the focus on specific crop groups, LightGBM shows only little 

differences. Vegetables and Vineyards are the only groups with noticeable discrepancies, that 

are still less than 5% in accuracy. In both cases LightGBM performs slightly worse on datasets 



 

Master Thesis, Frank Willing (105107)  14 
 

missing indices. For TempCNN classification results are more varying. Regarding the dataset 

missing indices, remarkable differences occur for Vineyards where the model performs about 

6% worse, Winter cereals with a decrease of 7% and a decrease of 8% for Sunflower. 

Remarkably increasing accuracy of 11% the model achieves on Other. 

 

Figure 6: LightGBM and TempCNN performances on datasets including and missing spectral indices 

1.3.4 The Impact of Feature Engineering – temporal Resolution 

Again, both models perform similarely on 4- and 8-day resampling in general. Increased 

temporal resolution improves LightGBM accuracy about 1% and TempCNN accuracy about 

2% (Figure 7). Across all groups LightGBM performs very consistently. Only unremarkable 

differences occur for Other and Vegetables. In contrary, TempCNN classification results vary 

significantly. It performs remarkably better on the dataset with increased temporal resolution 

about 6% for Vegetables and about 10% for Other. For Potatoes, its results are about 25% 

worse. 
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Figure 7: LightGBM and TempCNN performances on 4- and 8-day resampled datasets 

1.3.5 Model Stability on spatial Variation 

Figure 8 shows the mean accuracy for both models performing on data from single units   

(Figure 1). It displays significant differences for certain classes. LightGBM performs 

significantly better on Grass about 6% and on Winter cereals about 25%. However, its results 

are worse about 6% for Pumpkins, about 12% for Vineyards, about 13% for Vegetables and 

about 17% for Sunflower. 

 

Figure 8: LightGBM and TempCNN performance on test data from outside the training area 
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An examination of the results for individual classes inside each crop group reveals some 

interesting patterns. For Potatoes LightGBM outperforms TempCNN with over 8% at times in 

areas dominated by potatoes for industrial production (“Stärkeindustriekartoffeln”) which is not 

represented well in the training dataset (Figure 9). For Maize, the pattern is not directly crop 

class related. Figure 10 shows LightGBM generally outperforming TempCNN about 2% to 8% 

in alpine regions dominated by Silage Maize (“Silomais”). In foreland areas both models 

perform either similarely or TempCNN outperforms LightGBM regardless of class distribution 

about 2% to 8%. 

 

Figure 9: Distribution of LPIS crop class Potatoes and respective TempCNN performance in contrast to 

LightGBM 
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Figure 10: Distribution of LPIS crop class Maize and respective TempCNN performance in contrast to 

LightGBM 

1.4. Discussion 

Studies of (Pelletier et al. 2019) and (Zhong et al. 2019) show that CNN’s efficiency in domains 

like image and text recognition with an existing relationship between the dimensions is 

transferable to the sequential relationship of multi-temporal remote sensing observations. A 

more detailed examination of these findings is required, regarding the results of the previous 

section. 

For the success of the crop type grouping presented in section 1.3.1 the increasing accuracy of 

Grass had the most relevant impact on overall accuracy. The grassy classes are grouped as they 

are very similar in terms of cultivation practices, resulting in common temporal and spectral 

characteristics. The overall accuracy might be further improved, by e.g. not individually 

considering less performant groups like Orchards, Vegetables or Vineyards. However, for the 
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essential part of model comparison, a diverse grouping including also weakly performing 

groups is beneficial. Furthermore, already well performing classes did not change much during 

grouping and could not be improved. To enforce a more balanced evaluation both algorithms 

could be considered for underlying crop grouping. As the crop groupings were only investigated 

using the LightGBM model, further evaluation should consider the effect of different croup 

groupings on TempCNN results. 

The subsequent experiments do not support the introductory thesis of superior TempCNN, as 

heterogenous groups in section 1.3.2 could not be separated more precisely by increased model 

complexity of TempCNN in neither of the categories. Considering overall accuracy, TempCNN 

cannot benefit from automatic feature extraction. Neither skipping indices pre-calculation in 

section 1.3.3 nor enhancing temporal resolution via increased resampling in section 1.3.4 lead 

to outperforming results. These discrepancies with the literature may originate from extensive 

pre-processing, preceding the actual modelling process of this study. For technical reasons, it 

is necessary to provide the algorithms with data that is equidistant or at least identical in extent. 

As stated in section 1.2.2.1 for a study area covering the size of the Austrian territory, this is 

only possible by temporal resampling and interpolation. Through this generalization the dataset 

loses complexity and informational quality, which possibly prevents TempCNN from reaching 

its maximum potential. Preserving maximum dataset complexity by using all available 

observations and only interpolating cloud cover like (Zhong et al. 2019) should be subject of 

further studies. However, it is to be expected that the variety of cloud cover conditions caused 

by the vast extension of the study area is likely to cause significant confusion on spectro-

temporal signatures of crop type classes. 

Using both models for classification of data from single units outside the training area in section 

1.3.5 raises multiple questions and therefore provides some basis for further comprehensive 

studies. TempCNN outperforming results for Grass and Winter cereals and the inverted 
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outcome for Pumpkins, Vineyards, Vegetables and Sunflower indicate that TempCNN is more 

stable on less represented groups, whereas LightGBM is more stable on the mainly represented 

groups. However, for the formulation of a general statement further investigation is required.  

Although the outcome of the detailed examination of individual crop groups in section 1.3.5 is 

not quantifiable and originates from visual interpretation, it is worth mentioning and provides 

indications for further studies. Different potato types, especially high maintenance Seed 

Potatoes (“Saatkartoffeln”) are managed in different ways. The results for Potatoes suggest that 

TempCNN struggles faced with these differing cultivation practices and is less capable of 

identifying those crop types that are not common in the training data. Patterns are also visible 

for Maize which has higher climatic requirements than Winter cereals, for example (Sinabell et 

al. 2014). These requirements can lead to temporally differing growth stages in Alpine and 

Foreland regions because of climatic differences. The outcome especially for Silage Maize 

(“Silomais”) suggests that TempCNN is not able to generalize these differences in growth 

patterns well. Again, further investigations for the formulation of a generally valid statement 

should be subject to future scientific research. 

1.5. Conclusion 

In this study the state-of-the-art ML algorithm LightGBM and a recently promisingly 

performing DL TempCNN architecture were applied for crop type classification on Sentinel-2 

SITS. The referring literature provokes the expectation that TempCNN can generally 

outperform LightGBM. The results received in the course of this work, however, show that the 

assumption must be further differentiated. In general, TempCNN was neither able to better 

separate spectrally heterogeneous groups, nor was it possible to detect advantages in 

abandoning the pre-calculation of spectral features or the increase of the temporal resolution. 

On the contrary, LightGBM provided more stable results regarding individual groups. Also 
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tests on data from outside the training area suggest that TempCNN is less able to generalize 

group specific spectro-temporal signatures compared to LightGBM.  

The experimental results of this work show that LightGBM provides better outcomes based on 

an extensively pre-processed and therefore generalized and less complex dataset. Research from 

corresponding literature leads to the assumption that TempCNN achieves better results for less 

prepared and therefore more complex datasets. The use of such data would reduce the dataset 

related workload. However, it is to be expected that such conclusions only apply to study areas 

with a limited extent or consistent cloud cover conditions. For a study area the size of Austria, 

as in this study, the improved practicability of DL applications is questionable. To obtain 

consistent and thus identifiable spectro-temporal signatures for crop classes inside the 

respective groups, more extensive pre-processing is necessary. The conclusion of this thesis is 

therefore that in the case of extensive and diverse study areas and the associated exhaustive data 

preparation, both approaches achieve satisfactory results, but the LightGBM algorithm 

represents the classifier of choice. Future research could investigate whether the conclusions 

drawn are transferable to other large-scale areas with different crop classes and cultivation 

practices. The impact of data pre-processing should also be further evaluated to determine an 

appropriate ratio between workload and classification accuracy. 
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2. Report 

In the technical Report, the methods applied for answering the research questions raised and 

addressed in the preceding manuscript part of this thesis are outlined. These include an 

introduction of the software used as well as a presentation of the processing workflow from 

data acquisition towards pre-processing and classification up to the final accuracy assessment. 

2.1 Software 

Introducing the report, in this chapter an overview of important software used is presented. It 

forms the framework and is mainly used to access and pre-process a dataset suitable for 

developing, training, and evaluating the respective models. Most of the tools are well known, 

especially in the remote sensing community. Still, to present a complete documentation of the 

method applied a short introduction is given.  

2.1.1 Python 

Python is a popular and powerful interpreted programming language distributed by the Python 

Software Foundation. It was first released in 1991. The current Python 3.7 version, which is 

used in the context of this thesis, was released in 2018. Python is a complete language and 

platform that can be used for both research and development and developing production 

systems. Due to this and the huge amount of external libraries python is a widely used language 

in many scientific projects. It is also one of the most popular languages in the fields of ML as 

it offers many powerful ML and especially DL libraries.  

- Scikit-learn: Scikit-learn is a Python module for ML built on top of the SciPy module. 

The development is focused on providing a solid implementation for ML that focuses 

on the essential functions. A clean, consistent, and simple API is what makes the library 

stand out. Once the principles of applying Scikit-learn to a model are understood, it is 

relatively easy to apply it to other models.  
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- TensorFlow: TensorFlow is a powerful open source Python library for implementing 

and deploying large-scale machine learning models in recent years it became one of the 

most popular libraries for deep learning.  

- Keras: Keras is a deep learning framework for Python that provides a convenient way 

for defining and training models. Amongst others, it is capable to run on top of 

TensorFlow, enabling fast experimentation. 

Furthermore, Python offers a great range of other libraries useful for data pre-processing. Some 

of those applied in this work are: 

- Numpy: Numpy is the core library for scientific computing in Python. It provides a 

high-performance multidimensional array object, and tools for working with these 

arrays.  

- Pandas: Pandas is, amongst others, based on numpy-functions and provides special 

functions and data structures for the manipulation of numerical tables and SITS. Data is 

stored in pandas.Series (instance) and pandas.DataFrames (instances stored as tabular 

data) 

- GeoPandas: GeoPandas adds support for geographic data to Pandas objects. It 

implements geopandas.GeoSeries and geopandas.GeoDataFrames which are subclasses 

of pandas.Series and pandas.DataFrame respectively. GeoPandas objects can act on 

shapely geometry objects and perform geometric operations. 

2.1.2 eo-learn Library 

The eo-learn library requires a detailed introduction. As the main tool for data acquisition and 

pre-processing it serves as interface for ML analysis and interpretation of the results. The open-

source framework for remote sensing data analysis was developed and published in 2018 by 

Sinergise (Sinergise homepage, http://www.sinergise.com). It was developed under the 
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Perceptive Sentinel European grant and therefore received funding from European Union’s 

Horizon 2020 Research and Innovation Programme. GeoVille Information Systems and Data 

Processing GmbH acts as a partner in this project. The term EO covers the collection of data, 

e.g. images, about our planet via satellite remote-sensing technologies. This provides scientists 

and decision makers with valuable information to better understand our environment. Between 

the acquisition of a satellite image and an actionable information, however, there is a large 

processing effort. eo-learn as a collection of modular Python sub-packages allows easy and 

quick processing of spatio-temporal data to prototype, build and automate these required large 

scale EO workflows for AOIs of any size. It also directly enables the application of state-of-

the-art tools for computer vision, ML and DL packages in Python to the data. Especially for 

non-experts to the field of remote sensing and ML it makes extraction of valuable information 

from satellite imagery easier and more comfortable. Time consuming research and downloading 

a large amount of data as holding it available is replaced by simple access to the online database 

SentinelHub containing data of the Copernicus and Landsat programs. Therefore, the 

functionalities of the eo-learn library often make use of interfaces of the SentinelHub Python 

package. This package allows users to make OGC (WMS and WCS) web requests to download 

and process satellite images within custom Python scripts. It supports Sentinel-2 L1C and L2A, 

Sentinel-1, Landsat 8, MODIS and DEM data source (SentinelHub repository, 

https://github.com/sentinel-hub/sentinelhub-py). The idea of eo-learn is to implement e.g. 

complete classification workflows from the download of the data to the evaluation of the results 

in one eo-learn based workflow.  

The core modules of the framework are EOPatches, EOTasks and EOWorkflows. EOPatches 

store multi-temporal imaging and non-imaging data in the format of NumPy arrays and Shapely 

polygons (Table 1).  

Table 1: EOPatch data formats 
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Character Name Content 

Time-dependend DATA spatio-temporal raster data (e.g. bands) 

MASK spatio-temporal raster masks (e.g. cloud 
mask) 

VECTOR spatio-temporal raster data (e.g. parcels) 

SCALAR temporal float-values (e.g. cloud coverage) 

LABEL temporal int-values (e.g. classification 
label) 

Time-independend DATA_TIMELESS spatial raster data (e.g. digital elevation 
model) 

MASK_TIMELESS spatial raster mask (e.g. crop type labels) 

VECTOR_TIMELESS spatial vector data (e.g. super-pixels) 

SCALAR_TIMELESS float-scalar values (e.g. probabilities) 

LABEL_TIMELESS int-scalar values (e.g. processing flags) 

Meta-data BBOX bounding box of the AOI in a given 
Coordinate Reference System 

TIMESTAMP list of datetime-objects for each frame in 
the time-series 

META_INFO dictionary of meta-info pertaining to the 
time-series (e.g. OGC request parameters) 

EOTasks are easy to implement sub packages for performing specific operations on EOPatch 

instances. They are subdivided into the groups eo-learn-core, - io, -mask, -features, -geometry, 

-ml-tools and -coregistration also listed in table 2.  

Table 2: eo-learn subpackages 

Sub package 

(EOTask) 

Functions 

eo-learn-core 
The main sub package which implements basic building blocks 
(EOPatch, EOTask and EOWorkflow) and commonly used 
functionalities 

eo-learn-io 
Input/output sub package that deals with obtaining data from 
Sentinel Hub services or saving and loading data locally 

eo-learn-mask 
The sub package used for masking of data and calculation of cloud 
masks 

eo-learn-features 
A collection of utilities for extracting data properties and feature 
manipulation 

eo-learn-geometry 
Geometry sub package used for geometric transformation and 
conversion between vector and raster data 

eo-learn-ml-tools Various tools that can be used before or after the ML process 
eo-learn-

coregistration 
The sub package that deals with image co-registraion 
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An EOWorkflow can be described as acyclic graph of EOTasks that form complete EO 

processing pipelines including logging and monitoring.  

Based on the eo-learn library Sinergise builds up the Perceptive Sentinel platform. It is 

supposed to be an intermediate EO service for fast, efficient, and easy design, exposure and 

exploitation of EO-processing chains based on multi-temporal and multispectral EO and non-

EO data (Perceptive Sentinel homepage, http://www.perceptivesentinel.eu/). In the context of 

this project Sinergise created an open-source ML pipeline for LULC classification at a country-

level. The pipeline is meant to be applied to any country (Sinergise LULC example, 

https://github.com/sentinel-hub/eo-learn/blob/master/examples/land-cover-

map/SI_LULC_pipeline.ipynb). The Workflow presented in the following chapters is oriented 

on that example workflow.  

2.2 Data Pre-Processing 

In the following an explanation of the workflow for data pre-processing is given. This includes 

accessing remote sensing and reference data, feature engineering, interpolation, and sampling. 

2.2.1 AOI 

Sentinel-2 products are generally available in the form of 100x100 km tiles. The eo-learn library 

enables the download for custom areas, namely EOPatches. In this specific use case, the total 

8,822 million km² of Austrian territory is divided into 991 EOPatches, each measuring 100 km². 

For the three representative regions, 61 of these 991 Patches are selected. 20 of these are in OÖ, 

16 in MF and 25 in SM.  

2.2.2 EO-Data 

The eo-learn library is used to download the L2A products. The task accesses SentinelHub's 

Web Coverage Service and offers the advantages of a precise download application. Instead of 

downloading imagery from SciHub, using the JP2 format, processing, re-projecting, or 
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mosaicing the data (Kamilaris and Prenafeta-Boldú 2018), it can be integrated into the 

workflow as a numpy array right away. Also, compared to conventional procedures less storage 

volume and processing power is required.  For the three regions the bands B02, B03, B04, B05, 

B06, B07, B08, B8A, B11 and B12 are downloaded and if necessary, converted to a resolution 

of 10x10 m per pixel. Thus, from the 12 available bands, all 10 bands relevant for the 

observation of the earth's surface are included into the dataset. Even bands which initially 

appear to have little value for the classification can provide valuable information for the 

modelling process. The bands B01, B09 and B10 are available in 60 m resolution which causes 

a high blur radius. In consequence these are prone to the mixed pixel problem, which originates 

from various land cover types in a single pixel area and reduces the reliability of the 

classification results. In addition, they are mostly used for atmospheric image correction and 

since the data is already of corrected Level-2A quality they tend to be redundant. For the 

download only those sentinel tiles are considered, which are covered with clouds up to 80 %. 

The corresponding period is defined from 01.01.2018 to 30.09.2018. The last three month of 

the year are ignored as amongst others (Maponya et al. 2020) state, that more accurate results 

are achieved using only beneficial input data acquired during peak growth stages. Within this 

time range all images which are more than 2 hours apart should be recorded as single 

timeframes.  

Despite high temporal and multispectral resolution, Sentinel datasets suffer a lack of 

consistency due to clouds and cloud artifacts. These common disruptions are frequently 

responsible for subtractions in the classification accuracy and therefore need to be detected and 

excluded. One of the actions for detecting invalid pixel is adding a Scene Classification Map 

(SCL) produced by Sen2Cor (ESA Plugins). Sen2Cor is a processor for Sentinel-2 Level 2A 

product and formatting. It performs the atmospheric-, terrain and cirrus correction of Top- or 

Bottom-Of-Atmosphere Level 1C input data. Also, it processes Aerosol Optical Thickness-, 
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Water Vapor-, Scene Classification Maps and Quality Indicators for cloud and snow 

probabilities. In the context of this work SCL is used to detect valid data pixel. It contains the 

classes presented in table 3.  

Table 3: SCL-Classes 

Label Class 

1 SC_SATURATED_DEFECTIVE 
2 SC_DARK_FEATURE_SHADOW 
3 SC_CLOUD_SHADOW 
4 VEGETATION 
5 NOT-VEGETATED 
6 WATER 

7 
SC_CLOUD_LOW_PROBABILITY / 
UNCLASSIFIED 

8 SC_CLOUD_MEDIUM_PROBABILITY 
9 CLOUD_HIGH_PROBABILITY 

10 THIN_CIRRUS 
11 SNOW 

 

Cloud information is also added for the detection of invalid pixels. Cloud detection is performed 

at 160 m resolution. The cloud probability map and the corresponding cloud binary mask 

(CLM) are scaled to EOPatch's resolution. The eo-learn library is utilising a certain classifier 

for computing the respective cloud probability maps. The provided classifier in this case is the 

pixel-based S2 cloud detector "S2PixelCloudDetector" which takes Sentinel-2 images of all 

requested bands as input and returns a raster binary cloud mask, where 0 (1) indicates clear sky 

(cloudy) pixel. To filter valid reflectance data of each timeframe, an equally shaped mask is 

necessary. First, a mask is created based on the CLM. Second, valid classes are defined in the 

SCL (classes: 2, 4, 5, 6, 7) and on this basis another valid data mask is created. Finally, the two 

masks are combined to a complete mask. For illustration CLM, SCL and the final combined 

valid data mask are displayed in table 4. 
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Table 4: Cloud Masking 

CLM SCL Final valid data mask 

   

Based on the final mask created for each timeframe, frames containing too many invalid pixels 

are excluded from further processing. In this case all frames with a valid coverage of 70% will 

be kept. Figure 11 displays the number of timeframes per EOPatch in more detail and the 

average can be deduced. It is 25 of 54 possible frames in the corresponding time period.  

 

Figure 11: Timeframes per EOPatch 

This is mainly caused by problematic cloud cover. Also, the recordings are not distributed 

regularly. Especially in the early months of the year there are drastic bad weather influences. 

These limitations will become relevant in later processing steps.  
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2.2.3 Reference Data 

The LPIS reference data for 2018 is downloaded in vector format from the Geopedia (Geopedia 

homepage, https://geopedia.world/) via Sentinel-Hub tasks applied in the Perceptive Sentinel 

library. It is added to the EOPatch automatically. For a detailed investigation of the dataset 

“InVekoS Schläge Österreich 2018” can be downloaded manually (InVekoS dataset, 

https://www.data.gv.at/katalog/dataset/f7691988-e57c-4ee9-bbd0-e361d3811641). Figure 12 

shows an EOPatch specific section of the reference data. With the help of the eo-learn library, 

the dataset is converted into the raster format. The raster dimension is assigned to the shape of 

the spectral raster as the actual purpose of the process is to label the respective crop types on a 

pixel basis.  

 

Figure 12: LPIS vector data 
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The over 200 LPIS classes are grouped according to chapter 1.3.1 which describes the 

respective grouping process. As it is the aim of this work, amongst other research questions, to 

achieve the most accurate and meaningful classification results the over 200 LPIS classes need 

to be further categorized. The initial LPIS classes stand for the main crops cultivated in the 

growing season. Potential intermediate crops are ignored for the classification. In the appendix 

of this thesis there is table 5 containing all LPIS classes as well as an overview of the grouping.  

With completion of the categorization a buffer is applied to each individual field in the border 

area.  This erosion is carried out to the extent of one pixel, i.e. 10 m. The necessity of this step 

is a result of the mixed pixel problem. Especially, in the border area of fields there are often 

green strips, hedges, or a direct transition to the neighbouring field.  Accordingly, a 

heterogeneous spectral reflection occurs in this area. A pixel can contain both corn and grass, 

for example, thus forming a mixed pixel.  To exclude these confusing pixel values from further 

processing, they are completely removed. After the LPIS vector data has been read and 

processed, it is stored in the EOPatch.  

2.2.4 Feature Engineering 

At least for the reference classification some feature engineering is necessary. First, from all 

available bands three different indices are calculated to potentially improve the results. 

Common DT based algorithms like LightGBM only approximate interactions and non-linear 

relationships between different bands. Only a binary split is performed on a single covariate at 

each step, all splits are orthogonal and therefore more complex interactions among covariates 

are less probable to be considered. Strong relationships benefit from being explicitly defined 

(Inglada et al. 2017). Indices therefore help to improve the exploitation of those (Pelletier et al. 

2019). CNN should principally be able to identify all spectral relationships independently. 

These considerations are part of the analyses in chapter 1.4. Two of the three indices represent 

Normalised Difference Indices that are also referred to as Vegetation Indices. These are 
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calculated from two bands 𝐴 and 𝐵, with the formula 
(𝐴−𝐵)(𝐴+𝐵). The first one, and most widely used 

in terms of vegetation classification, is the NDVI. It quantifies the characterizing "value jump" 

between green leaf scattering in the Near Infra-red (NIR) wavelength (S2-band: B08) and 

chlorophyll absorption in the visible (VIS) red wavelength (S2-band: B04). Strong and well-

nourished vegetation will absorb most of the visible wavelengths it receives and will reflect a 

large proportion of the near-infra-red light, whereas vegetation in poor condition or sparsely 

vegetated areas, will reflect more radiation from the visible spectrum and less from near-infra-

red. 

The second vegetation index is the NDWI. It is typically used for water body mapping. The 

index uses the green (VIS) (S2-band: B03) and NIR (S2-band: B08) bands of remote sensing 

images based on this phenomenon. However, it is also suitable as a benchmark for the health 

of a plant (European Commission) as the test is based on the fact that senescing vegetation is 

highly reflective in NIR and more highly reflective in the green than green vegetation due to 

chlorophyll loss (ESA Technical Guides). Although it only detects this on the surface, since 

none of the target categories contains forest, this is not a problem in the present case. On the 

contrary, it has already been shown in studies to be superior to NDVI (Jackson 2004). 

Disadvantages can rather be caused by soil background effects related to coarse plant cover.  

The third index is the NORM. The index normalizes the euclidean distance between spectral 

signatures of image pixels. The euclidean distance is zero when signatures are identical and 

tends to increase according to the spectral distance of signatures (Congedo). All indices are 

ultimately stored in the EOPatch.  

2.2.5 Interpolation 

After downloading the satellite data, calculating the indices, and adding all data to the EOPatch, 

it now contains 13 features. To receive useful results for the reference classification using the 
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LightGBM algorithm, the data within the timeframes of all EOPatches must be available in 

equidistant time intervals. So far, each EOPatch has an individual number of timeframes due to 

the individual valid data masks (Figure 11). To align the single datasets, a linear interpolation 

is performed. Initially it is determined which recording date over the year is the earliest or latest 

date that is present in all EOPatches. For the available data, these key dates take on the values 

13.04.2018 and 20.09.2018. Within this period, equidistant timeframes are created for each 

EOPatch. This is done based on the respectively existing timeframes. During this work, an 8-

day equidistant range is resampled. If there is not a recording for every eighth day, these missing 

values are interpolated. This results in a timeframe count of 21 for all EOPatches. Finally, the 

data is sampled, combined, and transformed into a format suitable for the respective algorithm 

in the following steps. 

2.2.6 Sampling 

To generate a stable and well generalizing model, it is necessary to randomly select individual 

pixels from the complete dataset and combine them into a sampling dataset. The first step is to 

determine which classes are significantly represented in the respective areas. All classes that 

are represented with at least 1000 pixels per EOPatch are included in the respective sampling 

process. The final number of samples (Figure 13) depends on how many classes are included 

and how many samples per class should be sampled. For example, if 20 classes are significantly 

represented and 500 pixels are to be sampled in each case, the resulting data set will have a size 

of 4000 samples. The eo-learn library can be used for sample selection. It selects random pixels 

and adds them to the dataset. Finally, the EOPatches must be assigned to the training or test 

dataset. The classification is done at EOPatch level to ensure that training and test samples do 

not come from the same field, which increases the overall confidence in the classification results 

(Kamilaris and Prenafeta-Boldú 2018). In this case the dataset is divided into 3/4 training data 

and 1/4 test data. In other words, every fourth EOPatch is used for the test data set                
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(Figure 1 – red/ blue squares). Finally, it is ensured that only those classes are included in the 

classification process that are present in both the training and the test dataset.  

 

Figure 13: Classes distribution in pixel per class for training and test dataset 

The two datasets now contain all necessary data and can be fed into the LightGBM algorithm 

in the next step.  

2.3 Classification 

Artificial Intelligence, Machine Learning and Deep Learning are just a few of the terms which 

regularly cause confusion among non-experts. This is not surprising as they share common 

ground in terms of software development. In conventional programming a practitioner gives 

specific instructions to a machine to find a solution for a given problem. In the case of the 
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mentioned terms, the machine is not getting any instructions for solving problems but is 

instructed to learn and find the best of all possible solutions. As illustrated in figure 14, AI is 

the general term for different approaches to simulate human behaviour or at least cognitive 

abilities by machines. In addition to fields like robotics or linguistics, this term also includes 

data analysis using machine learning. Thus, it can be said that all machine learning counts as 

AI, but not every AI application as machine learning. According to the requirements of this 

thesis only classification algorithms are illustrated. Depending on the respective task and 

dataset, approaches like Support-Vector-Machine (SVM) (Cortes and Vapnik 1995), K-Nearest 

Neighbor (k-NN) (Fix and Hodges 1951) or Decision Tree algorithms (DT) (Gordon et al. 1984) 

may be the methods of choice. In the context of this thesis an established decision tree-based 

algorithm is applied. The LightGBM is a Gradient Boosting Machine, which is a variant derived 

from the RF (Breiman 2001). Further, an approach from the field of deep learning is applied. 

Deep learning, like the decision tree-based algorithms, forms a subset of machine learning. 

Often this branch is reduced to deep artificial neural networks. Here, "deep" is mainly a 

technical term. It is derived from the "depth", i.e. the multiple count of layers of a neural 

network. Under this term, however, numerous other algorithms exist such as Recurrent Neural 

Networks (RNN) (Rumelhart et al. 1986) and Long Short-term Memory algorithms (LSTM) 

(Hochreiter and Schmidhuber 1997). In the following a variant of a Convolutional Neural 

Network (CNN) architecture will be used for a comparison with the LightGBM. 
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Figure 14: Overview AI 

 

2.3.1 Reference Classification 

The reference classification provides the basis for this thesis in terms of data pre-processing 

and accuracy assessment. As already stated, the applied LightGBM algorithm represents a state-

of-the-art approach in the field of supervised classification tasks, which reliably and effectively 

leads to satisfactory results. To explain the exact functionality of this high-performant algorithm 

in an accessible way, it is useful to start with the fundamental element, a simple DT. Its basic 

flowchart-like tree structure, displayed in figure 15, is divided into three parts: internal decision 

nodes representing features or attributes, branches representing decision rules and leaf nodes 

which all together represent the outcome. It is possible for this tree to first select the attribute 

that is best suited to subdivide the record. This attribute then becomes a decision node and the 

data record is divided into smaller subsets. A tree is created from these processes by repeating 
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the process until either all tuples belong to the same attribute value, there are no more attributes 

or there are no more instances. DT are very intuitive but individually they are prone to 

overfitting and do not generalize well.  

 

Figure 15: Decision Tree 

Ensemble classifiers are preferred in remote sensing to compensate the shortcomings of 

individual DT. The idea is to learn multiple weak classifiers to generate one with a strong 

decision rule. One of the most popular ensemble classifiers for LULC classification is the RF. 

In the initial approach by Breiman (1996) many individual DTs operate as an ensemble. The 

underlying concept here is called Bootstrap-Aggregation or “bagging”. When bagging is 

applied, the trees are generated parallelly on a subset of training samples through replacement. 

Each DT individually predicts a class and the mean of all predictions inside the architecture 

forms the result. The concept is simple but powerful: low correlation between the trees assures 

protection from individual errors and enables more accurate results. Besides, bagging, 

“boosting” is one of the most popular ensemble methods. As already stated in chapter 1.2.3.1 

approaches such as Breimanns earlier introduced RF are currently often outperformed by state-

of-the-art GBDT methods. Instead of parallel training (bagging) the models (DTs) are 

sequentially trained and therefore able to avoid errors made by the previous models. While 
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AdaBoost is updating the weight of wrongly classified points to learn, LGBM uses the residual 

error directly. The process starts by training a DT. Thereafter the tree is applied to predict, 

calculate the residual error, and use it as input data for the next prediction. These steps are 

repeated until the set number of trees is reached. For the final prediction Gradient Boosting 

adds up the predictions of all trees (Xia et al. 2017).  

The LightGBM algorithm is an implementation of GBDT algorithm released by Microsoft. 

Most DT-based algorithms grow trees level- or depth-wise (Figure 16) to maintain a balanced 

tree. LightGBM in contrary grows trees leaf-wise or best-first (Figure 17) to maximize loss 

reduction. Another adaption concerns the calculation of the gain for each split in an internal 

node. Split means the decision for a feature or attribute based on maximum information gain. 

To find exactly the best of all possible decisions, in most architectures’ algorithms such as, 

most popular, "Pre-sorted algorithm" are applied. It enumerates all possible decisions on pre-

sorted values. This method is simple but computationally inefficient. LightGBM approximates 

the best decision. Therefore, it uses the histogram-based algorithm, which buckets continuous 

features into discrete bins for constructing feature histograms during training. What differs most 

from its closest relative, XGBoost, is its ability to subsample the data. When it comes to the 

split, the Gradient-Based One-Side Sampling (GOSS) allows instances with large gradients (i.e. 

under-trained instances) to be preferred to those with small gradients (close to local minima). 

Thereby, preference is given to instances, which increase information gain. In addition, 

LightGBM uses Exclusive Feature Bundling (EFB). The algorithm identifies features, which 

never take zero values simultaneously, bundles them into a single feature and thereby reduces 

the training complexity (Guolin Ke et al. 2017).  
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Figure 16: Level-wise growth 

 

 

Figure 17: Leaf-wise growth 

The architecture and its parameters applied in the context of this thesis are oriented towards the 

basic structure provided by scikit-learns’ Python API for the LightGBM (LightGBM repository, 

https://github.com/microsoft/LightGBM). The codesubset 1 demonstrates the implementation 

of the LightGBM. 𝑙𝑒𝑛(𝑟𝑒𝑣_𝑦_𝑡𝑟𝑎𝑖𝑛_𝑢𝑛𝑖𝑞𝑢𝑒) indicates the number of classes considered for 

classification. 𝑋_𝑡𝑟𝑎𝑖𝑛_𝑙𝑔𝑏𝑚 includes all features and 𝑟𝑒𝑣_𝑦_𝑡𝑟𝑎𝑖𝑛 includes the respective 

class labels from the reference dataset. Except for the 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 and the 𝑚𝑒𝑡𝑟𝑖𝑐 of multiple 

classes the default parameters are applied. 

CodeSubset 1: LightGBM – Setup and training 

# Set up the LightGBM model 

model_lgbm = lgb.LGBMClassifier( 

    objective='multiclass',  

    num_class=len(rev_y_train_unique),  

    metric='multi_logloss' 

) 

 

# Train the model 

model_lgbm.fit(X_train_lgbm, rev_y_train) 
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2.3.2 TempCNN Classification 

Considering the ideas behind neural networks in general, the main intention behind it is an 

adaption of the human brain. Instead of biology on a miniature scale, a set of algorithms is 

designed to recognize patterns. A basic Artificial Neural Network (ANN) architecture is shown 

in figure 18 as an example of a fully connected neural network.  "Fully-connected" means, each 

layer takes all output of the previous layer as input. The first input layer represented by the 

green neurons contains the instances of the real-world data. Its size depends on the number of 

instances. The output layer or SoftMax represented by the red neurons has several units equal 

to the number of classes used in the classification task. In between there are two "hidden layers" 

represented by blue neurons. These layers, in number and size, are defined by the applicant.  

 

Figure 18: Artificial Neural Network 

The real-world patterns are translated into numerical data stored in vectors. A vector is fed into 

the multi-layer network. Each layer has multiple units referred to as "neurons", which are 

"activated" in a certain order depending on the patterns in the input vector. This is also where 

the "learning" of the network takes place. Before the input vector is connected to the following 

neurons, it is calculated against a vector of "learning parameters". This vector is transformed 

frequently depending on the accuracy of the network’s prediction. Expressed formally there are 

several layers 𝑙 each containing an activation map 𝐴[𝑙]. As already mentioned, for the first layer 



 

Master Thesis, Frank Willing (105107)  43 
 

𝐴[0] corresponds to the instances of the real-world input data. In the following layers 𝐴[𝑙] refer 

to the activation map vector 𝐴[𝑙−1] being multiplied with weights 𝑊[𝑙], added a bias 𝑏[𝑙] and 

applied to a non-linear activation function 𝑔[𝑙].  
𝐴[𝑙] = 𝑔[𝑙](𝑊[𝑙]𝐴[𝑙−1] +  𝑏[𝑙]) 

Using a non-linear activation function is crucial, as it allows to efficiently stack multiple layers. 

The exclusive use of linear functions would only result in a linear combination of the input as 

final output no matter the depth of the model. Stacking several layers keeps each single layer 

simple (i.e. small number of units) while increasing the capacity of the network for representing 

complex functions. In compliance with the work of Pelletier et al. (2019) the Rectified Linear 

Units function (ReLU) is used. 

The final goal of a neural network is to minimize a given cost function 𝐽. 𝐽 compares the actual 

labels of the data 𝑦𝑖 to the predicted ones ý𝑖, evaluates the committed erros and thereby assesses 

the fit of the model to the data. For minimizing 𝐽 optimal values for weights 𝑊[𝑙] and 𝑏[𝑙] need 

to be found.  

J(W, b) = 1𝑛 ∑ ℒ(ý𝑖,𝑥𝑖 𝑦𝑖) 

Cross-entropy loss is used as loss function ℒ. Most often it is the best choice for multi-class 

classification tasks and therefore represents the most popular one. Formally it looks as follows: 

ℒ(ý𝑖 , 𝑦𝑖) = −log (𝑝(𝑦𝑖|𝑥𝑖)) 

where 𝑝(𝑦𝑖|𝑥𝑖) represents the probability of predicting the true class 𝑦𝑖 of the instance 𝑖 from 

the softmax of the network.  

It should be remembered that it is at this point that DL is constituted. An ANN consisting of 

three layers (1 input-, 1 hidden-, 1 output-layer) is still accounted as one of the general ML 
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approaches (Figure 14). Only with the implementation of multiple hidden (i.e. convolutional or 

pooling) layers, the "depth" of a model is generated which constitutes the concept of DL. This 

"depth" is crucial for the functional advantages of DL. An ANN with more than two hidden 

layers provides the required complexity to learn its own feature representations from the input 

data within a discriminative end-to-end model. It is therefore not dependent on manual feature 

engineering or preceding models (LeCun and Bengio 1998). Speaking of the models self-

generated features, in CNN architectures like in figure 19 convolutional layers are preceding 

the neural network.  

 

Figure 19: Temporal Convolutional Neural Network architecture 

Their task is to limit the parameters that the network must learn. By applying a convolution 

filter on the output of the previous layer, an activation map (not to be confused with the 

activation value in hidden layers) is created as output matrix. In the context of their original 

purpose of object recognition in images, their task is to filter out certain features, such as vertical 

and horizontal edges, from the pixel values. Decisive for the dimension of the respective output 

matrix of a filter are both, the output matrix (image) and the filter matrix. In addition, the way 

the filter runs over the image is relevant, i.e. whether "padding" (extension of the output matrix) 

or a "stride" (adjustment of the number of pixels that are skipped by the filter in the output 

matrix) is applied. Filtering a 3D matrix, e.g. an RGB image, works with the help of a 3D filter. 

Each channel of the output image can be examined with different filter methods (vertical, 

horizontal, etc.). The result is 1-dimensional for each filter. The more different features are 
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examined the more different filters are applied and the higher the dimension of the result matrix 

gets. A further type of layer potentially preceding the neural network, next to the convolutions, 

is the pooling layer. This layer combines pixel groups. Here the hyperparameter filter size, 

stride, and the choice between Max- and Average Pooling are decisive. Average pooling is 

mainly used in deep CNN to reduce high dimensions, while max pooling highlights edges.  

The previously described characteristics of CNN brought significant success in image 

recognition. However, these classical structures have limited suitability for the exploitation of 

SITS. To address this deficit, the idea of one-dimensional convolutions will be adapted in this 

work. Figure 20 shows how time series information is converted from a filter (in this case a 

"Gradient Extraction Filter" – [-1 -1 0 1 1]) to model-specific features. The complex SITS is 

converted to a simpler feature.  

 

Figure 20: Convolution result of Gradient Extraction Filter [-1 -1 0 1 1] 

Figure 21 illustrates how different convolutional filters run across the input matrix. The initial 

filter matrix is represented as 𝑇=length of SITS x 𝐷=number of features]. In the case of this 

work the matrix would look like this: (𝑇=21 x 𝐷=13). The first illustration, "No guidance", 

represents similarities between CNN and conventional algorithms such as RF or ANN. Neither 

spectral nor temporal structures are recognized in the data set.  
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Figure 21: Convolutional filter guidance 

With the second graphic of "Temporal guidance" a link to the previous figure 20 can be made. 

As the filter is [-1 -1 0 1 1] it covers a period of 5 timeframes which results in the dimensions 

[𝑇=5 x 𝐷=1]. For all spectral features, the same filter is applied over the time dimension. The 

"Spectral guidance" illustration shows the application of a filter with the dimensions [𝑇=1 x 𝐷=number of features], considering the spectral characteristics of one timeframe. The most 

relevant representation for this work is "Spectro-temporal guidance". As the name already 

suggests, spectral and temporal patterns are detected. If 𝑡𝑓 is an optional number of timeframes 

the dimensions can be described as [𝑇=𝑡𝑓 x 𝐷=number of features].   

Engineering the architecture of a network like this, choosing its hyperparameters (number of 

convolutional-, pooling-, and hidden-layers, dropout, learning rate, etc.) and deciding how to 

optimize it requires significant expertise. Considering that challenge, practically complexity is 

shifted from feature to architecture engineering. As there were multiple architectures published 

in the recent past, the most efficient way of running a DL model is to apply an existing 

architecture. As already mentioned in this thesis the architecture and parameters engineered and 

evaluated by Pelletier et al. (2019) are applied. The codesubset 2 demonstrates the 

implementation of the TempCNN. 𝑋_𝑡𝑟𝑎𝑖𝑛 and 𝑦_𝑡𝑟𝑎𝑖𝑛 include the training features and 

reference labels. 𝑋_𝑡𝑒𝑠𝑡 and 𝑦_𝑡𝑒𝑠𝑡 include validation data, respectively. Apart from the 
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number of output filters of 5, a kernel size of 3, the ReLU activation function for all layers 

except the SoftMax layer, a dropout rate of 0,5, the categorical cross entropy loss function and 

Adam optimization the default architecture values were adopted. For training the number of 

epochs is set to 10, the batch size is set to 32 and the training samples are shuffled. 

CodeSubset 2: TempCNN – Setup and training 

# Set up the TempCNN architecture 

model_tcnn = Sequential() 

model_tcnn.add(Conv1D(filters=5, kernel_size=3, activation='relu', 

input_shape=(n_timesteps,n_features))) 

model_tcnn.add(Dropout(0.5)) 

model_tcnn.add(Conv1D(filters=5, kernel_size=3, activation='relu', 

input_shape=(n_timesteps,n_features))) 

model_tcnn.add(Dropout(0.5)) 

model_tcnn.add(Conv1D(filters=5, kernel_size=3, activation='relu', 

input_shape=(n_timesteps,n_features))) 

model_tcnn.add(Dropout(0.5)) 

model_tcnn.add(Flatten()) 

model_tcnn.add(Dense(256, activation='relu')) 

model_tcnn.add(Dense(label_count, activation='softmax')) 

model_tcnn.compile(loss='categorical_crossentropy', optimizer='adam', 

metrics=['accuracy']) 

 

# Train the model 

model_tcnn.fit(X_train,  

          y_train,  

          validation_data=(X_test, y_test),  

          epochs=10,  

          batch_size=32,  

          verbose=1,   

          shuffle=True) 

 

 

2.4 Accuracy Assessment 

The central aim of this thesis is the evaluation of TempCNN and the comparison to a state-of-

the-art ML algorithm. In the context of a ML classification task an extensive accuracy 

assessment is crucial for quantifying experimental findings and thus evaluating the performance 

of the classifiers. For the elaboration of the research questions specified in chapter 1.1.2, four 

assessments are performed. The initial step involves the crop grouping. Within the Perceptive 

Sentinel project, the participating partners initially agreed on a preferable categorization. This 

agreement intends a categorization into 25 individual groups. On this basis, the further grouping 
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process aims at identifying context-based groups that can also be spectrally delimited. For this 

purpose, the LPIS crop classes are recombined several times until both, context and overall 

accuracy, are adequate. This procedure results in the 5 steps outlined in chapter 1.3.1.  

The context is also of major importance in the accuracy assessment considering the 

heterogenous crop groups described in chapter 1.3.2. The three categories of heterogeneity are 

not based on quantifiable characteristics of the individual crop classes, but on meta-information 

about cultivation practices, spectral inconsistency, and intersection.  

Assessing the performance of the classifiers against the background of feature engineering, one 

reference is expected in the temporal resolution of the SITS. The respective results are evaluated 

in chapter 1.3.4. An 8-day interval is chosen as a standard for the general processing workflow 

as it enables processable amounts of data at a high temporal resolution. To identify potential 

performance differences at higher resolution, a 4-day interval is applied. This adjustment allows 

a still reasonable data volume combined with more detailed SITS. A higher resolution does not 

increase the accuracy significantly, because of the Sentinel-2 revisit frequency of up to 5 days 

and unnecessarily consumes processing capacity. An interval greater than 8-day is not an option 

either, as it results in an unreasonable loss of temporal information, with a small gain in 

processing capacity.  

The idea behind the assessment of the classifier’s performance facing presence and absence of 

spectral features is simple. As already stated in chapter 2.2.4, Pelletier et al. (2019) expect their 

TempCNN architecture to independently identify all relationships between the different 

spectral bands. In this case, a basic test with presence or absence of precalculated indices 

provides valuable results evaluated in chapter 1.3.3. 

To assess the spatial stability of the models derived by the two classifiers, data from outside the 

training area is required. Determining the extent and spatial distribution of the data is a decisive 
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first step. In the context of this work 43 EOPatches (Figure 1 – yellow squares) are manually 

selected from agricultural areas distributed throughout Austria. Manual selection is required 

because of the specific agricultural conditions in the alpine region. Narrow valleys make it more 

difficult to find a square area of 100 km², which is more than 30% cultivated. Therefore, the 

majority of EOPatches is located in the plain regions between the training areas. Since this last 

assessment is rather explorative in character, the evaluation is visually qualitative, unlike the 

previous quantitative steps. The performance comparison per crop group and EOPatch is 

considered in relation to the distribution of the individual LPIS classes within the respective 

crop group (Figure 9 and 10). On this cartographic basis, visually recognizable patterns can be 

identified. 
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Appendix 

Table 5: Crop grouping 

LPIS Crop Class 
Perceptive Sentinel 

Crop Group 
Final Crop Group 

Mountain mower Alpine meadows 

Grass 

Fodder grasses 
Grass roll 
Once per year mow meadow 
Crop rotation- natural vegetation without planted vegetation 
Crop rotation - non cultivated for some time 
Different green areas 
Changing meadow 

Grass 

Common sainfoin 
Clover 
Grass clover mixture 
Alfalfa 
Lacy phacelia 
Flat peas 

Leafy Legumes and/or 
grass mixture 

 

3 or more times mowed meadows 
2 times mowed meadows 
Natural meadow not for animal consumption 

Meadows 

Alpine pasture 
Permanent pastures 
Pasture 
Other pasture 

Pasture 

Maize 
Maize (fodder) 
Maize (fodder) / in vegetation production 
Seed maize 
Maize for silage 
Sorghum 
Sweet maize   

Maize Maize 

Other fruit 
Maroni - chestnut 
Cherry 
Apricot  
Nectarine 
Peaches 
Plums 
Quince 
Shell fruits 
Apples 
Pears 
Sour Cherry 
Flea 

Orchards Orchards 

Peas 
Peas 
Sweet peas 

Peas Peas 

Early potato 
Potato as a fodder 
Seed potato 
Potato - industrial and human consumption 
Potato / human consumption 
Potato for industrial production 

Potatoes Potatoes 

Pumpkin for oil 
Pumpkin Pumpkins Pumpkins 
Soybean Soybean Soybean 
Over summering emmer wheat or single grain wheat 
Millet 
Summer Spelt 
Summer barley 
Summer oat 
Summer durum wheat 
Summer cereals 
Summer rye 
Summer triticale 
Summer wheat 

Summer cereals Summer cereals 

Sunflower Sunflower Sunflower 
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Field vegetable - uniform production 
Cucumber as open field production 
Field vegetable production - mixture for fresh consumption and 
processing 
Field vegetable production - mixture 
Field vegetable production without harvesting 
Field vegetable - uniform production for processing 
Field vegetable production - mixture for processing 

Vegetables Vegetables 

Production of vine planting material 
Vineyard (establish) 
Different vineyard areas 
Wine 

Vineyards Vineyards 

Overwintering emmer wheat or single grain wheat 
Fresh rye as a fodder 
Winter spelt 
Winter spelt /vegetable production 
Winter barley 
Winter oat 
Winter durum wheat 
Winter cereals 
Winter rye 
Winter triticale 
Winter wheat 

Winter cereals Winter cereals 

Winter rape Winter rape Winter rape 
Mixture of broad bean and cereals 
Mixture of broad bean and peas 
Amaranth 
Other permanent crops 
Bee breeding fallow land 
Narrow leaf or blue lupin 
Flower and ornamental plants 
Flower and ornamental plants in tunnels 
Flower and ornamental plants in greenhouse 
One-year nursery 
Ornamental grasses 
Grasses for energy production 
Wood energy plantations without Robinia pseudoacacia 
Wood energy plantations with Robinia pseudoacacia 
Mixture of peas and cereals 
Mixture of peas and cereals or buckwheat 
Mixture of peas and cereals in vegetable production on the field 
Strawberry 
First forestation  
Forestation 
Common flax for processing 
Forest tree nursery - forest genetic resources 
Vegetable production under tunnel 
Vegetable production in greenhouse 
Fennel 
Herbs 
Herbs production under the tunnel 
Herbs production in the greenhouse 
Ginkgo 
Ditch banch 
Undefined 
Stone slope 
Small standing water 
Fresh maize as fodder 
Hemp 
Medicinal plants 
Medicinal plants in the tunnel 
Elderberry 
Saint John's wort 
Canary seed 
Chickpea 
Camelina 
Lentil 
Woody plants on the field trees bushes 
Evergreen hedges woody plants near the cost 
banch stone  
Intercropping beans and maize 
Milk thistle 
Nurseries 
Nature conservation area 
Fruit production in the tunnel  

Other Other 
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Fruit production in the greenhouse 
Crop rotation in orchards or hop production 
Flax 
Flax/in vegetable production 
Radish 
Quinoa 
Mustard 
Summer Caraway 
Summer rapeseed 
Summer turnip 
Common Vetch 
Other arable land 
Other arable plants 
Area of production under different protection 
Different production in the plastic tunnels 
Different production in the greenhouse 
Oleaginous fruits 
Special areas 
Different fodder 
Sudan grass 
Sweet lupin 
Topinambur 
Measures for forest and environment preservation 
Green manure to rise nitrogen content in the soil 
Mixed sowing od common vetch and cereals 
Winter caraway 
Turnip Tops  
Winter vetch 
Summer Poppy flower 
Winter Poppy flower Poppy 
Raspberries blackberries blueberries… Soft fruits 
Hop Hop 
Set aside for 20 years Fallow land 
Buckwheat Buckwheat 
Fodder Beet 
Root beet for seed production Beets 
Broad beans Beans 
Broad bean / in vegetable production 
Over summering emmer wheat or single grain wheat in 
vegetable production on the field 
Overwintering emmer wheat or single grain wheat in vegetable 
production on the field 
Strawberry - in open field production 
Early potato following by buckwheat 
Early potato in vegetable field production 
Early potato following by maize 
Fodder grasses in vegetable production in open field 
Fresh rye as a fodder/following millet 
Fresh rye as a fodder/following maize 
Fresh rye as a fodder/following sudan grass 
Millet / in vegetable production 
Clover / in vegetable production 
Grass clover mixture / in vegetable production 
Peas / in vegetable production 
Summer barley following buckwheat 
Summer barley / in vegetable production 
Summer oat / in vegetable production 
Summer oat / fodder beet 
Summer durum wheat following buckwheat 
Summer durum wheat / in vegetable production 
Summer cereals / in vegetable production 
Summer wheat / in vegetable production 
Potato / human consumption in vegetable production 
Winter barley following buckwheat 
Winter barley / vegetable production 
Winter durum wheat following buckwheat 
Winter durum wheat / in vegetable production 
Winter rye / in vegetable production 
Winter triticale / in vegetable production 
Winter millet 
Winter wheat following buckwheat 
Winter wheat / in vegetable production 
Sweet maize  / in vegetable production 

Multi use No data 


