
Master Thesis
im Rahmen des

Universitätslehrganges „Geographical Information Science & Systems“

(UNIGIS MSc) am Interfakultären Fachbereich für GeoInformatik (Z_GIS)

der Paris Lodron-Universität Salzburg

zum Thema

„Classification of multi-spectral and multi-temporal

satellite images using deep learning LSTM networks“

- Agricultural crop prediction of Sentinel 2 images -

-

vorgelegt von

Sascha Woditsch

104866, UNIGIS MSc Jahrgang 2017

Betreuer/in:

Dr. Dirk Tiede

Zur Erlangung des Grades

„Master of Science (Geographical Information Science & Systems) – MSc(GIS)”

Münster, 04.10.2019

Acknowledgements

First of all, I want to thank the “Thüringer Landesverwaltungsamt” (engl: Ministry of

Administration), which provided the anonymised agricultural vector data without which this thesis

would not have been possible.

For the interesting and insightful GIS modules and the general support during my studies, I want to

thank the UNIGIS Team of the University of Salzburg. For the thematic support and valuable hints

in regards to my thesis, I want to thank Dr. Dirk Tiede and my colleges at EFTAS. I also want to

thank EFTAS for the financial support for my UNIGIS MSc studies.

Furthermore, I’m very grateful for the proofreading done by Gregor Kleine-Limberg and Cathy

Bialy. Lastly, I’m very thankful for the support of my wonderful wife Josefa. Thank you for your

patience during the last year, especially during all those weekends occupied by me sitting in front of

a computer trying to understand GIS, Python and neural networks.

Eidesstattliche Erklärung (Deutsch)

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit selbständig verfasst und dabei

keine anderen als die angegebenen Hilfsmittel benutzt habe. Sämtliche Stellen der Arbeit, die im

Wortlaut oder dem Sinn nach Publikationen oder Vorträgen anderer Autoren entnommen sind, habe

ich als solche kenntlich gemacht. Die Arbeit wurde bisher weder gesamt noch in Teilen einer

anderen Prüfungsbehörde vorgelegt und auch noch nicht veröffentlicht.

Münster, the 04.10.2019

Sascha Woditsch

Declaration of Authorship (English)

I hereby declare that the thesis submitted is my own unaided work. All direct or indirect sources

used are acknowledged as references. I have not used other than the declared sources and I have

explicitly marked all material which has been quoted either literally or by content from the used

sources. This thesis was not previously presented to another examination board and has not been

published.

Münster, the 04.10.2019

Sascha Woditsch

Table of Contents

1. Introduction..1

1.1. Structure of the thesis...3

1.2. Research questions and thematic classification of the thesis..4

1.3. Current state of the art of the scientific research..5

Part I: Theoretical basis...9

2. Input data..9

2.1. Sentinel 2 raster data...9

2.2. Vector data of agricultural subsidies...10

3. Methods and Tools..12

3.1. Python...12

3.2. Keras...13

3.3. Hardware...13

4. Neural Networks and Deep Learning basics..14

4.1. Overview and history of machine learning and Deep Learning...14

4.2. Artificial Neural Networks..17

4.2.1. The concept...17

4.2.2. The neuron..19

4.2.3. The network..22

4.2.4. RNN and LSTM networks..27

Part II: Development of the LSTM Model...33

5. Overview..33

6. Data preprocessing with python..36

6.1. Data preprocessing of the vector data...36

6.2. Data preprocessing of the raster data..41

6.3. Data preprocessing of the numerical data...45

6.3.1. Creation of a numerical table from the input vector and raster data...............................45

6.3.2. Splitting of the data...46

6.3.3. Reshaping of 2d table into a 3d array..49

6.3.4. Reduction of low information data within the time dimension.......................................50

6.3.5. Interpolation of missing data...53

6.3.6. Normalisation of the data..53

6.3.7. Encode Y...54

7. Development and training of the LSTM model...55

7.1. Model selection...55

7.2. Training and architecture of the LSTM..58

8. Evaluation of the developed LSTM neural network...63

8.1. General classification scoring metrics..65

8.2. Classification metrics per individual class..67

8.3. Evaluation of miss-classification..70

8.3.1. Influence of size..70

8.3.2. Influence of geography...73

8.3.3. Influence of features..77

8.3.4. Influence of quantity...80

9. Discussion..83

10. Conclusion...86

11. Literature...88

12. Internet Sources..90

Annex I: Overview of the developed python scripts and their structure....................................94

Annex II: Python files used for data preprocessing, training and evaluation of the LSTM.....98

Table of Figures

Figure 1: Relationship between AI disciplines (Goodfellow et al., 2016, p. 9).................................14

Figure 2: Schema of neuron cell (Raschka and Mirjalili, 2018 p.18)..19

Figure 3: Step activation function of a perceptron with a threshold of zero (own figure).................20

Figure 4: Overview of activation functions (Raschka and Mirjalili, 2018, p. 450)............................21

Figure 5: Schema of an artificial neuron (“Wikimedia-ANN-Model”)..21

Figure 6: ANN and the information flow within (own figure)...22

Figure 7: (Left) Example of a gradient descent along cost function J, based on the set weights w.

(Right) Gradient Descent with overshooting (Raschka and Mirjalili, 2018, p.36)..........24

Figure 8: Example of underfitting, generalisation and overfitting. (Gondaliya, A, 2014.)................25

Figure 9: Structure of a RNN (Raschka and Mirjalili, 2018, p. 544)...28

Figure 10: Standard feedforward ANN (left) and different types of RNNs (Karpathy, Andrej, 2015)

..29

Figure 11: LSTM hidden neuron (Olah, 2015)...31

Figure 12: Information flow through a LSTM Cell (own compilation of images from: Olah, 2015)32

Figure 13: Workflow to classify SITS with a LSTM (source: own figure)..34

Figure 14: Map of used fields within the Free State of Thuringia (own figure)................................40

Figure 15: Map of Sentinel 2 tiles over the survey area (own figure)..43

Figure 16: VRT File Structure (own figure)...44

Figure 17: Data split procedure (Raschka and Mirjalili, 2018, p.191)...47

Figure 18: K-fold cross validation (Raschka and Mirjalili, 2018, p.192)..47

Figure 19: Frequency of data class in total sample (own figure)...48

Figure 20: Stratified k-fold cross validation: Distribution of training and validation data within each

fold (own figure)...49

Figure 21: Transformation of the data from 2d to 3d array (own figure)...50

Figure 22: LSTM model summary in python console (own figure)..59

Figure 23: Architecture and Hyperparameters of the developed LSTM Network (own figure)........59

Figure 24: Validation accuracy during kfold training (own figure)..61

Figure 25: Simple cost function with multiple local minima (own figure)..62

Figure 26: Relation of area size to classification confidence (own figure)..70

Figure 27: Relation of average field size of training sample to F1-score to quantity of samples (own

figure)...71

Figure 28: Relation of average field size of training samples of small and large classes to F1-score

(own figure)..72

Figure 29: Classification results of the evaluation sample (own figure)..73

Figure 30: Relation of position to classification confidence (own figure)...74

Figure 31: Relation of standard distance of training samples to F1-score and quantity of samples

(own figure)..75

Figure 32: Relation of standard-distance of training classes with less and more than 400 samples to

F1-score (own figure)...75

Figure 33: Map of standard distances of selected crops (own figure)..76

Figure 34: Crop map of Winter Wheat (own figure)..78

Figure 35: Feature difference between winter wheat and selected crops (own figure)......................79

Figure 36: Relation of quantity of training samples to F1-score to standard distance (own figure)..81

Figure 37: Relation of quantity of selected training samples to F1-score (own figure).....................82

Table of Tables

Table 1: Hardware used to train the NN (own table)..13

Table 2: Summarised crop classes (own table)...38

Table 3: Crop types and number of samples (own table)...39

Table 4: Sentinel 2 Channels (own table with information from ESA, 2015, p.51-54 and “GDAL-

S2”)..41

Table 5: Level-2A computed bands (own table with information from ESA,2015 p.48-49, Mueller-

Wilm, 2018, p.22-25 and S2-L2A Overview)..42

Table 6: Overview of Sentinel 2 scenes, tiles and files (own table)...44

Table 7: Number of samples in training-validation and evaluation data set (own table)...................46

Table 8: Max. validation accuracy and min. validation loss for each fold (own table)......................60

Table 9: Samples from the prediction matrix (own table)..64

Table 10: Weighted macro-average of evaluation data set (own table)..65

Table 11: Precision and recall at different threshold values (own table)..66

Table 12: Confusion matrix of the test dataset (own table)..68

Table 13: Precision, recall and F1-Score for each output class (own table).......................................69

Table 14: Standard distance of crop types of the total dataset (own table)..75

Abbreviations

AI Artificial Intelligence

ANN Artificial Neural Network

CNN Convolutional Neural Network

CPU Central Processing Unit

DL Deep Learning

ESA European Space Agency

FE Feature Engineering

FN False negatives

FP False positives

CAP Common Agricultural Policy

GPU Graphics Processing Unit

LSTM Long Short-Term Memory (Neural Network)

NN Neural Network

RNN Recurrent Neural Network

SITS Satellite image time series

TN True negatives

TP True positives

UTM Universal Transverse Mercator

Notation

This thesis follows the general notation of DL and NNs as is the common standard (c.f. Goodfellow

et al., 2016, Chapter Notation, p. xiii-xvi). The most important notations are:

x

Input vector which contain the information to predict y. The x vector can contain multiple

feature variables for each sample of the data set. In this thesis input x are the different

Sentinel 2 bands.

y
Output vector, which is explained by the input vector x in the form of y = f(x). In this

thesis input y or y data are the actual crop types.

ŷ
Prediction vector is predicted by a NN model on the input data x, as an approximation of

the function ŷ = y = f(x).

w

The letter w stands for weights and determines how each feature xi influences the

prediction. Thus wi is used as coefficient which is multiplied by feature xi to find the best

ŷ for the given input x. If a weight for a certain feature is greater in magnitude, it has a

stronger influence on the prediction. On the contrary, a feature’s weight close to zero has

only little effect on the prediction.

1. Introduction

In recent years, the availability of free satellite images has increased largely. Kussul et al. call these

years the “[…] years of Big Free Data in remote sensing.” (Kussul et al., 2017, p. 1). This huge

amount of free data provides the possibility to analyse a growing number of phenomenons on

earth’s surface via remote sensing, especially because the available data has two important charac-

teristics (Pelletier et al., 2019):

1. Multi-spectral: The images contain multiple bands of different electromagnetic wavelengths.

This allows the detection of different attributes, which are not evident in the visible spec-

trum, e.g. the condition of vegetation can be assessed in the near-infrared wavelength.

2. Multi-temporal: Images of the same area are recorded more frequently. This sequential in-

formation of the changes within a time series of images offers an additional information

layer. This improves the classification quality of any temporal phenomena because the ob-

servation is not based on a single image, but additionally one a temporal progression of the

pixel values.

However, these two characteristics have a price which is complexity. Complexity arises from the

multidimensional nature that results in an enormous size, e.g. the Sentinel 2 satellites produce 1.6

terabytes of data daily (Drusch et al., 2012). This makes it very difficult to extract the relevant and

needed information from the images. Thus, an ongoing field of research is the development of intel-

ligent analysis methods of aerial images incorporating the spectral and especially the temporal di-

mension. In 2012 Petitjean wrote: „In order to efficiently handle the huge amount of data that will

be produced by these new sensors, adapted methods for SITS analysis have to be

developed.“(Petitjean 2012, p.1805). Five years later Ienco et al. writes: „How efficiently manage

and analyze remote sensing time series is still an open challenge in the remote sensing field.“(Ienco

et al., 2017, p. 1685). And still in 2019 Pelletier et al. writes: “The state-of-the-art classification al-

gorithms used to produce maps are currently Support Vector Machines (SVMs) and Random

Forests (Rfs). [...] These algorithms are oblivious to the temporal dimension that structures SITS.”

(Pelletier et al., 2019, p.2). This shows the still ongoing research question of how to effectively in-

clude the temporal dimension of SITS.

Multiple studies indicate DL (cf. chapter 1.3) as one of the most promising methods to analyse and

classify images. One of the main advantages of DL is that it doesn’t require F. “Previously, tradi-

1

tional approaches for image classification tasks had been based on hand-engineered features,

whose performance affected heavily the overall results. FE is a complex, time-consuming process

which needs to be altered whenever the problem or the dataset changes.” (Kamilaris and Pre-

nafeta-Boldú, 2018, p. 72). Instead of necessary interactions by experts to detect the feature patterns

stretching across the spatial, spectral and temporal dimension, DL is able to learn and then detect

these patterns. Different DL models have been developed for different tasks. One of the more recent

developments in DL are so-called LSTM models (Kamilaris and Prenafeta-Boldú, 2018) that focus

on the analysis of sequential data, such as temporal data.

This thesis contributes to the open question of intelligent image analyses by developing a LSTM

network capable of classifying SITS. As a prominent example of aerial image analysis, the goal of

this thesis is crop classification. Since different crop sub-classes are often hard to discern as they

share very similar features in contrast to larger meta-classes, e.g. water, forest, urban area, the clas-

sification of crop can benefit strongly from the temporal dimension. Time provides an additional

layer of information and thus the possibility to differentiate crops due to different temporal progress

values. The SITS used in this theses as input data for the LSTM are Sentinel 2 images. Sentinel 2

data has three major advantages, first being its free availability. The second benefit is the multi-

spectral diversity, with 13 different spectral channels, several of them in the near-infrared spectrum

which are well suited to detect differences between plants. The third advantage is the temporal fre-

quency, with different S2 images available every 1-4 days (over Europe). These images, therefore,

have a huge potential for temporal analysis. Based on these elements the general research question

of this thesis is: Is it possible to classify agricultural crops with a LSTM by using multi-temporal

and multi-dimensional Sentinel 2 images?

2

1.1. Structure of the thesis

The following sections present a framework of this thesis to understand its origins, concepts and

goals. Therefore these chapters take a detailed look at the research question, the current scientific

research regarding DL in aerial image analysis and the general concept of the developed approach.

Depending on the level of knowledge the reader might want to read chapter 4.1 and 4.2.1 first to

gain an understanding of the basic concepts of NN.

The following chapters of this thesis, i.e. chapter 2 to 8, are split into two general parts. Chapter 2 to

4 constitute part one which describes the theoretical background. Chapter 2 describes the properties

of the vector and raster input data used in this thesis. Chapter 3 presents the used tools, i.e. the used

software and hardware. Chapter 4 explains the history and theoretical background of DL and NNs

in general and focuses on LSTM networks.

Chapter 5 to 8 constitute part two which describes the development and application of the NN. The

structure of part two follows the chronological data flow. Chapter 5 gives a short overview of the

development and data flow. Then chapter 6 describes the data preprocessing. The three sections 6.1,

6.2 and 6.3 focus on the preparation of the three data types used, namely: vector, raster and numeri-

cal data. Chapter 7 demonstrates the architecture of the actual LSTM network. It shows how the

network was trained and gives a first overview of the training accuracies. Chapter 8 evaluates the

classification results from a general to a more specific perspective. In chapter 8.1 the general scor-

ing parameters and in chapter 8.2 the individual class scoring metrics are presented. Then chapter

8.3 analyses the reasons for miss classifications. The discussion in chapter 9 summarizes the classi-

fication and its evaluation results and connects them to the research questions posed in chapter 1.2.

Lastly, chapter 10 presents general conclusions, based on the proposed LSTM model and the evalu-

ation of its classification results, on how to improve and further develop the network.

3

1.2. Research questions and thematic classification of the thesis

The general research question of this thesis is: Is it possible to classify agricultural crops with

LSTM networks by using multi-temporal and multi-dimensional Sentinel 2 images?

Although this general question of feasibility has been approached by others recently (Ienco, D. et

al., 2017, Rußwurm and Körner, 2017, Pelletier et al., 2019) it still is an open challenge. The gen-

eral relevance and topicality of the question is underlined by Kamilaris and Prenafeta-Boldú who

write: “More approaches adopting LSTM or other RNN models are expected in the future, exploit-

ing the time dimension to perform higher performance classification or prediction. (Kamilaris and

Prenafeta-Boldú, 2018, p. 78).”

To further differentiate and focus the main research question a number of secondary questions have

been formulated. These originate from the geographic and geo-informatics background of this thesis

and focus on the analysis of the used spatial information in relation to NNs. The secondary ques-

tions are:

1. How can a network differentiate between classes with very similar features as are to be ex-

pected for certain crop types, e.g. wheat and rye.

2. What influence do general characteristics, e.g. quantity, and spatial characteristics, e.g. loca-

tion and distribution, of the input data have on the classification accuracy of the NN?

3. How can most of the available multi-temporal and multi-spectral information be used effec-

tively in the classification process?

4. What DL approach allows the classification of extensive areas, with available or easy to cre-

ate labelled y polygon-datasets and consumer-grade hardware within reasonable time?

Given the topic, the research question, the used methods and data the thesis can be classified within

the general field of geoscience. Within that field, it touches three distinct scientific disciplines. The

general challenge of classification of aerial raster data and its pixel values, as it is used as input to

the NN, lies within the discipline of remote sensing. The parts focusing on automatic and intelligent

data analysis is part of the machine learning discipline. Lastly, the discipline providing the methods

to prepare and analyse the spatial data is geo-informatics.

4

1.3. Current state of the art of the scientific research

The focus of the current development of aerial image analysis in general and within agricultural ap-

plications are intelligent image analysis techniques and methods to classify aerial images automatic-

ally. One focus of automatic image classification is to incorporate the vast amount of data and its

characteristics which are: multi-temporal and multi-spectral (Kussul et al., 2017 and Kamilaris and

Prenafeta-Boldú, 2018). Methods used for automatic aerial image classification are, e.g.: support

vector machines, random forest classifiers, linear polarizations, wavelet-based filtering and regres-

sion analysis. Besides these the most promising technique to analyse multi-temporal and multi-

spectral images is DL. In the task of aerial image classification DL surpasses other machine learn-

ing methods in overall and class-specific accuracy as shown by multiple studies, e.g. Ienco, D. et al.

(2017), Kussul et al.(2017), Mou et al.(2017), Rußwurm and Körner(2017), Pelletier et al.(2019). In

a general overview and comparison study about the state of the art of DL and other machine learn-

ing techniques for image analysis in agricultural applications, Kamilaris and Prenafeta-Boldú con-

clude: “Our findings indicate that deep learning offers better performance and outperforms other

popular image processing techniques.” (Kamilaris and Prenafeta-Boldú, 2018, p. 78). Within the

context of DL different types of NNs are used to analyse aerial images. In the summary of Kamil-

aris and Prenafeta-Boldú out of 40 analysed studies, 31 papers use a CNN architecture, while 5 pa-

pers use LSTM networks and the rest other types of networks (Kamilaris and Prenafeta-Boldú,

2018). Thus, the most used network type for aerial images are CNNs which are specialized in ana-

lysing visual images and detecting objects. As Kussul et al. show CNNs can already be used to con-

volute images in the spatial and the spectral dimension and therefore detect objects using all avail-

able spectral bands (Kussul et al., 2017). A disadvantage of pure CNNs is their lack of using tem-

poral information, i.e. information gained by taking an image multiple times at certain time inter-

vals. A huge potential source of information is left out by using only mono-temporal input data. As

Rußwurm and Körner point out:

“[...] some land cover classes such as, e.g., vegetation and especially crops are difficult

to classify by mono-temporal approaches, as vegetation changes its spectral and tex-

tural appearance within its species-dependent growth cycle. Especially crops develop

these temporal dynamics in a systematic and thus predictable manner, dependent on

phenology and the applied crop calendar.” (Rußwurm and Körner, 2017, p.551).

5

Multi-temporal data is abundantly available for aerial images because earth is monitored constantly

from above by various platforms and therefore specific areas are recorded over and over again.

Thus, there is an enormous potential of using the temporal information of consecutive aerial images.

For that reason, RNNs, or theirs subtype LSTMs, are the second most used method. The capability

to analyse sequential information within consecutive aerial images with such networks is an ongo-

ing topic in the scientific community. One of the state-of-the-art method used to analyse sequential

data are LSTM networks. The superior classification capabilities of LSTM networks compared to

mono-temporal networks is for example shown by Rußwurm and Körner, who compare CNN with

LSTM networks. They conclude: “These experiments have shown that LSTM and RNN networks

are able to directly utilize temporal information, namely phenological characteristics of crops, for

classification and achieve superior results compared to models which—by design—can not benefit

from these features but solely rely only on spectral and textural characteristics.” (Rußwurm and

Körner, 2017, p.556)

This thesis builds upon the idea of the articles of Rußwurm and Körner and Ienco, D. et al. who

used LSTM networks to classify images (Rußwurm and Körner, 2017, Ienco, D. et al., 2017). How-

ever, their approaches are changed and adopted by:

• using only selected field objects as input data and not the total coverage of an aerial image

• using the average pixel values of a field object of each Sentinel 2 channel

• using a higher rate of Sentinel 2 images from in total 143 different dates

• using the best, i.e. most cloud-free, pixel values within a small time window for each field

One common concept used in the above described studies using CNN or LSTM for classification is

the approach to classify the totality of an area. This means that the machine learning algorithm de-

termines all pixels or objects of a selected area without any gaps. However, this completeness

comes at expenses which are:

• High computational cost requiring sophisticated software, powerful hardware and long com-

putation time. This is especially true if all available bands of an aerial image and all avail-

able images of a time series are used.

• An area-wide classification without a focus increases the chance of misclassification, espe-

cially for small and very similar classes.

6

• An area-wide classification requires an area-wide labelled dataset, containing the land cover

class of each pixel. This y data is required to provides the NN with the correct solution for

the input data x during the training process. Such an area-wide label dataset, if available, is

often inaccurate because the label data of individual pixels or pixel areas is outdated, regard-

ing the current Sentinel 2 scene. Depending on the extent of the inaccurate labels this results

in more or less bad classification results. If such a label dataset is not available it has to be

created, which is an extensive task even for a small area.

There are different ways to overcome these obstacles. This thesis proposes to compress the amount

of input data. Specifically to reduce the amount of image input data from a single image and com-

pensate for this by using pre-selected areas, by using all available image bands and by selecting the

best fitting pixel values within a time window for each field individually. Three steps are used to

achieve this:

1. Selecting the polygons of interest to be classified, e.g. fields.

2. Collecting sequential aerial image data of the areas of interest using all available image

bands.

3. Training of a LSTM to classify only these polygons of interest, rather than the whole aerial

image. The NNs input data is generated by calculating the average pixel value of each poly-

gon for each image band for multiple consecutive aerial images. While the total number of

images is fixed, the actual date of the image can differ within a given time window (e.g. 4

days) from polygon to polygon. This increases the chance of finding the best, i.e. cloud-free,

pixel values for each polygon.

This approach has, of course, its own limitation and is not usable for all types of projects, but it is

especially applicable for any kind of large-scaled monitoring and classification scenarios. Examples

for such projects are (among others): monitoring of certain features of nature reserve areas, classi-

fication of plant types in forest or agricultural fields. This thesis uses the classification of crop types

in an agricultural setting as an example of the proposed method. In these kinds of projects, the dis-

advantages of the developed method are less impactful, while the advantages are more impactful.

The following list describes the disadvantages of the developed method, in contrast to an area-wide

classification:

• Less extensive geoinformation: Only small parts of the total area are classified, because not

the whole image, but only selected areas are observed. The impact on monitoring and classi-

7

fication projects is of a lesser degree as they often focus on selected areas and thus mostly

don’t require an area-wide, but rather a focussed extraction of spatial information.

• Temporal data needed: As monitoring projects focus and observe developments and thus re-

quire data from multiple points in time, sequential temporal data is often already available.

• Additional geoinformation needed: Besides the aerial image, additional geoinformation in

the form of polygons of the areas of interest is required. Monitoring and classification pro-

ject usually predefine area(s) to be monitored or classified. Thus, the necessity of additional

selected areas is already full-filled. Furthermore, the last decade saw a significant rise in the

availability of geoinformation for large areas, provided by official administration or crowd

based data collection. Many datasets already contain polygons, e.g. forests, agricultural

fields, for vast areas which can be used to avoid computational intensive, area-wide object

segregation. Therefore, other project types, which do not require the most up-to-date object

segregation extracted from aerial images might benefit from the proposed method as well.

Besides these disadvantages there are benefits when using the proposed approach:

• Differentiation of similar features: The focus on selected areas allows to only use those

pixels within the selected areas. A network is then able to learn from those areas (and not the

whole image) and thus differentiate between areas with similar features.

• Usage of different dated images for each polygon: By using different dated images for each

polygon, within a given time window, the most fitting image can be selected for each poly-

gon individually, rather than selecting one scene (per time step) for all polygons.

• The labelled dataset, containing the land cover classes of the field polygons, is much easier

to obtain, than for an area-wide classification, because each polygon contains only one crop

type. Such a labelled y polygon-dataset is often already available and is less error-prone.

Since the average pixel values of a field are used, individual pixels of the input x not over-

lapping correctly with the y data, are much less disturbing for the training of the NN.

• Lower computational cost: A comparable low computational cost, which allows a fast train-

ing of the NN using only standard consumer-grade CPU and GPU hardware. A short training

time enables the user to test more hyperparameters and find an optimal set. Also, the low

computational cost enables the trained network to classify tens of thousands of data samples

in a matter of minutes. Especially for projects covering large spatial areas and/or time peri-

ods, this method allows a much faster training time during development of the NN and a

much faster prediction time once the model is implemented.

8

Part I: Theoretical basis

The practical implementation of DL in image analysis is based on many theoretical foundations.

This chapter describes theses theoretical basics which are required to develop the data preprocess-

ing and the LSTM. Part I is split into three parts, describing the used input crop data, the tools used

in this thesis and the background of NNs.

2. Input data

This chapter presents a look at the input data. This thesis uses two types of data. As usually classi-

fied in geo-informatics these two types are raster data and vector data.

Both types of data will help to produce the final dataset which becomes the input for the NN. The

raster data provides the pixel values, while the vector data limits the raster to the relevant areas (i.e.

the fields) and provides the actual crops planted on each field.

2.1. Sentinel 2 raster data

The different Sentinel 2 images provide the basis for the input data which the NN uses to detect pat-

terns. The actual structure of the data, the used Sentinel 2 bands and the practical steps taken to pre-

process them are described in chapter 6.2. This chapter will provide a short overview of the general

characteristics of Sentinel 2 data and why it is suitable to be used in LSTMs to detect crop types.

The research question itself defines the required properties of the input data (cf. chapter 1.2): It has

to be multi-temporal and multi-spectral. Sentinel 2 data fulfils both of these criteria. The exact spe-

cifications of the Sentinel 2 satellites and its recorded images can be found for example at Drusch et

al., 2012 and the Sentinel 2 - Online User Guide (S2-oUG). A recorded Sentinel 2 scene consists of

12 bands ranging from a wavelength of 443nm up to 2 190 nm with a maximum resolution of 10m

up to 60m, depending on the band. Especially the different spectral bands in the near-infrared

wavelength allow to detect the status and differences of plants. These spectral bands are also used to

calculate vegetation indices such as the normalized difference vegetation index (NDVI) or the en-

hanced vegetation index (EVI) which are commonly used to observe vegetational changes over

time. However, these indices will not be used as input because the NN is supposed to detect this re-

lationship between the image bands and the plant types by using the raw pixel values provided as

input. Furthermore, other spectral bands, which seem non-relevant at first, are used to support the

9

crop classification. “Further spectral bands are often discarded, even though that information is

perceived by the satellite and may also contribute to the classification procedure.” (Rußwurm and

Körner, 2017, p.552). They provide helpful information, such as the aerosols or water vapour in the

air which influences the pixel values of other channels. By using most of the available channels the

NN can detect basic patterns, such as: if the aerosol value is high, other channels have altered val -

ues, without the crops actually changing.

The two identical Sentinel 2 satellites revisit any area over central Europe in roughly 2 days, i.e. in

average every 1-3 days there is a new scene of the same area available. This allows the close monit-

oring of the vegetation growth cycles. “Vegetation follows specific periodic growth cycles determ-

ined by the plant’s biology. The study of these cycles is known as phenology and describes charac-

teristic events such as germination, flowering, or senescence.” (Rußwurm and Körner, 2017, p.551-

552). The characteristics of these growth cycles become visible in the reflective spectral values, i.e.

the pixel values, of the image. Multiple sequential images show typical patterns not only in the

spectral values of the different image bands, but also in the temporal dimension within one band.

“Phenological characteristics [of crops; note from the author] are assumed to change in a predict-

ive manner and can thus be utilized for identification, as long as farming practices and environ-

mental conditions remain unchanged or are considered in the model.” (Rußwurm and Körner, 2017,

p.551-552).

In conclusion, the properties of Sentinel 2 scenes are appropriate as input for a LSTM model. The

Sentinel L2A data includes complete atmospheric correction and a basic scene classification which

helps to detect agricultural areas (cf. chapter 6.2 and Level-2A Algorithm Overview). Furthermore,

the data is freely available and covers large areas entirely. Besides these advantages, Sentinel 2

scenes consist of multiple spectral channels and follow a dense sequential data acquisition. This

generates a dense sequential data pattern which perfectly fits the required input for LSTM models

(cf. chapter 4.2.4).

2.2. Vector data of agricultural subsidies

The original vector data is provided by the “Thüringer Landesverwaltungsamt” (engl: Ministry of

Administration of Thuringia) which oversees the EU subsides of the CAP in the Free State of

Thuringia. The basis of the dataset are the subsidy applications from the year 2018. In the context of

the Integrated Administration and Control System, EFTAS Fernerkundung Technologietransfer

GmbH was commissioned to manually control the data, in June and July 2018, on the basis of aerial

10

images and local field controls. The dataset was edited based on the rules of the CAP. Among other

aspects, the boundaries of the fields and the crop types were corrected, if there were any indications

that the application was wrong. It can thus be expected that the data contains (almost) no errors.

With permission of the “Thüringer Landesverwaltungsamt” this corrected dataset was then used for

this thesis. For privacy protection reasons only the minimal necessary amount of information was

provided. The dataset consisted of vector data containing the polygons of all field samples and two

attribute columns:

1. Anonymised Field ID

2. Crop type

The dataset contained almost 20 000 polygon samples. Of these a larger portion is not directly used

for agricultural purposes, e.g. because the area is protected due to environmental reasons, temporar-

ily unused or contains no crops. The filtering of the data is described in detail in chapter 6.1 - Data

preprocessing of the vector data. The final training dataset has 11 687 samples. Table 3 (in chapter

6.1) provides a detailed overview of the different amount of samples per crop class.

11

3. Methods and Tools

This chapter provides an overview of the most important soft- and hardware used to prepare the

data and to develop, train and evaluate the LSTM. As most of these tools are well known only a

short introduction is given, not to comprehensively describe them, but to present a complete docu-

mentation of the used tools and methods.

3.1. Python

Python is a high level, general purpose programming language distributed by the Python Software

Foundation (“Python – SF”). Python was first released in 1991. The current Python 3 version,

which is used in this thesis, was released in 2008. It runs through an interpreter, thus python code

can be run without the need to compile it. This allows for fast development and testing of code. Due

to this and the huge amount of external libraries python is a widely used language in many scientific

projects. It is also one of the most used language to develop NNs because it offers many powerful

DL libraries, e.g. TensorFlow, Pytorch, Theano, Caffe etc. Furthermore, Python offers an almost

limitless amount of other libraries useful for data preprocessing. The following three libraries were

used for this purpose:

1. Numpy

Numpy is a module that allows for scientific computing in Python. Its most used feature, in

the context of this thesis, is the creation, editing and calculation of N-dimensional array ob-

jects (“NumPy”).

2. Pandas

Pandas is a software library to structure data and manipulate large numerical tables with

high performance (“Pandas”). It is used to preprocess the input data, i.e. structure it, and

manipulate the huge tables containing more than 2 000 columns (cf. chapter 6.3.1) and to

evaluate the output matrix of the NN.

3. Scikit-learn

Scikit-learn is a software library for machine learning. It offers many methods helpful for

preprocessing data and evaluate prediction results (“Scikit-learn”).

12

3.2. Keras

Keras is a NN API running on top of TensorFlow among others. This means it offers much easier

access to create models in TensorFlow than pure TensorFlow. It, therefore, allows to focus on fast

experimentation and implementation of a NN. In this thesis Keras version 2.2.4, which was pub-

lished in October 2018, is used. The main features of Keras are: (“KERAS”)

• Easy and fast prototyping and implementation of NNs through user-friendliness, modularity

and extensibility.

• Support for ANN, CNN and RNN, as well as a combination of those.

• Can calculate NNs on CPU or GPU.

The LSTM created in this thesis could have been developed with a different Python Machine Learn-

ing library. Using the same input data and network parameters, e.g. number of layers and neurons,

type of activation function etc., the same or very similar results are to be expected. Keras was selec-

ted because it offers a good balance between the needed complexity and accessibility. It is therefore

used as the core library to code the general architecture of the LSTM network, its layers, optimisers,

callback functions etc. (cf. chapter 7)

3.3. Hardware

All training of the NN was done on a computer with the following specifications:

Type Model

CPU AMD Ryzen 7 2700X (3.7GHz, 8 cores)

GPU 8GB Asus GeForce RTX 2070 Dual OC active

RAM 32 GB (DDR4 – 3 000 MHZ)

Hard Drive 500GB Samsung 970 Evo M.2

Operating System Windows 10 Pro

Table 1: Hardware used to train the NN (own table)

Thus, the given training times for the NN in chapter 7 are referring to this set of hardware. Other

hardware configurations will obviously train the same NN with the same dataset faster or slower de-

pending on the performance of the individual parts. The most influential hardware part regarding

the training time is the GPU since it handles the most computationally intensive calculations of the

NN.

13

4. Neural Networks and Deep Learning basics

The Terms: “Artificial Intelligence”, “Machine Learning”, “Artificial Neural Networks” and “Deep

Learning” are often mixed up to describe the same or very similar concepts and ideas in software

development. So it is no surprise that, although these terms come from different times and develop-

ment periods, they share a common ground, which is: A machine is given not the instructions how

to solve a problem, but rather the instructions to learn and to find the best (or a good) solution to a

problem. This is in contrast to conventional programming which defines specific subtasks and in-

structions to solve a bigger problem (Nielsen, M.A., 2015). To enable computers to learn from ex-

perience they have to understand the world as a hierarchy of concepts, where each concept is

defined through its relation to simpler concepts. This hierarchy of concepts allows the computer to

combine simpler concepts to understand more complex ones without the need of a human to form-

ally specify all this information. “If we draw a graph showing how these concepts are built on top

of each other, the graph is deep, with many layers. For this reason, we call this approach to AI deep

learning.” (Goodfellow et al., 2016 p. 1-2)

The following subchapters will take a look at this concept, at its history and development and at

special forms of DL, which are ANN and LSTM networks. The latter is the network type developed

in part II of this thesis.

4.1. Overview and history of machine

learning and Deep Learning

DL is a very new development in the wider

field of machine learning and AI. These are

broad paradigms in which DL is one ap-

proach to AI. In short DL “[...] is a type of

machine learning, a technique that enables

computer systems to improve with experi-

ence and data.“ (Goodfellow et al., 2016, p.

8). The relationship between the different AI

disciplines is shown in figure Figure 1. As

this thesis uses only DL methods, they will

14

Figure 1: Relationship between AI disciplines (Goodfellow et

al., 2016, p. 9)

be the focus of this theoretical chapter thus, other methods of machine learning and AI are left out

by intention.

DL methods have a longer history than one might suspect, given the only recent trend to use them

widely. The reason for this is the rebrands of the same concept as there were different ups and

downs in development and popularity and different perspectives on AI. The three major waves of

DL and the term are (Goodfellow et al., 2016).:

1. Cybernetics (1940-1960)

2. Connectionism (1980-1990)

3. Deep Learning (2006-Today)

The first wave of DL, i.e. Cybernetics, was inspired by building computational models of biological

learning. The goal was to create machines that would work similarly like brains work. This neural

perspective was driven by the idea that brains (from animals or humans) were a working example of

a neural network. Thus, as neuron cells in a brain follows a “simple” logic in forwarding synaptic

signals, so should simple computational units become “intelligent” when connected to each other.

But these first models were only linear models and thus had many limitations, most famously they

couldn’t learn the XOR operation. The failure to deliver for real-world applications lead to the first

so-called AI Winter (“Wiki-AI-winter”).

The second wave of DL focussed even more on the importance of the connection of simple units to

solve complex problems, hence the name “Connectionism”. A number of important concepts were

developed during that time which are still in use nowadays, e.g. distributed representation and back-

propagation. In the mid-1990s the second wave crashed as AI failed again to deliver in highly ambi-

tious promises (e.g. voice recognition, translation of languages).

The third wave of DL started in 2006 with a breakthrough in the way “deep” networks can be

trained. These deep networks were known since the 1980s, but weren’t used due to the difficulty in

training them efficiently.

Besides this theoretical breakthrough, other important developments contributed massively to the

success of the third wave of DL and made earlier developed concepts more and more usable. The

most important are (Goodfellow et al., 2016).:

1. Hardware: The steady and significant rise in CPU and GPU calculation power made larger

and deeper neural network models possible.

2. Digital Data: The rise of digital sensors (e.g. digital cameras, smartphones, …) and digital

storage capacity during the 2000s lead to an abundance of digital data that was easy to ac-

15

cess and use for DL. Thus, it was possible to provide these algorithms with the amount of

data they need to succeed.

3. Software Development: The development of software infrastructure and libraries such as

Theano, PyTorch, TensorFlow, Keras etc. made the access to DL easier and in return suppor-

ted research and commercial projects which helped to further develop DL.

Although neuroscience is still a source of inspiration for modern DL, as it inspired the basic idea of

connecting a lot of simple computational units to create intelligence, the goal is no longer to create

biological learning, but a working artificial equivalent. Mainly because there was and still is not

enough information about the real processes going on inside brains, DL started more and more to

use techniques from different fields such as linear algebra, probability theory, information theory

and numerical optimization. In the years following the third wave (up until today) deep NNs started

to outperform other classical developed software and AI systems based on other machine learning

concepts. DL is nowadays used in many diverse domains like: Computer Vision, Speech Recogni-

tion, Image and Object Classification (e.g. in Remote Sensing) and many more. (Cresson, 2018,

Goodfellow et al., 2016, Raschka and Mirjalili, 2018).

Machine learning and different methods and models of DL, as it is in use today, can be assigned to

one of three general types (Raschka and Mirjalili, 2018):

1. “Supervised Learning” uses labelled training data to learn general patterns of data. Based on

this the model can make prediction on new unseen data of the same type. This can be used

for classification problems, i.e. the computer has to predict to which category an input be-

longs. Another example of “Supervised Learning” are regression problems, i.e. the computer

has to predict a value as close as possible to a future value of a numerical input value(s), e.g.

stock price of the next day based on different input values.

2. “Reinforcement Learning” tries to improve a model or agent based on interaction with its

environment. The performance of this interaction is usually reported back to the model via a

so-called reward signal. This feedback can be seen as a label, i.e. information about the data,

and thus reinforcement learning is related to supervised learning.

3. “Unsupervised Learning” is different from the above described types because it explores un-

labelled data with an unknown structure. The goal is not to label the data within a context

but to find a structure within the data itself, e.g. clusters, and learn the probability distribu-

tion of the data or other properties of the data distribution.

16

As there are far too many different types of DL models to cover in this thesis the theoretical over-

view will only cover “Supervised Learning”, more specifically classification problems with ANNs,

which are the basis for the later described LSTM.

4.2. Artificial Neural Networks

4.2.1. The concept

As described in the last chapter DL algorithms are not specifically instructed to solve a problem, but

rather algorithms that learn from data how to solve a problem by detecting patterns in the training

data. To “learn”, in the context of software, is defined by Mitchell as: “A computer program is said

to learn from experience E with respect to some class of tasks T and performance measure P, if its

performance at tasks in T, as measured by P, improves with experience E.” (Mitchell, 1997). Fol-

lowing this definition learning itself is not the task, but rather the means to get the ability to solve

the task. Tasks in DL are in often easy to solve for humans, but hard to describe formally, e.g.

speech or image recognition. For a human, it is quite easy to detect certain objects, e.g. a car on an

image. Considering all the different types of cars, the colours and the different angles an image can

show a car, it seems almost impossible to formalize specific rules for a computer to detect all pos-

sibilities of images showing a car. In this situation DL can provide a solution by learning to detect

any car on any image.

The specific problem to solve in this thesis is a classification task. “Classification is a subcategory

of supervised learning where the goal is to predict the categorical class labels of new instances,

based on past observations.” (Raschka and Mirjalili, 2018 p.3). A DL model is given a training set

with an input vector x for each sample of the training set and the associated correct category y. The

vector x contains multiple features which identify each sample. The task for a NN is to detect fea-

ture patterns which define a category of data samples. Then when an unknown feature is given into

the NN, it can categorise these with a certain probability to one of the trained classes. Thus, the

training of a NN can be understood as the search for a function which fits closest to y = f(x). A

trained NN then uses this function to predict new inputs.

The power and usability of ANNs is expressed in the “universal approximation theorem” (Goodfel-

low et al., 2016). Nielsen describes it as: “One of the most striking facts about neural networks is

that they can compute any function at all.” (Nielsen, 2015, chapter 4). “Compute” in this definition

means to give a very good approximation of any function. This is one key aspect of ANNs: Their al-

17

gorithms “[...] solve mathematical problems by methods that update estimates of the solution via an

iterative process, rather than analytically deriving a formula to provide a symbolic expression for

the correct solution.”(Goodfellow et al., 2016 p.78). To give an exact solution would be very time-

consuming due to the multidimensional nature of the functions, but most importantly it is im-

possible from a logical position, as Goodfellow points out:

“Learning theory claims that a machine learning algorithm can generalize well from a

finite training set of examples. This seems to contradict some basic principles of logic.

Inductive reasoning, or inferring general rules from a limited set of examples, is not lo-

gically valid. To logically infer a rule describing every member of a set, one must have

information about every member of that set. In part, machine learning avoids this prob-

lem by offering only probabilistic rules, rather than the entirely certain rules used in

purely logical reasoning. Machine learning promises to find rules that are probably

correct about most members of the set they concern.” (Goodfellow et al., 2016 p.114)

Since these function can’t be solved analytically a NN “only” finds a (very) good solution with a

guided try and error method. To guide the network and give it feedback, it needs a way to evaluate

its performance P. For classification tasks two performance indicators are commonly used: accur-

acy and error rate. Accuracy is the proportion of the input the model predicted correct, whereas the

error rate is the proportion of the input the model predicted incorrect (Raschka and Mirjalili, 2018).

The experience E, mentioned in the above definition of learning, is the totality of the data set

provided to the NN. In classification tasks, E consists of the input samples x with their associated

features and their category labels y. Given the same quality of data, the larger E the better the result.

Goodfellow gives a rough rule of thumb about the size of E for supervised learning: With 5.000 ex-

amples per category DL achieve acceptable performance and with 10 million examples it will match

or exceed human performance. (Goodfellow et al., 2016, p.20).

Goodfellow et al. points out that only a few general elements are needed to achieve the learning

abilities described above: “Nearly all deep learning algorithms can be described as particular in-

stances of a fairly simple recipe: combine a specification of a dataset, a cost function, an optimiza-

tion procedure and a model.” (Goodfellow et al., 2016 p. 151). However, the information and data

flow taking place within the model is not simple. The following subchapter takes a deeper look at

the processes within a NN and within the neurons itself.

18

4.2.2. The neuron

The name ANN derives from the idea of an artificial computational model that is structured similar

to how a brain is structured (cf. Chapter 4.1). In 1943 Warren McCulloch and Walter Pitts published

the first concept of an artificial neuron, called a perceptron (Raschka and Mirjalili, 2018). Their idea

was based on a simplified brain neuron. Neurons are interconnected brain nerve cells that process

and transmit chemical and electrical signals. A schema of a biological neuron is shown in figure 2.

Figure 2: Schema of neuron cell (Raschka and Mirjalili, 2018 p.18)

The brain consists of neurons which receive an input signal, process this signal and produce an out-

put signal. In an analogous manner an ANN consist of artificial neurons which receive and process

an input to an output signal (cf. figure 2 and 5). As the “computational” power of the brain comes

from the interconnection of many neurons, so does an artificial network gain computational power

with the connection of many artificial neurons. Using this concept Frank Rosenblatt developed the

first algorithm that could learn to detect the simple form of a square and a circle (Rosenblatt, 1957).

Even though this system could only solve linear problems the basic concept is still used today. The

smallest unit of Rosenblatt’s system is the perceptron. Perceptrons receive as input a vector x con-

taining several features per sample (x1, x2, x3...) which are multiplied by individual weights (w1, w2,

w3). The weights are unknown at first and randomly set. The main goal of DL is to learn the general

weights wi for each feature xi which help to explain the samples class. The higher a weight, the

more important is the associated feature to determine the class of x. If, for example, we try to pre-

19

dict the cost of a house, the location in the centre of a city might be more important than the size, al-

though both factors contribute to the price.

Inside the perceptron all features of one sample

x are multiplied by the weight w, then summed

up and put into a so-called activation function.

(Nielsen, M.A., 2015) This activation function

outputs a result based on the value of the

summed up input. The very simple activation

function used in Rosenblatt’s system simply re-

turns 1 if the input is above a certain threshold

or 0 if not. It is graphically defined in figure 3

and the following formula:

A perceptron is basically a small device that weighs different pieces of evidence to make a decision.

But the true power of a perceptron only becomes visible when multiple of them are joined together

to a network, so that the output of one becomes the input of others. Figure 6 shows such a network.

The main problem with a perceptron is its limited activation function. “In fact, a small change in

the weights or bias of any single perceptron in the network can sometimes cause the output of that

perceptron to completely flip, say from 0 to 1. That flip may then cause the behaviour of the rest of

the network to completely change in some very complicated way.” ((Nielsen, M.A., 2015,

chapter 1). To solve this issue multiple activation functions have been developed so that a small

change in any weight causes only a small change in the output. This new form of a perceptron is

called an artificial neuron (or simply neuron) and constitutes the smallest unit of any modern NN.

With these new types of activation functions a small change in input causes only a small change of

a neuron’s output and thus only a small change in the final output of a NN. Widely used activation

functions are e.g. Logistic Sigmoid Function, ReLU Function, Hyperbolic Tangent Function. De-

pending on the type of network different activation functions work best. For the LSTM network de-

veloped in part II the Hyperbolic Tangent Function will be used. An overview of different activation

functions, the mathematical formula, the models to use them in and a graphical representation is

given in figure 4.

20

Figure 3: Step activation function of a perceptron with a

threshold of zero (own figure)

output={0if Σ w i x i≤ threshold
1if Σ w i x i>threshold }

Figure 4: Overview of activation functions (Raschka and Mirjalili,

2018, p. 450)

The structure of an artificial neuron is presented in figure 5. It summarises the concept presented in

this chapter: An artificial neuron receives multiple inputs which are each individually weighted and

then summed up in the transfer function. The net input is inserted into a specific type of activation

function which returns an output.

21

Figure 5: Schema of an artificial neuron (“Wikimedia-ANN-Model”)

4.2.3. The network

This section will focus on the general data flow and its manipulation through the network that en-

ables an ANN to learn, i.e. improve its performance on a given task. The network architecture al-

ways has 3 general elements (cf. figure 6):

1. Input layer: The input vector containing all the information (x1 … xi) of one data feature.

2. Hidden layer(s): The connected neurons processing and forwarding the input data.

3. Output layer: The output neuron processing the last hidden layer and then outputting a final

result.

Figure 6 shows an example of an ANN with an input vector of size five, three fully connected hid-

den layers and three categories to predict. These simple network parameters were chosen as an ex-

ample. A network could have different types and numbers of hidden layers, connections and number

of neurons in each layer. However, this topic is too extensive to be discussed in great detail in this

thesis because these type of parameters depend heavily on the type of network and the task that

should be learned. A deeper look at the actual structure of the NN used in this thesis, a LSTM Net-

work, will be given in the next chapter (cf. chapter 4.2.4).

Figure 6: ANN and the information flow within (own figure)

22

The network example presented here is a standard deep feedforward network. “These models are

called feedforward because information flows through the function being evaluated from x, through

the intermediate computations used to define, and finally to the output y.” (Goodfellow et al., 2016,

p.164). A dataset with multiple samples, each containing multiple features, is put into the NN

through the input layer one sample at a time. The data put into the input layer has to be prepro-

cessed (i.e. interpolated, normalized etc.) beforehand.

As described in the last chapter, each input to a neuron (blue arrows in figure 6) is individually

weighted. At the first run, these weights are initially set with small, randomized values close to 0.

Then all inputs are summed up inside each neuron and put into an activation function which gener-

ates an output value. In classification tasks with standard feedforward usually the ReLU activation

function is used (cf. figure 4). As figure 6 shows, the output of one layer becomes the input of the

next. This first phase of information flow through the network is called “forward propagation”.

As the input x propagates fully through the network into the output layer, the category of each input

sample is determined. The output layer transforms the values to match the categories y associated

with the input x. To do this in classification tasks usually a softmax activation function is used

which is strongly related to a sigmoid activation function (cf. figure 4). A softmax function returns a

value between 0 and 1 for any input while at the same time all components add up to 1. Through the

softmax function the prediction output can be interpreted as confidence percentage for each cat-

egory, i.e. how certain the network is that the given input x falls into a certain category y, in the case

of figure 6 (y1,y2,y3,...) The predicted output ŷ is then compared to the actual correct category y.

Based on the type of network and task to solve, different cost functions are used to calculate the

cost between the actual class and the confidence value of the predicted class. To get the influence of

the whole dataset all samples of the input x are propagated through the network. The total sum of

the difference between the correct and wrongly assigned categories is applied to the cost function.

Different types of cost functions like the mean square error function or the cross-entropy function,

for categorical problems, are available. The latter cost function “[…] has the benefit that, unlike the

quadratic cost, it avoids the problem of learning slowing down.” (Nielsen, 2015, chapter 3) Thus, it

descent faster toward a minimum, while not increasing the chance of overshooting (see below). Ob-

viously, the more samples are predicted correctly, the lower the output of any cost function and visa

versa. As described above (cf. Chapter 4.2.1), the general NN function can not be solved analytic-

ally with respect to the inputs and weights of all neurons, thus to find a low point a gradient-based

optimiser is used.

23

To calculate the gradient of the cost function an algorithm called back-propagation is used. “The

back-propagation algorithm [...] allows the information from the cost to then flow backward

through the network in order to compute the gradient.” (Goodfellow et al., 2016, p.200). It is im-

portant to note that in a feedforward network only the information from the cost function, not the in-

formation from the input x, flows backward. Once the gradient of the cost function is established

through back-propagation, the direction downwards the cost function is evaluated. Then the weights

of each neuron can be updated, in a direction that moves along the cost function downwards (cf. fig-

ure 7).

The above described process

concludes one so-called

“epoch”, i.e. the data flow of

the whole training dataset

through the network, the back-

propagation, the calculation of

the cost function gradient and

the updating of the weights.

This process is repeated in an

iterative process and each time the opposite direction of the gradient, thus the direction downwards

the cost function, is evaluated. Thus, the next step descents along the cost function downwards. The

set learning rate defines the size of the steps downwards. If the steps are too small, the calculation

might take a very long time, if they are too large, an overshooting can occur so that the minimum is

missed (cf. figure 7). One solution to this is a learning rate that gets smaller the higher the epoch

number. If the global minimum or at least a very low point on the cost function is found, the NNs

and its currently applied weights created a good approximation of the function y = f(x). Most cost

functions don’t have an as easy recognizable form and minimum as the examples presented in fig-

ure 7. Goodfellow et al. points out these challenges and the solutions within DL as follows: “In the

context of deep learning, we optimize functions that may have many local minima that are not op-

timal and many saddle points surrounded by very flat regions. All of this makes optimization diffi-

cult, especially when the input to the function is multidimensional. We therefore usually settle for

finding a value of ƒ that is very low but not necessarily minimal in any formal sense” (Goodfellow

et al., 2016, p. 82)

24

Figure 7: (Left) Example of a gradient descent along cost function J, based on

the set weights w. (Right) Gradient Descent with overshooting (Raschka and

Mirjalili, 2018, p.36)

To successfully implement gradient descent, despite the complex and multidimensional nature of

the functions, most networks use a slightly different, but more resource effective and faster version

of the gradient descent. They use a so-called: “Mini-Batch Gradient Descent”. In this method, the

gradient is not only updated after one epoch (i.e. after each data example has propagated through

the network), but after a certain set number of training samples, called a batch, have propagated

through the network. Although this usually leads to a more erratic descent, because the descent

takes only a fraction of the total input into account, the “[…] advantage over batch gradient des-

cent is that convergence is reached faster via mini-batches because of the more frequent weight up-

dates.” (Raschka and Mirjalili, 2018 p.46).

The main challenge when training a NN is that the model must perform well, not only on the train-

ing input x, but even more importantly on previously unseen inputs. General indicators for the per-

formance of a NN and its ability to generalise well, are:

1. A small training error, i.e. the prediction error of the training input x.

2. A small test error, i.e. the prediction error of the unseen test input data.

3. A small gap between the training and the test error.

To achieve this two conditions have to be avoided: “Underfitting” and “Overfitting” (Goodfellow et

al., 2016). Underfitting occurs when the model is unable to find a reasonable low training error with

its given architecture and input data x. Overfitting occurs when the training error is low, but the test

error is significantly higher. Thus, the model can only predict the training data well but fails to pre-

dict new unseen data. Figure 8 shows examples for all three conditions on a simple dataset.

Figure 8: Example of underfitting, generalisation and overfitting. (Gondaliya, A, 2014.)

The example on the left: “Underfitting” shows the prediction line does not fit the training points

25

very well, due to its linearity. The example on the right: “Overfitting” shows the output prediction

sticks closely to the sample points and follows every curvature of the training data. The central ex-

ample: “Just right (generalisation)” shows the output prediction following a line that has the best

potential to predict new data well. Of course, to determine the quality of a model in a real world ex-

ample, we would need to have not only the training results but also prediction results from an inde-

pendent test sample and then compare the error rates.

To achieve a good generalisation DL algorithms use regularisation techniques by changing different

hyperparameters that control the training behaviour. The values of hyperparameters are not learned

by the NN but are set and tweaked by the user in advance of the training. These parameters change

the training and test error. Example of hyperparameters are:

• Number of Neurons/Nodes in a layer.

• The type of activation function used by the hidden layers and output layer.

• The number of layers within a network.

• The number of epochs a DL algorithm trains.

• The size of the batch, i.e. number of samples, after which the gradient of the cost function is

evaluated to update the weights.

• The type of cost function used within the network.

Depending on the type of problem and the specific network type there are numerous other hyper-

parameters that can be tweaked to improve the performance of an ANN. The different types of hy-

perparameters and how they affect an ANN can be visually experienced on the website:

http://playground.tensorflow.org/ (accessed at 24.07.2019) Though there are some general rules on

how to set these hyperparameters, there are no exact rules on which parameters to use for which

situations. “The ideal network architecture for a task must be found via experimentation guided by

monitoring the validation set error.” (Goodfellow et al., 2016).

26

http://playground.tensorflow.org/

4.2.4. RNN and LSTM networks

The type of ANN presented in the last chapters was a feedforward network. As was shown, these

standard NNs learn from a given dataset, whereby the order of the dataset does not matter. In fact,

these networks are not capable to process the order of a dataset. Thus, the order in which the

samples are passed through the network doesn’t change the output result at all. “Intuitively, one can

say that such models do not have a memory of the past seen samples. [...] RNNs, by contrast, are

designed for modeling sequences and are capable of remembering past information and processing

new events accordingly.“ (Raschka and Mirjalili, 2018, p. 539) Although ANNs and RNNs share

many properties as described above, like neurons, cost functions, back-propagation etc., one sub-

stantial difference between them is that RNNs use sequences as inputs. Such datasets contain in-

formation not only within the samples and their features but also within the order of the samples

themselves. One prominent example is language. Characters, word and sentences carry information

themselves, but information is also contained within the position of characters, words and sentences

within a text. Only the correct position of characters, word and sentences gives a text meaning.

Without these sequential information only looking at single characters, words or even sentences

makes it impossible to understand a whole text dataset. Another example of sequential information,

which is used in this thesis, are sequential images. Such images e.g. satellite images, show the same

object but at different points in time. This has two major advantages over a single image: First, a se-

quence allows to observe the development of an object. Second, through the observation of the de-

velopment of an object one gets more information about the object itself. RNNs provide a way to do

this by not only looking at one set of features of a sample, but also at the previous and following set

of features of the same sample. In the following chapter the terms steps, time steps etc. refer to the

described concept of sequential information.

Within RNNs information does not only flow forward, like in feedforward networks (cf. chapter

4.2.3) but in cycles. “These cycles represent the influence of the present value of a variable on its

own value at a future time step.” (Goodfellow et al., 2016, p.368). They are applied within the hid-

den layer of a network, as shown in the general structure of RNNs in figure 9. The blue box (x)

shows the input layer, the orange ellipse (h) shows the hidden layers and the green box (y) the out-

put layer. Each of these boxes represents a full vector and thus contains all the features of one

sample of a dataset (the input layer) or multiple neurons (the hidden and output layer). The arrows

display the connection of the layers and the flow of information within the network. The individual

27

variables of the vectors are weighted and then summed up and put into an activation function within

the neurons, as shown in figure 6. The curved arrow, in the left part of the diagram, represents the

cycles within the hidden layers. Without this curved arrow, the illustration would represent a stand-

ard ANN. To expose the true structure of an RNN, the right side of figure 9 shows the RNN network

unfolded into the time dimension.

Figure 9: Structure of a RNN (Raschka and Mirjalili, 2018, p. 544)

The full structure of a RNN becomes now visible. While in feedforward ANNs hidden neurons only

have one input source (the input vector x), the hidden neurons of RNNs receive two inputs: First

from the input layer x(t) (as in a standard ANN), but also from the hidden layer from the previous

time step h(t-1). Considering the time or sequential dimension a RNN is like multiple, interconnected

ANNs, which recur to themselves. Thus, while a feedforward ANNs can approximate any function

(cf. chapter 4.2.1), a RNN can approximate any function involving recurrence, such as ht = f(h(t-1);x).

This is possible due to the concept of “Parameter sharing” (Goodfellow et al., 2016). The idea, de-

veloped in the 1980s to improve machine learning and statistical models, is to learn a single model

that uses the same parameters on all time steps and sequences, rather than learning a separate model

for each time step. “Learning a single shared model allows generalization to sequence lengths that

did not appear in the training set, and enables the model to be estimated with far fewer training ex-

amples than would be required without parameter sharing.” (Goodfellow et al., 2016, p. 371).

Depending on the task, the possible input and the needed output different RNN architectures are

available. Figure 10 shows different types in contrast to an ANN. Each rectangle represents a vector,

containing multiple features or neurons. The colours show the type of the vector or respectively the

layer: Input vectors are red, hidden layers are green and the output layers blue. The type of network

are from left to right as follows:

28

• “one to one”, represents a standard ANN, with a fixed-size input and a fixed-size output.

• “one-to-many” shows a RNN which takes a single vector input and produces a sequential

output. An example task is a model that takes a single image and captions it with multiple

words.

• “many-to-one” displays a RNN which takes a sequential input (of multiple vectors) to pro-

cess a single output. An example is a sequential series of satellite images which is used to

classify plants visible on the time series. Thus, this is the type of architecture that is de-

veloped and used in part II.

• “many-to-many” shows a RNN which takes sequential inputs and then computes sequential

outputs. An example task for this architecture is language translation. Multiple words in lan-

guage A are translated into multiple words in language B.

• “many-to-many” (synced) represents a RNN which takes sequential inputs and calculates

synchronised a sequential output. An example is a video classification that labels individual

frames of a video.

Figure 10: Standard feedforward ANN (left) and different types of RNNs (Karpathy, Andrej, 2015)

By using sequential data, which contains additional information within the order and progress of the

data, RNNs need far fewer examples to achieve good accuracy than standard ANNs. However, the

processing of sequential data comes at an expense called the vanishing or exploding gradient prob-

lem. The main challenge of processing sequential information and learning patterns with back-

propagation through time is the effect of recurrence on the weights w over many time steps. As de-

scribed in chapter 4.2.3 the weights are manipulated to calculate a better output ŷ with the given in-

put x. In a RNN weights are multiplied many times with lessened or potentiated versions of itself.

Hochreiter and Schmidhuber described the problem as follows: “With conventional "Back-Propaga-

29

tion Through Time" or "Real-Time Recurrent Learning", error signals "flowing backwards in time"

tend to either (1) blow up or (2) vanish: the temporal evolution of the backpropagated error expo-

nentially depends on the size of the weights. Case (1) may lead to oscillating weights, while in case

(2) learning to bridge long time lags takes a prohibitive amount of time, or does not work at all.”

(Hochreiter and Schmidhuber, 1997, p.1). This, in turn, makes the optimisation of the cost function

through approximation impossible. To overcome this problem different solutions have been pro-

posed, but one of the most successful is the LSTM model, a special kind of RNN, designed in 1997

by Hochreiter and Schmidhuber (Hochreiter and Schmidhuber, 1997). LSTM networks were spe-

cially designed to learn long-term dependencies and avoid the vanishing gradient problem. The

central idea is to have a recurrent edge within each cell that has a weight w = 1. This eliminates the

problem of the vanishing gradient problem, as recurrent multiplication by 1 does neither diverge nor

converge to zero. To still enable a LSTM to learn a process called constant error carrousel controls

the cell state from one sequential step to the next without any weights being multiplied directly. In-

formation flows on two levels from one step to the next while the update of the weights is con-

trolled by so-called gates. Gates use different activation functions to forward or stop the information

flow. “Each memory cell’s internal architecture guarantees constant error flow within its constant

error carrousel CEC, provided that truncated backprop cuts off error flow trying to leak out of

memory cells. This represents the basis for bridging very long time lags.” (Hochreiter and

Schmidhuber, 1997, p.23).

Summarising, the central change within a LSTM model in contrast to a RNN or feedforward model

is a more complex type of hidden neuron. “Instead of a unit that simply applies an element-wise

nonlinearity to the affine transformation of inputs and recurrent units, LSTM recurrent networks

have “LSTM cells” that have an internal recurrence (a self-loop), in addition to the outer recur-

rence of the RNN. Each cell has the same inputs and outputs as an ordinary recurrent network, but

also has more parameters and a system of gating units that controls the flow of information.”

(Goodfellow et al., 2016, p.406).

Figure 11 shows a LSTM model with a LSTM cell. Identical to the previous figures each element

represents a vector with multiple features which is put through the network. In this illustration three

time steps and a dataset with three sequential data sample (xt-1,xt,xt+1) are visible. The central LSTM

cell is shown in detail to reveal the processes within it. The network is only shown up to the output

of the hidden layers (ht-1,ht,ht+1), the output ŷ is not represented here.

30

Figure 11: LSTM hidden neuron (Olah, 2015)

Information flows through an individual LSTM cell from the previous through the current to the

next sequential step in two lanes. The top horizontal, straight arrow is the memory lane from

Ct-1 to Ct (cf. figure 12-3) and the more twisting is the hidden state from ht-1 to ht (cf. figure 12-4).

These two cell states compose the connection from current and previous sequential inputs and from

the ‘memory’. Both are connected and have their values changed at various points through gates.

There are three gates that control the flow and change of information: forget (f t), input (it) and out-

put (ot) gate. “All the three gates combine the current input xt with the hidden state ht−1 coming from

the previous timestamp. The gates have also two important functions: 1) they regulate how much in-

formation has to be forgotten/remembered during the process and 2) they deal with the problem of

vanishing/exploding gradients.” (Ienco, D. et al., 2017, p. 1686)

Figure 12-1 shows the forget gate which decides how much of the past information should be kept,

regarding the current input. To do this it combines the information of ht-1 and xt in a sigmoid layer

(σ)). The output is of the interval [0,1], whereby 0 corresponds to all information is discarded and 1

to all information is kept. The inputs from ht-1 and xt are further put through the input gate (cf. figure

12-2) and combined via a pointwise multiplication operation with the tanh layer C̃t. This step regu-

lates how much of the current input, regarding the past information, should be stored and forwarded

to C. The memory lane (Ct-1 to Ct) shows the transports of the main information from the past,

through the current to the future time step, with only two minor interactions (cf. figure 12-3), con-

trolled by the described gates. The forget gate uses a pointwise multiplication operation and the in-

put gate addition or subtraction to change the value of the cell state C. Last, the output gate decides

what output ht the cell delivers to the next level and to the next sequential step. This output is calcu-

31

lated by a sigmoid layer which combines the current input xt and the previous hidden state ht-1 with

an added bias bo. This value is combined via pointwise multiplication operation with the already by

the forget and input gate manipulated memory lane C, which is run through a tanh layer (cf. figure

12-4). Finally, the memory Ct and the hidden state ht are forwarded to the next step.

Figure 12: Information flow through a LSTM Cell (own compilation of

images from: Olah, 2015)

In the formulas in figure 12 the “[…] different W matrices and bias coefficients b are the∗∗ ∗

parameters learned during the training of the model.” (Ienco, D. et al., 2017 p. 1686).

This chapter showed the concept of RNN and their ability to analyse sequential data. A special type

of RNN, the LSTM network was presented as one solution to the vanishing gradient problem. Be-

cause of this, a LSTM network seems to be a good choice to extract the most information out of se-

quential satellite images: First, the direct information from the image’s channels and secondly the

temporal correlations within the sequential development of different objects on these images. There-

fore, in part II a LSTM model will be developed to classify time series of Sentinel 2 images.

32

Part II: Development of the LSTM Model

In this part the development, training and evaluation of a LSTM is described, to classify Sentinel 2

time series images with the methods and tools presented in part I. The first chapter provides an

overview of the whole concept and process, from data preprocessing to the LSTM architecture and

its evaluation. The following chapters present detailed descriptions of the individual steps.

5. Overview

This thesis follows the classical steps to build a NN for a classification task which are (Raschka and

Mirjalili, 2018):

1. Data preprocessing

2. Training of the model

3. Evaluation of the model with an independent dataset.

4. Implementation of the model on new data

In this thesis steps one to three are described. Step 4 would be the actual implementation within a

project to classify SITS.

The individual steps have some iterations between them, especially during the training and valida-

tion of the model. Regarding the task at hand, the classification of SITS, this thesis uses the work-

flow displayed in figure 13. The three coloured boxes (blue, red and green) frame the three major

steps, i.e. data preprocessing, development and training of the LSTM and evaluation of the model.

An overview of these three steps is given below in this chapter.

The following chapters 6, 7 and 8 will describe these three steps in detail focussing on the general

data- and workflow. All processes described there were implemented with Python. An overview of

the developed Python methods and the structure of the files is given in “Annex I: Overview of the

developed python scripts and their structure”. In addition to this, the actual Python files include de-

tailed comments on the code. Some general data manipulation processes, such as the manipulation

of pandas data frames or the merging of csv files are not described here as they are not relevant for

this thesis.

33

Figure 13: Workflow to classify SITS with a LSTM (source: own figure)

1. Data preprocessing

The vector data, containing the fields borders and cultivated crops, has to be separated in fitting and

non-fitting data. Unusable are data samples that can’t be used for the training of the NN due to the

low information level of these samples, e.g. due to small field size, low number of cases or certain

CAP Rules. Some classes are also summarised because their difference is more due to the system of

the CAP rules than any real visible difference.

Based on the extent of the vector data the Sentinel images are downloaded and all images of the

same date are combined in a virtual layer. Then, the average value for each vector polygon for each

available day and each image channel is calculated. This data is put into a 3d vector with the three

corresponding axes: field number, time step and Sentinel 2 channel. The data is split into a training

and evaluation dataset. The training data is further split via a k-fold method into 10 different sets of

training and validation samples which are used to train the NN. The evaluation dataset is used to

evaluate the NN prediction abilities on new unseen data. Due to hardware limitations a function was

developed to remove unnecessary, interfering and redundant time samples to speed up the training

process considerably. Then the dataset is interpolated and at last normalized. After these steps, the

data is ready to be put into the LSTM network. The data preprocessing is described in-depth in

chapter 6.

34

2. Development and training of the LSTM

The LSTM is built using Python and within that programming language the library: Keras (cf.

chapter 3.2). This model can then be trained and evaluated based on its accuracy, i.e. the percentage

where the prediction fits the actual labels. The LSTM model is created within a python function, so

that hyperparameters, such as the neurons, dropout rate etc., can easily be changed by calling the

function with different inputs. The optimal hyperparameters can be found by systematically adjust-

ing the hyperparameters and comparing the accuracy of the derived models. This process, called

model selection, is very time consuming because each model has to be trained for many epochs to

obtain reliable information of its accuracy. The development and training of the LSTM is described

in detail in chapter 7.

3. Evaluation of the Model

The data is split into a training and an evaluation dataset before the training of the LSTM network.

The evaluation dataset is never used to train or validate the NN. It is thus an independent sample.

This sample is used to finally test the accuracy of the network and its classification performance

across different classes. Different metrics (e.g. accuracy, precision, recall, AUC-Score) are calcu-

lated to evaluate the model and allow quantitative comparison to other models. Apart from these

metrics other analysis methods of the predicted results, e.g. via a confusion matrix, help to identify

the performance of individual classes. The evaluation of the developed LSTM model is described in

detail in chapter 8.

35

6. Data preprocessing with python

„Raw data rarely comes in the form and shape that is necessary for the optimal performance of a

learning algorithm. Thus, the preprocessing of the data is one of the most crucial steps in any ma-

chine learning application.“(Raschka and Mirjalili, 2018, p.12) For this reason, this chapter takes a

detailed look at the three different data preprocessing steps:

1. The first part shows how the vector data, i.e. the data containing the field polygons, is separ-

ated into fitting and non-fitting data and technically prepared.

2. The second part demonstrates how the Sentinel 2 raster images are prepared to extract the

values of the individual channels for each day and field.

3. The third part displays the extraction of the numerical pixel values from the Sentinel 2 im-

ages, the creation of a 3d array and the reduction, interpolation and normalisation of its val-

ues.

6.1. Data preprocessing of the vector data

The original vector dataset provided by the “Thüringer Landesverwaltungsamt” (engl: Ministry of

Administration) contained roughly 20 000 polygons (cf. chapter 2.2). These were filtered in fitting

and non-fitting samples based on different criteria. Non-fitting samples were removed from the

dataset. The following list provides an overview of the criteria which are described in detail there-

after:

1. Plants types: Since not all polygons contain crops, those containing non-crop like plants are

obviously non-fitting to train a NN to detect crops.

2. Field size: A minimum size of each field is required to avoid mixed and non-pure pixels

which would corrupt the training data.

3. Frequency of crop type: A minimum number of training samples are required to enable a NN

to learn.

4. Summarising and removing of certain crop types: The data is received from the CAP cam-

paign 2018 in Thuringia. The labelling of the data was therefore subject to certain CAP rules

which is not or hardly visible in the real world even when standing next to the field, e.g. dif-

36

ference between different form of meadows, pastures and grassland. For this reason, some

classes had to be excluded while others were summarised into a single class.

The first criterion is the plants associated with the polygon. As the network should be trained on

crops all polygons containing no or other plants are removed. A large number of polygons consists

of structural important ecological elements (in german: “Landschaftselemente” and “Ökologische

Vorrangflächen”). These elements contain no crops but hedges, small woods, tree lines, small

ponds, grass and flowering field borders and others. In order to receive the CAP subsidies, farmers

are required to keep some of these elements for nature protection reasons. Another group of poly-

gons without crops are areas that are temporarily removed from the subsidies program, e.g. due to

infrastructure projects in that area. After removing all the polygons not containing any crops, there

were roughly 13 200 polygons left.

The second criterion sets a lower threshold for the size of the fields. As Sentinel 2 images have a

minimum resolution of 10m and 20m, depending on the band, a minimum field size is required to

recognise the crop type definitely. If the fields are too small their pixel values might be blended

with surrounding objects, e.g. roads, hedges, trees, etc. This would have significant negative im-

pacts on the training because it increases the difficulty to clearly define a crop class. The following

steps were taken to prevent this negative impact:

a) All polygons with an area of smaller than 500m2 were deleted, i.e. polygons consisting of 5

or less Sentinel 2 image pixels. So few pixels could ruin the training data, because only the

average pixel values of each Sentinel 2 band and field are used.

b) A negative buffer of 5m was applied on all fields so that the polygons do not contain pixels

which could be blended with other objects at the border of the fields.

This second step removed ca. 500 polygons, so that 12 700 polygons are left in the dataset.

The third criterion focusses on the class frequency. All crop classes with a frequency below 30 data

samples were removed. NNs need a certain minimum sample size to be able to detect a pattern so

that they can recognize features in unknown data and classify it (cf. chapter 4). After some initial

tests a frequency of 30 was selected. This frequency is still very low and bares a high risk to pro-

duce classes with a bad detection rate. However, this low number was selected on purpose to test

the lower limit of inputs needed for the LSTM. This step removed 329 polygons, so 12 371 fields

are left in the total dataset.

37

As a fourth step individual classes were evaluated based on their labelling and their real world fea-

tures. As described above, the polygons are based on CAP subsidies applications and rules. These

rules define some crop types that are differentiated less by their cultivation and visible features and

more by their economic usage. The following table presents an overview of the classes that are

summarised for this reason.

Summarised
Class

Class I Class II Class III Class IV

Maize Corn-Cob-Mix Maize Maize
Maize undersown with

grass

Clover - Grass
- Bur clover

Clover-Grass Clover – Bur clover Grass – Bur Clover

Grassland Meadows
(german: “Wiese”)

Mow pastures
(german: “Mähweiden”)

Pastures
(german: “Weiden”)

Orchard meadow
(german: “Streuobstwiese”)

Table 2: Summarised crop classes (own table)

As a last step three classes were completely removed because of the unique CAP rules defining

these classes not by the actual crop type, but by the way the field is managed. These classes have

such unique features that it proved impossible to classify them with reasonable accuracy in the con-

text of this thesis. These three classes are:

1. Field grass (German: “Ackergrass”)

2. Field removed from production temporarily (German: “Ackerland aus der Erzeugung ge-

nommen”)

3. Field removed from production permanently (German: “stillgelegte Ackerflächen”)

After initial tests the LSTMs accuracy results for all three classes, listed above, was always very

low. The fields removed from production can be in very different states depending on how long they

have been out of production. This makes them hard to differentiate from certain grassland types.

The same applies to the field grass class. Field grass is a specially managed type of grassland that

has to be ploughed at least once every 5 years, but it might be ploughed more often. This is in con-

trast to other types of grassland which can not be ploughed ever, according to CAP rules. Thus, a

parcel containing field grass that grew already 3-5 years is practically identical, regarding its visible

features, to other grasslands. In tests the LSTM Network recognized only 17% of the class field

grass correctly while 73% were misclassified as grasslands. The classification heavily depends on

the field management practice in 2018, i.e. if the field was ploughed in the season 2018 or not.

38

Thus, field grass cannot be added to the grassland class and it cannot be used as a class of its own.

For this reason, the class was removed completely. It still would be possible to detect these three

classes defined by management practices that span over several years by simply using input data

that also covers several years. Sentinel 2 scenes covering multiple years would make it possible to

detect management practice (e.g. ploughing) from previous years and thus classify the fields ac-

cordingly. However, this is beyond the scope of this thesis which focusses on crop detection with

the data from one year. Therefore these three classes were removed from the dataset. This step re-

moved 684 polygons, so 11 687 fields were left the dataset.

In total from 13 200 fields containing actual crops, 500 have been removed due to size, 329 due to

low frequency and 684 due to special CAP rules. The final dataset contains 11 687 field polygons

with 16 different crop types. Table 3 lists all of them and their respective frequency. The following

map (cf. figure 14) displays the distribution of the fields in Thuringia.

Crop Type Number of Samples
Grassland 6 263
Winter Wheat 1 815
Rape 987
Winter Barley 561
Maize 520
Summer Barley 474
Grass - Clover - Bur clover 355
Summer Wheat 137
Triticale 114
Winter Rye 114
Pea 84
Summer Oats 80
Sugar Beet 71
Other Seeds and Herbs 43
Field Bean 37
Potato 32
Total 11 687

Table 3: Crop types and number of samples (own table)

39

.Figure 14: Map of used fields within the Free State of Thuringia (own figure).

40

6.2. Data preprocessing of the raster data

The information to classify the fields is extracted from the pixel values of the raster data. This data

consists of Sentinel 2 scenes which were downloaded from ESAs “Copernicus Open Access Hub”

(“Copernicus-Open-Access-Hub”). The images were preprocessed by EFTAS Fernerkundung Tech-

nologietransfer GmbH with the Sen2Cor software so that they are of Level-2A product quality. Sen-

tinel Level-2A images are preprocessed to enhance image quality and accuracy of the pixel values.

“The Level-2A prototype product is an orthorectified product providing Bottom-Of-Atmosphere

(BOA) reflectances, and basic pixel classification (including classes for different types of cloud)”

(ESA, 2015, p.60).

Table 4 displays the Sentinel 2 channels. The average pixel values were calculated for the green

marked channels.

Band

name

Resolution

(m)

Central wavelength

(nm)

Band width

(nm)
Purpose

B01 60 443 20 Aerosol detection

B02 10 490 65 Blue

B03 10 560 35 Green

B04 10 665 30 Red

B05 20 705 15 Vegetation classification

B06 20 740 15 Vegetation classification

B07 20 783 20 Vegetation classification

B08 10 842 115 Near infrared

B08A 20 865 20 Vegetation classification

B09 60 945 20 Water vapour

B10 60 1 375 30 Cirrus

B11 20 1 610 90
Snow / ice / cloud discrimina-

tion

B12 20 2 190 180
Snow / ice / cloud discrimina-

tion

Table 4: Sentinel 2 Channels (own table with information from ESA, 2015, p.51-54 and “GDAL-S2”)

The channels B01, B09 and B10 were not directly used because:

1. They have very low resolution of 60m and thus a high blur radius, i.e. pixels of smaller

fields or any border pixels will contain impurities from other neighbouring crops and/or

other objects.

41

2. They are mostly used for atmospheric image correction (ESA, 2015). Since the used Sen-

tinel 2 data is already of Level-2A the atmospheric correction is already complete.

Apart from the directly recorded Sentinel 2 bands, the following computed bands, which are

provided for all Level-2A scenes, were used.

Computed Band Name Description

Aerosol Optical Thickness (AOT) AOT map at 550nm

Visibility Index (VIS) Visibility Index corresponding to the AOT

Water Vapour (WVP) Scene-average Water Vapour map

Scene Classification (SCL) Provides a basic pixel classification map of 12

classes, e.g. cloud, cloud shadows, vegetation,

water, snow, etc.

Table 5: Level-2A computed bands (own table with information from ESA,2015 p.48-49, Mueller-Wilm, 2018, p.22-25

and S2-L2A Overview)

In order to analyse the complete agricultural season 2018 a total of 143 images taken between

01.03.2018 – 31.10.2018 have been preprocessed. The images are provided in tiles or granules with

a size of 100*100km2 (“S2-oUG – Definitions”). These granules cover the survey area more or less

depending on the path of the satellite and the swath of the taken images (cf. figure 15). The number

of tiles overlapping with the survey area at a given date varies greatly from 1 to 11 tiles. For each of

these tiles an individual JPEG-2000 file exists for each channel and computed band. For this thesis,

10 channels (cf. table 4) and 4 computed bands (cf. table 5) adding up to 14 individual layers for

each tile and date were used. Table 6 displays the total number of image tiles, the respective number

of days with an image and the number of individual image files. For example: The survey area was

covered by 3 tiles on 48 days, i.e. 3 tiles multiplied by 48 days and 14 channels results in 2016 im-

age files. All in all 10 794 JPEG2000 files had to be processed.

42

Figure 15: Map of Sentinel 2 tiles over the survey area (own figure)

43

Sentinel 2A and 2B granules

overlapping with survey area

Available dates of Sentinel

2 scenes of survey area

Number of individual image files

(of 14 channels and bands)

3 48 2 016

6 46 3 864

7 46 4 508

9 2 252

11 1 154

Total: 143 10 794

Table 6: Overview of Sentinel 2 scenes, tiles and files (own table)

Figure 15 shows the Sentinel 2 tiles touching the survey area and one example scene from the

03.07.2018 displaying channel B07 consisting of 4 tiles that overlap partially with the survey area.

The amount of image files covering different parts of the survey area and spanning different dates

makes it obvious that the first challenge was to organise these images temporally and geographic-

ally in a way that the sequential data needed for the LSTM Network could be extracted.

To achieve this a script was developed to pro-

duce GDAL virtual rasters combining all im-

ages of one channel and one date. Due to the

strict naming convention of the Sentinel 2

SAFE file format the images date and tile num-

ber can be easily identified (“S2-oUG - Product

Naming Convention”). The script “Build-

VRT.py” (cf. Annex I) uses the folder names to

identify all unique dates. It then searches within the S2 SAFE format for the *.jp2 – files of each

Sentinel 2 band and combines them based on their unique date and the unique date list. The result is

a python dictionary which stores the Sentinel 2 band name and unique date as key and all corres-

ponding tiles within a list as values. Based on this dictionary multiple virtual rasters are built via the

“gdal.BuildVRT()” method (cf. “GDAL – API”). These virtual rasters combine the selected raster

tiles only via a link and therefore have a very small file size, but can be queried like a normal raster

file. The result is written in a folder based on month and dates (cf. figure 16). The final results are

2 002 virtual rasters, i.e. 14 channels multiplied by 143 unique dates of the survey area.

44

Figure 16: VRT File Structure (own figure)

6.3. Data preprocessing of the numerical data

The numerical data is the actual data that is put into the LSTM. This part of the data preprocessing

includes multiple steps. The milestones of this process are:

1. Creation of a numerical table from the input vector and raster data and adding the date

2. Splitting of the data in a training, validation and evaluation sample

3. Reshaping of 2d table into a 3d array

4. Reduction of low information data within the time dimension to increase the performance of

the model

5. Interpolation of missing data

6. Normalization of the data

6.3.1. Creation of a numerical table from the input vector and raster data

The numerical data is created by extracting the average pixel values of each field for each date and

channel raster. The mean pixel value of one field for each channel and date was calculated in QGIS

using the QgsZonalStatistics method (“GDAL–API”). A small script “Calc_Zonal_Statistics.py”

(cf. Annex I) was used to automate this process. The result of this process is a large table with

11.687 rows and 2.004 columns. Each row holds one field. The first column holds a unique field id,

the second the crop type. The following 2.002 columns hold the extracted mean values for that

field, for each date and channel.

As Rußwurm and Körner proposed in their paper “Multi-temporal Land Cover Classification with

Long Short-term Memory Neural Networks” (Rußwurm and Körner, 2017, p.554) the day the Sen-

tinel image was taken should be included in the LSTM input. This way the time information can be

connected not only sequentially, like before or after, but located exactly on a timeline in connection

to all other inputs. This is especially important as the Sentinel scenes are not taken regularly and

some time steps of each field will be removed due to cloud coverage and to enhance performance.

To insert the dates in a way the LSTM network can use them the time delta between the Sentinel 2

observation date and the 01. January 2018 was calculated. This was done within Python directly, us-

ing the python datetime module (“Python – Datetime”). This resulted in a new column for each ob-

servation date containing the day of the observation (counted from the 01.January 2018). This num-

ber was normalised by dividing it through 365, for a linear representation of the date between 0 and

45

1. A circular date representation would be required, if dates from all over the year would be used

and thus the 31. December and 01. January should be very close. To keep the calculation and the 3d

array more simple and because only parts of the year, i.e. one growing season from March to Octo-

ber is observed, time was calculated linear and not in a circular way. To add the day of observation

to the data 143 new columns, one for each observation date were inserted to the data table. The data

table has now 11 687 rows and 2 147 columns.

6.3.2. Splitting of the data

The NN will use the training and validation

sample multiple times to test and find the

optimal set of hyperparameters. During this

process, called model selection, the hyper-

parameters are changed and adapted to get

the best results. To still ensure the inde-

pendence of the hyperparameters from the

dataset, an evaluation dataset was split from

the data before any training. Because “[…]

if we reuse the same test dataset over and

over again during model selection, it will

become part of our training data and thus

the model will be more likely to overfit.“

(Raschka and Mirjalili, 2018, p.190).

Therefore, a random stratified evaluation or

test sample of 15% of the data was re-

moved from the main dataset and saved to a

separate csv file. This creates a large enough test dataset, while still leaving enough samples to train

the NN. Furthermore, this split ratio is within the range mostly used, as Kamilaris and Prenafeta-

Boldú point out: “Most of the studies divided their dataset between training and testing/verification

data using a ratio of 80–20 or 90–10 respectively.” (Kamilaris and Prenafeta-Boldú, 2018, p. 74).

The total dataset is thus now split in an 85% training and validation set and a 15% evaluation or test

dataset. Table 7 displays the exact numbers of samples in each dataset, while figure 17 provides a

graphical overview of the data split and usage procedures within the training process.

46

CropType
Evaluation sample

in % in %

Grassland 5 323 53.59 940 53.59
Winter Wheat 1 543 15.53 272 15.51
Rape  839 8.45 148 8.44
Winter Barley 477 4.8 84 4.79
Maize 442 4.45 78 4.45
Summer Barley 403 4.06 71 4.05

302 3.04 53 3.02

Summer Wheat 116 1.17 21 1.2
Winter Rye 97 0.98 17 0.97
Triticale 97 0.98 17 0.97
Pea 71 0.71 13 0.74
Summer Oats 68 0.68 12 0.68
Sugar Beet 60 0.6 11 0.63

37 0.37 6 0.34

Field Bean 31 0.31 6 0.34
Potato 27 0.27 5 0.29
Total 9 933 84.99 1 754 15.01

kFold training and
validation sample

Number of
Samples

Number of
Samples

Grass - Clover -
Bur clover

Other Seeds
and Herbs

Table 7: Number of samples in training-validation and

evaluation data set (own table)

The training and validation dataset (the 85% of

the total sample) is further split into different

parts used for training and validation. Goodfel-

low et al. point out that a random split in train-

ing and validation dataset can be problematic, as

it implies a statistical uncertainty around the av-

erage test error (Goodfellow et al. 2016). One

solution to reduce the statistical uncertainty is to

use a cross validation procedure. “The most

common of these is the k-fold cross-validation

procedure [...], in which a partition of the data-

set is formed by splitting it into k nonoverlap-

ping subsets. The test error may then be estim-

ated by taking the average test error across k

trials. On trial i, the i-th subset of the data is

used as the test set, and the rest of the data is

used as the training set.”(Goodfellow et al.,

2016, p.120). Figure 18 shows the procedure of

a k-fold cross validation. Whereby k represents

the number of folds the data is split into. “A

good standard value for k in k-fold cross-validation is 10, as empirical evidence shows.” (Raschka

and Mirjalili, 2018, p.192). This thesis follows this recommendation and uses a 10 fold cross valida-

tion. Since the frequency of the different classes are very uneven, the largest class covers around

53% of the sample (cf. table 7), the split into folds has to be stratified to make sure all classes are

represented in each training and validation fold.

To generate 10 folds, the “StratifiedKFold” method from the sklearn library was used ("SCIKIT-

LEARN-API-StratifiedKFold"). After the total x and y data was loaded from a csv file into

memory, the following Python code was executed to produce stratified folds, separated in 10 folds

of x and y data and separated each in a training and validation dataset. The stratification is done

based on the input of “dataY” in the “.split()” method.

47

Figure 17: Data split procedure (Raschka and Mirjalili,

2018, p.191)

Figure 18: K-fold cross validation (Raschka and

Mirjalili, 2018, p.192)

After this code segment, still within the “for loop”, the output variables: “xTrain”, “xValid”,

“yTrain” and “yValid” are saved to individual csv files. The following figures provide an overview

of the final data split. The data manipulations described in the following chapters are calculated for

each fold of the training-validation dataset right before the start of the training and for the evalu-

ation dataset to predict its inputs. Figure 19 shows the frequency of the individual classes in the

training, evaluation and test sample. Figure 20 displays the random stratified distribution of the

training and validation data in each fold for each class. The light grey area represents data used as

training input, whereas the dark grey areas represent data used as validation data during the training

process. The colours of the class labelling of the bottom bar are the same as in figure 19.

Figure 19: Frequency of data class in total sample (own figure)

48

k = 10 # define number of splits
skf = StratifiedKFold(n_splits=k, shuffle=True) # define stratified kfold
kNr = 0
split dataset in k train and validation sets stratified by values of y
for train_index, valid_index in skf.split(dataX, dataY):
 kNr += 1
 # create X and y train and test samples based on current k fold
 xTrain, xValid = dataX[train_index], dataX[valid_index]
 yTrain, yValid = dataY[train_index], dataY[valid_index]

Figure 20: Stratified k-fold cross validation: Distribution of training and validation data within each fold (own figure)

6.3.3. Reshaping of 2d table into a 3d array

So far the input x datasets containing the mean pixel values are large 2-dimensional tables. To “ac-

tivate” the time-dimension within the data, it is necessary to reshape it into a 3 dimensional array.

This 3d – array has the required sequential data format to be used as LSTM input. The transforma-

tion from 2d to 3d array is done within the method “shape_data_to_3d_array()” (cf. Annex I). The

method transforms the dataset into a 3d array. The dataset columns containing the pixel values are

extracted and then reshaped via the “numpy.reshape()” function (“NP-API-Res”). The data is re-

structured in a way that each field polygon is presented in its own 2d table. The columns display the

14 Sentinel band and the column for the observation day. The rows of that table display the 143 dif -

ferent time steps for each field. A step into the third dimension shows the average pixel values of

the next field polygon. Figure 21 shows this process exemplary for three fields with random values.

In contrast, to figure 21 the actual 3d array contains only the dates and pixel values and not the field

id or crop type. The field id is preserved by the order of the array and is used to connect the input x

data to the y data, i.e. the crop type solutions. Since, the third dimension of the 3d array created here

has the same order as the list of extracted crop types, i.e. yTrain (cf. chapter 6.3.2), both arrays can

be connected. This way the NN knows the y label for each input x.

49

Figure 21: Transformation of the data from 2d to 3d array (own figure)

6.3.4. Reduction of low information data within the time dimension

So far the data still consist of 143 individual time steps. Within these 143 time steps are multiple

fields that contain no or only bad data values. No data pixel values contain 0 or “NaN” (“Not a

Number”), while bad data values are altered by cloud coverage.

No data values exist because the sequential input data has to be of equal length for all samples. The

mean pixel values of all field polygons were extracted from all 143 observation dates for each of the

14 Sentinel 2 channels (cf. chapter 6.2). Since the Sentinel 2 tiles rarely cover all of the survey area

in one day there are two cases which produce no data values (cf. figure 15 and table 6),:

1. A polygon falls outside all available tiles, i.e. the mean value returned by the QgsZonalStat-

istics method for all channels of that observation day is “NaN”.

2. A polygon falls on the black border pixels of a tile, i.e. the mean value returned by the Qg-

sZonalStatistics method for all channels of that day is “0”.

50

Bad data values exist due to cloud coverage that blocks the satellite sensor from recording the actual

ground reflection, so it records the pixel values of the clouds instead. These values could mostly be

filtered by preselecting Sentinel 2 scenes with general low cloud coverage. The disadvantage of this

method would be that the whole image is discarded, although there are some areas without cloud

coverage. Furthermore, there might be cloud coverage over certain areas even on images with low

cloud coverage. Therefore, all images regardless of cloud coverage are used and the actual cloud

coverage is determined for each individuals field plot within a certain time frame. This has the ad-

vantage of reducing the input size substantially while using the optimal pixel values for each poly-

gon individually within the set time window.

The exact crop grow status (and thus the pixel reflection value) differs slightly from field to field

for a given point in time due to different local factors, e.g. different date of sowing, status of soil,

rainfall in the local area etc. Furthermore, the growth status of the plants and therefore the actual

pixel values change only very little within a small time period of a few days. In conclusion within a

certain time period of a few days, pixel values from the same crop type will produce the same or a

very similar pixel values. Therefore, by selecting only the best pixel values within a narrow time

window for each field, results in no information loss, but rather an increase in information quality.

This approach is implemented by filtering the whole dataset based on the values of the SCL and

AOT band. The SCL band contains already a rudimentary classification of 11 classes (“S2-L2A

Overview”) which can be used to track the most promising pixel values. However, the SCL classes

are no longer clearly defined to one SCL class because the SCL values were averaged for each field.

To deal with this problem the filters do not search for the exact SCL classes, but for values ranging

close to those classes.

The developed “filterCloudFree()” function (cf. Annex I) searches for the optimal pixel values

within a time window of four consecutive Sentinel 2 scenes for each field individually. Different

time periods were tested (cf. chapter 7) and a time window of four consecutive Sentinel 2 images

yielded the best results, regarding speed and accuracy of the NN. Within the input x 3d array, the

method searches, via the “numpy.where()” method (“NP-API-where”), for the observation row with

the best chance of actually containing true ground pixel values. The rows are filtered based on the

following hierarchical filters, whereas values returned from a higher filter are preferred to a lower

filter.

51

1. Return row with valid SCL value or, in other words, return all rows where the SCL column

is not ‘NaN’ or not ‘0’.

2. Return row with the lowest AOT value, as a lower AOT value means less atmospheric dis-

turbance within the image.

3. Return values with an SCL Value close to 4 (3 < x < 4.5). A SCL value of 4 represents a ve-

getation area and thus indicates that the pixel values used to identify the crop type are truly

ground pixel reflections.

4. Return values with an SCL Value close to 5 (4.5 <= x < 6). A SCL value of 5 represents a

bare soil area and thus indicates that the pixel values used to identify the crop are truly

ground pixel reflections. Furthermore, bare soil is returned in the highest (i.e. most import-

ant) filter because a change to bare soil is more sudden in contrast to a longer and slower

period of vegetation growth. Thus to capture sudden changes on a field, e.g. due to harvest-

ing of the crop, this filter has the highest priority.

The result of this method is a new 3d array containing only 143 divided by the number of time

steps. In case of 4 consecutive Sentinel 2 scenes the resulting array has a size of 36 time steps, i.e.

143 divided by 4 and rounded up.

It has to be noted that this type of feature engineering was not implemented out of theoretical but

practical necessity, due to the given hardware limitations and to increase the model’s performance.

As described in chapter 4, the core concept of NNs is to learn the patterns within datasets. Thus, the

developed NN can learn the connections which are filtered by the above described method itself,

e.g. data samples with a lower AOT value or a certain SCL value have more weight because they

carry more important information. But the computational cost of using the whole dataset with all the

fields that contain no or only low information values is many magnitudes larger.

When using the 3d Array with all 143 time steps, and thus not using the “filterCloudFree” method,

the NN still achieved a good accuracy of 85% in several test runs. This accuracy could have been

improved if hyperparameters had been fine-tuned further. This shows that the LSTM detects the

patterns within the dataset despite the cloud data. However, it took roughly 120 seconds for one

epoch and 150-200 epochs to achieve a stable validation accuracy. In contrast, using the “filter-

CloudFree” method and reducing the time steps to 36, reduces the training time of one epoch to

only ca. 30 seconds, while a stable validation accuracy is achieved at roughly 50-100 epochs (cf.

52

figure 24). The total time needed to train one model for 250 epochs, as done in chapter 7, without

reducing the time steps would be 8.3 hours, while the training time with reduced time steps is

2 hours. This calculation does not even consider the fact that without the filtering the network is

achieving a stable accuracy much later and thus even more epochs might be needed to finalise the

training.

In conclusion, the method “filterCloudFree()” is implemented to reduce training and prediction time

significantly by a factor of 4. This time reduction allows a more extensive model selection, i.e. grid

search for an optimal set of hyperparameters, with the given hardware limitations.

6.3.5. Interpolation of missing data

Even after the “filterCloudFree()” method has been applied, as described in the last chapter, the

dataset contains “NaN” and “0” values. These values can’t be used as input to the NN, because a

“NaN” quite literally is not a numerical value and the “0” value doesn’t represent the true pixel

value of that field of that day. Given the circumstance that no data is available, the easiest way to

generate valid and reasonable input values is via interpolation and extrapolation of existing data

across time. Extrapolation of data is only necessary if invalid data occur at the first or last position

of all time steps.

The method “interpolate_columns()” within the file “AgriNeuroUtils.py” (cf. Annex I) loops

through the individual columns of each individual field. These 1d arrays contain the values of one

Sentinel 2 band for all used time steps (cf. figure 21). Within each column all valid values are ex-

tracted. These valid values are then used to linearly interpolate and extrapolated the “NaN” and “0”

values. The core function used in this process is the “scipy.interpolate.interp1d()” method (“SCIPY-

API-Interpolate”). The result of this method is a 3d array which contains no “NaN” or “0” values.

6.3.6. Normalisation of the data

As a final step of the data preprocessing all input values have to be normalised. As Raschka and

Mirjalili point out “[…] the majority of machine learning and optimization algorithms behave much

better if features are on the same scale [...]” (Raschka and Mirjalili, 2018, p. 120). So far different

bands have very different value ranges, e.g. while the SCL band has values ranging only from 0 to

11, other bands have values ranging up to 7 000. If left unchanged, the cost error function within the

NN would be dominated by the larger errors of the larger values. To avoid this the different features

of the dataset have to be brought onto the same scale via normalisation.

53

To keep the individual characteristic of each feature and sample the normalisation is only conducted

within each Sentinel 2 band. The method “normalize_data()” within the file “AgriNeuroUtils.py”

(cf. Annex I) normalises each Sentinel 2 band across all time steps and samples. The function “Min-

MaxScale()” ("SCIKIT-LEARN-API-MinMaxScaler") is used to scale the lowest value of each

Sentinel 2 band to 0, the highest to 1 and all other values appropriately between. The result of this

method is a 3d array with all of its features on a scale between 0 and 1.

6.3.7. Encode Y

To allow the NN to connect the input x data samples to the correct classification class, the y data

has to be encoded. This means the y data has to be transformed from a text value, e.g. Winter

Wheat, to a numerical value the NN can use. The encoding is done by creating a matrix with a

column for each possible output class. For each input sample a row is created. In the rows a ‘1’

value is set in the one column with the correct solution, whereas all other columns of that row are

set to ‘0’. The NN can then use this solution matrix to compare the predicted crop types with the ac-

tual crop types and consequently update the weights during backpropagation (cf. chapter 4.2.3). The

method “encode_train_Y” encodes the y data in the above described way. It uses the “LabelEn-

coder” function from the scikit-library to achieve this (“SCIKIT-LEARN-API-LabelEncoder”).

54

7. Development and training of the LSTM model

7.1. Model selection

The development and training of the LSTM was conducted in python with the Keras library. (cf

chapter 3.2). Keras offers two ways to create, train and use NN models: the Sequential model and

the model class used with the functional API. (“KERAS – API – AboutModels”). The LSTM in this

thesis was developed using the sequential model. This way the neural network is coded as a stack of

layers using the following process (“KERAS – API – SequentialGuide”):

1. A Sequential object is created.

2. The “.add()” method of the sequential object is used to add a layer of a certain type e.g.

LSTM layer, Dense layer, Dropout Layer etc.) with a set of hyperparameters (e.g. hidden

nodes, input shape of data, dropout rate, recurrent dropout rate etc.). This step is repeated

until all required layers are created.

3. The whole model is compiled with the “.compile()” method of the sequential object.

4. The model is trained with the “.fit” method of the sequential object. The training parameters,

such as input x, y-true, number of epochs and batch size are set here. After each epoch of the

training, the input x-validation samples are classified to return a validation accuracy for the

data not used for training so far. This value gives a better, because less overfitted, estimation

of the NNs current capability to predict unseen data. When using kfold cross validation, the

x-train and x-validation samples are swapped until each fold (here: 10) was used as x-valida-

tion dataset once (cf. chapter 6.3.2).

After the training, the “.predict” method of the sequential object can be used to predict new unseen

data, like the evaluation dataset.

Setup and training of the NN, as well as the data preprocessing (as described in chapter 6.3.1 to

6.3.6), are organised within the file “AgriNeuro_Main.py” (cf. Annex I). This file loads the x- and

y-data of the kfold splits, runs all the processes to prepare the data, sets the hyperparameters and

runs the function: “def lstm_model()” in the file “AgriNeuroModel.py”, which returns the compiled

LSTM model. The compiled model is then fitted to the provided train and validation data of the cur-

rent folds. During the training process a callback function is initiated after each epoch to save the

55

training log of each epoch and more importantly to save the trained model if the validation accuracy

has improved compared to the best validation accuracy so far. Lastly, after all epochs are finished

the currently trained model is evaluated and its history and parameters are stored in a csv file.

To find the optimal (or a very good) set of hyperparameters fitting the developed NN and dataset

structure, multiple sets of parameters had to be tested and evaluated via a grid search. With the

above described program structure it is possible to do this by providing lists of hyperparameters (as

a Python list within the file “AgriNeuro_Main.py”) and calculate and evaluate the NN for each

combination of elements of these lists. After some initial tests which provided a rough orientation

for good hyperparameters values, these values were used for a more intensive grid search.

The time frame window hyperparameter was set during data preprocessing, because it manipulates

the input data, as described in chapter 6.3.4.

• Time Frame Window: Time frame of Sentinel 2 images to look for the best possible input

data. Tested values are 1,4 and 7 Sentinel 2 scenes apart.

The following enumeration provides an overview of the optimised hyperparameters set when com-

piling the model:

• Number of LSTM Layers: Number of stacked layers in the NN. The tested values were 1 to

4 LSTM layers.

• Hidden nodes: Number of hidden nodes (or neurons) per LSTM layer. The tested values

were 256, 512, 768 and 1024.

• Dropout rate: The dropout rate represents the percentage of connections between the stacked

LSTM layers that are randomly dropped during each batch of learning. By randomly block-

ing or not using certain connections the network is forced to evaluate all possible input fea-

tures and neuron connections. This way the network gets a broader view at the dataset and

overfitting is reduced. The dropout rate is a so-called regularisation technique. These meth-

ods regulate the learning of the model, whereby the main goal is to reduce overfitting

(Goodfellow et al., 2016). Following initial tests to find a general applicable range of the

dropout rate, the tested values were 0.385 to 0.425 in 0.01 steps.

• Recurrent dropout rate: The recurrent dropout rate is a regularisation technique only used in

RNN networks. It blocks random connections between time steps. Thus, it is a regularisation

not between the LSTM layers (as the dropout rate) but between the sequential values, as

56

they propagate through the network. Following initial tests to find a general applicable range

of the recurrent dropout rate the tested values were 0.19 to 0.21 in 0.01 steps.

• Optimiser: The optimiser is the function the NN is trying to minimise. This function evalu-

ates the difference (or “distance”) between ŷ and the y. Different optimiser functions use dif-

ferent methods to calculate this distance and are thus differently suitable, depending on the

dataset and type of NN. The following four different optimisers were tested: “Adam”,

“SGD”, “Adagrad”, “RMSprop” (“KERAS – API – Optimizers”).

The following hyperparameters were evaluated when calling the “.fit()” method during the training

process:

• Batch Size: Number of data samples trained at the same time. The tested values were 64,

128 and 256.

• Epochs: Number of times the whole dataset is evaluated. After initial testing the value was

fixed to 250 epochs.

This results in a total number of 2 304 different possible combinations of hyperparameters: 4 layers

* 4 neurons * 4 dropout rates * 3 recurrent dropout rates * 4 optimisers * 3 batch sizes * 1 epoch.

As one complete training and validation of 10 kfolds took roughly 20 hours, it would have taken

46 080 hours or 1 920 days to calculate all of these as 10-fold validation with the given hardware

limitation. Obviously, this was not feasible. To reduce the training time three strategies were used to

detect a range of promising parameter values:

1. The majority of parameters combinations were only calculated for two folds. This quickly

returned a general range for each parameter and also a set of parameters that yielded good

results while reducing the training time significantly.

2. Only a reduced epoch number of 150 was calculated which further reduced the training

time.

3. Good values that seem to be valid for all combination of parameters were detected, e.g. after

several tests it became clear that a batch size of 64 always provided a superior result, regard-

less of the other values. By finding parameter values that were working very well generally,

the combinations of possible numbers of sets of parameters could be reduced.

57

Using these three steps it was possible to train and evaluate hundreds of models automatically

within a reasonable time. This resulted in a set of 16 different most promising sets of the following

hyperparameters:

Time Frame Window (4, 7), LSTM Layers (2, 3), Hidden nodes/neurons (512, 786), Dropout rate

(0.4, 0.425), Recurrent dropout rate (0.2), Optimiser (“Adam”), Batch size (64), Epochs (250).

For all 16 combinations of these hyperparameters a k-fold cross validation of 10 folds was calcu-

lated. The best average validation accuracy was achieved by the following parameters:

Time Frame Window (4), LSTM Layers (3), Hidden nodes/neurons (786), Dropout rate (0.425), Re-

current dropout rate (0.2), Optimiser (“Adam”), Batch size (64), Epochs (250).

This set of hyperparameters is the result of the model selection. The following descriptions of the

NNs training, its architecture and its evaluation refers to a model trained via k-fold cross validation

with these parameters.

7.2. Training and architecture of the LSTM

A brief summary of the model can be created in Python with the “model.summary()” method, as

shown in figure 22. The developed LSTM model has 11 864 080 parameters that are trained on the

given input data. All of these parameters are used to find the lowest or a very low point of the cost

function. The detailed structure of the model and the final hyperparameters values are displayed in

figure 23. The NN consists of three stacked LSTM layers with the above described parameters. The

three layers are used recurrently for t times, whereby t represents the sequential time steps of the in-

put data. When using a time frame window of 4, t equals 36. The last layer is a dense fully connec-

ted layer, i.e. each neuron receives input from all neurons of the previous layer. This layer contains

as much hidden nodes as y output classes. The “softmax” activation function of that layer attributes

a percentage of confidence for each class for each sample that sums up to 100%. In this way, the

layer provides an output which can be attributed to the available classes. Depending on the required

accuracy a threshold can be applied here, so that only if a class is predicted with a confidence above

the threshold, e.g. 90%, it is attributed as actual prediction, otherwise, i.e. if the confidence for all

classes of that data sample is below the threshold, the sample is attributed as unknown (cf. chapter

8.1).

58

Figure 22: LSTM model summary in python console (own figure).

59

Figure 23: Architecture and Hyperparameters of the developed LSTM Network (own figure)

The actual training of the NN with the described structure and hyperparameters is visualized in fig-

ure 24. It does not display an individual training progress but rather the aggregated training progress

of all 10 cross validation trainings. The light blue filled area displays the minimum and the max-

imum validation accuracy over all training runs at the current epoch. The dark blue line represents

the mean validation accuracy for each epoch. As described above, a callback function was imple-

mented to save the so far trained weights of the model in a “.hdf5” file after each epoch if the valid-

ation accuracy increased. This way for each of the 10 training runs the best model over all epochs

was saved. The validation accuracy ranges from 93.16% up to 94.16%, while the mean validation

accuracy is 93.56% (cf. table 4). The very low standard deviation shows that the model delivered

nearly identical quality for all 10 training folds.

kfold Max. Validation Accuracy Min. Validation Loss Function

1 93.31 0.2997

2 93.39 0.2955

3 93.98 0.2594

4 93.26 0.2802

5 93.16 0.2678

6 93.76 0.3014

7 94.16 0.2708

8 93.62 0.2560

9 93.72 0.2747

10 93.31 0.3154

Mean 93.57 (sd) +/- 0.0034 0.2821 (sd) +/- 0.1989

Table 8: Max. validation accuracy and min. validation loss for each fold (own table).

Figure 24 shows the higher the epoch, the slower the increase in accuracy. At around 50 epochs

most folds achieve a good accuracy of ca. 90%. The mean accuracy is then increasing only very

slowly. During the training of the individual folds the peak validation accuracy occurs around epoch

150 to 225. As figure 24 shows, the mean validation accuracy is rising less and less and is tending

to a limit between 0.9 and 0.95. Therefore no substantial increase can be expected by training the

model for even more epochs.

During the training the probabilistic and approximation approach of NNs in finding a low point on

the cost function became apparent in two occasions when the weights of the network were not con-

verging. In these cases, the accuracy stayed around 50% even after 250 or more epochs of training.

60

This accuracy value corresponds to the frequency of the largest class: “grassland” (cf. table 7). So

the network was only learning: “Predicting always grassland will result in a general accuracy of at

least ca. 50%”.

Figure 24: Validation accuracy during kfold training (own figure).

This problem was certainly largely increased by the very uneven distribution of the data, but also

shows the influence of the random initial set of the neuron’s weights. As pointed out in chapter 4.2.3

the multi-dimensional cost function has many local minima, many saddle points and large very flat

regions, all of which make optimisation difficult. Figure 25 shows a greatly simplified example of a

function with only one input parameter x and multiple local minima. When trying to find a low

point by only following the descend in incremental steps, like NNs do (cf. chapter 4.2.3), the out-

come of training is influenced by the starting point of the initial weights. Selecting a starting point

further to the right, in figure 25, will result in a less optimal minimum compared to starting points

further left. Although NNs can overcome local minima, e.g. by changing the learning rate, they can

61

also be trapped within, as it happened in the described instances. The initial starting point is so far

off to any better local minima that the best solution to the cost function is for the NN to always pre-

dict the most frequent class (i.e. grassland).

Figure 25: Simple cost function with multiple local minima (own figure)

In these cases the LSTM, together with the initial neuron’s weights, was reset and trained again with

the same dataset, i.e. the current training and validation fold, which resulted in greatly enhanced ac-

curacy. This shows that for a more precise assessment of the accuracy and to find the best accuracy,

i.e. a lower point on the cost function, with the given hyperparameters the neural model should be

retrained with the same k-fold splits multiple times. It also has to be noted that this problem doesn’t

influence or occur on the already successfully trained model because the weights are already set and

fit to the input data and there is no random initialisation of the weights.

62

8. Evaluation of the developed LSTM neural network

The results of the cross validation described in the last chapter already presented a good estimation

of the prediction abilities of the network, as these results were already taken from 10 different vali-

dation folds. However, due to the grid search repeatedly using the same training and validation data-

sets, there is the danger of influencing even the validation dataset. Therefore, an evaluation dataset,

containing 15% of the samples, was created and split from the total dataset before any training oc-

curred (cf. chapter 6.3.2). Rußwurm and Körner justify this procedure of creating a third dataset as

follows: “To ensure that these parameters are chosen independently, training of network weights

and evaluation of hyper-parameters was performed on training and validation datasets, respect-

ively. A third evaluation dataset is used for to calculate accuracy measures of neural network inde-

pendently from network weights and parameters.” (Rußwurm and Körner, 2017 p.554). For this

reason, all results presented in this chapter are calculated using the independent dataset split off be-

fore the training. Following this procedure allows an evaluation of the prediction power of the NN

on unseen data.

The evaluation of the LSTM can be done with the methods developed in the “EvaluateLSTMMod-

el.py” file (cf. Annex I). To predict data with the LSTM, the data has to be prepared the same way

the training data was prepared. This can be easily done with the already developed methods as de-

scribed inc chapter 6.3.1 to 6.3.6. The test dataset is manipulated in the same way as the training

data, so that the final output is a normalised evaluation dataset. The next step is to load the .hdf5”

file containing the NN with its trained weights into python. Then the preprocessed evaluation data-

set can be used as input for the “prediction()” method of the loaded model with the following line of

code:

prediction_matrix = lstmModel.predict(normalised_evaluationDataX)

The result of the “prediction()” method is a prediction matrix containing for each input sample the

“softmax” confidence percentage for each possible output class. The prediction matrix has the same

order as the original input sample, thus the data can be reconnected to the actual field and its in-

formation e.g. location, crop type. In this manner, the prediction ability of the model can be evalu-

ated. in detail. Multiple samples of the actual prediction matrix are displayed in table 9. The first

column contains an internal unique number to identify each field. The second column contains the

actual crop of the field as provided with the dataset. The third column “y predict” (or ŷ) contains the

63

prediction of the NN. The following 16 columns contain the softmax confidence score for each

class. The class with the highest confidence is the y predict result. Table 9 shows that many predic-

tions are given with a high confidence of above 0.95. The last line (id: 1592) gives an example of a

wrongly predicted field. The actual field contains “Summer Barly” which was predicted with a con-

fidence of 0.309, but potato was wrongly predicted with a higher confidence of 0.601.

Based on the prediction matrix different classification scoring metrics referring to the total dataset

and to the individual classes were calculated to evaluate the model’s performance. These were se-

lected based on the overview table of the most important performance metrics in the article “Deep

learning in agriculture: A survey” (Kamilaris and Prenafeta-Boldú, 2018, table 1 p.75). All these

classification metrics were coded in python using the module “metrics” from the “sklearn” library

("SCIKIT-LEARN-API-Metrics").

Since this evaluation is covering a multi-class classification and some of the scoring metrics are de-

signed for binary classification problems, these metrics are calculated via one-versus-all classifica-

tion. The metrics calculated below are based on the concepts of evaluating the relationship between

the actual crop type and the predicted crop type. There are four possible relations between y and ŷ.

In a one-versus-all classification these are considered, as the name suggests, from the point of one

class versus all other classes. For example, based on the crop type grassland these four categories

are:

1. True positives (TP): All grassland instances that are classified as grassland.

2. False positives (FP): All non-grassland instances that are classified as grassland.

3. False negatives (FN): All grassland instances that are not classified as grassland.

64

Id y true y predict Pea Potato Maize Rape Triticale

47 Winter Barley Winter Barley 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
189 Rape Rape 0 0 0 0 0 0 0 0 0 0 0.001 0.999 0 0 0 0
461 Winter Barley Winter Barley 0 0 0 0 0 0 0 0 0 0 0.995 0 0.005 0 0 0

1002 Winter Wheat Winter Wheat 0 0 0 0 0 0 0 0 0 0 0.002 0 0 0 0.998 0
1066 Rape Rape 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1183 Wiese Wiese 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1212 Rape Rape 0 0 0 0 0 0 0 0 0 0 0 0.9 0 0 0.098 0
1280 Winter Barley Winter Barley 0 0 0 0 0 0 0 0 0 0 0.987 0 0 0 0.013 0
1414 Sugar Beet Sugar Beet 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1415 Winter Wheat Winter Wheat 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1457 Summer Barley Summer Barley 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1592 Summer Barley Potato 0 0 0 0.601 0.066 0.309 0.002 0.009 0 0.001 0 0 0.007 0.003 0.002 0

Field
Bean

Grass -
Clover -

Bur
clover

Summer
Barley

Summer
Oats

Summer
Wheat

Other
Seeds
and

Herbs

Grassl
and

Winter
Barley

Winter
Rye

Winter
Wheat

Sugar
Beet

Table 9: Samples from the prediction matrix (own table)

4. True negatives (TN): All non-grassland instances that are not classified as grassland.

8.1. General classification scoring metrics

The general classification metrics give a picture of the LSTM networks abilities to predict new un-

seen data over all classes. As mentioned above, the metric types were selected based on their useful-

ness to evaluate classification abilities and on most well-known metrics selected by other articles to

provide a comparison (Kamilaris and Prenafeta-Boldú, 2018 and Rußwurm and Körner, 2017).

When calculating the metrics over all classes, different types of averaging all classes can be selec-

ted. Due to the strong class imbalance in the dataset, the best method of averaging is the micro-av-

erage method, which weights the scoring metrics of each class by the frequency of that class. This

way the number of samples in each class and the correctly predicted samples are respected.

Metric Performance of evaluation data set

Overall accuracy/

Precision / Recall

92.36

F1-score 92.36

AUC 99.53

Table 10: Weighted macro-average of evaluation data set (own table).

Table 10 displays the core classification evaluation metrics over all samples. The test sample con-

tains 1 754 samples, out of these 1 620 were classified correctly and 134 incorrectly. This results in

an overall accuracy of 92.36%. The low interval between the accuracy of the evaluation data and

the average accuracy of the training-validation dataset of 93.57% (cf. table 8) proves that no signi-

ficant overfitting of the network occurred during training. Precision and recall are two different

measures of accuracy or ways to set TP, TN, FP and TN in relationship. Precision returns the ratio

of the correctly predicted samples to the total predicted samples, while recall returns the ratio of the

correctly predicted samples to the total input samples. When determining the predicted crop simply

by selecting the crop type which has the highest softmax confidence (cf. table 9), precision and re-

call and the F1-score, the harmonic mean between those two, are the same, because in total the

number of input and output samples are the same. However, when a threshold is implemented to the

result of the softmax function the confidence, precision and recall scores can be quite different. In

this case, for a prediction to be valid as correct or incorrect the softmax confidence has to be higher

than the threshold value. Any prediction with a confidence lower than the threshold is put into the

category ‘unknown’. This procedure can be used to increase precision, i.e. reduce the FP values, at

65

the cost of the recall score. Table 11 shows precision and recall for different thresholds. Without any

threshold, there are 1 620 samples classified correctly and 134 incorrectly. At a threshold of 0.5 four

correct and six incorrect samples are categorised as “Unknown”. This lowers the recall value to

92.13, whereas the precision value is slightly increased to 92.66. Any further increase of threshold

lowers the recall value further because more and more samples become unknown and thus less

samples from the actual input are classified correctly. At the same time the precision is increased,

because of the total predicted samples more and more are predicted correctly. At a threshold of 0.99,

96.33% of the predicted samples are correct, but of the total input samples only 85.35% are classi-

fied correctly.

Threshold 0.99 0.90 0.7 0.5

Category Nr Recall Prec Nr Recall Prec Nr Recall Prec Nr Recall Prec

Correct 1 497 85.35 96.33 1 564 89.17 94.67 1 605 91.51 93.42 1 616 92.13 92.66

Incorrect 57 3.25 3.67 88 5.02 5.33 113 6.44 6.58 128 7.3 7.34

Unknown 200 11.4 - 102 5.82 - 36 2.05 - 10 0.57 -

Table 11: Precision and recall at different threshold values (own table)

The different thresholds are also important for the “AUC” score which is 99.52 for the test dataset

(cf. table 10). “AUC” stands for “Area under the ROC Curve”. It is the integral of the ROC curve

(receiver operating characteristic curve) which expresses the relation of the true positive rate (or re-

call) and the false positive rate at all possible classifier threshold values (Raschka and Mirjalili 2018

and “Dev-google-machine-learning”). The diagonal of these relations, i.e. if the true positives and

the false positives rates are the same for all threshold values, represents a line of random guessing.

This implies with an AUC score of 50 a model is no better than random guessing. An AUC score of

0 shows that the model is inverting the results and an AUC score of 100 shows that the network

classifies the result perfectly. The AUC score thus tells how capable a model is at distinguishing

between classes.

The described metrics show that the model is in general very potent in classifying and distinguish-

ing the input data to the possible output classes. The already satisfying accuracy of 92.36% can be

increased even further to a precision of 96.33% with a recall rate of 85.35% if the correct predicted

samples are more important than the amount of predicted samples. The high AUC score shows that

the model is able to distinguish between the individual classes. To allow a more in depth analysis

why the NN predicts some inputs wrong it is important to take a look at the evaluation metrics of

the individual classes. The next chapter will analyse those class based metrics.

66

8.2. Classification metrics per individual class

A confusion matrix offers a first overview of the prediction abilities of the LSTM for the individual

output classes. Table 12 shows such a confusion matrix of the evaluation dataset and its total 1 754

samples. The rows represent the actual crop type, while the columns represent the predicted crop

types. Thus, the row “ŷ-predict” sums up all the prediction for that crop type, whereas the last

column “y-true” sums up the actual crop types. The crossing cell of the same crop type in column

and row displays the number of correctly predicted samples. These crossing cells are marked green.

The darker the green, the higher the precision of that crop type, i.e. the quantity of correctly pre-

dicted samples in relation to all predicted samples of that crop type. All other cells display incor-

rectly classified samples and are marked red.

The rows of the confusion matrix show for each actual class into what type of crop it has been clas-

sified. The columns of the confusion matrix give the information out of which actual crop types

each predicted crop type is composed. For example: There are 5 actual potato fields within the eval-

uation dataset. Out of these only 1 has been correctly classified, while 4 have been misclassified as

maize. This results in a recall rate of 0.2 (cf. table 13). At the same time, the network classified a

total of 4 fields as potatoes. Again 1 of these predictions is correct, whereas 2 maize fields and one

summer oats field were misclassified as potato field. This results in a precision rate of 0.25. Overall

the confusion matrix shows how the actual classes and the predicted classes spread out into other

crop types.

From the actual crop types, the following 2 crop types spread out the most and are classified into 6

other crops: Summer Barley and Winter Wheat. While the class “Grass - Clover - Bur clover” does

not spread out as much into other classes, 25 of its samples are misclassified as grassland, as much

as the correctly classified 25 samples. This shows that there are very similar features (within the

Sentinel 2 data) from the first to the second class. The other way around, only 3 grassland samples

are misclassified into the: “Grass - Clover - Bur clover” class. On the other hand, 5 classes spread

out into only one other class type, these are: Pea, Potato, Maize, Other Seeds and Herbs and Sugar

Beets. Looking at the columns, the following three predicted crops consist of 6 or more actual crop

types: Grass - Clover - Bur clover, Grassland and Winter Wheat. Two crop types are classified with

perfect (100%) precision, i.e. all predicted fields consist only of the actual crop type, these are:

Field Bean and Other Seeds and Herbs.

67

Crop

Types

Field

Bean
Pea

Grass -

Clover

- Bur

clover

Potato Maize
Summer

Barley

Summer

Oats

Summer

Wheat

Other

Seeds

and

Herbs

Grass-

land

Winter

Barley
Rape

Winter

Rye

Trit-

icale

Winter

Wheat

Sugar

Beet
y-true

Field

Bean
4 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 6

Pea 0 12 0 0 0 0 1 0 0 0 0 0 0 0 0 0 13

Grass -

Clover -

Bur clover

0 0 25 0 0 0 1 1 0 25 0 0 0 0 0 1 53

Potato 0 0 0 1 4 0 0 0 0 0 0 0 0 0 0 0 5

Maize 0 0 0 2 76 0 0 0 0 0 0 0 0 0 0 0 78

Summer

Barley
0 1 1 0 0 57 4 3 0 0 0 2 0 0 3 0 71

Summer

Oats
0 0 0 1 2 4 1 3 0 1 0 0 0 0 0 0 12

Summer

Wheat
0 0 1 0 0 3 1 11 0 1 0 0 0 0 4 0 21

Other

Seeds and

Herbs

0 0 0 0 0 0 0 0 4 2 0 0 0 0 0 0 6

Grassland 0 0 3 0 1 0 0 0 0 936 0 0 0 0 0 0 940

Winter

Barley
0 0 2 0 0 0 0 0 0 4 65 0 0 2 11 0 84

Rape 0 1 0 0 0 0 0 0 0 1 2 142 0 0 2 0 148

Winter

Rye
0 0 0 0 0 0 0 0 0 0 0 0 11 1 5 0 17

Triticale 0 0 0 0 0 0 0 0 0 1 1 0 0 10 5 0 17

Winter

Wheat
0 0 0 0 0 1 0 1 0 4 7 0 2 2 255 0 272

Sugar Beet 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 10 11

ŷ-predict 4 14 34 4 83 66 8 19 4 975 75 144 13 15 285 11 1754

Table 12: Confusion matrix of the test dataset (own table)

68

Using the numbers from table 12, the precision, recall and F1 score per class can be calculated. This

returns a more detailed look at the predicted capabilities for each class. Table 13 displays these

scores as well as the samples in the datasets. The table is sorted after the quantity of the samples.

This reveals one major influence on the prediction capability of the network: the quantity of the

training samples. A clear trend is visible in table 13: the more dataset samples a class has, the higher

the precision, recall and F1-score. Classes with more than 400 training samples, i.e. train-validation

sample, have an unweighted average F1-score of 0.91, ranging from 0.83 to 0.98. In contrast, crop

types with less than 400 (here: 302 or less) training samples have an unweighted average F1-score

of 0.62, ranging from 0.10 to 0.91. The summer oats class with only 68 samples has the lowest F1-

score of 0.10. On the other hand, some classes like “Sugar Beets” and “Other Seeds and Herbs”

have good results with an F1-score of 0.91 and 0.80 respectively despite their low number of train-

ing samples. Thus, these classes not only have a lower average F1-score, but also a much higher

variance, than classes with more than 400 samples. Therefore, apart from the number of samples

others factors seem to influences the quality of the classification. These different factors contribut-

ing to incorrect predictions of samples will be discussed in the next chapters.

Crop Type
Train/Validation

Samples

Test Data

Samples
Precision Recall F1-score

Grassland 5 323 940 0.96 1.00 0.98
Winter Wheat 1 543 272 0.89 0.94 0.92

Rape 839 148 0.99 0.96 0.97
Winter Barley 477 84 0.87 0.77 0.82

Maize 442 78 0.92 0.97 0.94
Summer Barley 403 71 0.86 0.80 0.83

Grass - Clover - Bur

clover
302 53 0.74 0.47 0.57

Summer Wheat 116 21 0.58 0.52 0.55

Winter Rye 97 17 0.85 0.65 0.73
Triticale 97 17 0.67 0.59 0.63

Pea 71 13 0.86 0.92 0.89
Summer Oats 68 12 0.13 0.08 0.10

Sugar Beet 60 11 0.91 0.91 0.91
Other Seeds and Herbs 37 6 1.00 0.67 0.80

Field Bean 31 6 1.00 0.67 0.80
Potato 27 5 0.25 0.20 0.22

Table 13: Precision, recall and F1-Score for each output class (own table).

69

8.3. Evaluation of miss-classification

As described above, of 1 754 samples in the evaluation dataset 134 or 7.64% were misclassified.

There are multiple possible reasons why the LSTM network does not recognise a sample correctly.

Reasons can be found within the network itself, e.g. the architecture or the hyper-parameters, or in

the quantity and quality of the input data, e.g. more input data needed, more diverse training data,

etc. The complexity of NNs and their internal computations make it very challenging to extract why

data was classified as it was. To examine in detail the possible sources of error of the developed

LSTM network is beyond the scope of this master thesis. However, within the geo-informatics con-

text of this study, it is possible to analyse relations between the spatial input data and the output res-

ults and thus influencing factors of the input data on the classification results. The following 4 will

be analysed:

1. Influence of size: The size of the field polygon.

2. Influence of geography: The location of the field polygon.

3. Influence of features: The similarity of classes.

4. Influence of quantity: The quantity of samples of each class.

8.3.1. Influence of size

 0 200 000 400 000 600 000 800 000 1000 000 1200 000

-100

-80

-60

-40

-20

0

20

40

60

80

100
R² = 0,00

Relation of area size to classification confidence

area size in m²

C
on

fi
de

nc
e

1620

134

Figure 26: Relation of area size to classification confidence (own figure).

70

Since the input data is the result of the averaged pixels of each polygon, the fewer pixels a field has,

the higher the influence of individual pixels, which might disturb the prediction. To analyse this re-

lation, a diagram was developed which sets the confidence of a prediction in relation to the field

size (cf. figure 26). For each data sample in the evaluation dataset one point was placed. The y-axis

presents the maximum confidence for that predicted sample, while the x-axis presents the size in m²

of that field. The confidence of any incorrect prediction (red dots in figure 26) are multiplied by -1,

so they contribute negatively to the correlation of the field size. Most of the correctly classified

samples are located in the top left and are visually not distinguishable due to the high concentration.

The coefficient of determination (R²) between size and confidence is 0. Thus, on an individual field

level there is no influence of the field size on the prediction results.

 0 50 000 100 000 150 000 200 000 250 000
0

10

20

30

40

50

60

70

80

90

100

Relation of average size of training sample fields to F1 score to quantity of samples

average field size in m²

F
1

sc
or

e 5 000

500
100

Quantity of
samples

Figure 27: Relation of average field size of training sample to F1-score to quantity of samples (own figure).

On a class level, i.e. if the prediction results are grouped by crop type and set in relation with the

F1-score, they have a correlation of R²=0.26 (cf. figure 27). However, it has to be noted that this

correlation is calculated unweighted, i.e. the quantity of the class is not taken into account. There-

fore, figure 27 also shows the quantity of each crop type as size of the data points. For example the

largest points in the top left corner represents the grassland class, with a sample size of 5 323, an

average field size of ca. 20 000m² and a F1-score of 97.75, while the point to the far right represents

sugar beets with a sample size of 60, an average field size of ca. 220 000m² and a F1-score of 90.91.

Combining the size and position of the data points in figure 27 indicates already that the average

field size influences classes with a small sample size much more than large classes. Figure 28 visu-

71

alizes this effect. If only the smallest 10 classes, with each less than 400 samples (cf. table 7), are

taken into account the coefficient of determination is 0.43, while in contrast using only the 6 largest

classes, returns a coefficient of -0.05 (cf. figure 28). Two conclusions can be drawn from this:

1. The quantity of samples

has a major influence on

the F1-Score (and thus

Precision and Recall). This

will be further analysed in

chapter 8.3.4.

2. The more samples are

within a class, the less it is

influenced by the average

field size and vice versa. In

detail:

a) The classification ac-

curacy of small classes

is influenced by the

area size of the field so

that generally the lar-

ger the average field

size in m² the better the

F1-score. This is because at a small area, spikes in pixel values have a much stronger im-

pact on the classification result of a field and, due to the small class size, this affects the

overall class accuracy.

b) The classification accuracy of large classes is not influenced by the area size of the field.

This was true for the dataset used in this thesis if a class has more than 400 samples.

72

Figure 28: Relation of average field size of training samples of small and

large classes to F1-score (own figure).

0 20.000 40.000 60.000 80.000 100.000 120.000 140.000
0

10

20

30

40

50

60

70

80

90

100

R² = 0,05

Relation average size of training sample fields to F1 score
Only crop types with more than 400 samples

average field size in m²

F
1

sc
or

e

0 50.000 100.000 150.000 200.000 250.000
0

10

20

30

40

50

60

70

80

90

100

R² = 0,43

Relation average size of training sample fields to F1 score
Only crop types with less than 400 samples

average field size in m²

F
1

sc
or

e

8.3.2. Influence of geography

If fields are clustered in one area, it might influence the outcome for various reasons, like:

• Locally worse or better input data, e.g. due to significantly more cloud coverage.

• Locally different features of the input data, e.g. due to local farming practices that differ

from the rest of the survey area and thus change the actual pattern of the sequential data in-

put.

To test this hypothesis, three approaches are tested. First, visually by creating a map that shows all

correct and incorrect classified samples of the evaluation dataset. Second, the correlation between

the classification confidence and the X- and Y-UTM position of each sample is analysed. Lastly, a

spatial point pattern analysis is conducted to compare the standard distance of each crop class with

its F1-score. An overview map of the correctly and incorrectly classified samples is created by re-

connecting the prediction dataset via the field polygon id with the original geodata file. Figure 29

73

Figure 29: Classification results of the evaluation sample (own figure)

displays a map of the classification results. The green dots represent correctly predicted crop types,

while the red ones represent the opposite. The detail map in the top right corner shows that the res-

ults can also be tracked down to the individual field level. Due to data protection legislation the de-

tailed map is not localised within the survey area. The distribution of the green and red dots on map

29 exhibits no evident clusters. This would be the case if the classification results would be influ-

enced by local variables so that there would be significantly more correct or incorrect predictions in

one area.

Another way to analyse if a certain

direction of the survey area produces

better or worse classification results is

the coefficient of determination

between the X or Y-UTM coordinates

of the fields centroids and their classi-

fication confidence. Diagram 30 dis-

plays the results of this calculation.

As above in figure 26, the confidence

of incorrect classification results is

multiplied with -1 and is displayed in

red in figure 30. Both coordinates

show no signs of any correlation with

the classification confidence. Thus the

hypothesis of an absolute geograph-

ical influence can be rejected.

However, to further analyse the influ-

ence of geography, not only the absolute but also the relative position of the fields has to be con-

sidered. For that reason, a spatial point pattern analysis is conducted for each crop type of the total

dataset and the standard distance is calculated using Qgis.

74

Figure 30: Relation of position to classification confidence (own

figure).

5 550 000 5 600 000 5 650 000 5 700 000

-100

-80

-60

-40

-20

0

20

40

60

80

100

R² = 0,00

Relation north-south position to classification confidence

UTM Y coordinate

C
on

fi
d

en
ce

1620

134

560 000 600 000 640 000 680 000 720 000 760 000

-100

-80

-60

-40

-20

0

20

40

60

80

100

R² = 0,00

Relation of west-east position to classification confidence

UTM X coordinate

C
on

fi
d

en
ce

1620

134

30 000 35 000 40 000 45 000 50 000 55 000 60 000
0

10

20

30

40

50

60

70

80

90

100

Relation of standard distance of training samples to F1 score and quantity of samples

standard distance in m

F
1

sc
or

e

5 000

500

100

Quantity of
samples

Figure 31: Relation of standard distance of training samples to F1-score and quantity of samples

(own figure).

Figure 32: Relation of standard-distance of training classes with less and

more than 400 samples to F1-score (own figure).

75

Crop Type
Standard

distance in m

Grassland 57 836

Maize 56 288

Winter Barley 55 884

Summer Oats 52 841

Rape 51 808

Field Bean 51 604

Pea 51 106

Triticale 50 948

Summer

Barley
50 914

Grass - Clover

- Bur clover
50 861

Summer

Wheat
50 511

Potato 49 442

Winter Wheat 48 937

Winter Rye 40 147

Sugar Beet 35 628

Other Seeds

and Herbs
30 794

Table 14: Standard distance of
crop types of the total dataset
(own table).

30 000 35 000 40 000 45 000 50 000 55 000 60 000
0

10

20

30

40

50

60

70

80

90

100

R² = 0,04

Relation of standard-distance of training classes with more than 400 samples to F1 score

standard distance in m

F
1

sc
or

e

30 000 35 000 40 000 45 000 50 000 55 000
0

10

20

30

40

50

60

70

80

90

100

R² = 0,18

Relation of standard-distance of training classes with less than 400 samples to F1 score

standard distance in m

F
1

sc
or

e

R² = -0.18

R² = 0.04

Figure 33: Map of standard distances of selected crops (own figure).

The standard distance is the shortest distance of all field centroids to the arithmetic mean centre of

all field centroids. Table 14 lists the standard distance for all crop classes. The standard distance is

shown in the map above (cf. figure 33) for selected crops. Since the grassland class is the largest

class, with 6 263 samples, it is expected to be evenly distributed over the total survey area of

Thuringia. This even distribution is visually confirmed via the transparent, larger central circle in

figure 33, representing the standard distance of the grassland class. In contrast to this, are the stand-

ard distances of the sugar beets and the other seeds and herbs class. Both of these classes are locally

concentrated, the latter in particular with a standard distance of only 30.794m (cf table 14). This

clustering might influence the accuracy of these classes. Figure 31 displays the relation of the F1-

score to the standard distance and to the number of the samples. As it is to be expected, figure 31

shows that the larger the quantity of a class, the higher the standard distance. The general coefficient

of determination between the F1-score and the standard distance is 0. However, like in the last

chapter, there is a difference when considering the size of the classes, as shown in figure 32. For lar-

ger classes with more than 400 samples (cf. lower figure 32) there is only a very light correlation of

R² = 0.04. This is probably simply because a larger standard distance correlates with a larger class

76

size. Thus, the actual correlation is not so much the standard distance, but rather the quantity of

samples.

The correlation for smaller classes, with less than 400 samples, is reversed: R² = -0,18, i.e. the smal-

ler the standard distance, the better the F1 - score. The reason for this is an easier feature detection

of clustered small classes. The other seeds and herbs class, for example, exists only in two small

clusters, as shown by the green field point in figure 33. Such a small class is normally harder to de-

tect because the NN has less samples to learn its patterns. However, if all (or most) samples of such

a small class share very similar and strong local patterns it would help to distinguish this class from

other small classes which are much more spread out. Since the fields are clustered most input fields

are taken from a small area. Therefore, nearly all field polygons of such a clustered class share ex-

actly the same observation conditions, e.g. cloud coverage. This imprints the observation conditions

as distinct patterns within the class patterns detected by the NN. Such local patterns, which are actu-

ally not part of the crop’s features, could be cloud coverage or cloud shadows. Thus, the NN detects

these clustered and small classes more based on the sequence of local patterns, than the actual crop

features. An evenly distributed class, in contrast, contains different observation conditions, because

the samples are taken from a large area. The influence of such characteristic local patterns on the

classification accuracy will be analysed further in the next chapter.

In conclusion, this chapter showed: The absolute position of the input data has no general influence

on the classification results of the NN. The relative position of the input data only influences the

results for smaller classes, so that small classes with a low standard distance yield slightly better

results.

8.3.3. Influence of features

In this chapter the influence of the distinctiveness of the feature is analysed. “Variation between

classes is necessary for the DL models to be able to differentiate features and characteristics, and

perform accurate classifications.” (Kamilaris and Prenafeta-Boldú, 2018, p.73) The features of the

input data are the average pixel values of the different Sentinel 2 bands and the sequential progress.

Thus, the sequential pixel values represent the crop’s characteristic at a certain moment in time and

the development during the crop’s growth cycle. Some crops share very similar features, i.e. similar

growth development, colours, textures, pattern etc., while others are very distinct. Obviously, crops

with very similar features are much harder to differentiate, than those with clearly distinct features.

As mentioned in the previous chapter 8.3.2 - Influence of geography, another reason why a crop

77

class might display very distinct features is due to clustered training data, which results in local pat-

tern being learned by the NN.

To analyse the features of a crop type and the differences between two different crops, the input data

received by the NN was visualised in an image, here called: crop maps. Such a crop map is gener-

ated by preparing all training data as described in chapter 6 - Data preprocessing with python. The

final normalised 3d vector of one crop type consists of 3 axis: First, the Sentinel 2 bands second, the

time steps and third, the individual samples pixel values. By averaging the 3d vector along the third

axis, i.e. the pixel values, a 2d mean vector over all

samples is created. This 2d vector contains the mean

values of all samples and thus the general pattern as it

is processed by the NN to detect a class. Such a vec-

tor can be visualised with a Python library, such as

“mathplotlib” (“MATHPLOTLIB”) to create a crop

map. Figure 34 shows a crop map of winter wheat.

The date of the observation is recorded on the vertical

axis, whereas the horizontal axis shows the 14 used

Sentinel 2 bands (cf. table 4 and 5). The input date

column has been removed as it is simply a more or

less regular sequentially increasing number. Since the

data was normalised within each band (cf. chapter

6.3.6) all values are between 0 and 1. A darker area

thus represents a higher and a lighter area a lower

pixel value of the original Sentinel 2 band. The re-

peating horizontal darker bands show situations with a higher cloud coverage over all or most of the

survey area. Since it occurred over all (or most) of the survey area the cloud coverage is slightly im-

printed into the mean values of all winter wheat fields.

To visualise the distinctness between two crop types, two crop map vectors are subtracted from each

other and the absolute difference value is visualised. As an example base crop, to compare other

crop types against, winter wheat has been selected because its class size is large enough to not be af-

fected by local patterns and it is very similar to some crop types and at the same time very distinct

from others.

78

Figure 34: Crop map of Winter Wheat (own figure).

The following three different situations are presented in figure 35:

1. Winter Wheat vs. Maize, as an example of crop types with a high features variation and

without a single misclassification between each other during the classification of the evalu-

ation sample (cf. confusion matrix - table 12).

2. Winter Wheat vs. Winter Barley, as an example of two crop types with very similar features

and a lot of mix-up in both directions, i.e. winter wheat fields were predicted as winter bar-

ley and vice versa (cf. confusion matrix - table 12).

3. Winter Wheat vs. Other Seeds and Herbs, as an example of a crop type with a strong local

pattern, as described in chapter 8.3.2 - Influence of geography.

Figure 35: Feature difference between winter wheat and selected crops (own figure).

The higher the absolute mean difference between two crop classes the darker the area in figure 33

and the higher the feature variation. The visualisation of the difference between winter wheat and

maize displays a clear difference in April until the beginning of May for almost all Sentinel 2 bands.

This is the growth phase, when winter wheat is already growing but maize hasn’t been sown or

grown substantially, yet. In June until the beginning of July, there are less differences visible, as

both plants start to grow and to cover the whole field. From mid of July until mid of August a clear

difference, especially in the Sentinel 2 bands 9 and 10, is visible. During this time winter wheat is

already harvested while maize is still growing on the field. During August and September, the dif-

ference is becoming less and less as winter wheat field might be regrown with catch crops and

maize might already be getting harvested due to the very dry year of 2018. When comparing winter

79

wheat and winter barley the lack of feature variation compared to winter wheat and maize becomes

immediately evident. As winter wheat and winter barley share very similar seeding, growth and de-

velopment phases, there is much less difference between them as the almost white visualisation

shows. Thus, to differentiate between those two crops is obviously much harder than between

winter wheat and maize. Therefore, there are multiple mixed-up samples between winter wheat and

winter barley, whereas there are no such confusions between winter wheat and maize (cf. confusion

matrix table 12).

Lastly, the difference between winter wheat and other seeds and herbs in figure 35 demonstrates the

effects of local patterns. The input data of the other seeds and herbs class is clustered, as described

in chapter 8.3.2 - Influence of geography. This results in strong local patterns and variations, i.e. the

dark horizontal bands. These dark bands (cf. left crop map figure 35) represent cloud coverage

which covers the whole cluster due to its small expansion. The area of the other seeds and herbs

cluster (cf. figure 33) is 100% cloud covered on all available Sentinel 2 images from the 08.06.2018

to the 24.06.2018. Thus, the good classification accuracy of the other seeds and herbs class (cf.

table 13) despite the very few training samples, can be explained by its distinct features due to local

patterns.

In conclusion, as it is more difficult for humans to distinguish similar looking objects, it is similar

for NNs. The differences between the crop maps showed that classes with distinct or unique feature

variations, due to their growth cycle or due to local pattern, are easier to differentiate, are less

mixed-up and thus have better classification results.

8.3.4. Influence of quantity

The discussion of the influence of the field size and geography in chapter 8.3.1 and 8.3.2, gave an

indication that the quantity of samples within a class has an influence on the classification accuracy

for that class. To test this hypothesis the class frequency was set in relation to the F1-score. Figure

36 displays the result in relation to the standard distance (cf. chapter 8.3.2). The y-axis returns the

F1-score, the logarithmic x-axis the number of samples within that class and the size of the class

point represents the size of the standard distance. The distribution of the circles shows a logarithmic

positive correlation, i.e. a larger quantity of samples results in a better F1-score. The logarithmic

coefficient of determination is R² = 0.14 over all samples. In the top-left area of figure 36 three data

points are marked red. These are the three classes with significant lower standard distances than all

other classes. These three classes are other seeds and herbs, sugar beet and winter rye. The standard

80

distances of these three classes are 30 794, 35 628 and 40 147, while the standard distance of the

other 13 classes ranges from 48 937 to 57 836 (cf. table 14), thus there is a clear break for these

three classes. Furthermore, all three classes have fewer than 100 samples in the training-validation

dataset (cf. table 7).

 10 100 1 000 10 000
0

10

20

30

40

50

60

70

80

90

100

Relation of quantity of training samples to F1 score to standard distance

quantity of training samples (log scale)

F
1

sc
or

e

55 000

50 000

40 000

30 000

Standard distance in m

Figure 36: Relation of quantity of training samples to F1-score to standard distance (own figure).

Considering all these factors, there is a strong indication that theses classes are influenced by local

patterns as described in chapter 8.3.2 - Influence of geography and 8.3.3 - Influence of features. The

F1-score of these three classes is thus less influenced by their quantity, but rather by the location

and distribution of the fields. To reduce this wrongly correlated influence and to get a more accurate

number of the actual correlation between the sample size of the training data and the classification

result, the coefficient of determination was calculated again without the classes other seeds and

herbs, sugar beet and winter rye. The results are visible in figure 37. The R² value changes to 0.39.

This demonstrates the strong correlation between the quantity of samples and the classification ac-

curacy. It has to be noted that the correlation is calculated on a logarithmic scale, as visible by the

logarithmic x-axis in figure 36 and 37. This means, to improve the F1-score, the number of samples

in a class has to be increased exponentially. Furthermore, figure 37 also displays the strong variance

of the F1-score of classes with fewer than 100 samples, showing that the results from these classes

are less stable.

81

In conclusion, the quantity of training samples per class has a very strong influence on a class’ clas-

sification accuracy. Classes with less than 100 samples have to have very distinct features or they

will produce bad or unstable accuracy results. As a rough overview, based on the input data and

LSTM used in this thesis, the following quantity of samples is needed to produce reliable classifica-

tion results: 400 to 800 samples yield a F1-score of approximately 80 to 90%, 800 up to 5 000

samples in a class are needed to get a class F1-score of 90 to 95%, while 5 000 and more samples

deliver an accuracy of 95% and higher. These numbers are of course only rough estimates and are –

as shown in the previous chapter – influenced by multiple factors. Still, the following rough conclu-

sion can be drawn: To get stable, reliable results, thousands, preferably 5 000 or more samples of

each class are needed.

 10 100 1 000 10 000
0

10

20

30

40

50

60

70

80

90

100

R² = 0,39

Relation of quantity of training samples to F1 score
- without winter rype, sugar beet and other seeds and herbs class -

quantity of training samples (log scale)

F
1

sc
or

e

Figure 37: Relation of quantity of selected training samples to F1-score (own figure).

82

9. Discussion

This chapter takes a look a the results and discusses the research questions posed in chapter 1.2. The

evaluation of the LSTM model showed that is is possible to use multi-temporal and multi-dimen-

sional Sentinel 2 images as an input for a NN and to successfully classify different crop types. The

developed network achieved an overall accuracy of 92.36% on an independent dataset. The close

range of the k-fold splits training accuracies, ranging from 93.16% to 94.16%, with a mean of

93.57% and a standard deviation of only 0.003 corresponds with the accuracy rate of the evaluation

dataset. This demonstrated that the model is not overfitting. An accuracy of over 90% indicates a

generally good performance, comparable with other approaches. In their summary study Kamilaris

and Prenafeta-Boldú, 2018 find that: “In 19 out of the 24 papers that involved CA [Classification

Accuracy] as a metric, accuracy was high (i.e. above 90%), indicating good performance.” (Kamil-

aris and Prenafeta-Boldú, 2018, p.74). When comparing the accuracy of this thesis to other studies,

two factors have to be considered:

1. In this study, the input data was taken from polygons. Thus, the borders of the input objects

are not detected by the network. This improves the accuracy because the network does not

have to detect border pixels which often contain values from different actual land covers and

are harder to classify correctly.

2. Most of the studies include cover classes (such as water, forest, snow, sealed soil etc.) into

their overall classification accuracy. These cover classes are usually comparatively easy to

recognize (Rußwurm and Körner, 2017) and thus achieve a very high accuracy value of 98-

99%. Thus, when comparing the results of this thesis to other studies, it has to be noted that

no cover classes are classified in this approach, which would increase the general mean ac-

curacy.

Therefore, considering these two factors, a comparison of the classification accuracy with other

studies can only provide a limited rating of the models quality compared to others. Two studies with

similar LSTM networks and classification tasks are: Ienco, D. et al. (2017) and Rußwurm and

Körner (2017). Ienco, D. et al. achieve an overall accuracy of ca. 86.2% (Ienco, D. et al., 2017,

p.1688). Rußwurm and Körner list the different types of accuracies they achieved explicitly. With

their LSTM model they achieve a general accuracy of 84.4, for cover classes 98.5 and for crop

classes 76.2 (Rußwurm and Körner, 2017, p.556). These numbers show that the approach developed

83

in this thesis generally delivers comparable results and presents a way to classify crops with high

accuracy.

The thesis also tried to answer questions of how to differentiate between very similar classes (cf.

chapter 1.2). This challenge also occurred in other studies: “Further chance for confusion was ob-

served in the case of classes with [sic] are botanically related to each other and thus share similar

spectral and temporal features. For instance, the classes triticale, wheat, and rye have been com-

monly confused, as triticale is a hybrid of the latter two classes.“ (Rußwurm and Körner, 2017,

p.555). The developed LSTM model also confused classes, especially those with very similar fea-

tures. The confusion matrix (cf. table 12) presented all cases of mixed-up classes. Chapter 8.3.3 -

Influence of featuresexplained how similar the features of some classes are and how this affects the

accuracy. Even though there were class confusions, the individual class results in table 13 and the

high AUC score show that the developed approach, given enough training samples, can differentiate

classes with very similar features. An example of this are the precision scores of the very similar

classes: winter wheat (89%), winter barley (87%), winter rye (85%) and triticale (67%).

Further influence of the general and spatial characteristics of the input data was analysed in chapter

8.3 Evaluation of miss-classification. Subchapters 8.3.1 and 8.3.2 presented the influence of the

spatial properties: area size and absolute and relative position of the input data. The area size only

influenced classes with a low number of samples, while classes with a larger sample size were not

influenced. In addition, the absolute position didn’t influence the classification. The relative posi-

tion, however, did influence the prediction results. Clustered classes can worsen but also improve

accuracy due to local patterns. These local patterns can create misleading recognisable features, e.g.

due to cloud coverage, which are then wrongly attributed to the clustered class. This emphasises the

importance of well distributed training samples. Furthermore, the strong correlation between the

quantity of samples of one class and its classification accuracy was demonstrated on the individual

class accuracy results of the evaluation dataset. This stresses the importance of at least 1 000,

preferably more than 5 000 samples per class, to achieve good and reliable results.

The Chapter “6.3.4- Reduction of low information data within the time dimension” answered the

third research question (cf. chapter 1.2). A time window of 4 consecutive Sentinel 2 images was

used to search for the best available pixel values. With this approach different scenes for individual

fields can be used and thus more valid and actual ground pixel values can be extracted from the

84

available Sentinel 2 raster images. This resulted in a better and much faster classification of input

data in contrast to using all Sentinel 2 scenes.

Lastly, with the developed approach it is possible to classify vast areas using raster data, labelled

polygon-datasets and consumer-grade hardware (cf. chapter 1.2, 2.2 and 3.3). Whereas an area-wide

classification requires a hard to obtain, pixel-accurate labelled y dataset, the developed approach re-

quires only an easy to create or already availability labelled y polygon-dataset and, therefore, sim-

plifies the data preprocessing of aerial images for NNs substantially. The thesis demonstrated how

the average pixel values, generated from the field polygons and the Sentinel 2 raster data, can be

used as input x and the field polygon’s crop types as y data. A LSTM using this type of input data

will classify input polygons with an acceptable general and class-specific accuracy. Furthermore, by

using only polygons as input data the extent of the whole free state of Thuringia could easily be

trained by the network in ca. 2 hours. Therefore, even larger data samples could be trained within a

reasonable time. Assuming linear scaling and a similar dataset (considering the number of objects

per km²), a LSTM model for whole Germany (approx. 22 times the size of Thuringia), with approx.

220 000 data samples, could be trained in approx. 44 hours.

In summary, the results of the data preprocessing, the development and training of the LSTM and

the evaluation of the test dataset, described in chapters 6 to 8, answered the primary and secondary

research questions (cf. chapter 1.2) on a practical level and verified the advantages of this approach,

stated in chapter 1.3.

85

10. Conclusion

This thesis presented an approach to classify pre-selected objects on Sentinel 2 images with a

LSTM. The network proved to reliably predict an independent test sample with an acceptable gen-

eral and individual class accuracy. The thesis thus demonstrated a possible way to classify crops on

multi-spectral and multi-temporal Sentinel 2 images using a LSTM. Several points influencing the

accuracy have been discussed. The most influential point is the quantity of class samples. The main

advantages of the developed approach are the good accuracy, even with similar classes, the simple

structure of the y data and the low training time, which allows a rapid classification of a vast area.

The overall accuracy and robustness of the LSTM network could be further improved with the fol-

lowing steps:

1. Increased class samples: As the quantity of samples influence the class accuracies (cf.

chapter 8.3.4), increasing each class to a minimum amount of 1 000 samples (preferably

even more) would certainly improve the overall accuracy.

2. Well distributed classes: Since the two clustered classes influenced the detection of the ac-

tual class features, better distributed classes would further increase the model’s robustness,

against local and/or temporal anomalies and improve its prediction capabilities of new un-

seen data.

3. Increase area extent of samples: By using a larger area (e.g. data samples from all over Ger-

many) an increased amount of feature patterns for each crop type would be available. This

could contribute to a greater geographic area the network can be used on and also to a more

stable classification accuracy because local influences are less relevant.

4. Use multiple years as input data: The year 2018, for example, was an extremely dry year,

which resulted in a specific situation for crop growth and harvest (“BMEL – Harvest Re-

port”). By using input data from the growth cycle from multiple years such temporal anoma-

lies can be balanced. Thus, the LSTM would be more robust to classify crops in different

circumstances.

5. Use of additional input data: Other data sources that observe the fields in a different way add

a new information layer to provide information about the crop types. An example of this is

86

Sentinel 1 data. Adding radar data would provide a new view on the crop fields and thus

might increase the accuracy of the LSTM model.

Besides changes in the input data, the architecture of the NN itself could be changed to improve

classification quality. For the developed approach pre-selected polygons are required, these provide

clear borders for all objects. The developed LSTM model could also be used to classify whole aerial

images, by creating an equivalent table, not from the field polygons, but from the individual pixels.

This would, however, increase the complexity of the approach because each pixel has to be classi-

fied individually and a pixel-accurate labelled y dataset is required. Furthermore, a weak point of

such an approach would be that it does not consider contextual spatial information. To develop a

network which considers contextual spatial and sequential temporal information is a topic of current

and future research. One possibility, as proposed by Rußwurm and Körner, is “[…] a CNN encoder

prepended to the LSTM network […], as richer textural features would be extracted in a perceptive

field optimally chosen by the network.” (Rußwurm and Körner, 2017, p.557). Another possibility,

proposed by Pelletier et al., is to use a temporal CNNs. This DL approach “[…] applies convolu-

tions in the temporal dimension in order to automatically learn temporal (and spectral) features.”

(Pelletier et al., 2019, p.1).

Whatever approach will prove to be the best for future classifications, it is certain that multi-spectral

and multi-temporal sequential information will become more important for the classification of aer-

ial images. Since the world and all its features have a multi-spectral and multi-temporal nature, as

much of these information layers as possible have to be used to achieve the most accurate classifica-

tion results. The growing availability of such spatial data, one of the most prominent being the Sen-

tinel 2 satellite images, increases the possibilities for such image analysis. Thus, future DL networks

suitable for the classification of aerial images need to improve their abilities to understand the spec-

tral and temporal dimension of SITS.

87

11. Literature

Cresson, R., 2018. A framework for remote sensing images processing using deep learning

technique. CoRR abs/1807.06535.

Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C.,

Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., Bargellini, P., 2012.

Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote

Sensing of Environment Vol. 120, pp 25-36.

ESA, 2015. Sentinel-2 User Handbook (User Guide No. 1.2). European Space Agency (ESA), pp

48-60

online available at: https://sentinel.esa.int/documents/247904/685211/Sentinel-2_User_Handbook

Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep learning, Adaptive computation and machine

learning. The MIT Press, Cambridge, Massachusetts. Pp 1-26, 96-133, 164-200, 224-265, 367-390

Hochreiter, S., Schmidhuber, J., 1997. Long Short-Term Memory. Neural computation 9, pp 1735–

1780.

Ienco, D., Gaetano, R., Dupaquier, C., Maurel, P., 2017. Land Cover Classification via

Multitemporal Spatial Data by Deep Recurrent Neural Networks. IEEE Geoscience and Remote

Sensing Letters 14, pp 1685-1689.

Kamilaris, A., Prenafeta-Boldú, F.X., 2018. Deep learning in agriculture: A survey. Computers and

Electronics in Agriculture Vol. 147, pp 70–90.

Kussul, N., Lavreniuk, M., Skakun, S., Shelestov, A., 2017. Deep Learning Classification of Land

Cover and Crop Types Using Remote Sensing Data. IEEE Geoscience and Remote Sensing Letters

Vol. 14(5), pp 778-782.

Mitchell, T.M., 1997. Machine Learning, McGraw-Hill series in computer science. McGraw-Hill,

New York, p. 2

88

Mou, L., Ghamisi, P., Zhu, X.X., 2017. Deep Recurrent Neural Networks for Hyperspectral Image

Classification. IEEE Transactions on Geoscience and Remote Sensing 55, pp3639–3655.

Mueller-Wilm, U., 2018. Sen2Cor Configuration and User Manual (User Guide Issue 2). European

Space Agency (ESA).

Nielsen, M.A., 2015. Neural Networks and Deep Learning. Determination Press.

Web-book: http://neuralnetworksanddeeplearning.com/index.html (accessed 28.07.2019)

Pelletier, C., Webb, I.G., Petitjean, F., 2019. Temporal Convolutional Neural Network for the

Classification of Satellite Image Time Series. Remote Sensing Vol. 11- Issue 5

Petitjean, F., Kurtz, C., Passat, N., Gançarski, P., 2012. Spatio-temporal reasoning for the

classification of satellite image time series. Pattern Recognition Letters 33,pp 1805–1815.

Raschka, S., Mirjalili, V., 2018. Python machine learning: machine learning and deep learning with

Python, scikit-learn, and TensorFlow, Second edition, fourth release, Expert insight. Packt

Publishing, Birmingham Mumbai. pp 1-13, 55, 17-19, 120-123, 189-215, 380-450, 539-550

Rosenblatt, F. The Perceptron: A Perceiving and Recognizing Automaton, Cornell Aeronautical

Laboratory, 1957), pp 1-3

Rußwurm, M., Körner, M., 2017. Multi-temporal Land Cover Classification with Long Short-term

Memory Neural Networks. ISPRS International Journal of Geo-Information 7, pp 551-558.

89

12. Internet Sources

BMEL – Harvest Report, Bundesministerium für Ernährung und Landwirtschaft - Erntebericht 2018

https://www.bmel.de/DE/Landwirtschaft/Pflanzenbau/Ackerbau/_Texte/Ernte2018.html (accessed

03.10.2019 - website only available in german language).

Copernicus-Open-Access-Hub, ESA Copernicus Open Access Hub,

https://scihub.copernicus.eu/dhus/#/home (accesses 03.10.2019)

Dev-google-machine-learning: Google Developer Crash Course: Classification: ROC Curve and

AUC,

https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc (accessed

03.10.2019)

Gondaliya, A, 2014. Regularization implementation in R: bias and variance diagnosis.

http://pingax.com/regularization-implementation-r/ (accessed 03.10.2019).

NumPy: NumPy package for scientific computing with Python

https://numpy.org/ (accessed 03.10.2019)

NP-API-Res, SciPy.org Numpy-API:

https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html (accessed 03.10.2019)

NP-API-where, SciPy.org Numpy-API:

https://docs.scipy.org/doc/numpy/reference/generated/numpy.where.html (accessed 03.10.2019)

GDAL-S2: Geospatial Data Abstraction Library, Overview of Sentinel-2 Products,

https://www.gdal.org/frmt_sentinel2.html (accessed 03.10.2019)

GDAL–API: Geospatial Data Abstraction Library, Build of Virtual Datasets,

https://gdal.org/gdalbuildvrt.html (accessed 03.10.2019)

90

Karpathy, Andrej, 2015. The Unreasonable Effectiveness of Recurrent Neural Networks. Hacker’s

guide to Neural Networks,

http://karpathy.github.io/2015/05/21/rnn-effectiveness/ (accessed 03.10.2019).

KERAS, Keras: The Python Deep Learning library,

https://keras.io/ (accessed 03.10.2019)

KERAS – API – AboutModels, About Keras models

https://keras.io/models/about-keras-models/ (accessed 03.10.2019)

KERAS – API – SequentialGuide, Getting started with the Keras Sequential model

https://keras.io/getting-started/sequential-model-guide/ (accessed 03.10.2019)

KERAS – API – Sequential, The Sequential model API,

https://keras.io/models/sequential/ (accessed 03.10.2019)

KERAS – API – Optimizers, Usage of optimizers,

https://keras.io/optimizers/ (accessed 03.10.2019)

MATHPLOTLIB, Python 2D plotting library,

https://matplotlib.org/ (accessed 03.10.2019)

Olah, C., 2015. Understanding LSTM Networks. colah’s blog.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/ (accessed 03.10.2019).

Pandas, Pandas - Python Data Analysis Library,

https://pandas.pydata.org/index.html (accessed 03.10.2019)

Python – SF: Python Software Foundation,

https://www.python.org/ (accessed 03.10.2019)

91

Python – Datetime: Python Software Foundation - Python 3.7.4 documentation, Datetime

https://docs.python.org/3/library/datetime.html (accessed 03.10.2019)

QGIS – API: QGIS API Documentation of QgsZonalStatistics Class Reference,

https://qgis.org/api/classQgsZonalStatistics.html (accessed 03.10.2019)

SCIPY-API-Interpolate, SciPy.org Scipy-API:

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp1d.html (accessed

03.10.2019)

SCIKIT-LEARN: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011,

https://scikit-learn.org/stable/index.html ((accessed 03.10.2019)

SCIKIT-LEARN-API-LabelEncoder, https://scikit-learn.org/ - sklearn API,

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html

(accessed 03.10.2019)

SCIKIT-LEARN-API-MinMaxScaler, https://scikit-learn.org/ - sklearn API,

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html

(accessed 03.10.2019)

SCIKIT-LEARN-API-Metrics, https://scikit-learn.org/ - sklearn API,

https://scikit-learn.org/stable/modules/classes.html#sklearn-metrics-metrics (accessed 03.10.2019)

SCIKIT-LEARN-API-StratifiedKFold, https://scikit-learn.org/ - sklearn API,

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html

(accessed 03.10.2019)

S2-L2A Overview: ESA – Sentinel Online Technical Guide - Level-2A Algorithm Overview,

https://earth.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-2a/algorithm (accessed

03.10.2019)

92

S2-oUG: Sentinel 2 - Online User Guide

https://sentinel.esa.int/web/sentinel/user-guides (accessed 03.10.2019)

S2-oUG – Definitions: Sentinel 2 - Online User Guide – Definitions,

https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/definitions (accessed 03.10.2019)

S2-oUG - Product Naming Convention:

https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/naming-convention (accessed

03.10.2019)

TDS-AUC-ROC-Curve, Towards Data Science: AUC – ROC Curve,

https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5 (accessed 03.10.2019)

Wiki-AI-winter, Wikipedia: AI winter,

https://en.wikipedia.org/wiki/AI_winter (accessed 03.10.2019)

Wikimedia-ANN-Model, WIKIMEDIA – ArtificialNeuronModel,

https://commons.wikimedia.org/wiki/File:ArtificialNeuronModel_english.png (accessed

03.10.2019)

93

Annex I: Overview of the developed python scripts and their structure

The following diagrams show an overview of the different Python methods used for data

preprocessing, the training and evaluation of the LSTM. In addition to these descriptions, the actual

python files include detailed comments on the code (see Annex II). Some general data processes

which are not specific for this thesis, such as the manipulation of pandas data frames or the merging

of csv files, were implemented directly on the data with the python console and are not described

here.

94

95

96

97

Annex II: Python files used for data preprocessing, training and

evaluation of the LSTM

The python files developed for this thesis are attached digitally on memory stick to this thesis. The

general file structure is described in the following figure and in ANNEX I.

File structure of the developed python methods (source: own figure).

98

	1. Introduction
	1.1. Structure of the thesis
	1.2. Research questions and thematic classification of the thesis
	1.3. Current state of the art of the scientific research

	Part I: Theoretical basis
	2. Input data
	2.1. Sentinel 2 raster data
	2.2. Vector data of agricultural subsidies

	3. Methods and Tools
	3.1. Python
	3.2. Keras
	3.3. Hardware

	4. Neural Networks and Deep Learning basics
	4.1. Overview and history of machine learning and Deep Learning
	4.2. Artificial Neural Networks
	4.2.1. The concept
	4.2.2. The neuron
	4.2.3. The network
	4.2.4. RNN and LSTM networks

	Part II: Development of the LSTM Model
	5. Overview
	6. Data preprocessing with python
	6.1. Data preprocessing of the vector data
	6.2. Data preprocessing of the raster data
	6.3. Data preprocessing of the numerical data
	6.3.1. Creation of a numerical table from the input vector and raster data
	6.3.2. Splitting of the data
	6.3.3. Reshaping of 2d table into a 3d array
	6.3.4. Reduction of low information data within the time dimension
	6.3.5. Interpolation of missing data
	6.3.6. Normalisation of the data
	6.3.7. Encode Y

	7. Development and training of the LSTM model
	7.1. Model selection
	7.2. Training and architecture of the LSTM

	8. Evaluation of the developed LSTM neural network
	8.1. General classification scoring metrics
	8.2. Classification metrics per individual class
	8.3. Evaluation of miss-classification
	8.3.1. Influence of size
	8.3.2. Influence of geography
	8.3.3. Influence of features
	8.3.4. Influence of quantity

	9. Discussion
	10. Conclusion
	11. Literature
	12. Internet Sources
	Annex I: Overview of the developed python scripts and their structure
	Annex II: Python files used for data preprocessing, training and evaluation of the LSTM

