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1. Introduction 

Grassland ecosystems are of the highest importance in terms of ecological factors such as floral 

and faunal biodiversity and the global carbon sink, but also regarding economic considerations like 

their major role in feed source for livestock. With 31.5%, or approximately 42 million square kilo-

metres, grassland claims the biggest share among all land cover classes of the world (tree covered 

areas: 27.7%; bare soil: 15.2; cropland: 12.6%; without Antarctica). In a manner of speaking about 

Europe, 8% of the total area is declared as grassland and about 35% of the agricultural area can be 

assigned to various types of grassland (ALI et al. 2016: 1ff.; ISSELSTEIN et al. 2015: 8f.; LATHAM 

and CUMANI 2014: 23; SCURLOCK and HALL 1998). 

Overgrazing, agricultural intensification and an increasing urbanization are endangering these val-

uable habitats and require state monitoring as well as regular monitoring of changes and their de-

velopment. Special challenges for grassland mapping are, in addition to the different types of use, 

regional and local influences such as topographic circumstances, anthropogenic impact and cli-

matic influences like dry periods (ALI et al. 2016; ISSELSTEIN et al. 2015; SCURLOCK and HALL 

1998). 

In terms of usage for monitoring and analyzations of grasslands as a fundamental land cover, remote 

sensing techniques, including aerial photography, satellite-based systems and radar sensors, devel-

oped to an essential instrument over the past 30 years. With the evolution of sensors over time, 

from moderate over high to very high resolution, also the appropriation of their data and fields of 

applications have developed. On a global to local scale these applications and methods include 

classic land cover/use classification, change detection and monitoring, production evaluation, graz-

ing management assessment up to predictions of grassland herbage yields and carrying capacity. 

Therefore, various remote sensing techniques take advantage of the multi spectral sensors ability 

to process data of several bands (wavelengths) along the electromagnetic spectrum. Regarding the 

analysis of grassland, and vegetation in general, especially wavelengths in near infrared and red 

ranges are relevant due their capability of spectral response to chlorophyll activity. This character-

istic is particularly used for the calculation of (vegetation) indices like the normal difference vege-

tation index (NDVI) (NAN 2001; TUELLER 1989). 

Besides optical remote sensed data, several approaches to estimate and analyze characteristics of 

grassland include the usage of radar derived data. Especially for the implementation of land cover 

products, a combination of optical and radar sensors has developed to a common procedure regard-

ing compensating disadvantages of each sensor, resulting in additional value for further investiga-

tions and derivations regarding grassland applications (DUSSEUX et al. 2014; HONG et al. 2014; 

NICULESCU et al. 2018b). 

Within EU´s earth observation program, managed and coordinated by the European Commission 

(EC), Copernicus Services provide environmental information in multiple thematic departments 

including land, marine, atmosphere and emergency management largely based on remote sensed 

satellite data. In the sector of Copernicus Land Services, the EcoLaSS project (Evolution of Coper-

nicus Land Services based on Sentinel data) aims to develop, enhance and implement methods, 

processes and prototypes regarding land cover (LC) and land use (LU) products using dense Sen-

tinel-satellite time series including synthetic aperture radar (SAR) and multispectral optical data. 
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Within this context, EcoLaSS-products cover LC/LU prototypes in thematic areas of agriculture, 

forest, imperviousness and grassland with key objectives of methodological development of inno-

vative processes and their embedding in an operationalization framework (DLR 2020; EUROPEAN 

COMMISSION 2019; JOANNEUM RESEARCH 2019: 6f.). 

This thesis is written as part of EcoLaSS-project, aiming for theoretical and practical input for an 

improved permanent grassland identification and its assessment of grassland management intensity 

in ongoing and future Land Cover and Land Use products. 
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2. Theoretical Background 

This chapter provides an overview of technical and theoretical principles and terms regarding sat-

ellite based remote sensing concepts, both optical and SAR-derived, pertinent to the thesis´ pur-

pose. Furthermore, availed classifiers and the approach of land cover classifications are presented 

and outlined. 

2.1. Remote Sensing and Space Imaging 

The concept of remote sensing includes all processes of obtaining information about an area or 

objective without direct contact of the measuring device and the investigated object. Referring to 

the Canadian Centre of Remote Sensing it defined as 

 

“(…) the science (and to some extent, art) of acquiring information about the Earth's sur-
face without actually being in contact with it. This is done by sensing and recording re-

flected or emitted energy and processing, analyzing, and applying that information.” 

(CCRS n.d.: 5) 

 

The sensor or measuring device is in general not platform-bound and can be mounted on a plane, 

satellite or a terrestrial stand. First attempts of space imaging took place with the launches of the 

first satellites during cold war’s space race in the 1950s and 1960s. Primary use was given by 

military interests on sides of the US and former UDSSR. For the civil sector, satellite-based prod-

ucts got available in the 1960s with manned space programs and the first meteorological satellites 

(CRACKNELL 2018: 8393ff.; LILLESAND et al. 2008: 1ff; 397ff.).  

A common differentiation of remote sensing systems takes place in active and passive systems. 

Regarding their capability of sending and/or emitting radiation, a sensor or a system is assigned to 

one of these main groups. For both fractions, information is obtained along the electromagnetic 

spectrum. For remote sensing sensors in general, specific regions of the spectrum, ranging from 

ultraviolet to microwave, are particularly useful and, as shown in Figure 1, visible radiation (0.4-

0.7µm) represents just a small range along the electromagnetic spectrum. Therefore, with remote 

sensing sensors it is possible to obtain additional information not detectable by the human eye. 

Such information can be collected e.g. in wavelengths of 0.7-1µm, respectively the infrared region 

of the electromagnetic spectrum. For example, due to high reflectance of chlorophyll at IR-wave-

lengths, this range is especially used for applications with the need of information about vegetation. 

On the other hand, longest wavelengths used in remote sensing are microwaves with 1mm up to 

metres with applications within fields of e.g. soil moisture estimation, snow studies and flood map-

ping  (CALLA 1990: 343f.; CCRS n.d.: 9ff.; KHORRAM et al. 2016: 11ff.).  
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Figure 1: The electromagnetic spectrum (ALBERTZ and WIGGENHAGEN 2009). 

 

Referring to KHORRAM (2016: 21ff.) and LEVIN (1999: 38ff.) further differentiation of satellite 

based remote sensed data can be obtained with the following characteristics: 

a. Spatial resolution: Referring to the resolution ground-truth represented in one pixel of the 

recorded image; e.g. one pixel represents 10x10m.  

b. Spectral resolution: Range on the electromagnetic spectrum, which can be recorded by the 

sensor; e.g. panchromatic, multispectral, hyperspectral. 

c. Temporal resolution: Timespan of the satellite to revisit the same location on earth’s sur-
face for the image; e.g. Landsat-8: 16 days; Sentinel 2A/B: 5 days. 

d. Radiometric resolution: Dynamic range of the sensors sensitivity regarding the electromag-

netic reflectance specified in bits providing detailed information (grayscale); e.g. 8-bit, 12-

bit, 16-bit.   

   

2.1.1. Optical  

Satellite systems with sensors operating in a wavelength range of 0.3-1.4µm are categorized as 

optical sensors. Besides the wavelengths of visible light, UV (ultra-violet), near- and mid IR (in-

frared) wavelengths are included (Figure 1). Optical sensors measure radiation emitted on a natural 

way, mostly by the sun, and reflected from the earth´s surface. Due to their dependency of not-self-

emitted radiation, optical sensors are generally also categorized within the group of passive remote 

sensing systems (CCRS n.d.: 19; KHORRAM et al. 2016: 13f; LILLESAND et al. 2008: 392ff.). 

As outlined, optical sensors have the ability to process the reflected radiation from a given surface. 

Each surface shows its individual amount of reflected radiation at specific wavelengths, resulting 

in a spectral signature or spectral response curves for each surface (Figure 2). Especially the high 

response/peak of vegetation at near-infrared wavelengths is a characteristic strength of optical re-

mote sensed data and is reconsidered in various discussed studies (s. chapter 1 and chapter 3). 
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Figure 2: Examples for spectral signatures (KHORRAM et al. 2016: 70). 

 

2.1.2. RADAR/SAR 

RADAR/SAR (radio detection and ranging/synthetic aperture radar) is categorized as an active 

remote sensing method due to the capability of emitting electromagnetic pulses by itself. SAR itself 

is a specific form of RADAR technology, using the flight path of the satellite/aircraft to simulate 

an oversized antenna capable to generate high resolution imagery without the physical necessity of 

an antenna with such dimensions by increasing the azimuth resolution at minimum altitude. Con-

sisting of a transmitter, a receiver and an antenna, its essential purpose is a distance measuring 

device. Radiation is sent threw an antenna at regular intervals or pulses, reflected on earth’s surface 
and a sensor records the intensity and operational time of returned radiation respectively the 

backscattered echo (CCRS n.d.: 71; KHORRAM et al. 2016: 36; WOLFF n.d.). 

An essential advantage of RADAR and SAR-imagery in comparison to optical data is the inde-

pendency of day/night cycle and its capability to be resistant in terms of cloud occurrence or other 

atmospheric scattering. Compared to visible and near-infrared region of the electromagnetic spec-

trum, the microwave region is considerable larger with wavelengths ranging from sub-centimeters 

to meters. Depending on the signal´s wavelength, the RADAR/SAR radiation interacts in different 

ways with the investigated object resulting in versatile applications for different microwave bands. 

The main fields of those applications are in vegetational, land monitoring and maritime themes and 

topics. The higher the wavelength, the deeper its ability to penetrate the given surface; e.g. a 

shortwave X-band (~3cm wavelength) interacts mainly with vegetation´s canopy, while a long 

wavelength L-band (15-30cm) is able to interact with tree trunks and underneath lying soil (Table 

1) (CCRS n.d.: 71, 96f; KHORRAM et al. 2016: 36,148f.; WOLFF n.d.). 
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Table 1: RADAR bands and wavelengths (MOREIRA et al. 2013: 7) 

Band Wavelength (cm) 

Ka 0.75 – 1.2 

Ku 1.7 – 2.5 

X 2.5 – 4 

C 4 – 8 

S 8 – 15 

L 15 – 30 

P 60 - 120 

 

From the sensor recorded reflected radiation is summarized in the process of backscattering. Radar 

backscatter is mainly affected by the incident angle and roughness of the surface of observed area 

or object. Usually, in radar images a higher amount of backscatter is symbolized with brighter tones 

than low backscatter. As shown in Figure 3, a rough surface (a), like vegetation, scatters the energy 

mostly equally in all directions (diffusely) leading to significant backscattering. A smooth surface 

(b) will reflect specular, leading to a small amount of energy returned to the sensor, respectively a 

low backscatter. Corner reflection (c) occurs especially in urbanized areas and is a typical charac-

teristic of buildings and other man-made-structures but can also be seen in mountainous areas with 

rock and cliff formations. Due to the ‘double bounce’ and nearly right angles, most of the energy 
is directly reflected to the sensor leading to a very bright occurrence of the observed object. (CCRS 

n.d.: 106ff; LILLESAND et al. 2008: 159ff). 

 

 
Figure 3: Radar reflections. a) diffusely; b) specular; c) corner (LILLESAND et al. 2008: 660). 

 

SAR´s backscattered information is also affected by the sensor’s polarization. Referring to the ori-

entation of the emitted radiation´s electric field, RADAR/SAR sensors can provide multiple polar-

ization modes. This can be a single polarization (vertical or horizontal) or dual polarization depend-

ing on the sensors ability to send and receive the microwave radiation, following in these possible 

combinations of polarizations (a schematic illustration is provided in Figure 4):   

- HH: sending in horizontal plane and receiving in horizontal plane 

- HV: sending in horizontal plane and receiving in vertical plane 

- VV: sending in vertical plane and receiving in vertical plane 

- VH: sending in vertical plane and receiving in horizontal plane 
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Furthermore, radar systems can be categorized in their capability to transmit and receive radiation 

of specific polarizations leading to following sensor characteristics: 

- single polarized: HH or VV (or possibly HV or VH) 

- dual polarized: HH and HV, VV and VH, or HH and VV 

- alternating polarization: HH and HV, alternating with VV and VH 

- polarimetric:  HH, VV, HV, and VH 

Depending on the transmitted and received radiation´s polarization, the interaction with the sur-

face, respectively the backscatter, is affected, leading to slightly different information depending 

on chosen polarization. This characteristic can help to improve the delimitation and identification 

of observed features (CCRS n.d.: 97f, 115ff; LILLESAND et al. 2008: 664 f.; VOORMANSIK et al. 

2016; VOORMANSIK et al. 2013).  

 

 
Figure 4: Scheme of horizontal and vertical polari-

zation (CCRS n.d.: 117). 

 

In comparison to optical sensors and due to their physical characteristics, SAR-sensors make use 

of the RADAR/SAR-typical side-looking acquisition. Figure 5 shows the scheme of a side-looking 

system. (A) represents the incident angle between the radar beam and the ground surface which 

increases by moving along (D) the ground range distance. (B) refers to the look angle. In near range, 

the viewing geometry is steeper than in far range, where it is considered shallower. The slant range 

distance (C) is defined by the distance (line of sight) between the sensor and each captured target 

located on the ground. Because of this characteristics, including side-looking acquisition, the dy-

namic slant range and incident angles, the viewing geometry and spatial resolution of SAR-derived 

products are different from optical products and contain compressed and stretched areas (Figure 6) 

with need to be processed depending on considered application (CCRS n.d.: 102f.; LEVIN 1999: 

136f.).  

 

 



 
 
 

 Theoretical Background 

 
 

 
-8- 

 
 

 

 
Figure 5: Scheme of side-looking SAR acquisition 

(CCRS n.d.: 100) 

 
Figure 6: Comparison of slant-range geometry 

(top) and ground-range geometry (bottom) (CCRS 

n.d.: 102). 

 

Depending on further usage of the SAR image, GRD (Ground Range Detected) and SLC (Single 

Look Complex) products are available. GRD-products consist of focused, multi-looked (speckle-

filtering) and projected SAR-data. Delivered pixel-information contains amplitude-values; phase 

information is not available for GRD-products. Due projection and algorithm application, the re-

sulting image is available in square resolution to further usage. SLC-products consist of focused, 

geo-referenced SAR-data contributed in slant-range geometry (line of sight from radar to each point 

of reflectance). Phase information is preserved in SLC-products (EUROPEAN SPACE AGENCY ESA 

2000a). 

 

Furthermore SAR-products can show additional distortions leading to relief displacements caused 

by its mentioned characteristics. These are foreshortening, layover and shadow effects. 

 

Foreshortening 

Relief displacement of foreshortening occurs, when the radar beam records a tall feature tilted to-

wards the sensor. Because of the slant-range distance, the beam reaches the bottom of the object 

before the object´s top. Figure 7 shows foreshortening displacement of slope A to B. Slope A-B 

will be represented compressed and therefore incorrectly. As shown, the foreshortening-effect de-

pends on the angle of the hillside as well as the incidence angle of the radar beam (CCRS n.d.: 

102f; LEVIN 1999: 136f.)  
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Figure 7: Illustration of foreshortening (CCRS n.d.: 

103). 

 

 
Figure 8: Radar image with foreshortening 

(bright features) (LEVIN 1999: 137). 

 

Layover 

Layover-effect occurs when the radar beam reaches the top a high object before it reaches its bottom 

so the signal from the top is recorded before the base reflection. The top of the feature will be 

displaced towards the sensor and shows a displacement from its ground position. Figure 9 shows 

an illustration of the layover-effect. The top, B, falls over the base, A, towards the sensor resulting 

in relief displacement as shown in the radar image in Figure 10 (CCRS n.d.: 104; LEVIN 1999: 

137).  

 

 
Figure 9: Illustration of layover(CCRS n.d.: 104). 

 
Figure 10: Radar image with layover (LEVIN 

1999: 137). 

 

Shadow effects 

Both discussed effects, foreshortening and layover, can generate radar shadow. This occurs when 

the radar beam is not able to illuminate a surface and therefore a reflectance of the surface is not 

given. An illustration of shadow effects and its dependency on the incident angle and the height of 

the recorded object is shown in Figure 11. A radar image with given effect is shown in Figure 12. 

In this example, with illumination from the left, shadow effects appear as black in the mountainous 

areas. 
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Figure 11: Illustration of shadow effect (CCRS 

n.d.: 105). 

 
Figure 12: Radar image with shadow effect 

(LEVIN 1999: 138). 

 

SAR Interferometry 

Every SAR signal incorporates amplitude and phase information, meaning the strength of the radar 

response and the fraction of one wave circle (single SAR wavelength). The idea of SAR Interfer-

ometry (InSAR) is the phase comparison of two SLC radar images acquired from a slightly different 

position or at a different time. This is obtained by a slight offset of the waves resulting in a phase 

difference after coregistration. Since every pixel contains range information, small differences in 

scales up to of millimeters can be detected. Given this capability, applications using InSAR include 

geophysical topics like glacier movements, ground deformations, seismic deformations and vol-

canic activities. Figure 13 shows an example of an interferogram used for ground deformation. In 

a further step, the correlation between several acquisitions can be calculated resulting in their co-

herence. With coherence calculations, land cover classification and change detection can be ob-

tained. Due to correlation calculation, coherence estimation also allows to detect characterizations 

of vertical structures from volume scatterers like vegetation. Figure 14 shows a cultivated parcel 

with low coherence (left) and high coherence (right) indicating land management activities (CCRS 

n.d.: 114ff.; EUROPEAN SPACE AGENCY ESA 2000b; LEVIN 1999: 145ff.; MOREIRA et al. 2013: 

6ff; 19ff.). 

 

 
Figure 13: Example of interferogram (LEVIN 1999: 

146). 

 
Figure 14: Example of coherence; left: low coherence; 

right: high coherence (TAMM et al. 2016: 10). 
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2.2. Sentinel Satellite Program 

Initiated by the European Space Agency (ESA), Sentinel satellite programs include various earth 

observation missions within European earth observation program Copernicus. In collaboration of 

the European Environment Agency (EEA), ESA and EU-countries, the aim of Copernicus is to 

establish an observation infrastructure containing satellites and in situ sensors providing infor-

mation related to environmental topics e.g. atmospheric-, marine- and land observation, climate 

change and issues regarding security and emergency response (EUROPEAN COMMISSION 2016; EU-

ROPEAN SPACE AGENCY ESA 2000c).  

The Sentinel satellite program consists of 6 missions in total (Sentinel 1, 2, 3, 4, 5, 5P), based on 

two satellites per mission. Each mission and sensor is defined with a specific purpose and sensor 

characteristic (EUROPEAN SPACE AGENCY ESA 2000c). 

An overview of the entire Sentinel-mission is shown in Table 2. Regarding research undertaken in 

this thesis (chapter 4) and used data (chapter 5.1), the focus is set to Sentinel-1 and Sentinel-2 

sensors, which are further discussed. 

 
Table 2: Sentinel Missions; Overview (EUROPEAN SPACE AGENCY ESA 2000c; EUROPEAN SPACE AGENCY ESA 2000d; 

EUROPEAN SPACE AGENCY ESA 2000e). 

Mission Characteristics/Application Launch 

Sentinel-1 - RADAR (SAR) imaging sensor 

- Polar orbiting 

- land and oceanic services 

S-1A: 2014 

S-1B: 2016 

Sentinel-2 - MSHR optical imaging sensor 

- Polar orbiting 

- land services (monitoring) 

S-2A: 2015 

S-2B: 2017 

Sentinel-3 - Multi-sensor mission 

- marine observation (sea surface topography, 

sea and land surface temperature) 

S-3A: 2016 

S-3B: 2018 

Sentinel-4 - UVN-sensor on Meteosat-satellite 

- geostationary 

- atmosphere / air quality monitoring 

Scheduled 2021 

Sentinel-5 - UVNS-sensor on MetOp-satellite 

- polar orbiting  

- atmosphere / air quality monitoring 

Scheduled 2021 

Sentinel-5P - UVNS-sensor on MetOp-satellite 

- polar orbiting 

- atmosphere / air quality monitoring 

2017 

 

2.2.1. Sentinel-1 

Sentinel 1 mission consists of a pair of satellites operating with a C-band synthetic aperture radar 

imaging sensor (wavelength 3,75 – 7,5cm) with the purpose of land and ocean monitoring.  
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The constellation of Sentinel-1A and Sentinel-1B operates in four acquisition modes (Figure 15), 

namely 

- Stripmap (SM): 80km swath, one of six beams used; 

- Interferometric Wide swath (IW): main operational mode, 250km swath, TOPSAR-tech-

nique: 3 sub-swaths with a series of bursts (Figure 16); 

- Extra-Wide swath (EW): 410km swath, TOPSAR-technique: 5 sub-swaths; 

- Wave (WV) 

(EUROPEAN SPACE AGENCY ESA 2000f) 

 

Modes SM, IW and EW are available in single (HH or VV) dual polarization (HH+HV or VV+VH) 

while WV mode is delivered with single polarization (HH or VV) only. For each mode, products 

are deliverable at three levels of processing – level 0, level 1 and level 2. 

- Level-0: L-0-Raw data contains compressed, unprocessed SAR imagery. All advanced 

products are based on L-0 SAR data; 

- Level-1: Obtained from L-0-products by pre-processing, doppler centroid estimation (pol-

ynomial fitting) and focusing. Products of L-1-processing are SLC or GRD-products; 

- Level-2: Derived from Level-1 and used for applications regarding information about wind, 

wave and currents.  

   (CCRS n.d.: 96; EUROPEAN SPACE AGENCY ESA 2000f).  

 

Figure 15: Sentinel 1 acquisition modes (EURO-

PEAN SPACE AGENCY ESA 2000f). 

Figure 16: Sentinel 1 TOPSAR-technique (EUROPEAN SPACE 

AGENCY ESA 2000f). 

 

2.2.2. Sentinel-2 

Within the Copernicus program, Sentinel-2 is a pair of satellites equipped with a wide-swath, high 

resolution multi spectral instrument (MSI) with its purpose of earth observation. With the pair of 

Sentinel-2A and Sentinel-2B, a temporal resolution of five days can be achieved. Using one of the 

satellites, the timespan is expanded to a revisiting time of 10 days. Sentinel-2-MSI products are 

delivered in 100x100km tiles and are available without limitations at processing levels 1C and 2A. 

Processing level 1C (L1C) includes radiometric and geometric corrections with ortho-rectification 
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and spatial registration on a global reference system, while level 2A (L2A) is provided with speci-

fications of L1C including an additional atmospheric correction and scene classification (EURO-

PEAN SPACE AGENCY ESA 2000g; EUROPEAN SPACE AGENCY ESA 2000h). 

Table 3 gives an overview of the spectral bands, wavelengths and spatial resolution of Sentinel-2A 

and 2B sensor. Bands with the highest spatial resolution of 10 metres are assigned to visible wave-

lengths blue (band 2), green (band 3), red (band 4) and near-infrared wavelength (NIR) with band 

8. Bands with 20 metre resolution are located in VNIR and SWIR-domains and are especially used 

in vegetation-, snow-, ice – and cloud detection, while bands with resolution of 60m are mainly 

used for atmospheric corrections (EUROPEAN SPACE AGENCY ESA 2000i).  

 
Table 3: Sentinel 2 A/B Spectral Bands (EUROPEAN SPACE AGENCY ESA 2000g). 

Spectral Band Center Wavelength (nm) Spatial Resolution (m) 

Band 1 443 60 

Band 2 490 10 

Band 3 560 10 

Band 4 665 10 

Band 5 705 20 

Band 6 740 20 

Band 7 783 20 

Band 8 842 10 

Band 8a 865 20 

Band 9 945 60 

Band 10 1380 60 

Band 11 1610 20 

Band 12 2910 20 

 

2.3. Land Cover Classification 

With the launch of various satellite programs, equipped with specific sensors for monitoring pur-

poses, new approaches for land cover mapping with precise results on a regularly basis have been 

allowed. Especially models on a global, continental and regional scale benefit from advantages of 

satellite and/or airborne based remote sensed data. Traditional methods of land cover/usage map-

ping have been based on field surveys, which are, in comparison to new methods, uneconomical 

and time-consuming with much higher resource input (ARORA 2010). 

Within the process of remote sensing derived digital image classification techniques, principles 

include an assignment of each pixel to a defined class based on given values of a pixel, e.g. reflec-

tance of specific wavelengths. Pixel based classification models can be differentiated based on their 

training process in supervised and unsupervised classifications. For a supervised classification, 

manual input in form of sample data or thresholds for desired classes are required. For the further 

classification process, characteristics of samples are crucial and have to be well chosen. Examples 

for supervised classifiers are Minimum Distance, Maximum Likelihood or Support Vector Ma-

chines classifiers. On the other hand, the unsupervised classification, there is no need for direct 
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human interaction. The classes depend solely on statistical clustering in the given feature space e.g. 

at K-means-clustering or ISODATA classifier (ARORA 2010; LILLESAND et al. 2008). 

 

2.3.1. Random Forest 

In the field of remote sensing, random forest is a well-established classifier for not only land cover 

classification. Numerous studies show its fields of application in data classifications of multispec-

tral, LiDAR, thermal, radar, hyperspectral and multi-source data. Random forest is a supervised 

ensemble classifier, using predictions. As a combination of tree classifiers, each tree is generated 

by drawing a subset of training samples. Then, each classifier is trained on a random set of training 

samples. The process of implying a classification defined by a random subset of samples is called 

bagging. Its counterpart, using iterations over the whole sample ensemble, is called boosting. Ap-

proximately two thirds of the samples are used for the classification respectively to train the trees. 

Random forest uses the remaining third of samples for a cross-validation to measure the quality, 

respectively accuracy, of the model. Compared to other classification methods, random forest per-

forms better and faster in most cases with multidimensional (hyperspectral) and multisource data 

than other classifiers (BELGIU and DRĂGUŢ 2016; PAL 2003; TSO and MATHER 2009: 215f.). 

 

2.3.2. Support Vector Machine 

Support Vector Machine (SVM) is a supervised statistical classification method. The idea of SVM 

is the separation of the input data in several predefined classes by constructing a hyperplane as a 

decision boundary. In its original form, used as a linear binary classifier, the hyperplane is set as 

the maximum margin between the classes respectively the sum of the distances from the closest 

points of each class to the hyperplane. The closest points of each class to the hyperplane define the 

margin and are therefore called ‘support vectors’ (Figure 17). For multi-class classifications, vari-

ous adaptions of SVM have been introduced and show, as well as the original linear binary SVM, 

better results regarding performance than other established classification methods like maximum 

likelihood classifier (MOUNTRAKIS et al. 2011; PAL 2003: 218f.; TSO and MATHER 2009: 125).   

 

 
Figure 17: Illustration of SVM (MOUNTRAKIS 

et al. 2011: 248). 
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2.3.3. Accuracy Assessment 

As a method to validate the results of a completed (landcover) classification, a well-established 

approach is the usage of confusions matrices. Especially for remotely sensed derived classification 

results this simple yet efficient technique is widespread and often used for accuracy assessment. 

An example of such table including a confusion matrix is shown in Figure 18.  To obtain a confu-

sion matrix, classified data is compared to ground truth, respectively reference data, resulting in a 

percentage value of correctly classified data. This is derived by summarizing the values of the major 

diagonal, expressed by classified pixels which are also assigned to the given class in the reference 

data, divided by the total numbers of classified pixels. Showing the general agreement between two 

datasets, the result is also named overall accuracy. For an in-depth analysis of the classification, 

each individual class can be evaluated by dividing the correctly classified pixels in the given cate-

gory by either the total pixels of the congruent column or row. Results of this calculations lead 

either to producer´s accuracy (column) or user´s accuracy (row). Computing producer´s accuracy 

gives information about the probability of reference pixels being classified correctly, respectively 

an omission error´s determination. In another way, user´s accuracy provides information about the 

probability of a classified pixel actually representing the given class in the reference data, resulting 

in a value of commission error (CONGALTON 1991; STORY and CONGALTON 1986).  

 

 

 
Figure 18: Example of a confusion matrix including Producers and Users Accuracy (STORY and CONGALTON 1986: 2). 
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3. State of the Art 

As outlined in chapter 1, research of grassland in combination and/or applied with remote sensing 

techniques is a well-established field with more than 30 years of experience given by researchers 

and experts. Hence numerous publications with specific in-depth specializations about this topic 

exist. This chapter gives a short overview of current research regarding relevant components for 

this thesis. 

 

Approaches for land cover classification, especially in terms of using random forest classifier can 

be found e.g. at PAL (2003). His research shows advantages and disadvantages using random forest 

as a classifier for land cover classification. In his study, PAL presents a comparison of decision tree 

classifiers and random forest. Results show a nearly equal accuracy of compared classifiers. 

GISLASON et al. (2006) explored random forest classifier for land cover classification and its out-

comes for multi-source classifications. In their study, they used Landsat multi spectral data, eleva-

tion data, slope data and aspect data with the result of outperforming the compared CART-classifier 

(classification and regression tree) in terms of accuracy and speed. 

A comparison of random forest with SVM (support vector machine), neural networks, minimum 

distance, maximum likelihood and ID3 (decision) tree classifier is provided by KULKARNI and 

LOWE (2016). Results show an outperforming of all other classifiers given a large number of ho-

mogeneous training samples. However, problems and error increase occur with steep slopes in 

combination with image acquisition time resulting in shadows. In these areas SVM and neural net-

work classifiers could achieve better results than random forest. 

 

With the launch of ESA´s Sentinel satellites, exploitation of free available satellite data increased 

extraordinarily.  

NICULESCU (2018a) presents various approaches using Sentinel-1 data for wetland mapping in the 

Danube delta. Subsequently, a combination of Sentinel-1 and Sentinel-2 data is used for classifica-

tion through random forest classifier. His results show a successful approach of change detection 

regarding wetland restoration. 

Suitability of combined Sentinel-1, Sentinel-2 and SPOT-6 satellite data for vegetation monitoring 

is demonstrated by NICULESCU et al. (2018b). Different approaches including Sentinel-1 time series 

stacking, SAR images combined with Sentinel-2-derived vegetation indices and combinations of 

SPOT-6 and SAR data have been carried out. In this study, classification with time series stacking 

of Sentinel-1, Sentinel-2 and SPOT-6 achieved best results with overall accuracies >90%. 

With focus on land use in winter respectively winter vegetation in France, DENIZE et al. (2018) 

present research undertaken with Sentinel-1 and Sentinel-2 data individual and combined. Combi-

nations of time series were classified with random forest and support vector machine classifiers, 

resulting in an advantage of Sentinel-2 data over Sentinel-1 data, whereas the combination of SAR- 

and optical data outperformed both individual products. Furthermore, for improvement of results, 

DENIZE et al. (2018) suggest the use of very high resolution data due to limitations regarding spatial 

resolution of Sentinel sensors. 
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An object-orientated approach for land cover classification in Colombia is demonstrated by CLER-

ICI et al. (2017). Three classifiers, namely SVM, random forest and k-Nearest Neighbor, were tested 

using Sentinel-1 and Sentinel-2 data. Results show best accuracies for SVM with >85% overall 

accuracy. Random forest and kNN underperformed with =< 55% accuracy. In terms of image data, 

CLERICI et al. (2017) especially point out the advantages of combining Sentinel satellite data due 

all-weather capability from Sentinel-1 SAR sensor and the presence of red-edge bands from optical 

Sentinel-2 sensor. 

 

CANDIAGO et al. (2015) show an approach of precision farming (PA – precision agriculture) on 

local scale using UAV-derived vegetation indices. With focus on crop-related issues, the im-

portance and possibilities of vegetation indices, like NDVI, GNDVI and SAVI (see chapter 6.3 

Vegetation Indices), not alone regarding agricultural framework is presented. 

Research of FRAMPTON et al. (2013) evaluates several Sentinel-2 derived vegetation indices for 

estimation of biophysical variables like canopy chlorophyll content and leaf chlorophyll concen-

tration. Especially the strength of red-edge bands of S-2 over alternative satellite sensors is pointed 

out. Further research is particularly suggested in terms green band performance and its impact on 

chlorophyll estimation.  

A study concerning long term vegetation change of southern Iraq is presented by AL-OBAIDEY and 

AL-BALDAWI  (2019). Applied methodologies include an unsupervised classification using NDVI 

data from 1986 to 2016 resulting in high performance regarding vegetation classification and con-

firm the use of vegetation indices as an effective appliance to detect various types of vegetation. 

  

Specialized classifications towards grassland can be found e.g. at DOGAN and BOZKURT (2017). 

Their study examined potential, size and quality of pasture of Isparta province (Turkey) using AS-

TER data. A combination of laboratory analysis of samples and a remote sensing approach lead to 

recommendations regarding annual grazing season for farmers and their cattle. 

Research of STENZEL et al. (2017) show an examination of high nature value (HNV) grassland. 

Introduced by the European Union, high nature value grassland is declared as eligible for grants, 

wherefore monitoring of this protection worthy areas is crucial. Methods include Maxent classifier 

as well as two types of SVM implicating a separation in several high nature value grassland classes. 

Best results were accomplished with biased SVM, whereas the differentiation among HNV could 

not be achieved with approaches tested. 

A statistical premised approach using simulated Sentinel-2 data with linear regression vegetation 

indices and multiple regression reflectance analysis can be found at SAKOWSKA et al. (2016). The 

objective was an estimation of biophysical parameters, namely seasonal grassland canopy chloro-

phyll content and photosynthetically absorption from canopy and its photosynthesing components 

only. Results show promising approaches of grasslands biophysical parameter estimation using 

various vegetation indices with recommended research towards other ecosystems than grassland. 

Research of NUMATA et al. (2007b) include analysis of grassland change detection, more specific 

pasture degradation/revitalization in Amazonas area Rondônia, Brazil. Methodologies include 

MODIS and Landsat time series as well as NDVI calculations. Apart from suitability of remote 

sensing techniques including vegetation indices towards grassland change detection, results also 
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reveal an insight on environmental circumstances and specific management styles of the counties 

located in Rondônia. 

ESTEL et al. (2018) provide a study of grassland management regimes in Western Europe using 

MODIS data and NDVI time series. In combination with livestock distribution, information about 

distinctive cluster of management regimes is obtained. High intensity clusters can be found in Ire-

land, France and Spain, whereas low intensity cluster are primarily located in Wales and mountain-

ous regions. Within their research, the advantages of remote sensing data and vegetation indices 

time series in combination with agricultural statistic and the suitability of these methods for grass-

land monitoring is emphasized. 

 

Regarding grassland classification, numerous studies with various approaches have been carried 

out using RADAR respectively SAR data.   

Research of crop classification including grassland derived by Sentinel-1 SAR time series is pub-

lished by XU et al. (2018). In multiple Chinese study areas, they show an approach using K-means-

clustering towards SAR backscattering responses and various temporal intensity models resulting 

in high accuracy products in both VH and VV bands regarding crop classification. 

HONG et al. (2014) show an approach using combined MODIS and RADARSAT-2 data to differ-

entiate biofuel crop alfalfa from grassland in Canada. With emphasizes towards advantages of their 

image fusion technique resulting in improvement of accuracy compared to single sensor classifica-

tion, a challenging aspect of this approach is given due the spatial resolution divergence of 250m 

(MODIS) and 50m (RADARSAT-2). 

VOORMANSIK et al. (2013) show an approach towards detection of grassland cutting practices using 

polarimetric SAR. In Estonian coastal area, they analyzed various TerraSAR-X backscatter, coher-

ence, entropy and alpha parameters to link grassland management methods with RADAR derived 

data. Results show no indications of differentiation between short and long grass with threshold 

30cm. Although, grass left on the ground after cutting could be detected, further research with 

various orbits (ascending/descending) and L- or C-band SAR is recommended. 

A comparison of TerraSAR-X dual polarimetric and RADARSAT-2 fully polarimetric SAR in 

terms of grassland cutting practice is presented by VOORMANSIK et al. (2016). Together with a field 

survey measuring grass height, biomass (wet and dry) and soil moisture, results show high potential 

of HH/VV polarimetric coherence for the detection of grassland cutting. For future studies, they 

recommend research using data from promising X- and L-band SAR sensors TanDEM-X and 

ALOS-2. 

Research towards detection of grassland mowing events using Sentinel-1 InSAR data is published 

by TAMM et al. (2016). Suitability of C-band SAR is shown by an increase of VH and VV polari-

metric coherence values right after mowing events. The study also shows the decrease of measured 

coherence due precipitation and recommendations regarding image acquisition time. For this study 

Sentinel-1A data with 12-day acquisition was used, leading to author´s recommendation of research 

using combined Sentinel-1A and 1B data resulting in denser 6-day image pairs. 

  



 
 
 

 Study Objectives and Research Questions 

 
 

 
-19- 

 
 

 

4. Study Objectives and Research Questions 

With the given theoretical background, the motivation and aim of this thesis is 

- to investigate the suitability of optical and SAR-data for grassland mapping with an inte-

grated differentiation of intensively and extensively used grassland using Sentinel-1 and 

Sentinel-2 satellite data. 

 

In consideration to target the above-mentioned objective, the following subordinate research ques-

tions will be answered: 

i. does the combined use of optical and RADAR data add value in the classification of grass-

land compared to a single sensor classification? 

 

ii. which from optical sensors derived vegetation indices can be used to estimate mowing 

events? 

 

iii. to what extent are Sentinel-1 SAR coherences suitable for detecting mowing events? 

 

iv. which advantages/disadvantages using SAR coherences regarding grassland usage inten-

sity classifications compared to VI derived classifications can be detected? 
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5. Data 

This chapter provides an overview of the data used in the thesis. Aside from used satellite data, also 

reference data, defined area of investigation with its characteristics and sites chosen for detailed 

analysis are outlined.  

 

5.1. Sentinel Satellite Data 

Optical and radar remote sensing data in this thesis are derived by Sentinel-1A/B and Sentinel-

2A/B satellite sensors.  Sentinel-1 GRD and Sentinel-2 data was already provided and downloaded 

via Copernicus API Hub. Sentinel-1 SLC data was accessed and downloaded via Copernicus Open 

Access Hub (https://scihub.copernicus.eu/) using the API-Hub via anaconda environment and py-

thon package sentinelsat respectively Alaska Satellite Facility (https://vertex.daac.asf.alaska.edu/) 

for corrupted data. Table 4 shows an overview of used S-1 and S-2 data. 

 
Table 4: Sentinel-1A/B and Sentinel-2A/B; used data. 

Sensor Usage Type Polarization Orbit Time span 

S-1 Classification GRD VV/VH 015; 168 20180101 to 20181231 

S-1 Coherence SLC VV/VH 015 20180301 to 20180701 

S-2 Class./Indices L2A - 065 2018 

 

5.2. Reference Data 

LUCAS 

Developed by the European Commission, the ‘Land Use and Coverage Frame Survey’ is a stand-

ardized and harmonized survey and proceeding to detect land use over EU territory. The survey 

collects in-situ data, in-field observations are carried out by professional surveyors collecting 

ground truth data. Due to characteristics of a two-phase sample survey, LUCAS consists of a sys-

tematic gathering of points collected with spacing of 2km in northern, eastern, southern and western 

direction resulting in approximately 1.1 million points covering EU territory. First phase samples 

include a photo-interpreted assignment to a standardized land cover class whereas second phase 

samples consist of a field sample including comprehensive soil samples and environmental infor-

mation (BALLIN et al. 2018: 9ff.; 11f.; 40f.;; EUROPEAN UNION 2017).   

 

IACS/InVeKos 

The ‘Integrated Administration and Control System’, (IACS), in german language also referred as 

InVeKoS (Integriertes Verwaltungs- und Kontrollsystem) is a policy regarding financing, manag-

ing and monitoring of agricultural belongings enacted by the EU and has to be implemented from 

all participating EU-countries. The IACS regulates income support for farmers based on taxpayer’s 

money in close cooperation with European Agricultural Guarantee Fund (EAGF) and ensures a 

correctly driven process of transactions regarding agricultural and stockbreeding aid schemes to-

wards the farmers. IACS consists of multiple connected databases – in this thesis, mainly LPIS data 

https://scihub.copernicus.eu/
https://vertex.daac.asf.alaska.edu/
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(land parcel identification system) is used to identify agricultural plots within the research area 

(EUROPEAN PARLIAMENT 2013: 14ff.; EUROPEAN UNION 1995). 

 

5.3. AOI 

Tests for classifications and calculations take place in an area of interest with an extent of 40x40km 

located in tile TNT of the Sentinel-2 tiling grid. 

The AOI is located in the western part of Austria, Vorarlberg, and contains urban areas of Bregenz, 

Dornbirn and outlying parts of Feldkirch. Visual interpretation of satellite imagery shows densely 

populated areas with the capital city Bregenz (approx. population 30.000) arranged axis-wise in 

direction northwest and west of the AOI. In the northeast of the AOI, the shoreline of Lake Con-

stance (Bodensee) is visible. About 75% of the area are located in the alpine area of the Central 

Alps. Due to the alpine character, the topography can be characterized as very pronounced, espe-

cially outside of settlement areas. The predominant land cover in the highlands can mostly be de-

scribed as natural with various forest and meadow species. Settlements are located mainly in the 

northwest and the valleys of the AOI. 

Due to the distinctive topography, also the climatic characteristic of the chosen region is manifold 

and various regimes with flowing boundaries can be detected. AOIs biggest urban area of Bregenz 

shows precipitation throughout the whole year with its peak in summer months of June to August. 

Average temperature is 9.1°C with its peak in July and August with 18°C in average. Coldest month 

is January with an average temperature of -1°C. The average annual precipitation is 1165mm, 

whereas February is the driest month with an average of 62mm. As mentioned, precipitation´s peak 

is during summer months with approximately 135mm/month (Figure 23 and Figure 24). 

According to KÖPPEN 1936 and RUBEL et al. 2017 the AOI can be assigned to climate classes Cfb, 

Dfc and ET (Figure 22). Cfb indicates a warm temperature climate, no dry season (fully humid) 

and warm summers. Average temperature of all months is below 22°C and there are at least four 

months with average temperature over 22°C. Parameters for class Dfc are a boreal climate, no dry 

season (fully humid) and combination of cool summer/cold winter. Class ET indicates polar/alpine 

climate with no differentiation of seasons like summer and winter (KÖPPEN 1936; KOTTEK et al. 

2006; NWS n.d.; RUBEL et al. 2017: 117). 
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Figure 19: Location of EcoLaSS demo site and AOI. 

 
Figure 20: Location of AOIs II. 

  

  

 
Figure 21: S-2 tile TNT with location of AOI.. 

 
Figure 22: Climate Classes of AOI (Rubel et al. 2017). 

  

 
Figure 23: Climate Graph of Bregenz (https://en.cli-

mate-data.org/). 

 
Figure 24: Yearly Average Temperature of Bregenz 

(https://en.climate-data.org/). 

 

 

 

 

 

 

https://en.climate-data.org/
https://en.climate-data.org/
https://en.climate-data.org/
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5.4. Sites 

Four sites within AOI have been selected for extraction of time series from vegetation indices and 

coherence estimation (Figure 25 to Figure 28; scale 1:10.000). The sites were defined as polygons 

from IACS respectively InVeKos data and declared with a buffer of -10m to increase homogeneity 

due to exclusion of areas consisting of mixed pixels at polygons borders. Sites were chosen in 

consideration to equally cover the spectrum of intensive and extensive used grassland using refer-

ence data – resulting site 1 and 3 as intensive and site 2 and 4 as extensive used grassland. Table 5 

presents key figures of each site. Site areas show a range from 6.178sqm to 21.057sqm and are 

located between 490m and 980m altitude above sea level. With the chosen sites, a relation between 

area and altitude, e.g. the higher the altitude, the smaller the site, cannot be detected. 

 

 
Figure 25: Site 1. 

 
Figure 26: Site 2. 

 
Figure 27: Site 3. 

 
Figure 28: Site 4. 

 
Table 5: Key figures of sites. 

 Coordinates area sqm altitude m 

Site 1 47°13’56.84”N, 9°52’54.52”E 21.057 850 

Site 2 47°25’40.95”N, 9°59’24.58”E 6.178 950 

Site 3 47°11’56.58”N, 9°40’18.07”E 14.384 490 

Site 4 47°25’17.20”N,10° 0’40.10”E 13.104 980 
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6. Methodology 

In this chapter, the applied methods for answering the research questions are outlined. This includes 

the definition of grassland use intensity as well as the processing workflow from the input data 

towards the classification process up to the availed validation. 

 

6.1. Grassland Usage 

As a principle for the classification or differentiation between extensively and intensively used 

grassland, D33.1a – Time Series Analysis for Thematic Classification (GAF AG 2018) respectively 

HRL grassland 2015, is used and described by the following characteristics:  

 

 
Figure 29: Definition of Grassland according to the HRL 2015 (GAF AG 2018, 17) 

 

Based on Figure 29, a further subdivision into extensively and intensively used grassland takes 

place. In multitemporal analysis, the intensity of grassland usage is mainly determined by the fol-

lowing indicators: i) mowing frequency, ii) pasture intensity and iii) amount of fertilizer used 

(GÓMEZ GIMÉNEZ et al. 2017). Biodiversity-friendly, low intensity pasture farming generally re-

quires little anthropogenic intervention, e.g. permanent grassland is manageable with one mowing 

event p.a. to prevent the growth of shrubs and trees. Intensively used grasslands on the other hand, 

are characterized by a higher mowing frequency, a higher stocking density and, in general, a much 

higher use of added nutrients and agrochemicals (KOLECKA et al. 2018). 

 



 
 
 

 Methodology 

 
 

 
-25- 

 
 

 

In consideration of the mentioned indicators, and the necessity of measurability with remote sens-

ing methods in combination with time series analysis, the main criteria for distinction of intensively 

and extensively usage of grassland is the number of mowing events respectively the mowing fre-

quency and the time of execution of the mowing event. 

In recommendation of BEKKEMA and ELEVELD 2018: 195; EUROPEAN COMMISSION 2013: 80; 

FRANKE et al. 2012: 126f.; GÓMEZ GIMÉNEZ et al. 2017: 127f.; KEUCK et al. 2010; KOLECKA et 

al. 2018: 3; SCHIRPKE et al. 2017, intensive use of grassland is defined by: 

- First cuts/mowing events end of April/begin of May 

- Minimum of three cuts per season 

- occur at 1500m a.s.l. max 

 

whereas characteristics of extensively used grassland are 

- no cuts until July 

- less than three cuts per growing season 

- located above and beneath 1500 a.s.l. 

 

6.2. Satellite Data Preprocessing 

Satellite data preprocessing was undertaken by GAF AG due existing project environment and 

program specifications and has been applied to data used.  

Access point of Sentinel-2 data from 01/01/2018 to 01/11/2018 is CopernicusHub via sentinelsat-

tool. Radiometric correction, topographic normalization, calibration, cloud mask and quality met-

rics is applied with sen2cor and internal software. 

Sentinel-1 GRD data from 01/01/2018 to 01/11/2018 is also derived via CopernicusHub using sen-

tinelsat-tool. Images of orbit 15 (ascending) and 168 (descending) have been undertaken radio-

metric calibration, terrain flattening, coregistration/stacking and multitemporal speckle filtering us-

ing SNAP. 

 

6.3. Vegetation Indices 

With Sentinel-2 data, spectral (vegetation)indices in terms of information gain have been calcu-

lated. The calculation took place per pixel and several bands of the multispectral S-2-sensor were 

used to generate 6 indices. 

  

NDVI 

The Normalized Difference Vegetation Index is one of the most popular indices to detect vegeta-

tion, analyze its development, photosynthetic activity and vitality. Provided by ROUSE and HAAS 

(1974), the NDVI makes use of reflectance in the near infrared and red band, and is calculated with 

the equation: 

 𝑁𝐷𝑉𝐼 = 𝑁𝐼𝑅 − 𝑅𝐸𝐷𝑁𝐼𝑅 + 𝑅𝐸𝐷 

 



 
 
 

 Methodology 

 
 

 
-26- 

 
 

 

The result of the calculated NDVI provides values between -1 and +1, whereas a value near +1 

indicates dense and healthy vegetation, values near 0 imply bare soil and negative values water, 

snow or clouds. Using the NDVI, the common values for vegetation range between .2 and .9 (CAN-

DIAGO et al. 2015; FARAMARZI et al. 2018). In the given case of using Sentinel 2 data, band 04 and 

08 were used for the calculation. 

 

GNDVI 

The Green Normalized Difference Vegetation Index is a modified version of the NDVI. Instead of 

the red band, like the NDVI, it uses the green band resulting in a higher sensitivity regarding the 

chlorophyll content of the vegetation (CANDIAGO et al. 2015; GITELSON et al. 1996). The GNDVI 

is calculated with following equation: 

 𝐺𝑁𝐷𝑉𝐼 = 𝑁𝐼𝑅 − 𝐺𝑅𝐸𝐸𝑁𝑁𝐼𝑅 + 𝐺𝑅𝐸𝐸𝑁 

 

Using Sentinel 2 data, NIR and GREEN are declared with band 03 and band 07. 

  

IRECI 

The inverted red edge chlorophyll index (IRECI) was introduced by FRAMPTON et al. (2013) in a 

study about the estimation of canopy chlorophyll content and leaf chlorophyll concentration. IRECI 

takes advantage of the red edge bands (B5 and B6) of the S-2 MSI, while also including near infra-

red and red band in its calculation. Its equation is as follows using S-2MSI band 04, 05, 06 and 07: 

 𝐼𝑅𝐸𝐶𝐼 = (𝑁𝐼𝑅 − 𝑅𝐸𝐷)(𝑅𝐸1/𝑅𝐸2)  

 

EVI 

With the launch of MODIS (moderate resolution image sensor) on satellites TERRA and AQUA, 

also the enhanced vegetation index (EVI) has been published. Especially for MODIS-data, the EVI 

aims to correct canopy background and atmospheric influences towards MODIS NDVI calculations 

(AREKHI et al. 2019: 5f.; HUETE et al. 1999: 11f.; NASA n.d.).  

 𝐸𝑉𝐼 = 2.5 𝑥 (𝑁𝐼𝑅 − 𝑅𝐸𝐷)(𝑁𝐼𝑅 + 6𝑅𝐸𝐷 − 7.5𝐵𝐿𝑈𝐸 + 1) 

 

EVI2 

Provided by JIANG et al. (2008), enhanced vegetation index 2 (EVI2), also called 2-band EVI, is 

developed especially for sensors without a blue band. Using only red and near infrared bands it is 

defined as: 

 𝐸𝑉𝐼2 = 2.5 𝑥 (𝑁𝐼𝑅 − 𝑅𝐸𝐷)(𝑁𝐼𝑅 + 2.4𝑅𝐸𝐷 + 1) 
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SAVI 

Introduced by HUETE (1988) , SAVI (soil-adjusted vegetation index) takes consideration of soil 

brightness influences of indices using red and near infrared bands. With inclusion of these soil 

derived parameters quality could be enhanced especially regarding global models of soil-vegetation 

systems (HUETE 1988). 

 𝑆𝐴𝑉𝐼 = 1.5𝑥 𝑁𝐼𝑅 − 𝑅𝐸𝐷𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 0.5 

 

6.4. Training and Test Data 

Samples for training and test data in order to compute the land cover classification, respectively the 

general grasslandmask, were provided in-house by GAF AG. The classification contains 6 classes 

and is also used in previous products of the program. The 6 classes are:  broadleaf trees (1), conif-

erous trees (2), urban/impervious (3), water (4), grassland (5) and cropland (6). 200 samples of 

30x30m, respectively 3x3 pixels, for each of the 6 classes were generated along a 2km spacing grid 

and assigned to the corresponding class extracted from previous EcoLaSS-product HRL 2015 

(High Resolution Layer 2015). Samples were allocated to homogeneous areas, so no sample is 

taken in mixed-pixel-sections. 

 

6.5. Time Feature Calculation 

In terms of a meaningful classification of the general grassland class, the foregoing classification 

was executed with multiple time features including the minimum value, maximum value, standard 

deviation (SD), percentiles 10, 25, 50, 75, 90, difference of percentiles 75-25 and 90-10, of NDVI, 

NDWI, IRECI and Brightness for multiple time spans. Time periods include all available Sentinel-

2 images for the year 2018 and Sentinel-2 images for the first half of the year 2018, respectively 

01 January to 01 June as well as 01 March to 01 June. Three timespans have been chosen to obtain 

a better separation of classes grassland and cropland due to a different growing season resulting in 

a variance of their spectral signature. 

In addition to the mentioned time feature extraction of optical Sentinel-2 data, also Sentinel-1 time 

features including minimum value, maximum value, standard deviation, percentiles 10, 25, 50, 75, 

90, difference of percentiles 75-25 and 90-10 for polarizations VV, VH and Normalized Difference 

of VVVH (NDVVVH) as well as the Ratio of VVVH for three time spans of year 2018 were cal-

culated. Table 6 shows a detailed listing of calculated time features and time spans for each band.  
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Table 6: Calculated Time Features. 

S2   

BANDS FEATURES for each band DATE for each band 

NDVI 

NDWI 

IRECI 

BRIGHTNESS 

Min 

Max 

SD 

Percentiles 10, 25, 50, 75,90, diff 75 25, diff 90 10 

20180101 – 20181231 

20180101 – 20180601 

20180301 – 20180601 

 

S1   

BANDS FEATURES for each band DATE for each band 

VV 

VH 

VH-VV 

NDVVVH 

Min amplitude 

Max amplitude 

SD 

Percentiles 10, 25, 50, 75,90, diff 75 25, diff 90 10 

20180101 – 20181231 

20180101 – 20180601 

20180301 – 20180601 

 

 

6.6. Landcover Classification  

The classification was executed with a random forest classifier (discussed in 2.3.1) using eolearn, 

a collection of python packages for specific tasks regarding satellite imagery. Input data were var-

iations of calculated time features shown in Table 6 and the sample file discussed in chapter 5.2 

and 6.4. 

From the resulting classification, class grassland respectively a grassland mask has been extracted. 

Further classification for grassland use intensity took place based on this grassland mask. 

  

6.7. Classification – Grassland Use Intensity 

6.7.1.  Sentinel-1 SLC coherence calculation 

The estimation of the grassland use intensity was executed with a before going calculation of SAR-

coherence. For each coherence image product, a pair of SLC images, one assigned as master and 

the other as slave, were used as input. The detailed workflow is shown in Figure 30. 

First step was the process of coregistering the input images, which is summarized as individual 

steps “TOPSAR-Split”, “Apply Orbit File” and “Back-Geocoding”. With TOPSAR-Split a separa-

tion of the three sub-swaths is achieved. “Apply Orbit File” sets the Orbit Auxiliary Data for the 

given image. This information contains precise data about the satellite position during the acquisi-

tion. In the process of “Back-Geocoding” the used digital elevation model (DEM) and interpolation 

methods are defined. In this workflow SRTM-DEM (Shuttle Radar Topography Mission) with a 

spatial resolution of 30m was used. 

Processing step “Interferogram” computes the actual calculation of interferometric coherence be-

tween designated master and slave images by cross multiplying the amplitudes of the images (see 

chapter 2). “TOPSAR-Deburst” and “TOPSAR-Merge” are causing a join, respectively a merge of 

each burst (deburst) and sub-swaths. To reduce speckle appearance, process of “multilook-filter-

ing” is applied to the interim result. Last step of the process applies “terrain correction” using men-

tioned SRTM-DEM with 30m resolution to correct geometry effects as discussed in chapter 2. 
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Figure 30: Workflow for interferometric coherence calculation. 

 

For the classification via SVM-classifier, 100 samples per intensive/extensive class were collected. 

Samples were set, likewise to general landcover classification (chapter 6.4), as 3x3 pixel polygon 

in the center of reference polygons (IACS).  

 

6.7.2.  Sentinel-2 NDVI calculation 

In addition of the coherence calculation, an estimation of mowing events was computed using 

NDVI. After analyzing the data, thresholds were set to exclude clouds and snow due to falsification 

and non-applicability. 

Two approaches were applied using optical data. First approach used minimum (mean) values per 

month of calculated NDVI, while the second approach made use of a calculation of differences per 

NDVI-scene. Each approach results in a detection of mowing event in the given timespan (month 

or scene). To obtain a differentiation in extensive and intensive usage, all calculations were reclas-

sified to value 0 (no mowing event) respectively value 1 (mowing event) and summarized, sepa-

rated in time spans from March to July and July to November, to verify the result corresponding to 

given grassland definition in chapter 6.1. An illustration of this process is shown in Figure 31. 

 

 
Figure 31: Scheme of ext/int classification process. 

 

NDVImin (mean) per month 

For the first approach to estimate mowing events, the mean of NDVImin per month from March to 

September was calculated. Standard deviations (SD) for each month have been computed to assume 

a mowing occurrence. In this research, thresholds of .25 and 1 standard deviation have been used, 

leading to an assumption of a mowing events for each pixel with a deviance of ≤ .25 SD and ≤ 1 

SD of the mean NDVImin from the previous month. Pixels with given deviance were reclassified 

to value 1 (all other 0). 
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NDVI difference per scene 

For the second approach, the difference of each NDVI-scene was calculated. After visual inspection 

of the calculated images, a threshold for differences >3 SD was defined for the occurrence of 

clouds, resulting in an exclusion of the given pixels. For each scene, another threshold was set at 1 

standard deviation. Changes ≤1 SD to the previous scene were assumed to be a mowing event. 
Furthermore, a reclassification took place where these values were assigned to value 1 (all other 0). 

 

6.7.3. Post-classification processing 

The classification results were undertaken operational steps of an exclusion (reclassification) based 

on elevation, filtering and an elimination of small regions due to homogeneity. 

Due definition of extensive/intensive used grasslands (Chapter 6.1) and the given predominant 

topographical characteristics of the location of interest (LOI), the threshold for a possible intensive 

grassland management is declared to a restricted elevation of 1500m asl. 

To reduce small clusters of pixels respectively speckles and for a homogeneous result, a filter of 

5x5px was applied to the result of the classification. Furthermore, a mask with areas smaller than 

25px was created and intersected with the 5x5 filtered image. This step allowed an extraction of 

any extant single or small groups of mainly edge-pixels, leading to a homogeneous result of the 

bicategorical classification.  

 

Figure 32 illustrates the complete workflow in addition to methodologies for the different ap-

proaches regarding grassland use intensity classification previously discussed.  
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Figure 32:Workflow of grassland use intensity classifications. 
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6.8. Accuracy Assessment and Reference Data Preparation 

Accuracy Assessment for use intensity classification was carried out using IACS-polygons. For 

each IACS site, the mean center for attribute extraction was created. 

Regarding the appointed definition in chapter 6.1, features with attribute “hay meadow/ -pasture 

with three or more usages” (IACS/INVEKOS term:”Mähwiese/ -weide drei und mehr Nutzungen”) 
were considered as intensively used grassland, whereas features with attributes “hay meadow/ -
pasture with two usages” (“Mähwiese/ -weide zwei und mehr Nutzungen”), “single hay meadow” 
(“einmähdige Wiese”) and “alpine pasture” (“Almfutterfläche”) were handled as extensive used 
grassland. 

For an attribute join, the raster of the classification result was transformed in a vector layer. With 

the resulting feature class, respectively its attribute table, a comparison of the classified data and 

the reference data took place and confusion matrices have been created. In addition to overall ac-

curacy, also Cohen´s Kappa, user´s and producer´s accuracy have been calculated. 

Regarding to LANDIS and KOCH (1977), Kappa is a quantitative measurement of reliability respec-

tively it measures the agreement between raters, in this case land cover classes as well as intensively 

and extensively used grassland. Values reach from 0 to 1 where the higher Kappa the better the 

agreement. Categoric benchmarks of Kappa are shown in Table 7. 

 
Table 7: Kappa: Benchmarks (LANDIS and KOCH 1977: 165) 

Kappa Value Agreement 

0.00 Random 

0..01 – 0.20 Slight 

0.21 – 0.40 Fair 

0.41 – 0.60 Moderate 

0.61 – 0.80 Substantial 

0.81 – 1.00 Almost Perfect 
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7. Results 

The following chapter presents the results of the various classifications using different sensors, 

timespans and approaches. Chapter 7.1 represents the output for the primary classification to obtain 

a general grassland mask including confusion matrices of all single- and multi sensor classifications 

and the visualization of the best result.  

Furthermore, detection of mowing events with calculated vegetation indices and interferometric 

coherence determination as well as maps of grassland use intensity with their confusion matrices 

are presented and explained. 

 

7.1. Landcover Classification 

Following tables show the confusion matrices of land cover classifications with 6 classes derived 

by single sensor Sentinel-1 or Sentinel-2 remote sensing data. 

Table 8 and Table 9 present the accuracy assessment obtained from Sentinel-1 data over two 

timespans. S-1 classification with data from 01.01 to 31.12. (Table 8) achieved an overall accuracy 

of .69 with Kappa value .62. Inaccurate assignation occurs especially at classes 1 and 2, respectively 

the two classes broad-leafed and conifer tree cover with PA and UA values at around .5. The de-

tection of class water with Sentinel-1 radar sensor is nearly without limitations or mismatches. 

Grassland classification achieved values of PA and UA of .74 and .69, where the biggest instability 

refers to class 6 cropland.  

 
Table 8: Accuracy Assessment S-1 01.01.-31.12. 

S1 20180101 – 20181231 

Reference data 

C
la

s
s
if

ic
a

ti
o

n
 

  1 2 3 4 5 6 sum UA 

1 501 311 144 0 47 26 1029 0.49 

2 230 484 83 1 46 14 858 0.56 

3 78 77 566 0 30 2 753 0.75 

4 0 0 1 646 12 2 661 0.98 

5 73 40 76 0 745 148 1082 0.69 

6 44 14 42 0 128 726 954 0.76 

sum 926 926 912 647 1008 918 5337 - 

PA 0.54 0.52 0.62 1.00 0.74 0.79 - - 

1: broad leafed tree; 2: conifer tree; 3: imperviousness; 4: water; 5: grass; 6: crop Overall 0.69 

        Kappa 0.62 

 

In comparison, S-1 classification with time span 01.01 to 01.06 (Table 9) obtains an enhancement 

with OA of .8 and Kappa .76. In terms of the individual classes, almost all accuracies underlie an 

improvement, which refers especially to classes broad-leafed and conifer tree cover. Improvements 

of grasslands are shown with PA .77 and UA .76. As in Table 8, misinterpretations occur primarily 

with class crop – which shows a drop at PA to an accuracy of .67 with risen instabilities regarding 

classes 1, broad-leafed trees and 3, imperviousness.  
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Table 9: Accuracy Assessment S-1 01.01.-01.06. 

S1 20180101 – 20180601 

Reference data 
C

la
s
s
if

ic
a

ti
o

n
 

  1 2 3 4 5 6 sum UA 

1 663 79 30 0 48 107 927 0.72 

2 144 815 6 0 32 3 1000 0.82 

3 41 6 743 0 57 94 941 0.79 

4 0 0 0 647 5 0 652 0.99 

5 40 23 73 0 774 103 1013 0.76 

6 38 3 60 0 92 611 804 0.76 

sum 926 926 912 647 1008 918 5337 - 

PA 0.72 0.88 0.81 1.00 0.77 0.67 - - 

1: broad leafed tree; 2: conifer tree; 3: imperviousness; 4: water; 5: grass; 6: crop Overall 0.80 

        Kappa 0.76 

 

Table 10 and Table 11 present single sensor classification using Sentinel-2 data. Using time span 

01.01. to 31.12., the S-2 classification achieved an OA of .87 with a Kappa value of .84. As with 

the S-1 classifications, the least accurate allocations take place in classes broad-leafed tree cover 

regarding an UA and PA of .8 respectively .75. Classification of grassland reaches PA and UA 

values of .8 and .83. The most precise assignment is related to class 4, water, with PA and UA 1. 

 
Table 10: Accuracy Assessment S-2 01.01.-31.12. 

S2 20180101 – 20181231 

Reference data 

C
la

s
s
if

ic
a

ti
o

n
 

  1 2 3 4 5 6 sum UA 

1 698 91 9 0 69 10 877 0.80 

2 124 826 2 0 26 3 981 0.84 

3 39 3 863 1 48 17 971 0.89 

4 0 0 1 646 0 0 647 1.00 

5 60 6 18 0 802 81 967 0.83 

6 5 0 19 0 63 807 894 0.90 

sum 926 926 912 647 1008 918 5337 - 

PA 0.75 0.89 0.95 1.00 0.80 0.88 - - 

1: broad leafed tree; 2: conifer tree; 3: imperviousness; 4: water; 5: grass; 6: crop Overall 0.87 

        Kappa 0.84 

 

Compared to Table 10, Table 11 shows the land cover classification with S-2 data applied with 

time spans 01.01. to 31.12. and 01.01. to 01.06. overall accuracy of .88 and Kappa of .85 reveal an 

improvement over one-period classification using Sentinel-2 data, with an enhancement especially 

in class grassland (PA .84; UA .85). 
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Table 11: Accuracy Assessment S-2 01.01.-31.12 & 01.01.-01.06. 

S2 20180101 – 20181231 

S2 20180101 – 20180601 

Reference data 

C
la

s
s
if

ic
a

ti
o

n
 

  1 2 3 4 5 6 sum UA 

1 691 87 12 0 37 15 842 0.82 

2 136 825 1 0 38 3 1003 0.82 

3 36 4 871 1 35 16 963 0.90 

4 0 0 0 646 0 0 646 1.00 

5 58 8 12 0 849 72 999 0.85 

6 5 2 16 0 49 812 884 0.92 

sum 926 926 912 647 1008 918 5337 - 

PA 0.75 0.89 0.96 1.00 0.84 0.88 - - 

1: broad leafed tree; 2: conifer tree; 3: imperviousness; 4: water; 5: grass; 6: crop Overall 0.88 

        Kappa 0.85 

 

In Table 12 the multi sensor classification using Sentinel-1 and Sentinel-2 data is shown. This clas-

sification combines the previous three classifications of S-1 01.01-31.12; S-2 01.01-06.01 and S-2 

01.01-31.12. and achieved an overall accuracy of .88 with Kappa value .85. 

Most accurate class in this classification is, like in the previous ones, class water with UA and PA 

1. Regarding the tree cover classes an UA and PA of .82 (broad-leafed and conifer) and .73 (broad 

leafed) respectively .9 are reached. Classes grassland and crop show values for UA and PA with 

.85 and .83 for grassland respectively .88 and .89 for cropland. 

 
Table 12: Accuracy Assessment S-1 01.01.-31.12 and S2 01.01.-31.12 & 01.01.-01.06. 

S1 20180101 – 20181231 

S2 20180101 – 20180601 

S2 20180101 – 20181231 

Reference data 

C
la

s
s
if

ic
a

ti
o

n
 

  1 2 3 4 5 6 sum UA 

1 678 82 12 0 38 12 822 0.82 

2 136 831 3 0 39 4 1013 0.82 

3 31 3 859 1 40 8 942 0.91 

4 0 0 1 646 0 0 647 1.00 

5 64 6 6 0 836 73 985 0.85 

6 17 4 31 0 55 821 928 0.88 

sum 926 926 912 647 1008 918 5337 - 

PA 0.73 0.90 0.94 1.00 0.83 0.89 - - 

1: broad leafed tree; 2: conifer tree; 3: imperviousness; 4: water; 5: grass; 6: crop Overall 0.88 

        Kappa 0.85 

 

Figure 33 to Figure 35 show the result of the classification used as a basis for the continuous dif-

ferentiation in extensively and intensively used grassland – classification #4 (Table 11) came into 
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use. Figure 33 presents the classification showing all 6 classes. Pixels in the upper left corner clas-

sified as water represent Bodensee and its tributary, river Rhine (Rhein). Imperviousness areas are 

detectable along the urban areas in the west, along valleys and mountainous, rocky areas in the 

south-east. Forest and grassland are distributed evenly over the extent, whereas grassland shows 

focal points in mountainous areas (center and east) and in-between the urban areas near Bodensee. 

Figure 34 and Figure 35 illustrate the grasslandmask only, once with a Sentinel-2 scene from Au-

gust 25 as base layer and once the plain mask of AOI without base layer or background image. 

 

 
Figure 33: Land Cover Classification (all classes). 

 
Figure 34: Land Cover Classification (Grasslandmask). 

 
Figure 35: Grasslandmask 

 

7.2. Detection of Mowing Events 

7.2.1. Timeseries of Indices 

Timeseries of indices (Figure 36 to Figure 39) show the comparison for each site over time span of 

2018. Compared to behavior of NDVI, all other indices, GNDVI, EVI, EVI2, IRECI and SAVI, 

behave in nearly similar manner. This is confirmed in the correlation matrix (Table 13), where all 

indices and their correlations with NDVI are shown. With minor differences throughout the sites, 

all indices indicate a strong positive correlation. Correlation values for most cases are >.9; the 
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lowest value shows a correlation of .85. The red line indicates 1st of July as one criterion for the 

differentiation of grassland management schemes (chapter 6.1). 

 

Figure 36: Vegetation Indices Site 1 2018 

 

Figure 37: Vegetation Indices Site 2 2018 

Figure 38: Vegetation Indices Site 3 2018 Figure 39: Vegetation Indices Site 4 2018 

 
Table 13: Correlation Matrix of Indices based on NDVI. 

Site1 GNDVI EVI EVI2 IRECI SAVI 

NDVI .99 .96 .97 .93 .98 

Site2      

NDVI .99 .97 .99 .95 .99 

Site3      

NDVI .94 .87 .90 .85 .91 

Site4      

NDVI .99 .90 .93 .91 .94 

 

7.2.2. Interferometric Coherence 

Examples for detection of mowing events are shown in exemplary sites at Figure 40 to Figure 45. 

Each pair of images shows one timespan with low coherence, indicating no occurrence of a mowing 

event, and another timespan with high coherence, betoken as an appearance of a mowing event. A 

detailed discussion regarding the shown images is undertaken in Chapter 8.3. 
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Figure 40: Inferometric 

Coherence 13/03 to 

19/03. 

 
Figure 41: Inferometric 

Coherence 30/04 to 06/05. 
Figure 42: Inferometric 

Coherence 07/03 to 

13/03. 

Figure 43: Inferometric 

Coherence 24/04 to 

30/04 

Figure 44: Inferometric 

Coherence 11/06 to 17/06. 

Figure 45: Inferometric 

Coherence 17/06 to 23/06. 

  

 

7.3. Classification – Grassland Use Intensity 

Following tables and figures show the confusion matrices and visualizations of grassland use in-

tensity maps. Each map also includes detailed extents of the sites, from which also vegetation in-

dices have been calculated (chapter 7.2.1). A detailed discussion of site-classification takes place 

in chapter 8.3.1. 

 

Interferometric Coherence VV 

Use intensity classification with polarization VV reached and overall accuracy of .69 with a Kappa 

value of .31. Outcomes for user´s accuracy attain values of .43 for extensive use and .86 for inten-

sive use. Values for producer´s accuracy reach .67 for extensive and .69 for intensive use of grass-

land. Out of 20.536 validations, 14.108 are assigned to the correct class (Table 14). Figure 46 shows 

the corresponding map of the classification. 

 
Table 14: Accuracy Assessment InSAR Coherence VV 

Reference Data 

C
la

s
s
if

ic
a

ti
o

n
   Ext 0 Int 1 sum UA 

Ext 0 3601 4680 8281 0.43 

Int 1 1748 10507 12255 0.86 

sum 5349 15187 14108 - 

PA 0.67 0.69 - - 

    Overall 0.69 

    Kappa 0.31 
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Figure 46: Grassland Use Intensity Coherence VV. 

 

Interferometric Coherence VH 

The second classification using SAR-coherence data reached an overall accuracy of .68 with Kappa 

.30. Compared to the results of VV-polarization, producer´s and user´s accuracy deteriorated mod-

est. UA reaches .42 respectively .86 for extensive and intensive use, while PA´s values remain 

identical as with SAR-VV data as aforesaid, .67 and .69 (Table 15). The complementary map is 

shown in Figure 47. 

 
Table 15: Accuracy Assessment InSAR Coherence VH 

Reference Data 

C
la

s
s
if

ic
a

ti
o

n
   Ext 0 Int 1 sum UA 

Ext 0 3390 4723 8113 0.42 

Int 1 1642 10427 12069 0.86 

sum 5032 15150 13817 - 

PA 0.67 0.69 - - 

    Overall 0.68 

    Kappa 0.30 

 

 

 



 
 
 

 Results 

 
 

 
-40- 

 
 

 

 
Figure 47: Grassland Use Intensity Coherence VH. 

 

NDVI diff 

The first use intensity classification based on NDVI calculation, respectively the difference per 

scene reached an overall accuracy of .65 with Kappa .30. User´s accuracy achieved .7 for extensive 

class and .61 for intensive class, while producer´s accuracy reached .55 and .75 for extensive and 

intensive usage. Altogether 13.338 validations were assigned to the correct class (Table 16). Figure 

48 shows the corresponding map of the classification. 

 
Table 16: Accuracy Assessment NDVI diff/scene 

Reference Data 

C
la

s
s
if

ic
a

ti
o

n
   Ext 0 Int 1 sum UA 

Ext 0 5801 2480 8281 0.70 

Int 1 4728 7537 12265 0.61 

sum 10529 10017 13338 - 

PA 0.55 0.75 - - 

    Overall 0.65 

    Kappa 0.30 
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Figure 48: Grassland Use Intensity NDVI Differences. 

 

NDVI min SD .25 

Classification based on NDVImin mean with threshold standard deviation x .25 dropped to values 

of .54 and .14 regarding overall accuracy and Kappa. From the given 20.536 validations, 11.129 

were assigned to the correct class. User´s accuracy reached .78 for extensive class and .38 for in-

tensive classificated pixels. Values of producer´s accuracy achieved .46 and .72 for extensive re-

spectively intensive classification (Table 17). The appendant map is shown in Figure 49. 

 
Table 17: Accuracy Assessment NDVI min SD .25. 

Reference Data 

C
la

s
s
if

ic
a

ti
o

n
   Ext 0 Int 1 sum UA 

Ext 0 6436 1845 8281 0.78 

Int 1 7571 4693 12264 0.38 

sum 14007 6538 11129 - 

PA 0.46 0.72 - - 

    Overall 0.54 

    Kappa 0.14 
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Figure 49: Grassland Use Intensity NDVImin SD .25. 

 

NDVI min SD 1 

In comparison, classification based on NDVImin mean with threshold standard deviation x1 

dropped even more in terms of overall accuracy to .42 with Kappa .14. For extensive and intensive 

class, user´s accuracy achieved .99 respectively .03 and .41 respectively .79 regarding producer´s 

accuracy. From 20.536 validations, 8.530 were assigned to the corresponding correct class (Table 

18). Figure 50 shows the corresponding map of the classification. 

 
Table 18: Accuracy Assessment NDVI min SD 1. 

Reference Data 

C
la

s
s
if

ic
a

ti
o

n
   Ext 0 Int 1 sum UA 

Ext 0 8193 88 8281 0.99 

Int 1 11927 337 12264 0.03 

sum 20120 425 8530 - 

PA 0.41 0.79 - - 

    Overall 0.42 

    Kappa 0.14 
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Figure 50: Grassland Use Intensity NDVImin SD 1. 
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8. Discussion 

This chapter provides an examination of the results derived in chapter 7 including an in-depth anal-

ysis of the undertaken classifications. Along with an investigation of the individual sites and their 

classifications, the focus is also set on difficulties and problems occurred. 

 

8.1. Land Cover Classification  

Analysis of land cover classifications show different results depending on used sensors and chosen 

time spans. Overall conclusion is an improvement of results with increased number of sensors and 

timespans used – although, regarding class grassland, this statement does not apply (Table 8 to 

Table 12). 

Sentinel-1 single sensor classification with time span over the whole year shows the least accurate 

result with overall accuracy of .69 and lowest Kappa .62. Inaccurate results are found especially in 

tree land cover classes broad leafed and conifer trees. As shown in 7.1, UA and PA reach from .49 

to .56 with many mismatches between these classes. All other classes reach PA and UA > .62, 

where class 3 imperviousness shows lowest accuracies with most mismatches in classes 1 and 2, 

especially regarding producer´s accuracy. Water detection using RADAR-derived data with UA 

and PA of .98 and 1 is nearly excellent – one false assignment is given with class 2. Regarding 

accurate classification of classes 5 and 6, grassland and crop, time span of the whole year seems to 

be error biased. Most of the mismatches in these classes are assigned to the contrary class, although 

UA of grassland also shows >70 false classifications with classes 1 and 3. 

Overall improvement in accuracy (OA, Kappa, PA and UA) is given with Sentinel-1 classification 

using data until June (Table 9). UA increased or stayed at same level for all given classes, PA also 

reached higher accuracy values in all classes except class 6, crop, with a drop of 12 percentage 

points. Biggest improvements are detected in tree land cover classes, especially conifer trees, with 

an addition of 36 percentage points in PA and 26 percentage points regarding UA. Best results are 

reached, as previous, for class water with fewer mismatches in general. Class grassland also reached 

an improvement compared to previous Sentinel-1 single sensor classification. Inaccuracies occur 

especially with class cropland, where approximately double as much mismatches occur compared 

to other classes. 

Further improvement regarding accuracies is reached using Sentinel-2 optical data. Except class 1 

(broad-leafed), PA and UA of no class dropped below .80. Regarding class grassland, with PA and 

UA .80 and .83, misclassifications occur especially with classes broad-leafed and cropland. Best 

accuracies are reached, besides class water with 1 UA and PA, in class imperviousness with given 

values .95 and .89 PA and UA. 

The two best results are obtained with single sensor Sentinel-2 data including periods for the whole 

year and the first half of the year (Table 11), respectively multi sensor classification using optical 

and SAR data (Table 12). For both, OA and Kappa remain at same level, hence differences occur 

in PA and UA of individual classes with a maximum changes of +- 3 percentage points. For the 

thesis´ purpose, regarding grassland analysis, slightly better accuracies (PA: .84; UA: .85 vs. PA: 

.83; UA: .85) are achieved with Sentinel-2 single sensor classification. Analysis of feature influence 
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shows powerful impact of percentiles regarding the land cover classification, this occur especially 

for percentiles of features Brightness and NDVI (Table 19). 

 
Table 19: Top 5 feature influence for best 

grassland classification. 

Rank Time Feature  Influence (%) 

1 NDVI p025  7 

2 Brightness p025  6 

3 NDVI p010  5 

- Brightness p050  5 

4 Brightness p075  4 

 

8.2. Detection of Mowing Events 

8.2.1. Vegetation Indices 

As outlined by HALABUK et al. (2015) and NUMATA et al. (2007a), the NDVI is a feasible instru-

ment regarding the detection of mowing frequency of grassland. Based on the NDVI, all investi-

gated vegetation indices accomplish similar results to NDVI.  All indices, namely GNDVI, IRECI, 

SAVI, EVI and EVI2, show very high correlation with NDVI within sites 1 to 4. 

A crucial factor in detection of (healthy) vegetation and its mowing occurrence is the reflectance 

of wavelengths in the near-infrared region (NIR). Due various involved channels and their factors 

regarding particular indices (chapter 6.3), characteristics of value progression may differ, an ap-

pearance of a mowing event is reciprocated at all indices with a rapid drop of approx. 0.3 to 0.5, 

followed from a rise of distinct value. The rise of index values is directly linked to healthy vegeta-

tion´s chlorophyll content (HALABUK et al. 2015; NUMATA et al. 2007b; NUMATA et al. 2007a). 

 

8.2.2. Interferometric Coherence 

Results of coherence calculation and analysis of examined sites show a challenging interpretation 

regarding an explicit assertion and declaration of mowing events. In general, mowing activities can 

be detected, an increase of coherence values can be noticed, but due heterogeneity of calculated 

pixels, delimitations of the sites are not clearly comprehensible as shown in chapter 7.2.2,  Figure 

40 to Figure 45. 

Change detection of grassland and vegetation in general using synthetic aperture radar data under-

lies, as pointed out by TAMM et al. (2016) and VOORMANSIK et al. (2013), multiple impacts such 

as diverging coherence results regarding chosen time of ingestion (ascending/descending orbit) due 

morning dew, farming activities, height and frequency of cuts, precipitation, wind conditions and 

types/species of grassland. 

 

8.3. Grassland Use Intensity 

Analysis of grassland use intensity shows different results for all used approaches, methods using 

SAR-coherence and NDVI differences/scene provide similar results though. 
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With the given methods, classifications with single polarization coherence VV and VH show nearly 

no differences regarding accuracy. For both classifications, producer´s accuracy for extensive and 

intensive class show values of .67 respectively .69. User´s accuracy on the other hand, show dif-

ferences of 43 respectively 44 percent points between classes extensive and intensive with accura-

cies of .43 VV / .42 VH and .86 VV/VH leading to values below average accuracy (OA) regarding 

class extensive and above average accuracy values regarding class intensive (Table 14 and Table 

15). 

 

Similar results are provided with method using NDVI differences/scene showing overall accuracy 

of .65. Differences of UA and PA of classes extensive and intensive are more balanced but also 

indicate a wider range (UA 20pp; PA 9pp) compared to use intensity classification using coherence 

calculation. Regarding PA and UA, with values of .55 and .70 (extensive) respectively .75 and .61 

(intensive), both classes show a shift assuming inconstancy of the chosen method (Table 16). 

 

Methods using calculations of NDVI minima and its change per month using factors of standard 

deviation .25 and 1 achieved the least accurate results. Especially method using NDVImin SD 1 

(Table 18) cannot be suggested due weak classification result of intensive usage and is further 

discussed in chapter 8.3.1.  

A slightly better result is achieved with monthly change of NDVImin bigger than standard devia-

tion .25. PA changed from .41 and .79 to .46 and .72 for classes extensive and intensive, whereas 

UA shift from .99 and .03 to .78 and .38 resulting in an increase of 12.7 percent points from 41,52% 

to 54,17% in terms of overall accuracy (Table 17). 

As mentioned, methods using NDVI minima derived from monthly data achieved the most inaccu-

rate results compared to classifications using coherence and NDVI differences per scene. Disad-

vantages using NDVI´s average minimum per month is the possibility of concealment given with 

potential rapid vegetation´s revitalization. This concealment-effect is amplified with decreasing 

number of available images – which restricts the advantages of optical satellite data in general. This 

occurs especially in regions with more distinct topographic characteristic. This can be, amongst 

others, lead back to increased occurrence of cloud formations resulting in non-applicable data.        

The calculation of NDVI´s average minimum is with the given method not suitable. Further dis-

cussion takes place in the following chapter 8.3.1. 

 

In general, classification approaches using coherence of polarizations VV and VH as well as NDVI 

differences per scene achieved Kappa values of around .30 (VV: .31; VH: .30; NDVIdiff: .30), 

while approaches using standard deviations of NDVI show low Kappa of .14. 

 

8.3.1. Site Analysis 

Following tables (Table 20 to Table 24) show a comparison of each classification per site. Although 

the sites have been assigned with an inwards-buffer of 10 metres, all sites reach into areas not 

classified as grassland – the least affected site of this inaccuracy is site 4.  
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Classification derived by coherence VV and VH (Table 20 and Table 21) illustrate, as the classifi-

cation itself, broad similarities. Except site 2, all sites are classified with classes both, extensive 

and intensive. According to the used reference data, where a site is characterized by one designated 

class of usage, a multi-class classification within one site should not occur. 

For both polarizations VV and VH, site 1 shows extensive classification in western and north-

eastern part and intensive usage in the center. Regarding coherence VH classification, extensive 

classification in western area is smaller, whereas the eastern part is larger compared to classification 

performed with coherence VH. 

In both classifications, site 2 is assigned to intensive used grassland. Site 3 and site 4 contain again, 

both extensive and intensive classified pixels. In both sites, extensive usage appears with larger 

areas using polarization VH compared to VV. According the statement of TAMM et al. (2016), an 

increase of coherence for VV polarization compared to VH polarization is detected with the used 

method and calculations. 

 
Table 20: Site Analysis InCoherence VV. 

Site 1 Site 2 Site 3 Site 4 

    
 

Table 21: Site Analysis InCoherence VH. 

Site 1 Site 2 Site 3 Site 4 

    
 

Site analysis of classifications derived by NDVI calculations (Table 22 to Table 24) show a more 

homogeneous result compared to coherence results (Table 20 and Table 21). Best NDVI classifi-

cation result, respectively NDVIdiff per scene, shows occasionally inconstancies in the south-west-

ern area regarding site 1. Site 2 and site 3 present complete homogeneity within the sites, whereas 

site 4 shows the most heterogeneous outcome with no indication of prevalent use intensity (Table 

22). 
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Table 22: Site Analysis NDVIdiff/scene. 

Site 1 Site 2 Site 3 Site 4 

    
 

Classifications using change of monthly NDVImin with factors of calculated standard deviations, 

resulting in least accurate classifications, show the most homogeneous outcomes per site. Remark-

able is the tendency to extensive classification result for both calculations, standard deviation .25 

and 1 (Table 23 and Table 24). Differences occur especially regarding site 3, where a nearly com-

plete change from intensive (Table 23) to extensive usage (Table 24) took place. Accuracies of this 

approaches in general, although lead to the tendency to assume approach using .25 standard devia-

tion.  

 
Table 23: Site Analysis NDVImin standard deviation .25. 

Site 1 Site 2 Site 3 Site 4 

    
 

Table 24: Site Analysis NDVImin standard deviation 1. 

Site 1 Site 2 Site 3 Site 4 

    
 

A comparison of each site for the different approaches shows a tendency of site 1 to be classified 

as intensive used grassland. This occurs for classifications with best accuracies, methods coherence 

and NDVI differences per scene. Whereas the coherence outcomes present a mix of extensive and 

intensive class, NDVI-approach is nearly complete classified as intensive. The fact of similar re-

sults for coherence and NDVI differences per scene is not given regarding site 2. All results show 

complete homogeneity within the site, although coherence products assign site 2 to class intensive 

and all NDVI-methods to class extensive. A possible reason for this outcome could be a poor avail-

ability of optical imagery due cloud coverage compared to SAR-data leading to information loss 

regarding mowing events.  
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Classifications of site 3 show various characteristics which are difficult to interpret. As mentioned, 

coherence classification shows heterogenous results with differences between polarizations VV and 

VH. Given the chosen method for accuracy assessment, which uses the polygon´s center for veri-

fication, site 3 shows different outcomes for each polarization. The two best NDVI-approaches 

show a complete classification as intensive used grassland for site 3, whereas tendency to extensive 

classification is given with method NDVI minimum and change of standard deviation 1. 

Results for site 4 show a more conclusive outcome regarding coherence classifications. Despite 

mixed classifications within the site, majority is assigned to class intensive usage with exception 

of extensive classified areas at site´s western boundary. NDVI classifications show incongruent 

results with complete assignations to extensive class with NDVI minimum standard deviation 

methods and mixed classification without clear boundaries, meaning east/west or north/south de-

limitations, with approach using NDVI difference per scene. 

 

8.3.2. Comparison of approaches and observed influences 

Due to characteristics of SAR-sensors and their independence of atmospheric conditions (cloud 

occurrence, solar radiation, day/night), classifications could make use of higher image availability 

and therefore additional information supply compared to optical satellite data. 

Linked to detection of mowing events (chapter 8.2) a heterogenous results within given sites (chap-

ter 8.3.1) can be detected. This heterogeneousness in general and the deficiency of chosen approach 

using interferometric coherence is shown in Figure 51. Without altitude restriction of 1500m, as 

declared in the grassland use intensity definition (chapter 6.1), majority of classified pixels would 

change from extensive to intensive class, resulting in excessive absence of extensive class within 

entire AOI. Given this observation, a transfer to other regions, with and without exclusion of inten-

sive grassland usage, should not be considered without adjustments of the model. 

The height restriction of intensive used grassland to 1500m a.s.l. in general is a scheme fitted to  

European Alps and linked to given latitude and has to be adapted dynamically in dependency of 

given region. 

 

 
Figure 51: Grassland use intensity interfero-

metric coherence VV – without height re-

striction. 
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Due to characteristics of optical sensor like Sentinel-2, a full image acquisition on regular basis is 

unusual, especially in topographic high distinctive regions with increased cloud formations like 

chosen area of interest. Cloud appearance in elevated and mountainous areas is given on a frequent 

basis, resulting in missing information regarding a potential grassland management scheme. 

Referring to TAMM et al. (2016), with SAR-coherences a mowing event is detectable up to 24 days 

represented by high coherence values. This fact can not be observed with mowing occurrence de-

tected with vegetation indices. Analysis of time series show a rapid rise of indices values after a 

mowing event resulting in high probability of missing a mowing occurrence with a possible given 

absence of imagery. 

Another critical aspect regarding overestimating the frequency of mowing events is pointed out by 

KOLECKA et al. (2018). They reveal a similar effect happening to values of indices, in their study 

namely NDVI, like a mowing event or residues of clouds generated using fertilizers. After the 

application of fertilizer, NDVI shows a drop resulting in the necessity of previous knowledge about 

aspects of the farming management to counteract a low-grade accuracy and misinterpretations of 

classified data. 
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9. Conclusion 

The aim of this thesis was to verify the suitability of optical and SAR-satellite-data regarding grass-

land mapping with an implemented differentiation of grassland use intensity in intensively and 

extensively used grassland. For this purpose, multiple approaches of two main categories have been 

conducted. 

First approach used Sentinel-1 synthetic aperture radar data and its calculated interferometric co-

herence in polarizations VV and VH. Due to a bi-categoric classification, a SVM-classifier has 

been chosen. Second approach was carried out using NDVI-based classifications. Within NDVI-

based classifications, attempts include the application of monthly mean NDVI minima and the us-

age of NDVI differences per Sentinel-2-scene. 

Results show a similar outcome for classifications using computed coherences with polarizations 

VV and VH. Detailed site analysis can confirm this statement, where polarization VV could achieve 

slightly better results. In terms of accuracy, from NDVI approaches, the model using differences 

per scene accomplished best results.   

 
 

i. does the combined use of optical and RADAR data add value in the classification of 

grassland compared to a single sensor classification? 

 

Within this thesis, multiple classifications with various time spans, single and combined 

optical and RADAR data using Random Forest Classifier have been investigated. Regard-

ing the classification of grassland, the best result could be achieved with Sentinel-2 single 

sensor data using time spans for full 2018 and first half of 2018. In comparison, grassland 

mapping with combined Sentinel-1 and Sentinel-2 data is negligible inferior. With given 

models, differences between these two classifications come up to one percent regarding 

producer´s accuracy and no change in user´s accuracy regarding class grassland.  

  

 

ii. which, from optical sensors derived vegetation indices can be used to estimate mowing 

events? 

 

The estimation and detection of mowing events with NDVI is undertaken in several studies, 

i.e. HALABUK et al. (2015); NESTOLA et al. (2016) (chapter 3). As discussed in chapter 6.3, 

in this research various indices have been calculated including NDVI, GNDVI, EVI, EVI2, 

IRECI and SAVI. Visual interpretations of indices show similar gradients for all examined 

vegetation indices. Result of visual interpretation could be verified with calculation of 

NDVI-based correlation coefficients. With examined sites, all indices show correlations 

.85 and above. Correlations below .90 only occur at site 3 with EVI and IRECI. 

These high correlations between NDVI and other examined vegetation indices are indicat-

ing a suitability  for all indices regarding the detection of grassland mowing events.  
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iii. Is the presented approach using Sentinel-1 SAR coherences suitable for detecting 

mowing events? 

 

With the given approach and workflow, the detection of grassland mowing events using 

Sentinel-1 SAR coherences is feasible. Calculations show an increase of coherence values 

after the occurrence of a mowing event. Although, as discussed, various factors could affect 

the calculated values causing an inconstant development of coherence values. Also, an in-

consistent distribution of coherence values can be detected within given sites resulting in a 

patchy site occurrence. The classification itself, as shown and discussed in chapter 7.3, 

8.2.2 and 8.3, is suitable with limitations and under inclusion of altitude restrictions using 

a digital elevation model. 

 

 

iv. which advantages/disadvantages using SAR coherences regarding grassland use in-

tensity classifications compared to VI derived classifications can be detected? 

 

With the tested approach using support vector machine classifier on SAR-coherence to map 

grassland use intensity, the result is suitable for conceived purpose after post processing 

and filtering. Results of the raw classification show a distinct speckle and inconsistence 

assignation to intensive and extensive class. With applied classification excluding post pro-

cessing, an unmistakable assignment of a site (reference polygon) to one of the two classes 

cannot be ensured. An additional consideration of LOIs topographic characteristics in-

creases the accuracy, although the result is not tenable. The combination of post processing 

and exclusion of class ‘intensive’ by altitude gives a meaningful base for further classifi-

cation development. 

Although SAR-data ensures a consistent and periodically image acquisition compared to 

optical derived classification, the results are similar for both approaches. Weakness of both 

classifications can be detected regarding class ‘extensive’ with low producer´s accuracy at 

NDVI-derived-, and low user´s accuracy at coherence-derived approach resulting in overall 

accuracies below 70%. 

 
 
 
As shown in this thesis, given a powerful and stable satellite-based method for estimation of grass-

land use intensity, besides the sustainable availability of satellite data, especially knowledge of 

topographic, seasonal and predominant farming scheme aspects seem to be crucial in consideration 

of an accurate classification and interpretation of accomplished results. 

All tested vegetation indices within this thesis seem to be practicable to detect mowing events. 

Further research regarding optical vegetation indices could include additional indices like S2REP 

(Sentinel-2 Red Edge Position), LCI (Leaf Chlorophyll Index) and LAI (Leaf Area Index).   

In consideration of use intensity classification´s enhancement, a classification including the com-

bination of optical and SAR-satellite data is conceivable. This would compensate the disadvantage 
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of optical data, like reliance on clear weather conditions or daylight, and include powerful radar 

information of SAR-sensors. 

For further research, more attention could be paid to topographic characteristics of given area. Ad-

ditional information acquired with calculations of the digital elevation model, e.g. slope and its 

linkage to the possibility of intensive grassland usage, can be considered. Furthermore, additional 

data regarding precipitation could be reconsidered to estimate its accurate influence referring to 

coherence values.  
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