
Master Thesis
im Rahmen des Universitätslehrganges “Geographical Information Science &
Systems” (UNIGIS MSc) am Interfakultären Fachbereich für GeoInformatik

(Z_GIS) der Paris Lodron-Universität Salzburg

zum Thema

“WPS for local SDIs – A case study about the
applicability of web processing services (WPS) for

Freiburg’s spatial data infrastructure (SDI)”
vorgelegt von

Dipl.-Ing. (FH) Gunnar Ströer
591431, UNIGIS MSc Jahrgang 2016

Betreuerin:
Prof. Dr. Barbara Hofer

Zur Erlangung des Grades
“Master of Science (Geographical Information Science & Systems) – MSc(GIS)”

Gundelfingen, 24. May 2019

Acknowledgements

I would like to thank Prof. Dr. Barbara Hofer from the University of Salzburg for the
supervision and the valuable feedback during the whole process of writing this thesis.

I thank in particular Michael Schulz, head of the IT department of the Freiburg i. Br.
city administration, for giving me professional advice regarding technical aspects and its
complex dependencies.

Also thanks to Stefan Trometer from the CADFEM company and the team around
Arno Klomfass from the Fraunhofer Ernst-Mach-Institute (EMI) for making available and
assistance in understanding the APOLLO Blastsimulator software.

Thanks to the developers and members especially of the PyWPS as well the OSGeo
mailing lists.

Furthermore, thanks to the entire University of Salzburg UNIGIS team for their support
throughout this master’s program and to my employer for enabling a flexible time manage-
ment and that I could write my thesis at the spatial data management department.

Finally, I would like to acknowledge the patience of my family and friends who supported
me in writing this thesis.

I

Science Pledge

I certify by my signature that this thesis is entirely the result of my own work and that it
has not been submitted anywhere for any award. I have cited all sources of information I
have used in my thesis.

Gundelfingen, 24. May 2019 Gunnar Ströer

II

Abstract

The build-up of local spatial data infrastructures (SDI) has been pushed forward in the
last few years, not least because of the impact of the INSPIRE directive. The approach of
a Service Oriented Architecture (SOA) based on the open standards of OGC has proved
its worth. At the same time, the increasing digitalization of municipal administrations is
creating the need for automation of complex processes that extend into a wide range of
disciplines.

The Web Processing Service (WPS) standard approved by the OGC in 2007 can be used
for the implementation of processes, and has the potential to connect municipal process
flows to be adapted in the sense of digitization with an SDI, and to share the advantages
of an SDI with external procedures that have not yet been able to be connected. Whether
the implementation and use of WPS processes is applicable and feasible for a local SDI is
examined in the context of this master thesis by means of a complex and real existing use
case.

The scenario of the use case includes the evacuation planning in the Explosive Ordnance
Disposal (EOD). An external component for the simulation of an explosion plays a special
role. A total of eight different WPS processes were implemented and chained in two
different ways. The examination regarding the applicability of WPS in a local SDI is
measured on the one hand by the actual implementation and on the other hand by three
general criteria: reusability, compatibility and usability.

Keywords: OGC, WPS, Web Processing Service, SDI, Spatial Data Infrastructure,
Service Chain, Orchestration, Freiburg, Local Authority, Evacuation, Explosive Ordnance
Disposal

III

Kurzfassung

Der Aufbau kommunaler Geodateninfrastrukturen (GDI) wurde in den letzten Jahren, nicht
zuletzt aufgrund der Betroffenheit durch die INSPIRE-Richtlinie, vorangetrieben. Dabei
hat sich der Ansatz einer dienstorientierten Architektur SOA auf Basis der offenen Stan-
dards des OGC bewährt. Gleichzeitig weckt die zunehmende Digitalisierung kommunaler
Verwaltungen den Bedarf an der Automatisierung auch komplexer und in verschiedenste
Fachdisziplinen hineinreichende Prozessabläufe.

Der 2007 durch das OGC verabschiedete Web Processing Service (WPS) Standard
kann für die Implementierung von Prozessen herangezogen werden, und hat das Potenzial
kommunale, im Sinne der Digitalisierung anzupassende Prozessabläufe mit einer GDI zu
verbinden, und bisher nicht erreichbare fachfremde Verfahren an den Vorteilen einer GDI
teilhaben zu lassen. Ob die tatsächliche Implementierung und Nutzung von Prozessen auf
Basis von WPS für eine kommunale GDI geeignet und machbar ist wird im Rahmen dieser
Masterthesis anhand eines komplexen und real existierenden Anwendungsfalls untersucht.

Das Szenario des Anwendungsfalls umfasst die Evakuierungsplanung bei der Kampfmit-
telbeseitigung. Dabei spielt eine externe Komponente zur Simulation einer Explosion
eine besondere Rolle. Insgesamt wurden bei der Realisierung acht verschiedene WPS-
Prozesse implementiert und auf zwei unterschiedliche Weisen verkettet. Die Untersuchung
hinsichtlich der Eignung von WPS in einer kommunalen GDI wird zum einen an der tatsäch-
lichen Umsetzung gemessen, und zum anderen an drei allgemeinen Kriterien festgemacht:
Wiederverwendbarkeit, Kompatibilität und Benutzerfreundlichkeit.

Schlagwörter: OGC, WPS, Web Processing Service, GDI, Geodateninfrastruktur, Prozess-
kette, Verkettung, Orchestrierung, Freiburg, Kommunalverwaltung, Evakuierung, Kampfmit-
telbeseitigung

IV

Contents

Acknowledgements I

Science Pledge II

Abstract III

List of Figures VIII

List of Tables X

List of Listings XI

Abbreviations XIII

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives and research questions . 3
1.3 Methods . 4
1.4 Structure of the thesis . 5

2 Context and basic principles 7
2.1 Local government and digitization . 7
2.2 Spatial data infrastructures . 8
2.3 Interoperability by the use of standards . 10
2.4 Web processing services . 11

3 Freiburg’s spatial data infrastructure 14
3.1 Responsibilities . 14
3.2 Specifications . 15
3.3 Common questions and solution approaches 18

V

Contents VI

3.4 Applicability criteria for WPS . 20
3.4.1 Reusability . 20
3.4.2 Compatibility . 21
3.4.3 Usability . 21

4 Case study 23
4.1 Initial situation . 23
4.2 Explosive ordnance disposal . 24

4.2.1 Case definition . 25
4.2.2 Potential improvements . 27
4.2.3 APOLLO Blastsimulator . 29

4.3 Process identification . 34
4.3.1 Schematic workflow . 34
4.3.2 Derivation of processes . 36
4.3.3 Definition of inputs and outputs . 37

5 Implementation 39
5.1 The PyWPS framework . 39
5.2 Non-case-specific processes . 45
5.3 Case-specific processes . 49
5.4 Chaining of processes . 55

5.4.1 Quick preselection . 55
5.4.2 Accurate evacuation zone . 56

5.5 Key characteristics . 60
5.5.1 Atomicity . 60
5.5.2 Handling of inputs and outputs . 61
5.5.3 Synchronous versus asynchronous . 64
5.5.4 Single use and chained processes . 65

5.6 Limitations for productive operation . 67

6 Evaluation 68
6.1 Results of the case study . 68

6.1.1 Process chain output . 69
6.1.2 Intermediate output . 72
6.1.3 Assets and drawbacks . 76

6.2 Applicability analysis for WPS . 78
6.2.1 Reusability . 78

Contents VII

6.2.2 Compatibility . 83
6.2.3 Usability . 88

7 Conclusion and outlook 94

Bibliography 98

A Appendix 101
A.1 Python source code . 101

A.1.1 PyWPS WSGI instance script . 101
A.1.2 Vector intersection process . 102
A.1.3 Vector buffer process . 105
A.1.4 Export vector data process . 108
A.1.5 Export 3D related spatial data process 114
A.1.6 APOLLO rough danger distance process 119
A.1.7 APOLLO configuration process . 120
A.1.8 APOLLO execute process . 125
A.1.9 APOLLO evacuation zone process . 128
A.1.10 Support methods library . 136
A.1.11 XML parsing library . 138

A.2 XML requests and responses . 140
A.2.1 Vector intersection process request 140
A.2.2 Vector intersection process response 141
A.2.3 Quick preselection process chain request 141
A.2.4 Quick preselection process chain response status 144
A.2.5 Quick preselection process chain response result 144
A.2.6 Accurate evacuation zone process chain request 145
A.2.7 Accurate evacuation zone process chain response status 153
A.2.8 Accurate evacuation zone process chain response result 154

List of Figures

2.1 Hierarchical structure of SDIs . 10
2.2 Basic principle of WPS in an SDI . 12
2.3 Mandatory operations of a WPS . 13

3.1 Schematic structure of Freiburg’s SDI . 17

4.1 Responsibilities in an EOD case . 25
4.2 Evacuation map from 2016 used for the EOD case 27
4.3 Integration of a WPS in an EOD case . 28
4.4 Overpressure falls below a critical amplitude at 0.75 s (Fraunhofer EMI) . . 31
4.5 Distribution of overpressure amplitudes (Fraunhofer EMI) 32
4.6 Characteristic curves based on physical damage models (Fraunhofer EMI) . 33
4.7 Distribution of float glass damage (Fraunhofer EMI) 33
4.8 Flowchart for the quick preselection in an EOD case 35
4.9 Flowchart for the accurate evacuation zone in an EOD case 35

5.1 Using the intersection process as WPS with two Shapefiles in QGIS 44
5.2 Overview of all non-case-specific processes and auxiliary libraries 45
5.3 Overview of all case-specific processes . 50
5.4 Overview of processing steps within the ApolloEvacZone class 53
5.5 Overview of the quick preselection process chain 57
5.6 Overview of the accurate evacuation zone process chain, part 1 58
5.7 Overview of the accurate evacuation zone process chain, part 2 59
5.8 Simple intersection and buffer process chain, visualized with QGIS 65

6.1 Quick preselection result map based on the EOD case 2016 69
6.2 Accurate evacuation zone result map with DEM based on the EOD case 2016 72
6.3 Affected district as 3D city model . 73
6.4 All estimate values based on the Float Glass characteristic 74

VIII

List of Figures IX

6.5 All estimate values based on the Hardened Glass characteristic 74
6.6 All estimate values based on the Eardrum Rupture characteristic 75
6.7 All estimate values based on the Lethal Injury characteristic 75
6.8 Reusability of export_vect_data using the example of local plans 81
6.9 Reusability of vect_buffer using the example of building radio systems . . 81
6.10 QGIS as WPS client for single use processes 92

List of Tables

2.1 Selection of OGC standards used in SDIs . 11

3.1 Technical components of the SDI Freiburg 16
3.2 Selection of WPS implementations . 18

4.1 Properties of the EOD case from 2016 . 26
4.2 List of processes required for an EOD case 36
4.3 List of the minimum required inputs and outputs of the processes 38

5.1 Differences between all inputs and outputs of a process chain 56

6.1 Input data fixed by the administrator, both process chains 68
6.2 Processed data from the quick preselection process chain 70
6.3 Processed data from the accurate evacuation zone process chain 71
6.4 Potential of the reusability of the implemented processes 79
6.5 Overview of the components used with their compatibility and added value . 85

7.1 Summary of the criteria and their grades for WPS and conventional scripts . 95

X

List of Listings

5.1 Apache web server configuration for PyWPS 39
5.2 Principle of WSGI wrapper importing a vector intersection process 40
5.3 Basic structure for all process classes . 40
5.4 Constructor method of the VectIntersect class of the intersection process . 41
5.5 Read of input A within the handler method of the VectIntersect class . . . 42
5.6 Internal data handling within the VectIntersect class using the OGR library 42
5.7 Calculation of the response within the VectIntersect class 43
5.8 Buffer iteration over each input geometry within the VectBuffer class . . . 46
5.9 Using SetSpatialFilter for selection within the ExportVectData class 47
5.10 Using a WCS for DEM selection within the Export3dData class 48
5.11 SQL query to the 3D City Database and creation of the X3D file 48
5.12 Creation of the JSON file within the ApolloConf class 51
5.13 Simulation of working SIRIUS interface within the ApolloExecute class . . 52
5.14 Conversion of 3D voxel grid structure into a 2D plane 54
5.15 Conversion of 2D NumPy array into a georeferenced TIFF 54

6.1 JSON file generated by the APOLLO configuration process 73

A.1 PyWPS WSGI instance script . 101
A.2 Vector intersection process . 102
A.3 Vector buffer process . 105
A.4 Export vector data process . 108
A.5 Export 3D related spatial data process . 114
A.6 APOLLO rough danger distance process . 119
A.7 APOLLO configuration process . 120
A.8 APOLLO execute process . 125
A.9 APOLLO evacuation zone process . 128
A.10 Support methods library . 136

XI

List of Listings XII

A.11 XML parsing library . 138
A.12 Vector intersection process request . 140
A.13 Vector intersection process response . 141
A.14 Quick preselection process chain request . 141
A.15 Quick preselection process chain response status 144
A.16 Quick preselection process chain response result 144
A.17 Accurate evacuation zone process chain request 145
A.18 Accurate evacuation zone process chain response status 153
A.19 Accurate evacuation zone process chain response result 154

Abbreviations

ABK . Fire and Disaster Control Department
AfO . Office of Public Order
ALKIS . Official Real Estate Cadaster Information System

BKG . Federal Agency for Cartography and Geodesy
BPMN . Business Process Model and Notation
BZBE .Consulting Centre for Building and Energy Freiburg

CityGML . City Geography Markup Language
CSV . Comma-separated Values
CSW . Catalogue Service for the Web

DEM . Digital Elevation Model
DUVADV-technische Unterstützung der Volkszählungs-Auswertung

EMI .Ernst-Mach-Institute
EOD . Explosive Ordnance Disposal
EPSG .European Petroleum Survey Group Geodesy
ESRI . Environmental Systems Research Institute
ETRS89 . European Terrestrial Reference System 1989

FOSS . Free and Open Source Software

GeoTIFF . Georeferenced Tagged Image File Format
GIS .Geographic Information System
GIScience .Geographic Information Science
GLUES Glob. Assess. of Land Use Dyn., Greenhouse Gas Emis., Ecosystem Srv.
GML . Geography Markup Language

HTML . Hypertext Markup Language
HTTP . Hypertext Transfer Protocol

XIII

Abbreviations XIV

INSPIRE Infrastructure for Spatial Information in the European Community
IT . Information Technology

JSON . JavaScript Object Notation

KVP . Key-Value-Pair

OGC . Open Geospatial Consortium
OGR . OGR Simple Features Library
OSGeo . Open Source Geospatial Foundation
OSM .Open Street Map
OWS .OGC Web Service

PHP .PHP: Hypertext Preprocessor
POI . Points of Interest

SDI . Spatial Data Infrastructure
SLES . Suse Linux Enterprise Server
SOA . Service Oriented Architecture
SOAP . Simple Object Access Protocol
SQL . Structured Query Language
STL . Standard Triangulation/Tesselation Language

TIFF . Tagged Image File Format
TNT .Trinitrotoluene (Explosive)

URL . Uniform Resource Locator
UTM . Universal Transverse Mercator

W3C . World Wide Web Consortium
WCS . Web Coverage Service
WFS .Web Feature Service
WGS 84 .World Geodetic System 1984
WMS . Web Map Service
WPS .Web Processing Service
WSDL .Web Services Description Language
WSGI .Web Server Gateway Interface

X3D .Extensible 3D
XML .Extensible Markup Language

CHAPTER 1

Introduction

1.1 Motivation

Since the foundation of the Open Geospatial Consortium (OGC) in 1994, the standardization
for discovery, display, exchange and processing of spatial data in the form of web services
has been promoted. In the context of the open data initiative and the INSPIRE directive,
interoperable approaches for the exchange of spatial data among each other as well as with
citizens and industry are increasingly finding their way into public administrations. A
decisive factor here is the question of the type of spatial data. If it concerns pre-processed
data, then these can be made permanently available without large expenditure by means
of Web Map Service (WMS) or Web Feature Service (WFS). If, on the other hand, it
concerns data that must be provided individually in a time-critical application case, then
this can be realized via a processing chain based on the Web Processing Service (WPS)
standard (Yoon et al., 2017).

So far WPS is mostly used on topic-specific platforms which are often operated by
international research institutions and in national or regional authorities and associations,
i.e. which cannot be described as broadly applicable, general services (Hofer, 2015). A
widespread domain is the environmental sector, for example in the automated fire detection
(Samadzadegan et al., 2013) or in flood protection (Tan et al., 2016). Another example
is the coupling of Sensor Observation Service (SOS) and WPS for the online geoprocessing
of monitoring data of the Water Dam Measuring Information System (TaMIS) developed
by the regional water authority Wupperverband. (Stasch et al., 2018). Also the project
GLUES, developed by the Technische Universität Dresden, uses a WPS for different
geoprocessings. At the University of Bonn Walenciak et al. (2009) have dealt with the
use of WPS in 3D SDIs. There are now several examples in which a WPS is in practical
use. However, these could not be assigned to the SDI of a municipal city administration.

1

1.1 Motivation 2

Providers of WPS are difficult to find, especially at the municipal level. One reason for
this is the lack of registration in a Catalogue Service for the Web (CSW), which makes an
efficient search more difficult, as an investigation by Lopez-Pellicer et al. (2012) showed.
Another reason may be that municipal administrations are very heterogeneous in their
IT structure, which is due to their wide range of tasks that has led to isolated solutions
(Hogrebe, 2008). For example, they are responsible for urban planning, the cadastre,
building law and in many different matters for their citizens. This is accompanied by a
large number of experts from different fields, who are involved in independent procedures.
These experts rarely have the GIS knowledge necessary to solve their problems. This
leads to the question whether WPS can offer an added value in the communal area, if the
existing heterogeneity gains a little bit in interoperability, and if users outside Geographic
Information Science (GIScience) can also answer spatially complex questions qualitatively
and independently. But how flexible, how manageable, how sustainable can complex
processes within a local SDI be implemented by means of a WPS? These questions are
open, but there are existing evaluations that indicate the potential of WPS. For example,
Brennecke (2015, p. 62) came to the conclusion that especially complex geoprocessing
models, which cannot be reproduced easily, can be suitable for implementation as WPS.

The planning of the evacuation of an urban district in the case of disposal of explosive
ordnance from the two world wars is such a complex process, and still a topical issue. The
whole process is time-critical and includes actors from different disciplines and different
knowledge, for example the Fire and Disaster Control Department (ABK), the Office of
Public Order (AfO) and the Office for Citizen Service and Information Management (ABI).
Geodata play a decisive role here, be it for the selection of evacuation areas, the marking
of critical infrastructure or the effects of detonation in the event of a disaster (Stollberg
et al., 2007, pp. 239–251). The city of Freiburg is no exception, as happened last in
May 20191. The ABK does not work with the latest available geodata and processing
methods, because their systems are not directly connected to the SDI. The orchestration of
a processing chain using WPS across several institutions and systems represents a possible
approach to improving the overall process. The use of WPS is therefore a possibility for
linking an SDI with other spatial and non-spatial methods. On the basis of this use case it
is to be examined whether a process implementation corresponding to the WPS standard
meets the requirements of the actors concerned and whether parts of the developed process

1 https://www.badische-zeitung.de/freiburg/blindgaenger-in-freiburg-gesichert-aber-nicht-
entschaerft-anwohner-koennen-zurueck--172959594.html (visited on 10/05/2019)

https://www.badische-zeitung.de/freiburg/blindgaenger-in-freiburg-gesichert-aber-nicht-entschaerft-anwohner-koennen-zurueck--172959594.html
https://www.badische-zeitung.de/freiburg/blindgaenger-in-freiburg-gesichert-aber-nicht-entschaerft-anwohner-koennen-zurueck--172959594.html

1.2 Objectives and research questions 3

chain can also be reused for completely different questions and thus represents an added
value for an municipal SDI.

1.2 Objectives and research questions

The preceding research shows that the use of WPS in municipal administrations has not yet
been sufficiently investigated, although this standard can also be of relevance for municipal
administrations. From this the following hypothesis is derived for this master thesis:

The applicability of WPS processes in a local SDI based on open standards is
possible and results in a significant added value due to the reuse possible because
of the standardization of WPS interfaces.

The hypothesis is tested on the basis of the implementation of a real existing use case
and evaluated according to certain criteria. In order to answer the research question, the
following operational subgoals are defined:

• Definition of the responsible tasks of a local SDI. Only when the area of responsibility
is known a reliable scenario can be worked out.

• Description of the technical specifications and common questions of Freiburg’s SDI.
In order to be able to define a concrete use case it is necessary to know the relevant
specifications and conditions of the SDI.

• Definition of criteria that allow a realistic verification of the hypothesis.

• Selection of a suitable use case for the abstraction of the complexity of the real world,
against which the previously defined criteria can be evaluated.

• Implementation of the use case covering operations such as data delivery and spatial
processing to support the evaluation of the applicability of WPS in a local SDI.

• Evaluation of the final workflow and for a local SDI based on the selected criteria.

When answering the research question, exemplary questions from the municipal admin-
istration are taken into account. Due to the large number of possible questions within a
city administration, there is no comprehensive review of all kinds of (spatial) problems.
Furthermore, the importance of WPS clients and workflow engines is considered, but there
is no in-depth investigation.

1.3 Methods 4

1.3 Methods

The first step is a literature search on already realized application examples on the basis of
WPS. With this it can be estimated in which institutions and in which fields WPS are
used so far, and whether there are already other city administrations using WPS.

Based on the operational subgoals of the research question, the SDI relevant topics are
placed in the urban context. This includes the designation of tasks and responsibilities
of Freiburg’s SDI, such as the connection of procedures to the SDI or the compliance
with laws, as well as the technical specifications within which the answer to the research
question lies. The description of typical, municipal problems, to whose solution the local
SDI contributes, shows the spectrum of spatial questions. One of these cases is used as a
case study and its implementation is evaluated according to the following criteria, which
form the basis for testing the hypothesis:

• Reusability

• Compatibility

• Usability

The specific use case refers to the geodata-related part in the planning of an evacuation
in the case of an EOD. The geodata-related questions concern the determination of the
exact location of the affected area, the buildings and addresses contained therein and the
critical infrastructure. In order to meet the technical requirements, the background and
the entire process of such a scenario is explained. The APOLLO Blastsimulator from the
Fraunhofer Ernst-Mach-Institute (EMI) for High-Speed-Dynamics – a Computational Fluid
Dynamics (CFD) software for the simulation of detonations, blast and gas dynamics – plays
a special role. With this software it is possible to estimate damages in case of detonation
with high precision. This tool is not a GIS, so it does not support corresponding functions
or geodata formats, and is therefore a good example for a highly specialized application
outside the domain of GIS. Nevertheless, it is a part of the overall process that solves a
problem that can only be solved by it, and thus a part of the processing chain.

This is followed by the implementation of the WPS processes with the Python program-
ming language. The complete source code of all processes, relevant XML requests as well
as extracts from the data material can be found on the GitLab1 repository belonging to

1 https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/

1.4 Structure of the thesis 5

this master thesis. The finished processes are tested on a virtual server provided by the
city administration via XML requests. The geodata used as input or which have been
processed originate from the city administration of Freiburg and are partly open data, like
the Points of Interest (POI) and the 3D city model, or not freely accessible for reasons such
as privacy, like owners of buildings and their addresses. Excluded from this is the result
of the APOLLO Blastsimulator, which belongs to the Fraunhofer EMI. The development
of WPS processes contains many freedoms. The following details are considered in more
detail:

• Atomicity

• Handling of inputs and outputs

• Synchronous versus asynchronous

• Single use and chained processes

After the completed workflow for the case study has been implemented, the results are
checked for plausibility. The evaluation is based on the previously defined criteria and will
answer the research question within the defined context. Furthermore, advantages and
disadvantages are pointed out which result from the implementation of the processes and
the use of the WPS.

1.4 Structure of the thesis

The master’s thesis is divided into a total of seven chapters.

This introduction is followed by a chapter on the surrounding conditions underlying
this work. The most important terms, standards and technologies are introduced and
explained.

The third chapter deals with the SDI of Freiburg and highlights their tasks, technical
specifications and peculiarities. At the end the criteria are defined, by which the applicability
of WPS can be checked.

The fourth chapter describes the selected case study and shows potential improvements
that can be expected from the implementation using WPS. A decisive step here is the
schematic workflow that is required for the derivation and delimitation of all necessary
processes.

1.4 Structure of the thesis 6

The fifth chapter deals with the implementation of the previous considerations. Four
case-specific and four non-case-specific processes are developed and then chained according
to the selected use case.

The sixth chapter evaluates the results and the application of the WPS processes against
the previously defined criteria. Other advantages and disadvantages identified during
implementation are also explained.

The concluding chapter summarizes the main findings of the master’s thesis with reference
to the research question and gives an outlook on still open questions that can be investigated
in future work.

CHAPTER 2

Context and basic principles

2.1 Local government and digitization

The increasing focus on digitization leads to dynamic change processes in municipal admin-
istrations, which result in new questions, the answers to which are becoming increasingly
complex (Martini et al., 2016, p. 22). Freiburg is also strongly committed to this topic,
as the current digital strategy1 reveals. This includes topics such as transparent urban
planning, open data, sensor systems, 3D city models and citizen-related themes such as
Volunteered Geographic Information (VGI). Often such challenges can only be mastered
in an interdisciplinary way, where departments meet that have different procedures and
topics and now have to harmonize them. As a result, more and more people from different
disciplines are confronted with new problems, such as spatial problems, and have to be
able to deal with them. This leads to the need to simplify procedures to such an extent
that they can be safely applied by the responsible actors.

One challenge here is that many of these procedures contain a special component that
cannot be exchanged at will because only it can perform a particular task, like cemetery
management software or traffic control systems. Such components often have poor general
interoperability, use other or no standards at all, and in the worst case are not compatible
with the applications integrated in the planned process, so that a workaround must be
found. Here are two real-life examples from everyday life for illustration:

1. Parking guidance system as real-time map: The technology used in Freiburg is based
on a proprietary traffic control system with no spatial reference. The real-time
number of free parking spaces is recorded per car park and collected on an external

1 https://www.freiburg.de/pb/,Lde/1233888.html (visited on 18/03/2019)

7

https://www.freiburg.de/pb/,Lde/1233888.html

2.2 Spatial data infrastructures 8

server. This feeds the data every few seconds into a spatial database in which the
geometries are appended. A WMS extracts the geometries from the database and
presents the data in a Leaflet map1 on the municipal website.

2. Data maintenance of social institutions: The maintenance of daycare facilities is
carried out in an information system called DUVA. Only an indirect spatial reference
in the form of an address exists. For the representation on a digital map the periodic
preparation of the CSV data in a GIS would be necessary. A solution in the sense of
digitization uses the geocoding service of the Federal Agency for Cartography and
Geodesy (BKG) within a script and visualizes the result with a WMS, which can be
converted into an interactive map2 on the municipal website.

The two examples show only a small part of the broad spectrum of digitization and are
relatively easy to implement. The processes developed for this are proprietary, work only
for the intended purpose and are not reusable for other questions. But what does it look
like if a much more complex issue is to be automated? In municipal administrations, there
is a wide range of tasks and thus processes. Especially in Germany, the digitization of
these processes and their user-friendliness is lagging behind, although in many cases the
automation and digitization has the potential to increase the quality and quantity of an
authority’s work (Martini et al., 2016).

2.2 Spatial data infrastructures

SDIs can be an efficient basis to support digitization, as they aim to provide spatial
information to a large number of users. The share of spatial information in municipal
administrations is considered high. The exact quantification of this share is difficult to
prove and has settled in the industry at 80 %. A scientific study came to a share of 57 %,
but experience shows that this share is higher for municipal data records (Hahmann
et al., 2012). Geodata are an important part of our society today and play an important
role when it comes to deciding where or where to go, for example when planning a new
district. This includes not only data with a direct spatial reference, which are provided
with an exact coordinate, but also data with an indirect spatial reference, for example an
address. In a municipal administration, a great deal of such data is recorded, processed
and output.

1 http://www.freiburg.de/pb/,Lde/231355.html (visited on 19/03/2019)
2 https://www.freiburg.de/pb/,Lde/1248538.html (visited on 19/03/2019)

http://www.freiburg.de/pb/,Lde/231355.html
https://www.freiburg.de/pb/,Lde/1248538.html

2.2 Spatial data infrastructures 9

An SDI is a physical network for the exchange of geodata. This data network links the
different actors with each other, from the originator to the processor to the user. The aim
is to establish public access to geoinformation and to reduce technical and non-technical
hurdles (Altmaier et al., 2002), i.e. to increase interoperability. The structure of an SDI
can be very different, ranging from a proprietary commercial one-stop solution (e.g. ESRI)
to a heterogeneous architecture based on Free and Open Source Software (FOSS). From a
technical point of view, the following components belong to an SDI:

• Basic geodata, which mainly come from the surveying offices, and thematic geodata,
which come from the individual specialist offices.

• Metadata describing the geodata, such as source, intended use, contact person, spatial
reference system or topicality.

• Geodata services that enable access to geodata, e.g. for visualization, download,
research, acquisition or further processing.

• Networks, which realize the exchange at technical system level, ideally with high
availability.

• Standards that ensure that communication between different components functions
smoothly and guarantee a high level of interoperability.

• System-related software that makes the network accessible, such as the operating
system and web server.

• Geo-related software that creates geoservices, manages geodata (spatial database),
presents (web client) as well as acquires and processes (desktop client) geodata.

An SDI consists of organizational units and is subject to a legal framework that follows
the long-term development of a global SDI. In Europe, the European Directive INSPIRE
applies, which defines the framework for a European SDI and has an impact down to the
level of a local SDI (fig. 2.1). The SDI Germany is helping to achieve these goals. The
geodata affected for urban SDIs by INSPIRE include mainly the land-use plans important
for urban planning. Due to the standardization, all levels can communicate with each other.
Further laws at national level contribute to the formation of an SDI. One example is the
German Geodata Access Act (GeoZG), which regulates access to geodata, geodata services
and metadata. By harvesting mechanisms of a Metadata Information System (MIS) the
metadata of other SDIs can be harvested (Kliment, 2015), whereby this happens in local

2.3 Interoperability by the use of standards 10

SDIs rather complementarily than in national or international SDIs, whose contents are
mainly based on harvesting. The spectrum of the responsible topics and the dependencies
of the underlying data models (ALKIS) tend to increase the smaller the territorial authority
for which an SDI exists (fig. 2.1). And the larger the territorial authority for which an SDI
is responsible, the more often metadata is harvested.

Figure 2.1: Hierarchical structure of SDIs

2.3 Interoperability by the use of standards

The term interoperability has already been used several times. Bartelme (2005, p. 363)
describes interoperability as the ability to communicate, execute programs, and exchange
data between functional units in a way that requires users to have little or no knowledge
of the particularities of those units. To achieve this, the use of open standards is required.
In the field of SDIs these are above all the standards of the OGC. The OGC has set itself
the goal of advancing interoperability in GIScience and the integration of GIS in standard
IT procedures (Altmaier et al., 2002). The result are services whose behavior, properties
and interfaces are described by freely available specifications. The use of a Service Oriented
Architecture (SOA) according to the Publish – Find – Bind principle is one of the essential
prerequisites for interoperability. Each service supports a certain number of mandatory
and optional operations. For a WMS the most common are GetCapabilities to describe
the WMS, GetMap to deliver a georeferenced raster image and GetFeatureInfo to request
object-related data for a certain position in the map. The OGC services often used in an
SDI and relevant for this master thesis are briefly introduced in table 2.1.

2.4 Web processing services 11

Table 2.1: Selection of OGC standards used in SDIs

Service Name Description
Web Map Service (WMS) Returns a georeferenced raster map based on selected

geographical layers and the area of interest.
Web Map Tile Service (WMTS) Realizes the provision of digital maps using predefined

tiles, with the goal of high performance.
Web Feature Service (WFS) Enables access to geographic features as vector data

and can manipulate geodata as a Transactional WFS.
Web Coverage Service (WCS) Provides access to multidimensional coverage data with

full semantics for machine processing.
Catalogue Service for the Web (CSW) Publication of metadata about geo applications, geoser-

vices and geodata in an SDI, so that they can be found.
Web Processing Service (WPS) Spatial analysis of geodata via the Internet based on

predefined processing models.

But not only services belong to the setup and operation of an SDI, also open exchange
formats are essential for a high degree of interoperability. Here the XML and all formats
derived from XML are of high importance. The Geography Markup Language (GML)
format is widely used in geoinformatics, and Extensible 3D (X3D) as another description
language based on XML has established itself in the field of 3D models. A complete
overview of all OGC standards can be found on their website1.

The use of standards increases syntactic interoperability. However, one goal of an SDI
is also a semantic interoperability, which describes different subject systems according to
standardized rules and does not require a uniform data model for all subject applications
(Seifert, 2005). This is mainly driven by INSPIRE or the AFIS-ALKIS-ATKIS (AAA)
Model of surveying administrations. Semantic interoperability is often realized via model-
based transfer procedures, but this approach is not always possible in the heterogeneous
structure of a municipal administration. Here the use of a WPS can also be an advantage.

2.4 Web processing services

The Web Processing Service (WPS) standard was approved 2007 by the OGC in version
1.0.0 and is available since 2015 in version 2.0. Schut (2007) defines WPS as: “A
standardized interface that facilitates the publishing of geospatial processes, and the

1 https://www.opengeospatial.org/docs/is (visited on 23/02/2019)

https://www.opengeospatial.org/docs/is

2.4 Web processing services 12

discovery of and binding to those processes by clients.” The WPS standard regulates
the way a client interacts with a geoservice to perform a spatial process. The goal is
a standardized interface for publishing and performing geoprocessing in a web service
environment (Giuliani et al., 2012).

Figure 2.2: Basic principle of WPS in an SDI

In addition to the obvious benefits of availability and interoperability, there are other
positive aspects, such as the generally higher performance of a server over a desktop
computer, as demonstrated by Stollberg et al. (2007) in a real-time risk management
scenario. A WPS can process vector and raster data, but there are no fixed bounds to the
data, as shown in the case study from chapter 4. The communication between client and
server should be based on XML as the preferred exchange format. The WPS specification
defines three mandatory operations (fig. 2.3):

• GetCapabilities for the basic description of the available processes, properties and
metadata of the requested WPS.

• DescribeProcess for the detailed description of a specific process of the requested
WPS, such as inputs and outputs, metadata or supported data formats.

• Execute to run a specific process of the requested WPS and return the results. This
operation is less specified and has low restrictions.

A WPS has a certain resemblance to WFS and WCS. Due to the large number of possible
processing operations or data formats, it is clear that this standard must be particularly
abstract and generically defined. The WPS standard has the following capabilities.

• Inputs can be a web-accessible URL, like from a WFS, or embedded in the request.

• Outputs can be stored as a web-accessible URL or embedded in the response.

• Single outputs can be directly embedded in the response without any XML.

2.4 Web processing services 13

Figure 2.3: Mandatory operations of a WPS

• WPS supports multiple input and output formats.

• WPS supports synchronous requests, useful for fast calculations, and asynchronous
requests, useful for long-running processes.

• WPS supports Simple Object Access Protocol (SOAP), a protocol standardized by the
World Wide Web Consortium (W3C) for the exchange of data between applications.

• WPS supports Web Services Description Language (WSDL), a description language
standardized by the W3C to describe the interfaces of web services.

Using WPS the complexity of data processing can be reduced by providing ready-to-use
algorithms. This approach competes with traditional script-based methods, which lack
a standardized interface. The concatenation of processes enables the mapping of entire
workflows, which has always been a basic principle of GIS workflows. This makes highly
complex processes, for example in meteorology or geophysics, easy to use and interoperable.
By SOA the one-time provision of processing is sufficient, which can then be used from any
point of the network. The maintenance of processes in a central place is simplified, since it
only has to be carried out by the person who created it. It is possible to use the computing
power of central high-performance computers. The advantages of WPS are manifold and
there is a need for a standard in the age of digitization and automation. However, based
on the available literature, geoprocessing is not yet very widespread on the web (Hofer,
2015). Success and widespread use depend, among other things, on specific applications for
the general public. The use of WPS in the context of the increasing focus on digitization
within municipal administrations can be an advantage for this technology, which would
benefit from itself as it becomes more widespread.

CHAPTER 3

Freiburg’s spatial data infrastructure

Freiburg maintains a municipal SDI and is thus at the lower, local level in the hierarchy
of territorial authorities. As described in section 2.2, the number of different topics and
the complexity of the underlying data models increase at this level. This increases the
challenge to meet the general requirements of an SDI, such as interoperability, as well as
the municipal responsibilities.

3.1 Responsibilities

The legal obligation of a local SDI to provide geodata is defined at the European level
by INSPIRE, whereby the municipal involvement differs greatly from the involvement of
regional or national SDIs. The compulsory provision of spatial data by the SDI Freiburg
mainly comprises the area of urban land-use planning, for example local plans, land use
plans and redevelopment areas (Königer et al., 2017). The implementation of INSPIRE
leads to further laws at national level, such as the Information Re-use Act (IWG) for the
re-use of information of public authorities, the Geodata Access Act (GeoZG) for the access
to digital geodata, or the E-Government Act (EGovG) for the promotion of electronic
administration. Many of these laws again lead to country-specific laws, which then have to
be implemented at the municipal level and to which also the SDI Freiburg has to adhere.

In addition to laws, there are also resolutions that must be implemented within a certain
period of time. A current example is the introduction of the XML based exchange standards
XPlanung and XBau by the end of 2022 for a higher semantic interoperability approved
by the IT planning council. Freiburg’s SDI is closely involved in the realization, because
this topic is affected by INSPIRE. The aim is to improve data exchange and data use
in construction and planning. This is the place where employees and citizens come into
direct contact with the SDI, where they search for geodata in order to carry out spatial

14

3.2 Specifications 15

analyses, where they record new geodata, or where they have to retrieve information on
a topic. It is the task of an SDI to make this contact as barrier-free and comprehensive
as possible, with the aim to increase the quality of the geodata and the SDI itself. Legal
requirements, technical decisions and requirements of employees and citizens define the
framework and the capabilities of a local SDI. The following is an overview of the most
important responsibilities beyond the basic administration of system components:

• Implementation of legal requirements and resolutions when affected.

• Compliance with laws, such as privacy or copyright, for example by using a user
rights structure.

• Redundancy-free provision of spatial data for operational and planning-relevant
processes within the city administration and for citizens as an assistance, such as
primary school districts.

• Transformation of spatial processes with regard to higher interoperability to other
(non-spatial) processes and the connection to the SDI.

• Transformation of manual and proprietary processes into an automatable and net-
workable structure regarding the digitalization of the city administration.

• Provision of adapted tools for the collection of geodata and the associated metadata,
as well as the information about these data.

• Provision of interoperable geoservices according to an SOA.

• Supporting non-expert departments in solving spatial problems with regard to the
objectives of an SDI and digitization.

This spectrum of tasks shows that a local SDI also plays a mediating role and how
important a high degree of flexibility is. The technical architecture of Freiburg’s SDI is
primarily responsible for achieving a high degree of flexibility.

3.2 Specifications

The technical architecture of the SDI Freiburg specifies the scope of its possibilities.
The foundation was laid in 2008 with a first WebGIS based on Mapbender, a Content
Management System (CMS) for map applications and geodata services. With this decision
also the use of FOSS for the SDI was determined, with which it remained until today.

3.2 Specifications 16

The reason for it lies in the adaptability, flexibility and independence in the choice of the
individual components as well as the priority on a high interoperability. This decision
is based on the assumption that a municipal administration with its heterogeneous IT
structure can best be supported by a flexible SDI. The SDI Freiburg consists of the following
components:

Table 3.1: Technical components of the SDI Freiburg

Component Description
Hardware Fully virtualized system with VMware Workstation
Operating system Suse Linux Enterprise Server (SLES)
Database management system PostgreSQL with PostGIS as spatial extension
Map creation system UMN MapServer for WMS, WFS, WCS
WebGIS client Mapbender for geodata presentation and Leaflet for small maps
Desktop GIS QGIS as widely used Geographic Information System (GIS)
Metadata information system GeoNetwork for collection, distribution and harvesting of meta-

data and for the CSW

The entire architecture of the SDI Freiburg today relies largely on FOSS. Due to the
cooperation between OSGeo and OGC there are good technical prerequisites for a high
syntactic interoperability. For special requirements there are further applications, such
as ArcGIS or AutoCAD Map, but these are insufficiently connected to the SDI due to a
lack of compatibility. As an extended intermediate level there is a user rights management
to fulfill the requirements of privacy. This and other essential components are shown in
fig. 3.1. A difficulty is the connection between Intranet and Internet, because this is very
restrictive and currently no direct connection between SDI components of the Intranet
and the Demilitarized Zone (DMZ) accessible from the Internet. Therefore it is necessary
to run the essential components like MapServer and database twice, in the Intranet and
Internet.

The actual interoperability depends on how consistently the possibilities of the compo-
nents mentioned have been implemented in the sense of an SOA. If all geodata are only
published as WMS, their further use for evaluations is more restricted than with intensive
use of WFS. If no metadata is provided in a standardized and searchable way, data and
services cannot be found. The SDI Freiburg has published more than 200 WMS since 2008,
but only about 20 WFS. For the most part, analyses are done directly on the database.
Especially thematic geodata only show a small share of semantic interoperability in the
database. With regard to the use of WPS this detail can turn out to be obstructive.

3.2 Specifications 17

Figure 3.1: Schematic structure of Freiburg’s SDI

To create a WPS process an implementation of the WPS standard is required. The
choice of an implementation depends on many factors. Apart from the desired version of
the implemented WPS standard and the supported features, the technical environment, in
which the WPS is to be executed, is of central importance. For example, in Freiburg Java
is rarely used (GeoNetwork) and is avoided because of its limited scripting capabilities
and high memory consumption. Python, on the other hand, is often used because of
its simplicity, extensibility and scripting possibilities. Another important component are
Python implementations of program libraries like the Geospatial Data Abstraction Library
(GDAL), the OGR Simple Features Library (OGR) and PROJ for the conversion of map
projections. The components available on the server limit the selection of possible WPS
implementations (table 3.2). Due to the properties of Python and the available knowledge
the choice falls on PyWPS as WPS implementation. The PyWPS support for the WPS
standard currently only applies to v1.0.0, but support for v2.0.0 is under development.
Future features like transactional WPS are also planned for the release of PyWPS v4.4.0.
PyWPS is one of the first implementations of the WPS standard and is officially funded as
an OSGeo project. It remains to mention that as client QGIS is used with WPS client
plugin. The submitting of XML requests as HTTP POST is done with the Firefox add-on
RESTClient, a debugger for Representational State Transfer (REST) web services.

3.3 Common questions and solution approaches 18

Table 3.2: Selection of WPS implementations

Implementation Description
WPSint Open source Java implementation for WPS v0.4.0
deegree Open source Java implementation for WPS v0.4.0 and v1.0.0
GeoServer WPS plugin Open source Java implementation for WPS v1.0.0
PyWPS Open source Python implementation of WPS v1.0.0
WPS.NET Open source .NET implementation of WPS v1.0.0
ZOO project Open source C-Python-JavaScript implementation of WPS v1.0.0 and

v2.0.0

This makes the technical environment of the SDI Freiburg complete. The findings
from this master’s thesis can only be transferred to technically similar architectures. For
a proprietary SDI the findings would not be directly transferable, because the possible
approaches would be too different. The staffing of three persons from the field of geosciences
should also be mentioned, as this has an influence on the administrative capacities.

3.3 Common questions and solution approaches

When investigating the question of whether WPS can provide real added value for a local
SDI, spatial questions from the everyday life of a municipal administration must first be
considered as well as their previous approaches to solutions. Many spatial questions come
from the field of urban planning, but spatial questions also accumulate in building law
and in the social and citizen-oriented departments. Often, subject-specific applications
are integrated that come into contact with geodata before or after processing, but do not
have any interfaces for it. The following is a selection of everyday problems sorted by their
frequency and starting with the largest:

1. Data delivery: In urban planning, contracts with engineering firms require regular
transfer of up-to-date data records for a specific area. Data records in file form
are also often requested for external projects from industry and science. A spatial
selection is often necessary beforehand. An independent handling by the persons
concerned is not possible due to lack of knowledge or missing authorizations on
database or file system.

• Current solution: Manual handling by the SDI team.

3.3 Common questions and solution approaches 19

2. Intersection: The Consulting Centre for Building and Energy Freiburg (BZBE)
needs daily up-to-date intersections of addresses and parcels with almost all geodata
provided in the SDI.

• Current solution: Proprietary PHP script with ready-made SQL queries and
simple front-end. Application by the responsible person, adaptation and main-
tenance by the team of SDI.

3. Geocoding: Triggered by the digital strategy of the city of Freiburg, requests for
the conversion of data sets with indirect spatial reference into data sets with direct
spatial reference are increasing. An example is the maintenance of daycare facilities
mentioned in section 2.1.

• Current solution: Proprietary Python script that simplifies the use of the BKG
geocoding service for mass processing with municipal CSV files. Automated on
the SLES operating system, control of the results by the responsible person.

4. Reverse geocoding: For various purposes, address lists for a specific planning area
are required from time to time. Often these requests come from offices without any
reference to spatial data or GIS.

• Current solution: The team of SDI linked the identification numbers of the
affected buildings with the address database as an SQL query on the database.

5. Buffer, union and other operations: Representative also for other spatial operations,
which often have to be applied by non-technical offices according to a certain rule.
An example is the topic of building radio systems of the ABK. On the basis of an
address, the corresponding building geometry must be buffered according to a certain
formula which represents the range of the radio system.

• Current solution: Trigger on the geodatabase, data acquisition with QGIS by
the responsible person.

6. Evacuation radii: For different purposes it is necessary to derive an evacuation radius
based on different parameters. Examples are planning of training missions or actual
police or fire brigade missions, for example during floods or an EOD case.

• Current solution: Manual drawing on a printed map or manual analysis with
QGIS by the SDI team.

3.4 Applicability criteria for WPS 20

These examples illustrate the diversity and scope of the responsible tasks of a city admin-
istration compared to a specialist authority such as the State Institute for the Environment
Baden-Württemberg (LUBW). Are WPS processes now the only solution? No, because
there are already alternative solutions for all the questions mentioned. However, these are
not interoperable, often time-consuming or have unacceptable qualitative shortcomings.
The case study will show whether the use of WPS processes can better answer some of
these questions. This requires the definition of applicability criteria with which the benefit
of such processes can be empirically measured.

3.4 Applicability criteria for WPS

In order to investigate whether the development of processes based on WPS has advantages
over a proprietary solution using scripting, suitable criteria must be defined in relation to a
local SDI. These criteria must reflect the manageability on the part of the administrators,
the technical capabilities of the implementation, as well as the user-friendliness on the part
of the users. These characteristics are covered by the terms reusability, compatibility and
usability.

3.4.1 Reusability

The development of WPS processes can be very complex. If the process flow required by
the user can be implemented equally with a GIS, for example QGIS (graphical modeler),
the question of the further benefit, and thus the reusability, arises. So that the effort of the
development is worthwhile the processes must be reusable for other questions, either for
single use or in a new process chain. In order to achieve this, a certain degree of atomicity
or compactness must be taken into account during implementation. If the processes are
not atomic or compact enough, the reusability can decrease. If, on the other hand, they
are compressed too much, their number increases and with it the effort for development
and maintenance. The following criteria are defined for the evaluation of reusability:

• Do at least two of the processes developed for the case study have a higher general
potential for reuse?

• Is at least one of the processes developed for the case study practically reusable for
one of the questions mentioned in section 3.3?

• Is it possible to use the available processes to create another process chain of at least
two processes to answer a question?

3.4 Applicability criteria for WPS 21

3.4.2 Compatibility

As presented in section 2.3, interoperability is important for the communication and
exchange of data between independent components. Moreover, the heterogeneous IT
structure of a city administration in general and its SDI in particular places high demands
on this property. Therefore it has to be examined, for example, whether WPS processes
are adaptable enough, so that they can also be integrated into procedures outside the
GIScience. How high the degree of interoperability and how flexible the adaptability of
WPS processes is will be examined by means of the criterion of compatibility:

• Can the existing components of the SDI be used by a WPS with added value?

• Is the adaptability of a WPS sufficient to support the heterogeneous IT structure of
a city, such as by integrating previously unintegratable technical procedures?

• Can the functionality of a WPS capable SDI be extended by externally provided
processes?

• Does a WPS have any other side effects in terms of compatibility?

3.4.3 Usability

An SDI with all its advantages in a heterogeneous IT landscape, like the city of Freiburg, rises
and falls with its usability for tools and geodata. Section 2.4 states that the dissemination
of a technology or a standard also depends on concrete use cases. The acceptance required
for this is not only necessary on the part of the users, but also on the part of the system
operators. For the investigation of the applicability of WPS the criterion of usability is of
crucial importance. The usability can be divided into the technical usability of the system
operators to the actual WPS implementation, as well as the usability of the users to the
WPS processes developed by the system operator. The technical usability includes the
handling and the possibilities of the WPS implementation:

• Effort of integrating a WPS.

• Effort of adjusting and maintaining a WPS.

• Additional effort for the chaining of processes.

• Possibilities of simplification for the users.

3.4 Applicability criteria for WPS 22

When evaluating the technical usability that developers of WPS processes need in the
context of a typical city administration, the following two aspects have to be considered:

1. Low maintenance: Because a local SDI like the one in Freiburg often has to be
managed by only two to five people. In contrast, there is a high number of staff,
ranging from 3000 (Ulm), 4000 (Freiburg) to 10000 (Leipzig), from whom more and
more are involved in spatial issues.

2. High adaptability of the processes: Because a city administration has a very broad
spectrum of tasks and therefore a very heterogeneous IT structure (section 3.2).

The usability, which concerns users in handling WPS processes, comprises the specific
use case, with which effort and in which quality a question can be answered:

• Availability of the WPS.

• Need for clients and special software.

• Effort of answering a question.

When evaluating the usability that users of WPS processes place in the context of a
typical city administration, the following two aspects have to be considered:

1. Available knowledge: The employees of a typical city administration come from a
wide range of disciplines, but seldom have up-to-date IT knowledge in general or GIS
knowledge in particular. Therefore, complexity must be hidden and GIS related or
technical processes must be kept as simple as possible, especially if they are to be
implemented in non-technical departments.

2. Changing responsibilities: The functionality provided should be available indepen-
dently of individual computers and hardware-bound software licenses, so that modern
workplace concepts such as desk sharing or home office are not an obstacle.

CHAPTER 4

Case study

4.1 Initial situation

To investigate the applicability of WPS for Freiburg’s SDI, the criteria defined in section 3.4
must be applied to a case study. Such a case study should on the one hand cover a realistic
use case and on the other hand cover as many facets as possible in order to be able to derive
meaningful statements from it. Taking into account the properties of the WPS specification
mentioned in section 2.4, a use case with the following peculiarities is sought:

• Connection of a spatial question with a non-spatial component.

• Origin of the question outside the GIScience.

• Answering of the question by personnel without GIS knowledge.

• Answering the question by involving several departments.

• Complex question for which a trained specialist from the field of GIScience is required
up to now.

• Question for which there is so far no workflow in the sense of digitization and
automation.

• A question that can be answered with a measurable improvement.

A use case with these peculiarities is often to be found in a municipal administration.
The case studies described in section 3.3 also show these peculiarities to a large extent.
Such questions can be answered by Python scripting, but without the advantages of
a standardized interface and the integration of existing processes. For this reason an
implementation of processes based on WPS is considered at all. Furthermore, a complex

23

4.2 Explosive ordnance disposal 24

use case increases the probability of being able to reuse a part of the processes implemented
for answering other questions and, together with the described properties, is an ideal
candidate for investigating the applicability of WPS for Freiburg’s SDI.

During a conversation with colleagues from the ABK, the team from the SDI Freiburg is
in contact for the first time with the question of the determination of evacuation radii in
the context of the disposal of explosive ordnance. And thus with a method developed at
the Fraunhofer EMI for the physically highly precise derivation of such radii. The question
of the integration of this method in Freiburg’s SDI arose.

4.2 Explosive ordnance disposal

In Germany, dud bombs from the Second World War are still regularly discovered and
must be removed. This task lies historically justified in the responsibility of the Federal
States and is carried out by the Explosive Ordnance Disposal (EOD). A distinction is
made between military and civilian EOD, and the latter is the subject of this case study.
The civilian EOD has the task to protect public safety and order by removing objects and
substances of military origin intended for warfare. In contrast to the military EOD, which
primarily deals with tactical issues and damages are accepted, the priority of the civilian
EOD lies in the avoidance of secondary damages by defusing.

The overall process of an EOD includes much more than just the part of defusing or
controlled detonation. At the beginning there must be a suspicious case, which often occurs
during construction work. This is reported to the local fire brigade or police department,
and is followed by a direct report to the EOD service. The EOD service then begins with
the historical exploration of the affected area. Archive material on combat operations,
reports from earlier explosive ordnance finds and aerial photographs from the time of the
Second World War will be evaluated. If a suspicious case is confirmed, an investigation with
geophysical detectors is carried out on site and, as far as possible, the find is uncovered.
From this point on, a comprehensive classification of the find takes place. Only after all
parameters such as type, position, depth or TNT mass are known can the planning of
the evacuation begin. Parallel the EOD service plans the defusing or, if necessary, the
controlled detonation. Once the time has been set, the evacuation must be carried out
under the command of the local police authority (AfO), so that only the minimum necessary
risk must be taken. After successful disposal of the explosive ordnance, the evacuation
order is rescinded and the EOD case is closed. As shown in the overall process (fig. 4.1)

4.2 Explosive ordnance disposal 25

the responsibility of the municipality lies in reporting to the EOD service and especially in
the planning and execution of the evacuation.

Figure 4.1: Responsibilities in an EOD case

The planning of an evacuation is a spatial question that can include a specialized
component depending on the context. In this case the calculation of an exact hazard area
for a certain selection of materials and substances. Within this danger zone, addresses,
buildings and critical infrastructure must be identified in a short time so that those
responsible can be involved as early as possible in the planning of the evacuation. In
principle, the use of an SDI can have advantages in the determination of such geodata, as
described in section 2.2. Whether the use of WPS processes according to the hypothesis
will bring a significant improvement is now examined in a real application case.

4.2.1 Case definition

The scenario selected for the study is based on a real EOD case from March 20161. 3500
people were affected during the evacuation. The details of the exact location and the
results of the explosive ordnance classification performed by the EOD service were provided
by the ABK for this master thesis (table 4.1).

The time available between the classification of the explosive ordnance and its defusing
is from several hours to a few days, depending on the case. This is tight considering that
several departments have to be involved. Within this period the evacuation radius must
be defined and the planning and execution of the evacuation must be completed. The

1 https://www.badische-zeitung.de/freiburg/fliegerbombe-im-stuehlinger-evakuierung-am-
mittwoch--119843582.html (visited on 10/09/2018)

https://www.badische-zeitung.de/freiburg/fliegerbombe-im-stuehlinger-evakuierung-am-mittwoch--119843582.html
https://www.badische-zeitung.de/freiburg/fliegerbombe-im-stuehlinger-evakuierung-am-mittwoch--119843582.html

4.2 Explosive ordnance disposal 26

Table 4.1: Properties of the EOD case from 2016

Property Value
Date: 23.03.2016
Address: Klarastraße 18, 79106 Freiburg i. Br., Baden-Württemberg, Germany
Coordinates: LAT 47.99920∘ N, LON 7.84013∘ E
Location: 2.7 m below the earth’s surface
Site: found in a cave during construction work
Explosive ordnance: 247 kg aircraft bomb, unguided
Type: MC multi-purpose bomb (standard version) of British origin
TNT: 110 kg of Composition B
Detonator: mechanical with special design
Evacuation radius: 300 m fixed, with recesses

actual sequence of the steps under the responsibility of the city administration, with special
regard to the geodata-related part, was as follows and is based on a conversation with the
ABK and the AfO:

1. Report the explosive ordnance find to the EOD service.

2. Message to the departments concerned: ABK, AfO, Police Headquarters, Federal
Police, Ambulance Service, Medical Service, Emergency Medical Service

3. Determination of the evacuation radius (fig. 4.2) after classification of the explosive
ordnance:

• Use of the municipal WebGIS for printing a raster map.

• Estimation and drawing of an evacuation radius on the map.

• Marking of recesses within the radius based on experience.

• Manual colouring to distinguish between residential areas and public areas.

4. Search for critical infrastructure and involve those responsible. Affected: University
Hospital Computer Centre, Black Forest Mountain Rescue Service, Central Station,
Railway Signal Tower

5. Enquiry to the residents’ register to identify the persons concerned.

6. Execution of the evacuation managed by the Integrated Control Centre of the ABK.

4.2 Explosive ordnance disposal 27

7. Securing the evacuation zone during the defusing of the explosive ordnance.

8. Orderly cancellation of the evacuation and archiving of the EOD case.

Explosive Ordnance Location
Evacuation Radius 2016 (300 m)
Residential Area (18.03 ha)
Main Station Area (6.50 ha)

Evacuation 2016

0 50 100 150 200 m

Figure 4.2: Evacuation map from 2016 used for the EOD case

The use of the digital infrastructure in general and the SDI in particular has so far been
limited to the creation of a map (fig. 4.2) for orientation in evacuation planning. Requests,
for example to the residents’ register, address lists or affected buildings, are made manually
between the offices. The structural sequence is always the same, only the content changes
from case to case. A good prerequisite for the automation of processes in general. The
data sources used partly lie outside the SDI, which can lead in the unfavorable case to the
use of outdated data records.

4.2.2 Potential improvements

As the procedure described in the previous section shows, the geodata-related part is small.
The accuracy of the evacuation radius can also be considered as volatile because it depends
on the experience of the person in charge. A closer look at the entire evacuation planning
process reveals two possible adjustment screws for potential improvement.

4.2 Explosive ordnance disposal 28

1. Integration of the APOLLO Blastsimulator (section 4.2.3) to improve the accuracy of
the evacuation radius, the time required for it and the reduction of the dependence
on a destruction estimation expert:

• A higher accuracy of the evacuation zone gives more security in the affected
area of buildings and public places. It can be assumed that human decisions
based on experience are more conservative than purely numerical models. In
case of doubt, a larger buffer than necessary is chosen, which is a considerable
effort when evacuating hospitals or old people’s homes.

• Faster availability of the evacuation zone increases the time available for planning
the evacuation, which is a great advantage especially in facilities with increasingly
immobile people.

2. Use of SDI to facilitate access to the data sets needed and to shorten the time taken
to make enquiries to other services.

• Automatic selection of affected addresses, buildings and public spaces based on
all resources available in the SDI.

• Integration of the residents’ register and the statistics database into the digital
workflow.

The schematic representation in simplified form (fig. 4.3) describes the WPS as an
interface between ABK, SDI and APOLLO Blastsimulator as an external component to
answer important questions in evacuation planning.

Figure 4.3: Integration of a WPS in an EOD case

4.2 Explosive ordnance disposal 29

4.2.3 APOLLO Blastsimulator

The discovery of unexploded ordnance can have a major impact on the infrastructure of
a large city. The increasing densification of urban areas increases the need for precise
information on the extent to which such areas are affected. Likewise, the growing corrosion
of the fuse mechanisms within the bomb increases the risk of defusing it, so that controlled
detonations must be used more frequently, as an example in Munich in 20121 shows. For
this reason the Federal Ministry of Education and Research (BMBF) supports several
projects2 on civil security in the defusing of world war bombs. The three projects relevant
for civilian EOD are:

1. DETORBA: The aim is to develop a method that simulates and analyses the effects of
explosions in urban areas with unprecedented accuracy, thus enabling better planning
of evacuation measures for bomb finds from the Second World War (Bettenworth,
2013). The project was completed in 2015 with a final report by Trometer (2015).

2. SIRIUS: The aim is to develop software for site-specific risk analysis for the deactiva-
tion of aircraft bombs. 3D city models in combination with physical methods will
simulate the spreading of blast and splinter throwing. Special attention will be paid
to an easy-to-use interface (Gebhard, 2018).

3. DEFLAG: The aim is to develop a procedure that minimizes the risks of a controlled
detonation of explosive ordnance. With the help of a laser beam, the steel shell of the
unexploded ordnance is to be notched and weakened so that there is not detonation
but deflagration, which causes considerably less damage (Hermsdorf, 2016).

The APOLLO Blastsimulator is a Computational Fluid Dynamics (CFD) tool for the
simulation of detonations, blast and gas dynamics, and is developed at the Fraunhofer EMI
for High-Speed-Dynamics. With it it is possible to consider shading effects of buildings
and thus to reduce the evacuation area to a smaller size than before. The calculation
algorithms are based on the finite volume method with explicit time integration (Klomfass,
Kirchner, et al., 2009), and the theoretical basis of explosions and their effects on the
work of Kinney et al. (1985). A scientific review of the methods used in APOLLO was
conducted by Klomfass, Stolz, et al. (2016).

1 https://www.dw.com/de/bombenentschaerfen-geht-das-auch-sicherer/a-43467568 (visited on
19/02/2019)

2 https://www.bmbf.de/de/blindgaenger-innovative-technik-zur-entschaerfung-4730.html (vis-
ited on 07/01/2019)

https://www.dw.com/de/bombenentschaerfen-geht-das-auch-sicherer/a-43467568
https://www.bmbf.de/de/blindgaenger-innovative-technik-zur-entschaerfung-4730.html

4.2 Explosive ordnance disposal 30

The software is part of the projects DETORBA and the current follow-up project SIRIUS,
and supports the calculation of hazard areas. Past EOD operations have shown that it is
desirable to specify the hazard zone as precisely as possible. For example, a radius of 500 m
is often selected for air bombs of 250 kg, which is based on a rule of thumb of the EOD
service 𝑅 = 𝑀 [lbs] × 1 [m], whereas 2012 was only 350 − 500 m when defusing a bomb
of 1000 kg in Bochum (Trometer, 2015). The effects of bomb explosions are difficult to
predict, especially in densely populated areas. First pilot experiments took place in the
cities of Frankfurt am Main and Cologne. Important project partners from industry are
CADFEM GmbH and virtualcitySYSTEMS GmbH.

APOLLO requires various input data and parameters for the explosion simulation, which
are read in via a configuration file. The configuration is created via an interface in the
form of a Java Servlet, which is to be completed in the second quarter of 2019 as part of
the SIRIUS project. This interface converts the geodata, bomb parameters and location
information entered by an expert into a valid configuration for APOLLO. This step serves
the simplification, so that APOLLO is usable also by non-experts in the field of computer
science and physics, which is likewise a goal of SIRIUS. The input parameters required for
the interface and thus for the simulation are:

• 3D city model as CityGML and Digital Elevation Model (DEM) as GeoTIFF. The
STL transformation is implemented as part of the Java Servlet.

• Exact location of the find spot in Cartesian coordinates in meters.

• Relative height of the bomb in meters.

• Exact TNT blast power in kilograms.

• Precision used by APOLLO simulation in meters.

• Position of the bomb as azimuth angle and tilt angle in degrees.

• Type of the bomb after classification, for example GP100 or GP250.

• Position of detonator after classification, like front, rear, top, bottom.

• Site description, for example surface or cavern, with size in meters.

• Destruction curve the evacuation zone will be calculated for, like float glass, hardened
glass, safety glass, masonry, eardrum rupture, injury, lethal injury.

4.2 Explosive ordnance disposal 31

After all necessary data is available and the configuration file is generated, the calculation
process starts. Depending on the choice of the desired precision, the number of objects
from the city model and the available hardware, the process takes a few minutes to several
hours. The STL file is internally converted to a voxel approximation and a local coordinate
system is defined with the exact location of the find in the origin. The real time interval of
the simulation is defined by the global maximum overpressure until it falls below a critical
amplitude (fig. 4.4). In the course of the calculations the spatial distributions of the peak
overpressure (fig. 4.5) and the maximum overpressure impulse are recorded. With these
values specific destruction or injury characteristics are evaluated, for example float glass
damage, eardrum rupture, masonry or lethal injury (fig. 4.6). All the characteristic curves
are based on physical damage models and empirical values and help in operation planning,
for example as a special hazard area for police officers with protective suits or as a death
zone in which only the defusing experts are allowed to stay. For the calculation of the
evacuation zone, the characteristic curve for float glass damage is to be used as a basis, for
which a hazard to persons can be assumed.

Figure 4.4: Overpressure falls below a critical amplitude at 0.75 s (Fraunhofer EMI)

The result of the simulation is stored in the binary Visualization Toolkit (VTK) format.
In addition, APOLLO provides a text-based DAT file for a better understanding of the
internal voxel grid structure, which is also used for processing by the WPS. The result
file contains the values for peak overpressure and overpressure impulse per voxel as well
as the estimate values for each considered characteristic curve. For the derivation of the
evacuation area, the values per characteristic curve are relevant. These values estimate
how high the risk of a voxel is for the selected damage characteristic curve (fig. 4.7):

4.2 Explosive ordnance disposal 32

• If a load condition is clearly above a characteristic curve, the location is colored red;
there is a danger with great certainty.

• If a load condition is clearly below a characteristic curve, the location is colored blue;
there is no danger with great certainty.

• If a load condition is close to the characteristic curve, the location is coloured grey
and can be regarded as an evacuation edge.

The grey area is around the value of 0.50 and corresponds to 100 % of the damage
characteristic curve. A value of 0.35 corresponds to 50 % and a value of 0.65 corresponds
to 150 % of the damage characteristic curve. According to estimates of the Fraunhofer EMI
and experts of the EOD, the value 0.50 is conservative and safe. The result of the explosion
simulation must then be converted into a two-dimensional geometry by means of Python
or another programming language, with which further spatial operations, such as selections
or intersections, can be carried out. An example result can be found on GitLab1.

Figure 4.5: Distribution of overpressure amplitudes (Fraunhofer EMI)

1 https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/misc/
apollo_effects.dat

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/misc/apollo_effects.dat
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/misc/apollo_effects.dat

4.2 Explosive ordnance disposal 33

Figure 4.6: Characteristic curves based on physical damage models (Fraunhofer EMI)

Figure 4.7: Distribution of float glass damage (Fraunhofer EMI)

4.3 Process identification 34

4.3 Process identification

In order to implement the potential improvements (section 4.2.2), the geodata-related
area of the entire process flow must be examined more closely and presented in a clearly
understandable scheme. With the help of this schema, required sub-processes and their
delimitations can be identified.

4.3.1 Schematic workflow

The way of thinking and working necessary for the implementation of the workflow was
determined in discussions with the ABK and the AfO. It came out that the geodata-related
part contains two temporally sequenced part workflows:

1. Quick preselection (fig. 4.8): Immediate identification of affected infrastructure for
an early information policy. The rapid preselection includes a very large and secure
radius, because it is still done before the exact classification of the explosive ordnance
by the EOD service.

2. Accurate evacuation zone (fig. 4.9): Determination of the minimum evacuation line
that must be drawn for a safe EOD, and thus the actually affected infrastructure.
This part of the workflow can only take place after the explosive ordnance has been
classified.

The quick preselection workflow starts as soon as an actual explosive ordnance find has
been confirmed by the EOD service. Due to the longer duration of the classification and
the complex calculation process of the APOLLO Blastsimulator, a quick preselection is
necessary for an early information to important actors. The basis of the calculation is an
approximate initial estimation of the TNT quantity.

The accurate evacuation zone workflow starts as soon as the classification and thus the
actual hazard potential is known. The all-clear can be given for objects and infrastructure
affected in the preselection, which are no longer affected after the calculation of the accurate
evacuation zone. The two prepared schemata form the basis for the derivation of the
individual WPS processes and their delimitations.

4.3 Process identification 35

Figure 4.8: Flowchart for the quick preselection in an EOD case

Figure 4.9: Flowchart for the accurate evacuation zone in an EOD case

4.3 Process identification 36

4.3.2 Derivation of processes

The derivation of processes contains two challenges. On the one hand, the transfer of
schematic processes to a process logic that meets all necessary requirements. On the other
hand, the individual processes must be abstracted and delimited far enough so that they
can also be reused for other questions. For this purpose, the problems frequently arising in
a municipal SDI (section 3.3) must be kept in mind. Furthermore, the degree of abstraction
of the processes must not increase arbitrarily, so that the development and administration
effort does not exceed the human resources of a city administration. The goal of WPS
processes in a local SDI is not the maximum atomicity but the best possible answer to
common questions.

The two partial workflows show that the quick preselection flowchart is technically covered
by the accurate evacuation zone flowchart. The steps are identical because 𝐴1 = 𝐵1 and
𝐴2 = 𝐵5. All processes derived from the accurate evacuation zone flowchart are described
in table 4.2:

Table 4.2: List of processes required for an EOD case (* EOD only)

Step Process Function
B1* Rough Distance The process is needed for an initial estimation of the affected

area and returns a danger distance based on TNT blast power.
B1 Buffer The process is needed for an initial estimation of the affected

area and returns a buffer around an input feature.
B2 Export 3D Data The process returns 3D related spatial data for the APOLLO

simulation, selected by an input geometry.
B2* APOLLO Configuration The process takes user input and returns APOLLO configu-

ration data for the SIRIUS interface.
B3* APOLLO Simulation The process executes APOLLO via SIRIUS and returns a

blast effects result.
B4* Blast Effects Analysis The process returns an accurate evacuation zone around the

blast affected area.
B5 Export Affected Data The process returns a subset of given or fixed spatial data

selected by an input geometry.

As can be seen in table 4.2, generally applicable processes as well as processes only
usable in the context of APOLLO or an EOD case could be identified. Likewise the steps
𝐵1 and 𝐵2 were split into two subprocesses and abstracted, because thereby a reuse for
other communal problems becomes possible. The reason for several APOLLO processes is
above all the greater flexibility in the chaining of the processes, for example for the less

4.3 Process identification 37

extensive quick preselection workflow or an additional blast effects analysis independent
of APOLLO. The division of complex processes into several non-complex processes also
provides a better overview and simplifies the implementation and administration of the
entire component. The robustness also increases, because in the event of an error in
communication between the Intranet and the Internet, or SDI Freiburg and Fraunhofer
EMI, only a single sub-process is affected.

4.3.3 Definition of inputs and outputs

After deriving the individual processes from the schematic steps in the flowchart, the
basic distribution of tasks for implementation as a process chain is defined. Before the
implementation can begin, the necessary inputs and outputs must be clarified in detail.
The table 4.3 contains only the inputs and outputs actually required for the accurate
evacuation zone workflow. In the final implementation further optional inputs and outputs
will be defined. The exchange of geodata is done by GML for vector data and GeoTIFF
for raster data. Further details on inputs and outputs, such as data types or optional and
mandatory parameters, are discussed in chapter 5.

4.3 Process identification 38

Table 4.3: List of the minimum required inputs and outputs of the processes

I/O Name Description
Process: Rough Distance

In: TNT Approximate initial estimation of the TNT quantity blast power.
Out: Distance Conservative hazard distance to explosive ordnance.

Process: Buffer
In: Geometry GML geometry for which a buffer is to be created.
In: Buffer Size Size of the buffer to be applied to the input geometry.
Out: Geometry Input geometry buffered by a certain size.

Process: Export 3D Data
In: Geometry GML polygon geometry for spatial selection of 3D related data.
Out: DEM Selected section from the Digital Elevation Model (DEM).
Out: 3D City Model Selected section from the 3D city model of Freiburg.

Process: APOLLO Configuration
In: Geometry GML point geometry as exact location of the find.
In: TNT Exact TNT blast power classified by the EOD service.
In: Precision Accuracy of the calculation used by APOLLO simulation.
In: Height Relative height of the bomb to consider shadowing effects.
Out: Configuration APOLLO configuration data in JSON format for SIRIUS interface.

Process: APOLLO Simulation
In: Configuration APOLLO configuration data in JSON format for SIRIUS interface.
In: DEM Selected section from the DEM.
In: 3D City Model Selected section from the 3D city model of Freiburg.
Out: Blast Effects Voxel grid file with the values calculated by APOLLO.

Process: Blast Effects Analysis
In: Blast Effects Voxel grid file with the values calculated by APOLLO.
In: Damage Level Level of damage the evacuation zone will be calculated for.
Out: Evacuation Zone GML polygon geometry as evacuation zone around blast affected area.
Out: Raster Blast affected area as non-aggregated georeferenced raster file.

Process: Export Affected Data
In: Geometry GML polygon geometry for spatial selection of vector data.
Out: GML Data Selected subset of spatial data as GML file.
Out: Geometry Same GML polygon geometry from input for verification.

CHAPTER 5

Implementation

5.1 The PyWPS framework

As described in section 3.2, PyWPS is well suited for an environment like Freiburg’s SDI
and its stable version 4.0.0 is used for this thesis. As a server side implementation of the
WPS standard in version 1.0.0 PyWPS is using the Web Server Gateway Interface (WSGI)
calling convention for web servers to forward requests to frameworks written in Python.
This section shows the implementation of WPS processes using an intersection process
as an example. First the Apache web server must be configured for PyWPS to set the
permissions of the required working folders and make the WSGI script accessible. This is
done with a small configuration file (listing 5.1).

1 WSGIDaemonProcess pywps home=/srv/www/wps user=wwwrun group=www processes=2 threads=5
2 WSGIScriptAlias /pywps /srv/www/wps/pywps.wsgi process-group=pywps
3
4 <Directory /srv/www/wps>
5 WSGIScriptReloading On
6 WSGIProcessGroup pywps
7 WSGIApplicationGroup %{GLOBAL}
8 Require all granted
9 Allow from all

10 </Directory>
11
12 Alias /wps/output /srv/www/wps/output
13
14 <Directory "/srv/www/wps/output">
15 Options None
16 AllowOverride None
17 Order allow,deny
18 Allow from all
19 </Directory>

Listing 5.1: Apache web server configuration for PyWPS

The WSGI instance works like a wrapper around the PyWPS server and expects a list
of processes and a configuration file (listing 5.2). The full source code of the WSGI script
can be found in listing A.1.

39

5.1 The PyWPS framework 40

1 # libs
2 from pywps.app import Service
3 from processes.proc_vect_intersect import VectIntersect
4
5 processes = [VectIntersect()]
6
7 # for the process list on the home page
8 process_descriptor = {}
9 for process in processes:

10 abstract = process.abstract
11 identifier = process.identifier
12 process_descriptor[identifier] = abstract
13
14 # Service accepts list of process instances and list of configuration files
15 application = Service(processes, ['/srv/www/wps/pywps.cfg'])

Listing 5.2: Principle of WSGI wrapper importing a vector intersection process

Now the WPS is callable in principle, but errors are reported because the intersection
process doesn’t exist yet. Python supports object-oriented programming, so each PyWPS
process is defined as a new class that inherits the properties and methods of the Process
class of the PyWPS package. For this and for the further functionality different packages
have to be imported. Most of them come from PyWPS, OSGeo and for certain methods
like logging, URL and XML handling or self-written functions. Each class responsible
for a WPS process can be divided into two sections. The first section is the constructor
method, which defines a list of inputs and outputs as well as basic options and metadata
for the entire process. The second section is the handler method, which implements the
actual functionality and returns the processed result, in this case the intersection of two
geometries. The structure for all process classes is shown in listing 5.3.

1 # class definition of the process
2 class ProcessName(Process):
3 # constructor method for inputs, outputs, options and metadata
4 def __init__(self):
5 input_1 = ComplexInput(...)
6 input_2 = LiteralInput(...)
7
8 output_1 = ComplexOutput(...)
9 output_2 = LiteralOutput(...)

10
11 inputs = [input_1, input_2]
12 outputs = [output_1, output_2]
13
14 # function for delegating method calls to a parent or sibling class
15 super(ProcessName, self).__init__(...)
16
17 # handler method obtains request object and response object
18 def _handler(self, request, response):
19 # read or parse input data
20
21 # process data
22
23 # write output data
24
25 return response

Listing 5.3: Basic structure for all process classes

5.1 The PyWPS framework 41

The class VectIntersect starts with the constructor method (listing 5.4), in which the
inputs and outputs are defined and general properties like metadata via a super function
are set. The intersection process needs two geometries to be intersected. Two inputs
of the type ComplexInput are required, because they are complex data types and not
simple alphanumeric characters. These are provided with an identifier so that they can be
addressed via an XML request. The format of the data is also determined, in this case
GML, which can be validated by an XML Schema Definition (XSD). The super function
assigns an identifier, inputs and outputs, and various metadata to the process. At this
point the support for storing data (store_supported = True) and asynchronous mode
(status_supported = True) is also set.

1 def __init__(self):
2 in_geom_a = ComplexInput(
3 'in_geom_a',
4 'Input Geometry A [gml]',
5 supported_formats=[Format(mime_type='text/xml', extension='.gml',
6 schema='http://schemas.opengis.net/gml/3.1.1/base/gml.xsd',
7 validate=complexvalidator.validategml)],
8 mode=MODE.NONE
9)

10
11 in_geom_b = ComplexInput(
12 'in_geom_b',
13 'Input Geometry B [gml]',
14 supported_formats=[Format(mime_type='text/xml', extension='.gml',
15 schema='http://schemas.opengis.net/gml/3.1.1/base/gml.xsd',
16 validate=complexvalidator.validategml)],
17 mode=MODE.NONE
18)
19
20 out_intersect = ComplexOutput(
21 'out_intersect',
22 'Intersected Geometry',
23 supported_formats=[Format(mime_type='text/xml', extension='.gml',
24 schema='http://schemas.opengis.net/gml/3.1.1/base/gml.xsd',
25 encoding='UTF-8', validate=None)]
26)
27
28 inputs = [in_geom_a, in_geom_b]
29 outputs = [out_intersect]
30
31 super(VectIntersect, self).__init__(
32 self._handler,
33 identifier='vect_intersect',
34 version='1.0',
35 title='Vector Intersection Process',
36 abstract='The process returns intersected area of each input feature.',
37 metadata=[Metadata('The process returns intersected area of each input feature.',
38 'http://geodev:8080/geonetwork/srv/ger/catalog.search?service=CSW&version=2.0.2'
39 '&request=GetRecordById&id=c850b578-8561-42fb-88d1-1ac9e3314cf4#/metadata/'
40 'c850b578-8561-42fb-88d1-1ac9e3314cf4')],
41 inputs=inputs,
42 outputs=outputs,
43 store_supported=True,
44 status_supported=True
45)

Listing 5.4: Constructor method of the VectIntersect class of the intersection process

5.1 The PyWPS framework 42

The handler method provides the actual functionality of a process and returns the
processed result. First the data passed to the WPS must be read. PyWPS provides
suitable methods for this, but these do not support the import of data within a process
chain. For this functionality the entire status response XML of a request must be parsed,
which is universally feasible with the extended response parsing library written for PyWPS
in the context of this thesis (listing A.11). The parsing library is used for almost all read
operations of the implemented processes. Their use is shown using the example of the
intersection process in listing 5.5.

1 # check if data is given by reference
2 if request.inputs['in_geom_a'][0].as_reference:
3 # check if GET method is used
4 if request.inputs['in_geom_a'][0].method == 'GET':
5 # obtain input with identifier as file name
6 in_geom_a = request.inputs['in_geom_a'][0].file
7 # check if POST method is used - whole response has to be parsed (chaining)
8 elif request.inputs['in_geom_a'][0].method == 'POST':
9 # obtain whole response XML with identifier as data directly

10 in_response = request.inputs['in_geom_a'][0].data
11
12 # get content of LiteralData, Reference or ComplexData
13 ref_url = varlib.get_output(etree.fromstring(in_response))
14
15 # get GML file as reference
16 r = requests.get(ref_url[ref_url.keys()[0]], verify=False)
17 data = r.content
18
19 # create file, w: write in text mode
20 filename = tempfile.mkstemp(prefix='geom_a_', suffix='.gml')[1]
21 with open(filename, 'w') as fp:
22 fp.write(data)
23 fp.close()
24
25 in_geom_a = filename
26 else:
27 # obtain input with identifier as file name
28 in_geom_a = request.inputs['in_geom_a'][0].file

Listing 5.5: Read of input A within the handler method of the VectIntersect class

After both GML geometries are read in, they are internally transferred with the OGR
Simple Features Library (OGR) into an OGR layer structure in which further processing
takes place (listing 5.6). With the help of this library the spatial reference of geometry A
is read and passed to the output layer. The output is declared as an empty layer in GML
format. For a better handling of the intersection operation all single geometries of a layer
are transferred into a geometry collection.

1 # open file and layer of input a
2 in_src_a = ogr.Open(in_geom_a)
3 in_lyr_a = in_src_a.GetLayer()
4 lyr_name_a = in_lyr_a.GetName()
5
6 # open file and layer of input b
7 in_src_b = ogr.Open(in_geom_b)
8 in_lyr_b = in_src_b.GetLayer()
9 lyr_name_b = in_lyr_b.GetName()

5.1 The PyWPS framework 43

10
11 # get and set output spatial reference
12 epsg = int(in_lyr_a.GetSpatialRef().GetAttrValue('AUTHORITY', 1))
13 sref = osr.SpatialReference()
14 sref.ImportFromEPSG(epsg)
15
16 # create output file
17 driver = ogr.GetDriverByName('GML')
18 out_src = driver.CreateDataSource(lyr_name_a)
19 out_lyr = out_src.CreateLayer(lyr_name_a+'_'+lyr_name_b, sref, ogr.wkbGeometryCollection)
20
21 # create geometry collection of input a
22 collect_a = ogr.Geometry(ogr.wkbGeometryCollection)
23 for feat in in_lyr_a:
24 collect_a.AddGeometry(feat.GetGeometryRef())
25
26 # create geometry collection of input b
27 collect_b = ogr.Geometry(ogr.wkbGeometryCollection)
28 for feat in in_lyr_b:
29 collect_b.AddGeometry(feat.GetGeometryRef())

Listing 5.6: Internal data handling within the VectIntersect class using the OGR library

In the last step both geometry collections are intersected, which is done with the
Intersection method. The result of the intersection is returned to a new geometry collection
and passed to the previously declared output layer as a new feature. Finally, the result is
assigned to the inherited process response variable (listing 5.7).

1 # calculate intersection
2 intersect_geom = collect_a.Intersection(collect_b)
3
4 # create output feature to the file
5 out_feat = ogr.Feature(feature_def=out_lyr.GetLayerDefn())
6 out_feat.SetGeometry(intersect_geom)
7 out_lyr.CreateFeature(out_feat)
8
9 # free and reassign

10 out_feat = None
11 out_src = None
12
13 # set output format and file name
14 response.outputs['out_intersect'].output_format = Format(mime_type='text/xml', extension='.gml',
15 schema='http://schemas.opengis.net/gml/3.1.1/base/gml.xsd',
16 encoding='UTF-8', validate=None)
17 response.outputs['out_intersect'].file = lyr_name_a
18
19 return response

Listing 5.7: Calculation of the response within the VectIntersect class

The whole source code with comments of the vector intersection process can be found
in listing A.2. A valid execute request (listing A.12) with the complete XML response
(listing A.13) can be also found in the appendix. With a WPS client like QGIS this
process can be operated easily and user-friendly. Because QGIS recognizes the GML format
required for the input geometries, other formats, such as Shapefile, can also be used, which
are internally converted to GML before being passed to the process. The example shows
the intersection of parts of Klarastraße and Egonstraße at the crossroads (fig. 5.1).

5.1 The PyWPS framework 44

Figure 5.1: Using the intersection process as WPS with two Shapefiles in QGIS

The WPS also responds to the remaining two operations, GetCapabilities and De-
scribeProcess. In contrast to the Execute operation, these are preferred as Key-Value-Pair
(KVP) with the HTTP GET method. Due to the complexity of a chained Execute op-
eration, only the HTTP POST method is used. It might be looking more complicated
to use XML over KVP, for a complex request it is more safe and efficient to use XML
encoding. The KVP way for the Execute request can be tricky and lead to unpredictable
errors. (Čepický, 2019)

GetCapabilities: https://geodev2/pywps?request=getcapabilities&service=

wps&version=1.0.0

Response XML on GitLab: https://gitlab.com/hadlaskard/integration-of-

wps-in-local-sdi/blob/master/xml/wps_getcap_response.xml

DescribeProcess: https://geodev2/pywps?request=describeprocess&service=

wps&version=1.0.0&identifier=vect_intersect

Response XML on GitLab: https://gitlab.com/hadlaskard/integration-of-

wps-in-local-sdi/blob/master/xml/wps_describe_response.xml

This is one of many ways to realize an intersection process with PyWPS, because it
always depends on the actual case and the required features. The underlying OGR library
also contains much more powerful methods for implementing spatial operations. The WPS
standard does not set any conditions for the implementation of the processing itself. When
it comes to inputs, outputs, the transfer of data do the requirements of the standard come
into play.

https://geodev2/pywps?request=getcapabilities&service=wps&version=1.0.0
https://geodev2/pywps?request=getcapabilities&service=wps&version=1.0.0
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/wps_getcap_response.xml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/wps_getcap_response.xml
https://geodev2/pywps?request=describeprocess&service=wps&version=1.0.0&identifier=vect_intersect
https://geodev2/pywps?request=describeprocess&service=wps&version=1.0.0&identifier=vect_intersect
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/wps_describe_response.xml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/wps_describe_response.xml

5.2 Non-case-specific processes 45

5.2 Non-case-specific processes

This section gives a detailed overview (fig. 5.2) of all implemented processes, which cannot
be assigned to a certain topic, like an EOD case, and describes their peculiarities. Also
included are the two Python libraries geolib and varlib created during the implementation.
All processes support asynchronous mode, are chainable, and allow optional outputs.

Figure 5.2: Overview of all non-case-specific processes and auxiliary libraries

5.2 Non-case-specific processes 46

Vector intersection process

The source code (listing A.2) has been explained in section 5.1. The execute request
(listing A.12) and the XML response (listing A.13) can be found in the appendix.

Vector buffer process

The process returns a buffer around each input feature. The input GML may contain
any number of geometries, but only the buffered geometries without attribute values are
returned (listing 5.8). The value of the buffer size may be specified directly, referenced to
a preceding process, or read from an attribute field of the input geometry. The output is a
GML layer in the same reference system as the input layer. The whole source code with
comments can be found in the appendix (listing A.3).

1 # make buffer for each feature
2 while index < count:
3 # get the geometry
4 in_feat = in_lyr.GetNextFeature()
5 in_geom = in_feat.GetGeometryRef()
6
7 # check if size attribute exists
8 if size_field in field_names:
9 size_val = in_feat.GetField(size_field)

10 if isinstance(size_val, int) or isinstance(size_val, float):
11 size = size_val
12 else:
13 size = 0
14
15 LOGGER.debug('Buffer Size:' + str(size))
16
17 # make the buffer
18 buff_geom = in_geom.Buffer(float(size))
19
20 # create output feature to the file
21 out_feat = ogr.Feature(feature_def=out_lyr.GetLayerDefn())
22 out_feat.SetGeometry(buff_geom)
23 out_lyr.CreateFeature(out_feat)
24
25 # free and reassign
26 out_feat = None
27
28 index += 1

Listing 5.8: Buffer iteration over each input geometry within the VectBuffer class

Request on GitLab: https://gitlab.com/hadlaskard/integration-of-wps-in-

local-sdi/blob/master/xml/proc_sync_vect_buffer.xml

Response on GitLab: https://gitlab.com/hadlaskard/integration-of-wps-in-

local-sdi/blob/master/xml/proc_sync_vect_buffer_response.xml

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/proc_sync_vect_buffer.xml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/proc_sync_vect_buffer.xml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/proc_sync_vect_buffer_response.xml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/proc_sync_vect_buffer_response.xml

5.2 Non-case-specific processes 47

Export vector data process

The process returns a subset of given or fixed spatial data selected by an input geometry.
The choice of geodata from which to select is unlimited when using a WFS as input.
Selections in the database, on the other hand, are permanently implemented and are
selected per database slot from a topic list. Currently addresses, buildings, parcels, local
plans and POI are supported, the list can be extended if necessary. The spatial selection
is possible from up to four different data sources with one process call (WFS example
in listing 5.9). The output consists of the selection geometry and the selected features
including all attribute values in the GML Format. In addition, an overview map can be
output as GeoTIFF. The selection geometry may exist in any reference system and is
transformed to ETRS89 (EPSG: 25832) before the selection. All other input layers must
already exist in this reference system and are also output in the same system. The whole
source code with comments can be found in the appendix (listing A.4).

1 # check and obtain input with identifier as data directly
2 if 'in_wfs1' in request.inputs:
3 wfs1 = request.inputs['in_wfs1'][0].data
4
5 # create file, w: write in text mode
6 in_path = tempfile.mkstemp(prefix='wfs1_data_', suffix='.gml')[1]
7 with open(in_path, 'w') as fp:
8 fp.write(wfs1)
9 fp.close()

10
11 # open file and layer
12 wfs1_src = ogr.Open(in_path)
13 wfs1_lyr = wfs1_src.GetLayer()
14
15 # get spatial reference
16 wfs_epsg = int(wfs1_lyr.GetSpatialRef().GetAttrValue('AUTHORITY', 1))
17
18 # check spatial reference
19 if wfs_epsg == self.epsg:
20 wfs1_lyr.SetSpatialFilter(geom)
21 else:
22 LOGGER.debug('Incompatible Spatial Reference of WFS1 and Selection Geometry.')
23
24 # set output format definition
25 out_path = tempfile.mkstemp(prefix='wfs_' + wfs1_lyr.GetName() + '_data_', suffix='.gml')[1]
26 out_src = ogr.GetDriverByName("GML").CreateDataSource(out_path)
27 out_src.CopyLayer(wfs1_lyr, wfs1_lyr.GetName())

Listing 5.9: Using SetSpatialFilter for selection within the ExportVectData class

Request on GitLab: https://gitlab.com/hadlaskard/integration-of-wps-in-

local-sdi/blob/master/xml/proc_sync_export_vect_data.xml

Response on GitLab: https://gitlab.com/hadlaskard/integration-of-wps-in-

local-sdi/blob/master/xml/proc_sync_export_vect_data_response.xml

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/proc_sync_export_vect_data.xml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/proc_sync_export_vect_data.xml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/proc_sync_export_vect_data_response.xml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/proc_sync_export_vect_data_response.xml

5.2 Non-case-specific processes 48

Export 3D related spatial data process

The process returns 3D related spatial data selected by an input geometry. The choice of
geodata is limited to the 3D city model in X3D format and a DEM as GeoTIFF, all in the
reference system ETRS89 (EPSG: 25832). For the DEM a WCS is requested (listing 5.10),
and for the city model an SQL query to a 3D City Database1 has been made (listing 5.11).
The whole source code with comments can be found in the appendix (listing A.5).

1 if 'out_dem' in request.outputs.keys():
2 # WCS request
3 url = "http://mapbender/wcs7/verma_hoehen/verma_dgm?"
4 wcs = WebCoverageService(url, version="1.0.0")
5
6 # get a certain coverage
7 dem = wcs['dgm1']
8
9 # request parameters

10 bbox = (bbx1, bby1, bbx2, bby2)
11 crs = 'EPSG:' + str(self.epsg)
12 file_type = 'GEOTIFF_16' # GEOTIFF_16, AAIGRID, GTiff
13 resx, resy = 1, 1 # max. available resolution of DEM data
14
15 try:
16 # get coverage request
17 gc = wcs.getCoverage(identifier=dem.id, bbox=bbox, format=file_type, crs=crs, resx=resx, resy=resy)
18
19 # create file, wb: write in binary mode
20 dem_path = tempfile.mkstemp(prefix='dem_', suffix='.tif')[1]
21 with open(dem_path, 'wb') as fp:
22 fp.write(gc.read())
23 fp.close()
24 except owslib.util.ServiceException as se:
25 dem_path = ''
26 LOGGER.debug('WCS ServiceException:' + str(se))

Listing 5.10: Using a WCS for DEM selection within the Export3dData class

1 # sql query with placeholders, transformation to local spatial reference
2 query = sql.SQL("SELECT ST_AsX3D(ST_Transform(ST_SetSRID(sg.geometry, %s), %s), 3, 0) AS geom_3d "
3 "FROM {tbl} sg LEFT JOIN thematic_surface ts ON ts.lod2_multi_surface_id = sg.root_id "
4 "LEFT JOIN building b ON ts.building_id = b.building_root_id "
5 "WHERE sg.geometry IS NOT NULL AND ts.lod2_multi_surface_id IS NOT NULL "
6 "AND ST_Intersects(ST_SetSRID(ST_PolygonFromText(%s), %s), sg.geometry);")
7
8 # execute command, using templating mechanism for better security
9 db_cur.execute(query.format(tbl=sql.Identifier('surface_geometry')),

10 [self.epsg3, self.epsg, geom.ExportToWkt(), self.epsg3])
11
12 # process query result data
13 city_data = '<?xml version="1.0" encoding="UTF-8"?>\n' \
14 '<!DOCTYPE X3D PUBLIC "ISO//Web3D//DTD X3D 3.3//EN"\n' \
15 ' "http://www.web3d.org/specifications/x3d-3.3.dtd">\n\n' \
16 '<X3D profile="Interchange" version="3.3"\n' \
17 ' xmlns:xsd="http://www.w3.org/2001/XMLSchema-instance"\n' \
18 ' xsd:noNamespaceSchemaLocation="http://www.web3d.org/specifications/x3d-3.3.xsd">\n' \
19 '<Scene>'
20
21 for city_geom in db_cur:
22 city_data += '\n <Shape>\n ' + str(city_geom)[2:-3] + '\n </Shape>'

1 https://www.3dcitydb.org (visited on 22/04/2019)

https://www.3dcitydb.org

5.3 Case-specific processes 49

23
24 city_data += '\n</Scene>\n</X3D>'
25
26 # create file, w: write in text mode
27 city_path = tempfile.mkstemp(prefix='city_', suffix='.x3d')[1]
28 with open(city_path, 'w') as fp:
29 fp.write(city_data)
30 fp.close()

Listing 5.11: SQL query to the 3D City Database and creation of the X3D file

Request on GitLab: https://gitlab.com/hadlaskard/integration-of-wps-in-

local-sdi/blob/master/xml/proc_sync_export_3d_data.xml

Response on GitLab: https://gitlab.com/hadlaskard/integration-of-wps-in-

local-sdi/blob/master/xml/proc_sync_export_3d_data_response.xml

Supporting libraries

The support methods library geolib is used for methods like database handling or spa-
tial reference transformations. Worth mentioning is the use of the Psycopg adapter for
PostgreSQL and the templating mechanism to protect against SQL injection attacks. The
XML parsing library varlib is used to parse the XML of WPS response documents and
supports synchronous, asynchronous, single use and chained processes. The whole source
code with comments can be found in the appendix (listing A.10 and listing A.11).

5.3 Case-specific processes

This section gives a detailed overview (fig. 5.3) of all implemented processes that can
be assigned to the EOD topic and describes their particularities. All processes support
asynchronous mode, are chainable, and allow optional outputs.

APOLLO rough danger distance process

The process is part of the EOD workflow and returns a rough danger distance based on a
given solid and TNT mass. Both are defined as LiteralInput and of type Integer. The solid
type is entered via a code list that currently accepts two types: float glass (0) and eardrum
rupture (1). In the process chain, the value is set to float glass by the administrator to
allow a sufficiently large preselection and to exclude critical operating errors from the user.
Calculating the safe distance 𝑑 is a very conservative approach to the real evacuation zone.
For float glass damage the threshold value is at a peak overpressure of 𝑓1

(︁
52 [m]
𝑀1/3

)︁
= 3 kPa,

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/proc_sync_export_3d_data.xml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/proc_sync_export_3d_data.xml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/proc_sync_export_3d_data_response.xml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/proc_sync_export_3d_data_response.xml

5.3 Case-specific processes 50

Figure 5.3: Overview of all case-specific processes

which means 𝑑 = 52 m at a mass 𝑀 of 1 kg TNT, or 𝑑 = 52 m × 1000 kg1/3 = 520 m at a
mass 𝑀 of 1000 kg TNT. For eardrum rupture the threshold value is 𝑓2

(︁
12.5 [m]
𝑀1/3

)︁
= 17 kPa,

which means 𝑑 = 12.5 m for 1 kg TNT, or 𝑑 = 12.5 m × 300 kg1/3 = 84 m at a mass 𝑀 of
300 kg TNT. These functions are based on curve fitting to experimental findings and were
published by Kinney et al. (1985). The result is output as RawDataOutput. The whole
source code with comments can be found in the appendix (listing A.6).

Request on GitLab: https://gitlab.com/hadlaskard/integration-of-wps-in-

local-sdi/blob/master/xml/proc_sync_apollo_rough_dist.xml

Response on GitLab: https://gitlab.com/hadlaskard/integration-of-wps-in-

local-sdi/blob/master/xml/proc_sync_apollo_rough_dist_response.txt

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/proc_sync_apollo_rough_dist.xml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/proc_sync_apollo_rough_dist.xml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/proc_sync_apollo_rough_dist_response.txt
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/proc_sync_apollo_rough_dist_response.txt

5.3 Case-specific processes 51

APOLLO configuration process

The process is part of the EOD workflow and returns APOLLO configuration data for the
SIRIUS interface. The output is a JSON file (listing 5.12) generated from the inputs that is
read by a Java Servlet so that the APOLLO Blastsimulator can be started with optimally
adjusted parameters. The location is read as GML geometry, all other parameters are
defined as LiteralInput and are based on different data types and code lists (fig. 5.3).
They describe the location of the explosive ordnance and the explosive ordnance itself.
Currently only the exact location, precision, relative height and exact TNT blast power
are mandatory, all others are optional. A short description of the parameters can be found
in the XML request and in the input definitions in the source code. The whole source code
with comments can be found in the appendix (listing A.7).

1 # create output data
2 conf_data = EasyDict({'bomb': {'tnt': tnt, 'type': bomb_type, 'detonator': detonator},
3 'domain': {'name': 'Ultimo', 'zroi': 100, 'droi': dist_threshold},
4 'mode': {'name': 'Ultimo', 't': 50, 'precision': precision},
5 'site': {'type': site_desc, 'radius': site_rad},
6 'geometry': {'crs': self.epsg2, 'position': [x_wgs, y_wgs], 'depth': (-1) * height},
7 'crs': self.epsg,
8 'position': [x2, y2],
9 'height': height,

10 'heading': heading,
11 'pitch': pitch,
12 'extent': [bbx1, bby1, bbx2, bby2],
13 'hiddenObjects': hidden,
14 'service': {'url': self.srv_url, 'resultFile': 'effects_' + str(self.uuid) + '.zip'}
15 })
16
17 # conversion to JSON format
18 conf_json = json.dumps(conf_data)

Listing 5.12: Creation of the JSON file within the ApolloConf class

Request on GitLab: https://gitlab.com/hadlaskard/integration-of-wps-in-

local-sdi/blob/master/xml/proc_sync_apollo_conf.xml

Response on GitLab: https://gitlab.com/hadlaskard/integration-of-wps-in-

local-sdi/blob/master/xml/proc_sync_apollo_conf_response.xml

APOLLO execute process

The process is part of the EOD workflow, executes APOLLO via a Java Servlet developed
as part of the SIRIUS project and returns a blast effects result. The three ComplexInput
declarations consist of the JSON configuration file, the DEM and the 3D city model. As
the result of the explosion simulation a blast effects file is output, which can then be
analysed by the APOLLO evacuation zone process. The process can take several hours, so

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/proc_sync_apollo_conf.xml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/proc_sync_apollo_conf.xml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/proc_sync_apollo_conf_response.xml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/proc_sync_apollo_conf_response.xml

5.3 Case-specific processes 52

it must support asynchronous mode. Via a while loop a freely configurable URL is checked
for its status code. Only when this status code is valid is the process continued. Until
then APOLLO Execute Process Still In Progress will be output as XML status response
(listing 5.13). The cancel operation Dismiss is only supported from WPS version 2.0.
Currently a timer could limit the endless loop in case of an error. The whole source code
with comments can be found in the appendix (listing A.8).

1 # open configuration file
2 with open(in_conf, 'r') as fp:
3 conf_data = json.load(fp)
4
5 # read url for APOLLO service and result data
6 if 'service' in conf_data:
7 srv_url = conf_data['service']['url']
8 result_file = conf_data['service']['resultFile']
9 srv_url_result = srv_url + result_file

10
11 # NON-PRODUCTIVE ONLY -> overwrite result data url because simulation of working SIRIUS / APOLLO server
12 srv_url_result = 'https://geodev2/apollo_result/apollo_effects.zip'
13
14 # reveal input data, execute APOLLO and calculate effects result
15 # r_exe = requests.get(srv_url, verify=False)
16
17 # effects result file checker
18 while not requests.head(srv_url_result, verify=False).status_code == requests.codes.ok:
19 response.update_status('APOLLO Execute Process Still In Progress', 0)
20
21 # get effects result file when APOLLO is ready
22 r = requests.get(srv_url_result, verify=False)
23 data = r.content
24
25 # create file, wb: write in binary mode
26 result_file = tempfile.mkstemp(prefix='effects_', suffix='.zip')[1]
27 with open(result_file, 'wb') as fp:
28 fp.write(data)
29 fp.close()

Listing 5.13: Simulation of working SIRIUS interface within the ApolloExecute class

Request on GitLab: https://gitlab.com/hadlaskard/integration-of-wps-in-

local-sdi/blob/master/xml/proc_async_apollo_execute.xml

Response on GitLab: https://gitlab.com/hadlaskard/integration-of-wps-in-

local-sdi/blob/master/xml/proc_async_apollo_execute_response_status_

finished.xml

APOLLO evacuation zone process

The process is part of the EOD workflow and returns an evacuation zone around a
blast affected area. Required are two ComplexInput declarations consisting of the JSON
configuration file and the blast effects file as a result of the explosion simulation. The
configuration is used for the reverse transformation from the internal APOLLO coordinate

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/proc_async_apollo_execute.xml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/proc_async_apollo_execute.xml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/proc_async_apollo_execute_response_status_finished.xml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/proc_async_apollo_execute_response_status_finished.xml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/proc_async_apollo_execute_response_status_finished.xml

5.3 Case-specific processes 53

system to ETRS89 (EPSG: 25832). In addition, another LiteralInput may be given, which
defines via a code list for which level of damage the evacuation zone is calculated. Supported
are all destruction curves relevant for an EOD case and considered by APOLLO: float
glass (0, default value), hardened glass (1), safety glass (2), masonry (3), eardrum rupture
(4), injury (5) and lethal injury (6). This can be used to output different evacuation zones,
for example for the mentioned police officers with protective suits within the eardrum
rupture area or the defusing experts within the death zone. The output consists of the
evacuation zone as GML geometry and an evacuation grid in GeoTIFF format. The GML
geometry is added with the attribute field corr_buff for a buffer value that corrects
the pixel inaccuracy (section 5.4.2). The way there is a complex sequence of individual
processing steps (fig. 5.4).

Figure 5.4: Overview of processing steps within the ApolloEvacZone class

The blast effects file can be a compressed zip file or uncompressed text file, the process
supports both formats. Decisive is the read in as NumPy array, which converts the
three-dimensional voxel grid structure into the two-dimensional plane (listing 5.14). The
remaining values can then be transferred directly into a grid and stored as georeferenced
TIFF (listing 5.15). The static class variable rot_deg is used for a counter-rotation,
which was originally applied by APOLLO to the voxel grid file to increase the geometric
approximation in the area of the find. In the future, APOLLO will manage this operation
completely internally and can therefore be set to zero in this process. The resulting
evacuation zone is based on a ConvexHull operation by OGR, which includes all polygon
areas affected by the selected damage level. For these areas, the estimate of 0.50 introduced

5.3 Case-specific processes 54

in section 4.2.3 applies. If necessary, a LiteralInput for free selection of this value could
simply be added. The additionally output GeoTIFF contains all calculated estimate values
from 0.0 to 1.0 and can be used by the expert to assess critical objects. The whole source
code with comments can be found in the appendix (listing A.9).

1 # build dtype array structure for APOLLO effects file
2 dt = np.dtype({'names': ['I', 'J', 'K', 'Dir', 'N', 'Obj',
3 'F1_MaxOP', 'F2_MaxOP-Imp', 'F3_OP-Imp', 'F4_FloatGl', 'F5_HardGl', 'F6_SafeGl',
4 'F7_Masonry', 'F8_RC30-01', 'F9_RC30-06', 'F10_Eardrum', 'F11_Injury', 'F12_Lethal'],
5 'formats': ['int', 'int', 'int', 'int', 'int', 'int', 'float', 'float', 'float', 'float',
6 'float', 'float', 'float', 'float', 'float', 'float', 'float', 'float']})
7
8 # read APOLLO effects file
9 data = np.loadtxt(in_effects_dat, skiprows=19, dtype=dt, ndmin=2)

10
11 # get dimensions (I=512 J=512 K=76)
12 size_i = np.amax(data['I']) - np.amin(data['I']) + 1
13 size_j = np.amax(data['J']) - np.amin(data['J']) + 1
14
15 # get delta of translation to positive quarter
16 delta_i = abs(np.amin(data['I']))
17
18 # max values, no abs, needed for iterations
19 max_j = np.amax(data['J'])
20
21 # empty array with size of ground surface
22 target = np.zeros((size_j, size_i))
23
24 # make data flat
25 for row in np.nditer(data):
26 # save value only if greater than previous value in K direction
27 if row[dmg_lvl] > target[max_j - row['J']][delta_i + row['I']]:
28 # save 1-dimensional value
29 target[max_j - row['J']][delta_i + row['I']] = row[dmg_lvl]

Listing 5.14: Conversion of 3D voxel grid structure into a 2D plane

1 # set spatial reference and export projection to wkt
2 sref = osr.SpatialReference()
3 sref.ImportFromEPSG(epsg)
4 wkt_proj = sref.ExportToWkt()
5
6 # number of pixels in x and y, and size of one pixel
7 pixel_x = size_i
8 pixel_y = size_j
9 pixel_size = precision

10
11 # transform location coordinates to upper left base point used in GTiff
12 rot_rad = math.radians(-1 * self.rot_deg)
13 size_i2 = size_i / 2.0
14 size_j2 = size_j / 2.0
15 delta_x = (size_i2 * precision) * math.cos(rot_rad) + (size_j2 * precision) * math.sin(rot_rad)
16 delta_y = -(size_i2 * precision) * math.sin(rot_rad) + (size_j2 * precision) * math.cos(rot_rad)
17 min_x = x - delta_x
18 max_y = y + delta_y
19
20 # set raster format definition
21 raster = gdal.GetDriverByName('GTiff').Create(
22 raster_path, # file path
23 pixel_x, # width in pixels
24 pixel_y, # height in pixels
25 1, # number of bands
26 gdal.GDT_Float32 # type of raster
27)
28

5.4 Chaining of processes 55

29 # set transformation from pixel to projected coordinates
30 raster.SetGeoTransform((
31 min_x, # x value at top left
32 math.cos(rot_rad) * pixel_size, # transform pixel size in west-east
33 math.sin(rot_rad), # rotation factor 1
34 max_y, # y value at top left
35 math.sin(rot_rad), # rotation factor 2
36 -math.cos(rot_rad) * pixel_size # transform pixel size in north-south
37))
38
39 # set projection for transformed coordinates
40 raster.SetProjection(wkt_proj)
41
42 # write simulated data to band 1
43 raster.GetRasterBand(1).WriteArray(target)

Listing 5.15: Conversion of 2D NumPy array into a georeferenced TIFF

Request on GitLab: https://gitlab.com/hadlaskard/integration-of-wps-in-

local-sdi/blob/master/xml/proc_async_apollo_evac_zone.xml

Response on GitLab: https://gitlab.com/hadlaskard/integration-of-wps-in-

local-sdi/blob/master/xml/proc_async_apollo_evac_zone_response_status_

finished.xml

5.4 Chaining of processes

After the implementation of all processes derived from the two workflows (section 4.3.1),
they are available for concatenation. Thus, the entire procedure can be linked as one
process chain and all required processing can be performed in one step. It should be noted
that the vector intersection process is not used in the EOD workflow chain, but as an
example process and for testing purposes. A distinction is made between user inputs,
administrator inputs, process chain outputs and temporary or unused inputs and outputs
(table 5.1). There is also an additional process chain output which can be useful for the
user as an intermediate result of the APOLLO evacuation zone process: A not generalized
GeoTIFF with single values from the explosion simulation. The problems concerning this
and process chaining in general are discussed in section 5.5.4.

5.4.1 Quick preselection

The quick preselection chain realized with WPS matches to the developed schematic
workflow (fig. 4.8). The corresponding asynchronous XML request, response status and
response result can be found in the appendix (listing A.14, listing A.15 and listing A.16).

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/proc_async_apollo_evac_zone.xml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/proc_async_apollo_evac_zone.xml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/proc_async_apollo_evac_zone_response_status_finished.xml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/proc_async_apollo_evac_zone_response_status_finished.xml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/proc_async_apollo_evac_zone_response_status_finished.xml

5.4 Chaining of processes 56

Table 5.1: Differences between all inputs and outputs of a process chain

Name Description
Non-fixed user input: Variable user input data from the user of the process chain.
Fixed administrator input: Input data fixed by the administrator to simplify the handling

and prevent user errors.
Process chain output: Final data output for the user at the end of the process chain.
Additional process chain output: Intermediate result data from a process within the chain that

can be useful for the user.
Temporary or unused in / out: All other input and output data generated or required by

the process chain, without that user gets in touch with it.

5.4.2 Accurate evacuation zone

The accurate evacuation chain realized with WPS matches to the developed schematic
workflow (fig. 4.9). Additionally a correction buffer between the APOLLO evacuation
zone process and the export vector data process at the end of the chain was implemented.
This corrects the pixel inaccuracy resulting from the selected precision for the APOLLO
simulation. A precision 𝑝 of 10 m produces a raster with a resolution of 10 m per pixel. The
evacuation zone calculation is based on the center of a pixel, resulting in a correction buffer
of 𝐵 =

√︀
𝑝2 + 𝑝2, which is calculated during the evacuation zone process and transmitted

to the buffer process as an attribute value of the output geometry. The corresponding
asynchronous XML request, response status and response result can be found in the
appendix (listing A.17, listing A.18 and listing A.19).

5.4 Chaining of processes 57

Figure 5.5: Overview of the quick preselection process chain

5.4 Chaining of processes 58

Figure 5.6: Overview of the accurate evacuation zone process chain, part 1

5.4 Chaining of processes 59

Figure 5.7: Overview of the accurate evacuation zone process chain, part 2

5.5 Key characteristics 60

5.5 Key characteristics

The implementation of the processes does not always run smoothly as with the intersection
process presented here. During the development of the individual processes, various
questions arose or insights were gained that deal with the delimitation, data handling,
asynchronous use or chaining of the processes. These questions will be discussed in this
section, as they provide some reasons for decisions and ways of implementing the processes.
The reasons can be PyWPS bugs, restrictions of the WPS standard or programming
style.

5.5.1 Atomicity

If the developed processes are to be reusable for other questions, then special attention
must be paid to their delimitation. The more general and abstract the implementation
of a process, the greater the probability of reuse for another application. However, this
also increases the number of processes and thus the expenditure for development and
maintenance. In the context of a municipal SDI the priority is therefore not on the
maximum compactness of processes, but on the correct assessment of existing questions
(section 3.3), and whether a WPS is suitable for answering them (section 4.1).

The functional delimitation of the various processes was chosen in such a way as to
avoid redundancies on the one hand – which increases compactness and modularity, and
on the other hand by combining technically similar functions – which reduces compactness
and modularity. The result can be described as an individual middle ground, which was
achieved through additional and flexibly implemented inputs and outputs. This strategy
is especially useful for the four non-case-specific processes, as these are more universally
applicable. These processes were based on the following considerations:

• proc:export_vect_data: WFS allows the delivery and pre-filtering of geodata from
which the selection is to be made. The database support extends the possibilities.

• proc:export_3d_data: 3D city model and DEM are often needed together, a single
output is also allowed. The combination of the two implemented export processes to
one process is possible, but reduces the compactness.

• proc:vect_buffer: In addition to a fixed buffer value, this spatial process also
supports the name of an input geometry attribute field whose value can be used for a
variable buffer size. It only supports the functions that are required in the workflow.

5.5 Key characteristics 61

The four case-specific processes, on the other hand, are more difficult to delimit because
their intended use serves a specific application, so that the effort and benefit of a high degree
of compactness must be weighed up carefully. In the final implementation, the compactness
was chosen so that an evacuation zone calculation independent of APOLLO is possible,
if a blast effects file is available. Such a separation increases flexibility. However, this
decision also has disadvantages, because it requires a redundant call of the configuration
process (dashed line in fig. 5.6 and fig. 5.7), respectively for the execute process and the
evacuation zone process. It is therefore advisable to consider combining all three APOLLO
processes linked in succession to form a single process, but then with renunciation of the
mentioned flexibility. However, the rough danger distance process must be outsourced in
order to fulfill the requirement of two separate workflows. These processes were based on
the following considerations:

• proc:apollo_rough_dist: Outsourcing is necessary to meet the requirement of two
separate workflows.

• proc:apollo_conf: Outsourcing enables the detachment from the subsequent exe-
cute process.

• proc:apollo_execute: The detachment from the two surrounding processes mini-
mizes the functional limitations in case of network problems, since only this process
has to pass through the firewall into the Internet.

• proc:apollo_evac_zone: Outsourcing enables the detachment from the previous
execute process and thus the calculation of the evacuation zone independent of the
APOLLO Blastsimulator. Overall, this process is the most extensive and has a low
compactness (fig. 5.4). A separation of certain parts into non-case-specific processes
to answer other spatial questions of the city administration of Freiburg has to be
carried out if necessary.

5.5.2 Handling of inputs and outputs

In order for a data exchange based on WPS between several processes or a client to function
smoothly, special attention must be paid during development to an exact definition of the
inputs and outputs. The WPS standard makes certain specifications and defines three
data types:

5.5 Key characteristics 62

• LiteralData: All simple data consisting of a text string or numerical values, i.e.
integer, float or string. The parameter allowed_values expects a list with which
such data can be restricted or predefined.

• ComplexData: All non-simple data based on a complex data model, such as raster
or vector data. The specification of the appropriate mime_type is mandatory. The
result of each OGC Web Service (OWS) may also be used as input, which often
comes in GML format.

• BoundingBoxData: Defines according to the OWS common specification two coordi-
nate pairs in WGS 84 or another reference system by specifying its EPSG code.

The inputs and outputs required for the use case were defined in section 4.3.3. Further
rules were established during the implementation to ensure that the data exchange works
in practice:

• Some data (location coordinates, APOLLO configuration) are required at different
points in the entire process chain. A solution for this can be the use of a workflow
engine like Taverna or Camunda BPMN. The looping through of data was avoided.

• Inputs and outputs should be as generic as possible, redundancy-free and serve the
purpose of a process, regardless of how the process is used.

• Due to the integration of the PROJ library the reference system for the input
geometries is irrelevant, because it is read from the respective data set and transformed
if necessary. For the output, on the other hand, the supported reference systems must
be clearly described. For all processes of this WPS the processed data are stored in
the ETRS89 / UTM zone 32 north (EPSG: 25832) valid in Baden-Württemberg and
if required in WGS 84.

• For the exchange of vector data GML, and for raster data GeoTIFF is used.

• Support for optional inputs and outputs increases the versatility of a process. This
has been used especially for the vector buffer and the export vector data process.

• Temporarily required files within a process are managed by PyWPS and deleted after
the end of the process. It is therefore helpful to use the Python module tempfile.

• Writing output data to a database is avoided because there is still no solution for
competing processes at database level, which can lead to data loss due to overwriting.

5.5 Key characteristics 63

• The use of a geodatabase as input is very performant. The disadvantage, however,
is that the structure in the database of the SDI Freiburg has no high semantic
interoperability, for example with the names of schemata and database tables. This
makes the data exchange between WPS and database very complicated. The use of
OWS is more sustainable here.

• Using WFS instead of a geodatabase as input increases flexibility. However, the
amount of data to be transferred can increase if no OGC filter encoding is used.

No software without errors, PyWPS is no exception. Also the WPS standard itself
has certain shortcomings in the used version 1.0.0. In the case of inputs and outputs,
undesirable behaviour occurred in individual cases. There are also disadvantages to some
features, such as the use of RawDataOutput:

• The use of RawDataOutput allows only one output per process, additional outputs
are not output. RawDataOutput is used by the APOLLO rough danger distance
process to output the calculated distance.

• As workaround the vector buffer process additionally uses a ComplexInput for the
buffer size, because with the PyWPS version used the result of a preceding process
can only be read by reference as input.

• PyWPS uses an Universally Unique Identifier (UUID) to distinguish individual
process instances. Since WPS standard version 2.0 the JobID was introduced. If,
however, processing from components running outside the PyWPS are included,
such as the APOLLO Blastsimulator, the problem of competing processes must be
managed by these components.

• The use of BoundingBoxData is not possible because PyWPS generates a different
namespace and XML tag in the output (ows:BoundingBox) than is expected in the
input (wps:BoundingBoxData). This makes chaining impossible.

• Inputs can only be mandatory or optional. There is no possibility to assign two
inputs with the condition “either or”.

• Using the data type float for a LiteralOutput causes a PyWPS error. Switching to
the string data type fixes the problem.

• The validation mode for ComplexInput cannot be used due to incompatibilities
between the mime_type library and the QGIS WPS client.

5.5 Key characteristics 64

5.5.3 Synchronous versus asynchronous

The WPS standard supports two modes in which a process can be executed: synchronous
and asynchronous. In synchronous mode, the server accepts the request with the input
data and processes it accordingly. During this time, the server waits until the end of the
calculations and then returns the resulting process response to the client. In asynchronous
mode, the server immediately issues a ProcessAccepted response and closes the connection
to the client. The process continues to run in the background on the server. The client can
check the progress via an offered status URL. After the process is finished and the client
requests the status the next time, the final response with the calculation results is output
via the status URL. The client itself must be active, because the server only responds to
requests and behaves passively. (Čepický and Sousa, 2016)

The asynchronous mode thus enables the execution of long-running processes. This
should be used for a duration of 30 seconds or more, because after this time the Apache web
server can cause a timeout error depending on the configuration. The APOLLO execute
process and the APOLLO evacuation zone process take much longer and are therefore
executed asynchronously. All other processes need only a few seconds and are executed
synchronously. The APOLLO execute process triggers the actual explosion simulation and
can last several hours by use of an accuracy of less than one meter. The use of asynchronous
mode must be enabled in the Python code and in the XML request, and the XML parsing
must be extended:

• Python process class: Within the super function of the process class, the variables
store_supported and status_supported must be set to True.

• XML request: In the ResponseDocument tag the attribute storeExecuteResponse

and status must be set to true. For information the attribute mode should be set
to async in the Execute tag.

• XML parsing: To pass on the results to a subsequent process, the status URL must
be determined and read every few seconds (time.sleep(5)) via a loop. Only if the
XML tag ProcessSucceeded exists the loop is left.

Starting with version 2.0 of the WPS standard, three additional optional operations
are available in asynchronous mode: GetStatus to query the status of an asynchronously
executed process, GetResult to query the result of an asynchronously completed process,
and Dismiss to terminate an asynchronously started process by the client.

5.5 Key characteristics 65

5.5.4 Single use and chained processes

The chaining of processes takes place in the XML request of the Execute operation, in
which the input of the following process refers to the preceding process and executes this
via XML request (listing A.14). An example process chain consisting of intersection and
buffer process demonstrates the procedure (fig. 5.8):

XML request on GitLab:
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/

master/xml/chain_sync_vect_intersect_vect_buffer.xml

XML response result on GitLab:
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/

master/xml/chain_sync_vect_intersect_vect_buffer_response.xml

Figure 5.8: Simple intersection and buffer process chain, visualized with QGIS

The use case EOD showed from the beginning that to answer the question by means of
WPS a concatenation of several processes would be necessary. Methods have been developed
which prepare all processes for use within a process chain. While the basic structure of
the chaining of processes as XML request clearly results from the WPS standard, the
implementation of the processes must be modified in a few points:

• XML parsing: To pass on the results to a subsequent process, the XML response
must be searched for the ProcessOutputs tag and parse the individual outputs. The
two methods get_output and get_output_data within the XML parsing library are
responsible for this.

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/chain_sync_vect_intersect_vect_buffer.xml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/chain_sync_vect_intersect_vect_buffer.xml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/chain_sync_vect_intersect_vect_buffer_response.xml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/chain_sync_vect_intersect_vect_buffer_response.xml

5.5 Key characteristics 66

• By reference workaround: The result of an preceding process in a chain can only be
read by reference as input with the PyWPS version used. Therefore the vector buffer
process uses a ComplexInput for the buffer size as workaround.

• Asynchronous mode: All final process chains take longer than 30 seconds to process
and are therefore executed asynchronously (section 5.5.3).

It becomes apparent that within a process chain only one output of a process can be
requested per input of the subsequent process. Therefore, for example, the export 3D
related spatial data process must be called twice within the accurate evacuation zone
process chain. This makes handling more difficult and the requirements on a client increase.
The following is a summary of the challenges found in the course of chaining processes on
the basis of WPS:

• Within a process chain, only one output of a process can be requested per input of
the following process.

• Intermediate results of processed data within a process chain cannot be assigned to
the final total output of the chain. Each process in a chain knows nothing about the
chain itself or that it is part of it. Intermediate results are physically on the server,
but are not part of ProcessOutputs.

• QGIS as WPS client does not yet support WPS process chaining. For this the WPS
client plugin would have to be extended with the functionality of a QGIS process
provider. Then WPS processes could be chained with the graphical modeler of QGIS.

In summary, it can be said that a close look at the chaining of inputs and outputs reveals
the advantages of a workflow engine. Plain XML requests do not provide the flexibility
required to reuse processed data at multiple points within the process chain during runtime.
This is necessary when using the APOLLO configuration process output, which is required
in both the execute process and the evacuation zone process. An optimization by APOLLO
would be to extend the header of the blast effects file with the parameters used in the
simulation, but in practice it must be assumed that external software components are not
easily adaptable.

For the multiple use of non-fixed user inputs before the start of a process chain, a simple
HTML form is also technically possible, which distributes the inputs to the respective
process inputs via JavaScript. However, this does not solve the problem of redundancy-free

5.6 Limitations for productive operation 67

reuse of already processed data within the process chain during runtime. Furthermore, a
desktop GIS cannot be integrated into an HTML form.

5.6 Limitations for productive operation

The selected use case from the field of EOD is a current research topic and includes external
components that are currently under development and may be subject to minor changes.
The most important of these components is the unfinished Java Servlet, which acts as a
front-end interface between Freiburg’s SDI and the APOLLO Blastsimulator, and which
will be completed in the second quarter 2019 within the SIRIUS project. This will read the
JSON file created by the configuration process and start the APOLLO with the optimal
parameters. Only when the Java Servlet is finished this function can be tested practically.

All WPS processes, the applications required for running them and the system-related
components, such as the Apache web server, run on a virtual Suse Linux Enterprise Server
(SLES) provided by the City of Freiburg. This server is classified as a test system and
cannot be reached from the Internet. The provision of the geodata required by APOLLO for
external interfaces, such as the Java Servlet, and thus real-time execution of the accurate
evacuation zone process chain is therefore not yet possible. For this reason the APOLLO
execute process simulates the delivery of the blast effects result file on the own server
(listing 5.13).

The APOLLO Blastsimulator is currently being extended by a model for the simulation
of splinter throwing, which will further increase the accuracy of the hazard analysis if all
site and bomb parameters are known. This model will also be completed in the second
quarter 2019 and was not yet available for this master thesis.

During the implementation, great importance was attached to getting as close as possible
to real-time execution of the process chain. The missing parts are the responsibility of the
SIRIUS project partners. Any adjustments in the Python source code of the affected WPS
processes are largely prepared.

CHAPTER 6

Evaluation

6.1 Results of the case study

Taking into account the limitations mentioned, the two independent partial workflows
developed in section 4.3.1 for the geodata-related part of an EOD were implemented and
successfully tested using a process chain based on the WPS standard. The results processed
will be evaluated in this section and compared with the previous procedure. The input data
for both process chains are taken from the parameters of the EOD case of 2016 (table 4.1).
The initial estimation of the TNT quantity blast power for the rough danger distance
process is 400 kg. QGIS was used to locate the coordinates of the site. All user input
refers to the non-fixed user inputs (fig. 5.5, fig. 5.6 and fig. 5.7). In addition, all fixed
administrator inputs were selected according to table 6.1.

Table 6.1: Input data fixed by the administrator, both process chains

Fixed Administrator Input Value or URL
apollo_rough_dist:in_solid 0 (Float Glass)
apollo_evac_zone:in_dmg_lvl 0 (Float Glass, values 1 − 6 used for test purposes)
vect_buffer:in_size_field corr_buff (attribute field name in evacuation zone GML)
export_vect_data:in_wfs1 http://stadtplan.freiburg.de/wfs7/gdm_poi/

poi_public?service=wfs&version=2.0.0&request=
getfeature&typename=pois&srsname=epsg:25832

export_vect_data:in_wfs2 Same URL as for WFS1, limited by an OGC filter to day-
care facilities, police, fire brigade, hospitals, schools and old
people’s meeting centres.

export_vect_data:in_db1 address (based on ALKIS, no persons due data privacy)
export_vect_data:in_db2 building (based on ALKIS, no persons due data privacy)

68

http://stadtplan.freiburg.de/wfs7/gdm_poi/poi_public?service=wfs&version=2.0.0&request=getfeature&typename=pois&srsname=epsg:25832
http://stadtplan.freiburg.de/wfs7/gdm_poi/poi_public?service=wfs&version=2.0.0&request=getfeature&typename=pois&srsname=epsg:25832
http://stadtplan.freiburg.de/wfs7/gdm_poi/poi_public?service=wfs&version=2.0.0&request=getfeature&typename=pois&srsname=epsg:25832

6.1 Results of the case study 69

6.1.1 Process chain output

The quick preselection process chain took about 25 seconds to complete all processes in it.
In total, 730 buildings, 499 addresses, 32 general and 6 critical POI are located within the
383 m preselection radius (fig. 6.1). The objects classified as critical include four daycare
facilities and two schools.

Explosive Ordnance Location

Rough Evacuation Radius (383.14 m)

Possibly Affected Buildings (730)

Possibly Affected Addresses (499)

Possibly Affected General POI (32)

Possibly Affected Critical POI (6)

Quick Preselection Result

0 50 100 150 200 m

Figure 6.1: Quick preselection result map based on the EOD case 2016

When this EOD case 2016 was processed there was no preselection. The work was
performed manually and collected by employees from different departments. Therefore, the
integration of this process chain into the entire workflow alone is an added value. However,
the currently available POI have a weak point because they do not contain old people’s
homes or industry. A maintenance of these data and the integration of these in Freiburg’s
SDI must be managed by the team of the SDI. All data generated by this process chain
are available on GitLab (table 6.2).

6.1 Results of the case study 70

Table 6.2: Processed data from the quick preselection process chain (* final output)

Output Value or URL
apollo_rough_dist:
out_rough_dist

383.14 m, based on 400 kg TNT

vect_buffer:
out_buff

https://gitlab.com/hadlaskard/integration-of-wps-in-
local-sdi/blob/master/data/quick/out_buff_pre.gml

export_vect_data:
out_wfs1*

https://gitlab.com/hadlaskard/integration-of-wps-in-
local-sdi/blob/master/data/quick/out_wfs1_poi_all.gml

export_vect_data:
out_wfs2*

https://gitlab.com/hadlaskard/integration-of-wps-in-
local-sdi/blob/master/data/quick/out_wfs2_poi_critic.gml

export_vect_data:
out_db1*

https://gitlab.com/hadlaskard/integration-of-wps-in-
local-sdi/blob/master/data/quick/out_db1_address.gml

export_vect_data:
out_db2*

https://gitlab.com/hadlaskard/integration-of-wps-in-
local-sdi/blob/master/data/quick/out_db2_building.gml

export_vect_data:
out_bound*

https://gitlab.com/hadlaskard/integration-of-wps-in-
local-sdi/blob/master/data/quick/out_bound.gml

export_vect_data:
out_map*

https://gitlab.com/hadlaskard/integration-of-wps-in-
local-sdi/blob/master/data/quick/out_map.tif

The accurate evacuation zone process chain took about 120 seconds to complete all
processes in it. Excluded from this is the APOLLO execute process, because it was only
indirectly linked in the case study. The runtime of APOLLO with an Intel XEON E5 of
the Fraunhofer EMI (2.9 GHz, 16 cores) was 40 minutes at a resolution of 1 meter. The
simulated time interval is defined as the maximum overpressure until it falls below a critical
amplitude and lasts 0.75 seconds for this case. To verify the results, a second simulation
with a resolution of 0.5 meters was performed, which lasted 5.5 hours. In total there are
278 buildings, 159 addresses, 2 general and 3 critical POI within the 7.07 ha evacuation
zone (fig. 6.2). The critical objects include three daycare facilities.

The evacuation zone of the EOD case 2016 was manually selected based on experience
and includes an area of 18.03 ha + 6.50 ha = 24.53 ha. The evacuation zone calculated with
APOLLO covers an area of 7.07 ha and is thus much smaller than with the manual method.
This reduces the area of buildings and facilities to be evacuated by 71.18 %. For example,
it can be seen that the main station would not have had to be evacuated according to
the selected parameters. In case of doubt, a look at the evacuation grid (fig. 6.4), which
has also been processed, helps whether an estimate value below 0.50 would hit the main
station building. The mentioned POI problem remains. All data generated by this process
chain are available on GitLab (table 6.3).

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/quick/out_buff_pre.gml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/quick/out_buff_pre.gml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/quick/out_wfs1_poi_all.gml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/quick/out_wfs1_poi_all.gml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/quick/out_wfs2_poi_critic.gml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/quick/out_wfs2_poi_critic.gml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/quick/out_db1_address.gml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/quick/out_db1_address.gml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/quick/out_db2_building.gml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/quick/out_db2_building.gml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/quick/out_bound.gml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/quick/out_bound.gml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/quick/out_map.tif
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/quick/out_map.tif

6.1 Results of the case study 71

Table 6.3: Processed data from the accurate evacuation zone process chain (* final output)

Output Value or URL
apollo_rough_dist:
out_rough_dist

249.15 m, based on 110 kg TNT

vect_buffer:
out_buff

https://gitlab.com/hadlaskard/integration-of-wps-in-
local-sdi/blob/master/data/main/out_buff_pre.gml

export_3d_data:
out_dem

https://gitlab.com/hadlaskard/integration-of-wps-in-
local-sdi/blob/master/data/main/out_dem.tif

export_3d_data:
out_city

https://gitlab.com/hadlaskard/integration-of-wps-in-
local-sdi/blob/master/data/main/out_city.x3d

apollo_conf:
out_conf

https://gitlab.com/hadlaskard/integration-of-wps-in-
local-sdi/blob/master/data/main/out_conf.json

apollo_execute:
out_effects

https://gitlab.com/hadlaskard/integration-of-wps-in-
local-sdi/blob/master/data/main/out_effects.zip

apollo_evac_zone:
out_evac_zone

https://gitlab.com/hadlaskard/integration-of-wps-in-
local-sdi/blob/master/data/main/out_evac_zone.gml

apollo_evac_zone:
out_raster

https://gitlab.com/hadlaskard/integration-of-wps-in-
local-sdi/blob/master/data/main/out_raster_f4.tif

vect_buffer:
out_buff

https://gitlab.com/hadlaskard/integration-of-wps-in-
local-sdi/blob/master/data/main/out_buff_zone.gml

export_vect_data:
out_wfs1*

https://gitlab.com/hadlaskard/integration-of-wps-in-
local-sdi/blob/master/data/main/out_wfs1_poi_all.gml

export_vect_data:
out_wfs2*

https://gitlab.com/hadlaskard/integration-of-wps-in-
local-sdi/blob/master/data/main/out_wfs2_poi_critic.gml

export_vect_data:
out_db1*

https://gitlab.com/hadlaskard/integration-of-wps-in-
local-sdi/blob/master/data/main/out_db1_address.gml

export_vect_data:
out_db2*

https://gitlab.com/hadlaskard/integration-of-wps-in-
local-sdi/blob/master/data/main/out_db2_building.gml

export_vect_data:
out_bound*

https://gitlab.com/hadlaskard/integration-of-wps-in-
local-sdi/blob/master/data/main/out_bound.gml

export_vect_data:
out_map*

https://gitlab.com/hadlaskard/integration-of-wps-in-
local-sdi/blob/master/data/main/out_map.tif

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/main/out_buff_pre.gml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/main/out_buff_pre.gml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/main/out_dem.tif
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/main/out_dem.tif
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/main/out_city.x3d
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/main/out_city.x3d
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/main/out_conf.json
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/main/out_conf.json
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/main/out_effects.zip
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/main/out_effects.zip
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/main/out_evac_zone.gml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/main/out_evac_zone.gml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/main/out_raster_f4.tif
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/main/out_raster_f4.tif
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/main/out_buff_zone.gml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/main/out_buff_zone.gml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/main/out_wfs1_poi_all.gml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/main/out_wfs1_poi_all.gml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/main/out_wfs2_poi_critic.gml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/main/out_wfs2_poi_critic.gml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/main/out_db1_address.gml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/main/out_db1_address.gml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/main/out_db2_building.gml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/main/out_db2_building.gml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/main/out_bound.gml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/main/out_bound.gml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/main/out_map.tif
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/main/out_map.tif

6.1 Results of the case study 72

Explosive Ordnance Location
Export Selection Radius (249.15 m)
Accurate Evacuation Zone (7.07 ha)
Non-Affected Buildings
Affected Buildings (278)
Affected Addresses (159)
Affected General POI (2)
Affected Critical POI (3)

Digital Elevation Model [m] NHN

262
266
269
273

Accurate Evacuation Zone Result

0 50 100 150 200 m

Figure 6.2: Accurate evacuation zone result map with DEM based on the EOD case 2016

6.1.2 Intermediate output

Apart from the main output, further data are processed within the process chain which
are necessary for the process but which do not primarily interest the end user. Decisive
for the execution of the APOLLO Blastsimulator are the DEM (fig. 6.2) and the 3D city
model (fig. 6.3) as data source for the relevant area as well as the simulation parameters in
the form of a JSON file (listing 6.1). In addition, the evacuation zone process generates an
evacuation grid during the evaluation of the blast effects file, which contains all maximum
estimate values in the vertical direction and can be consulted by the expert in case of
doubt. Likewise the evacuation zone process can calculate further special danger zones and
thus help with the stationing of the emergency forces. For example a narrower zone for
police officers with protective suits or the defusing experts within the death zone (fig. 6.4,
fig. 6.5, fig. 6.6 and fig. 6.7).

6.1 Results of the case study 73

Figure 6.3: Affected district as 3D city model

1 {
2 "crs": 25832,
3 "extent": [
4 413229.1279899657, 5316613.730901043,
5 413727.4356551003, 5317112.038566177
6],
7 "position": [413478.281822533, 5316862.88473361],
8 "height": -2.7,
9 "pitch": 0,

10 "heading": 0,
11 "bomb": { "tnt": 110, "type": "GP250", "detonator": "Front" },
12 "site": { "type": "Cavern", "radius": 1.5 },
13 "geometry": {
14 "crs": 4326, "depth": 2.7,
15 "position": [7.840131140308953, 47.999206585002355]
16 },
17 "service": {
18 "url": "https://www.cadfem.de/apollo/",
19 "resultFile": "effects_35cb2598-676c-11e9-8f2e-005056820f34.zip"
20 },
21 "domain": { "droi": 249.15383256726474, "zroi": 100, "name": "Ultimo" },
22 "mode": { "t": 50, "name": "Ultimo", "precision": 1 }
23 "hiddenObjects": ["None"],
24 }

Listing 6.1: JSON file generated by the APOLLO configuration process

6.1 Results of the case study 74

Explosive Ordnance Location

Export Selection Radius (249.15 m)

Accurate Danger Zone (7.07 ha)

APOLLO Effects Estimate Value

0.00

0.25

0.50

0.75

1.00

Danger Zone (Float Glass)

0 50 100 150 200 m

Figure 6.4: All estimate values based on the Float Glass characteristic

Explosive Ordnance Location

Export Selection Radius (249.15 m)

Accurate Danger Zone (1.95 ha)

APOLLO Effects Estimate Value

0.00

0.25

0.50

0.75

1.00

Danger Zone (Hard Glass)

0 50 100 150 200 m

Figure 6.5: All estimate values based on the Hardened Glass characteristic

6.1 Results of the case study 75

Explosive Ordnance Location

Accurate Danger Zone (0.47 ha)

APOLLO Effects Estimate Value

0.00

0.25

0.50

0.75

1.00

Danger Zone (Eardrum Rupture)

0 50 100 m

Figure 6.6: All estimate values based on the Eardrum Rupture characteristic

Explosive Ordnance Location

Accurate Danger Zone (0.05 ha)

APOLLO Effects Estimate Value

0.00

0.25

0.50

0.75

1.00

Danger Zone (Lethal Injury)

0 20 40 m

Figure 6.7: All estimate values based on the Lethal Injury characteristic

6.1 Results of the case study 76

6.1.3 Assets and drawbacks

The case study selected for the examination of the applicability of WPS aims to improve
the workflow in the evacuation planning in case of an EOD and to minimize the effort
for the user. At the same time, the implementation touches different, also non-technical
aspects of digitization. The potential improvements identified in section 4.2.2 could be
implemented as follows:

1. Integration of the APOLLO Blastsimulator to improve the accuracy of the evacuation
radius, the time required for it and the reduction of the dependence on a destruction
estimation expert:

• Taking the limitations (section 5.6) into account, the integration of the Blast-
simulator into the selected workflow has increased the accuracy of the evacuation
zone and significantly reduced the area to be evacuated.

• The required time of a few hours is difficult to compare as a manual estimation
depends on the availability and experience of a detonation expert. In this respect,
the advantage of APOLLO lies in its higher availability and independence from
experts.

• The additional raster danger zones resulting from the simulation are a good
help for the differentiated designation of various danger zones. This form of
support has not existed at all until now.

2. Use of SDI to facilitate access to the data sets needed and to shorten the time taken
to make enquiries to other departments.

• The use of processes based on WPS now enables a direct connection of the
workflow to Freiburg’s SDI and thus to the main source of municipal geodata.

• Through automation in the form of a process chain, many of the required data
are available almost immediately and are as up-to-date as in the SDI.

• At the same time, less specialist staff from different departments is involved
in obtaining information and the risk of errors due to outdated data records is
reduced.

6.1 Results of the case study 77

The improvements mentioned make clear that the optimization of the chosen workflow,
including the local SDI, also corresponds to the goals of the digital strategy, so that
interdisciplinary processes are harmonized and automated (section 2.1). However, in the
context of the case study, individual problems were also identified which could not finally
be solved within this master’s thesis, but for which initial approaches were considered:

• Data quality and quantity: Processes and digital workflows can only be as good
as the data they need. In the case of the official POI it turned out that no old
people’s homes and no industry are included. The selection of critical infrastructure
still has to be completed manually. In the short term, the addition of OSM data1

(social_facility and social_facility:for tags) can be recommended, which is
more extensive in urban areas (Barron et al., 2014). In the medium term an own
WFS with all critical objects and largely based on official data would be conceivable.

• Sensible privacy data: The integration of resident registration data and the city
statistics database is not permitted for reasons of privacy. The technical development
and digitization precedes the current legal situation, so that it can hardly keep up
with the adaptation of the laws (Martini et al., 2016). So it is good to have created
another use case that increases the pressure on the legislation.

• Intermediate output: The raster danger zones classified as useful for additional risk
assessment cannot be passed on in their present form to the overall output of the
process chain. This requires a component that manages the individual inputs and
outputs at a higher level than XML, for example a workflow engine.

The current shortcomings of the implementation of the chosen scenario can be summarized
by these three points. Also missing model data in development areas are a problem. It
is worth mentioning that the apparent hurdle of data protection and privacy can at the
same time also be an advantage, because the clever concatenation of processes enables a
more precise selection and more targeted delivery of only the actually required protected
data. Compared to the previous manual method, the use of a process chain means that
fewer people come in touch with sensitive data because the data is output directly to the
authorized endpoint. An endpoint does not necessarily have to be a human being at this
point, but can also be a technical component. This means that data protection would be
completely outside human access, as long as the system is sufficiently secure.

1 https://wiki.openstreetmap.org/wiki/Key:social_facility (visited on 27/04/2019)

https://wiki.openstreetmap.org/wiki/Key:social_facility

6.2 Applicability analysis for WPS 78

6.2 Applicability analysis for WPS

The case study has shown that the elaborated workflow, using WPS processes implemented
for it, represents an added value for the actors involved. This section will now abstract the
general applicability of such processes for a local SDI, like that of Freiburg. The following
criteria were defined in section 3.4, with which the applicability is now to be empirically
evaluated.

6.2.1 Reusability

The effort of developing WPS processes is higher compared to a conventional script because
the WPS standard and its implementation (e.g. PyWPS) sets certain constraints to the
developer. The criterion of reusability examines the additional benefit of such processes,
whether they can be used beyond a concrete use case and thus justify the additional effort.
It is essential to keep a certain degree of compactness (section 5.5.1) and to define inputs
and outputs as generic as possible (section 5.5.2). This can be achieved by keeping in
mind the common questions (section 3.3) in a city administration during the designing
and programming of the processes. The following is an evaluation of the general reuse
potential of all processes, the reuse of single processes as well as the reuse in a process
chain. Conventional scripts are usually case-specific and not fully reusable.

Potential for process reuse?

Do at least two of the processes developed for the case study have a higher general potential
for reuse?

Reusability is primarily interesting for all non-case-specific processes. But also the case-
specific processes should be reusable for slightly modified or similar questions, e.g. from
the field of EOD. Before testing the reusability for concrete use cases, a critical overview of
the general reuse potential of the implemented processes, including the intersection process,
is given (table 6.4). The support for the asynchronous mode, the chaining of processes, as
well as the ability for optional outputs applies to all processes and is not mentioned again.
The estimation of the potential is mainly based on the following characteristics:

• Generality and versatility of the inputs and outputs of the process (fig. 5.5, fig. 5.6
and fig. 5.7). For example, the GML format is common and allows the use of QGIS.

• Actual reusability within the EOD use case if used more than once.

6.2 Applicability analysis for WPS 79

• Estimated reusability in common questions of a city administration (section 3.3,
except again for evacuation radii) for which the process is theoretically possible.

• Availability of alternatives: If suitable alternatives are available and if they are more
user-friendly than the implemented process, then the reuse potential of the examined
process is limited to the additional use in a process chain.

Table 6.4: Potential of the reusability of the implemented processes (high, moderate, low)

Process Pro Arguments Contra Arguments
vect_intersect GML format well-known; after mi-

nor adjustments 1x reusable for
daily up-to-date intersections for
the BZBE;

output only as geometry collection;
no handling of attributes; stan-
dard operation, suitable alterna-
tives widely available;

vect_buffer GML format well-known; attribute
based buffering; all input geometry
types supported; 3x used within
the EOD use case; 1x reusable for
building radio systems;

no handling of attributes, but easy
to implement; standard operation,
suitable alternatives widely avail-
able;

export_vect_data GML format well-known; versa-
tile selection geometry; handling
of attributes; WFS as data source
and database support; no user-
friendly alternatives available; 2x
used within the EOD use case; 1x
reusable for data delivery;

database use limited to specific top-
ics, but possible to extend; multiple
calls necessary if more data sources
are required;

export_3d_data GML format well-known; versatile
selection geometry; handling of at-
tributes; for city model data no
user-friendly alternative available;
1x reusable for data delivery;

city model data output only as
X3D; for DEM data any WCS
client as alternative available;

apollo_rough_dist simple handling of LiteralData;
no alternatives available; 2x used
within the EOD use case; use inde-
pendent of APOLLO;

case-specific process, use only for
EOD related cases;

apollo_conf GML format well-known; simple
handling of LiteralData; no alter-
natives available;

case-specific process, use only for
EOD related cases;

apollo_execute no alternatives available; case-specific process, use only for
EOD related cases; APOLLO re-
quired for use;

apollo_evac_zone GML format well-known; no alter-
natives available; use independent
of APOLLO;

case-specific process, use only for
EOD related cases;

6.2 Applicability analysis for WPS 80

As shown in table 6.4 all non-case-specific processes have a higher reuse potential than
case-specific processes. Of the non-case-specific processes, those that answer a complex,
frequently asked question or can be considered as part of a process chain have the highest
potential. The estimation is strongly dependent on the common questions of a city
administration. Any process whose potential is estimated as high or moderate may be
considered as an added value in terms of reusability. Taking into account the low potential
of the case-specific processes, the overall estimate of the reuse potential is moderate.

Process reusable for a given question?

Is at least one of the processes developed for the case study practically reusable for one of
the questions mentioned under section 3.3?

As stated in table 6.4 all non-case-specific processes are reusable for one of the following
questions: data delivery, building radio systems and daily up-to-date intersections for
the BZBE. These processes work exactly as described in section 5.2 and section 5.3, only
the inputs have to be selected depending on the question. The following examples reveal
whether at least one of the common questions can be answered in practice with the help of
the available processes, or whether further adjustments of the processes are necessary:

• Data delivery: Both export processes are excellent for delivering data sets for a
specific area. The use in QGIS simplifies the creation of the required selection
geometry. Frequently used geodata, such as 3D city models, addresses, buildings,
parcels or local plans are already implemented. The addition of further geodata is
easily possible. The practical reusability of export_vect_data is demonstrated on
the basis of a fictitious request of an engineering office for legally binding local plans
in the Freiburg district Altstadt (fig. 6.8).

• Building radio systems: The buffer process can be very well reused for this question
and can be easily integrated into the existing workflow thanks to QGIS. The required
attribute based buffering is supported by the process and can be preselected as fixed
input for simplification. The practical reusability of vect_buffer is demonstrated
by three buildings with different levels of building radio systems (fig. 6.9).

• Intersections for the BZBE: If support for object attributes is added, the intersection
process can be reused for this question. However, the problem of missing semantic
interoperability of the geodata in the database has a negative effect, which increases
the effort. A stronger use of WFS is recommended.

6.2 Applicability analysis for WPS 81

Figure 6.8: Reusability of export_vect_data using the example of local plans

Selection district on GitLab: https://gitlab.com/hadlaskard/integration-of-

wps-in-local-sdi/blob/master/data/misc/district.gml

Selected local plans on GitLab: https://gitlab.com/hadlaskard/integration-of-

wps-in-local-sdi/blob/master/data/misc/local_plans.gml

Figure 6.9: Reusability of vect_buffer using the example of building radio systems

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/misc/district.gml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/misc/district.gml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/misc/local_plans.gml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/misc/local_plans.gml

6.2 Applicability analysis for WPS 82

Building radio systems on GitLab: https://gitlab.com/hadlaskard/integration-

of-wps-in-local-sdi/blob/master/data/misc/build_radio.gml

Buffered buildings on GitLab: https://gitlab.com/hadlaskard/integration-of-

wps-in-local-sdi/blob/master/data/misc/build_radio_buff.gml

Of the three questions considered, two could be answered with the available processes
from the EOD workflow. An adaptation of the processes was not necessary for these two
scenarios. This corresponds to 33 % of the common questions described in section 3.3. A
minor modification of the intersection process would also be able to answer the third selected
question from the BZBE. Due to the large number of procedures in a city administration,
it can be assumed that further workflows can be implemented with just a few additional
processes. Because of the standardized WPS interface, the combination possibilities
increase with the number of available WPS processes. This also increases the probability of
reusability, which in turn can lead to a higher number of WPS using workflows. According
to this logic, the number of processes will increase faster at the beginning, and slower
once a pool of processes exists. The required reuse of at least one process was exceeded,
therefore the overall estimate of the reusability for one of the given questions is fulfilled.

Create more than one process chain?

Is it possible to use the available processes to create another process chain of at least two
processes to answer a question?

As described in section 2.1 and as the implemented EOD workflow shows, complex
questions are often to be found in a city administration. Often such a complexity is not
realizable with a single process, therefore the use of chained processes in a local SDI is to
be classified as important. The workflow for evacuation planning in the case of an EOD
shows another concatenation of three processes: the quick preselection chain. Thus this
criterion was sufficiently fulfilled with a chain of at least two processes. But in general
it has to be said that complex processes often contain a component that is only needed
for this specific procedure. In the EOD use case the APOLLO Blastsimulator is such a
component, managed by the case-specific processes, without which both process chains
would not be realizable. For the data maintenance of the daycare facilities mentioned in
section 2.1 and section 3.3 this component could be the BKG geocoding service, managed
by a process for automated integration into the workflow. In addition, the number of
implemented processes is currently small. Therefore a further process chain for a question

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/misc/build_radio.gml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/misc/build_radio.gml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/misc/build_radio_buff.gml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/data/misc/build_radio_buff.gml

6.2 Applicability analysis for WPS 83

outside the EOD is not feasible with the available processes, if thereby a workflow with
added value in the sense of the digitization is to develop. Of course, chains can be formed
from the available processes, for example a combination of intersection process and export
vector data process. But such an application is rare, often individual, and easier to realize
with conventional processing. In the sense of reusability, the criterion of another chain of
at least two processes was fulfilled.

6.2.2 Compatibility

The criterion of compatibility examines the interoperability and adaptability of WPS
processes in interaction with the heterogeneous IT structure of a city administration
in general and its SDI with the corresponding components in particular. Likewise this
criterion is an important prerequisite for a good reusability, and thus the sustainability of
the solutions based on WPS, as well as for a good technical usability. For conventional
scripts any compatibility must be implemented more or less costly by yourself.

Compatibility with added value?

Can the existing components of the SDI be used by a WPS with added value?

Due to the standardization it can be assumed that a WPS is basically compatible with
an OGC compliant SDI. But in practice a high compatibility alone does not automatically
lead to a high added value, because it depends on how exactly the OGC standards are
used and how advanced the SDI is in its structure. Based on the experiences from the case
study, an evaluation of the compatibility and the added value of the SDI components used
will be given and summarized in table 6.5.

• PostgreSQL with PostGIS: The connection is made via free program libraries like
Psycopg or OGR, therefore compatibility is basically given. However, a lack of
semantic interoperability of the geodata in the database increases the effort for
generic access to this data. This contradicts the striving for generic inputs and
outputs of WPS processes. An example from the case study: For each geodata table
exported from the database a separate SQL query is necessary. If the database
structure changes, these SQL queries must be maintained in a time-consuming
manner. A direct connection to the database is only recommended if the required
data is not available as an OGC service, or if the amount of data is so high that the
better performance of the database is an argument, e.g. 3D data. The storage of

6.2 Applicability analysis for WPS 84

WPS processed results as source for OGC services is possible, but the problem of
competing processes has to be considered. The processes export_vect_data and
export_3d_data read the database. The compatibility and the added value are
estimated as moderate.

• QGIS with WPS client: The use of a WPS is possible with restrictions in QGIS. As
demonstrated (section 5.1) single WPS processes can be executed if QGIS supports
the inputs. The use as workflow engine for chaining processes is not yet implemented
in the WPS client. Except for apollo_execute and apollo_evac_zone, because of
the blast effects file, all processes including apollo_conf are supported by QGIS.
Due to the lack of process chain support, compatibility and added value are estimated
as moderate.

• Web Map Service (WMS): The compatibility between OGC services is high as
expected. However, the use of WMS for a processing service offers little added value.
A grid without further semantics provides only little information relevant for urban
processing. Of all implemented processes, the export_vect_data process uses a
WMS as an additional output to display a topographic map. This corresponds to
0.5 % of all WMS provided by the SDI. The compatibility is estimated as high, the
added value as low.

• Web Feature Service (WFS): Geodata requested via a WFS can be returned as vector
data and are therefore well suited for answering urban questions by means of WPS,
because these often happen on the actual geometries and rarely on the raster level.
Of all implemented processes the export_3d_data process uses WFS as input, whose
geodata is then selected and exported. Technically, any WPS process that supports
ComplexInput can use WFS as generic input, which makes it very versatile. In this
master thesis the buildings, area boundaries, POI and local plans were used as WFS
with the implemented processes. This corresponds to 20 % of all WFS provided by
the SDI. The compatibility and the added value are estimated as high.

• Web Coverage Service (WCS): Unlike WMS, a WCS provides multidimensional
coverage data based on the original data set, with full semantics for machine processing.
Such services are not very common in a city administration and can be used well
without a WPS, for example directly in QGIS. Of all implemented processes, the
export_3d_data process uses a WCS to provide an extract from the DEM. This
corresponds to 100 % of all WCS provided by the SDI. The compatibility is estimated
as high, the added value as moderate.

6.2 Applicability analysis for WPS 85

• Catalogue Service for the Web (CSW): Finding the processes provided by WPS
can be simplified by registering the service in a CSW. The created WPS has been
successfully registered via GeoNetwork and can be found via a CSW client. Should a
WPS process be implemented for citizens or external service providers, which is not
impossible in terms of digitization in the urban context, it could also be found from
outside the local SDI. Moreover, this would counteract the mentioned lack of sources
for finding WPS (section 1.1). However, the high specialization of processes in the
urban context, as the EOD workflow shows, makes them poorly usable for people
outside the city administration, for example because of missing access rights. The
compatibility is estimated as high, the added value as moderate.

Table 6.5: Overview of the components used with their compatibility and added value

Component Compatibility Added Value
PostgreSQL with PostGIS moderate moderate
QGIS with WPS client moderate moderate
WMS 1 of 200 used high low
WFS 4 of 20 used high high
WCS 1 of 1 used high moderate
CSW high moderate

It can be said that a WPS benefits the most from an SDI based on OGC standards, and
an intensive use of WFS brings the highest efficiency. In addition, a WFS comes closest to
the goal of the intensive use of generic inputs for a robust, widely usable data exchange
with WPS processes. Freiburg makes too little use of this and here lies the great potential
of its SDI. The compatibility with QGIS and the geodatabase is important in everyday
life, and can be increased by further development on the client side and by improving the
semantic interoperability on the database side. The question whether the components of
the SDI can be used by a WPS with added value is answered with moderate.

Adaptability?

Is the adaptability of a WPS sufficient to support the heterogeneous IT structure of a city,
such as by integrating previously unintegratable technical procedures?

Adaptability is achieved on the one hand by the standardized WPS interface (section 2.4),
and on the other hand by the possibilities of the WPS implementation itself, like PyWPS
in this case. The case study has shown how APOLLO was connected and made usable as a

6.2 Applicability analysis for WPS 86

component that is actually not compatible with the SDI Freiburg. The following properties
of WPS were used to achieve this adaptation:

• Definition of any inputs and outputs as ComplexData. Only with this capability
arbitrary, even proprietary data formats can be used by a process. This is proven in
the EOD workflow by the blast effects file, which is used in the APOLLO execute
process as output, and in the APOLLO evacuation zone process as input.

• Using asynchronous mode for the long-running APOLLO execution process and the
APOLLO evacuation zone process.

• Use of the capability to chain processes to map the complexity of the EOD workflow.

• The use of a Python-based WPS implementation offers the possibility to use all
packages available in Python for adaptation to other components. In the implemented
processes for example the packages JSON, OSGeo, NumPy or Psycopg are used.

The APOLLO Blastsimulator from the case study demonstrates, representative of many
other more or less specific components, that WPS and its processes are adaptable enough to
be integrated into a workflow. The flexibility of WPS ensures that previously incompatible,
non-integratable components can be connected to an open SDI and thus benefit from the
advantages of this SDI. The connection is realizable independently of the will of a software
manufacturer, provided that an open, documented, readable exchange format is supported,
as the proprietary APOLLO blast effects file shows. However, it must be considered that
a proprietary component usually requires a WPS process that is not reusable for other
cases, which illustrates the four case-specific processes, and which increases the effort.
The adaptability of a WPS and its processes to support a heterogeneous IT structure is
estimated as high, similar to the adaptability of a conventional script.

Use of external WPS?

Can the functionality of a WPS capable SDI be extended by externally provided processes?

The standardization of the WPS interface basically enables the accessibility of all WPS
within a network, and thus the integration of externally provided processes into own
procedures. The use of an externally provided WPS is especially suitable for standard
processing like intersection, buffer, contains or distance. These can reduce the effort for
the implementation of complex WPS based workflows, because in the ideal case only
case-specific processes have to be developed. The development of an own buffer and

6.2 Applicability analysis for WPS 87

intersection process, as in this thesis, could be omitted, and both processes would still
be available for a process chain within the local SDI. Now two WPS providers will be
tested for the accessibility of their processes. In addition, the example of a buffer process
is used to theoretically check whether it can replace the buffer process developed for
the EOD workflow. A practical check is not possible due to the limitations mentioned
(section 5.6), because a process chain consisting of internal and external processes requires
the accessibility of the test system from outside.

Terrestris: This company offers a WPS which contains 58 spatial processes. A comparison
shows that their buffer process does not support attribute based buffering and is therefore
not suitable for the EOD workflow. In QGIS the process could be called correctly, but
it did not accept the selected geometry layer as input and acknowledged it with an
InvalidParameterValue error message. For verification the same request was sent again
using the RESTClient and ended with a similar error message.

Request on GitLab: https://gitlab.com/hadlaskard/integration-of-wps-in-

local-sdi/blob/master/xml/terrestris_buffer.xml

Response on GitLab: https://gitlab.com/hadlaskard/integration-of-wps-in-

local-sdi/blob/master/xml/terrestris_buffer_response.xml

Service provider tested on 12/05/2019:
https://ows.terrestris.de/deegree-wps/services?request=

DescribeProcess&service=WPS&version=1.0.0&identifier=Buffer

52∘ North: Another provider of a WPS with 221 geoprocessings. Their WPS offers a
simple and a complex buffer process. The simple one provides only two parameters for the
input and the buffer size. The complex one supports the attribute based buffering required
for the EOD workflow. The check in QGIS was acknowledged with a Java exception
message and names the input parsing as cause. Using a completely different geometry layer
or checking it again with the RESTClient produces an identical result.

Request on GitLab: https://gitlab.com/hadlaskard/integration-of-wps-in-

local-sdi/blob/master/xml/52north_buffer.xml

Response on GitLab: https://gitlab.com/hadlaskard/integration-of-wps-in-

local-sdi/blob/master/xml/52north_buffer_response.xml

Service provider tested on 12/05/2019:
http://geoprocessing.demo.52north.org:8080/wps/WebProcessingService?

request=DescribeProcess&service=WPS&version=1.0.0&identifier=v.buffer

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/terrestris_buffer.xml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/terrestris_buffer.xml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/terrestris_buffer_response.xml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/terrestris_buffer_response.xml
https://ows.terrestris.de/deegree-wps/services?request=DescribeProcess&service=WPS&version=1.0.0&identifier=Buffer
https://ows.terrestris.de/deegree-wps/services?request=DescribeProcess&service=WPS&version=1.0.0&identifier=Buffer
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/52north_buffer.xml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/52north_buffer.xml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/52north_buffer_response.xml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/52north_buffer_response.xml
http://geoprocessing.demo.52north.org:8080/wps/WebProcessingService?request=DescribeProcess&service=WPS&version=1.0.0&identifier=v.buffer
http://geoprocessing.demo.52north.org:8080/wps/WebProcessingService?request=DescribeProcess&service=WPS&version=1.0.0&identifier=v.buffer

6.2 Applicability analysis for WPS 88

Basically the integration of external processes is a good possibility to extend the func-
tionality of a WPS capable SDI, if these processes meet the requirements. But in practice
there is a shortage of availability of such processes (Lopez-Pellicer et al., 2012), and
differences in the realization of inputs cause compatibility problems between WPS and
WPS client. Therefore, this criterion is estimated as low, but with potential.

Any other side effects?

Does a WPS have any other side effects in terms of compatibility?

During the implementation of the EOD workflow, opportunities and dependencies were
identified that could have positive or negative effects on the implementation of further
WPS processes. Some of them lead to recommended actions. This criterion is not suitable
for a rating. The following points should be mentioned here:

• Motivation to provide more WFS: As mentioned, WFS is little used so far. This is due
to the use of QGIS as main tool for geoprocessing, which is directly connected to the
database. The integration of WPS into the SDI of Freiburg provides a good reason
to increase the offer of WFS in order to be able to use the advantages mentioned and
shown in the case study, such as a higher semantic interoperability of the geodata.
In addition to its better suitability for WPS, a WFS can also be used for reading
without a detailed rights structure. This is more difficult to handle on the database
and therefore an additional added value for the administration of the SDI.

• Legal compatibility: The case study has shown that the legal framework lags behind
technological development in certain areas. The topic of sensitive data and data
privacy is affected by this. The residents’ registration data and the statistics database
were not allowed to be integrated into the EOD workflow. Therefore, ways must be
found to describe how sensitive data should be handled in terms of automation and
digitization, and how they should be protected, but also how they can be used.

6.2.3 Usability

The two previous criteria have mainly examined the conceptual and technical properties of
WPS based processes and whether they meet the requirements of local SDIs. However,
the acceptance by administrators and users is also decisive for a successful use, which is
evaluated with the criterion of usability. Here the characteristics of a city administration
mentioned in section 3.4.3 must be taken into account.

6.2 Applicability analysis for WPS 89

Administration usability?

The evaluation of the technical usability includes the handling and the possibilities of
the concrete WPS implementation. The necessary system and programming skills are a
prerequisite. However, it can be assumed that a city administration the size of Freiburg
usually does not employ any studied computer scientists in the SDI team.

Effort of integrating a WPS?

• The preparation of an environment for providing a WPS should not be underesti-
mated, because components like web server and operating system have to be adapted
to the used WPS implementation. Likewise the knowledge about the basic structure
of a process must be acquired. This effort has to be done only once and is there-
fore negligible, because once the principle is understood, simple processes can be
implemented quickly.

• In a city administration, standard processes that are relatively easy to implement,
such as buffer or intersection, are often only an addition to a more complex workflow.
If specific components from outside the GIScience are used, the knowledge about each
additional component has to be acquired anew. The EOD workflow with integration
of the APOLLO Blastsimulator is a good example. This is the price for the high
flexibility, therefore the effort of integrating a new WPS process is estimated as high.

Effort of adjusting and maintaining a WPS?

• Basically, the effort for adapting and maintaining existing processes is somewhat less
than with a script, because the basic structure in the source code always remains
the same. For example, processes can be extended with optional inputs or outputs
without having to change existing requests and workflows. Likewise, reusability
ensures that changes to the actual processing only have to be adapted in one place.

• At the same time, any change must be very carefully considered, as the effects are
greater the more often a process is reused. This increases the effort for conceptual
work and testing of all affected use cases. Due to the precision in the definition of
inputs and outputs required by the standard, the susceptibility to errors decreases
when used properly. Thanks to the same basic structure, troubleshooting is always
more efficient than in scripts with a non-uniform structure. The effort of adjusting
and maintaining existing WPS processes is estimated as moderate.

6.2 Applicability analysis for WPS 90

Additional effort for the chaining of processes?

• Due to the required precision in the definition of inputs and outputs, the effort
for mapping a workflow into a process chain increases. All subprocesses must be
chainable, support asynchronous mode due to the often longer processing time, and
have to be parsed (section 5.5.4). The orchestration of a process chain with pure
XML is limited and not very flexible. With conventional scripts, a process chain
based on standardized interfaces is hardly feasible.

• A workflow engine like Taverna or Camunda BPMN enables the request of multiple
outputs of a process and their assignment to corresponding inputs of subsequent
processes. With SOAP and WSDL WPS supports the necessary standards for
integration into industry standard service chaining tools. Intermediate results of
processed data within a process chain can be assigned to the total output. The XML
parsing no longer has to take place within the processes. Many of the disadvantages
identified in the EOD workflow can be eliminated with a workflow engine, and justify
a practical follow-up check of such a one. The additional effort for chaining WPS
processes is estimated as high.

Possibilities of simplification for the users?

• WPS offers the possibility to preassign inputs and to request outputs only on demand.
This avoids incorrect inputs during operation, which is especially important for safety-
relevant workflows. The EOD use case demonstrates this by preassigning Float Glass
as fixed input for the rough danger distance and evacuation zone process (table 6.1),
and thus prevents the accidental calculation of an evacuation zone unsuitable for
citizens, for example for Safety Glass or Lethal Injury. A drawback is the lack of
support for logical constraints, such as assigning “either or” to two inputs.

• If a process is supported by QGIS, there are many possibilities for simplification.
By creating a QGIS template, required geodata and tables can be preconfigured
for the respective workflow. Setting conditions and adapting forms guides the user
and minimizes incorrect inputs. Outside of QGIS, the effort for such simplifications
increases, especially if geodata is required for an input. For example, via an HTML
form that distributes the data via JavaScript to the respective process inputs, with
leaflet for simple geometries. The operation of WPS process chains could thus be
simplified, but without the features of a complete workflow engine. The possibilities
of simplification for the users are estimated as moderate.

6.2 Applicability analysis for WPS 91

The high effort in the orchestration of WPS processes to a workflow must be compared to
the permanent time saving in comparison to the previous manual solution. Many workflows
require repetitive activities on the part of the administrators, if these are not automated,
and are in the sum more time-consuming than the implementation of a process chain.
Regular data delivery is an example of this. Compared to conventional scripts, the time
savings are lower. Here the reuse and chaining of components as well as the somewhat
smaller effort for adjusting and maintaining is an advantage of WPS, especially with regard
to the increase of digital workflows in public administrations. Based on the experiences
made with the EOD use case and the mentioned arguments, the technical usability of WPS
and its processes is estimated as moderate.

Application usability?

The evaluation of usability, which concerns users in dealing with WPS processes developed
by the system operator, covers the specific use case, with which effort and in which quality
a question can be answered. Basic computer skills are a prerequisite, which is well reflected
in reality by the decreasing average age of public sector employees. Nevertheless, the
requirements for users are higher compared to a conventional script due to the extended
possibilities.

Availability of the WPS?

• The principle of an SOA ensures that a WPS can be used by anyone connected to
the same network. This makes workflows less dependent on individual persons or
expensive computer-bound software licenses, and guarantees personnel reliability as
well as more flexible working conditions. The EOD use case shows how only one
instance of the APOLLO Blastsimulator is sufficient and can be used by multiple
persons. This way of deployment also enables integration into clients, giving each
user the ability to use available processes where they need them. Finding a WPS is
simplified by an entry in a metadata catalog and can be done by any CSW enabled
client.

• The availability of the data required for each processing is usually managed by
the local SDI and its connected components. Thus a high topicality is reached
and guarantees to the user the use of the most current data sets, as the EOD use
case demonstrates at the example of DEM, POI, addresses or 3D city model. The
availability of a WPS is estimated as high, especially compared to a manual workflow.

6.2 Applicability analysis for WPS 92

Need for clients and special software?

• The functionality to trigger individual processes or entire workflows is provided by
WPS clients and is the part with which the user comes into direct contact. The task
is to distribute all required data to the respective inputs of the processes, to start
the processing and to receive the final result. Ideally, the client can also prepare the
data, which means a seamless transfer of the data for the user.

• QGIS offers itself as a client (fig. 6.10) for spatial processes, which can work with
data formats from the GIScience and process geodata extensively. All important
OGC standards and geodatabases are supported, which simplifies the use of the
connected SDI. Six of eight implemented processes can be operated directly. Due
to the high functionality of this client, the flexibility, but also the susceptibility to
errors in the data preparation is higher. QGIS is not suitable for the execution of
process chains, only the input data can be prepared.

• Due to the heterogeneous IT structure of a city administration, a client for non-spatial
data must also be available. With an Internet browser the execution of process chains
can be simplified, for example via the mentioned HTML form. To avoid many of the
chaining problems identified in the EOD workflow and to simplify the assignment of
inputs and outputs, a workflow engine is required (section 5.5.4). WPS clients are
often freely available, but they require a certain amount of training for the user. The
available clients and the need for special software is estimated as moderate.

Figure 6.10: QGIS as WPS client for single use processes

6.2 Applicability analysis for WPS 93

Effort of answering a question?

• The effort to answer a question includes the preparatory steps of the user as well as the
time until the answer is available. The time required depends on the complexity of the
processing and is significantly shorter than with a manual workflow due to automation
and reduction of the number of actors involved. The APOLLO Blastsimulator is an
extreme example, because the calculation tasks in a city administration are usually
less complex, and external service providers are rarely integrated into automated
processes. The more people have been involved in a process so far, the greater the
potential time saving in the future. Waiting times due to understaffing or busy offices
are eliminated because manual intervention is no longer necessary during processing.

• The elimination of actors can increase the effort required for preparatory steps because,
depending on the application, many more decisions required for a process chain have
to be made by a single person. However, this depends strongly on the concrete
implementation of a workflow. Preparatory steps are usually clearly described and
can be easily carried out by the user, because the results must be accepted by the
process inputs and then processed without errors, and must also be operable by
persons outside the GIScience. For example, the processing of required geodata
in QGIS or the triggering of a process chain via a simple website. Nevertheless,
compared to a conventional script, the effort required to answer a question is higher,
because until now it has been limited to filling out an HTML form or pressing a
button. But in comparison to a manual workflow, the total effort required by the
user is significantly lower and therefore estimated as low.

The usability in the application of a WPS depends on the individual process, and becomes
more difficult when using a process chain. The case study has shown that QGIS can serve a
wide range of processes. For all other processes and process chains solution approaches were
shown. Decisive for the user is the comparison with his previous approach, which is different
for each question. If the advantages predominate, the complexity remains hidden, and
the handling of the new workflow is trained, a broad acceptance is realistic. Based on the
experiences made with the application of the EOD use case and the mentioned arguments,
the usability for the operators of WPS and its processes is estimated as moderate.

CHAPTER 7

Conclusion and outlook

The increasing need to automate municipal operations using the local SDI has raised
the question of a uniform approach. The literature research resulted in possible solution
approaches, but which did not specifically address the applications and requirements in a
municipal SDI. Therefore the investigation of the applicability of WPS processes in a local
SDI based on open standards was the focus of this master thesis.

In order to test the hypothesis common questions were pointed out, which have to
be answered by a city administration, ideally using their SDI. A concrete use case was
selected, which refers to the geodata-relevant part in the planning of an evacuation in the
case of an EOD. The implementation of the use case as a process chain based on WPS
integrates an external component from outside the GIScience in order to investigate the
applicability of WPS in a realistic way and with inclusion of the heterogeneous IT structure
of a city administration. The following evaluation is based on the findings of the final
EOD workflow, abstracted on a local SDI using the example of the city of Freiburg and
three selected criteria: reusability, compatibility, usability. The summary of the criteria
evaluated in section 6.2 shows the areas in which the advantages and disadvantages of
WPS lie when used in a local SDI, and how the equivalents of conventional scripts used in
Freiburg approximately perform (table 7.1).

The direct comparison with conventional scripts is often not possible, because the
respective approaches are too different. Nevertheless, it must be mentioned that especially
a good usability of WPS process chains is more difficult to achieve than that of a script.
Also, the adaptability of a WPS is not better, but roughly equal to the flexibility of a
script. Furthermore, conventional scripts are implemented faster because the conceptual
phase is less complex and there are fewer dependencies.

94

Chapter 7 Conclusion and outlook 95

Table 7.1: Summary of the criteria and their grades for WPS and conventional scripts

Criterion WPS Scripts
Evaluation of Reusability

Potential for process reuse? moderate failed
Process reusable for a given question? fulfilled failed
Create more than one process chain? fulfilled failed

Evaluation of Compatibility
Compatibility with added value? moderate low
Adaptability? high high
Use of external WPS? low failed
Any other side effects? not suitable for rating not suitable for rating

Evaluation of Usability
Administration usability? moderate moderate
Application usability? moderate high

The generally known advantages of WPS are primarily the interoperability with each
other and with other OGC services. This is accompanied by the reusability and eventual
reduction of development costs, as well as hiding the complexity of components. A large
part of these advantages can also be transferred to the use in a local SDI, however with
few limitations and some peculiarities:

• Reusability: Due to many proprietary components in a city administration, the
probability of reuse of individual processes can decrease slightly, as the four case-
specific processes from the EOD workflow show. Also the conceptual delimitation
between the processes takes place based on the correct assessment of existing questions.
The goal is not the maximum compactness or the supply for general, unknown use
cases, but the purposeful reuse for own, known and common questions.

• Compatibility: The added value of WPS using an open SDI depends on the use of the
available standards and the level of semantic interoperability of the data, as well as
on the quality of the data itself. Therefore, an intensive use of WFS is advantageous
for the common questions in a city administration. It has also turned out that the
integration of highly sensitive data can lead to a legal impasse due to data protection,
but WPS is also an opportunity to minimize access to such data. Especially in a
local SDI such data are of importance for many processes.

Chapter 7 Conclusion and outlook 96

• Usability: The wide range of different specialists within a city administration increases
the demands on application usability. This is not automatically given and must be
established, either using compatible clients or a workflow engine. The latter seems to
be of great advantage for the integration of a process chain, since process chains are
particularly suitable for mapping the often complex processes in a city administration.

The entire study has shown that the application of WPS processes in a local SDI has led
to a significant added value. This becomes visible above all by the criterion of reusability,
because the processes implemented for the EOD workflow can be reused for two other use
cases without additional development effort. Such a reuse is not covered by a script at
this level. This confirms the hypothesis. However, the amount of added value depends
on how intensively WPS will be used in the future. With increasing number of WPS
based workflows also the number of processes increases, and thus the probability for a
reusability. Decisive for this is also the continuing development of the local SDI towards a
larger range of available WFS. Due to the interoperability, besides a mutual added value
also other components can benefit from it, which harmonizes well with the development
of the SDI. From this point of view, the increased initial effort for the implementation of
WPS processes in comparison to conventional scripts can be justified additionally. The
initial effort is individually different, but must not be concealed.

The EOD workflow itself has also led to a significant qualitative improvement compared
to the previous approach to evacuation planning. The identified disadvantages are above
all the incomplete data to the critical infrastructure, the prohibition of the integration of
sensitive data, as well as the restricted handling of the process chain regarding the access to
intermediate results. Due to the high specialization it will be difficult to obtain knowledge
of such a WPS outside the borders of the local territorial authority. But if the offer of
WPS from higher regional authorities or scientific institutes should increase and become
generally usable, a local SDI could benefit very well from standard processes. Conversely,
the demand for freely accessible and general standard processes would increase if WPS
were used more widely, which in turn would promote the research field of standardization of
geoprocessing itself. Whether the arguments and added values found in this master thesis
are sufficient to permanently use WPS in local SDIs will be shown by further practical
applications. The applicability of WPS in a local SDI has been demonstrated using the
example of the city of Freiburg and verified by means of a real use case.

Regardless of the knowledge gained, there is still a need for further research on the
applicability of WPS for local SDIs. The GitLab repository will still be available. Relevant

Chapter 7 Conclusion and outlook 97

questions are an in-depth investigation of suitable WPS clients and workflow engines in
the context of a city administration, as well as the practical application of these to a wide
range of common questions in the communal area. Concerning the EOD workflow, the
data on critical infrastructure should be completed and the results of the SIRIUS project
integrated. With the integration of the Java Servlet, the workflow can be executed in real
time, and with the extension of the APOLLO Blastsimulator for the simulation of splinter
throwing, a further increase in the accuracy of evacuation radii can be expected.

Bibliography

Altmaier, A. and M. Müller (2002): ‘Geodateninfrastrukturen in der Praxis’. Zeitschrift
für Angewandte Geographie, vol. (3): pp. 103–106 (cit. on pp. 9, 10).

Barron, C., P. Neis, and A. Zipf (2014): ‘A Comprehensive Framework for Intrinsic
OpenStreetMap Quality Analysis’. Transactions in GIS, vol. 18(6): pp. 877–895 (cit. on
p. 77).

Bartelme, N. (2005): Geoinformatik - Modelle, Strukturen, Funktionen. Springer Berlin
Heidelberg (cit. on p. 10).

Bettenworth, M. (2013): Verfahren zur Analyse von Detonationseinwirkungen in urbanen
Gebieten (DETORBA). Bundesministerium für Bildung und Forschung. url: https://w

ww.sifo.de/de/detorba-verfahren-zur-analyse-von-detonationseinwirkungen-

in-urbanen-gebieten-2094.html (visited on 03/02/2019) (cit. on p. 29).
Brennecke, C. (2015): ‘Geoverarbeitung im Wandel: Vom Desktop in das World Wide

Web’. Master Thesis. Paris Lodron-Universität Salzburg (cit. on p. 2).
Čepický, J. (2019): PyWPS API Doc. PyWPS API Doc. url: https://pywps.readthed

ocs.io (visited on 02/18/2019) (cit. on p. 44).
Čepický, J. and L. M. d. Sousa (2016): ‘New implementation of OGC Web Processing

Service in Python programming language. PyWPS-4 and issues we are facing with
processing of large raster data using OGC WPS’. ISPRS - International Archives of
the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLI-B7:
pp. 927–930 (cit. on p. 64).

Gebhard, A. (2018): Simulationsbasierte Gefährdungsanalyse im urbanen Raum für
Einsätze des Kampfmittelräumdienstes (SIRIUS). Bundesministerium für Bildung und
Forschung. url: https://www.sifo.de/de/sirius-simulationsbasierte-gefae

hrdungsanalyse-im-urbanen-raum-fuer-einsaetze-des-2318.html (visited on
03/02/2019) (cit. on p. 29).

Giuliani, G., S. Nativi, A. Lehmann, and N. Ray (2012): ‘WPS mediation: An approach
to process geospatial data on different computing backends’. Computers & Geosciences,
vol. 47: pp. 20–33 (cit. on p. 12).

98

https://www.sifo.de/de/detorba-verfahren-zur-analyse-von-detonationseinwirkungen-in-urbanen-gebieten-2094.html
https://www.sifo.de/de/detorba-verfahren-zur-analyse-von-detonationseinwirkungen-in-urbanen-gebieten-2094.html
https://www.sifo.de/de/detorba-verfahren-zur-analyse-von-detonationseinwirkungen-in-urbanen-gebieten-2094.html
https://pywps.readthedocs.io
https://pywps.readthedocs.io
https://www.sifo.de/de/sirius-simulationsbasierte-gefaehrdungsanalyse-im-urbanen-raum-fuer-einsaetze-des-2318.html
https://www.sifo.de/de/sirius-simulationsbasierte-gefaehrdungsanalyse-im-urbanen-raum-fuer-einsaetze-des-2318.html

Bibliography 99

Hahmann, S. and D. Burghardt (2012): ‘Forschungsergebnisse zur Frage: Haben 80%
aller Informationen einen Raumbezug?’ gis.SCIENCE, vol. (3): pp. 101–108 (cit. on p. 8).

Hermsdorf, J. (2016): Sichere Deflagration von Blindgängern durch Lasertechnologie
(DEFLAG). Bundesministerium für Bildung und Forschung. url: https://www.sifo.

de/de/deflag-sichere-deflagration-von-blindgaengern-durch-lasertechnolo

gie-2282.html (visited on 03/02/2019) (cit. on p. 29).
Hofer, B. (2015): ‘Uses of online geoprocessing technology in analyses and case studies:

a systematic analysis of literature’. International Journal of Digital Earth, vol. 8(11):
pp. 901–917 (cit. on pp. 1, 13).

Hogrebe, D. (2008): ‘Mehrwertschöpfung durch Integration von OpenGIS in kommunale
Prozesse’. Master Thesis. Paris Lodron-Universität Salzburg (cit. on p. 2).

Kinney, G. F. and K. J. Graham (1985): Explosive Shocks in Air. Springer Berlin
Heidelberg (cit. on pp. 29, 50).

Kliment, T. (2015): ‘Making more OGC services available on the web discoverable for the
SDI community’. 15th International Multidisciplinary Scientific GeoConference (cit. on
p. 9).

Klomfass, A., N. Kirchner, O. Herzog, S. Knell, V. Holzwarth, U. Ziegenhagel,
and M. Sauer (2009): ‘C++ Code Design for Multi-Purpose Explicit Finite Volume
Methods: Requirements and Solutions’. Proceedings of the 8th workshop on Parallel/High-
Performance Object-Oriented Scientific Computing - POOSC ’09. Genova, Italy: ACM
Press: pp. 1–5 (cit. on p. 29).

Klomfass, A., A. Stolz, and S. Hiermaier (2016): ‘Improved Explosion Consequence
Analysis with combined CFD and Damage Models’. Chemical Engineering Transactions,
vol. 48: pp. 109–114 (cit. on p. 29).

Königer, S., S. Volz, D.-G. Hielscher, S. Erat, B. Schindewolf, I. Wanders,
G. Bär, and P. Geier-Baumann (2017): Kommunale Pflichtaufgaben beim Aufbau
der europäischen Geodateninfrastruktur INSPIRE. Geoportal Baden-Württemberg. url:
https://www.geoportal-bw.de/documents/20147/0/INSPIRE-Kommunale-Betroff

enheit-BW_V2.0_final_20170504.pdf/3f1d072b-5430-3b7e-f68a-1ca0e44a0e00

(visited on 01/17/2019) (cit. on p. 14).
Lopez-Pellicer, F. J., W. Rentería-Agualimpia, R. Béjar, P. R. Muro-Medrano,

and F. J. Zarazaga-Soria (2012): ‘Availability of the OGC geoprocessing standard:
March 2011 reality check’. Computers & Geosciences, vol. 47: pp. 13–19 (cit. on pp. 2,
88).

https://www.sifo.de/de/deflag-sichere-deflagration-von-blindgaengern-durch-lasertechnologie-2282.html
https://www.sifo.de/de/deflag-sichere-deflagration-von-blindgaengern-durch-lasertechnologie-2282.html
https://www.sifo.de/de/deflag-sichere-deflagration-von-blindgaengern-durch-lasertechnologie-2282.html
https://www.geoportal-bw.de/documents/20147/0/INSPIRE-Kommunale-Betroffenheit-BW_V2.0_final_20170504.pdf/3f1d072b-5430-3b7e-f68a-1ca0e44a0e00
https://www.geoportal-bw.de/documents/20147/0/INSPIRE-Kommunale-Betroffenheit-BW_V2.0_final_20170504.pdf/3f1d072b-5430-3b7e-f68a-1ca0e44a0e00

Bibliography 100

Martini, M., S. Fritzsche, and M. Kolain (2016): Digitalisierung als Herausforderung
und Chance für Staat und Verwaltung. German Research Institute for Public Adminis-
tration Speyer (cit. on pp. 7, 8, 77).

Samadzadegan, F., M. Saber, H. Zahmatkesh, and H. Joze Ghazi Khanlou (2013):
‘An architecture for automated fire detection early warning system based on geoprocessing
service composition’. ISPRS - International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, vol. XL-1/W3: pp. 351–355 (cit. on p. 1).

Schut, P. (2007): OpenGIS Web Processing Service. Open Geospatial Consortium. url:
http : / / portal . opengeospatial . org / files / ?artifact _ id = 24151 (visited on
12/11/2018) (cit. on p. 11).

Seifert, M. (2005): ‘Das AFIS-ALKIS-ATKIS-Anwendungsschema als Komponente einer
Geodateninfrastruktur’. zfv - Zeitschrift für Geodäsie, Geoinformation und Landmanage-
ment, vol. (2): pp. 77–81 (cit. on p. 11).

Stasch, C., B. Pross, B. Gräler, C. Malewski, C. Förster, and S. Jirka (2018):
‘Coupling sensor observation services and web processing services for online geoprocessing
in water dam monitoring’. International Journal of Digital Earth, vol. 11(1): pp. 64–78
(cit. on p. 1).

Stollberg, B. and A. Zipf (2007): ‘OGC Web Processing Service Interface for Web
Service Orchestration Aggregating Geo-processing Services in a Bomb Threat Scenario’.
Web and Wireless Geographical Information Systems. Ed. by Ware, J. M. and G. E.
Taylor. Springer Berlin Heidelberg: pp. 239–251 (cit. on pp. 2, 12).

Tan, X., L. Di, M. Deng, F. Huang, X. Ye, Z. Sha, Z. Sun, W. Gong, Y. Shao,
and C. Huang (2016): ‘Agent-as-a-service-based geospatial service aggregation in the
cloud: A case study of flood response’. Environmental Modelling & Software, vol. 84:
pp. 210–225 (cit. on p. 1).

Trometer, S. (2015): Abschlussbericht: Verfahren zur Analyse von Detonationseinwirkun-
gen in urbanen Gebieten (DETORBA). CADFEM GmbH (cit. on pp. 29, 30).

Walenciak, G., B. Stollberg, S. Neubauer, and A. Zipf (2009): ‘Extending Spatial
Data Infrastructures 3D by Geoprocessing Functionality - 3D Simulations in Disaster
Management and environmental Research’. International Conference on Advanced Geo-
graphic Information Systems & Web Services. GEOWS 2009. Cancun, Mexico: IEEE:
pp. 40–44 (cit. on p. 1).

Yoon, G., K. Kim, and K. Lee (2017): ‘Linkage of OGC WPS 2.0 to the e-Government
Standard Framework in Korea: An Implementation Case for Geo-Spatial Image Pro-
cessing’. ISPRS International Journal of Geo-Information, vol. 6(1): p. 25 (cit. on
p. 1).

http://portal.opengeospatial.org/files/?artifact_id=24151

A Appendix

A.1 Python source code

A.1.1 PyWPS WSGI instance script

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/

pywps.wsgi
1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3
4 """ PyWPS WSGI instance - A wrapper around the PyWPS server with
5 a list of processes and configuration files passed as arguments.
6 """
7
8 # libs
9 import sys

10 from pywps.app import Service
11
12 # processes need to be installed in PYTHON_PATH
13 sys.path.append('/srv/www/wps/')
14
15 from processes.proc_apollo_conf import ApolloConf
16 from processes.proc_apollo_evac_zone import ApolloEvacZone
17 from processes.proc_apollo_execute import ApolloExecute
18 from processes.proc_apollo_rough_dist import ApolloRoughDist
19 from processes.proc_export_3d_data import Export3dData
20 from processes.proc_export_vect_data import ExportVectData
21 from processes.proc_vect_buffer import VectBuffer
22 from processes.proc_vect_intersect import VectIntersect
23
24 processes = [
25 ApolloConf(),
26 ApolloEvacZone(),
27 ApolloExecute(),
28 ApolloRoughDist(),
29 Export3dData(),
30 ExportVectData(),
31 VectBuffer(),
32 VectIntersect()
33]
34
35 # for the process list on the home page
36 process_descriptor = {}
37 for process in processes:
38 abstract = process.abstract
39 identifier = process.identifier
40 process_descriptor[identifier] = abstract
41
42 # Service accepts list of process instances and list of configuration files
43 application = Service(processes, ['/srv/www/wps/pywps.cfg'])

Listing A.1: PyWPS WSGI instance script

101

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/pywps.wsgi
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/pywps.wsgi

A.1 Python source code 102

A.1.2 Vector intersection process

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/

processes/proc_vect_intersect.py
1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3
4 """ The process returns intersected area of each input feature.
5 """
6
7 # libs
8 import logging
9 import requests

10 import tempfile
11 from pywps import Process, ComplexInput, ComplexOutput, Format
12 from pywps.app.Common import Metadata
13 from pywps.validator.mode import MODE
14 from pywps.validator import complexvalidator
15 from osgeo import ogr
16 from osgeo import osr
17 from lxml import etree
18 from lib import varlib
19
20 # authorship information
21 __author__ = "Gunnar Ströer"
22 __copyright__ = "Copyright 2019, integration of wps in local sdi"
23 __version__ = "1.0"
24 __maintainer__ = "Gunnar Ströer"
25 __email__ = "gunnar.stroeer@yahoo.de"
26 __status__ = "Development"
27
28 # global variables
29 LOGGER = logging.getLogger("PYWPS")
30
31
32 # process returns intersected area of each input feature
33 class VectIntersect(Process):
34 def __init__(self):
35 in_geom_a = ComplexInput(
36 'in_geom_a',
37 'Input Geometry A [gml]',
38 supported_formats=[Format(mime_type='text/xml', extension='.gml',
39 schema='http://schemas.opengis.net/gml/3.1.1/base/gml.xsd',
40 validate=complexvalidator.validategml),
41 Format(mime_type='application/gml+xml', extension='.gml',
42 schema='http://schemas.opengis.net/gml/3.1.1/base/gml.xsd',
43 validate=complexvalidator.validategml)],
44 mode=MODE.NONE
45)
46
47 in_geom_b = ComplexInput(
48 'in_geom_b',
49 'Input Geometry B [gml]',
50 supported_formats=[Format(mime_type='text/xml', extension='.gml',
51 schema='http://schemas.opengis.net/gml/3.1.1/base/gml.xsd',
52 validate=complexvalidator.validategml),
53 Format(mime_type='application/gml+xml', extension='.gml',
54 schema='http://schemas.opengis.net/gml/3.1.1/base/gml.xsd',
55 validate=complexvalidator.validategml)],
56 mode=MODE.NONE
57)
58
59 out_intersect = ComplexOutput(
60 'out_intersect',
61 'Intersected Geometry',
62 supported_formats=[Format(mime_type='text/xml', extension='.gml',

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/processes/proc_vect_intersect.py
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/processes/proc_vect_intersect.py

A.1 Python source code 103

63 schema='http://schemas.opengis.net/gml/3.1.1/base/gml.xsd',
64 encoding='UTF-8', validate=None)]
65)
66
67 inputs = [in_geom_a, in_geom_b]
68 outputs = [out_intersect]
69
70 super(VectIntersect, self).__init__(
71 self._handler,
72 identifier='vect_intersect',
73 version='1.0',
74 title='Vector Intersection Process',
75 abstract='The process returns intersected area of each input feature.',
76 metadata=[Metadata('The process returns intersected area of each input feature.',
77 'http://geodev:8080/geonetwork/srv/ger/catalog.search?service=CSW&version=2.0.2'
78 '&request=GetRecordById&id=c850b578-8561-42fb-88d1-1ac9e3314cf4#/metadata/'
79 'c850b578-8561-42fb-88d1-1ac9e3314cf4')],
80 inputs=inputs,
81 outputs=outputs,
82 store_supported=True,
83 status_supported=True
84)
85
86 # handler method obtains request object and response object
87 # @staticmethod # only for static methods, no 'self' applicable
88 def _handler(self, request, response):
89 # check if data is given by reference
90 if request.inputs['in_geom_a'][0].as_reference:
91 # check if GET method is used
92 if request.inputs['in_geom_a'][0].method == 'GET':
93 # obtain input with identifier as file name
94 in_geom_a = request.inputs['in_geom_a'][0].file
95 # check if POST method is used - whole response has to be parsed (chaining)
96 elif request.inputs['in_geom_a'][0].method == 'POST':
97 # obtain whole response XML with identifier as data directly
98 in_response = request.inputs['in_geom_a'][0].data
99

100 LOGGER.debug('XML Response:' + in_response)
101
102 # get content of LiteralData, Reference or ComplexData
103 ref_url = varlib.get_output(etree.fromstring(in_response))
104
105 # get GML file as reference
106 r = requests.get(ref_url[ref_url.keys()[0]], verify=False)
107 data = r.content
108
109 # create file, w: write in text mode
110 filename = tempfile.mkstemp(prefix='geom_a_', suffix='.gml')[1]
111 with open(filename, 'w') as fp:
112 fp.write(data)
113 fp.close()
114
115 in_geom_a = filename
116 else:
117 # obtain input with identifier as file name
118 in_geom_a = request.inputs['in_geom_a'][0].file
119
120 # check if data is given by reference
121 if request.inputs['in_geom_b'][0].as_reference:
122 # check if GET method is used
123 if request.inputs['in_geom_b'][0].method == 'GET':
124 # obtain input with identifier as file name
125 in_geom_b = request.inputs['in_geom_b'][0].file
126 # check if POST method is used - whole response has to be parsed (chaining)
127 elif request.inputs['in_geom_b'][0].method == 'POST':
128 # obtain whole response XML with identifier as data directly
129 in_response = request.inputs['in_geom_b'][0].data
130

A.1 Python source code 104

131 LOGGER.debug('XML Response:' + in_response)
132
133 # get content of LiteralData, Reference or ComplexData
134 ref_url = varlib.get_output(etree.fromstring(in_response))
135
136 # get GML file as reference
137 r = requests.get(ref_url[ref_url.keys()[0]], verify=False)
138 data = r.content
139
140 # create file, w: write in text mode
141 filename = tempfile.mkstemp(prefix='geom_b_', suffix='.gml')[1]
142 with open(filename, 'w') as fp:
143 fp.write(data)
144 fp.close()
145
146 in_geom_b = filename
147 else:
148 # obtain input with identifier as file name
149 in_geom_b = request.inputs['in_geom_b'][0].file
150
151 # open file and layer of input a
152 in_src_a = ogr.Open(in_geom_a)
153 in_lyr_a = in_src_a.GetLayer()
154 lyr_name_a = in_lyr_a.GetName()
155
156 # open file and layer of input b
157 in_src_b = ogr.Open(in_geom_b)
158 in_lyr_b = in_src_b.GetLayer()
159 lyr_name_b = in_lyr_b.GetName()
160
161 # get and set output spatial reference
162 epsg = int(in_lyr_a.GetSpatialRef().GetAttrValue('AUTHORITY', 1))
163 sref = osr.SpatialReference()
164 sref.ImportFromEPSG(epsg)
165
166 # create output file
167 driver = ogr.GetDriverByName('GML')
168 out_src = driver.CreateDataSource(lyr_name_a)
169 out_lyr = out_src.CreateLayer(lyr_name_a+'_'+lyr_name_b, sref, ogr.wkbGeometryCollection)
170
171 # create geometry collection of input a
172 collect_a = ogr.Geometry(ogr.wkbGeometryCollection)
173 for feat in in_lyr_a:
174 collect_a.AddGeometry(feat.GetGeometryRef())
175
176 # create geometry collection of input b
177 collect_b = ogr.Geometry(ogr.wkbGeometryCollection)
178 for feat in in_lyr_b:
179 collect_b.AddGeometry(feat.GetGeometryRef())
180
181 # calculate intersection
182 intersect_geom = collect_a.Intersection(collect_b)
183
184 # create output feature to the file
185 out_feat = ogr.Feature(feature_def=out_lyr.GetLayerDefn())
186 out_feat.SetGeometry(intersect_geom)
187 out_lyr.CreateFeature(out_feat)
188
189 # free and reassign
190 out_feat = None
191 out_src = None
192
193 # set output format and file name
194 response.outputs['out_intersect'].output_format = Format(mime_type='text/xml', extension='.gml',
195 schema='http://schemas.opengis.net/gml/3.1.1/base/gml.xsd',
196 encoding='UTF-8', validate=None)
197 response.outputs['out_intersect'].file = lyr_name_a
198

A.1 Python source code 105

199 return response

Listing A.2: Vector intersection process

A.1.3 Vector buffer process

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/

processes/proc_vect_buffer.py
1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3
4 """ The process returns buffer around each input feature.
5 """
6
7 # libs
8 import logging
9 import requests

10 import tempfile
11 from pywps import Process, LiteralInput, ComplexInput, ComplexOutput, Format
12 from pywps.app.Common import Metadata
13 from pywps.validator.mode import MODE
14 from pywps.validator import complexvalidator
15 from osgeo import ogr
16 from osgeo import osr
17 from lxml import etree
18 from lib import varlib
19
20 # authorship information
21 __author__ = "Gunnar Ströer"
22 __copyright__ = "Copyright 2019, integration of wps in local sdi"
23 __version__ = "1.0"
24 __maintainer__ = "Gunnar Ströer"
25 __email__ = "gunnar.stroeer@yahoo.de"
26 __status__ = "Development"
27
28 # global variables
29 LOGGER = logging.getLogger("PYWPS")
30
31
32 # process process returns buffer around each input feature
33 class VectBuffer(Process):
34 def __init__(self):
35 in_geom = ComplexInput(
36 'in_geom',
37 'Input Geometry [gml]',
38 supported_formats=[Format(mime_type='text/xml', extension='.gml',
39 schema='http://schemas.opengis.net/gml/3.1.1/base/gml.xsd',
40 validate=complexvalidator.validategml),
41 Format(mime_type='application/gml+xml', extension='.gml',
42 schema='http://schemas.opengis.net/gml/3.1.1/base/gml.xsd',
43 validate=complexvalidator.validategml)],
44 # validation mode unable to use due incompatibilities between mimetype library and QGIS wps client
45 mode=MODE.NONE
46)
47
48 in_size_ref = ComplexInput(
49 'in_size_ref',
50 'Buffer Size Reference',
51 abstract='Buffer size calculated by previous process only chainable as reference.',
52 supported_formats=[Format(mime_type='text/plain')],
53 min_occurs=0
54)
55

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/processes/proc_vect_buffer.py
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/processes/proc_vect_buffer.py

A.1 Python source code 106

56 in_size = LiteralInput(
57 'in_size',
58 'Buffer Size [m]',
59 data_type='string', # use of string instead float as workaround
60 min_occurs=0
61)
62
63 in_size_field = LiteralInput(
64 'in_size_field',
65 'Buffer Size Field Name',
66 abstract='Name of input geometry attribute field which value will be used for buffer size.',
67 data_type='string',
68 min_occurs=0
69)
70
71 out_buff = ComplexOutput(
72 'out_buff',
73 'Buffer Geometry',
74 supported_formats=[Format(mime_type='text/xml', extension='.gml',
75 schema='http://schemas.opengis.net/gml/3.1.1/base/gml.xsd',
76 encoding='UTF-8', validate=None)]
77)
78
79 inputs = [in_geom, in_size_ref, in_size, in_size_field]
80 outputs = [out_buff]
81
82 super(VectBuffer, self).__init__(
83 self._handler,
84 identifier='vect_buffer',
85 version='1.0',
86 title='Vector Buffer Process',
87 abstract='The process returns buffer around each input feature.',
88 metadata=[Metadata('The process returns buffer around each input feature.',
89 'http://geodev:8080/geonetwork/srv/ger/catalog.search?service=CSW&version=2.0.2'
90 '&request=GetRecordById&id=c850b578-8561-42fb-88d1-1ac9e3314cf4#/metadata/'
91 'c850b578-8561-42fb-88d1-1ac9e3314cf4')],
92 inputs=inputs,
93 outputs=outputs,
94 store_supported=True,
95 status_supported=True
96)
97
98 # handler method obtains request object and response object
99 # @staticmethod # only for static methods, no 'self' applicable

100 def _handler(self, request, response):
101 # check if data is given by reference
102 if request.inputs['in_geom'][0].as_reference:
103 # check if GET method is used
104 if request.inputs['in_geom'][0].method == 'GET':
105 # obtain input with identifier as file name
106 in_geom = request.inputs['in_geom'][0].file
107 # check if POST method is used - whole response has to be parsed (chaining)
108 elif request.inputs['in_geom'][0].method == 'POST':
109 # obtain whole response XML with identifier as data directly
110 in_response = request.inputs['in_geom'][0].data
111
112 LOGGER.debug('XML Response:' + in_response)
113
114 # get content of LiteralData, Reference or ComplexData
115 ref_url = varlib.get_output(etree.fromstring(in_response))
116
117 # get GML file as reference
118 r = requests.get(ref_url[ref_url.keys()[0]], verify=False)
119 data = r.content
120
121 # create file, w: write in text mode
122 filename = tempfile.mkstemp(prefix='geom_', suffix='.gml')[1]
123 with open(filename, 'w') as fp:

A.1 Python source code 107

124 fp.write(data)
125 fp.close()
126
127 in_geom = filename
128 else:
129 # obtain input with identifier as file name
130 in_geom = request.inputs['in_geom'][0].file
131
132 # default parameter values
133 size, size_field = 0, ''
134
135 # check and obtain input with identifier as data directly
136 if 'in_size' in request.inputs:
137 size = request.inputs['in_size'][0].data
138 if 'in_size_field' in request.inputs:
139 size_field = request.inputs['in_size_field'][0].data
140 if 'in_size_ref' in request.inputs:
141 size_ref = request.inputs['in_size_ref'][0].data
142
143 # buffer size priority by reference
144 if float(size_ref):
145 size = float(size_ref)
146
147 # open file and layer
148 in_src = ogr.Open(in_geom)
149 in_lyr = in_src.GetLayer()
150
151 # get layer name
152 lyr_name = in_lyr.GetName()
153
154 # get all field names of input layer
155 field_names = [field.name for field in in_lyr.schema]
156
157 # get and set output spatial reference
158 epsg = int(in_lyr.GetSpatialRef().GetAttrValue('AUTHORITY', 1))
159 sref = osr.SpatialReference()
160 sref.ImportFromEPSG(epsg)
161
162 # create output file
163 driver = ogr.GetDriverByName('GML')
164 out_src = driver.CreateDataSource(lyr_name)
165 out_lyr = out_src.CreateLayer(lyr_name+'_buff', sref, ogr.wkbPolygon)
166
167 # get feature count
168 count = in_lyr.GetFeatureCount()
169 index = 0
170
171 # make buffer for each feature
172 while index < count:
173 # get the geometry
174 in_feat = in_lyr.GetNextFeature()
175 in_geom = in_feat.GetGeometryRef()
176
177 # check if size attribute exists
178 if size_field in field_names:
179 size_val = in_feat.GetField(size_field)
180 if isinstance(size_val, int) or isinstance(size_val, float):
181 size = size_val
182 else:
183 size = 0
184
185 LOGGER.debug('Buffer Size:' + str(size))
186
187 # make the buffer
188 buff_geom = in_geom.Buffer(float(size))
189
190 # create output feature to the file
191 out_feat = ogr.Feature(feature_def=out_lyr.GetLayerDefn())

A.1 Python source code 108

192 out_feat.SetGeometry(buff_geom)
193 out_lyr.CreateFeature(out_feat)
194
195 # free and reassign
196 out_feat = None
197
198 index += 1
199
200 # free and reassign
201 out_src = None
202
203 # set output format and file name
204 response.outputs['out_buff'].output_format = Format(mime_type='text/xml', extension='.gml',
205 schema='http://schemas.opengis.net/gml/3.1.1/base/gml.xsd',
206 encoding='UTF-8', validate=None)
207 response.outputs['out_buff'].file = lyr_name
208
209 return response

Listing A.3: Vector buffer process

A.1.4 Export vector data process

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/

processes/proc_export_vect_data.py
1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3
4 """ The process returns a subset of given or fixed spatial data selected by geometry.
5 """
6
7 # libs
8 import logging
9 import tempfile

10 import requests
11 import owslib.util
12 from pywps import Process, LiteralInput, ComplexInput, ComplexOutput, Format
13 from pywps.app.Common import Metadata
14 from pywps.validator.mode import MODE
15 from pywps.validator import complexvalidator
16 from owslib.wms import WebMapService
17 from osgeo import ogr
18 from osgeo import osr
19 from lxml import etree
20 from lib import varlib
21 from lib import geolib
22
23 # authorship information
24 __author__ = "Gunnar Ströer"
25 __copyright__ = "Copyright 2019, integration of wps in local sdi"
26 __version__ = "1.0"
27 __maintainer__ = "Gunnar Ströer"
28 __email__ = "gunnar.stroeer@yahoo.de"
29 __status__ = "Development"
30
31 # global variables
32 LOGGER = logging.getLogger("PYWPS")
33
34
35 # process returns a subset of given or fixed spatial data selected by geometry
36 class ExportVectData(Process):
37 # static class variables
38 epsg = 25832 # local spatial reference code

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/processes/proc_export_vect_data.py
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/processes/proc_export_vect_data.py

A.1 Python source code 109

39
40 def __init__(self):
41 in_geom = ComplexInput(
42 'in_geom',
43 'Selection Geometry [gml]',
44 supported_formats=[Format(mime_type='text/xml', extension='.gml',
45 schema='http://schemas.opengis.net/gml/3.1.1/base/gml.xsd',
46 validate=complexvalidator.validategml)],
47 mode=MODE.NONE
48)
49
50 in_wfs1 = ComplexInput(
51 'in_wfs1',
52 'WFS Request 1 [gml]',
53 supported_formats=[Format(mime_type='text/xml', extension='.gml',
54 schema='http://schemas.opengis.net/gml/3.1.1/base/gml.xsd',
55 validate=complexvalidator.validategml)],
56 mode=MODE.NONE,
57 min_occurs=0
58)
59
60 in_wfs2 = ComplexInput(
61 'in_wfs2',
62 'WFS Request 2 [gml]',
63 supported_formats=[Format(mime_type='text/xml', extension='.gml',
64 schema='http://schemas.opengis.net/gml/3.1.1/base/gml.xsd',
65 validate=complexvalidator.validategml)],
66 mode=MODE.NONE,
67 min_occurs=0
68)
69
70 in_db1 = LiteralInput(
71 'in_db1',
72 'Database Spatial Data Name 1',
73 abstract='Supported spatial data is defined by the following names: '
74 'address, building, parcel, local_plan, poi',
75 data_type='string',
76 allowed_values=('address', 'building', 'parcel', 'local_plan', 'poi'),
77 min_occurs=0
78)
79
80 in_db2 = LiteralInput(
81 'in_db2',
82 'Database Spatial Data Name 2',
83 abstract='Supported spatial data is defined by the following names: '
84 'address, building, parcel, local_plan, poi',
85 data_type='string',
86 allowed_values=('address', 'building', 'parcel', 'local_plan', 'poi'),
87 min_occurs=0
88)
89
90 out_wfs1 = ComplexOutput(
91 'out_wfs1',
92 'WFS Request 1 Subset',
93 supported_formats=[Format(mime_type='text/xml', extension='.gml',
94 schema='http://schemas.opengis.net/gml/3.1.1/base/gml.xsd',
95 encoding='UTF-8', validate=None)]
96)
97
98 out_wfs2 = ComplexOutput(
99 'out_wfs2',

100 'WFS Request 2 Subset',
101 supported_formats=[Format(mime_type='text/xml', extension='.gml',
102 schema='http://schemas.opengis.net/gml/3.1.1/base/gml.xsd',
103 encoding='UTF-8', validate=None)]
104)
105
106 out_db1 = ComplexOutput(

A.1 Python source code 110

107 'out_db1',
108 'Database Spatial Data 1 Subset',
109 supported_formats=[Format(mime_type='text/xml', extension='.gml',
110 schema='http://schemas.opengis.net/gml/3.1.1/base/gml.xsd',
111 encoding='UTF-8', validate=None)]
112)
113
114 out_db2 = ComplexOutput(
115 'out_db2',
116 'Database Spatial Data 2 Subset',
117 supported_formats=[Format(mime_type='text/xml', extension='.gml',
118 schema='http://schemas.opengis.net/gml/3.1.1/base/gml.xsd',
119 encoding='UTF-8', validate=None)]
120)
121
122 out_bound = ComplexOutput(
123 'out_bound',
124 'Selection Boundary',
125 supported_formats=[Format(mime_type='text/xml', extension='.gml',
126 schema='http://schemas.opengis.net/gml/3.1.1/base/gml.xsd',
127 encoding='UTF-8', validate=None)]
128)
129
130 out_map = ComplexOutput(
131 'out_map',
132 'Output Data Overview Map',
133 supported_formats=[Format(mime_type='image/geotiff', extension='.tif')]
134)
135
136 inputs = [in_geom, in_wfs1, in_wfs2, in_db1, in_db2]
137
138 outputs = [out_wfs1, out_wfs2, out_db1, out_db2, out_bound, out_map]
139
140 super(ExportVectData, self).__init__(
141 self._handler,
142 identifier='export_vect_data',
143 version='1.0',
144 title='Export Vector Data Process',
145 abstract='The process returns a subset of given or fixed spatial data selected by geometry.',
146 metadata=[Metadata('The process returns a subset of given or fixed spatial data selected by geometry.',
147 'http://geodev:8080/geonetwork/srv/ger/catalog.search?service=CSW&version=2.0.2'
148 '&request=GetRecordById&id=c850b578-8561-42fb-88d1-1ac9e3314cf4#/metadata/'
149 'c850b578-8561-42fb-88d1-1ac9e3314cf4')],
150 inputs=inputs,
151 outputs=outputs,
152 store_supported=True,
153 status_supported=True
154)
155
156 # handler method obtains request object and response object
157 # @staticmethod # only for static methods, no 'self' applicable
158 def _handler(self, request, response):
159 # check if data is given by reference
160 if request.inputs['in_geom'][0].as_reference:
161 # check if GET method is used
162 if request.inputs['in_geom'][0].method == 'GET':
163 # obtain input with identifier as file name
164 in_geom = request.inputs['in_geom'][0].file
165 # check if POST method is used - whole response has to be parsed (chaining)
166 elif request.inputs['in_geom'][0].method == 'POST':
167 # obtain whole response XML with identifier as data directly
168 in_response = request.inputs['in_geom'][0].data
169
170 LOGGER.debug('XML Response:' + in_response)
171
172 # get content of LiteralData, Reference or ComplexData
173 ref_url = varlib.get_output(etree.fromstring(in_response))
174

A.1 Python source code 111

175 # get GML file as reference
176 r = requests.get(ref_url[ref_url.keys()[0]], verify=False)
177 data = r.content
178
179 # create file, w: write in text mode
180 filename = tempfile.mkstemp(prefix='input_', suffix='.gml')[1]
181 with open(filename, 'w') as fp:
182 fp.write(data)
183 fp.close()
184
185 in_geom = filename
186 else:
187 # obtain input with identifier as file name
188 in_geom = request.inputs['in_geom'][0].file
189
190 # open file and layer
191 in_src = ogr.Open(in_geom)
192 in_lyr = in_src.GetLayer()
193
194 # get spatial reference
195 epsg0 = int(in_lyr.GetSpatialRef().GetAttrValue('AUTHORITY', 1))
196
197 # get geometry
198 feat = in_lyr.GetNextFeature()
199 geom = feat.GetGeometryRef()
200
201 # only one single polygon input feature
202 if in_lyr.GetFeatureCount() == 1 and geom.GetGeometryName() == 'POLYGON':
203 # harmonization of spatial reference
204 if epsg0 != self.epsg:
205 # transform selection geometry to spatial reference of 3D city model
206 sref0 = osr.SpatialReference()
207 sref0.ImportFromEPSG(epsg0)
208 sref = osr.SpatialReference()
209 sref.ImportFromEPSG(self.epsg)
210 transform = osr.CoordinateTransformation(sref0, sref)
211 geom.Transform(transform)
212
213 LOGGER.debug('Input Geometry of Type ' + str(geom.GetGeometryName()) +
214 ' in ' + str(self.epsg) + ':' + geom.ExportToWkt())
215
216 # WFS PART ##
217
218 if 'out_wfs1' in request.outputs.keys():
219 # check and obtain input with identifier as data directly
220 if 'in_wfs1' in request.inputs:
221 wfs1 = request.inputs['in_wfs1'][0].data
222
223 # create file, w: write in text mode
224 in_path = tempfile.mkstemp(prefix='wfs1_data_', suffix='.gml')[1]
225 with open(in_path, 'w') as fp:
226 fp.write(wfs1)
227 fp.close()
228
229 LOGGER.debug('WFS1 Data String:' + str(wfs1[0:1000]))
230
231 # open file and layer
232 wfs1_src = ogr.Open(in_path)
233 wfs1_lyr = wfs1_src.GetLayer()
234
235 # get spatial reference
236 wfs_epsg = int(wfs1_lyr.GetSpatialRef().GetAttrValue('AUTHORITY', 1))
237
238 LOGGER.debug('WFS1 Feature Count in ' + str(wfs_epsg) + ':' + str(wfs1_lyr.GetFeatureCount()))
239
240 # check spatial reference
241 if wfs_epsg == self.epsg:
242 wfs1_lyr.SetSpatialFilter(geom)

A.1 Python source code 112

243 else:
244 LOGGER.debug('Incompatible Spatial Reference of WFS1 and Selection Geometry.')
245
246 LOGGER.debug('WFS1 Feature Count After Filter:' + str(wfs1_lyr.GetFeatureCount()))
247
248 # set output format definition
249 out_path = tempfile.mkstemp(prefix='wfs_' + wfs1_lyr.GetName() + '_data_', suffix='.gml')[1]
250 out_src = ogr.GetDriverByName("GML").CreateDataSource(out_path)
251 out_src.CopyLayer(wfs1_lyr, wfs1_lyr.GetName())
252
253 # set output format and file name
254 response.outputs['out_wfs1'].output_format = Format(mime_type='text/xml', extension='.gml',
255 schema='http://schemas.opengis.net/gml/3.1.1/base/gml.xsd',
256 encoding='UTF-8', validate=None)
257 response.outputs['out_wfs1'].file = out_path
258 else:
259 # remove output from response
260 del response.outputs['out_wfs1']
261
262 if 'out_wfs2' in request.outputs.keys():
263 # check and obtain input with identifier as data directly
264 if 'in_wfs2' in request.inputs:
265 wfs2 = request.inputs['in_wfs2'][0].data
266
267 # create file, w: write in text mode
268 in_path = tempfile.mkstemp(prefix='wfs2_data_', suffix='.gml')[1]
269 with open(in_path, 'w') as fp:
270 fp.write(wfs2)
271 fp.close()
272
273 LOGGER.debug('WFS2 Data String:' + str(wfs2[0:1000]))
274
275 # open file and layer
276 wfs2_src = ogr.Open(in_path)
277 wfs2_lyr = wfs2_src.GetLayer()
278
279 # get spatial reference
280 wfs_epsg = int(wfs2_lyr.GetSpatialRef().GetAttrValue('AUTHORITY', 1))
281
282 LOGGER.debug('WFS2 Feature Count in ' + str(wfs_epsg) + ':' + str(wfs2_lyr.GetFeatureCount()))
283
284 # check spatial reference
285 if wfs_epsg == self.epsg:
286 wfs2_lyr.SetSpatialFilter(geom)
287 else:
288 LOGGER.debug('Incompatible Spatial Reference of WFS2 and Selection Geometry.')
289
290 LOGGER.debug('WFS2 Feature Count After Filter:' + str(wfs2_lyr.GetFeatureCount()))
291
292 # set output format definition
293 out_path = tempfile.mkstemp(prefix='wfs_' + wfs2_lyr.GetName() + '_data_', suffix='.gml')[1]
294 out_src = ogr.GetDriverByName("GML").CreateDataSource(out_path)
295 out_src.CopyLayer(wfs2_lyr, wfs2_lyr.GetName())
296
297 # set output format and file name
298 response.outputs['out_wfs2'].output_format = Format(mime_type='text/xml', extension='.gml',
299 schema='http://schemas.opengis.net/gml/3.1.1/base/gml.xsd',
300 encoding='UTF-8', validate=None)
301 response.outputs['out_wfs2'].file = out_path
302 else:
303 # remove output from response
304 del response.outputs['out_wfs2']
305
306 # DATABASE PART ##
307
308 if 'out_db1' in request.outputs.keys():
309 # check and obtain input with identifier as data directly
310 if 'in_db1' in request.inputs:

A.1 Python source code 113

311 db1 = str(request.inputs['in_db1'][0].data)
312
313 LOGGER.debug('DB1 Data Request:' + db1)
314
315 # call spatial data export methods
316 if db1 == 'poi':
317 db1_data = geolib.pg_export(db1, geom, self.epsg)
318 elif db1 == 'local_plan':
319 db1_data = geolib.pg_export(db1, geom, self.epsg)
320 elif db1 == 'parcel':
321 db1_data = geolib.pg_export(db1, geom, self.epsg)
322 elif db1 == 'building':
323 db1_data = geolib.pg_export(db1, geom, self.epsg)
324 elif db1 == 'address':
325 db1_data = geolib.pg_export(db1, geom, self.epsg)
326 else:
327 db1_data = None
328
329 # set output format and file name
330 response.outputs['out_db1'].output_format = Format(mime_type='text/xml', extension='.gml',
331 schema='http://schemas.opengis.net/gml/3.1.1/base/gml.xsd',
332 encoding='UTF-8', validate=None)
333 response.outputs['out_db1'].file = db1_data
334 else:
335 # remove output from response
336 del response.outputs['out_db1']
337
338 if 'out_db2' in request.outputs.keys():
339 # check and obtain input with identifier as data directly
340 if 'in_db2' in request.inputs:
341 db2 = str(request.inputs['in_db2'][0].data)
342
343 LOGGER.debug('DB2 Data Request:' + db2)
344
345 # call spatial data export methods
346 if db2 == 'poi':
347 db2_data = geolib.pg_export(db2, geom, self.epsg)
348 elif db2 == 'local_plan':
349 db2_data = geolib.pg_export(db2, geom, self.epsg)
350 elif db2 == 'parcel':
351 db2_data = geolib.pg_export(db2, geom, self.epsg)
352 elif db2 == 'building':
353 db2_data = geolib.pg_export(db2, geom, self.epsg)
354 elif db2 == 'address':
355 db2_data = geolib.pg_export(db2, geom, self.epsg)
356 else:
357 db2_data = None
358
359 # set output format and file name
360 response.outputs['out_db2'].output_format = Format(mime_type='text/xml', extension='.gml',
361 schema='http://schemas.opengis.net/gml/3.1.1/base/gml.xsd',
362 encoding='UTF-8', validate=None)
363 response.outputs['out_db2'].file = db2_data
364 else:
365 # remove output from response
366 del response.outputs['out_db2']
367
368 # OVERVIEW MAP AND SELECTION GEOMETRY ##
369
370 if 'out_bound' in request.outputs.keys():
371 # set output format and file name
372 response.outputs['out_bound'].output_format = Format(mime_type='text/xml', extension='.gml',
373 schema='http://schemas.opengis.net/gml/3.1.1/base/gml.xsd',
374 encoding='UTF-8', validate=None)
375 response.outputs['out_bound'].file = in_geom
376 else:
377 # remove output from response
378 del response.outputs['out_bound']

A.1 Python source code 114

379
380 if 'out_map' in request.outputs.keys():
381 # WMS request
382 url = "http://mapbender/wms7/gdm_atkis/gdm_atkis?"
383 wms = WebMapService(url, version="1.1.1")
384
385 # get extent and bounding box
386 extent = geom.GetEnvelope()
387 bbx1, bby1 = extent[0], extent[2]
388 bbx2, bby2 = extent[1], extent[3]
389
390 # image ratio values
391 x_diff = bbx2 - bbx1
392 y_diff = bby2 - bby1
393 width = 1280
394
395 # request parameters
396 bbox = (bbx1, bby1, bbx2, bby2)
397 size = (x_diff/y_diff*width, width)
398 srs = 'EPSG:' + str(self.epsg)
399 file_type = 'image/tiff'
400
401 try:
402 # get map request
403 gm = wms.getmap(layers=['atkis1'], bbox=bbox, size=size, format=file_type, srs=srs, transparent=True)
404
405 LOGGER.debug('Get Map URL:' + gm.geturl())
406
407 # create file, wb: write in binary mode
408 ov_map_path = tempfile.mkstemp(prefix='ov_map_', suffix='.tif')[1]
409 with open(ov_map_path, 'wb') as fp:
410 fp.write(gm.read())
411 fp.close()
412 except owslib.util.ServiceException as se:
413 ov_map_path = ''
414 LOGGER.debug('WMS ServiceException:' + str(se))
415
416 # set output format and file name
417 response.outputs['out_map'].output_format = Format(mime_type='image/geotiff', extension='.tif')
418 response.outputs['out_map'].file = ov_map_path
419 else:
420 # remove output from response
421 del response.outputs['out_map']
422 else:
423 LOGGER.debug('Only one single polygon input feature allowed. ' + str(in_lyr.GetFeatureCount()) +
424 ' features of type ' + str(geom.GetGeometryName()) + ' detected!')
425
426 return response

Listing A.4: Export vector data process

A.1.5 Export 3D related spatial data process

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/

processes/proc_export_3d_data.py
1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3
4 """ The process returns 3D related spatial data selected by input geometry.
5 """
6
7 # libs
8 import logging

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/processes/proc_export_3d_data.py
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/processes/proc_export_3d_data.py

A.1 Python source code 115

9 import tempfile
10 import requests
11 import owslib.util
12 import psycopg2
13 from psycopg2 import sql
14 from pywps import Process, ComplexInput, ComplexOutput, Format
15 from pywps.app.Common import Metadata
16 from pywps.validator.mode import MODE
17 from pywps.validator import complexvalidator
18 from owslib.wcs import WebCoverageService
19 from osgeo import ogr
20 from osgeo import osr
21 from lxml import etree
22 from lib import geolib
23 from lib import varlib
24
25 # authorship information
26 __author__ = "Gunnar Ströer"
27 __copyright__ = "Copyright 2019, integration of wps in local sdi"
28 __version__ = "1.0"
29 __maintainer__ = "Gunnar Ströer"
30 __email__ = "gunnar.stroeer@yahoo.de"
31 __status__ = "Development"
32
33 # global variables
34 LOGGER = logging.getLogger("PYWPS")
35
36
37 # process returns 3D related spatial data selected by input geometry
38 class Export3dData(Process):
39 # static class variables
40 epsg = 25832 # local spatial reference code
41 epsg3 = 31467 # outdated local spatial reference code
42
43 def __init__(self):
44 in_geom = ComplexInput(
45 'in_geom',
46 'Selection Geometry [gml]',
47 supported_formats=[Format(mime_type='text/xml', extension='.gml',
48 schema='http://schemas.opengis.net/gml/3.1.1/base/gml.xsd',
49 validate=complexvalidator.validategml)],
50 mode=MODE.NONE
51)
52
53 out_dem = ComplexOutput(
54 'out_dem',
55 'Digital Elevation Model',
56 supported_formats=[Format(mime_type='image/geotiff', extension='.tif')]
57)
58
59 out_city = ComplexOutput(
60 'out_city',
61 '3D City Model',
62 supported_formats=[Format(mime_type='text/xml', extension='.x3d',
63 schema='http://www.web3d.org/specifications/x3d-3.3.xsd',
64 validate=None, encoding='UTF-8')]
65)
66
67 inputs = [in_geom]
68
69 outputs = [out_dem, out_city]
70
71 super(Export3dData, self).__init__(
72 self._handler,
73 identifier='export_3d_data',
74 version='1.0',
75 title='Export 3D Related Spatial Data Process',
76 abstract='The process returns 3D related spatial data selected by input geometry. Supported outputs are: '

A.1 Python source code 116

77 'Digital Elevation Model [out_dem]; 3D City Model [out_city]',
78 metadata=[Metadata('The process returns 3D related spatial data selected by input geometry.',
79 'http://geodev:8080/geonetwork/srv/ger/catalog.search?service=CSW&version=2.0.2'
80 '&request=GetRecordById&id=c850b578-8561-42fb-88d1-1ac9e3314cf4#/metadata/'
81 'c850b578-8561-42fb-88d1-1ac9e3314cf4')],
82 inputs=inputs,
83 outputs=outputs,
84 store_supported=True,
85 status_supported=True
86)
87
88 # handler method obtains request object and response object
89 # @staticmethod # only for static methods, no 'self' applicable
90 def _handler(self, request, response):
91 # check if data is given by reference
92 if request.inputs['in_geom'][0].as_reference:
93 # check if GET method is used
94 if request.inputs['in_geom'][0].method == 'GET':
95 # obtain input with identifier as file name
96 in_geom = request.inputs['in_geom'][0].file
97 # check if POST method is used - whole response has to be parsed (chaining)
98 elif request.inputs['in_geom'][0].method == 'POST':
99 # obtain whole response XML with identifier as data directly

100 in_response = request.inputs['in_geom'][0].data
101
102 LOGGER.debug('XML Response:' + in_response)
103
104 # get content of LiteralData, Reference or ComplexData
105 ref_url = varlib.get_output(etree.fromstring(in_response))
106
107 # get GML file as reference
108 r = requests.get(ref_url[ref_url.keys()[0]], verify=False)
109 data = r.content
110
111 # create file, w: write in text mode
112 filename = tempfile.mkstemp(prefix='input_', suffix='.gml')[1]
113 with open(filename, 'w') as fp:
114 fp.write(data)
115 fp.close()
116
117 in_geom = filename
118 else:
119 # obtain input with identifier as file name
120 in_geom = request.inputs['in_geom'][0].file
121
122 # open file and layer
123 in_src = ogr.Open(in_geom)
124 in_lyr = in_src.GetLayer()
125
126 # get spatial reference
127 epsg0 = int(in_lyr.GetSpatialRef().GetAttrValue('AUTHORITY', 1))
128
129 # only one single input feature
130 if in_lyr.GetFeatureCount() == 1:
131 # get geometry and extent
132 feat = in_lyr.GetNextFeature()
133 geom = feat.GetGeometryRef()
134 extent = geom.GetEnvelope()
135
136 # harmonization of spatial reference
137 if epsg0 != self.epsg:
138 # transform extent to local spatial reference
139 bbx1, bby1 = geolib.geo_transform(extent[0], extent[2], epsg0, self.epsg)
140 bbx2, bby2 = geolib.geo_transform(extent[1], extent[3], epsg0, self.epsg)
141 else:
142 bbx1, bby1 = extent[0], extent[2]
143 bbx2, bby2 = extent[1], extent[3]
144

A.1 Python source code 117

145 LOGGER.debug('Input BBox in ' + str(self.epsg) + ':' + str(bbx1) +
146 ',' + str(bby1) + ',' + str(bbx2) + ',' + str(bby2))
147
148 # DEM PART ##
149
150 if 'out_dem' in request.outputs.keys():
151 # WCS request
152 url = "http://mapbender/wcs7/verma_hoehen/verma_dgm?"
153 wcs = WebCoverageService(url, version="1.0.0")
154
155 # list all coverages
156 LOGGER.debug(','.join(wcs.contents))
157
158 # get a certain coverage
159 dem = wcs['dgm1']
160
161 # list all attributes of the coverage
162 LOGGER.debug(dir(dem))
163
164 # list all bbox
165 for bb in dem.boundingboxes:
166 LOGGER.debug('DEM BBox:' + str(bb) + '_' +
167 str(dem.boundingboxes[1]['nativeSrs']) + '_' +
168 str(dem.boundingboxes[1]['bbox']))
169
170 # list all time positions
171 for tp in dem.timepositions:
172 LOGGER.debug('DEM TPos:' + str(tp))
173
174 # list all supported formats
175 for sf in dem.supportedFormats:
176 LOGGER.debug('DEM Formats:' + str(sf))
177
178 # request parameters
179 bbox = (bbx1, bby1, bbx2, bby2)
180 crs = 'EPSG:' + str(self.epsg)
181 file_type = 'GEOTIFF_16' # GEOTIFF_16, AAIGRID, GTiff
182 resx, resy = 1, 1 # max. available resolution of DEM data
183
184 try:
185 # get coverage request
186 gc = wcs.getCoverage(identifier=dem.id, bbox=bbox, format=file_type, crs=crs, resx=resx, resy=resy)
187
188 LOGGER.debug('Get Coverage URL:' + gc.geturl())
189
190 # create file, wb: write in binary mode
191 dem_path = tempfile.mkstemp(prefix='dem_', suffix='.tif')[1]
192 with open(dem_path, 'wb') as fp:
193 fp.write(gc.read())
194 fp.close()
195 except owslib.util.ServiceException as se:
196 dem_path = ''
197 LOGGER.debug('WCS ServiceException:' + str(se))
198
199 # set output format and file name
200 response.outputs['out_dem'].output_format = Format(mime_type='image/geotiff', extension='.tif')
201 response.outputs['out_dem'].file = dem_path
202 else:
203 # remove output from response
204 del response.outputs['out_dem']
205
206 # 3D CITY MODEL PART ##
207
208 if 'out_city' in request.outputs.keys():
209 # harmonization of spatial reference
210 if epsg0 != self.epsg3:
211 # transform selection geometry to spatial reference of 3D city model
212 sref0 = osr.SpatialReference()

A.1 Python source code 118

213 sref0.ImportFromEPSG(epsg0)
214 sref3 = osr.SpatialReference()
215 sref3.ImportFromEPSG(self.epsg3)
216 transform = osr.CoordinateTransformation(sref0, sref3)
217 geom.Transform(transform)
218
219 LOGGER.debug('Input Geometry in ' + str(self.epsg3) + ':' + geom.ExportToWkt())
220
221 # open database connection, using .pgpass for authentication
222 db_conn = psycopg2.connect("host=geodb port=5432 dbname=citydb_v4 user=postgres")
223
224 # check connection
225 if db_conn is None:
226 LOGGER.debug('PG connection refused.')
227
228 # open cursor to perform database operations
229 db_cur = db_conn.cursor()
230
231 # sql query with placeholders, transformation to local spatial reference
232 query = sql.SQL("SELECT ST_AsX3D(ST_Transform(ST_SetSRID(sg.geometry, %s), %s), 3, 0) AS geom_3d "
233 "FROM {tbl} sg LEFT JOIN thematic_surface ts ON ts.lod2_multi_surface_id = sg.root_id "
234 "LEFT JOIN building b ON ts.building_id = b.building_root_id "
235 "WHERE sg.geometry IS NOT NULL AND ts.lod2_multi_surface_id IS NOT NULL "
236 "AND ST_Intersects(ST_SetSRID(ST_PolygonFromText(%s), %s), sg.geometry);")
237
238 # execute command, using templating mechanism for better security
239 db_cur.execute(query.format(tbl=sql.Identifier('surface_geometry')),
240 [self.epsg3, self.epsg, geom.ExportToWkt(), self.epsg3])
241
242 # process query result data
243 city_data = '<?xml version="1.0" encoding="UTF-8"?>\n' \
244 '<!DOCTYPE X3D PUBLIC "ISO//Web3D//DTD X3D 3.3//EN"\n' \
245 ' "http://www.web3d.org/specifications/x3d-3.3.dtd">\n\n' \
246 '<X3D profile="Interchange" version="3.3"\n' \
247 ' xmlns:xsd="http://www.w3.org/2001/XMLSchema-instance"\n' \
248 ' xsd:noNamespaceSchemaLocation="http://www.web3d.org/specifications/x3d-3.3.xsd">\n' \
249 '<Scene>'
250
251 for city_geom in db_cur:
252 city_data += '\n <Shape>\n ' + str(city_geom)[2:-3] + '\n </Shape>'
253
254 city_data += '\n</Scene>\n</X3D>'
255
256 # create file, w: write in text mode
257 city_path = tempfile.mkstemp(prefix='city_', suffix='.x3d')[1]
258 with open(city_path, 'w') as fp:
259 fp.write(city_data)
260 fp.close()
261
262 # make the changes to the database persistent
263 db_conn.commit()
264
265 # close communication with the database
266 db_cur.close()
267 db_conn.close()
268
269 # free and reassign
270 db_conn = None
271
272 # set output format and file name
273 response.outputs['out_city'].output_format = Format(mime_type='text/xml', extension='.x3d',
274 schema='http://www.web3d.org/specifications/x3d-3.3.xsd',
275 validate=None, encoding='UTF-8')
276 response.outputs['out_city'].file = city_path
277 else:
278 # remove output from response
279 del response.outputs['out_city']
280 else:

A.1 Python source code 119

281 LOGGER.debug('Only one single input feature allowed. ' +
282 str(in_lyr.GetFeatureCount()) + ' detected!')
283
284 LOGGER.debug(request.outputs.keys())
285 LOGGER.debug(response.outputs.keys())
286
287 return response

Listing A.5: Export 3D related spatial data process

A.1.6 APOLLO rough danger distance process

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/

processes/proc_apollo_rough_dist.py
1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3
4 """ The process is part of the explosive ordnance disposal workflow
5 and returns rough danger distance based on given solid and tnt mass.
6 """
7
8 # libs
9 import logging

10 from pywps import Process, LiteralInput, LiteralOutput
11 from pywps.app.Common import Metadata
12 from pywps.validator.allowed_value import RANGECLOSURETYPE, ALLOWEDVALUETYPE
13 from pywps.inout.literaltypes import AllowedValue
14 from lib import geolib
15
16 # authorship information
17 __author__ = "Gunnar Ströer"
18 __copyright__ = "Copyright 2019, integration of wps in local sdi"
19 __version__ = "1.0"
20 __maintainer__ = "Gunnar Ströer"
21 __email__ = "gunnar.stroeer@yahoo.de"
22 __status__ = "Development"
23
24 # global variables
25 LOGGER = logging.getLogger("PYWPS")
26
27
28 # process returns rough danger distance based on given solid and tnt mass
29 class ApolloRoughDist(Process):
30 def __init__(self):
31 in_tnt = LiteralInput(
32 'in_tnt',
33 'Rough TNT Blast Power [kg]',
34 data_type='integer',
35 # spacing unable to use due incompatibilities between QGIS wps client
36 # allowed_values=(range(50, 2000+1, 50)),
37 allowed_values=[AllowedValue(minval=1, maxval=5000, # spacing=50,
38 allowed_type=ALLOWEDVALUETYPE.RANGE,
39 range_closure=RANGECLOSURETYPE.OPEN)]
40)
41
42 in_solid = LiteralInput(
43 'in_solid',
44 'Solid Type',
45 abstract='Type of material the damage distance threshold will be calculated for: '
46 '0 = Float Glass, 1 = Eardrum Rupture',
47 data_type='integer',
48 allowed_values=(0, 1),
49 min_occurs=0

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/processes/proc_apollo_rough_dist.py
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/processes/proc_apollo_rough_dist.py

A.1 Python source code 120

50)
51
52 out_rough_dist = LiteralOutput(
53 'out_rough_dist',
54 'Rough Danger Distance',
55 data_type='string' # use of string instead float as workaround for bug in PyWPS
56)
57
58 inputs = [in_tnt, in_solid]
59
60 outputs = [out_rough_dist]
61
62 super(ApolloRoughDist, self).__init__(
63 self._handler,
64 identifier='apollo_rough_dist',
65 version='1.0',
66 title='APOLLO Rough Danger Distance Process',
67 abstract='The process returns rough danger distance based on given solid and tnt mass.',
68 metadata=[Metadata('The process is part of the explosive ordnance disposal workflow '
69 'and returns rough danger distance based on given solid and tnt mass.',
70 'http://geodev:8080/geonetwork/srv/ger/catalog.search?service=CSW&version=2.0.2'
71 '&request=GetRecordById&id=c850b578-8561-42fb-88d1-1ac9e3314cf4#/metadata/'
72 'c850b578-8561-42fb-88d1-1ac9e3314cf4')],
73 inputs=inputs,
74 outputs=outputs,
75 store_supported=True,
76 status_supported=True
77)
78
79 # handler method obtains request object and response object
80 # @staticmethod # only for static methods, no 'self' applicable
81 def _handler(self, request, response):
82 # default parameter values
83 tnt, solid = 0, 0
84
85 # check and obtain input with identifier as data directly
86 if 'in_tnt' in request.inputs:
87 tnt = request.inputs['in_tnt'][0].data
88 if 'in_solid' in request.inputs:
89 solid = request.inputs['in_solid'][0].data
90
91 # calculation of threshold distance
92 dist_threshold = geolib.damage_dist_threshold(tnt, solid)
93
94 # set output format and file name
95 response.outputs['out_rough_dist'].data = str(dist_threshold)
96
97 return response

Listing A.6: APOLLO rough danger distance process

A.1.7 APOLLO configuration process

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/

processes/proc_apollo_conf.py
1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3
4 """ The process is part of the explosive ordnance disposal workflow
5 and returns APOLLO configuration data for SIRIUS interface.
6 """
7
8 # libs

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/processes/proc_apollo_conf.py
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/processes/proc_apollo_conf.py

A.1 Python source code 121

9 import logging
10 import tempfile
11 import json
12 from pywps import Process, LiteralInput, ComplexInput, ComplexOutput, Format
13 from pywps.app.Common import Metadata
14 from pywps.validator.mode import MODE
15 from pywps.validator import complexvalidator
16 from pywps.validator.allowed_value import RANGECLOSURETYPE, ALLOWEDVALUETYPE
17 from pywps.inout.literaltypes import AllowedValue
18 from easydict import EasyDict
19 from osgeo import ogr
20 from lib import geolib
21
22 # authorship information
23 __author__ = "Gunnar Ströer"
24 __copyright__ = "Copyright 2019, integration of wps in local sdi"
25 __version__ = "1.0"
26 __maintainer__ = "Gunnar Ströer"
27 __email__ = "gunnar.stroeer@yahoo.de"
28 __status__ = "Development"
29
30 # global variables
31 LOGGER = logging.getLogger("PYWPS")
32
33
34 # process returns APOLLO configuration data for SIRIUS interface
35 class ApolloConf(Process):
36 # static class variables
37 epsg = 25832 # local spatial reference code
38 epsg2 = 4326 # spatial reference code for WGS84
39 srv_url = 'https://www.cadfem.de/apollo/' # url provided by the SIRIUS project team
40
41 def __init__(self):
42 in_geom = ComplexInput(
43 'in_geom',
44 'Exact Location [gml]',
45 supported_formats=[Format(mime_type='text/xml', extension='.gml',
46 schema='http://schemas.opengis.net/gml/3.1.1/base/gml.xsd',
47 validate=complexvalidator.validategml)],
48 # validation mode unable to use due incompatibilities between mimetype library and QGIS wps client
49 mode=MODE.NONE
50)
51
52 in_precision = LiteralInput(
53 'in_precision',
54 'Precision [m]',
55 abstract='Precision used by APOLLO simulation. Supported values are: 0.5, 1.0, 2.5, 5.0, 10.0',
56 data_type='float',
57 allowed_values=(0.5, 1.0, 2.5, 5.0, 10.0)
58)
59
60 in_height = LiteralInput(
61 'in_height',
62 'Relative Height [m]',
63 data_type='float',
64 default='-2.5'
65)
66
67 in_tnt = LiteralInput(
68 'in_tnt',
69 'Exact TNT Blast Power [kg]',
70 data_type='integer',
71 # spacing unable to use due incompatibilities between QGIS wps client
72 # allowed_values=(range(50, 2000+1, 50)),
73 allowed_values=[AllowedValue(minval=1, maxval=5000, # spacing=50,
74 allowed_type=ALLOWEDVALUETYPE.RANGE,
75 range_closure=RANGECLOSURETYPE.OPEN)]
76)

A.1 Python source code 122

77
78 in_heading = LiteralInput(
79 'in_heading',
80 'Bomb Azimuth Angle [deg]',
81 data_type='float',
82 min_occurs=0,
83 default='0.0'
84)
85
86 in_pitch = LiteralInput(
87 'in_pitch',
88 'Bomb Tilt Angle [deg]',
89 data_type='float',
90 min_occurs=0,
91 default='0.0'
92)
93
94 in_type = LiteralInput(
95 'in_type',
96 'Bomb Type',
97 abstract='Type of the bomb after classification. Supported values are: N/A, GP100, GP250',
98 data_type='string',
99 allowed_values=('N/A', 'GP100', 'GP250'),

100 min_occurs=0
101)
102
103 in_detonator = LiteralInput(
104 'in_detonator',
105 'Detonator Position',
106 abstract='Position of detonator after classification. Supported values are: N/A, Front, Rear, Top, Bottom',
107 data_type='string',
108 allowed_values=('N/A', 'Front', 'Rear', 'Top', 'Bottom'),
109 min_occurs=0
110)
111
112 in_site_desc = LiteralInput(
113 'in_site_desc',
114 'Site Description',
115 abstract='Description of the bomb find location. Supported values are: Surface, Cavern',
116 data_type='string',
117 allowed_values=('Surface', 'Cavern'),
118 min_occurs=0
119)
120
121 in_site_rad = LiteralInput(
122 'in_site_rad',
123 'Site Radius [m]',
124 data_type='float',
125 min_occurs=0,
126 default='0.0'
127)
128
129 in_hidden = LiteralInput(
130 'in_hidden',
131 'Hidden Objects [gml:id1 gml:id2]',
132 abstract='List of 3D city model objects that will be ignored by the simulation. '
133 'Supported values are GML identification strings.',
134 data_type='string',
135 min_occurs=0
136)
137
138 out_conf = ComplexOutput(
139 'out_conf',
140 'APOLLO Configuration Data',
141 supported_formats=[Format(mime_type='application/json', extension='.json',
142 validate=complexvalidator.validategeojson,
143 encoding='UTF-8', schema='json')]
144)

A.1 Python source code 123

145
146 inputs = [in_geom, in_precision, in_height, in_tnt, in_heading, in_pitch,
147 in_type, in_detonator, in_site_desc, in_site_rad, in_hidden]
148
149 outputs = [out_conf]
150
151 super(ApolloConf, self).__init__(
152 self._handler,
153 identifier='apollo_conf',
154 version='1.0',
155 title='APOLLO Configuration Process',
156 abstract='The process returns APOLLO configuration data for SIRIUS interface.',
157 metadata=[Metadata('The process is part of the explosive ordnance disposal workflow '
158 'and returns APOLLO configuration data for SIRIUS interface.',
159 'http://geodev:8080/geonetwork/srv/ger/catalog.search?service=CSW&version=2.0.2'
160 '&request=GetRecordById&id=c850b578-8561-42fb-88d1-1ac9e3314cf4#/metadata/'
161 'c850b578-8561-42fb-88d1-1ac9e3314cf4')],
162 inputs=inputs,
163 outputs=outputs,
164 store_supported=True,
165 status_supported=True
166)
167
168 # handler method obtains request object and response object
169 # @staticmethod # only for static methods, no 'self' applicable
170 def _handler(self, request, response):
171 # obtain input with identifier as file name
172 in_file = request.inputs['in_geom'][0].file
173
174 # possible request attributes: 'abstract', 'as_reference', 'base64', 'clone', 'crs', 'crss', 'data',
175 # 'describe_xml', 'dimensions', 'execute_xml', 'file', 'get_base64', 'get_data', 'get_file',
176 # 'get_memory_object', 'get_stream', 'get_workdir', 'identifier', 'json', 'll', 'max_occurs', 'memory_object',
177 # 'metadata', 'min_occurs', 'set_base64', 'set_data', 'set_file', 'set_memory_object', 'set_stream',
178 # 'set_workdir', 'source', 'source_type', 'stream', 'title', 'ur', 'valid_mode', 'validator', 'workdir'
179
180 # default parameter values
181 bomb_type, detonator, site_desc, hidden = '', '', '', ''
182 precision, height, tnt, heading, pitch, site_rad = 0., 0., 0, 0., 0., 2.
183
184 # check and obtain input with identifier as data directly
185 if 'in_precision' in request.inputs:
186 precision = request.inputs['in_precision'][0].data
187 if 'in_height' in request.inputs:
188 height = request.inputs['in_height'][0].data
189 if 'in_tnt' in request.inputs:
190 tnt = request.inputs['in_tnt'][0].data
191 if 'in_heading' in request.inputs:
192 heading = request.inputs['in_heading'][0].data
193 if 'in_pitch' in request.inputs:
194 pitch = request.inputs['in_pitch'][0].data
195 if 'in_type' in request.inputs:
196 bomb_type = request.inputs['in_type'][0].data
197 if 'in_detonator' in request.inputs:
198 detonator = request.inputs['in_detonator'][0].data
199 if 'in_site_desc' in request.inputs:
200 site_desc = request.inputs['in_site_desc'][0].data
201 if 'in_site_rad' in request.inputs:
202 site_rad = request.inputs['in_site_rad'][0].data
203 if 'in_hidden' in request.inputs:
204 hidden = (request.inputs['in_hidden'][0].data).split()
205
206 # open file and layer
207 in_src = ogr.Open(in_file)
208 in_lyr = in_src.GetLayer()
209
210 # only one single input feature and valid tnt blast power
211 if in_lyr.GetFeatureCount() == 1 and tnt > 0:
212 # conservative calculation for float glass

A.1 Python source code 124

213 dist_threshold = geolib.damage_dist_threshold(tnt, 0)
214
215 LOGGER.debug('Threshold:' + str(dist_threshold))
216
217 # get the feature geometry
218 in_feat = in_lyr.GetNextFeature()
219 in_geom = in_feat.GetGeometryRef()
220
221 # get SRID of geometry and make sure location is a point
222 epsg0 = int(in_geom.GetSpatialReference().GetAttrValue('AUTHORITY', 1))
223 x0, y0 = in_geom.Centroid().GetX(), in_geom.Centroid().GetY()
224
225 # harmonization of spatial reference
226 if epsg0 != self.epsg:
227 # transform position to local spatial reference
228 x2, y2 = geolib.geo_transform(x0, y0, epsg0, self.epsg)
229 else:
230 x2, y2 = x0, y0
231
232 # calculate bounding box
233 bbx1 = x2 - dist_threshold
234 bby1 = y2 - dist_threshold
235 bbx2 = x2 + dist_threshold
236 bby2 = y2 + dist_threshold
237
238 # transform position to WGS84
239 x_wgs, y_wgs = geolib.geo_transform(x2, y2, self.epsg, self.epsg2)
240
241 LOGGER.debug('Coordinates in ' + str(self.epsg) + ':' + str(x2) + '/' + str(y2))
242 LOGGER.debug('Coordinates in ' + str(self.epsg2) + ':' + str(x_wgs) + '/' + str(y_wgs))
243
244 # create location geometry
245 location = ogr.Geometry(ogr.wkbPoint)
246 location.AddPoint(x2, y2)
247
248 LOGGER.debug('Location as WKT:' + location.ExportToWkt())
249
250 # create output data
251 conf_data = EasyDict({'bomb': {'tnt': tnt, 'type': bomb_type, 'detonator': detonator},
252 'domain': {'name': 'Ultimo', 'zroi': 100, 'droi': dist_threshold},
253 'mode': {'name': 'Ultimo', 't': 50, 'precision': precision},
254 'site': {'type': site_desc, 'radius': site_rad},
255 'geometry': {'crs': self.epsg2, 'position': [x_wgs, y_wgs], 'depth': (-1) * height},
256 'crs': self.epsg,
257 'position': [x2, y2],
258 'height': height,
259 'heading': heading,
260 'pitch': pitch,
261 'extent': [bbx1, bby1, bbx2, bby2],
262 'hiddenObjects': hidden,
263 'service': {'url': self.srv_url, 'resultFile': 'effects_' + str(self.uuid) + '.zip'}
264 })
265
266 conf_json = json.dumps(conf_data)
267
268 # create file, w: write in text mode
269 conf_path = tempfile.mkstemp(prefix='conf_', suffix='.json')[1]
270 with open(conf_path, 'w') as fp:
271 fp.write(conf_json)
272 fp.close()
273
274 # set output format and file name
275 response.outputs['out_conf'].output_format = Format(mime_type='application/json', extension='.json',
276 validate=complexvalidator.validategeojson,
277 encoding='UTF-8', schema='json')
278 response.outputs['out_conf'].file = conf_path
279 else:
280 # remove output from response

A.1 Python source code 125

281 del response.outputs['out_conf']
282
283 LOGGER.debug('Only one single input feature allowed. ' +
284 str(in_lyr.GetFeatureCount()) + ' detected!')
285
286 # free and reassign
287 in_src = None
288 in_lyr = None
289
290 # possible response attributes: 'abstract', 'as_reference', 'base64', 'crs', 'crss', 'data', 'describe_xml',
291 # 'dimensions', 'execute_xml', 'file', 'get_base64', 'get_data', 'get_file', 'get_memory_object', 'get_stream',
292 # 'get_workdir', 'identifier', 'json', 'll', 'max_occurs', 'memory_object', 'metadata', 'min_occurs',
293 # 'set_base64', 'set_data', 'set_file', 'set_memory_object', 'set_stream', 'set_workdir', 'source',
294 # 'source_type', 'stream', 'title', 'ur', 'valid_mode', 'validator', 'workdir'
295
296 return response

Listing A.7: APOLLO configuration process

A.1.8 APOLLO execute process

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/

processes/proc_apollo_execute.py
1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3
4 """ The process is part of the explosive ordnance disposal workflow
5 and executes APOLLO via SIRIUS and returns blast effects result.
6 """
7
8 # libs
9 import logging

10 import tempfile
11 import requests
12 import json
13 from pywps import Process, ComplexInput, ComplexOutput, Format
14 from pywps.app.Common import Metadata
15 from pywps.validator.mode import MODE
16 from pywps.validator import complexvalidator
17 from lxml import etree
18 from lib import varlib
19
20 # authorship information
21 __author__ = "Gunnar Ströer"
22 __copyright__ = "Copyright 2019, integration of wps in local sdi"
23 __version__ = "1.0"
24 __maintainer__ = "Gunnar Ströer"
25 __email__ = "gunnar.stroeer@yahoo.de"
26 __status__ = "Development"
27
28 # global variables
29 LOGGER = logging.getLogger("PYWPS")
30
31
32 # process executes APOLLO via SIRIUS and returns blast effects result
33 class ApolloExecute(Process):
34 def __init__(self):
35 in_conf = ComplexInput(
36 'in_conf',
37 'APOLLO Configuration Data [json]',
38 supported_formats=[Format(mime_type='application/json', extension='.json',
39 validate=complexvalidator.validategeojson,
40 encoding='UTF-8', schema='json')],

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/processes/proc_apollo_execute.py
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/processes/proc_apollo_execute.py

A.1 Python source code 126

41 mode=MODE.NONE
42)
43
44 in_dem = ComplexInput(
45 'in_dem',
46 'Digital Elevation Model [tif]',
47 supported_formats=[Format(mime_type='image/geotiff', extension='.tif')],
48 mode=MODE.NONE
49)
50
51 in_city = ComplexInput(
52 'in_city',
53 '3D City Model [x3d]',
54 supported_formats=[Format(mime_type='text/xml', extension='.x3d',
55 schema='http://www.web3d.org/specifications/x3d-3.3.xsd',
56 validate=None, encoding='UTF-8')],
57 mode=MODE.NONE
58)
59
60 out_effects = ComplexOutput(
61 'out_effects',
62 'APOLLO Effects Result',
63 supported_formats=[Format(mime_type='application/octet-stream')]
64)
65
66 inputs = [in_conf, in_dem, in_city]
67
68 outputs = [out_effects]
69
70 super(ApolloExecute, self).__init__(
71 self._handler,
72 identifier='apollo_execute',
73 version='1.0',
74 title='APOLLO Execute Process',
75 abstract='The process executes APOLLO via SIRIUS and returns blast effects result.',
76 metadata=[Metadata('The process is part of the explosive ordnance disposal workflow '
77 'and executes APOLLO via SIRIUS and returns blast effects result.',
78 'http://geodev:8080/geonetwork/srv/ger/catalog.search?service=CSW&version=2.0.2'
79 '&request=GetRecordById&id=c850b578-8561-42fb-88d1-1ac9e3314cf4#/metadata/'
80 'c850b578-8561-42fb-88d1-1ac9e3314cf4')],
81 inputs=inputs,
82 outputs=outputs,
83 store_supported=True,
84 status_supported=True
85)
86
87 # handler method obtains request object and response object
88 # @staticmethod # only for static methods, no 'self' applicable
89 def _handler(self, request, response):
90 # IN_CONF PART ##
91
92 # check if data is given by reference
93 if request.inputs['in_conf'][0].as_reference:
94 # check if GET method is used
95 if request.inputs['in_conf'][0].method == 'GET':
96 # obtain input with identifier as file name
97 in_conf = request.inputs['in_conf'][0].file
98 # check if POST method is used - whole response has to be parsed (chaining)
99 elif request.inputs['in_conf'][0].method == 'POST':

100 # obtain whole response XML with identifier as data directly
101 in_response = request.inputs['in_conf'][0].data
102
103 LOGGER.debug('XML Response:' + in_response)
104
105 # get content of LiteralData, Reference or ComplexData
106 ref_url = varlib.get_output(etree.fromstring(in_response))
107
108 # get GML file as reference

A.1 Python source code 127

109 r = requests.get(ref_url[ref_url.keys()[0]], verify=False)
110 data = r.content
111
112 # create file, w: write in text mode
113 filename = tempfile.mkstemp(prefix='conf_', suffix='.json')[1]
114 with open(filename, 'w') as fp:
115 fp.write(data)
116 fp.close()
117
118 in_conf = filename
119 else:
120 # obtain input with identifier as file name
121 in_conf = request.inputs['in_conf'][0].file
122
123 # IN_DEM PART ##
124
125 # check if data is given by reference
126 if request.inputs['in_dem'][0].as_reference:
127 # check if GET method is used
128 if request.inputs['in_dem'][0].method == 'GET':
129 # obtain input with identifier as file name
130 in_dem = request.inputs['in_dem'][0].file
131 # check if POST method is used - whole response has to be parsed (chaining)
132 elif request.inputs['in_dem'][0].method == 'POST':
133 # obtain whole response XML with identifier as data directly
134 in_response = request.inputs['in_dem'][0].data
135
136 LOGGER.debug('XML Response:' + in_response)
137
138 # get content of LiteralData, Reference or ComplexData
139 ref_url = varlib.get_output(etree.fromstring(in_response))
140
141 # get GML file as reference
142 r = requests.get(ref_url[ref_url.keys()[0]], verify=False)
143 data = r.content
144
145 # create file, wb: write in binary mode
146 filename = tempfile.mkstemp(prefix='dem_', suffix='.tif')[1]
147 with open(filename, 'wb') as fp:
148 fp.write(data)
149 fp.close()
150
151 in_dem = filename
152 else:
153 # obtain input with identifier as file name
154 in_dem = request.inputs['in_dem'][0].file
155
156 # IN_CITY PART ##
157
158 # check if data is given by reference
159 if request.inputs['in_city'][0].as_reference:
160 # check if GET method is used
161 if request.inputs['in_city'][0].method == 'GET':
162 # obtain input with identifier as file name
163 in_city = request.inputs['in_city'][0].file
164 # check if POST method is used - whole response has to be parsed (chaining)
165 elif request.inputs['in_city'][0].method == 'POST':
166 # obtain whole response XML with identifier as data directly
167 in_response = request.inputs['in_city'][0].data
168
169 LOGGER.debug('XML Response:' + in_response)
170
171 # get content of LiteralData, Reference or ComplexData
172 ref_url = varlib.get_output(etree.fromstring(in_response))
173
174 # get GML file as reference
175 r = requests.get(ref_url[ref_url.keys()[0]], verify=False)
176 data = r.content

A.1 Python source code 128

177
178 # create file, w: write in text mode
179 filename = tempfile.mkstemp(prefix='city_', suffix='.x3d')[1]
180 with open(filename, 'w') as fp:
181 fp.write(data)
182 fp.close()
183
184 in_city = filename
185 else:
186 # obtain input with identifier as file name
187 in_city = request.inputs['in_city'][0].file
188
189 # EXECUTE PART ##
190
191 LOGGER.debug('Config path:' + in_conf)
192 LOGGER.debug('DEM path:' + in_dem)
193 LOGGER.debug('City path:' + in_city)
194
195 # open configuration file
196 with open(in_conf, 'r') as fp:
197 conf_data = json.load(fp)
198
199 # read url for APOLLO service and result data
200 if 'service' in conf_data:
201 srv_url = conf_data['service']['url']
202 result_file = conf_data['service']['resultFile']
203 srv_url_result = srv_url + result_file
204 LOGGER.debug('Service URL:' + srv_url_result)
205
206 # NON-PRODUCTIVE ONLY -> overwrite result data url because simulation of working SIRIUS / APOLLO server
207 srv_url_result = 'https://geodev2/apollo_result/apollo_effects.zip'
208
209 # reveal input data, execute APOLLO and calculate effects result
210 # r_exe = requests.get(srv_url, verify=False)
211
212 # effects result file checker
213 while not requests.head(srv_url_result, verify=False).status_code == requests.codes.ok:
214 response.update_status('APOLLO Execute Process Still In Progress', 0)
215 LOGGER.debug('Resource File Status Code:' + str(requests.head(srv_url_result, verify=False).status_code))
216
217 # get effects result file when APOLLO is ready
218 r = requests.get(srv_url_result, verify=False)
219 data = r.content
220
221 # create file, wb: write in binary mode
222 result_file = tempfile.mkstemp(prefix='effects_', suffix='.zip')[1]
223 with open(result_file, 'wb') as fp:
224 fp.write(data)
225 fp.close()
226
227 # set output format and file name
228 response.outputs['out_effects'].output_format = Format(mime_type='application/octet-stream')
229 response.outputs['out_effects'].file = result_file
230
231 return response

Listing A.8: APOLLO execute process

A.1.9 APOLLO evacuation zone process

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/

processes/proc_apollo_evac_zone.py
1 #!/usr/bin/env python

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/processes/proc_apollo_evac_zone.py
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/processes/proc_apollo_evac_zone.py

A.1 Python source code 129

2 # -*- coding: utf-8 -*-
3
4 """ The process is part of the explosive ordnance disposal workflow
5 and returns evacuation zone around blast affected area.
6 """
7
8 # libs
9 import numpy as np

10 import logging
11 import tempfile
12 import requests
13 import math
14 import os
15 import json
16 import zipfile
17 import shutil
18 from pywps import Process, LiteralInput, ComplexInput, ComplexOutput, Format
19 from pywps.app.Common import Metadata
20 from pywps.validator.mode import MODE
21 from pywps.validator import complexvalidator
22 from osgeo import ogr
23 from osgeo import osr
24 from osgeo import gdal
25 from lxml import etree
26 from lib import varlib
27
28 # authorship information
29 __author__ = "Gunnar Ströer"
30 __copyright__ = "Copyright 2019, integration of wps in local sdi"
31 __version__ = "1.0"
32 __maintainer__ = "Gunnar Ströer"
33 __email__ = "gunnar.stroeer@yahoo.de"
34 __status__ = "Development"
35
36 # global variables
37 LOGGER = logging.getLogger("PYWPS")
38
39
40 # process returns evacuation zone around blast affected area
41 class ApolloEvacZone(Process):
42 # static class variables
43 rot_deg = 28.5 # z axis rotation used by APOLLO, case study only, will be 0.0 in productive use
44
45 def __init__(self):
46 in_conf = ComplexInput(
47 'in_conf',
48 'APOLLO Configuration Data [json]',
49 supported_formats=[Format(mime_type='application/json', extension='.json',
50 validate=complexvalidator.validategeojson,
51 encoding='UTF-8', schema='json')],
52 mode=MODE.NONE
53)
54
55 in_effects = ComplexInput(
56 'in_effects',
57 'APOLLO Effects Result [zip|dat]',
58 supported_formats=[Format(mime_type='application/octet-stream', extension='.zip')],
59 mode=MODE.NONE
60)
61
62 in_dmg_lvl = LiteralInput(
63 'in_dmg_lvl',
64 'Damage Level',
65 abstract='Level of damage the evacuation zone will be calculated for: '
66 '0 = Float Glass, '
67 '1 = Hardened Glass, '
68 '2 = Safety Glass, '
69 '3 = Masonry, '

A.1 Python source code 130

70 '4 = Eardrum Rupture, '
71 '5 = Injury, '
72 '6 = Lethal Injury',
73 data_type='integer',
74 allowed_values=(0, 1, 2, 3, 4, 5, 6),
75 min_occurs=0
76)
77
78 out_evac_zone = ComplexOutput(
79 'out_evac_zone',
80 'Evacuation Zone',
81 supported_formats=[Format(mime_type='text/xml', extension='.gml',
82 schema='http://schemas.opengis.net/gml/3.1.1/base/gml.xsd',
83 encoding='UTF-8', validate=None)]
84)
85
86 out_raster = ComplexOutput(
87 'out_raster',
88 'Evacuation Raster',
89 supported_formats=[Format(mime_type='image/geotiff', extension='.tif')]
90)
91
92 inputs = [in_conf, in_effects, in_dmg_lvl]
93
94 outputs = [out_evac_zone, out_raster]
95
96 super(ApolloEvacZone, self).__init__(
97 self._handler,
98 identifier='apollo_evac_zone',
99 version='1.0',

100 title='APOLLO Evacuation Zone Process',
101 abstract='The process returns evacuation zone around blast affected area.',
102 metadata=[Metadata('The process is part of the explosive ordnance disposal workflow '
103 'and returns evacuation zone around blast affected area.',
104 'http://geodev:8080/geonetwork/srv/ger/catalog.search?service=CSW&version=2.0.2'
105 '&request=GetRecordById&id=c850b578-8561-42fb-88d1-1ac9e3314cf4#/metadata/'
106 'c850b578-8561-42fb-88d1-1ac9e3314cf4')],
107 inputs=inputs,
108 outputs=outputs,
109 store_supported=True,
110 status_supported=True
111)
112
113 # handler method obtains request object and response object
114 # @staticmethod # only for static methods, no 'self' applicable
115 def _handler(self, request, response):
116 # IN_CONF PART ##
117
118 # check if data is given by reference
119 if request.inputs['in_conf'][0].as_reference:
120 # check if GET method is used
121 if request.inputs['in_conf'][0].method == 'GET':
122 # obtain input with identifier as file name
123 in_conf = request.inputs['in_conf'][0].file
124 # check if POST method is used - whole response has to be parsed (chaining)
125 elif request.inputs['in_conf'][0].method == 'POST':
126 # obtain whole response XML with identifier as data directly
127 in_response = request.inputs['in_conf'][0].data
128
129 LOGGER.debug('XML Response:' + in_response)
130
131 # get content of LiteralData, Reference or ComplexData
132 ref_url = varlib.get_output(etree.fromstring(in_response))
133
134 # get GML file as reference
135 r = requests.get(ref_url[ref_url.keys()[0]], verify=False)
136 data = r.content
137

A.1 Python source code 131

138 # create file, w: write in text mode
139 filename = tempfile.mkstemp(prefix='conf_', suffix='.json')[1]
140 with open(filename, 'w') as fp:
141 fp.write(data)
142 fp.close()
143
144 in_conf = filename
145 else:
146 # obtain input with identifier as file name
147 in_conf = request.inputs['in_conf'][0].file
148
149 # IN_EFFECTS PART ##
150
151 # check if data is given by reference
152 if request.inputs['in_effects'][0].as_reference:
153 # check if GET method is used
154 if request.inputs['in_effects'][0].method == 'GET':
155 # obtain input with identifier as file name
156 in_effects = request.inputs['in_effects'][0].file
157 # check if POST method is used - whole response has to be parsed (chaining)
158 elif request.inputs['in_effects'][0].method == 'POST':
159 # obtain whole response XML with identifier as data directly
160 in_response = request.inputs['in_effects'][0].data
161
162 LOGGER.debug('XML Response:' + in_response)
163
164 # get content of LiteralData, Reference or ComplexData
165 ref_url = varlib.get_output(etree.fromstring(in_response))
166
167 # get GML file as reference
168 r = requests.get(ref_url[ref_url.keys()[0]], verify=False)
169 data = r.content
170
171 # create file, wb: write in binary mode
172 filename = tempfile.mkstemp(prefix='effects_', suffix='.zip')[1]
173 with open(filename, 'wb') as fp:
174 fp.write(data)
175 fp.close()
176
177 in_effects = filename
178 else:
179 # obtain input with identifier as file name
180 in_effects = request.inputs['in_effects'][0].file
181
182 # IN DAMAGE LEVEL PART ##
183
184 dmg_lvl = 'F4_FloatGl' # default level of damage
185
186 # check and obtain input with identifier as data directly
187 if 'in_dmg_lvl' in request.inputs:
188 lvl = request.inputs['in_dmg_lvl'][0].data
189
190 if lvl == 1:
191 dmg_lvl = 'F5_HardGl'
192 if lvl == 2:
193 dmg_lvl = 'F6_SafeGl'
194 if lvl == 3:
195 dmg_lvl = 'F7_Masonry'
196 if lvl == 4:
197 dmg_lvl = 'F10_Eardrum'
198 if lvl == 5:
199 dmg_lvl = 'F11_Injury'
200 if lvl == 6:
201 dmg_lvl = 'F12_Lethal'
202
203 # CONFIG PART ##
204
205 LOGGER.debug('Config path:' + in_conf)

A.1 Python source code 132

206 LOGGER.debug('Effects path:' + in_effects)
207
208 # open configuration file
209 with open(in_conf, 'r') as fp:
210 conf_data = json.load(fp)
211
212 # check and obtain input with identifier as data directly
213 if 'crs' in conf_data:
214 epsg = conf_data['crs']
215 if 'position' in conf_data:
216 if len(conf_data['position']) > 1:
217 x = conf_data['position'][0]
218 y = conf_data['position'][1]
219 if 'mode' in conf_data:
220 if 'precision' in conf_data['mode']:
221 precision = conf_data['mode']['precision']
222
223 # check necessary parameter
224 try:
225 x, y, epsg, precision
226 LOGGER.debug('Parameter:' + str(x) + '/' + str(y) + '/' + str(epsg) + '/' + str(precision))
227 except NameError:
228 LOGGER.debug('Input value error in APOLLO configuration.')
229
230 # APOLLO EFFECTS PART ##
231
232 in_effects_dat = in_effects
233
234 # zip archive handling for APOLLO effects file
235 if zipfile.is_zipfile(in_effects):
236 with zipfile.ZipFile(in_effects) as my_zip:
237 # get name of files with *.dat extension
238 cont_match = filter(lambda s: '.dat' in s, my_zip.namelist())
239
240 # set new name for APOLLO effects file
241 in_effects_dat = os.path.join(os.path.dirname(in_effects), cont_match[0])
242
243 # extract first *.dat file
244 with my_zip.open(cont_match[0]) as zf, open(in_effects_dat, 'wb') as f:
245 shutil.copyfileobj(zf, f)
246
247 LOGGER.debug('APOLLO effects file:' + in_effects_dat)
248
249 # build dtype array structure for APOLLO effects file
250 dt = np.dtype({'names': ['I', 'J', 'K', 'Dir', 'N', 'Obj',
251 'F1_MaxOP', 'F2_MaxOP-Imp', 'F3_OP-Imp', 'F4_FloatGl', 'F5_HardGl', 'F6_SafeGl',
252 'F7_Masonry', 'F8_RC30-01', 'F9_RC30-06', 'F10_Eardrum', 'F11_Injury', 'F12_Lethal'],
253 'formats': ['int', 'int', 'int', 'int', 'int', 'int', 'float', 'float', 'float', 'float',
254 'float', 'float', 'float', 'float', 'float', 'float', 'float', 'float']})
255
256 # read APOLLO effects file
257 data = np.loadtxt(in_effects_dat, skiprows=19, dtype=dt, ndmin=2)
258
259 # get dimensions (I=512 J=512 K=76)
260 size_i = np.amax(data['I']) - np.amin(data['I']) + 1
261 size_j = np.amax(data['J']) - np.amin(data['J']) + 1
262 # size_k = np.amax(data['K']) - np.amin(data['K']) + 1
263
264 # get delta of translation to positive quarter
265 delta_i = abs(np.amin(data['I']))
266 # delta_j = abs(np.amin(data['J']))
267 # delta_k = abs(np.amin(data['K']))
268
269 # max values, no abs, needed for iterations
270 # max_i = np.amax(data['I'])
271 max_j = np.amax(data['J'])
272 # max_k = np.amax(data['K'])
273

A.1 Python source code 133

274 LOGGER.debug('Dimensions:sizeI=' + str(size_i) + '/sizeJ=' + str(size_j) +
275 '/deltaI=' + str(delta_i) + '/maxJ=' + str(max_j))
276
277 # empty array with size of ground surface
278 target = np.zeros((size_j, size_i))
279
280 # make data flat
281 for row in np.nditer(data):
282 # save value only if greater than previous value in K direction
283 if row[dmg_lvl] > target[max_j - row['J']][delta_i + row['I']]:
284 # save n-dimensional values
285 # target[max_j - row['J']][delta_i + row['I']] = [row['F1_MaxOP'], row['F2_MaxOP-Imp'],
286 # row['F3_OP-Imp'], row[dmg_lvl]]
287 # save 1-dimensional value
288 target[max_j - row['J']][delta_i + row['I']] = row[dmg_lvl]
289
290 # free and reassign
291 data = None
292
293 # RASTER PART ##
294
295 # file path for raster
296 raster_path = os.path.splitext(in_effects_dat)[0] + '_' + dmg_lvl.lower() + '_.tif'
297
298 # set spatial reference and export projection to wkt
299 sref = osr.SpatialReference()
300 sref.ImportFromEPSG(epsg)
301 wkt_proj = sref.ExportToWkt()
302
303 # number of pixels in x and y, and size of one pixel
304 pixel_x = size_i
305 pixel_y = size_j
306 pixel_size = precision
307
308 # transform location coordinates to upper left base point used in GTiff
309 rot_rad = math.radians(-1 * self.rot_deg)
310 size_i2 = size_i / 2.0
311 size_j2 = size_j / 2.0
312 delta_x = (size_i2 * precision) * math.cos(rot_rad) + (size_j2 * precision) * math.sin(rot_rad)
313 delta_y = -(size_i2 * precision) * math.sin(rot_rad) + (size_j2 * precision) * math.cos(rot_rad)
314 min_x = x - delta_x
315 max_y = y + delta_y
316
317 LOGGER.debug('Coordinates:' + str(min_x) + '/' + str(max_y) + '/' + str(delta_x) + '/' + str(delta_y))
318 LOGGER.debug('Rotation:' + str(math.cos(rot_rad) * pixel_size) + '/' + str(math.sin(rot_rad)))
319
320 # set raster format definition
321 raster = gdal.GetDriverByName('GTiff').Create(
322 raster_path, # file path
323 pixel_x, # width in pixels
324 pixel_y, # height in pixels
325 1, # number of bands
326 gdal.GDT_Float32 # type of raster
327)
328
329 # set transformation from pixel to projected coordinates
330 raster.SetGeoTransform((
331 min_x, # x value at top left
332 math.cos(rot_rad) * pixel_size, # transform pixel size in west-east
333 math.sin(rot_rad), # rotation factor 1
334 max_y, # y value at top left
335 math.sin(rot_rad), # rotation factor 2
336 -math.cos(rot_rad) * pixel_size # transform pixel size in north-south
337))
338
339 # set projection for transformed coordinates
340 raster.SetProjection(wkt_proj)
341

A.1 Python source code 134

342 # write simulated data to band 1
343 raster.GetRasterBand(1).WriteArray(target)
344
345 # flush all write cached data to disk
346 raster.FlushCache()
347
348 # free and reassign
349 raster = None
350 target = None
351
352 # RASTER MASK PART ##
353
354 # file path for raster mask
355 raster_mask_path = os.path.splitext(in_effects_dat)[0] + '_' + dmg_lvl.lower() + '_mask_.tif'
356
357 # import raster
358 ds_r = gdal.Open(raster_path)
359 ds_r_val = ds_r.ReadAsArray()
360
361 # spatial reference
362 proj = ds_r.GetProjection()
363 proj_gt = ds_r.GetGeoTransform()
364
365 # overwrite pixel values with 0/1 regarding their threshold value
366 r_mask_data = (ds_r_val >= 0.5).astype(int)
367
368 LOGGER.debug('Projection:' + str(proj) + '/' + 'GeoTransform:' + str(proj_gt))
369 LOGGER.debug('Pixel value corner/center:' + str(r_mask_data[0, 0]) + '/' + str(r_mask_data[256, 256]))
370
371 # set raster format definition
372 raster_mask = gdal.GetDriverByName('GTiff').Create(
373 raster_mask_path, # file path
374 len(r_mask_data[0]), # width in pixels
375 len(r_mask_data), # height in pixels
376 1, # number of bands
377 gdal.GDT_Float32 # type of raster
378)
379
380 # set transformation from pixel to projected coordinates
381 raster_mask.SetGeoTransform(proj_gt)
382
383 # set projection for transformed coordinates
384 raster_mask.SetProjection(proj)
385
386 # set nodata value
387 raster_mask.GetRasterBand(1).DeleteNoDataValue()
388 raster_mask.GetRasterBand(1).SetNoDataValue(0)
389
390 # write data to band 1
391 raster_mask.GetRasterBand(1).WriteArray(r_mask_data)
392
393 # flush all write cached data to disk
394 raster_mask.FlushCache()
395
396 # free and reassign
397 raster_mask = None
398 r_mask_data = None
399
400 # POLYGONIZE PART ##
401
402 # file path for polygonize result
403 evac_polygons_path = os.path.join(os.path.dirname(in_effects), 'evac_polygons_' + dmg_lvl.lower() + '_.gml')
404
405 # import raster
406 ds_r_mask = gdal.Open(raster_mask_path)
407 ds_r_mask_band = ds_r_mask.GetRasterBand(1)
408
409 # spatial reference

A.1 Python source code 135

410 proj = ds_r_mask.GetProjection()
411 sref = osr.SpatialReference(wkt=proj)
412
413 # set vector format definition
414 src_poly = ogr.GetDriverByName("GML").CreateDataSource(evac_polygons_path)
415 src_poly_lyr = src_poly.CreateLayer("evac_zone", srs=sref)
416
417 # create polygons at pixel value 1, nodata at pixel value 0
418 gdal.Polygonize(ds_r_mask_band, ds_r_mask_band, src_poly_lyr, -1, [], callback=None)
419
420 # free and reassign
421 src_poly = None
422 src_poly_lyr = None
423
424 # EVACUATION ZONE PART ##
425
426 # correction buffer because of pixel error, based on used APOLLO precision
427 corr_buff = float(math.sqrt(precision ** 2 + precision ** 2))
428
429 LOGGER.debug('Correction Buffer:' + str(corr_buff))
430
431 # file path for evacuation zone
432 evac_zone_path = os.path.join(os.path.dirname(in_effects), 'evac_zone_' + dmg_lvl.lower() + '_.gml')
433
434 # import polygons
435 src_poly = ogr.GetDriverByName("GML").Open(evac_polygons_path)
436 src_poly_lyr = src_poly.GetLayer()
437
438 # spatial reference
439 sref = osr.SpatialReference()
440 sref.ImportFromEPSG(epsg)
441
442 # collect all polygons
443 geom_collect = ogr.Geometry(ogr.wkbGeometryCollection)
444 for feat in src_poly_lyr:
445 geom_collect.AddGeometry(feat.GetGeometryRef())
446
447 # create convex hull
448 conv_hull = geom_collect.ConvexHull()
449 conv_hull.AssignSpatialReference(sref)
450
451 LOGGER.debug('Centroid as WKT:' + str(conv_hull.Centroid().ExportToWkt()))
452
453 # set vector format definition
454 src_zone = ogr.GetDriverByName("GML").CreateDataSource(evac_zone_path)
455 src_zone_lyr = src_zone.CreateLayer("evac_zone", srs=sref)
456
457 # add data to file
458 field_corr_buff = ogr.FieldDefn("corr_buff", ogr.OFTReal)
459 src_zone_lyr.CreateField(field_corr_buff)
460 src_zone_lyr_def = src_zone_lyr.GetLayerDefn()
461 conv_hull_feat = ogr.Feature(src_zone_lyr_def)
462 conv_hull_feat.SetGeometry(conv_hull)
463 conv_hull_feat.SetField("corr_buff", corr_buff)
464 src_zone_lyr.CreateFeature(conv_hull_feat)
465
466 # free and reassign
467 conv_hull_feat = None
468 src_poly = None
469 src_poly_lyr = None
470 src_zone = None
471 src_zone_lyr = None
472
473 # set output format and file name
474 response.outputs['out_evac_zone'].output_format = Format(mime_type='text/xml', extension='.gml',
475 schema='http://schemas.opengis.net/gml/3.1.1/base/gml.xsd',
476 encoding='UTF-8', validate=None)
477 response.outputs['out_evac_zone'].file = evac_zone_path

A.1 Python source code 136

478
479 response.outputs['out_raster'].output_format = Format(mime_type='image/geotiff', extension='.tif')
480 response.outputs['out_raster'].file = raster_path
481
482 return response

Listing A.9: APOLLO evacuation zone process

A.1.10 Support methods library

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/

processes/lib/geolib.py
1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3
4 """ The library is used for methods like database handling
5 or spatial reference transformations.
6 """
7
8 # libs
9 import logging

10 import tempfile
11 import psycopg2
12 import psycopg2.extras
13 from psycopg2 import sql
14 from pyproj import Proj, transform
15 from osgeo import ogr
16 from osgeo import osr
17
18 # authorship information
19 __author__ = "Gunnar Ströer"
20 __copyright__ = "Copyright 2019, integration of wps in local sdi"
21 __version__ = "1.0"
22 __maintainer__ = "Gunnar Ströer"
23 __email__ = "gunnar.stroeer@yahoo.de"
24 __status__ = "Development"
25
26 # global variables
27 LOGGER = logging.getLogger("PYWPS")
28
29
30 # transform projection
31 def geo_transform(x1, y1, epsg1, epsg2):
32 proj1 = Proj(init='epsg:'+str(epsg1))
33 proj2 = Proj(init='epsg:'+str(epsg2))
34
35 x2, y2 = transform(proj1, proj2, x1, y1)
36
37 return x2, y2
38
39
40 # calculation of threshold distance for given solid and tnt mass
41 def damage_dist_threshold(tnt, solid):
42 solid_dist = 0.
43
44 # distance of float glass threshold at 3 kPa peak overpressure: R/M^(1/3)=52
45 if solid == 0:
46 solid_dist = 52.
47
48 # distance of eardrum rupture threshold at 17 kPa peak overpressure: R/M^(1/3)=12.5
49 if solid == 1:
50 solid_dist = 12.5
51

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/processes/lib/geolib.py
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/processes/lib/geolib.py

A.1 Python source code 137

52 # taken from "Explosive Shocks in Air" by Graham and Kinney (Springer), derived by A. Klomfass, Fraunhofer EMI
53 threshold = solid_dist * (tnt ** (1. / 3.))
54
55 return threshold
56
57
58 # export spatial data from database intersected by a given geometry
59 def pg_export(subject, area, epsg):
60 # unique geometry column identifier for general method use
61 col_geom = 'geometry'
62
63 # spatial reference
64 sref = osr.SpatialReference()
65 sref.ImportFromEPSG(epsg)
66
67 # set vector format definition
68 data_path = tempfile.mkstemp(prefix='db_' + subject + '_data_', suffix='.gml')[1]
69 data_src = ogr.GetDriverByName("GML").CreateDataSource(data_path)
70 data_lyr = data_src.CreateLayer(subject, srs=sref)
71
72 # open database connection, using .pgpass for authentication
73 if subject in ('address', 'parcel'):
74 db_conn = psycopg2.connect("host=geodb port=5432 dbname=postnas_freiburg user=postgres")
75 else:
76 db_conn = psycopg2.connect("host=geodb port=5432 dbname=geo1 user=postgres")
77
78 # check connection
79 if db_conn is None:
80 LOGGER.debug('PG connection refused.')
81
82 # open cursor to perform database operations
83 db_cur = db_conn.cursor(cursor_factory=psycopg2.extras.DictCursor)
84
85 # sql query with placeholders and execute command, using templating mechanism for better security
86 if subject == 'address':
87 query = sql.SQL("SELECT st.strname AS street, ad.ha_nr AS house_nr, ST_AsText(wkb_geometry) AS {g} "
88 "FROM {ad} ad LEFT JOIN {st} st ON st.strshl = ad.strshl "
89 "WHERE ST_Intersects(ST_SetSRID(ST_PolygonFromText(%s), %s), wkb_geometry);")
90 db_cur.execute(query.format(g=sql.Identifier(col_geom),
91 ad=sql.Identifier('gdm_mat_v_haeuser'),
92 st=sql.Identifier('str_shl')),
93 [area.ExportToWkt(), epsg])
94 elif subject == 'building':
95 query = sql.SQL("SELECT gmlid, lagename AS street, hausnr AS house_nr, gfk AS use_id, nutzung AS use, "
96 "klasse AS class, qualitaet AS quality, area, ST_AsText(the_geom) AS {g} "
97 "FROM {sch}.{tbl} WHERE ST_Intersects(ST_SetSRID(ST_PolygonFromText(%s), %s), the_geom);")
98 db_cur.execute(query.format(g=sql.Identifier(col_geom),
99 sch=sql.Identifier('alkis'),

100 tbl=sql.Identifier('gebaeude')),
101 [area.ExportToWkt(), epsg])
102 elif subject == 'parcel':
103 query = sql.SQL("SELECT gml_id, gemarkungsnummer AS subdistrict, zaehler AS enum, nenner AS denum, "
104 "flstkz AS code, amtlicheflaeche AS area, ST_AsText(wkb_geometry) AS {g} "
105 "FROM (SELECT *, $$08$$ || {d} || $$-000-$$ || lpad({z}::text, 5, $$0$$) ||$$/$$ || "
106 "lpad(coalesce({n}, $$0$$)::text, 4, $$0$$) AS flstkz FROM {tbl} "
107 "WHERE ST_Intersects(ST_SetSRID(ST_PolygonFromText(%s), %s), wkb_geometry)) AS foo;")
108 db_cur.execute(query.format(g=sql.Identifier(col_geom),
109 d=sql.Identifier('gemarkungsnummer'),
110 z=sql.Identifier('zaehler'),
111 n=sql.Identifier('nenner'),
112 tbl=sql.Identifier('ax_flurstueck')),
113 [area.ExportToWkt(), epsg])
114 elif subject == 'local_plan':
115 query = sql.SQL("SELECT nummer AS nr, plannr, planbez AS name, aktiv AS legal, bpplan_uid AS uid, "
116 "aenderung_von AS revision, in_kraft_datum AS date, ST_AsText(the_geom) AS {g} "
117 "FROM {sch}.{tbl} WHERE ST_Intersects(ST_SetSRID(ST_PolygonFromText(%s), %s), the_geom);")
118 db_cur.execute(query.format(g=sql.Identifier(col_geom),
119 sch=sql.Identifier('bplan'),

A.1 Python source code 138

120 tbl=sql.Identifier('geltungsbereich')),
121 [area.ExportToWkt(), epsg])
122 elif subject == 'poi':
123 query = sql.SQL("SELECT poityp, name, bezeichnung AS description, kategorie AS category, adresse AS address, "
124 "url, mail, telefon AS phone, ansprechpartner AS contact, ST_AsText(the_geom) AS {g} "
125 "FROM {sch}.{tbl} WHERE ST_Intersects(ST_SetSRID(ST_PolygonFromText(%s), %s), the_geom);")
126 db_cur.execute(query.format(g=sql.Identifier(col_geom), sch=sql.Identifier('poi'), tbl=sql.Identifier('pois')),
127 [area.ExportToWkt(), epsg])
128
129 # process query result data
130 names = [desc[0] for desc in db_cur.description]
131 names.remove(col_geom)
132 for name in names:
133 field = ogr.FieldDefn(name, ogr.OFTString)
134 data_lyr.CreateField(field)
135
136 rows = db_cur.fetchall()
137 for row in rows:
138 data_lyr_def = data_lyr.GetLayerDefn()
139 feat = ogr.Feature(data_lyr_def)
140 feat_geom = ogr.CreateGeometryFromWkt(row[col_geom])
141 feat.SetGeometry(feat_geom)
142
143 for name in names:
144 feat.SetField(name, str(row[name]))
145
146 data_lyr.CreateFeature(feat)
147
148 # free and reassign
149 feat = None
150
151 # make the changes to the database persistent
152 db_conn.commit()
153
154 # close communication with the database
155 db_cur.close()
156 db_conn.close()
157
158 # free and reassign
159 db_conn = None
160
161 return data_path

Listing A.10: Support methods library

A.1.11 XML parsing library

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/

processes/lib/varlib.py
1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3
4 """ The library is used to parse the XML of WPS response documents and
5 supports synchronous, asynchronous, single use and chained processes.
6 """
7
8 # libs
9 import logging

10 import lxml.etree
11 import time
12 import requests
13
14 # authorship information

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/processes/lib/varlib.py
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/processes/lib/varlib.py

A.1 Python source code 139

15 __author__ = "Gunnar Ströer"
16 __copyright__ = "Copyright 2019, integration of wps in local sdi"
17 __version__ = "1.0"
18 __maintainer__ = "Gunnar Ströer"
19 __email__ = "gunnar.stroeer@yahoo.de"
20 __status__ = "Development"
21
22 # global variables
23 LOGGER = logging.getLogger("PYWPS")
24 VERSION = "1.0.0"
25 NAMESPACES = {
26 'xlink': "http://www.w3.org/1999/xlink",
27 'wps': "http://www.opengis.net/wps/{wps_version}",
28 'ows': "http://www.opengis.net/ows/{ows_version}",
29 'gml': "http://www.opengis.net/gml",
30 'xsi': "http://www.w3.org/2001/XMLSchema-instance"
31 }
32
33 namespaces100 = {k: NAMESPACES[k].format(wps_version="1.0.0", ows_version="1.1") for k in NAMESPACES}
34 namespaces200 = {k: NAMESPACES[k].format(wps_version="2.0", ows_version="2.0") for k in NAMESPACES}
35
36
37 # return xpath namespace for given element and xpath
38 def get_xpath_ns(version):
39 def xpath_ns(ele, path):
40 if version == "1.0.0":
41 nsp = namespaces100
42 elif version == "2.0.0":
43 nsp = namespaces200
44 return ele.xpath(path, namespaces=nsp)
45
46 return xpath_ns
47
48
49 # get xpath namespace
50 xpath_ns = get_xpath_ns(VERSION)
51
52
53 # return progress / result of the status response
54 def get_output(doc):
55 process_succeeded = xpath_ns(doc, '/wps:ExecuteResponse/wps:Status/wps:ProcessSucceeded')
56 process_accepted = xpath_ns(doc, '/wps:ExecuteResponse/wps:Status/wps:ProcessAccepted')
57 process_status_url = xpath_ns(doc, '/wps:ExecuteResponse')
58 process_status_url = process_status_url[0].attrib['statusLocation']
59
60 LOGGER.debug('Status Reference Process Succeeded:' + str(process_succeeded))
61 LOGGER.debug('Status Reference Process Accepted:' + str(process_accepted))
62 LOGGER.debug('Status Reference statusLocation:' + str(process_status_url))
63
64 # loop until statusLocation is final process result
65 while not process_succeeded:
66 # wait interval in seconds
67 time.sleep(5)
68
69 # reload doc from process_status_url
70 r = requests.get(process_status_url, verify=False)
71 doc_new = r.content
72
73 # look for ProcessSucceeded status element
74 doc = lxml.etree.fromstring(doc_new)
75 process_succeeded = xpath_ns(doc, '/wps:ExecuteResponse/wps:Status/wps:ProcessSucceeded')
76
77 result = get_output_data(doc)
78
79 LOGGER.debug('Status Reference Result:' + str(result))
80
81 return result
82

A.2 XML requests and responses 140

83
84 # return the content of LiteralData, Reference or ComplexData
85 def get_output_data(doc):
86 output = {}
87 for output_el in xpath_ns(doc, '/wps:ExecuteResponse'
88 '/wps:ProcessOutputs/wps:Output'):
89 [identifier_el] = xpath_ns(output_el, './ows:Identifier')
90
91 lit_el = xpath_ns(output_el, './wps:Data/wps:LiteralData')
92 if lit_el != []:
93 output[identifier_el.text] = lit_el[0].text
94
95 ref_el = xpath_ns(output_el, './wps:Reference')
96 if ref_el != []:
97 LOGGER.debug('Reference XPATH:' + str(ref_el[0].attrib))
98 output[identifier_el.text] = ref_el[0].attrib['{' + NAMESPACES['xlink'] + '}href']
99

100 data_el = xpath_ns(output_el, './wps:Data/wps:ComplexData')
101 if data_el != []:
102 if data_el[0].text:
103 output[identifier_el.text] = data_el[0].text
104 else: # XML children
105 ch = list(data_el[0])[0]
106 output[identifier_el.text] = lxml.etree.tostring(ch)
107
108 # looking for BoundingBoxData
109 bbox_el = xpath_ns(output_el, './ows:BoundingBox')
110 if bbox_el != []:
111 LOGGER.debug('BBox XPATH:' + lxml.etree.tostring(bbox_el[0]))
112
113 output[identifier_el.text] = lxml.etree.tostring(bbox_el[0])
114
115 return output

Listing A.11: XML parsing library

A.2 XML requests and responses

A.2.1 Vector intersection process request

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/

xml/proc_sync_vect_intersect.xml
1 <?xml version="1.0" encoding="UTF-8"?>
2 <wps:Execute service="WPS" version="1.0.0" xmlns:wps="http://www.opengis.net/wps/1.0.0" xmlns:ows="http://www.opengis.net/ows/1.1"

xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.
opengis.net/wps/1.0.0 http://schemas.opengis.net/wps/1.0.0/wpsAll.xsd" response="document" mode="sync">

3 <ows:Identifier>vect_intersect</ows:Identifier>
4 <wps:DataInputs>
5 <wps:Input>
6 <ows:Identifier>in_geom_a</ows:Identifier>
7 <ows:Title>Input Geometry A [gml]</ows:Title>
8 <wps:Reference xlink:href="https://geodev2/wps/output/data/evac_zone.gml" mimeType="text/xml" encoding="UTF-8" schema="http://

schemas.opengis.net/gml/3.1.1/base/gml.xsd" method="GET" />
9 </wps:Input>

10 <wps:Input>
11 <ows:Identifier>in_geom_b</ows:Identifier>
12 <ows:Title>Input Geometry B [gml]</ows:Title>
13 <wps:Reference xlink:href="https://geodev2/wps/output/data/location_etrs.gml" mimeType="text/xml" encoding="UTF-8" schema="http:

//schemas.opengis.net/gml/3.1.1/base/gml.xsd" method="GET" />
14 </wps:Input>
15 </wps:DataInputs>
16 <wps:ResponseForm>

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/proc_sync_vect_intersect.xml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/proc_sync_vect_intersect.xml

A.2 XML requests and responses 141

17 <wps:ResponseDocument lineage="false" storeExecuteResponse="false" status="false">
18 <wps:Output asReference="true" mimeType="application/gml-3.1.1" encoding="utf-8" extension=".gml">
19 <ows:Identifier>out_intersect</ows:Identifier>
20 <ows:Title>Intersected Geometry</ows:Title>
21 </wps:Output>
22 </wps:ResponseDocument>
23 </wps:ResponseForm>
24 </wps:Execute>

Listing A.12: Vector intersection process request

A.2.2 Vector intersection process response

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/

xml/proc_sync_vect_intersect_response.xml
1 <!-- PyWPS 4.0.0 -->
2 <wps:ExecuteResponse xmlns:gml="http://www.opengis.net/gml" xmlns:ows="http://www.opengis.net/ows/1.1" xmlns:wps="http://www.opengis.

net/wps/1.0.0" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="
http://www.opengis.net/wps/1.0.0 http://schemas.opengis.net/wps/1.0.0/wpsExecute_response.xsd" service="WPS" version="1.0.0" xml:lang
="en-US" serviceInstance="https://geodev2/pywps?service=WPS&request=GetCapabilities" statusLocation="https://geodev2/wps/output
/9573c328-5241-11e9-b17d-005056820f34.xml">

3 <wps:Process wps:processVersion="1.0">
4 <ows:Identifier>vect_intersect</ows:Identifier>
5 <ows:Title>Vector Intersection Process</ows:Title>
6 <ows:Abstract>The process returns intersected area of each input feature.</ows:Abstract>
7 </wps:Process>
8 <wps:Status creationTime="2019-03-29T17:42:04Z">
9 <wps:ProcessSucceeded>PyWPS Process Vector Intersection Process finished</wps:ProcessSucceeded>

10 </wps:Status>
11 <wps:ProcessOutputs>
12 <wps:Output>
13 <ows:Identifier>out_intersect</ows:Identifier>
14 <ows:Title>Intersected Geometry</ows:Title>
15 <wps:Reference xlink:href="https://geodev2/wps/output/evac_zone86PgWz.gml" mimeType="text/xml" encoding="UTF-8" schema="http://

schemas.opengis.net/gml/3.1.1/base/gml.xsd" />
16 </wps:Output>
17 </wps:ProcessOutputs>
18 </wps:ExecuteResponse>

Listing A.13: Vector intersection process response

A.2.3 Quick preselection process chain request

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/

xml/chain_async_preselection.xml
1 <?xml version="1.0" encoding="UTF-8"?>
2 <wps:Execute service="WPS" version="1.0.0" xmlns:wps="http://www.opengis.net/wps/1.0.0" xmlns:ows="http://www.opengis.net/ows/1.1"

xmlns:ogr="http://ogr.maptools.org/" xmlns:gml="http://www.opengis.net/gml" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="
http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.opengis.net/wps/1.0.0 http://schemas.opengis.net/wps/1.0.0/
wpsAll.xsd" response="document" mode="async">

3 <!-- execute proc:export_vect_data -->
4 <ows:Identifier>export_vect_data</ows:Identifier>
5 <wps:DataInputs>
6 <wps:Input>
7 <ows:Identifier>in_geom</ows:Identifier>
8 <ows:Title>Selection Geometry [gml]</ows:Title>
9 <wps:Reference mimeType="text/xml" xlink:href="https://geodev2/pywps" method="POST">

10 <wps:Body>

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/proc_sync_vect_intersect_response.xml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/proc_sync_vect_intersect_response.xml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/chain_async_preselection.xml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/chain_async_preselection.xml

A.2 XML requests and responses 142

11 <wps:Execute service="WPS" version="1.0.0">
12 <!-- execute proc:vect_buffer -->
13 <ows:Identifier>vect_buffer</ows:Identifier>
14 <wps:DataInputs>
15 <wps:Input>
16 <ows:Identifier>in_geom</ows:Identifier>
17 <ows:Title>Input Geometry [gml]</ows:Title>
18 <wps:Data>
19 <wps:ComplexData>
20 <ogr:FeatureCollection>
21 <gml:boundedBy>
22 <gml:Box>
23 <gml:coord><gml:X>413478.281822533</gml:X><gml:Y>5316862.884733614</gml:Y></gml:coord>
24 <gml:coord><gml:X>413478.281822533</gml:X><gml:Y>5316862.884733614</gml:Y></gml:coord>
25 </gml:Box>
26 </gml:boundedBy>
27 <gml:featureMember>
28 <ogr:location fid="location.0">
29 <ogr:geometryProperty>
30 <gml:Point srsName="EPSG:25832">
31 <gml:coordinates>413478.281822533,5316862.88473361</gml:coordinates>
32 </gml:Point>
33 </ogr:geometryProperty>
34 </ogr:location>
35 </gml:featureMember>
36 </ogr:FeatureCollection>
37 </wps:ComplexData>
38 </wps:Data>
39 </wps:Input>
40 <wps:Input>
41 <ows:Identifier>in_size_ref</ows:Identifier>
42 <ows:Title>Buffer Size Reference</ows:Title>
43 <ows:Abstract>Buffer size calculated by previous process only chainable as reference.</ows:Abstract>
44 <wps:Reference mimeType="text/plain" xlink:href="https://geodev2/pywps" method="POST">
45 <wps:Body>
46 <wps:Execute service="WPS" version="1.0.0">
47 <!-- execute proc:apollo_rough_dist -->
48 <ows:Identifier>apollo_rough_dist</ows:Identifier>
49 <wps:DataInputs>
50 <wps:Input>
51 <ows:Identifier>in_tnt</ows:Identifier>
52 <ows:Title>Rough TNT Blast Power [kg]</ows:Title>
53 <wps:Data>
54 <wps:LiteralData>400</wps:LiteralData>
55 </wps:Data>
56 </wps:Input>
57 <wps:Input>
58 <ows:Identifier>in_solid</ows:Identifier>
59 <ows:Title>Solid Type</ows:Title>
60 <ows:Abstract>Type of material the damage distance threshold will be calculated for: 0 = Float Glass, 1 =

Eardrum Rupture</ows:Abstract>
61 <wps:Data>
62 <wps:LiteralData>0</wps:LiteralData>
63 </wps:Data>
64 </wps:Input>
65 </wps:DataInputs>
66 <wps:ResponseForm>
67 <wps:RawDataOutput>
68 <ows:Identifier>out_rough_dist</ows:Identifier>
69 <ows:Title>Rough Danger Distance</ows:Title>
70 </wps:RawDataOutput>
71 </wps:ResponseForm>
72 </wps:Execute>
73 <!-- finish proc:apollo_rough_dist -->
74 </wps:Body>
75 </wps:Reference>
76 </wps:Input>
77 </wps:DataInputs>

A.2 XML requests and responses 143

78 <wps:ResponseForm>
79 <wps:ResponseDocument lineage="false" storeExecuteResponse="true" status="true">
80 <wps:Output asReference="true" mimeType="application/gml-3.1.1" encoding="utf-8" extension=".gml">
81 <ows:Identifier>out_buff</ows:Identifier>
82 <ows:Title>Buffer Geometry</ows:Title>
83 </wps:Output>
84 </wps:ResponseDocument>
85 </wps:ResponseForm>
86 </wps:Execute>
87 <!-- finish proc:vect_buffer -->
88 </wps:Body>
89 </wps:Reference>
90 </wps:Input>
91 <wps:Input>
92 <ows:Identifier>in_wfs1</ows:Identifier>
93 <ows:Title>WFS Request 1 [gml]</ows:Title>
94 <wps:Reference xlink:href="http://stadtplan.freiburg.de/wfs7/gdm_poi/poi_public?service=wfs&version=2.0.0&request=

getfeature&typename=pois&srsname=epsg:25832" mimeType="text/xml" encoding="UTF-8" schema="http://schemas.opengis.net/gml
/3.1.1/base/gml.xsd" method="GET" />

95 </wps:Input>
96 <wps:Input>
97 <ows:Identifier>in_wfs2</ows:Identifier>
98 <ows:Title>WFS Request 2 [gml]</ows:Title>
99 <wps:Reference xlink:href="http://stadtplan.freiburg.de/wfs7/gdm_poi/poi_public?service=wfs&version=2.0.0&request=

getfeature&typename=pois&srsname=epsg:25832&Filter%3D%3CFilter%3E%3COr%3E%3CPropertyIsEqualTo%3E%3CPropertyName%3Epoityp
%3C%2FPropertyName%3E%3CLiteral%3Ekita%3C%2FLiteral%3E%3C%2FPropertyIsEqualTo%3E%3CPropertyIsEqualTo%3E%3CPropertyName%3Epoityp%3C%2
FPropertyName%3E%3CLiteral%3Epolizei%3C%2FLiteral%3E%3C%2FPropertyIsEqualTo%3E%3CPropertyIsEqualTo%3E%3CPropertyName%3Epoityp%3C%2
FPropertyName%3E%3CLiteral%3Efeuerwehr%3C%2FLiteral%3E%3C%2FPropertyIsEqualTo%3E%3CPropertyIsEqualTo%3E%3CPropertyName%3Epoityp%3C%2
FPropertyName%3E%3CLiteral%3Ekrankenhaeuser%3C%2FLiteral%3E%3C%2FPropertyIsEqualTo%3E%3CPropertyIsEqualTo%3E%3CPropertyName%3Epoityp
%3C%2FPropertyName%3E%3CLiteral%3Eschulen%3C%2FLiteral%3E%0A%3C%2FPropertyIsEqualTo%3E%3CPropertyIsEqualTo%3E%3CPropertyName%3Epoityp
%3C%2FPropertyName%3E%3CLiteral%3Ebegegnung%3C%2FLiteral%3E%3C%2FPropertyIsEqualTo%3E%3C%2FOr%3E%3C%2FFilter%3E" mimeType="text/xml"
encoding="UTF-8" schema="http://schemas.opengis.net/gml/3.1.1/base/gml.xsd" method="GET" />

100 </wps:Input>
101 <wps:Input>
102 <ows:Identifier>in_db1</ows:Identifier>
103 <ows:Title>Database Spatial Data Name 1</ows:Title>
104 <ows:Abstract>Supported spatial data is defined by the following names: address, building, parcel, local_plan, poi</

ows:Abstract>
105 <wps:Data>
106 <wps:LiteralData>address</wps:LiteralData>
107 </wps:Data>
108 </wps:Input>
109 <wps:Input>
110 <ows:Identifier>in_db2</ows:Identifier>
111 <ows:Title>Database Spatial Data Name 2</ows:Title>
112 <ows:Abstract>Supported spatial data is defined by the following names: address, building, parcel, local_plan, poi</

ows:Abstract>
113 <wps:Data>
114 <wps:LiteralData>building</wps:LiteralData>
115 </wps:Data>
116 </wps:Input>
117 </wps:DataInputs>
118 <wps:ResponseForm>
119 <wps:ResponseDocument lineage="false" storeExecuteResponse="true" status="true">
120 <wps:Output asReference="true" mimeType="text/xml" encoding="utf-8" extension=".gml">
121 <ows:Identifier>out_wfs1</ows:Identifier>
122 <ows:Title>WFS Request 1 Subset</ows:Title>
123 </wps:Output>
124 <wps:Output asReference="true" mimeType="text/xml" encoding="utf-8" extension=".gml">
125 <ows:Identifier>out_wfs2</ows:Identifier>
126 <ows:Title>WFS Request 2 Subset</ows:Title>
127 </wps:Output>
128 <wps:Output asReference="true" mimeType="text/xml" encoding="utf-8" extension=".gml">
129 <ows:Identifier>out_db1</ows:Identifier>
130 <ows:Title>Database Spatial Data 1 Subset</ows:Title>
131 </wps:Output>
132 <wps:Output asReference="true" mimeType="text/xml" encoding="utf-8" extension=".gml">
133 <ows:Identifier>out_db2</ows:Identifier>

A.2 XML requests and responses 144

134 <ows:Title>Database Spatial Data 2 Subset</ows:Title>
135 </wps:Output>
136 <wps:Output asReference="true" mimeType="text/xml" encoding="utf-8" extension=".gml">
137 <ows:Identifier>out_bound</ows:Identifier>
138 <ows:Title>Selection Boundary</ows:Title>
139 </wps:Output>
140 <wps:Output asReference="true" mimeType="image/geotiff" extension=".tif">
141 <ows:Identifier>out_map</ows:Identifier>
142 <ows:Title>Output Data Overview Map</ows:Title>
143 </wps:Output>
144 </wps:ResponseDocument>
145 </wps:ResponseForm>
146 </wps:Execute>
147 <!-- finish proc:export_vect_data -->

Listing A.14: Quick preselection process chain request

A.2.4 Quick preselection process chain response status

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/

xml/chain_async_preselection_response.xml
1 <!-- PyWPS 4.0.0 -->
2 <wps:ExecuteResponse xmlns:gml="http://www.opengis.net/gml" xmlns:ows="http://www.opengis.net/ows/1.1" xmlns:wps="http://www.opengis.

net/wps/1.0.0" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="
http://www.opengis.net/wps/1.0.0 http://schemas.opengis.net/wps/1.0.0/wpsExecute_response.xsd" service="WPS" version="1.0.0" xml:lang
="en-US" serviceInstance="https://geodev2/pywps?service=WPS&request=GetCapabilities" statusLocation="https://geodev2/wps/output/
b67e9b68-523e-11e9-b17d-005056820f34.xml">

3 <wps:Process wps:processVersion="1.0">
4 <ows:Identifier>export_vect_data</ows:Identifier>
5 <ows:Title>Export Vector Data Process</ows:Title>
6 <ows:Abstract>The process returns a subset of given or fixed spatial data selected by geometry.</ows:Abstract>
7 </wps:Process>
8 <wps:Status creationTime="2019-03-29T17:21:32Z">
9 <wps:ProcessAccepted>PyWPS Process export_vect_data accepted</wps:ProcessAccepted>

10 </wps:Status>
11 </wps:ExecuteResponse>

Listing A.15: Quick preselection process chain response status

A.2.5 Quick preselection process chain response result

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/

xml/chain_async_preselection_response_status_finished.xml
1 <wps:ExecuteResponse xmlns:gml="http://www.opengis.net/gml" xmlns:ows="http://www.opengis.net/ows/1.1" xmlns:wps="http://www.opengis.

net/wps/1.0.0" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="
http://www.opengis.net/wps/1.0.0 http://schemas.opengis.net/wps/1.0.0/wpsExecute_response.xsd" service="WPS" version="1.0.0" xml:lang
="en-US" serviceInstance="https://geodev2/pywps?service=WPS&request=GetCapabilities" statusLocation="https://geodev2/wps/output/
b67e9b68-523e-11e9-b17d-005056820f34.xml">

2 <wps:Process wps:processVersion="1.0">
3 <ows:Identifier>export_vect_data</ows:Identifier>
4 <ows:Title>Export Vector Data Process</ows:Title>
5 <ows:Abstract>The process returns a subset of given or fixed spatial data selected by geometry.</ows:Abstract>
6 </wps:Process>
7 <wps:Status creationTime="2019-03-29T17:21:42Z">
8 <wps:ProcessSucceeded>PyWPS Process Export Vector Data Process finished</wps:ProcessSucceeded>
9 </wps:Status>

10 <wps:ProcessOutputs>
11 <wps:Output>

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/chain_async_preselection_response.xml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/chain_async_preselection_response.xml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/chain_async_preselection_response_status_finished.xml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/chain_async_preselection_response_status_finished.xml

A.2 XML requests and responses 145

12 <ows:Identifier>out_wfs1</ows:Identifier>
13 <ows:Title>WFS Request 1 Subset</ows:Title>
14 <wps:Reference xlink:href="https://geodev2/wps/output/wfs_pois_data_SaFb4MQQ3Z_E.gml" mimeType="text/xml" encoding="UTF-8"

schema="http://schemas.opengis.net/gml/3.1.1/base/gml.xsd"/>
15 </wps:Output>
16 <wps:Output>
17 <ows:Identifier>out_wfs2</ows:Identifier>
18 <ows:Title>WFS Request 2 Subset</ows:Title>
19 <wps:Reference xlink:href="https://geodev2/wps/output/wfs_pois_data_a2pEmiOJMJ_7.gml" mimeType="text/xml" encoding="UTF-8"

schema="http://schemas.opengis.net/gml/3.1.1/base/gml.xsd"/>
20 </wps:Output>
21 <wps:Output>
22 <ows:Identifier>out_db1</ows:Identifier>
23 <ows:Title>Database Spatial Data 1 Subset</ows:Title>
24 <wps:Reference xlink:href="https://geodev2/wps/output/db_address_data_2wjJsqjmVROs.gml" mimeType="text/xml" encoding="UTF-8"

schema="http://schemas.opengis.net/gml/3.1.1/base/gml.xsd"/>
25 </wps:Output>
26 <wps:Output>
27 <ows:Identifier>out_db2</ows:Identifier>
28 <ows:Title>Database Spatial Data 2 Subset</ows:Title>
29 <wps:Reference xlink:href="https://geodev2/wps/output/db_building_data_tqLsNwvBAzmY.gml" mimeType="text/xml" encoding="UTF-8"

schema="http://schemas.opengis.net/gml/3.1.1/base/gml.xsd"/>
30 </wps:Output>
31 <wps:Output>
32 <ows:Identifier>out_map</ows:Identifier>
33 <ows:Title>Filtered Output Data Overview Map</ows:Title>
34 <wps:Reference xlink:href="https://geodev2/wps/output/ov_map_NEym7WVcrOwu.tif" mimeType="image/geotiff"/>
35 </wps:Output>
36 <wps:Output>
37 <ows:Identifier>out_bound</ows:Identifier>
38 <ows:Title>Selection Boundary</ows:Title>
39 <wps:Reference xlink:href="https://geodev2/wps/output/input_aPoHx97XSeYG.gml" mimeType="text/xml" encoding="UTF-8" schema="http:

//schemas.opengis.net/gml/3.1.1/base/gml.xsd"/>
40 </wps:Output>
41 </wps:ProcessOutputs>
42 </wps:ExecuteResponse>

Listing A.16: Quick preselection process chain response result

A.2.6 Accurate evacuation zone process chain request

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/

xml/chain_async_main.xml
1 <?xml version="1.0" encoding="UTF-8"?>
2 <wps:Execute service="WPS" version="1.0.0" xmlns:wps="http://www.opengis.net/wps/1.0.0" xmlns:ows="http://www.opengis.net/ows/1.1"

xmlns:ogr="http://ogr.maptools.org/" xmlns:gml="http://www.opengis.net/gml" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="
http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.opengis.net/wps/1.0.0 http://schemas.opengis.net/wps/1.0.0/
wpsAll.xsd" response="document" mode="async">

3 <!-- execute proc:export_vect_data -->
4 <ows:Identifier>export_vect_data</ows:Identifier>
5 <wps:DataInputs>
6 <wps:Input>
7 <ows:Identifier>in_geom</ows:Identifier>
8 <ows:Title>Selection Geometry [gml]</ows:Title>
9 <wps:Reference mimeType="text/xml" xlink:href="https://geodev2/pywps" method="POST">

10 <wps:Body>
11 <wps:Execute service="WPS" version="1.0.0">
12 <!-- execute proc:vect_buffer -->
13 <ows:Identifier>vect_buffer</ows:Identifier>
14 <wps:DataInputs>
15 <wps:Input>
16 <ows:Identifier>in_geom</ows:Identifier>
17 <ows:Title>Input Geometry [gml]</ows:Title>

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/chain_async_main.xml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/chain_async_main.xml

A.2 XML requests and responses 146

18 <wps:Reference mimeType="text/xml" xlink:href="https://geodev2/pywps" method="POST">
19 <wps:Body>
20 <wps:Execute service="WPS" version="1.0.0">
21 <!-- execute proc:apollo_evac_zone -->
22 <ows:Identifier>apollo_evac_zone</ows:Identifier>
23 <wps:DataInputs>
24 <wps:Input>
25 <ows:Identifier>in_conf</ows:Identifier>
26 <ows:Title>APOLLO Configuration Data [json]</ows:Title>
27 <wps:Data>
28 <wps:ComplexData>
29 {"crs": 25832, "domain": {"droi": 249.15383256726474, "zroi": 100, "name": "Ultimo"}, "bomb": {"type":

"GP250", "detonator": "Front"}, "service": {"url": "https://www.cadfem.de/apollo/", "resultFile": "effects_bd769e02-2abb-11e9-92f1
-005056820f34.zip"}, "geometry": {"crs": 4326, "depth": 2.7, "position": [7.840131140308953, 47.999206585002355]}, "hiddenObjects": [
"16h5647683er456", "1er5647683ef456", "1tr5647683er4r6"], "site": {"type": "Cavern", "radius": 1.5}, "height": -2.7, "mode": {"t": 50,
"name": "Ultimo", "precision": 1.0}, "extent": [413229.1279899657, 5316613.730901043, 413727.4356551003, 5317112.038566177], "pitch":
0.0, "position": [413478.281822533, 5316862.88473361], "heading": 0.0}

30 </wps:ComplexData>
31 </wps:Data>
32 </wps:Input>
33 <wps:Input>
34 <ows:Identifier>in_effects</ows:Identifier>
35 <ows:Title>APOLLO Effects Result [zip|dat]</ows:Title>
36 <wps:Reference mimeType="application/octet-stream" xlink:href="https://geodev2/pywps" method="POST">
37 <wps:Body>
38 <wps:Execute service="WPS" version="1.0.0">
39 <!-- execute proc:apollo_execute -->
40 <ows:Identifier>apollo_execute</ows:Identifier>
41 <wps:DataInputs>
42 <wps:Input>
43 <ows:Identifier>in_conf</ows:Identifier>
44 <ows:Title>APOLLO Configuration Data [json]</ows:Title>
45 <wps:Reference mimeType="application/json" xlink:href="https://geodev2/pywps" method="POST">
46 <wps:Body>
47 <wps:Execute service="WPS" version="1.0.0">
48 <!-- execute proc:apollo_conf -->
49 <ows:Identifier>apollo_conf</ows:Identifier>
50 <wps:DataInputs>
51 <wps:Input>
52 <ows:Identifier>in_geom</ows:Identifier>
53 <ows:Title>Exact Location [gml]</ows:Title>
54 <wps:Data>
55 <wps:ComplexData>
56 <ogr:FeatureCollection xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://ogr.maptools.org/ evac_zone.xsd" xmlns:ogr="http://ogr.maptools.org/" xmlns:gml="http://www.opengis.net/
gml">

57 <gml:boundedBy>
58 <gml:Box>
59 <gml:coord><gml:X>413478.281822533</gml:X><gml:Y>5316862.884733614</gml:Y></

gml:coord>
60 <gml:coord><gml:X>413478.281822533</gml:X><gml:Y>5316862.884733614</gml:Y></

gml:coord>
61 </gml:Box>
62 </gml:boundedBy>
63 <gml:featureMember>
64 <ogr:location fid="location.0">
65 <ogr:geometryProperty>
66 <gml:Point srsName="EPSG:25832">
67 <gml:coordinates>413478.281822533,5316862.88473361</gml:coordinates>
68 </gml:Point>
69 </ogr:geometryProperty>
70 </ogr:location>
71 </gml:featureMember>
72 </ogr:FeatureCollection>
73 </wps:ComplexData>
74 </wps:Data>
75 </wps:Input>
76 <wps:Input>

A.2 XML requests and responses 147

77 <ows:Identifier>in_precision</ows:Identifier>
78 <ows:Title>Precision [m]</ows:Title>
79 <ows:Abstract>Precision used by APOLLO simulation. Supported values are: 0.5, 1.0, 2.5,

5.0, 10.0</ows:Abstract>
80 <wps:Data>
81 <wps:LiteralData>1.0</wps:LiteralData>
82 </wps:Data>
83 </wps:Input>
84 <wps:Input>
85 <ows:Identifier>in_height</ows:Identifier>
86 <ows:Title>Relative Height [m]</ows:Title>
87 <wps:Data>
88 <wps:LiteralData>-2.7</wps:LiteralData>
89 </wps:Data>
90 </wps:Input>
91 <wps:Input>
92 <ows:Identifier>in_tnt</ows:Identifier>
93 <ows:Title>Exact TNT Blast Power [kg]</ows:Title>
94 <wps:Data>
95 <wps:LiteralData>110</wps:LiteralData>
96 </wps:Data>
97 </wps:Input>
98 <wps:Input>
99 <ows:Identifier>in_heading</ows:Identifier>

100 <ows:Title>Bomb Azimuth Angle [deg]</ows:Title>
101 <wps:Data>
102 <wps:LiteralData>0.0</wps:LiteralData>
103 </wps:Data>
104 </wps:Input>
105 <wps:Input>
106 <ows:Identifier>in_pitch</ows:Identifier>
107 <ows:Title>Bomb Tilt Angle [deg]</ows:Title>
108 <wps:Data>
109 <wps:LiteralData>0.0</wps:LiteralData>
110 </wps:Data>
111 </wps:Input>
112 <wps:Input>
113 <ows:Identifier>in_type</ows:Identifier>
114 <ows:Title>Bomb Type</ows:Title>
115 <ows:Abstract>Type of the bomb after classification. Supported values are: N/A, GP100,

GP250</ows:Abstract>
116 <wps:Data>
117 <wps:LiteralData>GP250</wps:LiteralData>
118 </wps:Data>
119 </wps:Input>
120 <wps:Input>
121 <ows:Identifier>in_detonator</ows:Identifier>
122 <ows:Title>Detonator Position</ows:Title>
123 <ows:Abstract>Position of detonator after classification. Supported values are: N/A,

Front, Rear, Top, Bottom</ows:Abstract>
124 <wps:Data>
125 <wps:LiteralData>Front</wps:LiteralData>
126 </wps:Data>
127 </wps:Input>
128 <wps:Input>
129 <ows:Identifier>in_site_desc</ows:Identifier>
130 <ows:Title>Site Description</ows:Title>
131 <ows:Abstract>Description of the bomb find location. Supported values are: Surface,

Cavern</ows:Abstract>
132 <wps:Data>
133 <wps:LiteralData>Cavern</wps:LiteralData>
134 </wps:Data>
135 </wps:Input>
136 <wps:Input>
137 <ows:Identifier>in_site_rad</ows:Identifier>
138 <ows:Title>Site Radius [m]</ows:Title>
139 <wps:Data>
140 <wps:LiteralData>1.5</wps:LiteralData>

A.2 XML requests and responses 148

141 </wps:Data>
142 </wps:Input>
143 <wps:Input>
144 <ows:Identifier>in_hidden</ows:Identifier>
145 <ows:Title>Hidden Objects [gml:id1 gml:id2]</ows:Title>
146 <ows:Abstract>List of 3D city model objects that will be ignored by the simulation.

Supported values are GML identification strings.</ows:Abstract>
147 <wps:Data>
148 <wps:LiteralData></wps:LiteralData>
149 </wps:Data>
150 </wps:Input>
151 </wps:DataInputs>
152 <wps:ResponseForm>
153 <wps:ResponseDocument lineage="false" storeExecuteResponse="true" status="true">
154 <wps:Output asReference="true" mimeType="application/json" encoding="utf-8" extension=".

json">
155 <ows:Identifier>out_conf</ows:Identifier>
156 <ows:Title>APOLLO Configuration Data</ows:Title>
157 </wps:Output>
158 </wps:ResponseDocument>
159 </wps:ResponseForm>
160 </wps:Execute>
161 <!-- finish proc:apollo_conf -->
162 </wps:Body>
163 </wps:Reference>
164 </wps:Input>
165 <wps:Input>
166 <ows:Identifier>in_dem</ows:Identifier>
167 <ows:Title>Digital Elevation Model [tif]</ows:Title>
168 <wps:Reference mimeType="image/geotiff" xlink:href="https://geodev2/pywps" method="POST">
169 <wps:Body>
170 <wps:Execute service="WPS" version="1.0.0">
171 <!-- execute proc:export_3d_data -->
172 <ows:Identifier>export_3d_data</ows:Identifier>
173 <wps:DataInputs>
174 <wps:Input>
175 <ows:Identifier>in_geom</ows:Identifier>
176 <ows:Title>Selection Geometry [gml]</ows:Title>
177 <wps:Reference mimeType="text/xml" xlink:href="https://geodev2/pywps" method="POST">
178 <wps:Body>
179 <wps:Execute service="WPS" version="1.0.0">
180 <!-- execute proc:vect_buffer -->
181 <ows:Identifier>vect_buffer</ows:Identifier>
182 <wps:DataInputs>
183 <wps:Input>
184 <ows:Identifier>in_geom</ows:Identifier>
185 <ows:Title>Input Geometry [gml]</ows:Title>
186 <wps:Data>
187 <wps:ComplexData>
188 <ogr:FeatureCollection>
189 <gml:boundedBy>
190 <gml:Box>
191 <gml:coord><gml:X>413478.281822533</gml:X><gml:Y>5316862.884733614</

gml:Y></gml:coord>
192 <gml:coord><gml:X>413478.281822533</gml:X><gml:Y>5316862.884733614</

gml:Y></gml:coord>
193 </gml:Box>
194 </gml:boundedBy>
195 <gml:featureMember>
196 <ogr:location fid="location.0">
197 <ogr:geometryProperty>
198 <gml:Point srsName="EPSG:25832">
199 <gml:coordinates>413478.281822533,5316862.88473361</

gml:coordinates>
200 </gml:Point>
201 </ogr:geometryProperty>
202 </ogr:location>
203 </gml:featureMember>

A.2 XML requests and responses 149

204 </ogr:FeatureCollection>
205 </wps:ComplexData>
206 </wps:Data>
207 </wps:Input>
208 <wps:Input>
209 <ows:Identifier>in_size_ref</ows:Identifier>
210 <ows:Title>Buffer Size Reference</ows:Title>
211 <ows:Abstract>Buffer size calculated by previous process only chainable as

reference.</ows:Abstract>
212 <wps:Reference mimeType="text/plain" xlink:href="https://geodev2/pywps"

method="POST">
213 <wps:Body>
214 <wps:Execute service="WPS" version="1.0.0">
215 <!-- execute proc:apollo_rough_dist -->
216 <ows:Identifier>apollo_rough_dist</ows:Identifier>
217 <wps:DataInputs>
218 <wps:Input>
219 <ows:Identifier>in_tnt</ows:Identifier>
220 <ows:Title>Rough TNT Blast Power [kg]</ows:Title>
221 <wps:Data>
222 <wps:LiteralData>110</wps:LiteralData>
223 </wps:Data>
224 </wps:Input>
225 <wps:Input>
226 <ows:Identifier>in_solid</ows:Identifier>
227 <ows:Title>Solid Type</ows:Title>
228 <ows:Abstract>Type of material the damage distance threshold will

be calculated for: 0 = Float Glass, 1 = Eardrum Rupture</ows:Abstract>
229 <wps:Data>
230 <wps:LiteralData>0</wps:LiteralData>
231 </wps:Data>
232 </wps:Input>
233 </wps:DataInputs>
234 <wps:ResponseForm>
235 <wps:RawDataOutput>
236 <ows:Identifier>out_rough_dist</ows:Identifier>
237 <ows:Title>Rough Danger Distance</ows:Title>
238 </wps:RawDataOutput>
239 </wps:ResponseForm>
240 </wps:Execute>
241 <!-- finish proc:apollo_rough_dist -->
242 </wps:Body>
243 </wps:Reference>
244 </wps:Input>
245 </wps:DataInputs>
246 <wps:ResponseForm>
247 <wps:ResponseDocument lineage="false" storeExecuteResponse="true" status="true">

248 <wps:Output asReference="true" mimeType="application/gml-3.1.1" encoding="utf
-8" extension=".gml">

249 <ows:Identifier>out_buff</ows:Identifier>
250 <ows:Title>Buffer Geometry</ows:Title>
251 </wps:Output>
252 </wps:ResponseDocument>
253 </wps:ResponseForm>
254 </wps:Execute>
255 <!-- finish proc:vect_buffer -->
256 </wps:Body>
257 </wps:Reference>
258 </wps:Input>
259 </wps:DataInputs>
260 <wps:ResponseForm>
261 <wps:ResponseDocument lineage="false" storeExecuteResponse="true" status="true">
262 <wps:Output asReference="true" mimeType="image/geotiff" extension=".tif">
263 <ows:Identifier>out_dem</ows:Identifier>
264 <ows:Title>Digital Elevation Model</ows:Title>
265 </wps:Output>
266 </wps:ResponseDocument>

A.2 XML requests and responses 150

267 </wps:ResponseForm>
268 </wps:Execute>
269 <!-- finish proc:export_3d_data -->
270 </wps:Body>
271 </wps:Reference>
272 </wps:Input>
273 <wps:Input>
274 <ows:Identifier>in_city</ows:Identifier>
275 <ows:Title>3D City Model [x3d]</ows:Title>
276 <wps:Reference mimeType="text/xml" xlink:href="https://geodev2/pywps" method="POST">
277 <wps:Body>
278 <wps:Execute service="WPS" version="1.0.0">
279 <!-- execute proc:export_3d_data -->
280 <ows:Identifier>export_3d_data</ows:Identifier>
281 <wps:DataInputs>
282 <wps:Input>
283 <ows:Identifier>in_geom</ows:Identifier>
284 <ows:Title>Selection Geometry [gml]</ows:Title>
285 <wps:Reference mimeType="text/xml" xlink:href="https://geodev2/pywps" method="POST">
286 <wps:Body>
287 <wps:Execute service="WPS" version="1.0.0">
288 <!-- execute proc:vect_buffer -->
289 <ows:Identifier>vect_buffer</ows:Identifier>
290 <wps:DataInputs>
291 <wps:Input>
292 <ows:Identifier>in_geom</ows:Identifier>
293 <ows:Title>Input Geometry [gml]</ows:Title>
294 <wps:Data>
295 <wps:ComplexData>
296 <ogr:FeatureCollection>
297 <gml:boundedBy>
298 <gml:Box>
299 <gml:coord><gml:X>413478.281822533</gml:X><gml:Y>5316862.884733614</

gml:Y></gml:coord>
300 <gml:coord><gml:X>413478.281822533</gml:X><gml:Y>5316862.884733614</

gml:Y></gml:coord>
301 </gml:Box>
302 </gml:boundedBy>
303 <gml:featureMember>
304 <ogr:location fid="location.0">
305 <ogr:geometryProperty>
306 <gml:Point srsName="EPSG:25832">
307 <gml:coordinates>413478.281822533,5316862.88473361</

gml:coordinates>
308 </gml:Point>
309 </ogr:geometryProperty>
310 </ogr:location>
311 </gml:featureMember>
312 </ogr:FeatureCollection>
313 </wps:ComplexData>
314 </wps:Data>
315 </wps:Input>
316 <wps:Input>
317 <ows:Identifier>in_size_ref</ows:Identifier>
318 <ows:Title>Buffer Size Reference</ows:Title>
319 <ows:Abstract>Buffer size calculated by previous process only chainable as

reference.</ows:Abstract>
320 <wps:Reference mimeType="text/plain" xlink:href="https://geodev2/pywps"

method="POST">
321 <wps:Body>
322 <wps:Execute service="WPS" version="1.0.0">
323 <!-- execute proc:apollo_rough_dist -->
324 <ows:Identifier>apollo_rough_dist</ows:Identifier>
325 <wps:DataInputs>
326 <wps:Input>
327 <ows:Identifier>in_tnt</ows:Identifier>
328 <ows:Title>Rough TNT Blast Power [kg]</ows:Title>
329 <wps:Data>

A.2 XML requests and responses 151

330 <wps:LiteralData>110</wps:LiteralData>
331 </wps:Data>
332 </wps:Input>
333 <wps:Input>
334 <ows:Identifier>in_solid</ows:Identifier>
335 <ows:Title>Solid Type</ows:Title>
336 <ows:Abstract>Type of material the damage distance threshold will

be calculated for: 0 = Float Glass, 1 = Eardrum Rupture</ows:Abstract>
337 <wps:Data>
338 <wps:LiteralData>0</wps:LiteralData>
339 </wps:Data>
340 </wps:Input>
341 </wps:DataInputs>
342 <wps:ResponseForm>
343 <wps:RawDataOutput>
344 <ows:Identifier>out_rough_dist</ows:Identifier>
345 <ows:Title>Rough Danger Distance</ows:Title>
346 </wps:RawDataOutput>
347 </wps:ResponseForm>
348 </wps:Execute>
349 <!-- finish proc:apollo_rough_dist -->
350 </wps:Body>
351 </wps:Reference>
352 </wps:Input>
353 </wps:DataInputs>
354 <wps:ResponseForm>
355 <wps:ResponseDocument lineage="false" storeExecuteResponse="true" status="true">

356 <wps:Output asReference="true" mimeType="application/gml-3.1.1" encoding="utf
-8" extension=".gml">

357 <ows:Identifier>out_buff</ows:Identifier>
358 <ows:Title>Buffer Geometry</ows:Title>
359 </wps:Output>
360 </wps:ResponseDocument>
361 </wps:ResponseForm>
362 </wps:Execute>
363 <!-- finish proc:vect_buffer -->
364 </wps:Body>
365 </wps:Reference>
366 </wps:Input>
367 </wps:DataInputs>
368 <wps:ResponseForm>
369 <wps:ResponseDocument lineage="false" storeExecuteResponse="true" status="true">
370 <wps:Output asReference="true" mimeType="text/xml" encoding="utf-8" extension=".x3d">
371 <ows:Identifier>out_city</ows:Identifier>
372 <ows:Title>3D City Model</ows:Title>
373 </wps:Output>
374 </wps:ResponseDocument>
375 </wps:ResponseForm>
376 </wps:Execute>
377 <!-- finish proc:export_3d_data -->
378 </wps:Body>
379 </wps:Reference>
380 </wps:Input>
381 </wps:DataInputs>
382 <wps:ResponseForm>
383 <wps:ResponseDocument lineage="false" storeExecuteResponse="true" status="true">
384 <wps:Output asReference="true" mimeType="application/octet-stream">
385 <ows:Identifier>out_effects</ows:Identifier>
386 <ows:Title>APOLLO Effects Result</ows:Title>
387 </wps:Output>
388 </wps:ResponseDocument>
389 </wps:ResponseForm>
390 </wps:Execute>
391 <!-- finish proc:apollo_execute -->
392 </wps:Body>
393 </wps:Reference>
394 </wps:Input>

A.2 XML requests and responses 152

395 <wps:Input>
396 <ows:Identifier>in_dmg_lvl</ows:Identifier>
397 <ows:Title>Damage Level</ows:Title>
398 <ows:Abstract>Level of damage the evacuation zone will be calculated for: 0 = Float Glass, 1 = Hardened

Glass, 2 = Safety Glass, 3 = Masonry, 4 = Eardrum Rupture, 5 = Injury, 6 = Lethal Injury</ows:Abstract>
399 <wps:Data>
400 <wps:LiteralData>0</wps:LiteralData>
401 </wps:Data>
402 </wps:Input>
403 </wps:DataInputs>
404 <wps:ResponseForm>
405 <wps:ResponseDocument lineage="false" storeExecuteResponse="true" status="true">
406 <wps:Output asReference="true" mimeType="text/xml" encoding="utf-8" extension=".gml">
407 <ows:Identifier>out_evac_zone</ows:Identifier>
408 <ows:Title>Evacuation Zone</ows:Title>
409 </wps:Output>
410 <wps:Output asReference="true" mimeType="image/geotiff" extension=".tif">
411 <ows:Identifier>out_raster</ows:Identifier>
412 <ows:Title>Evacuation Raster</ows:Title>
413 </wps:Output>
414 </wps:ResponseDocument>
415 </wps:ResponseForm>
416 </wps:Execute>
417 <!-- finish proc:apollo_evac_zone -->
418 </wps:Body>
419 </wps:Reference>
420 </wps:Input>
421 <wps:Input>
422 <ows:Identifier>in_size_field</ows:Identifier>
423 <ows:Title>Buffer Size Field Name</ows:Title>
424 <ows:Abstract>Name of input geometry attribute field which value will be used for buffer size.</ows:Abstract>
425 <wps:Data>
426 <wps:LiteralData>corr_buff</wps:LiteralData>
427 </wps:Data>
428 </wps:Input>
429 </wps:DataInputs>
430 <wps:ResponseForm>
431 <wps:ResponseDocument lineage="false" storeExecuteResponse="true" status="true">
432 <wps:Output asReference="true" mimeType="application/gml-3.1.1" encoding="utf-8" extension=".gml">
433 <ows:Identifier>out_buff</ows:Identifier>
434 <ows:Title>Buffer Geometry</ows:Title>
435 </wps:Output>
436 </wps:ResponseDocument>
437 </wps:ResponseForm>
438 </wps:Execute>
439 <!-- finish proc:vect_buffer -->
440 </wps:Body>
441 </wps:Reference>
442 </wps:Input>
443 <wps:Input>
444 <ows:Identifier>in_wfs1</ows:Identifier>
445 <ows:Title>WFS Request 1 [gml]</ows:Title>
446 <wps:Reference xlink:href="http://stadtplan.freiburg.de/wfs7/gdm_poi/poi_public?service=wfs&version=2.0.0&request=

getfeature&typename=pois&srsname=epsg:25832" mimeType="text/xml" encoding="UTF-8" schema="http://schemas.opengis.net/gml
/3.1.1/base/gml.xsd" method="GET" />

447 </wps:Input>
448 <wps:Input>
449 <ows:Identifier>in_wfs2</ows:Identifier>
450 <ows:Title>WFS Request 2 [gml]</ows:Title>
451 <wps:Reference xlink:href="http://stadtplan.freiburg.de/wfs7/gdm_poi/poi_public?service=wfs&version=2.0.0&request=

getfeature&typename=pois&srsname=epsg:25832&Filter%3D%3CFilter%3E%3COr%3E%3CPropertyIsEqualTo%3E%3CPropertyName%3Epoityp
%3C%2FPropertyName%3E%3CLiteral%3Ekita%3C%2FLiteral%3E%3C%2FPropertyIsEqualTo%3E%3CPropertyIsEqualTo%3E%3CPropertyName%3Epoityp%3C%2
FPropertyName%3E%3CLiteral%3Epolizei%3C%2FLiteral%3E%3C%2FPropertyIsEqualTo%3E%3CPropertyIsEqualTo%3E%3CPropertyName%3Epoityp%3C%2
FPropertyName%3E%3CLiteral%3Efeuerwehr%3C%2FLiteral%3E%3C%2FPropertyIsEqualTo%3E%3CPropertyIsEqualTo%3E%3CPropertyName%3Epoityp%3C%2
FPropertyName%3E%3CLiteral%3Ekrankenhaeuser%3C%2FLiteral%3E%3C%2FPropertyIsEqualTo%3E%3CPropertyIsEqualTo%3E%3CPropertyName%3Epoityp
%3C%2FPropertyName%3E%3CLiteral%3Eschulen%3C%2FLiteral%3E%0A%3C%2FPropertyIsEqualTo%3E%3CPropertyIsEqualTo%3E%3CPropertyName%3Epoityp
%3C%2FPropertyName%3E%3CLiteral%3Ebegegnung%3C%2FLiteral%3E%3C%2FPropertyIsEqualTo%3E%3C%2FOr%3E%3C%2FFilter%3E" mimeType="text/xml"
encoding="UTF-8" schema="http://schemas.opengis.net/gml/3.1.1/base/gml.xsd" method="GET" />

A.2 XML requests and responses 153

452 </wps:Input>
453 <wps:Input>
454 <ows:Identifier>in_db1</ows:Identifier>
455 <ows:Title>Database Spatial Data Name 1</ows:Title>
456 <ows:Abstract>Supported spatial data is defined by the following names: address, building, parcel, local_plan, poi</

ows:Abstract>
457 <wps:Data>
458 <wps:LiteralData>address</wps:LiteralData>
459 </wps:Data>
460 </wps:Input>
461 <wps:Input>
462 <ows:Identifier>in_db2</ows:Identifier>
463 <ows:Title>Database Spatial Data Name 2</ows:Title>
464 <ows:Abstract>Supported spatial data is defined by the following names: address, building, parcel, local_plan, poi</

ows:Abstract>
465 <wps:Data>
466 <wps:LiteralData>building</wps:LiteralData>
467 </wps:Data>
468 </wps:Input>
469 </wps:DataInputs>
470 <wps:ResponseForm>
471 <wps:ResponseDocument lineage="false" storeExecuteResponse="true" status="true">
472 <wps:Output asReference="true" mimeType="text/xml" encoding="utf-8" extension=".gml">
473 <ows:Identifier>out_wfs1</ows:Identifier>
474 <ows:Title>WFS Request 1 Subset</ows:Title>
475 </wps:Output>
476 <wps:Output asReference="true" mimeType="text/xml" encoding="utf-8" extension=".gml">
477 <ows:Identifier>out_wfs2</ows:Identifier>
478 <ows:Title>WFS Request 2 Subset</ows:Title>
479 </wps:Output>
480 <wps:Output asReference="true" mimeType="text/xml" encoding="utf-8" extension=".gml">
481 <ows:Identifier>out_db1</ows:Identifier>
482 <ows:Title>Database Spatial Data 1 Subset</ows:Title>
483 </wps:Output>
484 <wps:Output asReference="true" mimeType="text/xml" encoding="utf-8" extension=".gml">
485 <ows:Identifier>out_db2</ows:Identifier>
486 <ows:Title>Database Spatial Data 2 Subset</ows:Title>
487 </wps:Output>
488 <wps:Output asReference="true" mimeType="text/xml" encoding="utf-8" extension=".gml">
489 <ows:Identifier>out_bound</ows:Identifier>
490 <ows:Title>Selection Boundary</ows:Title>
491 </wps:Output>
492 <wps:Output asReference="true" mimeType="image/geotiff" extension=".tif">
493 <ows:Identifier>out_map</ows:Identifier>
494 <ows:Title>Output Data Overview Map</ows:Title>
495 </wps:Output>
496 </wps:ResponseDocument>
497 </wps:ResponseForm>
498 </wps:Execute>
499 <!-- finish proc:export_vect_data -->

Listing A.17: Accurate evacuation zone process chain request

A.2.7 Accurate evacuation zone process chain response status

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/

xml/chain_async_main_response.xml
1 <!-- PyWPS 4.0.0 -->
2 <wps:ExecuteResponse xmlns:gml="http://www.opengis.net/gml" xmlns:ows="http://www.opengis.net/ows/1.1" xmlns:wps="http://www.opengis.

net/wps/1.0.0" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="
http://www.opengis.net/wps/1.0.0 http://schemas.opengis.net/wps/1.0.0/wpsExecute_response.xsd" service="WPS" version="1.0.0" xml:lang
="en-US" serviceInstance="https://geodev2/pywps?service=WPS&request=GetCapabilities" statusLocation="https://geodev2/wps/output
/06670340-523f-11e9-8bcd-005056820f34.xml">

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/chain_async_main_response.xml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/chain_async_main_response.xml

A.2 XML requests and responses 154

3 <wps:Process wps:processVersion="1.0">
4 <ows:Identifier>export_vect_data</ows:Identifier>
5 <ows:Title>Export Vector Data Process</ows:Title>
6 <ows:Abstract>The process returns a subset of given or fixed spatial data selected by geometry.</ows:Abstract>
7 </wps:Process>
8 <wps:Status creationTime="2019-03-29T17:23:47Z">
9 <wps:ProcessAccepted>PyWPS Process export_vect_data accepted</wps:ProcessAccepted>

10 </wps:Status>
11 </wps:ExecuteResponse>

Listing A.18: Accurate evacuation zone process chain response status

A.2.8 Accurate evacuation zone process chain response result

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/

xml/chain_async_main_response_status_finished.xml
1 <wps:ExecuteResponse xmlns:gml="http://www.opengis.net/gml" xmlns:ows="http://www.opengis.net/ows/1.1" xmlns:wps="http://www.opengis.

net/wps/1.0.0" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="
http://www.opengis.net/wps/1.0.0 http://schemas.opengis.net/wps/1.0.0/wpsExecute_response.xsd" service="WPS" version="1.0.0" xml:lang
="en-US" serviceInstance="https://geodev2/pywps?service=WPS&request=GetCapabilities" statusLocation="https://geodev2/wps/output
/06670340-523f-11e9-8bcd-005056820f34.xml">

2 <wps:Process wps:processVersion="1.0">
3 <ows:Identifier>export_vect_data</ows:Identifier>
4 <ows:Title>Export Vector Data Process</ows:Title>
5 <ows:Abstract>The process returns a subset of given or fixed spatial data selected by geometry.</ows:Abstract>
6 </wps:Process>
7 <wps:Status creationTime="2019-03-29T17:25:14Z">
8 <wps:ProcessSucceeded>PyWPS Process Export Vector Data Process finished</wps:ProcessSucceeded>
9 </wps:Status>

10 <wps:ProcessOutputs>
11 <wps:Output>
12 <ows:Identifier>out_wfs1</ows:Identifier>
13 <ows:Title>WFS Request 1 Subset</ows:Title>
14 <wps:Reference xlink:href="https://geodev2/wps/output/wfs_pois_data_vziWmnppvthQ.gml" mimeType="text/xml" encoding="UTF-8"

schema="http://schemas.opengis.net/gml/3.1.1/base/gml.xsd"/>
15 </wps:Output>
16 <wps:Output>
17 <ows:Identifier>out_wfs2</ows:Identifier>
18 <ows:Title>WFS Request 2 Subset</ows:Title>
19 <wps:Reference xlink:href="https://geodev2/wps/output/wfs_pois_data_ZKNowN2_LMTj.gml" mimeType="text/xml" encoding="UTF-8"

schema="http://schemas.opengis.net/gml/3.1.1/base/gml.xsd"/>
20 </wps:Output>
21 <wps:Output>
22 <ows:Identifier>out_db1</ows:Identifier>
23 <ows:Title>Database Spatial Data 1 Subset</ows:Title>
24 <wps:Reference xlink:href="https://geodev2/wps/output/db_address_data_9XpzUAsIAWWF.gml" mimeType="text/xml" encoding="UTF-8"

schema="http://schemas.opengis.net/gml/3.1.1/base/gml.xsd"/>
25 </wps:Output>
26 <wps:Output>
27 <ows:Identifier>out_db2</ows:Identifier>
28 <ows:Title>Database Spatial Data 2 Subset</ows:Title>
29 <wps:Reference xlink:href="https://geodev2/wps/output/db_building_data_T0D0KrEDToO1.gml" mimeType="text/xml" encoding="UTF-8"

schema="http://schemas.opengis.net/gml/3.1.1/base/gml.xsd"/>
30 </wps:Output>
31 <wps:Output>
32 <ows:Identifier>out_map</ows:Identifier>
33 <ows:Title>Filtered Output Data Overview Map</ows:Title>
34 <wps:Reference xlink:href="https://geodev2/wps/output/ov_map_eC7jioMPBgxx.tif" mimeType="image/geotiff"/>
35 </wps:Output>
36 <wps:Output>
37 <ows:Identifier>out_bound</ows:Identifier>
38 <ows:Title>Selection Boundary</ows:Title>
39 <wps:Reference xlink:href="https://geodev2/wps/output/input_BE18QyJZZi5v.gml" mimeType="text/xml" encoding="UTF-8" schema="http:

//schemas.opengis.net/gml/3.1.1/base/gml.xsd"/>

https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/chain_async_main_response_status_finished.xml
https://gitlab.com/hadlaskard/integration-of-wps-in-local-sdi/blob/master/xml/chain_async_main_response_status_finished.xml

A.2 XML requests and responses 155

40 </wps:Output>
41 </wps:ProcessOutputs>
42 </wps:ExecuteResponse>

Listing A.19: Accurate evacuation zone process chain response result

	Acknowledgements
	Science Pledge
	Abstract
	Contents

	List of Figures
	List of Tables
	List of Listings
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Objectives and research questions
	1.3 Methods
	1.4 Structure of the thesis

	2 Context and basic principles
	2.1 Local government and digitization
	2.2 Spatial data infrastructures
	2.3 Interoperability by the use of standards
	2.4 Web processing services

	3 Freiburg's spatial data infrastructure
	3.1 Responsibilities
	3.2 Specifications
	3.3 Common questions and solution approaches
	3.4 Applicability criteria for WPS
	3.4.1 Reusability
	3.4.2 Compatibility
	3.4.3 Usability

	4 Case study
	4.1 Initial situation
	4.2 Explosive ordnance disposal
	4.2.1 Case definition
	4.2.2 Potential improvements
	4.2.3 APOLLO Blastsimulator

	4.3 Process identification
	4.3.1 Schematic workflow
	4.3.2 Derivation of processes
	4.3.3 Definition of inputs and outputs

	5 Implementation
	5.1 The PyWPS framework
	5.2 Non-case-specific processes
	5.3 Case-specific processes
	5.4 Chaining of processes
	5.4.1 Quick preselection
	5.4.2 Accurate evacuation zone

	5.5 Key characteristics
	5.5.1 Atomicity
	5.5.2 Handling of inputs and outputs
	5.5.3 Synchronous versus asynchronous
	5.5.4 Single use and chained processes

	5.6 Limitations for productive operation

	6 Evaluation
	6.1 Results of the case study
	6.1.1 Process chain output
	6.1.2 Intermediate output
	6.1.3 Assets and drawbacks

	6.2 Applicability analysis for WPS
	6.2.1 Reusability
	6.2.2 Compatibility
	6.2.3 Usability

	7 Conclusion and outlook
	Bibliography
	A Appendix
	A.1 Python source code
	A.1.1 PyWPS WSGI instance script
	A.1.2 Vector intersection process
	A.1.3 Vector buffer process
	A.1.4 Export vector data process
	A.1.5 Export 3D related spatial data process
	A.1.6 APOLLO rough danger distance process
	A.1.7 APOLLO configuration process
	A.1.8 APOLLO execute process
	A.1.9 APOLLO evacuation zone process
	A.1.10 Support methods library
	A.1.11 XML parsing library

	A.2 XML requests and responses
	A.2.1 Vector intersection process request
	A.2.2 Vector intersection process response
	A.2.3 Quick preselection process chain request
	A.2.4 Quick preselection process chain response status
	A.2.5 Quick preselection process chain response result
	A.2.6 Accurate evacuation zone process chain request
	A.2.7 Accurate evacuation zone process chain response status
	A.2.8 Accurate evacuation zone process chain response result

