

Master Thesis
im Rahmen des

Universitätslehrganges „Geographical Information Science & Systems“
(UNIGIS MSc) am Interfakultären Fachbereich für GeoInformatik (Z_GIS)

der Paris Lodron-Universität Salzburg

zum Thema

Replication of the Question-based
Spatial Computing Approach

Experiences and Suggestions for Further
Developments

vorgelegt von

MSc Selina Studer
104586, UNIGIS MSc Jahrgang 2016

Betreuerin:

Prof. Dr. Barbara Hofer

Zur Erlangung des Grades
„Master of Science (Geographical Information Science & Systems) – MSc(GIS)”

Zürich, 17.02.2019

II

Science Pledge

By my signature below, I certify that my thesis is entirely the result of my own work. I have cited

all sources I have used in my thesis and I have always indicated their origin.

Zürich, 17th February 2019

Selina Studer

III

Preface

The content of this work contributes to the conception of future GIS that promote spatial anal-

ysis in non-GIS specific disciplines. This and the possibility to develop Python skills were the mo-

tivation why I chose this topic.

I would like to take this opportunity to thank Prof. Dr. Barbara Hofer supervisor of this thesis

and co-author of the manuscript for the supervision, cooperation and especially the encourage-

ment to publish the manuscript. I gratefully acknowledge the GIS section of the ICRC for make

available the UrbanWaterToolbox. My thanks also go to my employer, the Swiss Air Force, which

supported me with flexible time management. In particular I would like to thank Yves for his

patience, his great support through his scientific expertise and his support with Python.

This thesis consists of two main parts: first, a manuscript-based master thesis and second, a

report that documents the technical work in detail. The manuscript was authorized by Selina

Studer (first author) and Prof. Dr. Barbara Hofer (second author). The contributions of the sec-

ond author were inputs at the conceptional phase and a substantial revision on the draft paper.

The manuscript was written to be submitted to the International Journal of Digital Earth (Impact

Factor 3.024/ 2017) which among other things promotes the development of methods that turn

geo-data from scientific to social, into useful information that can be analyzed, which is the aim

of the manuscript.

IV

Table of Contents

Science Pledge .. II

Preface .. III

List of Figures ... V

List of Tables .. V

Manuscript .. VI

ABSTRACT ...2

1 Introduction ...2

2 Core Concepts for Spatial Information and the Language for Spatial Computing...........3

3 Case Study and Evaluation Criteria..4

3.1 The Case Study .. 5
3.2 Criteria for Assessing the Simplification of the Spatial Analysis 6

4 Results and Evaluation of the Analysis based on the Language for Spatial Computing ..7

4.1 Conventional Analysis and the Analysis with the Language for Spatial Computing . 7
4.2 Assessing the Analysis conducted with the Language for Spatial Computing 9

5 Further Observations on the Language for Spatial Computing 11

6 Conclusions .. 12

References .. 13

Report ... VIII

1 Introduction ...1

2 Overview of the Procedure ...1

3 Tools and Environments ...1

3.1 Software .. 1
3.2 Licencing ... 2

4 Material ...2

4.1 Data ... 2
4.2 Conventional Analysis ... 3
4.3 Core Concepts Library ... 3

5 Methods ..5

5.1 Core Computations ... 5
5.2 Preprocessing ... 6
5.3 Do Not Return self .. 6
5.4 Save to Temporary Workspace ... 7
5.5 Unique ID .. 7
5.6 Iterable Objects .. 8

V

5.7 New Implemented Core Computations .. 8
5.8 Helper-Methods.. 12

6 Limitations ... 13

7 Conclusions .. 13

8 References ... 15

Appendix ... 16

A. Conventional Analysis ... 16
B. Analysis with the Core Concepts .. 17
C. Core Concepts Library ... 18

List of Figures
Figure 1 The core concepts mediate between the technological layer and the user (application

layer) (adapted from Kuhn and Ballatore (2015)). .. 4

Figure 2 Input data and the resulting buildings within distance and elevation. 5

Figure 3 Conventional analysis (left) and the analysis with the language for spatial computing

(right). .. 8

Figure 4 Overview of the approach of the master thesis. .. 1

Figure 5 Illustration of the urban water analysis (ICRC, 2017). .. 3

Figure 6 Overview of the Python package coreconcepts with its Python files. 4

Figure 7 Core computations of the core concepts (based on Kuhn and Ballatore (2015)). 5

List of Tables
Table 1 Overview of the core concepts (Kuhn and Ballatore 2015). .. 3

Table 2 Overview of the criteria used for the comparison of the analyses. 6

Table 3 New implemented core computations (notation as in Kuhn and Ballatore (2015)). 7

Table 4 Answering sub-questions with the core concepts (left) and the conventional analysis

(right). .. 9

Table 5 Comparison of the implementations of the buffer methods in the earlier implementation

(left) and the implementation within this contribution (right). Before, the input was overwritten

by a modified self, in the current implementation the method returns a new object................. 7

Table 6 Overview of the new implemented core computations and their purposes. 8

file:///C:/Users/Tazara/Dropbox/masterthesis3/paper_structure18.docx%23_Toc1216932
file:///C:/Users/Tazara/Dropbox/masterthesis3/paper_structure18.docx%23_Toc1216933
file:///C:/Users/Tazara/Dropbox/masterthesis3/paper_structure18.docx%23_Toc1216935

VI

Manuscript

1

Replication of the Question-based Spatial Computing Approach – Experiences

and Suggestions for Further Developments

Selina Studera* and Barbara Hofera

a Department of Geoinformatics - ZGIS, University of Salzburg, Salzburg, Austria

*Selina Studer – studer.selina@gmx.ch - Department of Geoinformatics - ZGIS, University of Salzburg, Salzburg

5020, Austria

2

Replication of the Question-based Spatial Computing Approach –

Experiences and Suggestions for Further Developments

ABSTRACT Geographic Information Systems (GIS) have developed into complex

toolboxes and require analysts to formulate spatial questions according to the require-

ments of data formats and tools provided by their GIS-application. The recently proposed

language for spatial computing aims to provide a question-based and thus more compre-

hensible approach for spatial analyses that especially supports scientists and experts from

other disciplines to conduct spatial analyses in their fields. In this contribution, we apply

the question-based spatial computing approach to a case study in the humanitarian field

and compare the resulting script to a script written with a conventional GIS tool. The

comparison of the two versions of the analysis is based on six criteria covering qualitative

and quantitative aspects of the analysis as well as the implementation concept behind the

new language. Our results show, that the new approach requires fewer computational

steps than the conventional script. In addition, the declarative approach lets users focus

on the content of the spatial question and the query-like character of the language makes

it in fact more comprehensible. Besides these benefits of the language for spatial com-

puting, observations on challenges of the further development of the language are shared

as an outcome of this study.

Keywords: core concepts; language for spatial computing; question-based analysis; do-

main-specific language; transdisciplinarity

 1 Introduction

Spatial analyses are motivated by finding an answer to a question and thus to better understand problems

and to support decision making. That’s why spatial analyses play an important role in various disci-

plines including the humanitarian field. The tools for spatial analyses, Geographic Information Systems

(GIS), have been developed into complex toolboxes and require analysts to formulate spatial questions

according to the requirements of data formats and tools provided by their GIS-application. Deciding

which tools and data to use to answer spatial questions distracts users from the core of the question,

requires expert knowledge (Scheider, Ballatore, and Lemmens 2018; Kuhn 2012; Albrecht 1989) and

reduces resources for critical spatial thinking (Bearman et al. 2016). This prevents non-GIS specialists

from carrying out spatial analyses effectively and consequently reduces the use of spatial analyses for

knowledge generation in potential GIS application domains (Vahedi, Kuhn, and Ballatore 2016).

Counteracting this situation, Kuhn and Ballatore (2015) developed a question-based approach

for spatial analyses with the language for spatial computing (Kuhn and Ballatore 2015). This language

simplifies spatial analyses with its new perception of space with the core concept (see Section 2) and

its query-like nature. The idea behind the language was illustrated in Vahedi et al. (2016) with the

structured query language (SQL) that allows users to ask simple questions on relational databases by

using the semantics “SELECT attributes FROM tables WHERE condition”. The same requirement

exists for spatial questions, which must be answered with simple and normative semantics in a content-

oriented way. SQL is used cross-disciplinary and achieved a mature self-image and understanding of

its tools (Vahedi, Kuhn, and Ballatore 2016).

The language for spatial computing has been implemented in first case studies. Eventually it

should result in a high-level programming language that can be used on existing GIS platforms (Vahedi,

Kuhn, and Ballatore 2016). Kuhn and Ballatore (2015) requested further research to clarify whether

3

the underlying core concepts are sufficient to form the language for spatial computing and to examine

how core computations of the language for spatial computing mediate between underlying GIS appli-

cations, geodata and core concepts of spatial information. With the resulting findings formal specifica-

tions of the language for spatial computing and software integration could be revised (Kuhn and Balla-

tore 2015).

In this contribution, we apply the language for spatial computing to a real-world example in the

humanitarian field and compare the resulting Python script to a script containing the conventional

ArcPy-analysis. The approach followed in this contribution compares to work presented in Vahedi et

al. (2016) and contributes to the request of Kuhn and Ballatore (2015). We also use the Python-imple-

mentation of the language for spatial computing of Vahedi et al. (2016) and implement additional com-

putations for our case study. For determining the criteria for comparison in our research we extend the

criteria used in Vahedi et al. (2016) and use the following six criteria for the assessment of the simpli-

fication through the language for spatial computing: question-based, computational steps, comprehen-

sibility, role of base language, role of underlying GIS, role of data property.

The replication of a case study using the question-based spatial computing approach allows to

investigate two questions:

1) Can similar conclusions about the benefits of the language be reached for the present

application case in comparison to what has been reported in Vahedi et al. (2016)?

2) Which experiences are made with the use of the language for spatial computing that

allow suggestions for its further development?

In the following we review the previous work done for the language for spatial computing

(Section 2) and introduce the case study and our procedure (Section 3). In Section 4 we present the

results that are further discussed in Section 5 before we conclude with Section 6.

 2 Core Concepts for Spatial Information and the Language for Spatial Computing

Janelle and Goodchild (2011) identified the need for a clear and simple conceptual view to understand

geoinformation. Kuhn (2012) built on this work that captured spatial phenomena in a few abstract con-

cepts and suggested to perceive space with the seven core concepts of spatial information (Table 1)

instead of the perspective of GIS applications and data formats. Unlike the geo-atom of Goodchild et

al. (2007) that abstracts spatial phenomena to a single form, the core concepts are a content-based ab-

straction of spatial information. The abstraction level was chosen as high as possible that one can grasp

all the concepts at once whereby they still need to make sense (Kuhn 2012). The concepts granularity

and accuracy (nos. 6-7 in Table 1) can be applied as quality concepts to the content concepts location,

field, object, network and event (nos. 1-5).

Table 1 Overview of the core concepts (Kuhn and Ballatore 2015).

No. Core Concept Question

1 Location where Content concepts

2 Field value of a position in space and time

3 Object its properties and relations to other objects

4 Network connectivity between objects

5 Event time or duration in fields, object or network

6 Granularity amount of detail in fields, objects, network and events Quality concepts

7 Accuracy accuracy of information in respect to a reference

4

The core concepts of spatial information are the underlying concept of the language for spatial

computing (Vahedi, Kuhn, and Ballatore 2016). The language is structured in such a way that geodata

is read in as one of the core concepts, depending on the content and the question to be answered. This

turns imported geodata into Abstract Data Types (ADTs1); the data can be seen as instances of the core

concepts available for manipulation with the language for spatial computing. For each core concept a

set of core computations exists that corresponds to analysis functionality (Vahedi, Kuhn, and Ballatore

2016). The linking of the data with core concepts suggests, which core computations can be applied to

the data.

A set of only a few meaningful and combinable core computations reduces the complexity of

spatial analyses and allows users to speak a language they are familiar with unlike the technical lan-

guages that software often requires (Kuhn and Ballatore 2015). Thereby spatial analyses shift from

spatial computing to answering questions, which enhances transdisciplinary use of spatial analyses (Ho-

fer and Scheider under review; Kuhn 2012).

The core computations are a layer implemented on top of existing GIS-applications such as

ArcGIS. Thus, the language for spatial computing mediates between the technological layer and the

user's perception of spatial information (c.f. Figure 1). The core computations have been implemented

in different languages, among others with Python (Kuhn and Ballatore 2015).

Figure 1 The core concepts mediate between the technological layer and the

user (application layer) (adapted from Kuhn and Ballatore (2015)).

Vahedi et al. (2016) applied the language for spatial computing to a real example from econ-

omy. They used Python to implement the language in form of a Python library named CoreConcepts.

The library consists of a Python class for each core concept and the core computations were imple-

mented as methods of these classes using the ArcPy library. The authors compared a conventional anal-

ysis using ArcPy with an analysis using the language for spatial computing. They highlight the declar-

ative approach of the new language versus the procedural solution of the conventional analysis and also

showed a reduction of the computational steps by 45% with the language for spatial computing.

 3 Case Study and Evaluation Criteria

This work investigates, whether the findings achieved by Vahedi et al. (2016) - the reduction of

1 ADT: “class of object whose logical behaviour is defined by a set of values and a set of operations” (Dale &

Walker, 1996 in Vahedi et al. 2016).

5

computational steps and the simplified understanding of spatial analysis with the language for spatial

computing - can be confirmed for another case study. This section introduces the real-world case study

and the selection of criteria for the assessment of the analysis implemented with the language for spatial

computing.

 3.1 The Case Study

The case study used in this work is taken from the humanitarian field, where crisis managers often work

in interdisciplinary teams and make judgments and decisions under stress (Cai et al. 2006). Therefore,

the humanitarian field is a prime example of the need for a simple and established language for spatial

computing. The spatial analysis is borrowed from the International Committee of the Red Cross (ICRC)

that examines the access of households to water sources and has been used by engineers in the field

(ICRC 2017). The purpose of this analysis is to find buildings that are supplied by water points within

a distance and elevation parameter. The input data consisted of a Digital Elevation Model (DEM)2,

feature datasets with water points3, buildings4, the area of interest and two parameters distance and

elevation. Results are a feature layer for each water point containing the buildings within the distance

and elevation parameters (visualized in Figure 2). Access to water is an important factor for behavioural

responses to hygiene and sanitation measures (Ntozini et al. 2015) and therefore a frequent analysis in

the humanitarian field. The case study is hereafter referred to as urban water analysis.

Figure 2 Input data and the resulting buildings within

distance and elevation.

2 SRTM, retrieved from http://dwtkns.com/srtm30m/, accessed 7.12.2018
3 Akvo National water point mapping Sierra Leone, Retrieved from Humanitarian Data Exchange (HDX):

https://data.humdata.org/dataset/national-water-point-mapping-sierra-leone, accessed 7.12.2018
4 OpenStreetMap Building export, retrieved from HDX: https://data.humdata.org/dataset/hotosm_sierra_le-

one_buildings, accessed 7.12.2018

http://dwtkns.com/srtm30m/
https://data.humdata.org/dataset/national-water-point-mapping-sierra-leone
https://data.humdata.org/dataset/hotosm_sierra_leone_buildings
https://data.humdata.org/dataset/hotosm_sierra_leone_buildings

6

The urban water analysis is conducted twice: once with ArcPy (conventional analysis) and once

with the language for spatial computing. The Python scripts of the conventional analysis and the core

concepts-based implementation can be found in Figure 3. The procedural steps of the conventional

urban water analysis consist of the seven steps listed below5 (c.f. left side of Figure 3).

(1) Select water points within area,

(2) select buildings within area,

(3) extract elevation values of water points to the attribute table of the water points,

(4) calculate centroids of buildings,

(5) extract elevation values of the centroids of the buildings to the attribute table of the buildings,

(6) join the attribute with the elevations to a copy of the building feature class,

(7) select buildings within the distance parameter and elevation parameter with a for-loop through

each water point.

For the implementation with the language for spatial computing, the Python implementation

was used as this implementation was well documented in previous publications (Kuhn and Ballatore

2015; Vahedi, Kuhn, and Ballatore 2016) and on GitHub6. For the back-end implementation of the core

computations ArcPy was used. The extensions of the code developed within this research is also avail-

able on GitHub7.

 3.2 Criteria for Assessing the Simplification of the Spatial Analysis

To assess the benefits and constraints of the language for spatial computing the question-based analysis

was assessed and compared with the conventional analysis. The comparison suggested in Vahedi et al.

(2016) considered the criteria question-based, computational steps and role of data property. In this

contribution we extend these criteria in order to consider further aspects of the language in the evalua-

tion. The extension of the criteria takes every layer of the conception of the language into consideration

(c.f. Figure 1). Table 2 shows the six criteria and how the selected criteria are linked to these four layers.

Table 2 Overview of the criteria used for the compari-

son of the analyses.

Layer Criteria

Application layer Question-based

 Computational steps

Core Concept layer Comprehensibility

Mediation layer Role of base language

Technological layer Role of underlying GIS

 Role of data property

The criteria role of underlying GIS and role of data property and role of base language examine

the effect of the initial technical situation consisting of ArcGIS and Python on the implementation of

language for spatial computing. The criterion computational steps considers the difference in the

5 The original analysis from ICRC was adapted and shortened for better clarity.
6 https://github.com/spatial-ucsb/ConceptsOfSpatialInformation, accessed 13.2.2019
7 https://github.com/sstuder/QuestionBasedSpatialComputing, accessed 13.2.2019

https://github.com/spatial-ucsb/ConceptsOfSpatialInformation
https://github.com/sstuder/QuestionBasedSpatialComputing

7

number of computations between the conventional analysis and the analysis with the core concepts.

With the qualitative criteria question-based and comprehensibility we asses in what sense the language

for spatial computing simplifies spatial analyses, for which we assume a user to be a novice with little

or no experience in spatial computing. In general, the criteria were evaluated by a detailed assessment

and comparison of the operations used in the two analyses and the required adaptations of the core

computations.

 4 Results and Evaluation of the Analysis based on the Language for Spatial Compu-

ting

 4.1 Conventional Analysis and the Analysis with the Language for Spatial Computing

Figure 3 shows the conventional ArcPy script of the urban water analysis (left) and the Python script of

the analysis based on the core concepts (right). The analyses will be discussed in detail in the next

section.

Whereas the available core concepts were sufficient for the selected case study, the core concepts-

based implementation required an extension of the existing core computations of the currently available

Python library of Vahedi et al. (2016). The four core computations shown in

Table 3 were added to the core concept object:

Table 3 New implemented core computations (notation as in Kuhn and Ballatore (2015)).

CC Operator: input parameters → output type Comments

Object restrictDomain: object x object → object Restrict an object to the extent of another object

get: object x (object → value) → value Get the value of a property of the object

addProperty: object x field → value Add the value of a field as an attribute to the object

withProperty: object x sql → object Select object with a sql expression

The get-method was mentioned in (Kuhn and Ballatore 2015) but not yet implemented. The

function makeObject existed before but was modified within this contribution to make objects iterable

and thus allow parts of an object to be treated as objects, as proposed by Kuhn & Ballatore (2015).

Additionally, we introduced ‘helper-methods’. We implemented the two helper methods save

and show. Helper methods are fundamental methods that are indispensable for coding but are not a core

computation. The save-method enables intended saving of interim and final results to a file. In earlier

ArcPy-based implementations of the language for spatial computing the output of each ArcPy function

was saved. In a sequence of questions within a script, permanent storage of interim results is an unde-

sired effect. The show-method simplifies the handling by allowing to view an attribute table of a tem-

porary or permanent object quickly in the console and without saving or opening it in a GIS.

8

F
ig

u
re

 3
 C

o
n

v
en

ti
o

n
al

 a
n
al

y
si

s
(l

ef
t)

 a
n
d
 t

h
e

an
al

y
si

s
w

it
h
 t

h
e

la
n
g
u
ag

e
fo

r
sp

at
ia

l
co

m
p
u
ti

n
g

(r
ig

h
t)

.

9

 4.2 Assessing the Analysis conducted with the Language for Spatial Computing

This section provides the evaluation of the analysis conducted with the language for spatial computing

based on the criteria introduced in Section 3.2.

 4.2.1 Question-based

With regard to the question-based criterion, we can say that the analysis with the core concepts answers

specific questions, is declarative instead of procedural and more goal-oriented. This conclusion is based

on the following observations.

In case of the analysis with the language for spatial computing the main question was decom-

posed into four sub-questions and each of it could be answered with one or two computations which

implies that with the core computations the specific question can be answered (Table 4). This gives the

core computations a more declarative and less procedural character and brings the analysis closer to the

objective. The two analyses differ in particular to answer the second question (Table 4). A procedure

of four computations was needed in the conventional approach to add the property of height to the

buildings (nos. 4-7 in Table 4). With the core computations the user simply can ask for a property of an

object with one single goal-oriented computation addProperty whereas the procedure to calculate the

buildings heights is hidden in the library. addProperty directly uses the centroid of a polygons as input

and thus prejudges a decision. Whether this is user-friendly can be questioned. But with the procedure

in the conventional analysis, the content of the question can easily be lost sight of. This is a prime

example which shows that with the core concepts the user can concentrate on answering a question

instead of stringing together procedural computations.

The content remote SearchCursor function in the conventional analysis that allows the iteration

through each feature is also hidden in the library by implementing directly in the makeObject function

(c.f. Section 4.1). Thus, objects of the core computations are iterable without the user having to perform

a computation for which there is no question.

Table 4 Answering sub-questions with the core concepts (left) and the conventional analysis (right).

 4.2.2 Computational Steps

The conventional analysis includes 11 computations whereas the implementation with the core concepts

contains 8 computations (7 core computations plus the helper-method save) (c.f. Table 4). Thus, the

question-based approach is 27% shorter. Although the considerable reduction by 45% in Vahedi et al.

Sub-question No. Core Concepts No. Conventional Analysis

 1 SelectLayerByLocation_management()
 2 SelectLayerByLocation_management()

1) What are the elevations of the

water points?
1 addProperty() 3 ExtractValuesToPoints()

2) What are the elevations of the

buildings?
2 addProperty()

4
5
6
7

FeatureToPoints_management()
ExtractValuesToPoints()
CopyFeatures_management()
JoinField_management()

Iteration for wp in waterPoints 8 for wp in SearchCursor()

3) Which buildings are within the

distance of a water point?
3
4

buffer()
restrictDomain()

9 SelectLayerByLocation_management()

4) Which buildings are within the

elevation parameter?

5
6

sql
get()
withProperty()

10

sql
SelectLayerByAttribute_management()

Save output
7
8

get()
save()

11 CopyFeatures_management()

10

(2016) could not be reached, the reduction of computational steps was verified with this case study as

well. Procedural calculations and abstract computations such as the SearchCursor function are hidden

in the backend of the language for spatial computing and lead to a reduction of computational steps.

The core concepts do not necessarily reduce the amount of computations. Sometimes several

core computations need to be combined for achieving a result for which one specific function exists in

ArcPy. For example, the ArcPy function SelectLayerByLocation_management in the conventional anal-

ysis selects features within a distance whereas with the core concepts two core computations buffer and

restrictDomain were combined.

 4.2.3 Comprehensibility

By reading in spatial data as a core concept, the number of core computations a user can apply is limited

to a certain amount. This makes it easy for a user to grasp, select and apply possible commands to query

spatial data. In addition, the syntax of the language for spatial computing is short, concise and the de-

scriptive terms make it intuitive and thus easy for novices to understand and learn the language. Ac-

cording to Ihaka and Gentleman (1996), the syntax of a computer language is only superficial, but

determines the way in which users of the language express themselves. Like this, the core concepts are

not a newly programmed GIS, but with the language for spatial computing, they offer a new superficial

approach to how users perceive and query space.

 4.2.4 Role of Base Language

Besides the functions and methods implemented within the Python library CoreConcepts, a user could

also use any Python syntax such as conditional statement, enumerate items, import other libraries and

so on. In case a question cannot be answered with the core computations, other libraries could be used

to extend the analysis by more advanced users. The embedding in Python gives many possibilities, but

it also requires that all users gain some basic Python-knowledge. At least a user needs to know how to

write a value to a variable, how to type strings, use methods, for-loops and know the rules of indenta-

tions. Implementations in other languages like Haskell, RDF or JavaScript require the same basic

knowledge of the base language.

 4.2.5 Role of Underlying GIS

Underlying GIS have a big influence on the implementation of the core concepts, because the existing

functions are directly linked to core computations. In our case study the core computations depend on

ArcPy peculiarities such as the function ExtractValuesToPoints behind the addProperty-computation

that generates an extra field named “RASTERVALU”, the temporary memory "in_memory” or the

SQL dialects used in ArcGIS8. Thus, characteristics of the underlying ArcPy library have an impact on

the implementation of the core concepts and would be different with another GIS. Additionally, as

recognized by Müller (2015), there is the difficulty that GIS operations are not standardized and de-

pending on the GIS on which the core concepts are built, underlying operations do not perform exactly

the same.

8 http://pro.arcgis.com/en/pro-app/help/mapping/navigation/write-a-query-in-the-query-builder.htm, accessed

13.2.2019

http://pro.arcgis.com/en/pro-app/help/mapping/navigation/write-a-query-in-the-query-builder.htm

11

 4.2.6 Role of Data Property

In the conventional analysis, data layers are loaded into a GIS-application. As many GIS operations are

format dependent, data properties like data format or spatial reference lead to unnecessary conversions

(Vahedi, Kuhn, and Ballatore 2016). Presumed that the water points in the case study were stored in a

text-file and the area of interest was a land use class in a classified raster, in the conventional analysis

several conversion steps would be needed before the spatial analysis could be conducted on the data.

The text file would be converted to a feature and the raster class to a polygon. With the core concepts,

the user views data from the perspective of the core concepts and choses the most appropriate to com-

pute on the data to answer the spatial question. Vahedi et al. (2016) stated that data formats do not limit

a core computation to be performed. Therefore, the core concepts must be implemented such that all

data formats can be read in for each core concept. For our example this means, that when importing a

text file as an object, the columns for the coordinates are automatically requested. Or, if a classified

raster is read in as an object, the classes are converted to polygons in the back-end.

 5 Further Observations on the Language for Spatial Computing

With regard to the further development of the language for spatial computing, several aspects have to

be taken into account, which are discussed in more detail here. According to Kuhn and Ballatore (2015)

the core concepts aim to reduce the complexity of spatial computations to a low number by defining a

set of core computations for each core concept. These operators form the semantic primitives of the

language for spatial computing, which can be combined to conduct more complex spatial analyses. The

authors provided a set of 29 core computations (Kuhn and Ballatore 2015). Vahedi et al. (2016) intro-

duced three computations and we also added three core computations to conduct the specific case stud-

ies. To date, it has never been precisely described according to which criteria the number of core com-

putations should be defined. If the core computations can be arbitrarily extended, they end up end in a

confusing number and the goal of a simple approach to spatial analysis was missed. The difficulty now

is to provide a number of relevant and universally applicable core computations, which offer the user a

maximum of analysis possibilities when combined. Once this has been achieved, it is worth defining

the core computations normatively and thus making the geoprocessing functionalities semantically in-

teroperable. This would be the first top-down approach in the field of geoinformation as stated in Kuhn

and Ballatore (2015).

A comprehensive language for spatial computing must take interoperability concerning the syn-

tactic, meta and semantic level into account. This requires that the language for spatial computing can

be used on different platforms, that a documentation of what a geoprocessing operation does exists, and

that designations of an operation across platforms guarantee that exactly the same process is performed.

Due to the lack of meaningful descriptions what geoprocessing tools do with the data, users are often

forced to acquire knowledge through the backend systems. Consistent behaviour of spatial computa-

tions across all platforms is desirable from a user's perspective and could be guaranteed with a common

standard (Müller 2015). The implementation of a language for spatial computing is an ideal possibility

to start with a standard for geoprocessing functionalities.

The implementation of the core concepts based on existing GIS applications will pose some

challenges with regard to the semantic interoperability of these implementations. In the case study,

ArcPy peculiarities like the "in_memory" workspace or the automatic generation of an attribute name

were integrated in the implementation of the language for spatial computing. Implementations of nor-

matively defined functions based on existing GIS applications are challenging and we question whether

12

it makes sense to implement the language for spatial computing based on existing GIS applications, as

proposed in previous work and if it would not be better to build a new language from scratch.

The language for spatial computing is supposed to work with any data format no matter if the

data is provided file-based or as linked data. Additional implementations that test a complete list of

different data formats are needed. These tests needed to include how the core concepts deal with raster

read in as objects or vectors as fields, networks or as another core concept.

Within this contribution, helper methods were introduced. They do not perform spatial compu-

tations neither do they belong to a core concept. In our opinion, helper methods such as save, showAt-

tributes, plotMap or delete are absolutely necessary as a user needs computations apart from the core

computations for handling the data and memory usage. A final list of helper methods must be drawn

up.

 6 Conclusions

Our replication of the approach of Vahedi et al. (2016) using a case study from the humanitarian field

showed that the language for spatial computing reduces the number of computing steps to conduct the

analysis for the case study. The evaluation indicates that the use of core concepts encourages interdis-

ciplinary use of spatial analysis among non-GIS specialists, because of its comprehensibility and its

question orientation. Based on the experience made with the case study, we would expect that it is easier

for the GIS section of the ICRC to describe to their engineers how data can be queried with the language

for spatial computing than developing and distributing ArcGIS script-tools.

The implementation of additional core computations that were required for the case study, led

to suggestions for the future implementation of the language for spatial computing. These suggestions

include the specification of the required number of core computations, the addition of helper methods,

and normative definitions of geoprocessing functionalities. The strong dependency of the core compu-

tations on the underlying GIS poses a challenge in case a standardised language is targeted.

Making a universal language for spatial computing accessible to diverse user communities

holds a great potential that spatial analyses can increasingly be taken into account in decisions, no matter

in which discipline.

13

References

Albrecht, Jochen

 1989 Universal Analytical GIS Operations — a Task-Oriented Systematization of Data Structure-

Independent GIS Functionality. In Onsrud H., Craglia M. (Eds) Geographic Information Research:

Transatlantic Perspectives. Pp. 577–591. Tyalor and Francis.

Bearman, Nick, Nick Jones, Isabel André, Herculano Alberto Cachinho, and Michael DeMers

 2016 The Future Role of GIS Education in Creating Critical Spatial Thinkers. Journal of Geogra-

phy in Higher Education 40(3): 394–408.

Cai, Guoray, Rajeev Sharma, Alan M. MacEachren, and Isaac Brewer

 2006 Human-GIS Interaction Issues in Crisis Response. International Journal of Risk Assessment

and Management 6(4/5/6): 388.

Dale, Nell, and Henry M. Walker

 1996 Abstract Data Types: Specifications, Implementations, and Applications. Jones & Bartlett

Learning.

Goodchild, Michael F., May Yuan, and Thomas J. Cova

 2007 Towards a General Theory of Geographic Representation in GIS. International Journal of Ge-

ographical Information Science 21(3): 239–260.

Hofer, Barbara, and Simon Scheider

 under review Geospatial Information Online Processing. In Manual of Digital Earth.

ICRC

 2017 Calculating Buildings Being Supplied by a Water Point. Draft tutorial about Urban Water

Toolbox, Geneva, Switzerland.

Janelle, Donald G., and Michael F. Goodchild

 2011 Concepts, Principles, Tools, and Challenges in Spatially Integrated Social Science. The

SAGE Handbook of GIS and Society. Thousand Oaks, CA: SAGE: 27–45.

Kuhn, Werner

 2012 Core Concepts of Spatial Information for Transdisciplinary Research. International Journal of

Geographical Information Science 26(12): 2267–2276.

Kuhn, Werner, and Andrea Ballatore

 2015 Designing a Language for Spatial Computing. In AGILE 2015. Fernando Bacao, Maribel

Yasmina Santos, and Marco Painho, eds. Pp. 309–326. Lecture Notes in Geoinformation and Cartog-

raphy. Springer International Publishing. http://link.springer.com/chapter/10.1007/978-3-319-16787-

9_18.

Kuhn, Werner, Andrea Ballatore, Eric Ahlgren, et al.

 2018[2014] Specifications and Resources towards a Language for Spatial Computing: Spatial-

Ucsb/ConceptsOfSpatialInformation. Haskell, JavaScript, Python, RDF. spatial@ucsb.

https://github.com/spatial-ucsb/ConceptsOfSpatialInformation, accessed September 26, 2018.

Müller, Matthias

 2015 Hierarchical Profiling of Geoprocessing Services. Computers & Geosciences 82: 68–77.

Ntozini, Robert, Sara J. Marks, Goldberg Mangwadu, et al.

14

 2015 Using Geographic Information Systems and Spatial Analysis Methods to Assess Household

Water Access and Sanitation Coverage in the SHINE Trial. Clinical Infectious Diseases 61(suppl_7):

S716–S725.

Scheider, Simon, Andrea Ballatore, and Rob Lemmens

 2018 Finding and Sharing GIS Methods Based on the Questions They Answer. International Jour-

nal of Digital Earth 0(0): 1–20.

Vahedi, Behzad, Werner Kuhn, and Andrea Ballatore

 2016 Question-Based Spatial Computing—A Case Study. In Geospatial Data in a Changing World

Pp. 37–50. https://link.springer.com/chapter/10.1007/978-3-319-33783-8_3, accessed February 23,

2017.

VIII

Report

1

 1 Introduction

A detailed report on the technical work is presented in this part of the thesis. This report includes

a general overview of the procedure (Section 2), detailed information on the software (Section

3.1), data (Section 4.1) and scripts (Section 4.2) used. Comments and illustration of adjust-

ments in the implementation of the core concepts can be found in Section 5 .

 2 Overview of the Procedure

After an introductory literature research (Step 1 in Figure 4) and familiarization with the lan-

guage for spatial computing (Step 2), a suitable spatial analysis was sought and a data set com-

piled for it (step 3). Subsequently, the spatial analysis was processed in a conventional way (Py-

thon script using ArcPy) (Step 4) as well as with the core concepts (Step 5). During the research

work, criteria were developed for the comparison of the two analyses (Step 6). Finally, the two

analyses were compared against the criteria (Step 7). The analysis based on the core concepts

was discussed with a view to simplifying spatial analyses.

 3 Tools and Environments

 3.1 Software

The spatial analyses were conducted with ArcGIS Pro 2.2.4 and its Python 3.6.5 integration. The

spatial analyses were conducted with the ArcPy library. Git 2.18.0.windows.1 was used for

Figure 4 Overview of the approach of the master thesis.

2

version control in order to reproduce changes made in the code. PyCharm 2018.2.3 connected

to Git served as IDE. Further a 64 bit computer with the operating system Windows 10 Pro was

used.

 3.2 Licencing

The previous implementations of the core concepts were published under the Apache License

2.0 license by Kuhn, Ballatore, Ahlgren, Thiemann, Zimmer, Vahedi, Hervey, Lafia and Jiang

(2018). Code published within this thesis is subject to the license Apache Licence 2.09.

 4 Material

 4.1 Data

All data used for the case study are free data. The Digital Elevation Model (DEM) was used from

the NASA Shuttle Radar Topography Mission (SRTM) with a resolution of 1-arcsecond (approxi-

mately 30m), EPSG 4326, GeoTIFF-format (Jarvis et al. 2008). The Tile N08W12 was downloaded

from NASA servers via the tile downloader of Derek Watkins10. This DEM was ok for this case

study, which focused on technical aspects. For an urban water analysis with strong interest in

the height difference between water points and buildings, a DEM with a higher resolution is

recommended.

The water points11 and the buildings12 were downloaded as shapefiles with the spatial reference

EPSG 4326 from the Humanitarian Data Exchange platform (HDX) that is provided by the Centre

for Humanitarian Data. The water point dataset contains a national water point mapping con-

ducted 2012 in Sierra Leone and is provided by akvo.org. The buildings are an OpenStreetMap

export of Sierra Leone that fulfil the query “building IS NOT NULL”.

9 http://www.apache.org/licenses/LICENSE-2.0, accessed 28.12.2018
10 SRTM tile downloader: http://dwtkns.com/srtm30m/, accessed 7.12.2018
11 Akvo National water point mapping Sierra Leone, Retrieved from HDX: https://data.humdata.org/da-

taset/national-water-point-mapping-sierra-leone, accessed 7.12.2018
12 OpenStreetMap Building export, retrieved from HDX: https://data.humdata.org/dataset/hotosm_si-

erra_leone_buildings, accessed 7.12.2018

http://www.apache.org/licenses/LICENSE-2.0
http://dwtkns.com/srtm30m/
https://data.humdata.org/dataset/national-water-point-mapping-sierra-leone
https://data.humdata.org/dataset/national-water-point-mapping-sierra-leone
https://data.humdata.org/dataset/hotosm_sierra_leone_buildings
https://data.humdata.org/dataset/hotosm_sierra_leone_buildings

3

 4.2 Conventional Analysis

The original of the conventional analysis, the urban water analysis, was provided by the GIS sec-

tion of the International Committee of the Red Cross based in Geneva, Switzerland. They de-

signed an ArcGIS script-tool that calculates the number of buildings being or not being supplied

by a water point by considering the two parameters maximum elevation and maximum distance

difference in meters from a water point (see Figure 5) (ICRC, 2017). The output of this script-

tool is a report for each water point covering a number of buildings in form of a text file.

For simplification, the original urban water analysis has been shortened so that the output con-

tains only buildings within the elevation and distance parameter and no buildings that fulfil only

one or none of the parameters. The output format was also adapted from a text file to a shape

file. The analysis used is given in Annex A.

 4.3 Core Concepts Library

The implementation of the core concepts within this research is based on previous implemen-

tations that were published on GitHub. The Python implementation using the ArcPy library was

developed within this case study. Existing code was forked and downloaded from the GitHub

repository from the Center for Spatial Studies at the University of California, Santa Barbara13.

The code modified within this thesis was then published again on GitHub.14

13 https://github.com/spatial-ucsb/ConceptsOfSpatialInformation/tree/master/CoreConceptsPy/ArcPy, ac-

cessed 19.12.2018
14 https://github.com/sstuder/QuestionBasedSpatialComputing, accessed 13.02.2019

Figure 5 Illustration of the urban water analysis (ICRC, 2017).

https://github.com/spatial-ucsb/ConceptsOfSpatialInformation/tree/master/CoreConceptsPy/ArcPy
https://github.com/sstuder/QuestionBasedSpatialComputing

4

The structure of the Python package coreconcepts consists of four Python files: utils.py, core-

concepts.py, fields.py and objects.py (compare Figure 6). The files for the implementation of the

remaining content concepts (network.py, event.py and location.py) are not yet implemented.

Figure 6 Overview of the Python pack-

age coreconcepts with its Python files.

The file utils.py is the file to be imported in a Python script (from coreconcepts.utils import *). It is

the initial file that defines the key functions with which the user can read in data as a core con-

cept: makeField() and makeObject(). Based on the ending of the filepath of the data a Python class

is returned that is defined in fields.py or objects.py. This returned classes are the Abstract Data

Types (ADTs), the instances of the core concepts that can be manipulated with the language for

spatial computing.

For each class the Python methods are defined that can be applied to the data. In the corecon-

cepts.py file the abstract classes for the core concepts are defined. Within the core concept class

the class properties filepath, sObj and domain are defined. For the core concept object this looks

for example like this:

class CcObject(object):
 """
 Abstract class for core concept 'object'
 """
 def __init__(self, filepath, objIndex, domain):
 """
 :param filepath: data file path
 :param objIndex: unique ID
 :param domain: desc.extent of the geo_object
 """
 self.filepath = filepath
 self.sObj = objIndex
 self.domain = domain

5

The filepath contains the filepath to the data. sObj is a unique id for each object and domain

contains the spatial extent of the data. Each time, a method is applied to data, these properties

are updated for the processed data.

Further details and script excerpts that contain the modifications of this contribution are pre-

sented in Section 5 The Python package, which was developed in the context of this contribu-

tion, can be found in Appendix C or as mentioned before on GitHub.

 5 Methods

 5.1 Core Computations

Up to now the 35 core computations (c.f. Figure 7) are implemented. Whereas three core com-

putations were newly implemented within the case study of Vahedi et al. (2016) and another

three core computations were newly implemented within this case study. Major changes made

to the coreconcepts package are explained in more detail in the following sections.

Figure 7 Core computations of the core concepts (based on Kuhn and Ballatore (2015)).

6

 5.2 Preprocessing

The Python implementation of the core concepts taken from GitHub were submitted in a Py-

Charm project and packaged up. The previous implementation used ArcMap’s Python 2. Thus

first, the code was adapted for Python 3 used in ArcGIS Pro. This concerned the super functions

in the implementation of objects and fields (objects.py, fields.py):

Python 2 Python 3

super(ArcShpObject, self).__init__(filepath,
objIndex, domain)

super().__init__(filepath, objIndex, domain)

super(GeoTiffField, self).__init__(filepath,
geoObject)

super().__init__(filepath, geoObject)

I also decided not to use the ArcPy workspace (arcpy.env.workspace) as the definition of the

workspace was a hard coded value. Therefore, in this research the property filepath of the data

was used, in contrast to earlier implementations where the property filename was used.

 5.3 Do Not Return self

The previous implementation of a method modifies the input and overwrites the original input

by returning self. For example, the method buffer, that is coded in objects.py buffers the object

and returns self. Thus, calling the method for an object called area and run it with the parame-

ters (20, "Meters"), overwrites the original object area with the buffered self (compare Table 5,

left). Thus, the original object area cannot be further used, for example to be buffered a second

time, because it simply does not exist anymore. It would have to be read in a second time as an

object.

area = make_object("area.shp")

area_buffer_20m = area.buffer(20, 'Meters')

area_buffer_50m = area.buffer(50, 'Meters')

Therefore, all methods of the classes fields and object were rewritten (Table 5, right). The object

or fields on which the methods were applied, return a temporary file. The filename is composed

of a string unique to the method (buf_), an index unique to the object/field (str(self.sObj)) and

of the input variable (str(distance)). Like this it can be guaranteed, that the filepath saved to a

temporary workspace cannot be overwritten.

7

Table 5 Comparison of the implementations of the buffer methods in the earlier implementation

(left) and the implementation within this contribution (right). Before, the input was overwritten

by a modified self, in the current implementation the method returns a new object.

before after
def buffer (self, distance, unitType):
 """
 Buffer input object
 @param distance a distance extent to buffer
 @param unitType unit type
 """

 outcome = "_buffer_"
 # determine save file path

 outputLocation = self.filepath + outcome +
 self.filename

 # calculate buffer
 concatDistance = str(distance) + " "
 + unitType
 arcpy.Buffer_analysis(self.filename,
 outputLocation, concatDistance)

 # update cc instance's attributes
 desc = arcpy.Describe(outputLocation)
 self.domain = desc.extent
 self.filepath = outputLocation
 self.filename = os.path.basename(
 outputLocation)

 return self

def buffer (self, distance, unitType):
 """
 Buffer input object
 @param distance: buffer distance
 @param unitType: unit type
 """

 # determine temporary unique file
 distName = str(distance)
 distName2 = distName.replace(".", "_")
 print("distName2", distName2)
 name = "buf_" + str(self.sObj) + distName2
 outputLocation = "in_memory\\" + name

 # calculate buffer
 concatDistance = str(distance) + " "
 + unitType
 Buffer_analysis(self.filepath,
 outputLocation, concatDistance)
 bufObj = utils.makeObject(outputLocation)

 # update cc instance's attributes
 desc = Describe(outputLocation)
 bufObj.domain = desc.extent
 bufObj.filepath = outputLocation
 bufObj.filename = os.path.basename(
 outputLocation)

 return bufObj

 5.4 Save to Temporary Workspace

Using ArcPy the outputs of most functions are saved to a file. In a Python script it is often not

desired, that interim results are saved to a file as the interest is in the final output. The same

applied to the conventional analysis and interim results were saved to the ArcPy specific

in_memory-workspace15. The in_memory-workspace was also applied to the core concepts im-

plementation. So that interim results no longer had to be saved locally. This was solved by saving

the output of a method to the in_memory-workspace, like for example of the method buffer:

outputLocation = "in_memory\\buf_14047239163001650". Concerning space complexity, this may not be

suitable for processing larger data sets.

 5.5 Unique ID

To prevent data from being overwritten unintentionally, a unique id is assigned to each data set

read in as core concept. This unique id is assigned with the Python built-in function id() while

15 https://pro.arcgis.com/en/pro-app/help/analysis/geoprocessing/modelbuilder/the-in-memory-work-

space.htm, accessed 19.12.2018

https://pro.arcgis.com/en/pro-app/help/analysis/geoprocessing/modelbuilder/the-in-memory-workspace.htm
https://pro.arcgis.com/en/pro-app/help/analysis/geoprocessing/modelbuilder/the-in-memory-workspace.htm

8

reading in the data with the function makeField or makeObject. This unique id is assigned to the

class as a property named sObj. This property sObj then can be used to give unique names to

the outputs of methods.

 5.6 Iterable Objects

It was already mentioned in Kuhn and Ballatore (2015) that parts of objects can be treated as

objects itself. Thus, the function makeObject in objects.py was modified that objects become

iterable and if iterated, each feature becomes an object itself. This was implemented by applying

the SearchCursor function on the object and iterate through each OID:

class ArcShpObject(CcObject):
 """
 Concrete class for core concept 'object'
 For handling .shp files and feature classes of a geodatabase
 """

 def __init__(self, filepath, objIndex, domain):
 super().__init__(filepath, objIndex, domain)
 self.filepath = filepath
 self.sObj = objIndex
 self.domain = domain
 self.filename = os.path.basename(filepath)
 self.OIDs = SearchCursor(self.filepath, "OID@")

 def __iter__(self):
 return self

 def __next__(self):
 try:
 next_FID = next(self.OIDs)[0]
 except StopIteration:
 self.OIDs = SearchCursor(self.filepath, "OID@")
 raise StopIteration
 next_filepath = f"{self.filepath}_FID={next_FID}"
 MakeFeatureLayer_management(self.filepath, next_filepath)
 SelectLayerByAttribute_management(next_filepath, "NEW_SELECTION", f"FID={next_FID}")
 return ArcShpObject(next_filepath, id(next_filepath), self.domain)

 5.7 New Implemented Core Computations

Four new core computations were implemented for the spatial analysis of this case study, all of

them for the core concept object. These four core computations restrictDomain, get, addProp-

erty and withProperty were implemented as Python methods of the class ArcShpObject within

the Python file objects.py.

Table 6 Overview of the new implemented core computations and their purposes.

CC Operator: input parameters → output type Comments

Object restrictDomain: object x object → object Restrict an object to the extent of another object

get: object x (object → value) → value Get the value of a property of the object

9

addProperty: object x field → value Add the value of a field as an attribute to the object

withProperty: object x sql → object Select object with a sql expression

Core Computation: restrictDomain

The core computation restrictDomain already existed for the core concept field but not for the

core concept object. For the case study the objects water points and buildings were restricted

to the area of interest with the core computation restrictDomain. Input of the restrictDomain

method is the object to be restricted (self), an object to which’s extent the self-object is re-

stricted (area-object) and an operation that can be “inside” or “outside”. In the following the

definition of the restrictDomain method can be found. The method uses the ArcPy function Se-

lectLayerByLocation_management. Output are all objects within the intersection of the self-ob-

ject and the area-object. If the operation “outside” is chosen, the selection is switched in an

additional step.

def restrictDomain(self, object, operation):
 """
 Restricts current instance's domain based on object's domain
 @param object: extent to which the object is restricted
 @param operation: valid options: "inside", "outside"
 """

 name = "restDom_" + str(self.sObj)
 outputLocation = "in_memory\\" + name

 if operation == 'inside':
 # select by location
 select = SelectLayerByLocation_management(self.filepath, "INTERSECT", object.filepath)
 CopyFeatures_management(select, outputLocation)
 restDom = utils.makeObject(outputLocation)

 elif operation == 'outside':
 # select by location
 sel = SelectLayerByLocation_management(self.filepath, "INTERSECT", object.filepath)
 select = SelectLayerByLocation_management(sel, "INTERSECT", object.filepath, "",
 "SWITCH_SELECTION")
 CopyFeatures_management(select, outputLocation)
 restDom = utils.makeObject(outputLocation)

 else:
 raise NotImplementedError(operation)

 # update cc instance's attributes
 desc = Describe(outputLocation)
 restDom.domain = desc.extent
 restDom.filepath = outputLocation
 restDom.filename = os.path.basename(outputLocation)

 return restDom

#TODO:

• Implement for other data formats read in as objects, like for example CSV, GeoTIFF or
GeoJSON.

10

Core Computation: get

The core computation get gets a value of a property (attribute column) of the object. This

method only can be used if an object consists of one feature or if a for-loop is used that iterates

through each feature as the method only returns one value of a specific column of the object.

With the SearchCursor function the specific column is located and the value retuned. For this

method, the value needs to be part of the attribute table of the object. This requires that a user

knows attribute tables, knows how to write values to it and knows how to examine it. To write

values to the attribute table is described in the next core computation (addProperty). An attrib-

ute table can be examined with the helper method show (Section 5.8).

In the case study the get method was used in the for-loop through each water point. The height

of each water point was queried in order to use it in the sql statement where the value is com-

pared with the elevation of the buildings.

def get(self, prop):
 """
 :param: name of the property
 :returns: value of property in the object
 """

 with SearchCursor(self.filepath, prop) as cursor:
 for row in cursor:
 return row[0]

#TODO:

• Implement for other data formats read in as objects, like for example CSV, GeoTIFF or
GeoJSON.

Core Computation: addProperty

The core computation addProperty adds a value to the attribute table of an object. Behind this

method the ArcPy function ExtractValuesToPoint is used. This function automatically adds a field

to the attribute table of the object with the name “RASTERVALU” which is a peculiarity of ArcPy.

If the shape type of the object is “point”, the value at the location of the point is added to the

attribute table. If the shape type is “polygon”, the polygons first are converted to points, located

at the centroid of the polygon. Then the “RASTERVALU” and the values are added to these points

before the field “RASTERVALU” again is joined to the polygons. This is an illustrative example

where procedural computations are hidden from the user in the library of the coreconcepts.

11

The addProperty method is used in the case study to add the height value from the DEM to the

water points and the building polygons.

def addProperty(self, in_raster):
 """
 get value of a field and write it to a column named RASTERVALU in the object
 @param in_raster: raster where the value is taken from
 """

 desc = Describe(self.filepath)
 name = "addProperty" + str(self.sObj)
 outputLocation = "in_memory\\" + name

 if desc.shapeType == "Point":
 ExtractValuesToPoints(self.filepath, in_raster.filepath, outputLocation)
 addProperty = utils.makeObject(outputLocation)

 elif desc.shapeType == "Line":
 raise NotImplementedError(desc.shapeType)

 elif desc.shapeType == "Polygon":
 polyToPoint = "in_memory\\polyToPoint_" + str(self.sObj)
 FeatureToPoint_management(self.filepath, polyToPoint, "CENTROID")
 valueToPoint = "in_memory\\valueToPoint_" + str(self.sObj)
 ExtractValuesToPoints(polyToPoint, in_raster.filepath, valueToPoint)
 CopyFeatures_management(self.filepath, outputLocation)
 JoinField_management(outputLocation, "FID", valueToPoint, "FID", "RASTERVALU")
 addProperty = utils.makeObject(outputLocation)
 Delete_management(polyToPoint)
 Delete_management(valueToPoint)

 else:
 raise NotImplementedError("unknown shapeType:", desc.shapeType)

 # update cc instance's attributes
 desc = Describe(outputLocation)
 addProperty.domain = desc.extent
 addProperty.filepath = outputLocation
 addProperty.filename = os.path.basename(outputLocation)

 return addProperty

#TODO:

• implement operation “CENTROID” and “INSIDE” for polygons

• implement shapeType == “Line”

• determine own field name instead of “RASTERVALU”

• implement possibility, that several fields can be added to the attribute table

• Implement for other data formats read in as objects, like for example CSV, GeoTIFF or
GeoJSON.

Core Computation: withProperty

The core computation withProperty extracts all subobjects that fulfil a sql expression. In an im-

plementation, care must be taken to ensure that the used SQL syntax considers the SQL dialects

of each possible database management system.

In the case study the withProperty method was used to extract the buildings within the elevation

parameter.

12

def withProperty(self, sql):
 """
 :param sql: sql expression
 :returns: feature that meets the properties of the sql expression
 """

 name = "wProp_" + str(self.sObj)
 outputLocation = "in_memory\\" + name

 selByAtt = SelectLayerByAttribute_management(self.filepath, "NEW_SELECTION", sql)
 CopyFeatures_management(selByAtt, outputLocation)
 wProp = utils.makeObject(outputLocation)

 # update cc instance's attributes
 desc = Describe(outputLocation)
 wProp.domain = desc.extent
 wProp.filepath = outputLocation
 wProp.filename = os.path.basename(outputLocation)

 return wProp

#TODO:

• take into consideration different SQL dialects

• Implement for other data formats read in as objects, like for example CSV, GeoTIFF or
GeoJSON.

 5.8 Helper-Methods

While implementing the spatial analysis with the core concepts, the need for helper-methods

arose. By saving interim results to a temporary workspace (Section 5.4) a method to save the

final result to a file in a specific format became compelling. But save is not a core computation,

that belongs to one core concept but can be used for all the results. That’s why we introduced

helper-methods that are fundamental methods that are indispensable for coding but are not an

element of the core computations. For the sake of simplicity the method save was implemented

as method of a core concept. But it may also be considered to implement helper methods as

helper functions, Python functions that can be applied on all the core concepts.

A second helper-method show was also implemented. This method allows to examine the at-

tributes of a (temporary) object in the console without the need to save the data to a file and

open it in a GIS to view and examine it.

helper method: save

def save (self, Output_Folder, Output_Name, extension):
 outputLocation = Output_Folder + "\\" + Output_Name + extension
 CopyFeatures_management(self.filepath, outputLocation)

13

helper method: show

def show(self):
 print("\n")
 print("show 5 first table rows for file:", '\x1b[1;36m' + self.filepath + '\x1b[0m')

 list = []
 fields = ListFields(self.filepath)
 for field in fields:
 list.append(field.name)

 list.remove("Shape")
 header = []
 for field in list:
 header.append(str('{:_^20}'.format(field)))
 print(header)

 count = 1
 with SearchCursor(self.filepath, list) as cursor:

 line = []
 for row in cursor:
 for col in row:
 line.append(str('{:^20}'.format(col)))
 print(line)
 line = []
 if count >= 5:
 break
 count += 1

 del cursor

#TODO:

• Implement other helper-methods like plotMap

• implement for other data formats read in as object: CSV, GeoTIFF, GeoJSON…

• implement for other core concepts: location, field, network, event

 6 Limitations

The language for spatial computing was also implemented in JavaScript, Haskell and RDF. A com-

parison of the implementations of the language for spatial computing with the different base

languages would be important, so that the language does not drift apart into different variations

already at the beginning.

In addition, a developer's view of implementing the language for spatial computing could im-

prove performance, feasibility, and time and space complexity. The considerations made in this

thesis will serve as support for future implementations of the language for spatial computing.

 7 Conclusions

In summary, I would like to reiterate the most important findings of the technical report of this

research which can be used as recommendations for future developments.

14

­ It is important, that a language for spatial computing does not return self in its compu-

tations but writes the result to a new object, field, network… so that the original data

can continue to be used.

­ Spatial analysis with the language for spatial computing often relies on the combination

of core computations. Interim results are not of interest and should be saved only to a

temporary memory. It must be borne in mind that large data sets fill the working

memory.

­ Apart of the core computations further computations like helper-methods are needed.

Helper methods do not belong to any core concept. They allow operations like intended

saving or check of interim results.

­ Within this contribution the function makeObject was expanded by the ability to make

each object iterable through its features. This was considered in earlier researches of

Kuhn and Ballatore (2015).

­ Four new core computations restrictDomain, get, addProperty and withProperty were

implemented within this contribution. How the core computations are to be composed

is a component of future research (compare Section 5 in Manuscript).

­ All core computations need to be implemented for all possible formats. This means for

example also that the core computation get needs an implementation for a GeoTIFF

that was read in as an object. Either such a method can be realized or a helpful error

message provides a solution to the user.

­ Investigations for the optimal implementation of the language for spatial computing un-

der consideration of the time and space complexity must be carried out.

15

 8 References

ICRC

 2017 Calculating Buildings Being Supplied by a Water Point. Draft tutorial about Urban Wa-

ter Toolbox, Geneva, Switzerland.

Jarvis, Andy, Hannes Isaak Reuter, Andy Nelson, and Edward Guevara

 2008 Hole-Filled Seamless SRTM Data V4. International Centre for Tropical Agriculture

(CIAT). http://srtm.csi.cgiar.org.

Kuhn, Werner, and Andrea Ballatore

 2015 Designing a Language for Spatial Computing. In AGILE 2015. Fernando Bacao, Mari-

bel Yasmina Santos, and Marco Painho, eds. Pp. 309–326. Lecture Notes in Geoinformation

and Cartography. Springer International Publishing. http://link.springer.com/chap-

ter/10.1007/978-3-319-16787-9_18.

Kuhn, Werner, Andrea Ballatore, Eric Ahlgren, MarcThiemann, Michel Zimmer, Behazd

Vahedi, Thomas Hervey, Sara Lafia, Liangcun Jiang

 2018[2014] Specifications and Resources towards a Language for Spatial Computing: Spa-

tial-Ucsb/ConceptsOfSpatialInformation. Haskell, JavaScript, Python, RDF. spatial@ucsb.

https://github.com/spatial-ucsb/ConceptsOfSpatialInformation, accessed September 26, 2018.

Vahedi, Behzad, Werner Kuhn, and Andrea Ballatore

 2016 Question-Based Spatial Computing—A Case Study. In Geospatial Data in a Changing

World Pp. 37–50. https://link.springer.com/chapter/10.1007/978-3-319-33783-8_3, accessed

February 23, 2017.

16

Appendix

A. Conventional Analysis

""""--
Name: Urban Water Analysis
 Conventional analysis
Purpose: find buildings covered by distance and elevation
Project: language for spatial computing
Author: ICRC (2017), adapted by Selina Studer
License: Apache License 2.0
Created: 26.12.2018
Libraries: arcpy
---"""

from arcpy import CheckOutExtension, env, SelectLayerByLocation_management,

FeatureToPoint_management, CopyFeatures_management, JoinField_management,

SelectLayerByAttribute_management
from arcpy.sa import ExtractValuesToPoints
from arcpy.da import SearchCursor

env.overwriteOutput = True
CheckOutExtension("Spatial")

load input data
area = 'C:/area.shp'
dem = 'C:/dem.tif'
waterPoint = 'C:/waterPoints.shp'
building = 'C:/buildings.shp'

set parameters
distance = 50
elevation = 3

select water points within area
waterPoint_inArea = SelectLayerByLocation_management(waterPoint, 'INTERSECT', area)

select buildings within area
building_inArea = SelectLayerByLocation_management(building, 'INTERSECT', area)

elevation of waterPoints
waterPoint_elev = ExtractValuesToPoints(waterPoint_inArea, dem, 'in_memory/wp_elev')

calculate elevation of buildings (using centroid)
building_point = FeatureToPoint_management(building_inArea, 'in_memory/building_point', 'CENTROID')
building_pt_elev = ExtractValuesToPoints(building_point, dem, 'in_memory/building_pt_elev')
building_elevation = CopyFeatures_management(building_inArea, 'in_memory/building_elevation')
JoinField_management(building_elevation, 'FID', building_pt_elev, 'FID', 'RASTERVALU')

cursor = SearchCursor(waterPoint_elev, ['OID@', 'SHAPE@', 'RASTERVALU'])

for wp in cursor:
 geom = wp[1]

 # select buildings within distance

 D = str(distance) + ' Meters'
 inDistance = SelectLayerByLocation_management(building_elevation, 'WITHIN_A_DISTANCE', geom, D)

 # select buildings within elevation
 sql = 'RASTERVALU >= ' + str(wp [2] - elevation) + ' AND ' +

 'RASTERVALU <= ' + str(wp [2] + elevation)
 WDWE = SelectLayerByAttribute_management(inDistance, 'SUBSET_SELECTION', sql)

 # save output
 CopyFeatures_management(WDWE, 'C:/WDWE_' + str(wp [0]) + '.shp')

17

B. Analysis with the Core Concepts

""""--
Name: Urban Water Analysis
 Analysis with the core concepts
Purpose: find buildings covered by distance and elevation
Project: language for spatial computing
Author: Kuhn et al. 2018, adapted by Selina Studer
License: Apache License 2.0
Created: 26.12.2018
Libraries: coreconcepts based on arcpy -----------"""

from coreconcepts.utils import *

load input data
area = makeObject('C:/area.shp')
dem = makeField('C:/dem.tif').restrictDomain(area, 'inside')
waterPoint = makeObject('C:/waterPoints.shp').restrictDomain(area, 'inside')
building = makeObject('C:/buildings.shp').restrictDomain(area, 'inside')

set parameters
distance = 50
elevation = 3

Question 1: What are the elevations of the water points?
waterPoint_elev = waterPoint.addProperty(dem)

Question 2: What are the elevations of the buildings?
building_elev = building.addProperty(dem)

for wp in waterPoint_elev:

 # Question 3: Which buildings are within the distance of the water point?
 wp_buffer = wp.buffer(distance, 'Meters')
 buildings_in_d = building_elev.restrictDomain(wp_buffer, 'inside')

 # Question 4: Which buildings are within the elevation parameter of the water point?
 wpElev = wp.get('RASTERVALU')
 sql = 'RASTERVALU >= ' + str(wpElev - elevation) + ' AND ' +
 'RASTERVALU <= ' + str(wpElev + elevation)
 WDWE = buildings_in_d.withProperty(sql)

 # save output
 id = wp.get('FID')
 WDWE.save('C:/out', 'WDWE_' + str(id), '.shp')

18

C. Core Concepts Library

utils.py

""""--
Name: utils.py
Purpose: coreconcepts library
Project: language for spatial computing
Author: Kuhn et al. 2018, adapted by Selina Studer
License: Apache License 2.0
Created: 26.12.2018
Libraries: coreconcepts, arcpy -----------"""

make CcField instance
from coreconcepts.fields import GeoTiffField
from coreconcepts.objects import ArcShpObject
from arcpy import Describe, CopyFeatures_management, SelectLayerByAttribute_management

def makeField(filepath):
 """
 :param filepath: data source file path
 :return: new Ccfield instance
 """
 domain = determine_domain(filepath)

 # determine input file type
 if filepath.endswith(".tif"):
 return GeoTiffField(filepath, id(filepath), domain)
 elif filepath.endswith(".mp3"):
 pass
 assert 0, "Bad shape creation: " + filepath

def makeObject(filepath):
 """
 :param filepath: data source file path
 :return: new Ccobject instance
 """
 domain = determine_domain(filepath)

 # determine input file type
 if filepath.endswith((".shp", "")): # NOTE:"" for files in_memory or gdb
 return ArcShpObject(filepath, id(filepath), domain)
 elif filepath.endswith(".mp3"):
 pass
 assert 0, "Bad shape creation: " + filepath

def determine_domain(filepath):
 """
 :param filepath: data source filepath
 :return: ArcPy domain extent
 """
 desc = Describe(filepath)
 return desc.extent

19

coreconcepts.py

""""--
Name: coreconcepts.py
Purpose: coreconcepts library
Project: language for spatial computing
Author: Kuhn et al. 2018, adapted by Selina Studer
License: Apache License 2.0
Created: 26.12.2018
Libraries: arcpy -----------"""

from arcpy import CheckOutExtension, env

env.overwriteOutput = True

Check out any necessary licenses
CheckOutExtension("spatial")

class CcField(object):
 """
 Abstract class for core concept 'field'
 """
 def __init__(self, filepath, objIndex, domain):
 """
 :param filepath: data file path
 :param objIndex: unique ID
 :param domain: desc.extent of the geo_object
 """
 self.filepath = filepath
 self.sObj = objIndex
 self.domain = domain

class CcObject(object):
 """
 Abstract class for core concept 'object'
 """
 def __init__(self, filepath, objIndex, domain):
 """
 :param filepath: data file path
 :param objIndex: unique ID
 :param domain: desc.extent of the geo_object
 """
 self.filepath = filepath
 self.sObj = objIndex
 self.domain = domain

20

fields.py

""""--
Name: fields.py
Purpose: coreconcepts library
Project: language for spatial computing
Author: Kuhn et al. 2018, adapted by Selina Studer
License: Apache License 2.0
Created: 26.12.2018
Libraries: os, coreconcepts, arcpy -----------"""

import os
from coreconcepts.coreconcepts import CcField
from coreconcepts import utils
from arcpy import Describe, CopyRaster_management
from arcpy.sa import ExtractByMask

class GeoTiffField(CcField):
 """
 Concrete class for core concept 'field'
 For handling .tif files
 """
 def __init__(self, filepath, objIndex, domain):
 super().__init__(filepath, objIndex, domain)
 self.filepath = filepath
 self.sObj = objIndex
 self.domain = domain
 self.filename = os.path.basename(filepath)

 def restrictDomain(self, object, operation):
 """
 Restricts current instance's domain based on object's domain
 @param object: extent to which the field is restricted
 @param operation: valid options: "inside", "outside"
 """

 if operation == 'inside':

 name = "restDom_in_" + str(self.sObj)
 outputLocation = "in_memory\\" + name + ".tif"

 # extract by mask
 outRaster = ExtractByMask(self.filepath, object.filepath)
 CopyRaster_management(outRaster, outputLocation)
 restDom = utils.makeField(outputLocation)

 elif operation == 'outside':
 raise NotImplementedError("restrictDomain 'outside'")

 else:
 raise NotImplementedError(operation)

 # update cc instance's attributes
 desc = Describe(outputLocation)
 restDom.filepath = outputLocation
 restDom.domain = desc.extent
 restDom.filename = os.path.basename(outputLocation)

 return restDom

 def local(self, fields, operation):
 raise NotImplementedError("getValue")

 def coarsen(self, cellW, cellH):
 raise NotImplementedError("getValue")

 def getValue(self, pos):
 raise NotImplementedError("getValue")

 def domain(self):
 return self.domain

 """
 helper methods
 """

 def save (self, Output_Folder, Output_Name, extension):
 outputLocation = Output_Folder + "\\" + Output_Name + extension
 print("saved to", outputLocation)
 CopyRaster_management(self.filepath, outputLocation)

21

objects.py

""""--
Name: objects.py
Purpose: coreconcepts library
Project: language for spatial computing
Author: Kuhn et al. 2018, adapted by Selina Studer
License: Apache License 2.0
Created: 26.12.2018
Libraries: os, coreconcepts, arcpy -----------"""

import os
from coreconcepts.coreconcepts import CcObject
from coreconcepts import utils
from arcpy import Buffer_analysis, Describe, Delete_management, CopyFeatures_management, ListFields,
FeatureToPoint_management, JoinField_management, SelectLayerByLocation_management, SelectLayerByAt-
tribute_management, MakeFeatureLayer_management
from arcpy.sa import ExtractValuesToPoints
from arcpy.da import SearchCursor

class ArcShpObject(CcObject):
 """
 Concrete class for core concept 'object'
 For handling .shp files and feature classes of a geodatabase
 """

 def __init__(self, filepath, objIndex, domain):
 super().__init__(filepath, objIndex, domain)
 self.filepath = filepath
 self.sObj = objIndex
 self.domain = domain
 self.filename = os.path.basename(filepath)
 self.OIDs = SearchCursor(self.filepath, "OID@")

 def __iter__(self):
 return self

 def __next__(self):
 try:
 next_FID = next(self.OIDs)[0]
 except StopIteration:
 self.OIDs = SearchCursor(self.filepath, "OID@")
 raise StopIteration
 next_filepath = f"{self.filepath}_FID={next_FID}"
 MakeFeatureLayer_management(self.filepath, next_filepath)
 SelectLayerByAttribute_management(next_filepath, "NEW_SELECTION", f"FID={next_FID}")
 return ArcShpObject(next_filepath, id(next_filepath), self.domain)

 def buffer (self, distance, unitType):
 """
 Buffer input object
 @param distance: buffer distance
 @param unitType: unit type
 """

 # determine temporary unique file
 distName = str(distance)
 distName2 = distName.replace(".", "_")
 print("distName2", distName2)
 name = "buf_" + str(self.sObj) + distName2
 outputLocation = "in_memory\\" + name

 # calculate buffer
 concatDistance = str(distance) + " " + unitType
 Buffer_analysis(self.filepath, outputLocation, concatDistance)
 bufObj = utils.makeObject(outputLocation)

 # update cc instance's attributes
 desc = Describe(outputLocation)
 bufObj.domain = desc.extent
 bufObj.filepath = outputLocation
 bufObj.filename = os.path.basename(outputLocation)

 return bufObj

 def restrictDomain(self, object, operation):
 """
 Restricts current instance's domain based on object's domain
 @param object: extent to which the object is restricted
 @param operation: valid options: "inside", "outside"

22

 """

 name = "restDom_" + str(self.sObj)
 outputLocation = "in_memory\\" + name

 if operation == 'inside':
 # select by location
 select = SelectLayerByLocation_management(self.filepath, "INTERSECT", object.filepath)
 CopyFeatures_management(select, outputLocation)
 restDom = utils.makeObject(outputLocation)

 elif operation == 'outside':
 # select by location
 sel = SelectLayerByLocation_management(self.filepath, "INTERSECT", object.filepath)
 select = SelectLayerByLocation_management(sel, "INTERSECT", object.filepath, "",
 "SWITCH_SELECTION")
 CopyFeatures_management(select, outputLocation)
 restDom = utils.makeObject(outputLocation)

 else:
 raise NotImplementedError(operation)

 # update cc instance's attributes
 desc = Describe(outputLocation)
 restDom.domain = desc.extent
 restDom.filepath = outputLocation
 restDom.filename = os.path.basename(outputLocation)

 return restDom

 def get(self, prop):
 """
 :param: name of the property
 :returns: value of property in the object
 """

 with SearchCursor(self.filepath, prop) as cursor:
 for row in cursor:
 return row[0]

 def addProperty(self, in_raster):
 """
 get value of a field and write it to a column named RASTERVALU in the object
 @param in_raster: raster where the value is taken from
 """

 desc = Describe(self.filepath)
 name = "addProperty" + str(self.sObj)
 outputLocation = "in_memory\\" + name

 if desc.shapeType == "Point":
 ExtractValuesToPoints(self.filepath, in_raster.filepath, outputLocation)
 addProperty = utils.makeObject(outputLocation)

 elif desc.shapeType == "Line":
 raise NotImplementedError(desc.shapeType)

 elif desc.shapeType == "Polygon":
 polyToPoint = "in_memory\\polyToPoint_" + str(self.sObj)
 FeatureToPoint_management(self.filepath, polyToPoint, "CENTROID")
 valueToPoint = "in_memory\\valueToPoint_" + str(self.sObj)
 ExtractValuesToPoints(polyToPoint, in_raster.filepath, valueToPoint)
 CopyFeatures_management(self.filepath, outputLocation)
 JoinField_management(outputLocation, "FID", valueToPoint, "FID", "RASTERVALU")
 addProperty = utils.makeObject(outputLocation)
 Delete_management(polyToPoint)
 Delete_management(valueToPoint)
 # TODO: implement method that the parameters "CENTROID" or "INSIDE" for
 FeatureToPoint_management() can be selected

 else:
 raise NotImplementedError("unknown shapeType:", desc.shapeType)

 # update cc instance's attributes
 desc = Describe(outputLocation)
 addProperty.domain = desc.extent
 addProperty.filepath = outputLocation
 addProperty.filename = os.path.basename(outputLocation)

 return addProperty

 def withProperty(self, sql):

23

 """
 :param sql: sql expression
 :returns: feature that meets the properties of the sql expression
 """

 name = "wProp_" + str(self.sObj)
 outputLocation = "in_memory\\" + name

 selByAtt = SelectLayerByAttribute_management(self.filepath, "NEW_SELECTION", sql)
 CopyFeatures_management(selByAtt, outputLocation)
 wProp = utils.makeObject(outputLocation)

 # update cc instance's attributes
 desc = Describe(outputLocation)
 wProp.domain = desc.extent
 wProp.filepath = outputLocation
 wProp.filename = os.path.basename(outputLocation)

 return wProp

 """
 helper methods
 """

 def save(self, Output_Folder, Output_Name, extension):
 outputLocation = Output_Folder + "\\" + Output_Name + extension
 CopyFeatures_management(self.filepath, outputLocation)

 def show(self):
 print("\n")
 print("show 5 first table rows for file:", '\x1b[1;36m' + self.filepath + '\x1b[0m')
 list = []
 fields = ListFields(self.filepath)
 for field in fields:
 list.append(field.name)

 list.remove("Shape")
 header = []
 for field in list:
 header.append(str('{:_^20}'.format(field)))
 print(header)

 count = 1
 with SearchCursor(self.filepath, list) as cursor:

 line = []
 for row in cursor:
 for col in row:
 line.append(str('{:^20}'.format(col)))
 print(line)
 line = []
 if count >= 5:
 break
 count += 1

 del cursor

