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Preface 
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landscape metrics in the modelling process.  

The thesis consists of two parts: the first part contains the manuscript-based master thesis and 

the second part is the technical report that describes the work in greater detail. The manuscript 

was authorized by Olivia Alexandra Ortner (first author) and Gudrun Wallentin (second author). 

The contributions of the second author were inputs at the conceptual stage and a substantial 

revision of the draft paper.  

The manuscript was written to be submitted to the International Journal on Ecological 

Modelling and Systems Ecology (impact factor 2.634 2019, 5-year impact factor 2.852, SJR: 

1.040) which is concerned with the use of system analysis and mathematical models or 

description of ecological processes and the sustainable management of resources 

(https://www.journals.elsevier.com/ecological-modelling).  
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Estimating the benefit of landscape metrics in a Maxent model – Experimental  
 

application of landscape metrics surfaces at different scales 
 
 

ABSTRACT A species’ distribution across the landscape is not random, but it is 
bounded by distribution, size, abundance and connectivity of landscape patches. 
This spatial configuration of a landscape shapes ecological processes, for example 
the location of home ranges, migration routes and migration ability. Landscape 
metrics describe the configuration of a landscape quantitatively. While traditional 
approaches in habitat modelling only consider environmental attributes at a 
specific location, the integration of landscape metrics adds more functional 
information. In this paper we evaluated a method of directly incorporating a set of 
landscape metrics as covariates into a Maxent habitat model. Specifically, we used 
hexagons as statistical units for the calculation of landscape metrics. We tested this 
approach for the Smooth snake (Coronella austriaca) in the Austrian Alps. The 
experimental designs resulted in a significant improvement of the habitat models. 
Moreover, the results demonstrated the benefits of landscape metrics for the 
model outcomes at different scales.  

 
Keywords: Maxent, landscape metrics, Coronella austriaca, ZonalMetrics, tessellations, 
Carinthia, habitat suitability modelling 
 
1 Introduction 
 
 It is fundamental to understand the processes that drive the distribution of species for 
conservation planning (Rosenzweig 1995). Underlying patterns are not always easy to 
understand because the involved environmental variables are operating at multiple scales, 
spatial as well as temporal (Foltete et al. 2012). We modelled the habitat suitability for 
Coronella austriaca, the Smooth snake, in the Austrian Alps and wanted to get an insight in 
important predictors for habitat suitability in the study area at different scales of habitat 
perception. The scale as well as the used covariates in the model should be adequate to the 
environmental requirements and the home ranges of this species to picture the occupied 
ecological niche in the study area. Our focus lay on the landscape traits that characterise the 
habitats of Coronella austriaca.  
 To fulfill this task we used the Maxent algorithm (Phillips 2004) for modelling the habitat 
suitability for Coronella austriaca.  Habitat suitability modelling is used in numerous studies and 
many areas of biodiversity research, conservation and estimating future habitat ranges of 
species. One of the most frequently used algorithms is Maxent (Phillips 2004), which shows 
perpetually good results (Merow et al. 2013; Elith et al. 2006). Maxent (Phillips et al. 2006) is a 
presence-background modelling method, that associates known occurrences of a species with 
important environmental data in the region of interest. The resulting model extracts the 
ecological niche that the target species can inhabit in the study area and maps it onto 
geographic space. 
 The most commonly used predictors in habitat suitability modelling are factors such as 
climate, vegetation, soil or altitude employed at multiple scales (Pulliam 2000). An equally 
important, but often neglected, factor for the distribution of species across areas is the 
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configuration and structure of the landscape, what can be quantified with landscape metrics. 
Landscape structure and configuration has an important influence on ecosystem functions and 
therefore habitat suitability and biodiversity (Walz 2011). The spatial scale and extend of the 
study area affects the landscape metrics performance (Schindler et al. 2013; Turner et al. 2001). 
To picture the actual habitat needs and possible driving forces of a special target species, scale 
and grain should be adequate to the size of the home ranges of this species (Holzkämper et al. 
2006; Guisan und Thuiller 2005) and adequate to the data quality to avoid pseudo-accuracy.  
 Modelling methods must have an organism-centred view of landscape structures 
(Cushman et al. 2008; Li und Wu 2004). Within landscape analysis, the examined scale is a 
critical factor (Walz 2011) and is characterised by thematic resolution, grain size and extend 
(Lam und Quattrochi 1992; Turner et al. 2001). Especially the response to changing extend is 
not consistent (Saura and Martinez-Millan 2001). The underlying gradients of a patchy 
landscape can lead to an unpredictable behaviour of metrics because of a minor number of 
patches in the sample (Schindler et al. 2013).  Species with higher space demand and higher 
mobility are influenced by a bigger extend of landscape than small species with low mobility. 
So, spatial grain of habitat perception is a function of body size, what accords to the decision 
hierarchy concept of Holling  (Holling 1992). 
 Some studies already dealt with the possibility of enriching species distribution modelling 
with the additional information of landscape metrics (e.g. Amici et al. 2015; Hasui et al. 2017; 
Hopkins 2009; Foltete et al. 2012), to predict species richness through landscape metrics (e.g. 
Schindler et al. 2013) or to predict the distribution of species with landscape metrics (e.g. 
Ippoliti et al. 2013; Westphal et al. 2003). Nevertheless, landscape metrics have so far not been 
incorporated as predictors in the habitat modelling process.  
 The aim of this study was to find a possibility to incorporate landscape metrics into the 
Maxent modelling process, as covariates (also called predictors), and to examine the potential 
benefits this could have on the resulting models at different important scales for the target 
species. To incorporate landscape metrics into the Maxent modelling process we had to find a 
possibility to create landscape metrics surfaces at different scales, important for the target 
species. We calculated landscape metrics in hexagonal statistical zones that covered the entire 
study area. Although these experiments were conducted with Maxent (Phillips et al. 2006) the 
method can be valuable for other species distribution modelling methods as well. It not only 
can enhance the status of the model, depending on the quality of the available data, but can 
also be helpful in identifying the most important landscape traits for the target species in the 
study area.  
 
2 Material and methods 
 
2.1 Study species and region  
 
 The target species of this study was the Smooth snake (Coronella austriaca). Although it 
is distributed across whole Europe, western Siberia and the middle east (Völkl and Käsewieter 
2003) it is included in the European Council Directive 92/43/EEC of 21st of May 1992 Annex IV 
and has been evaluated as being in an “unfavourable state” in Central and Northern European 
countries (Čeirāns und Nikolajeva 2017). Coronella austriaca is a rather small, non-venomous 
and secretive snake that is mainly threatened through habitat loss and fragmentation, what 
leads to extinction of populations and reduces the gene flow between persisting populations. 
This can lead to degeneration of the remaining populations (Pernetta et al. 2011; Reading 
2012). C. austriaca is one of the typical elements of the European cultural landscape and is very 
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ductile in its habitat selection. It inhabits a wide spectrum of open and half-open landscapes 
and can be seen as xerothermophile species that sometimes also inhabits wet to alternating 
wet areas (Völkl and Käsewieter 2003). What all these habitats have in common is a high edge 
density and a highly structured landscape with adequate microhabitat structures like immature 
soil, dry grass, stone and rock and deadwood (Käsewieter 2002). 
 The study area was Carinthia, the most southern province of Austria. For this province 
the necessary data (vegetation layer in adequate resolution, enough sample points of Coronella 
austriaca) was available at sufficient detail and accuracy. The final model should cover the 
whole area of Carinthia, but to limit the time for landscape metrics calculation a test area with 
the size of about a fourth of the area of Carinthia was delimited (figure 1). Within this test area, 
Maxent models that only contained the landscape metrics surfaces were calculated to decide 
which of them, and at what resolution, should take part at the final models.  
 

 
Figure 1. Map showing the province of Carinthia with the position and size of the test area. 

 
 
2.2 Occurrence data and environmental data  
 
 Coronella austriaca occurrence data was obtained from the “herpetofaunistic database 
of the Museum of Natural History, Vienna”1 and from the “Consortium nature conservation, 
Klagenfurt”2. From both databases together we got 1208 occurrence records. These records 
had to be split in groups of high and low spatial accuracy. Only records with an uncertainty of 
100m and less were used for modelbuilding. After filtering, 129 occurrence records were left. 
46 of the occurrence records where situated in the test area.  Before modelbuilding the 
Coronella austriaca sample points were spatially filtered to reduce bias through spatial 
autocorrelation (Boria et al. 2014; Anderson und Gonzalez 2011). Biased occurrence records 
can lead to overfit model outputs in Maxent (Peterson et al. 2007), which means that the model 
is more complex than the real relationships between the included environmental variables and 
the specie´s niche (Peterson 2011).  Only occurrences with a distance of 500m and more should 
take part in the model. Therefore, 500m-buffers were created around the sample points. Points 

 
1 Herpetofaunistische Datenbank des Naturhistorischen Museums, Wien 
2 Arge NATURSCHUTZ, Klagenfurt 
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inside this buffer distance were deleted arbitrarily. After spatial filtering, 38 samples were left 
in the test area and 94 samples in the whole area of Carinthia.  
 The current vegetation of Carinthia3 was used for the landscape metrics calculation with 
a detection scale of 1:50000. This layer was partly missing information about water bodies, 
wetlands and some parts of alpine areas and had to be updated. The missing information could 
be obtained from the generalized land use of Carinthia3 and from the “Map of the current 
vegetation of Carinthia” (Hartl et al. 2001). After completion of the vegetation layer, further 
information was added. To calculate landscape metrics at the scale relevant for Coronella 
austriaca the vegetation layer had to be updated with information concerning the waterbodies. 
Therefore, the water body network of Carinthia3 was used. Buffers depending on the size range 
of the rivers were created for all water bodies except the river “Drau” – it was already contained 
in the vegetation layer file. Afterwards the vegetation layer file was updated with the buffers. 
After finishing the refinement, the vegetation layer contained 51 classes.  
 For some of the further landscape metrics calculations (contrast, connectance), the 
vegetation layer classes were aggregated to higher level categories that represent alike 
functions for Coronella austriaca. This high-level aggregation resulted in seven classes. A 
second low-level aggregation was conducted to speed up calculation time a little bit. Here 
vegetation classes were aggregated very gentle to 24 classes with the intention to keep 
characteristics of vegetation classes such a wet or dry ground.  
 

Name  Lower level aggregation Higher level aggregation  

acre-grassland  acer-grassland intensive grassland  

expressway compact settlement compact settlement  

premises compact settlement compact settlement  

airport compact settlement compact settlement  

compact settlements compact settlement compact settlement  

beech- fir tree- spruce forest, beech- fir forest, fir forest on 
carbonate ground 

beech- fir tree- spruce forest forest 

beech- fir tree- spruce forest, beech- fir forest, fir forest on 
silikate ground 

beech- fir tree- spruce forest forest 

beech forest beech forest forest 

grey alder forest alder_willow  planted 

black alder forest alder_willow  planted 

willow forest alder_willow  planted 

wet mixed deciduous woodland wet mixed deciduous woodland forest 

wetlands, bogs wetlands grassland 

peat bog wetlands grassland 

fen wetlands grassland 

spruce-larch forest spruce and mixed forest forest 

spruce forest, secondary spruce forest on carbonate ground spruce and mixed forest forest 

spruce forest, secondary spruce forest on silikate ground spruce and mixed forest forest 

Scotch pine-spruce mixed forest  pine forest forest 

Scotch pine forest pine forest forest 

European black pine forest pine forest forest 

glacier areas glacier areas compact settlement  

larch-spruce forest larch forest forest 

Swiss stone pine forest and larch-Swiss stone pine forest larch forest forest 

larch meadows  larch meadows grassland 

dwarf pine knee timber  dwarf pine knee timber planted 

 
3 https://data.gv.at/katalog/dataset 
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coniferous-deciduous mixed forest (Scotch pine-beech forest, 
spruce-beech forest) 

mixed forest forest 

coniferous mixed forest with deciduous parts mixed forest forest 

montane-subalpine deciduous scrubs 
montane-subalpine deciduous 
scrubs 

planted 

historic heritage, castles and monasterys light building density  coverd with buildings 

light building density light building density  coverd with buildings 

pioneer vegetation on boulder and rocks  
pioneer vegetation on boulder and 
rocks  

coverd with buildings 

cane brake and large sedge cane brake and large sedge planted 

sports areas sports areas and parks  intensive grassland  

municipal grass area and sports areas sports areas and parks  intensive grassland  

subalpine and alpine grassland and pasture on carbonate ground  
subalpine and alpine grassland and 
pasture 

grassland 

subalpine and alpine grassland and pasture on silikate ground  
subalpine and alpine grassland and 
pasture 

grassland 

warm mixed deciduous forest (manna ash, European hop-
hornbeam, whitebeam, oak) 

warm mixed deciduous forest 
(manna ash, European hop-
hornbeam, whitebeam, oak) 

forest 

waterbodies waterbodies waterbodies 

waterbodies 3 waterbodies waterbodies 

waterbodies 4 waterbodies waterbodies 

waterbodies 5 waterbodies waterbodies 

waterbodies 6 waterbodies waterbodies 

waterbodies 7 waterbodies waterbodies 

pastures and mountainious hay meadows on carbonate ground  
pastures and mountainious hay 
meadows 

grassland 

pastures and mountainious hay meadows on silikate ground  
pastures and mountainious hay 
meadows 

grassland 

expressway tunnel 
cultivated grassland (pastures and 
hay meadows) 

grassland 

winter sports areas 
cultivated grassland (pastures and 
hay meadows) 

intensive grassland  

cultivated grassland (pastures and hay meadows) 
cultivated grassland (pastures and 
hay meadows) 

intensive grassland  

dwarf shrub heathland, mosaic of dwarf shrub and pastures on 
carboante ground 

pastures and mountainious hay 
meadows 

grassland 

dwarf shrub heathland, mosaic of dwarf shrub and pastures on 
silikate ground 

pastures and mountainious hay 
meadows 

grassland 

Table 1. Vegetation units of the layer used for landscape metrics calculation. 

 

For the final models of the whole province climatic layers (mean annual global radiation, 
average accumulated precipitation, average accumulated summer precipitation, mean snow 
cover duration, average start of snow cover, average end of snow cover, average equivalent 
temperature in July)4 and the vegetation layer itself were additionally used for model building.  
 
 
2.3 Experimental design  
  
 To investigate the possibility to use landscape metrics in Maxent as covariates we had to 
build surfaces of them for the study area. We constructed regular tessellation hexagon layers 
of different sizes (5ha, 10ha, 15ha, 25h, 35ha per hexagon) for the test area that should be 
used as statistical units for landscape metrics calculation. Advantages of using hexagons 

 
4 https://data.gv.at/katalog/dataset 
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(Jurasinski and Beierkuhnlein 2006) instead of triangles or squares are that they share a real 
border with every neighbouring zone and that any point inside a hexagon is closer to the centre 
of the hexagon than this would be the case in an equal area triangle or square (Adamczyk and 
Tiede 2017). To fulfill this task, the ZonalMetrics python tool box (Adamczyk and Tiede 2017) 
together with ArcGIS 10.5 (Esri 2011) was used. To build organism-centred models for the 
target species, the size of the hexagons was at one hand adjusted to the habitat size 
requirements of Coronella austriaca populations (Völkl und Käsewieter 2003) and on the other 
hand we experimented with the sizes of the hexagons to get an insight on how the landscape 
metrics reacted. We also considered data quality to avoid pseudo-accuracy in the modelling 
process. So, we limited the smallest hexagon unit size to 5ha and the raster cell size to 
100mx100m, because of the resolution of the vegetation layer and the inaccuracies of the 
Coronella austriaca occurrence data. Additionally, we used the catchment areas of Carinthia, 
cut to the size of the test area, as natural ecological units for landscape metrics calculation.  
 
2.4 Landscape metrics calculation  
 
 There are three ways to deal with landscape patches that overlap the border of the 
respective statistical zone: 1) Clip all patches that overlap the statistical zone to the extent of 
this zone. 2) Select all overlapping patches and calculate metrics for the whole patch 
intersecting the zone. The patches can be considered in several zones. 3) Select patches whose 
centroid is in the statistical zone. No double counting is allowed (Adamczyk and Tiede 2017). 
We decided to cut the patches that overlap the statistical zone because the zones should 
picture the home ranges of C. austriaca individuals and populations. So, in case of the statistical 
zones the borders do not represent natural environmental units. The size of the statistical zones 
defines the scale of analysis what should be considered because every analysed phenomenon 
can have a particular scale domain where it reveals (Levin 1992; Turner et al. 1989). 
 For all statistical layers and the catchment areas, five types of landscape metrics plus the 
edge density via line kernel density (Cai et al. 2013) were calculated for the important habitat 
elements of C. austriaca:  
1)  Area metrics for open areas important for C. austriaca (not for woodland) of the lower 

level aggregation: percent of the area of the whole statistical zone taken by the patch 
(pz<class-name>).  

2)  Largest patch index for all classes: percentage of the total area of the statistical zone 
taken by the largest patch (lpi).  

3)  Connectance Metrics for the higher-level aggregated classes: the maximum connectance 
distance was 500m with an offset of 100m. The examined classes (covered with buildings, 
planted, grassland, intensive grassland) were merged. The resulting values were the 
number of distinct (by FID) connected classes (ci_np), the percentage of patch area that 
lies within the range of connection to the statistical zone (ci_pp) and the percentage of 
the connection zone between the patches in comparison to the statistical zone (ci_cp).  

4)  Contrast metrics for the higher-level aggregated classes: the analysed classes (one at a 
time) were covered with buildings, intensive grassland, planted and grassland. The 
contrast classes were compact settlement, waterbodies and forest. The resulting value 
was the contrast index which is calculated as the percentage of the edge length of the 
focus classes shared with the contrast classes (cce<className>).   

5)  The Shannon Diversity Index for all classes (shdi).  
This landscape metrics are implemented in the ZonalMetrics toolbox because of their ability to 
deal with the restricted zones, that can be seen as small subsets of the landscape, better than 
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other existing metrics that for example are composed of more complex equations or are 
calculated through the examination of all patches of the whole landscape (Adamczyk und Tiede 
2017). Mainly weighted metrics were used because of irregular sizes of the catchment areas 
and the fact that also regular tessellation surfaces are cut at the edge of the study area and 
therefore also contain irregular units.  
 To incorporate the edge density in the modelling process, we dissolved the vegetation 
layer polygons to lines and merged the resulting layer with the transport network of Carinthia. 
The decision for a bandwidth is a key step in kernel density estimation, depending on the 
smoothing of the resulting surface (Cai et al. 2013). As a rule of thumb ArcGis (Esri 2011) works 
with the rule of Silverman (Silverman 1986) , which is based on a quadratic kernel function. The 
first surface was calculated with the suggested bandwidth of 1741,11m. To compare this 
surface with other outcomes, three more surfaces with bandwidths of 500m, 1000m and 
1500m were created. To picture the edge density of the test area in an appropriate way, the 
smoothing should not be to ample. Through comparison with the line data set we choose the 
surface with the 1000m bandwidth and a resolution of 100mx100m for the modelling process. 
After metrics were calculated the polygon shape files had to be converted to raster data sets 
with a cell size of 100mx100m, masked and converted to ASCII files. In the end, 26 landscape 
metrics surfaces at six resolutions were ready to use for the test area models.   
 
 

  pz<class name> Percent of the area of the whole statistical zone taken by the patch 

1 pz_glint cultivated grassland 

2 pz_offbau light building density 

3 pz_feucht wetlands 

4 pz_weide pastures and mountainious hay meadow 

5 pz_acker acre-grassland 

6 pz_latsche dwarf pine knee timber 

7 pz_pionier pioneer vegetation on boulder and rocks 

8 pz_subalp subalpine and alpine grassland and pastures 

  Diversity Metric 

 Shannon Diversity Index 

9 shdi shannon diversity index  

  Connectance Metrics 

 

Maximum connectance distance: 500m, offset 100m, covered w. buildings, int. grassland, planted, grassland 
(merged) 

10 ci_np number of distinct (by FID) connected classes 

11 ci_pp percentage of patch area that lies within the range of connection to the statistical zone 

12 ci_cp 
percentage of the connection zone between the patches in comparison to the statistical 
zone 

  Largest Patch Index 

13 lpi percentage of the total area of the statistical zone taken by the largest patch 

  Contrast Metrics 

 

Analyzed (one at a time): covered w. buildings, int. grassland, planted, grassland, Contrast classes: compact 
settlement, waterbodies, forest. 

  covered w. buildings  

14 cce_beb_bau contrast: compact settlement 

15 cce_beb_was contrast: water bodies  
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16 cce_beb_wa contrast: forest 

 intensive grassland  

17 cce_gli_bau contrast: compact settlement 

18 cce_gli_was contrast: water bodies  

19 cce_gli_wa contrast: forest 

 planted  

20 cce_bes_bau contrast: compact settlement 

21 cce_bes_was contrast: water bodies  

22 cce_bes_wa contrast: forest 

 grassland  

23 cce_gl_bau contrast: compact settlement 

24 cce_gl_was contrast: water bodies  

25 cce_gl_wa contrast: forest  

  Kernel Density – Edge Density 

26 kernel  line kernel density to represent edge density  

Table 2. Landscape metrics abbreviations used for model building. 

 
2.5 Modelling the test area  
 
 To determine which landscape metrics surfaces should take part in the final Maxent 
model of Carinthia, six Maxent model runs with Maxent GUI 3.4.1 (Phillips et al. 2006, Internet 
1) including solely the different landscape metrics surfaces were conducted for the test area. 
There are different approaches how to select covariates in ecological modelling with Maxent. 
One recommends reducing correlation between them to a minimum before starting the 
modelling process through correlation analysis, clustering analyses or another reduction 
method, because the complex features used by Maxent often produce highly correlated 
outputs. Reducing the covariates prior to modelbuilding should result in models that are better 
interpretable. This is corresponding to the approach to treat Maxent as traditional statistical 
model (Renner und Warton 2013). An alternative point of view considers Maxent as machine 
learning approach and lets the algorithm decide, which covariates to use for modelbuilding 
through regularization (Phillips et al. 2006). We concluded to let the algorithm decide and not 
to filter the covariates before modelbuilding. Through this approach, the most contributively 
environmental variables in the model can be detected.  
 To keep things simple at this stage of the experiment, only linear and quadratic features 
were allowed for model settings (Phillips 2004). The feature classes determine the constraints 
that are permitted in a model. They are functions of the environmental variables and can be 
combinations of six classes or just a single one: linear (L), quadratic (Q), product (P), threshold 
(T), hinge (H) or a category indicator (C) (Phillips et al. 2006). The constraints of this feature 
classes on the model result in models of diversified complexity (Phillips und Dudík 2008). Using 
complex feature combinations allows Maxent to build a model that is very sensitive to a species 
environmental tolerance, what can possibly lead to an overfit model (Shcheglovitova and 
Anderson 2013). The regularisation multiplier, which controls the intensity of regularization 
across all features, was set to two. The default regularization multiplier is one. The larger 
multiplies should result in less discriminatory predictions and decrease the chance that the 
model is overfitted to bias or noise in the sample points (Radosavljevic and Anderson 2014). To 
choose which resolution of the statistical surfaces should be used in the final model, AUC (area 
under the ROC curve) and omission rate (OR), two common metrics of model performance, 
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were consulted (Shcheglovitova and Anderson 2013). Some studies identified AUC value, 
calculated with presence-background data, as an arguable measure for the performance of 
models (Lobo et al. 2008; Warren und Seifert 2011), but it can be used to compare models of 
single species in an identical study area, what is the case in this study (Peterson 2011).  
 AUC and OR were examined for each result to choose which resolution of the landscape 
metrics surfaces had the best model performance. Additionally, we were interested in the most 
contributively environmental variables in model building. Therefore, we examined the 
percentage of model contribution. Only landscape metrics with a contribution of 4% and more 
should take part in the final model.  
  To monitor the behaviour of the landscape metrics surfaces, we calculated Pearson 
correlation coefficient for the pairwise comparison of raster files via ENMTool (Warren et al. 
2010a) and visualized it with the R package “corrplot” (Wei and Simko 2017). For  a quantitative 
measure of the “difference” of the model results in geographic space, Schoeners D (Schoener 
1968) and I statistics (Warren et al. 2008) were computed. The metrics are calculated by 
determining the differences between the models in suitability score per grid cell after 
standardizing the suitability to sum up to 1 over the measured geographic space. The metrics 
reach from 0 (no overlaps) to 1 (identical models). I often overestimates model similarity, 
whereas D is a more conservative measure (Rödder und Engler 2011).  
 
 
2.6 Final models  
 
 For the final models, statistical layers at the desired resolution were built for the whole 
province. Only the most contributively landscape metrics surfaces (percentage of contribution 
of 4% and more in the test area models) were calculated and used for model building. Edge 
density via line kernel density was computed for the whole province identically to the test area. 
Raster resolution was 100mx100m for all covariates. Additional covariates in the final model 
were the climatic layers and the vegetation layer.  
 The models should be built at the landscape metrics scale with the best AUC and OR 
values of the test area, but these values performed equally well for all models. We decided to 
build 3 models of important scales for Coronella austriaca (Völkl und Käsewieter 2003). One 
should picture the population scale (5ha), one the metapopulation scale (25ha) and the third 
one consisted of the catchment areas as natural ecological units. To detect differences between 
models using landscape metrics and models without them, we computed each model two 
times: 1) with all parameters (landscape metrics, climatic variables, vegetation layer), 2) with 
landscape metrics only, plus one model without landscape metrics at all. Logistic output was 
used for visualisation (Phillips und Dudík 2008).  
 The seven models were calculated two times: the first time we used the test area model 
settings, the second time we tuned the model settings to enhance the outcomes and to detect 
improvement. The choice of features in the tuned models was led by tuning experiments of 
Phillips and Dudik 2008: all feature classes should be used for models of at least 80 occurrence 
records. The regularisation multiplier was set to one. After finishing the modelling process, AUC 
values of the different model settings were compared.  
 We again calculated Schoeners D (Schoener 1968) and the I statistic (Warren et al. 2008) 
with EMNTool (Warren et al. 2010b) to get an insight in the difference of the model results in 
geographic space. 
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5ha - population level 25ha - metapopulation level Natural ecological units (GEZG) 

cce_be_was shdi cce_gl_was 

pz_offenbau lpi pz_glint 

lpi pz_glint kernel 

shdi kernel pz_offbau 

cce_bau_wa cce_bes_was cce_gli_wa 

kernel vegetation layer pz_acker 

vegetation layer 
GS – mean annual global radiation 
(kWh/m2) shdi 

GS – mean annual global radiation 
(kWh/m2) 

N – average accumulated precipitation 
(mm) vegetation layer 

N – average accumulated precipitation 
(mm) 

NJJA – average accumulated summer 
precipitation (mm) 

GS – mean annual global radiation 
(kWh/m2) 

NJJA – average accumulated summer 
precipitation (mm) SD – mean snow cover duration (days) 

N – average accumulated precipitation 
(mm) 

SD – mean snow cover duration (days) 
SDB – average start of snow cover (day 
of the year) 

NJJA – average accumulated summer 
precipitation (mm) 

SDB – average start of snow cover (day 
of the year) 

SDE – average end of snow cover (day of 
the year) SD – mean snow cover duration (days) 

SDE – average end of snow cover (day of 
the year) 

AET07 – average equivalent 
temperature in July (°C) 

SDB – average start of snow cover (day 
of the year) 

AET07 – average equivalent 
temperature in July (°C)  

SDE – average end of snow cover (day of 
the year) 

  

AET07 – average equivalent 
temperature in July (°C) 

      
Table 3. Covariates used in the final models. 

 
 
3 Results 
 
3.1 Test area 
 
 The correlations for the 26 test area landscape metrics layers can be seen in figure 2. 
They tend to get stronger in both directions, the large the statistical surface units get. Only a 
few strong correlations between the layers existed. The strongest evolved in the catchment 
areas (GEZG) layers.  
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Figure 2. Correlation matrices for the landscape metrics surfaces used in the test area models. For further explanations of 

the labeling see table 2. 

 

 

 The model outputs for the six different test area resolutions showed an equal 
performance respective the resulting AUC and OR values. All values were between an AUC of 
0,843 and 0,890 and OR was between 0,327 and 0,369 for all models. The model with the best 
AUC value was the 25ha model. The lowest AUC value was displayed by the 10ha surface 
resolution. The lowest OR showed the 35ha model and the highest OR was displayed by 5ha 
model (see table 4). Additionally, the percent contribution and the permutation importance 
were examined for further modelbuilding. Percent contribution is calculated by assigning the 
increase in gain of every step of the Maxent algorithm to the covariates that a feature depends 

5 ha 10 ha 

15 ha 25 ha 

35 ha GEZG 
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on and converting this value to percentage at the end of the training process. These values are 
only heuristically defined and depend on the path Maxent uses to find the optimal solution.  
Permutation importance values depend only on the final Maxent model without the used path 
to obtain the results (Phillips et al. 2006). The percentage of contribution and permutation 
importance changed with the size of the statistical zones. The 5ha and the 10ha model contain 
five covariates with a 0% contribution and permutation importance (cce_gl_bau, pz_pionier, 
cce_bes_bau, pz_subalp, pz_latsche), the 15ha model contains four covariates with 0% 
contribution (cce_gl_bau, pz_pionier, pz_latsche, pz_subalp) and five covariates with 0% 
permutation importance (cce_bes_bau, cce_gl_bau, pz_pionier, pz_latsche, pz_subalp). The 
25ha model has four covariates with 0% contribution and permutation importance 
(cce_gl_bau, pz_pionier, pz_latsche, pz_subalp). The 35ha model has only two covaritaes with 
0% contribution and permutation importance (pz_subalp, pz_latsche) and the model with the 
maximum zone size (GEZG, catchment areas) only has one layer that did not contribute 
(pz_subalp).  
 

Surface AUC OR 

5 ha 0,8642 0,3686 

10 ha 0,8432 0,3685 

15 ha 0,8579 0,3608 

25 ha 0,8899 0,3461 

35 ha 0,8849 0,3271 

GEZG 0,8854 0,3511 

     
Table 4. AUC and OR values for the test area models. 

 

 
 Despite the similarities in AUC and OR values between the different model results, we 
observed differences in geographic space. Schoeners D (Schoener 1968) showed greater 
differences and less similarity than I statistic (Warren et al. 2008), as expected.  The highest D 
value was 0,817 between the 5ha and the 10ha model. The lowest D value, and therefore the 
highest difference showed the models GEZG and 5ha with 0,676. The average D value was 
0,749. The highest I value was 0,971 between the 10ha and the 15ha model, the lowest I value 
was 0,907 between the 5ha and the GEZG model. The average I value was 0,942.   
 
 
3.2 The final models 
 
 The final models showed good AUC values after tuning (see table 5). For all three model 
resolutions the best values were shown by the models with all covariates together (climatic, 
vegetation and landscape metrics surfaces). The best value was 0,928 from the 25ha model. 
The 5ha model showed an AUC value of 0,920 and the GEZG models AUC was 0,919. The AUC 
value of the model without landscape metrics surfaces was 0,893 and the values for the models 
with only landscape metrics were between 0,850 and 0,879, increasing with the size of the 
statistical zones. Here the model with the largest statistical surface units showed the best 
results. Compared to the settings of the test area, model tuning resulted in better AUC values 
for all models.  
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  AUC 

model tuned test 

5ha all 0,920 0,882 

5ha LM  0,850 0,832 

25ha all  0,928 0,888 

25ha LM  0,859 0,834 

GEZG all 0,919 0,876 

GEZG LM 0,879 0,847 

without LM  0,893 0,857 

   
Table 5. AUC values for the final models. xxha all: model contains all covariates, xxha LM: model contains only landscape 

metrics, without LM: model without landscape metrics. 

 

 Compared to the test areas model runs, Schoeners D and I statistics both showed 
increased differences for all models in geographic space. The lowest D value with 0,610 
appeared between the 5ha model with landscape metrics only and the catchment areas model 
with all covariates. The highest D value was 0,850 between the 25ha model with all covariates 
and the 5ha model with all covariates. The average D value was 0,696. The I statistics again 
showed greater similarities between the models in geographic space. The lowest value was 
0,848 between the 25ha landscape metrics model and the model without landscape metrics. 
The highest value was 0,980 between the 25ha surface with all covariates and the 5ha surface 
with all covariates. The average I value was 0,907. 
 The correlations between the covariates showed high values between the climatic layers, 
excluding the gs (mean annual global radiation). Also kernel density showed higher correlation 
(positive as well as negative) with the climatic layers. Again, the larger the statistical surfaces 
get, the stronger the correlations become. 
 For the visualization of the model outputs, binary predictions were made with the 10 
percentile training presence logistic threshold (see figures 3-9).  
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Figure 3. 5ha model with all covariates (landscape metrics, vegetation layer, climatic layers). Green=suitable habitat. 

(AUC=0,920). 

 

Figure 4. 5ha model with landscape metrics surfaces only. Green=suitable habitat. (AUC=0,850). 
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Figure 5. 25ha model with all covariates (landscape metrics, vegetation layer, climatic layers) Green =suitable habitat. 

(AUC=0,928). 

 
 
 

 
Figure 6. 25ha model with landscape metrics surfaces only. Green=suitable habitat. (AUC=0,859). 
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Figure 7. GEZG (catchment areas) model with all covariates (landscape metrics, vegetation layer, climatic layers). Green 

=suitable habitat. (AUC= 0,919). 

 

 
Figure 8. GEZG model with landscape metrics surfaces only. Green=suitable habitat. (AUC=0,879). 

 
 
 
 
 
 
 
 



 

18 
 

 
Figure 9. Model without landscape metrics surfaces - only with vegetation and climatic layers. Green=suitable habitat.  

(AUC= 0,893). 

 
 
 
4 Discussion  
 
4.1 Test area models  
 
 Although only landscape metrics surfaces were used without model tuning, the six model 
runs showed good results for the test area in AUC values and performed equally well. Only the 
grain of the predictions differentiated between the model outputs. It is noticeable that also the 
model built by the catchment areas did perform equally well, also the predicted suitable area 
for Coronella austriaca showed a different pattern and was less detailed than the statistical 
surface predictions. Maxent obviously makes the best of the information it gets. There are 
several critical steps till the surfaces are prepared for modelling. Each of them leads to a higher 
level of abstraction in comparison to the original landscape metrics. The decision for other sizes 
of statistical zones and the method of dealing with overlapping patches can lead to other values 
for the zonal metrics. This is also the case in studies were the home ranges of species are used 
for landscape metrics calculation (Holzkämper et al. 2006). The method of rasterizing and the 
resolution of the raster surfaces influence the information content of the resulting surfaces 
(Turner et al. 2001). So, the descisions to make before modelling are important to overthink 
and to question. Furthermore this descisions should fit the target species and data at necessary 
accuracy and thematic resolution must be available.  
 The position of the test area was a compromise between a sufficient amount of sample 
data for model building and the consistent representation of all vegetation types throughout 
Carinthia. In the test area subalpine and alpine regions are underrepresented. Coronella 
austriaca is known to inhabit also subalpine and alpine regions (Völkl and Käsewieter 2003). 
This regions are also underrepresented in the sample points, because this points come from 
non-random sampling. Observations were made from people in populated areas were the 
chance is higher for the snakes to be detected. We tried to decrease this phenomenon by 
spatial filtering (Boria et al. 2014; Anderson and Gonzalez 2011). When examining the binary 
predictions of the model outputs it can also be observed that subalpine areas are nevertheless 
underrepresented.  



 

19 
 

The most contributively covariates in the modelling process were area metrics, contrast 
metrics, edge density, largest patch index and the Shannon Diversity Index. From the area 
metrics the classes light building density, cultivated grassland and acre grassland did contribute 
the most. This mirrors the fact, that the open habitat types in the test area consist mostly of 
this kinds with a percentage of 23,6%. This corresponds to the important secondary habitat 
types Coronella austriaca inhabits in cultivated areas (Völkl and Käsewieter 2003). 
Unfortunately, this habitat types are also characterised by high degradation and fragmentation 
(Dick and Mebert 2017). In all models, except the 5ha and the 15ha model, edge density had a 
high contribution in model building. Shannon Diversity Index and largest patch index were 
important in all models, except for the GEZG model – here only Shannon Diversity Index was 
contributively. This metrics correspond to the heterogenous habitat requirements of Coronella 
austriaca,  are rather simple, have good explanatory ability and are easy to interpret 
(Holzkämper et al. 2006).  

The correlation matrices for the test area covariates show, that correlations get stronger 
the larger the statistical units get. This accords to the phenomenon that all patterns have a 
scale at which they reveal (Turner et al. 1989) and shows once more how important it is to 
coincide the size of the statistical zones with the quality of the available data. If the scale of the 
data and the thematic resolution is to small for the desired statistical surface size, no useful 
predictions can be made (Walz 2011; Turner et al. 2001).   

For the evaluation of the test area models in geographic space we focus our 
interpretation on Schoeners D because it’s a more conservative measure of similarity (Rödder 
und Engler 2011). The average value of D comparing the different test area models was 0,749. 
That corresponds to an average difference between the models of approximately 25%,  what 
seems to be much when just changing the size of statistical zones but providing the same 
information. The highest differences are shown between the tessellation surfaces and the 
natural ecological units. That indicates also, that the information content of the taller statistical 
surface units is another than the information of the smaller units´ surfaces. So, the decision for 
a statistical surface can have great influence on model outcome and benefit for the target 
species.  
 
4.2 Final models 
 
 The final models were designed to highlight benefits of the use of landscape metrics 
surfaces in habitat suitability modelling. Among all seven model outcomes the best AUC values 
were shown by the models with all available covariates (landscape metrics, climatic, vegetation) 
together after model tuning. The models with only landscape metrics surfaces showed the 
lowest AUC values and the model without landscape metrics showed an intermediate value. 
This allows the conclusion, that landscape metrics surfaces can be beneficial for the modelling 
process. When examining the visual model outputs with expert knowledge it seems that the 
landscape metrics surface models of 5ha and 25ha have a better ability to deal with the biased 
occurrence data of Coronella austriaca. In these models the alpine and subalpine areas are not 
that underrepresented than they are in the other model outputs. Field data collection in August 
2019 seems to sustain this hypothesis. Two individuals of Coronella austriaca were detected in 
areas were the high AUC value models didn´t predict them but the landscape surface models.  
 Again, we focus on Schoeners D for the interpretation of the model output differences in 
geographic space. The average D value for comparing the final models was 0,696. This indicates 
greater differences than in the test models, what depends on the different covariates used for 
the modelbuilding. The average difference between the models is approximately 30%. This 
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again shows how important it is to choose wisely which covariates are important for the target 
species.  
 Another interesting approach could be to mix the resolutions of the statistical surfaces in 
one model. Therefore knowledge is necessary about the scales depending on the available data 
and target species, were important patterns reveal.  
 
4.3 Recommendations and prospects  
 
 The presented results indicate, that the contribution of landscape metrics surfaces as 
covarites to habitat suitability modelling holds promise and should be investigated further. 
Today also the necessary data in required quality can be obtained by satellite images. This 
procedure is not a quick and easy method to incorporate landscape metrics in the modelling 
process. Expert knowledge is required in more than one modelling step. Each decision should 
be questioned and verified on the basis of the available data. The content of this study was just 
a small blink at this special method and further research also on a multiscale approach would 
be rewarding.  
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Incorporating landscape metrics as surfaces into a habitat suitability 
modelling process 

 

1 Introduction 
 

A detailed description of the modelling process is presented in this part of the master thesis.  

Landscape metrics are calculated with special algorithms and quantify the spatial characteristics of 

patches, classes or the entire landscape. So, they in a way mirror the ecological processes that are 

present in the corresponding landscape, which is a key factor for the suitability of the environment 

and the distribution of animals and plants.  

The aim of this study is to try to find a possibility to use landscape metrics for habitat suitability 

modelling and examine if thereby useful models of sound quality can be built.  Therefore, it is necessary 

to construct surfaces of this landscape metrics, because HSM algorithms need this kind of ecological 

information to form the niche of a species and project it into geographic space.  

The algorithm of choice to work with is Maxent (Phillips et al. 2006). Maxent is a presence only habitat 

suitability modelling method, which perpetually shows good results and is gladly used in many 

publications.  

Target area is Carinthia, Austria; target species is Coronella austriaca, the Smooth Snake.  

 

2 Materials 
 

Spatial data used to build the models and to create the surfaces:  

Description Type Source Reference 
System 

Resolution/ 
Accuracy  

Distribution data of 
Coronella austriaca, 
Carinthia 

Point data, 
Shapefile 

Herpetofaunistische Datenbank – 
Naturhistorsiches Museum Wien 

 WGS84 50m-4000m 

Distribution data of 
Coronella austriaca, 
Carinthia 

Point data, 
Excel File 

Arge NATURSCHUTZ, Klagenfurt BMN M31, 
WGS84 

10m-1245m 

Realraumanalyse 
Kärnten - generalized 
landuse Carinthia 

Shapefile https://www.data.+D6:D10gv.at/katalog/d
ataset/a944a696-767e-408f-a716-
49ccf5da866d, Land Kärnten, Abteilung 3 

EPSG:31258 Digitizing of 
satellite images 
and 
orthophotos, 
survey, areal 
images, maps, 
ÖK50 
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Aktuelle Vegetation 
Kärntens - current 
vegetation of 
Carinthia 

Shapefile, 
incomplete 

https://www.data.gv.at/katalog/dataset/7
650f523-35c9-46ba-a40e-50ee5e8b1467, 
Land Kärnten, Abteilung 3 

EPSG:31258 Detection scale 
1:50000 

EU 
Berichtsgewässernetz 
Land Kärnten - water 
body networks 
Carinthia 

Shapefile https://www.data.gv.at/katalog/dataset/5
21be3fe-e805-4011-9dc6-161e22261043, 
Land Kärnten, Abteilung 8 

EPSG:31258 Digitizing based 
on 1m-DTM and 
orthophotos 

Verkehrsnetz Kärnten 
- Transport Network 

Shapefile https://www.data.gv.at/katalog/dataset/4
cdb8791-fbe7-480d-90b8-2e50008ab0bd, 
Land Kärnten, Abteilung 7  

EPSG:31258 Digitising 
(1:1000), survey 

Gewässereinzugsgebi
ete Kärntens - 
Catchment areas of 
the water bodies of 
Carinthia 

Shapefile Zur Verfügung gestellt von / provided by: 
http://www.kagis.ktn.gv.at, Hr. Ing. 
Christian Mairamhof MSc (GIS)  

EPSG:31258 Based on the 
catchment area 
of the river Drau 

Klimaatlas Kärnten 
Klimaelement 
komplexe 
Klimagrößen -Climate 
Atlas of Carinthia - 
climatic element 
complex climate 
values 

ASCII https://www.data.gv.at/katalog/dataset/0
73a0324-e258-41ff-bfe2-b291e7be755f, 
Land Kärnten, Abteilung 8  

EPSG:31258 250x250m 

Klimaatlas Kärnten 
Klimaelement 
Niederschlag - 
Climate Atlas of 
Carinthia - climatic 
element precipitation 

ASCII https://www.data.gv.at/katalog/dataset/5
2d21708-fe51-4744-9dec-8f166d412260, 
Land Kärnten, Abteilung 8  

EPSG:31258 250x250m 

Klimaatlas Kärnten 
Klimaelement 
Schneefall und 
Schneedecke - 
Climate Atlas of 
Carinthia - climatic 
element snow fall and 
snow cover 

ASCII https://www.data.gv.at/katalog/dataset/1
a71a739-7c92-4bd0-ad44-05044ccddae8, 
Land Kärnten, Abteilung 8 

EPSG:31258 250x250m 

Klimaatlas Kärnten 
Klimaelement 
Strahlung - Climate 
Atlas of Carinthia - 
climatic element 
radiation 

ASCII https://www.data.gv.at/katalog/dataset/1
9979e7a-bfe1-4019-a3f1-1c9f32e46314, 
Land Kärnten, Abteilung 8 

EPSG:31258 250x250m 

Klimaatlas Kärnten 
Klimaelement 
Temperatur - Climate 
Atlas of Carinthia - 
climatic element 
temperature 

ASCII https://www.data.gv.at/katalog/dataset/9
ebdeecf-37ff-4c0b-ab1e-8aff8f95cfea, Land 
Kärnten, Abteilung 8 

EPSG:31258 250x250m 

Table 1: Data used for model building. 
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Software and extensions / packages used to conduct the experiments:  

ArcGis 10.5.1 (ESRI 2011) 

R (R Core Team 2019) 

Corrplot (Wei and Simko 2017) 

ZonalMetrics Toolbox (Adamczyk und Tiede 2017) 

ENMTool (Warren et al. 2010) 

Maxent 3.4.1 (Phillips et al. 2006) 

QGis (QGIS Development Team 2019) 

 

3 Methods 

3.1 Filtering distribution data  
 

After transformation of the distribution points to EPSG:31258 the obtained distribution data of 

Coronella austriaca was split in useful and useless groups. For this survey, only points with an 

uncertainty of 100 m or less should be used.  From the “Herpetofaunistische Datenbank – 

Naturhistorisches Museum Wien“ 1083 points were obtained from which 103 distribution points will 

be used for modelling. From the “Arge NATURSCHUTZ” 125 points were transferred from which 26 will 

be used.  

Accuracy of points: 

source 100m 50m 30m 20m 10m Total 

Herpetofaunistische 
Datenbank 

36 63 - 4 - 103 

Arge 
NATURSCHUTZ 

5 1 1 12 7 26 

Sum 41 64 1 16 7 129 
Table 2: Sample points of Coronella austriaca and their accuracy. 

As a total 129 sample points can be used for model building.  

 

3.2 Updating the vegetation layer 
 

The unfortunately incomplete vegetation data file from Carinthia must be updated and refined for the 

purpose of the survey. The missing data (mostly water bodies, transport facilities, urban areas, some 

wetlands and some parts of alpine areas) was taken from the layer “Realraumanalyse Kärnten”. After 

some modifications of the attribute table (the columns must have the same names and data types in 

both data files) the missing information could be added via “update feature class” in ArcGis (ESRI 2011). 

Still some empty areas could be found in the file. This information was added via digitizing and the 

assistance of information from the “Realraumanalyse” and the “Karte der aktuellen Vegetation 

Kärntens” (Hartl et al. 2001).  

Subsequently to the completing of the vegetation layer, the correct topology was reviewed and, if 

necessary, improved.  
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Figure 1: Cutout of the ArcGis (ESRI 2011) desktop during topology check. 

 

After the completion of the vegetation layer further information had to be added for the purpose of 

the survey. To calculate realistic landscape metrics in a scale relevant for Coronella austriaca the 

vegetation layer was updated with information concerning water bodies (brooks and rivers). 

Therefore, buffers were created, depending on the size of the brook. To distinguish between the 

different sizes of rivers/brooks the “Einzugsgebietsgrößenklassen” GRKATWRRL (Eisenkölb and Vinzce 

2009) were considered. All watercourses of a category were exported from the feature class – except 

for category one: it only contained the river “Drau”, which was already included in the vegetation layer. 

The buffer size was a reasonable compromise, because the size of a stream of course increases 

downstream and is not constant all the time. The buffers are afterwards merged for each river 

category, exported as feature class and added to the vegetation layer (update feature class).  

 

Categories of brooks and the buffer size used:  

Category Buffer size Feature class 

1 - Already existing in the vegetation 
layer (“Gewässer”) 

3 12,5 m  KAT_3_Buffer 

4 10 m KAT_4_Buffer 

5 7,5 m KAT_5_Buffer 

6 5 m KAT_6_Buffer 

7 3 m  KAT_7_Buffer 
Table 3: Buffer sizes for the different river categories. 

After the update, the topology was reviewed again and corrected.  

Subsequently to the finishing of the corrections, the vegetation layer of Carinthia consisted of 51 

classes, where the different categories of rivers/brooks (Kat_3-Kat_7) could be aggregated to one 

class: 
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Name_Agg Name 

Bau_geschl Autobahn 

Bau_geschl Betriebsgelaende 

Bau_geschl Flughafen 

Bau_geschl Geschlossene bzw dichte Bebauung 

Bau_geschl Gletscherflaechen 

Bebaut Historisches Erbe, Schloss- und Klosteranlagen 

Bebaut Offene Bebauung, unterschiedlicher Art 

Bebaut Pioniervegetation auf Schutt und Fels 

Bestockt Grauerlenbestaende 

Bestockt Latschenkrummholz 

Bestockt Montan - subalpines Laubbuschwerk 

Bestockt Roehrichte- und Großseggenfluren 

Bestockt Schwarzerlenbestaende 

Bestockt Weidenbestaende 

Gewaesser Gewaesser 

Gewaesser Kat_3 

Gewaesser Kat_4 

Gewaesser Kat_5 

Gewaesser Kat_6 

Gewaesser Kat_7 

GL_Intensiv Acker-Gruenlandkomplexe 

GL_Intensiv Sportflaechen (Golfplaetze, etc.) 

GL_Intensiv Staedtisches Gruen und diverse Sportflaechen 

GL_Intensiv Wintersportgelaende 

GL_Intensiv Wirtschaftsgruenland (Maehwiesen und Weiden) 

Gruenland Autobahn-Tunnel 

Gruenland Feuchtgebiete, Moore 

Gruenland Hochmoor 

Gruenland Laerchenwiesen 

Gruenland Niedermoor 

Gruenland Subalpine u. alpine Rasen, Extensiv-Weiden ueber Karbonatgestein 

Gruenland Subalpine u. alpine Rasen, Extensiv-Weiden ueber Silikatgestein 

Gruenland Weiderasen u. Bergmaehder ueber Karbonatgestein 

Gruenland Weiderasen u. Bergmaehder ueber Silikatgestein 

Gruenland Zwergstrauchheiden, Mosaik Zwergstrauchheiden/Weiderasen ueber Karbonatgestein 

Gruenland Zwergstrauchheiden, Mosaik Zwergstrauchheiden/Weiderasen ueber Silikatgestein 

Wald (Buchen)-Tannen-Fichtenwald. Buchen-Tannenwald, Tannenwald ueber Karbonatgestein 

Wald (Buchen)-Tannen-Fichtenwald. Buchen-Tannenwald, Tannenwald ueber Silikatgestein 

Wald Buchenwald 

Wald Feuchter Laubmischwald (Erlen-,Eschen-,Weiden-,Bergahorn) 

Wald Fichten-Laerchenwald 

Wald Fichtenwald, sekundaere Fichtenforste ueber Karbonatgesetein 

Wald Fichtenwald, sekundaere Fichtenforste über Silikatgesetein 

Wald Laerchen-Fichtenwald 

Wald Nadel-Laubmischwald (Rotfoehren-Buchenwald, Fichten-Buchenwald) 

Wald Nadel-Mischwald mit Laubholzeinsprengungen 

Wald Rotfoehren-Fichtenmischwald 

Wald Rotfoehrenwald 

Wald Schwarzfoehrenwald 

Wald Warmer Laubmischwald (Manna-Esche, Hopfenbuche, Mehlbeere, Eichen) 

Wald Zirbenwald und Laerchenzirbenwald 

Table 4: Aggregation of the vegetation classes. 
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For some of the further landscape metrics calculations (Contrast, Connectance), the classes were 

aggregated to fewer atop-classes that represent special and alike ecological functions for Coronella 

austriaca (Name_agg – see Table 4). That’s why for example “Pinoniervegetation auf Schutt und Fels” 

(pioneer vegetation on boulder and rocks) was dedicated to the atop class “Bebaut” (covered with 

buildings) together with 2 other forms of “real” house building.  

A second, lower level aggregation was conducted for the area metrics calculation for the whole of 

Carinthia to speed up calculation time a little bit. I aggregated the vegetation classes very gentle to 

lose as less information as possible for the calculation of landscape metrics – and keep characteristics 

of vegetation classes such as dry or wet ground.  

Name Agg_2_light 

Acker-Gruenlandkomplexe Acker-Gruenlandkomplexe 

Autobahn Bau_Geschlossen 

Betriebsgelaende Bau_Geschlossen 

Flughafen Bau_Geschlossen 

Geschlossene bzw dichte Bebauung Bau_Geschlossen 

(Buchen)-Tannen-Fichtenwald. Buchen-Tannenwald, 
Tannenwald über Karbonatgestein 

Buchen_Tannen_Fichten_Wald 

(Buchen)-Tannen-Fichtenwald. Buchen-Tannenwald, 
Tannenwald über Silikatgestein 

Buchen_Tannen_Fichten_Wald 

Buchenwald Buchenwald 

Grauerlenbestaende Erle_Weide 

Schwarzerlenbestaende Erle_Weide 

Weidenbestaende Erle_Weide 

Feuchter Laubmischwald (Erlen-,Eschen-,Weiden-
,Bergahorn-) 

Feuchter Laubmischwald (Erlen-Eschen-Weiden-
Bergahorn) 

Feuchtgebiete, Moore Feuchtgebiete 

Hochmoor Feuchtgebiete 

Niedermoor Feuchtgebiete 

Fichten-Laerchenwald Fichten_und_Mischwald 

Fichtenwald, sekundaere Fichtenforste über 
Karbonatgesetein 

Fichten_und_Mischwald 

Fichtenwald, sekundaere Fichtenforste über 
Silikatgesetein 

Fichten_und_Mischwald 

Laerchenwiesen Laerchenwiesen 

Rotfoehren-Fichtenmischwald Foehrenwald 

Rotfoehrenwald Foehrenwald 

Schwarzfoehrenwald Foehrenwald 

Gletscherflaechen Gletscherflaechen 

Laerchen-Fichtenwald Laerchenwald 

Zirbenwald und Laerchenzirbenwald Laerchenwald 

Latschenkrummholz Latschenkrummholz 

Nadel-Laubmischwald (Rotfoehren-Buchenwald, Fichten-
Buchenwald) 

Mischwald 

Nadel-Mischwald mit Laubholzeinsprengungen Mischwald 

Montan - subalpines Laubbuschwerk Montan - subalpines Laubbuschwerk 

Historisches Erbe, Schloß- und Klosteranlagen Offene_Bebauung 

Offene Bebauung, unterschiedlicher Art Offene_Bebauung 

Pioniervegetation auf Schutt und Fels Pioniervegetation auf Schutt und Fels 

Roehrichte- und Großseggenfluren Roehrichte- und Grossseggenfluren 

Sportflaechen (Golfplaetze, etc.) Sport_Park 

Staedtisches Gruen und diverse Sportflaechen Sport_Park 
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Subalpine u. alpine Rasen, Extensiv-Weiden ueber 
Karbonatgestein 

Subalpine_alpine_Rasen_Extensivweiden 

Subalpine u. alpine Rasen, Extensiv-Weiden ueber 
Silikatgestein 

Subalpine_alpine_Rasen_Extensivweiden 

Warmer Laubmischwald (Manna-Esche, Hopfenbuche, 
Mehlbeere, Eichen) 

Warmer Laubmischwald (Manna-Esche 
Hopfenbuche Mehlbeere Eichen) 

Gewaesser Wasser 

Kat_3 Wasser 

Kat_4 Wasser 

Kat_5 Wasser 

Kat_6 Wasser 

Kat_7 Wasser 

Weiderasen u. Bergmaehder über Karbonatgestein Weiderasen_Bergmaehder 

Weiderasen u. Bergmaehder über Silikatgestein Weiderasen_Bergmaehder 

Autobahn-Tunnel Wirtschaftsgruenland_Maehwiesen (GL_int) 

Wintersportgelaende Wirtschaftsgruenland_Maehwiesen (GL_int) 

Wirtschaftsgruenland (Maehwiesen und Weiden) Wirtschaftsgruenland_Maehwiesen (GL_int) 

Zwergstrauchheiden, Mosaik 
Zwergstrauchheiden/Weiderasen über Karbonatgestein 

Weiderasen_Bergmaehder 

Zwergstrauchheiden, Mosaik 
Zwergstrauchheiden/Weiderasen über Silikatgestein 

Weiderasen_Bergmaehder 

Table 5: Lower level aggregation of the vegetation classes. 

 

3.3 Test area and landscape metrics   
 

 

Figure 2: Size and position of the delimited test area for landscape metrics calculation. 

 

To examine which landscape metrics surfaces could be appropriate for the task, a test area was 

delimited. Its size is about a fourth of the area of Carinthia. It contains 46 locations where Coronella 

austriaca was detected. This was necessary because of the huge amount of data to limit the calculation 

time that it takes to fulfill the landscape metrics calculations. The final model will include the whole 

area of Carinthia. 
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The vegetation layer was clipped to the size of the test area. Also the layer of the catchment areas of 

the rivers in Carinthia, which will be used as statistical layer for the zonal metrics  (Adamczyk und Tiede 

2017) calculation, was clipped.  

As next step regular tessellation surfaces (hexagons) in different cell sizes where generated for the test 

area with the ZonalMetrics toolbox (Adamczyk und Tiede 2017). The cell size was approximately 5ha, 

10ha, 15ha, 25ha and 35ha. The approximation depends on the fact that the ZonalMetrics tool works 

with the shorter diagonal of the hexagon to determine the size of the statistic zone (the size of each 

hexagon). So, for the 5ha tessellation surface the size of the shorter diagonal was 242m, for 10ha 340 

m, 15ha 416m, 25ha 538m and 35ha 636m.  

For the vegetation layers attribute table to be used in the landscape metrics calculation with the 

ZonalMetrics toolbox, all mutated vowels (ä, ö, ü) and special signs (ß) had to be eliminated. Also, the 

attribute table of the catchment areas had to be modified because of mutated vowels and special signs 

(some columns where deleted).  

Landscape metrics that can be used within the ZonalMetrics toolbox are selected because of their 

ability to deal with the restriction that the statistical zones insert and their importance for the target 

species. Statistical zones are small subsets of the whole landscape. There are 3 possibilities to deal with 

the patches that overlap the statistical zone: you can cut them, select all overlapping patches and 

calculate the metrics for each whole patch - repeatedly counting is allowed, or select the patches 

whose centroid is located inside the zone - no repeatedly counting of patches is allowed (Adamczyk 

und Tiede 2017). I decided to select the “cut” option, because the statistical zones in that case should 

picture the home ranges of Coronella austriaca individuals or populations.  

So, for all statistical area datasets (5ha, 10 ha, 15ha, 25ha, 35ha, Gewässereinzugsgebiete (GEZG -

catchment areas) the following landscape metrics were calculated: 

Not all calculated landscape metrics could be used for model building. The italicized metrics where 

not used in this study.  

-Area Metrics (for Agg_2_light): 

Not for woodlands – only for open habitat types: 

ca<className> Class area (patch) for each class in the respective statistical zone 

npc<className> Number of patches for each class per zone 

pz<className> Percent of the area of the whole statistical zone taken by the patch (especially 

important for the catchment areas because of their unequal sizes and tessellation surface edge 

zones) 

 

-Largest Patch Index (for all classes): 

lpi Percentage of the total area of the statistical zone taken by the largest patch 

lpi_class Name of the largest patch class 

 

-Connectance Metrics (for the high-level aggregated classes – Name_Agg) 

Maximum connectance distance: 500m, Offset: 100m, classes: Bebaut, Bestockt, GL_intensiv, 

Gruenland (merged) 
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ci_np Number of distinct (by FID) connected classes 

ci_pa Patch area within the range of connection 

ci_pp Percentage of patch area that lies within the range of connection to the statistical zone 

ci_ca The Area of the connection zone between the patches 

ci_cp Percentage of the connection zone between the patches in comparison to the statistical zone 

 

-Contrast Metrics (for the high-level aggregated classes – Name_Agg) 

Analyzed (one at a time): Bebaut, GL_intensiv, Bestockt, Gruenland, Contrast classes: Bau_geschl, 

Gewaesser, Wald. 

el_a_class Edge length of the focus class  

el<className> Edge length of the boundary of the focus class which is shared with the contrast classes 

cce<className> Contrast index which is calculated as the percentage of the edge length of the focus 

class shared with the contrast class(es) 

 

-Diversity Index (for all classes) 

shdi Shannon Diversity-value for selected classes per zone 

 

- Line kernel density surface of the edge density  

Overall, four kernel density surfaces were created to test their representation abilities for the edge 

density in the test area.  

The vegetation layer of the test area was converted from polygon to polyline. After that, the transport 

system shape file was cut to the extent of the test area and then merged with the line shapefile of the 

former vegetation layer. So, all possible edges in the test area should be represented.  

Now the line kernel density of this data set was calculated with ArcGis (ESRI 2011). The decision for a 

bandwidth is a key step in kernel density estimation, depending on the smoothing of the resulting 

surface. As a rule of thumb ArcGis (Esri 2011) works with the rule of Silverman (Silverman 1986) which 

is based on quadratic kernel function. So, to get a coarse overview the first surface was calculated with 

the suggested bandwidth of 1741,1125 m. To compare this surface with other outcomes, three more 

surfaces with bandwidths of 500m, 1000m and 1500m where created. To picture the edge densities in 

an appropriate way, the smoothing of the surface should not be to ample. So, in my professional 

opinion and the comparison with the line-dataset, the surface with the bandwidth of 1000m shows an 

appropriate compromise between over- and undersmoothing for this special purpose.  

 

   

  pz<class name> Percent of the area of the whole statistical zone taken by the patch 

1 pz_glint cultivated grassland 

2 pz_offbau light building desity 

3 pz_feucht wetlands 
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4 pz_weide pastures and mountainious hay meadow 

5 pz_acker acre-grassland 

6 pz_latsche dwarf pine knee timber 

7 pz_pionier pioneer vegetation on boulder and rocks 

8 pz_subalp subalpine and alpine grassland and pastures 

  Diversity Metric 

 Shannon Diversity Index 

9 shdi shannon diversity index  

  Connectance Metrics 

 

Maximum connectance Distance: 500m, Offset 100m, covered w. buildings, int. grassland, planted, grassland 
(merged) 

10 ci_np number of distinct (by FID) connected classes 

11 ci_pp 
percentage of patch area that lies within the range of connection to the statistical 
zone 

12 ci_cp 
Percentage of the connection zone between the patches in comparison to the 
statistical zone 

  Largest Patch Index 

13 lpi percentage of the total area of the statistical zone taken by the largest patch 

  Contrast Metrics 

 

Analyzed (one at a time): covered w. buildings, int. grassland, planted, grassland, Contrast classes: compact 
settlement, waterbodies, forest. 

  covered w. buildings  

14 cce_beb_bau contrast: compact settlement 

15 cce_beb_was contrast: water bodies  

16 cce_beb_wa contrast: forest 

 intensive grassland  

17 cce_gli_bau contrast: compact settlement 

18 cce_gli_was contrast: water bodies  

19 cce_gli_wa contrast: forest 

 planted  

20 cce_bes_bau contrast: compact settlement 

21 cce_bes_was contrast: water bodies  

22 cce_bes_wa contrast: forest 

 grassland  

23 cce_gl_bau contrast: compact settlement 

24 cce_gl_was contrast: water bodies  

25 cce_gl_wa contrast: forest  

  Kernel Density - lines  

26 kernel  line kernel density to represent edge density  

    
Table 6: Composition of the different landscape metrics layers used for model building. 

 

To be able to use this data for ecological modelling, all vector data sets had to be converted in raster 

data. The resolution was 100m – because of the partly large inaccuracies of Coronella austriaca data. 

Resampling method was “bilinear” and for the conversion process “maximum combined area” was 

chosen. 
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After converting vector data to raster data, all layers were extracted by mask to make sure that extend 

and raster snapping is the same for all of them. As last step, all layers were converted to ASCII files, the 

format, Maxent works with.  

In the end, 26 surfaces where ready to use for Maxent (Phillips 2004) modelling.  

To get an insight in how the size of the statistical areas influences the correlation between the layers 

(scale dependency), correlation matrices for the 6 different “resolutions” of landscape metrics and all 

26 layers were calculated with EMNTool (Warren et al. 2010) and visualized with the R package 

“corrplot” (Wei and Simko 2017).  
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Figure 3: The 6 correlation matrices show the relationships between the 26 input layers (top left: 5ha, top right: 10ha, 

middle left: 15ha, middle right: 25ha, bottom left: 35ha, bottom right: catchment areas (GEZG). 
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R script for the correlation plots (example for the 10ha surface): 

library(corrplot) 

setwd('D:/ENMTool_Output_alle/') 

corr10_mat <- read.csv2('Correlation_10/Correlation_10_2.csv', header = TRUE, sep = ',', dec = '.') 

#making a decent matrix# 

rownames(corr10_mat) <- corr10_mat$SPECIES 

corr10_mat$SPECIES <- NULL 

corr10_mat <- as.matrix(corr10_mat) 

corrplot(corr10_mat, method="circle", type="upper") 

As you can see from the plots, the correlations vary for the same landscape metrics layers for all 6 

resolutions. Also, the correlations tend to get stronger, positive as well as negative, the larger the 

statistical surfaces get. That strangely is the opposite outcome than “Toblers law” (Tobler 1970) may 

let expect, where near things should be more related than distant things. This could be an effect of the 

changing extend by varying the hexagon size of the statistical units (Schindler et al. 2013).  

 

 

3.4 Model runs for the test area 
 

After preparation of the input data sets, model building with Maxent GUI (Phillips et al. 2006) was 

started. 26 surfaces of landscape metrics where ready to use and to evaluate which of them, and which 

“resolution” of them, should be part of the final model for the whole of Carinthia. I also just used the 

landscape metrics surfaces for the model runs, to focus on the influence of this special predictors 

alone. Through this approach also the most contributive environmental variables can be detected. In 

the final model also other predictors like insolation and precipitation for example shall take part. 

The sample points of Coronella austriaca were spatially filtered to clean the data and reduce bias (Boria 

et al. 2014). Only points with a distance of at least 500m should be used for model building. Therefore, 

a 500m buffer was built around the sample points. Points inside the 500m buffer were deleted from 

the dataset arbitrarily. After cleaning, 38 of 46 points could be used for model building.  

To keep things simple and conservative (no overfitting and at this state no tuning) only linear and 

quadratic features were allowed for the model settings (Phillips 2004). The regularization multiplier, 

which controls the intensity of regularization across all features, was set to two. The default 

regularization multiplier is one. The larger multiplier should result in a less discriminating prediction 

(Radosavljevic und Anderson 2014). These settings were the same for the 6 model runs. Number of 

iterations was 20 and jackknife was used for model evaluation, random test percentage was 25%, 

number of background points was 10000. Logistic output was chosen for the model output.  

To choose which resolution of the statistical surfaces should be used in the final model, AUC (area 

under the ROC curve) and the omission rate (OR), two common metrics of model performance, were 

consulted (Shcheglovitova und Anderson 2013). 
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4 Results for the test area 
 

Figure 4:  The 6 model outputs with 10 percentile training presence logistic threshold to distinguish between suitable 

(green) and unsuitable (gray) habitat. Top left: 5ha, top right: 10ha, middle left: 15ha, middle right 25ha, bottom left: 35ha, 

bottom right: GEZG (catchment areas). 
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Table 7: Percentage of contribution of each layer and its permutation importance for the 6 resolutions. 

Variable % contribution Perm. importance Variable % contribution Perm. importance Variable % contribution Perm. importance

cce_be_was 20.8 5.2 ce_bes_was10a 20.7 12 lpi_15a 21.6 6.5

pz_offenbau 15.9 4.7 lpi_10 18 3.4 shdi_15a 19.1 20.3

lpi_5 13.5 1.9 pz_offbau10a 13.6 3.9 ce_gli_bau15a 11 5.9

shdi_5 10.1 26.2 shdi_10a 12.8 29 ce_bes_was15a 10.8 4.9

cce_bau_wa 6.1 1.8 cce_gl_was10a 7 3.2 pz_glint15a 6.6 19.3

kernel_edge 3.8 12.2 ce_gli_wa10a 5.5 3 ce_beb_wa15a 4.7 2.6

cce_gr_wa 3 3.7 kernel_10a 5 10.4 pz_offbau15a 4.2 3

cce_gr_was 2.9 1.2 pz_glint10a 2.4 7.4 pz_acker15a 3.3 5.3

cce_bau_was 2.9 9.2 ce_beb_was10a 2.3 3.5 kernel_15a 3.1 4.5

pz_acker 2.7 8.4 ci_pp_10a 2 1.7 ce_gli_was15a 2.1 4.6

cce_bau_ges 2.5 0.6 ce_gli_bau10a 1.7 3 ce_beb_bau15a 2 4

pz_glintensiv 2.4 4.4 ce_beb_bau10a 1.4 1 ce_gl_wa15a 2 1.8

ci_pp_5 2.3 5 ci_cp_10a 1.2 5.2 ce_gli_wa15a 1.8 2

cce_gl_ges 2.2 1.7 ce_gli_was10a 1.1 1.7 ce_beb_was15a 1.5 7.4

cce_gl_was 2.1 1.3 ce_beb_wa10a 1 1.8 ci_np_15a 1.3 0.6

ci_cp_5 1.7 1.2 cce_gl_wa10a 0.9 2.3 ce_gl_was15a 1.2 1.8

pz_feuchtgeb 1.3 0.8 pz_weide10a 0.8 0.1 ci_pp_15a 0.9 1.5

cce_gl_wa 1.2 2.6 ci_np_10a 0.8 2.4 ci_cp_15a 0.8 0.4

pz_weiden 1.2 7.1 cce_bes_wa10a 0.7 0.3 ce_bes_wa15a 0.8 0.3

cce_be_wa 0.8 0.2 pz_acker10a 0.6 4.5 pz_weide15a 0.8 0.4

ci_np_5 0.5 0.8 pz_feuchtg10a 0.4 0.2 pz_feucht15a 0.2 2.9

cce_gr_ges 0 0 cce_gl_bau10a 0 0 ce_bes_bau15a 0.2 0

pz_pionierveg 0 0 ce_bes_bau10a 0 0 ce_gl_bau15a 0 0

cce_be_ges 0 0 pz_subalp10a 0 0 pz_poinier15a 0 0

pz_subalpin 0 0 pz_pionier10a 0 0 pz_latsche15a 0 0

pz_latschenkr 0 0 pz_latsche10a 0 0 pz_subalp15a 0 0

5ha 10ha 15ha

Variable % contribution Perm. importance Variable % contribution Perm. importance Variable % contribution Perm. importance

shdi_25a 35.7 17.7 lpi_35a 28.9 7.5 ce_gl_wasga 19.4 10.3

lpi_25a 18.4 8.7 pz_glint35a 13.3 29.4 pz_glint_gea 14.1 19

pz_glint25a 12.4 24.5 shdi_35a 8.9 8.2 kernel_gezga 12.6 9.1

kernel_25a 7.3 7.7 kernel_35a 8.7 14.3 ci_cp_gezga 9.1 4

ce_bes_was25a 6.2 2.7 ce_bes_was35a 8.1 6.4 pz_ofbau_gea 7.4 0.2

pz_acker25a 3.1 6.7 ce_gl_wa35a 4.2 4.5 ce_gli_waga 6.5 5.2

ce_gl_was25a 2.3 3.3 ce_beb_bau_35a 4 1.7 pz_acker_gea 4.8 15.8

ce_gli_bau25a 1.8 0.5 ce_gli_wa35a 3.8 3.9 shdi_gezga 4.2 6.2

ce_beb_bau25a 1.6 1.9 ce_bes_bau35a 2.3 1.1 ce_gli_wasga 2.9 3.2

ci_cp_25a 1.5 5.8 ce_beb_wa35a 2.3 1 lpi_gezga 2.6 0.3

pz_feucht25a 1.5 8.6 pz_feucht35a 2.2 0.9 ce_gl_bauga 2.6 3.4

ce_beb_was25a 1.4 0.8 pz_offbau35a 2.1 0.7 ce_beb_wasga 2.4 6.2

ce_beb_wa25a 1.2 3.1 ce_gli_bau35a 2.1 5.4 ce_beb_bauga 2.1 3

ce_gl_wa25a 1.1 3.1 ci_cp_35a 1.6 1.6 ce_bes_waga 2 4.2

ce_bes_wa25a 0.9 1.2 pz_acker35a 1.5 5.5 pz_feucht_gea 1.7 3.5

ce_bes_bau25a 0.8 0.2 ce_gl_was35a 1.5 0.7 ce_bes_wasga 1.1 0.6

ce_gli_was25a 0.8 1.6 ce_beb_was35a 1.4 3.2 ce_gl_waga 1.1 2.6

ce_gli_wa25a 0.7 0.3 ce_bes_wa35a 1.1 0.1 ce_beb_waga 0.7 0.9

pz_offbau25a 0.5 1.2 pz_weide35a 0.8 0.3 ci_pp_gezga 0.6 1.2

ci_pp_25a 0.4 0.3 ci_np_35a 0.5 0.7 ci_np_gezga 0.5 0.1

pz_weide25a 0.2 0 ce_gli_was35a 0.4 2 pz_weide_gea 0.5 0.2

ci_np_25a 0.1 0.1 ci_pp_35a 0.2 0.7 ce_bes_bauga 0.5 0.1

ce_gl_bau25a 0 0 ce_gl_bau35a 0.1 0 ce_gli_bauga 0.4 0.1

pz_latsche25a 0 0 pz_pionier35a 0 0.1 pz_pion_gea 0.1 0.5

pz_pionier25a 0 0 pz_subalp35a 0 0 pz_latsch_gea 0.1 0.3

pz_subalp25a 0 0 pz_latsche35a 0 0 pz_subal_gea 0 0

25ha 35ha GEZG
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Table 8: AUC (Area under the ROC curve) and OR (Omission Rate) values for the 6 model runs. 

 

To get a quantitative measure for the “difference” of the model run outcomes in geographic space, 

three measures of niche overlap were calculated with ENMTool  (Warren et al. 2010). Schoeners D 

(Schoener 1968), I statistic (Warren et al. 2008) and relative rank RR (Warren und Seifert, S. N. 2011)  

D is a rather conservative measure whereas I often overestimates the similarity of the models. The 

three metrics reach from 0 (no overlaps) to 1 (identical models). For D and I the metrics are calculated 

by determining the difference between the models in suitability score per grid cell after standardizing 

the suitabilities to sum up to 1 over the measured geographic space. The RR statistic is calculated 

differently: it does not consider the quantitative difference of suitability estimates. Instead it estimates 

the probability that the relative ranking of two random patches of habitat is the same for the compared 

models. Because RR is based on ranks its results can differ from D and I results.  

 

D 5ha 10ha 15ha 25ha 35ha GEZG 

5ha 1 0,8169 0,79864 0,73448 0,75243 0,67603 

10ha x 1 0,81459 0,74708 0,77144 0,70088 

15ha x x 1 0,76149 0,77971 0,69300 

25ha x x x 1 0,77744 0,69073 

35ha x x x x 1 0,71369 

GEZG x x x x x 1 

Table 9: Schoeners D (Schoener 1968) matrix for the 6 model outcomes. 

I 5ha 10ha 15ha 25ha 35ha GEZG 

5ha 1 0,96892 0,96429 0,93859 0,94569 0,90716 

10ha x 1 0,97079 0,94436 0,95521 0,92221 

15ha x x 1 0,94973 0,95688 0,91844 

25ha x x x 1 0,95343 0,91431 

35ha x x x x 1 0,92535 

GEZG x x x x x 1 
 Table 10: I statistic (Warren et al. 2008) matrix for the 6 model outcomes. 

RR 5ha 10ha 15ha 25ha 35ha GEZG 

5ha 1 0,74081 0,74695 0,70321 0,69733 0,59876 

10ha x 1 0,74674 0,70455 0,71101 0,62127 

15ha x x 1 0,73850 0,73786 0,62415 

25ha x x x 1 0,75728 0,65928 

35ha x x x x 1 0,66882 

GEZG x x x x x 1 
 Table 11: Relative Rank RR (Warren und Seifert, S. N. 2011) matrix for the 6 model outcomes. 

Surface 
AUC OR 

5 ha 0,8642 0,3686 

10 ha 0,8432 0,3685 

15 ha 0,8579 0,3608 

25 ha 0,8899 0,3461 

35 ha 0,8849 0,3271 

GEZG 0,8854 0,3511 
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5 The final models of Carinthia 
 

The aim was to model habitat suitability for Coronella austriaca for Carinthia, the most southern 

province of Austria, and to use the most helpful landscape metrics surfaces for this species and this 

purpose, together with additional important habitat parameters.  

To find out which landscape metrics at what scale are important for Coronella austriaca, the data of 

the test area model runs was used. Only landscape metrics surfaces with a contribution of four or more 

percent in the test area should take part in the final models. The only exception was the kernel density 

layer for the 5ha surface. The percentage of contribution was only 3,8 percent but the permutation 

importance was high with 12,2 percent. So, I decided to include this predictor as well. To decide, at 

which scale the model works best, AUC and OR were considered. Some studies identified the AUC 

value, calculated with presence – background data, as an arguable measure for the performance of 

models (Lobo et al. 2008; Warren and Seifert 2011) but it can be used to compare models of single 

species in a single study region, what is the case in this study (Shcheglovitova und Anderson 2013).  

AUC and OR showed very similar performance in the six model runs of the test area. So, I decided to 

examine the models at three important scales:  

- population scale (5ha) 

- metapopulation scale (25ha)  

- natural ecological units – catchment areas (GEZG) 

Covariates used in the final models: 

5ha - population level 25ha - metapopulation level Natural ecological units (GEZG) 

cce_be_was shdi cce_gl_was 

pz_offenbau lpi pz_glint 

lpi pz_glint kernel 

shdi kernel pz_offbau 

cce_bau_wa cce_bes_was cce_gli_wa 

kernel vegetation layer pz_acker 

vegetation layer 
GS – mean annual global radiation 
(kWh/m2) shdi 

GS – mean annual global radiation 
(kWh/m2) 

N – average accumulated precipitation 
(mm) vegetation layer 

N – average accumulated precipitation 
(mm) 

NJJA – average accumulated summer 
precipitation (mm) 

GS – mean annual global radiation 
(kWh/m2) 

NJJA – average accumulated summer 
precipitation (mm) SD – mean snow cover duration (days) 

N – average accumulated precipitation 
(mm) 

SD – mean snow cover duration (days) 
SDB – average start of snow cover (day 
of the year) 

NJJA – average accumulated summer 
precipitation (mm) 

SDB – average start of snow cover (day 
of the year) 

SDE – average end of snow cover (day of 
the year) SD – mean snow cover duration (days) 

SDE – average end of snow cover (day of 
the year) 

AET07 – average equivalent 
temperature in July (°C) 

SDB – average start of snow cover (day 
of the year) 

AET07 – average equivalent 
temperature in July (°C)  

SDE – average end of snow cover (day of 
the year) 
AET07 – average equivalent 
temperature in July (°C) 

      
Table 12: Covariates used in the final models. 
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Unfortunately, the landscape metrics layer ci_cp for the catchment areas (GEZG) could not be 

considered for the final model, despite its high contribution (but low permutation importance) in the 

test models, because of ongoing calculation errors.  

The calculation of landscape metrics, conversion to raster (bilinear, maximum combined area), 

resolution (100x100m), masking and conversion into ASCII files was executed the same way as for the 

test area data. With one exception: the layers used for the catchment area (GEZG) model had to be 

clipped to the size of the catchment areas, because they did not cover exactly the whole area of 

Carinthia. But no sample point of Coronella austriaca occurrence data fell in the missing area. So, all 

models were calculated with the same amount of sample points. Climatic layers had to be resampled 

from a resolution of 250x250m to 100x100m.  

Coronella austriaca occurrence data consisted of 129 sample points. After spatial filtering (buffer of 

500m) to reduce bias through spatial autocorrelation, 94 sample points remained for modelbuilding 

(see test area data preparation). 

At this modelling step, also tuning of the final models was allowed. The models at first were calculated 

with the same settings as the test area models, to have a result to compare the tuned models to. The 

choice of features in the tuned models was led by the outcome of tuning experiments, made by Phillips 

and Dudik (Phillips und Dudík 2008): all feature classes for sample sizes of at least 80 occurrences. The 

regularization multiplier was set to one. Random test percentage was 25%, replicate runs 20, type: 

bootstrap, maximum iterations 5000, maximum number of background points: 10000, logistic output.  

To show differences in the model results, each model for the three different scales/resolutions was 

calculated two times plus one model without landscape metric layers:  

-with all parameters (xha all) 

-with landscape metrics only (xha LM) 

-with climatic and vegetation parameters only (without LM) 

The results of the tuned models showed better AUC values than the model runs with the 

conservative settings of the test area models. 

 

 

Table 13: AUC (Area under the ROC curve) values for the different model settings. 

 

 

 

  AUC 

surface  tuned test 

5ha all 0,920 0,882 

5ha LM  0,850 0,832 

25ha all  0,928 0,888 

25ha LM  0,859 0,834 

GEZG all 0,919 0,876 

GEZG LM 0,879 0,847 

without LM  0,893 0,857 
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5.1 Visualization of the model outcomes 
 

10 percentile training presence logistic threshold was chosen to distinguish between suitable (green) 

and unsuitable (gray) areas.  

 

5 ha surfaces:  

 
Figure 5: 5ha model with all covariates (landscape metrics, vegetation layer, climatic layers) (AUC= 0,920). 

 
Figure 6: 5ha model with landscape metrics surfaces only (AUC=0,850). 
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25 ha surfaces: 

 
Figure 7: 25ha model with all covariates (landscape metrics, vegetation layer, climatic layers) (AUC= 0,928). 

 

 
Figure 8: 25ha model with landscape metrics surfaces only (AUC=0,859). 
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Catchment areas (GEZG): 

 
Figure 9: GEZG model with all covariates (landscape metrics, vegetation layer, climatic layers) (AUC= 0,919). 

 

 

 
Figure 10: GEZG model with landscape metrics surfaces only (AUC=0,879). 
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Model without landscape metric surfaces:  

 

 
Figure 11: Model without landscape metrics surfaces – only with vegetation and climatic layers. (AUC= 0,893). 

 

5.2 Niche overlap  
 

The three measures of niche overlap were calculated with ENMTool (Warren et al. 2010) for the 7 

model result ASCII files. (w/o_LM = without landscape metrics, xxx_all = all surfaces were used for 

model building, xxx_LM = only landscape metrics were used for model building).  

 

D w/o_LM 5ha_all 5ha_LM 25ha_all 25ha_LM GEZG_all GEZG_LM 

w/o_LM 1 0,79558 0,63131 0,79851 0,61195 0,67550 0,64386 

5ha_all x 1 0,72694 0,85001 0,68784 0,66404 0,64501 

5ha_LM x x 1 0,68085 0,83806 0,60998 0,66627 

25ha_all x x x 1 0,69495 0,65881 0,63635 

25ha_LM x x x x 1 0,61438 0,67487 

GEZG_all x x x x x 1 0,80425 

GEZG_LM x x x x x x 1 
Table 14: Schoener´s D (Schoener 1968) matrix for the 7 model results.  

I w/o_LM 5ha_all 5ha_LM 25ha_all 25ha_LM GEZG_all GEZG_LM 

w/o_LM 1 0,95581 0,86487 0,95313 0,84777 0,90464 0,88020 

5ha_all x 1 0,93112 0,97954 0,90920 0,89674 0,88368 

5ha_LM x x 1 0,91225 0,97797 0,85676 0,89668 

25ha_all x x x 1 0,91715 0,89257 0,87821 

25ha_LM x x x x 1 0,85171 0,89360 

GEZG_all x x x x x 1 0,96216 

GEZG_LM x x x x x x 1 
Table 15: I statistic (Warren et. al 2008) matrix for the 7 model results. 
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RR w/o_LM 5ha_all 5ha_LM 25ha_all 25ha_LM GEZG_all GEZG_LM 

w/o_LM 1 0,84608 0,67107 0,84205 0,65518 0,76994 0,70657 

5ha_all x 1 0,81495 0,91297 0,78105 0,77600 0,74569 

5ha_LM x x 1 0,78913 0,87886 0,69275 0,71255 

25ha_all x x x 1 0,79425 0,77141 0,73778 

25ha_LM x x x x 1 0,68541 0,70993 

GEZG_all x x x x x 1 0,85817 

GEZG_LM x x x x x x 1 
Table 16: Relative Rank RR (Warren and Seifert 2011) matrix for the 7 model results. 

 

5.3 Correlations between the input layers 
 

 

 
Figure 12: Correlation matrices of the surfaces used to build the final models in 3 different resolutions (top left: 5ha, top 

right: 25ha, bottom: catchment areas (GEZG). 

 



 

49 
 

5.4 Coronella austriaca sample points 2019 

 

 
Figure 13: 5 newly collected sample points of Coronella austriaca from a field survey 2019. 

 

In the first week of August 2019 I made a field trip to Carinthia to collect new Coronella austriaca 

data. I concentrated on the southwestern part of Carinthia (mainly Upper Gailtal and Dolomites). 

Coronella austriaca was found at five locations.  

 

6 Vegetation of Carinthia in numbers 
 

To get an overview of size and patch number of the different vegetation objects and to avoid 

misinterpretations of outcomes of this study, 3 tables, each for the different aggregation levels, were 

made.  

The values for the high-level aggregation (Name_Agg) into seven atop classes can be found in table 17. 

The values for all unaggregated landscape patches can be found in table 18 and the values for the 

lower level aggregation (Agg_light) into 24 atop classes can be found in table 19.  

For the seven classes aggregation, “Wald” (forest) is the largest group with a proportion of 56,3 %, but 

the class “Bebaut” (covered with buildings) holds the highest number of patches.  

Regarding all vegetation elements without any aggregation, “Fichtenwald, sekundaere Fichtenforste 

ueber Silikatgestein“(forest of common spruce and secondary forests of common spruce on silicate) is 

the biggest vegetation class with a proportion of 19,32%. “Wirtschaftsgruenland” (meadows and 

pastures) is the second largest vegetation form with a proportion of 10,17%.  

The 24 classes of the low level aggregated vegetation layer show the same outcomes than the not 

aggregated vegetation layer: the largest vegetation element is “Fichten- und Mischwald” (spruce and 
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mixed forest) with 27,79%, followed by “Wirtschaftsgruenland und Maehwiesen” (meadows and 

pastures) with 10,46%.  

 

Name_Agg Anzahl m2 ha Prozent  

Bau_geschl 1100 130229903,8 13022,99 1,36 

Bebaut 8967 809896131,4 80989,61 8,49 

Bestockt 1796 199778499,3 19977,85 2,09 

Gewaesser 223 152675314,2 15267,53 1,60 

GL_intensiv 6263 1862071492 186207,15 19,51 

Gruenland 4005 1016936303 101693,63 10,65 

Wald 8638 5373410802 537341,08 56,30 

     
Table 17: Number of patches (Anzahl), size in square meters (m2) and hectares (ha) and percentage of the higher-level 

aggregated vegetation forms. 

 

NAME Anzahl m2 ha Prozent 

(Buchen)-Tannen-Fichtenwald. Buchen-Tannenwald, Tannenwald ueber Karbonatgestein 199 203278699,1 20327,87 2,13 

(Buchen)-Tannen-Fichtenwald. Buchen-Tannenwald, Tannenwald ueber Silikatgestein 166 152680661,7 15268,07 1,60 

Acker-Gruenlandkomplexe 971 849500071,7 84950,01 8,90 

Autobahn 20 14562745,89 1456,27 0,15 

Autobahn-Tunnel 20 1481153,347 148,12 0,02 

Betriebsgelaende 687 38258904,44 3825,89 0,40 

Buchenwald 174 43348471,34 4334,85 0,45 

Feuchter Laubmischwald (Erlen-,Eschen-,Weiden-,Bergahorn) 1507 181026639,6 18102,66 1,90 

Feuchtgebiete, Moore 320 33234298,46 3323,43 0,35 

Fichten-Laerchenwald 1004 278233960,3 27823,40 2,91 

Fichtenwald, sekundaere Fichtenforste ueber Karbonatgestein 332 529987891 52998,79 5,55 

Fichtenwald, sekundaere Fichtenforste ueber Silikatgesetein 636 1844094769 184409,48 19,32 

Flughafen 1 2113843,808 211,38 0,02 

Geschlossene bzw dichte Bebauung 249 23197258,27 2319,73 0,24 

Gewaesser 218 107922757,7 10792,28 1,13 

Gletscherflaechen 143 52097151,44 5209,72 0,55 

Grauerlenbestaende 512 74942882,28 7494,29 0,79 

Historisches Erbe, Schloss- und Klosteranlagen 147 4691798,621 469,18 0,05 

Hochmoor 8 577102,0878 57,71 0,01 

Kat_3 1 7231746,687 723,17 0,08 

Kat_4 1 2576358,596 257,64 0,03 

Kat_5 1 6542096,166 654,21 0,07 

Kat_6 1 22300135,73 2230,01 0,23 

Kat_7 1 6102219,379 610,22 0,06 

Laerchen-Fichtenwald 471 520837364,7 52083,74 5,46 

Laerchwiesen 86 8318164,701 831,82 0,09 

Latschenkrummholz 487 59553477,93 5955,35 0,62 

Montan - subalpines Laubbuschwerk 554 49794317,85 4979,43 0,52 

Nadel-Laubmischwald (Rotfoehren-Buchenwald, Fichten-Buchenwald) 725 318764083,9 31876,41 3,34 

Nadel-Mischwald mit Laubholzeinsprengungen 1233 304244016,1 30424,40 3,19 

Niedermoor 24 1677064,817 167,71 0,02 

Offene Bebauung, unterschiedlicher Art 8223 401253141,3 40125,31 4,20 

Pioniervegetation auf Schutt und Fels 597 403951191,5 40395,12 4,23 

Roehrichte- und Grossseggenfluren 31 2192159,417 219,22 0,02 

Rotfoehren-Fichtenmischwald 1464 888074670,8 88807,47 9,30 

Rotfoehrenwald 149 29766668,3 2976,67 0,31 
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Schwarzerlenbestaende 145 9241921,456 924,19 0,10 

Schwarzfoehrenwald 15 4631283,56 463,13 0,05 

Sportflaechen (Golfplaetze, etc.) 121 9795323,704 979,53 0,10 

Staedtisches Gruen und diverse Sportflaechen 248 5979917,248 597,99 0,06 

Subalpine u. alpine Rasen, Extensiv-Weiden ueber Karbonatgestein 105 47632668,77 4763,27 0,50 

Subalpine u. alpine Rasen, Extensiv-Weiden ueber Silikatgestein 307 223719919,1 22371,99 2,34 

Warmer Laubmischwald (Manna-Esche, Hopfenbuche, Mehlbeere, Eichen) 168 16552128,64 1655,21 0,17 

Weidenbestaende 67 4053740,395 405,37 0,04 

Weiderasen u. Bergmaehder ueber Karbonatgestein 365 76110394,47 7611,04 0,80 

Weiderasen u. Bergmaehder ueber Silikatgestein 2014 318635826,3 31863,58 3,34 

Wintersportgelaende 69 26477090,38 2647,71 0,28 

Wirtschaftsgruenland (Maehwiesen und Weiden) 4854 970319089,1 97031,91 10,17 

Zirbenwald und Laerchenzirbenwald 395 57889494,34 5788,95 0,61 

Zwergstrauchheiden, Mosaik Zwergstrauchheiden/Weiderasen ueber Karbonatgestein 144 19505584 1950,56 0,20 

Zwergstrauchheiden, Mosaik Zwergstrauchheiden/Weiderasen ueber Silikatgestein 612 286044127,2 28604,41 3,00 

     
Table 18: Number of patches (Anzahl), size in square meters (m2) and hectares (ha) and percentage of all vegetation forms. 

 

Agg_light Anzahl m2 ha Prozent 

Acker_Gruenlandkomplexe 971 849500071,7 84950,01 8,90 

Bau_Geschlossen 957 78132752,41 7813,28 0,82 

Buchen_Tannen_Fichtenwald 365 355959360,8 35595,94 3,73 

Buchenwald 174 43348471,34 4334,85 0,45 

Erle_Weide 724 88238544,13 8823,85 0,92 

Feuchter_Laubmischwald (Erle, Esche, Weide, Ahorn) 1507 181026639,6 18102,66 1,90 

Feuchtgebiete 352 35488465,36 3548,85 0,37 

Fichten_und_Mischwald 1972 2652316620 265231,66 27,79 

Foehrenwald 1628 922472622,7 92247,26 9,66 

Gletscherflaechen 143 52097151,44 5209,72 0,55 

Laerchenmischwald 866 578726859 57872,69 6,06 

Laerchenwiesen 86 8318164,701 831,82 0,09 

Latschenkrummholz 487 59553477,93 5955,35 0,62 

Mischwald 1958 623008100 62300,81 6,53 

Montan_subalpines_Laubbuschwerk 554 49794317,85 4979,43 0,52 

Offene_Bebauung 8370 405944939,9 40594,49 4,25 

Pionoervegetation_Schutt_Fels 597 403951191,5 40395,12 4,23 

Roehrichte_Grosseggenfluren 31 2192159,417 219,22 0,02 

Sport_Park 369 15775240,95 1577,52 0,17 

Subalpine_Alpine_Rasen_Extensivweiden 412 271352587,9 27135,26 2,84 

Warmer_Laubmischwald(Mannae, Hopfenb, Mehlb, Eich) 168 16552128,64 1655,21 0,17 

Wasser 223 152675314,2 15267,53 1,60 

Weiderasen_Bergmaehder 3135 700295932 70029,59 7,34 

Wirtschaftsgruenland_Maehwiesen 4943 998277332,9 99827,73 10,46 

     
Table 19: Number of patches (Anzahl), size in square meters (m2) and hectares (ha) and percentage of the lower level 

aggregated vegetation forms. 
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7 Conclusion 
 

At this point I would like to emphasize the most important findings of this technical report as 

recommendation for further research. For more information please consult the manuscript.  

- This method incorporates many steps of abstraction in the modelling process. This should 

always be something to keep an eye on. First, landscape metrics are broken down to smaller 

subsets of the landscape, the statistical units, to calculate the metrics (patch truncation 

effect!). The method how the single patches are treated when overlapping the statistical zone 

can make a big difference for the resulting values. Afterwards, this vector data sets are 

converted to raster files, where the conversion method can make a difference for the resulting 

surface. The surfaces have a different information content depending on the spatial resolution 

(raster cell size) (e.g. Turner et al. 2001). All this modelling steps can, and should, be examined 

much closer to find ideal settings and procedures for a task.  

- Scale and grain are of essential importance when wanting to build a model for a single species 

(what becomes much more complicated when dealing with more than one species with 

different habitat requirements) (e.g. Guisan und Thuiller 2005). The scale should be adequate 

for the home ranges of the species. The grain is not always something one can control. It 

depends on the data available. All decisions should take the available grain in consideration. 

Pseudo-accuracy should be prevented.  

- Accuracy of the sample points is also a sometimes unknown and unaffectable part in the 

modelling process, except the data comes from own field survey. Also, the age of the sample 

data plays an important role for the modelling process. At best the time span when the data 

was collected conforms to the age of the environmental data used for model building. 

Otherwise once important drivers may not be there anymore, or other drivers are pictured by 

the environmental layers now that have nothing to do with the former distribution of the 

target species.  

- The position of the test area could have been more representative concerning the distribution 

of different altitude levels and therefore vegetation forms. Therefore, some of the test area 

landscape metrics also were not perfectly representative for the whole province.  

- A mix of different resolutions of landscape metrics surfaces (the most contributive ones of all 

experiments) in one model maybe would lead to enthralling outcomes.  

- The smallest size of the statistical units in that study depended on the accuracy of sample 

points and on the grain of the vegetation layer. Population scale for Coronella austriaca can 

be smaller (1-2 ha) and the model outcome for that scale could be different.  

- I am perfectly aware that this is not a quick and easy method for incorporating landscape 

metrics in habitat suitability modelling and therefore in decision making. Expert knowledge is 

required in more than just one modelling step. Each decision made should be questioned on 

basis of available data and target species. But in my opinion, it could be very rewarding and 

interesting to dig deeper in that matter.  
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