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Abstract 

The focus of this research is to map and analyse the land use and land cover (LULC) changes 

between 1999 and 2017 in the municipality of Kalmar, with an object-based change detection 

method. Studying LULC changes is important since there is a decline in agricultural lands, a 

growing population and an increase of urban areas. The effects of LULC changes have a bigger 

impact than climate change in the future. Object-based change detection between remotely 

sensed images has been suitable to analyse LULC changes. In this research, one Landsat ETM+ 

image from 1999 and two Sentinel 2a images of 2017 were classified. The research methods 

consisted of an object-based post-classification method, in eCognition, to detect LULC changes. 

To achieve higher classification accuracy, the method was combined with visual inspection and 

a manual re-classification of wrongly classified objects. The overlay method in ArcMap was 

applied to reveal the ‘from-to’ changes. 

Four LULC classes were mapped and analysed. The overall accuracy of the classified LULC maps 

was 95% for the Landsat image and 95% for the Sentinel 2a image. Kappa index was 93% for 

both images. The maps showed that between 1999 and 2017 urban land use increased with 7 

km2 and 20%. Agricultural lands declined with 24 km2 and -10%. Main drivers for the loss in 

agricultural lands were the expansion of urban areas and a growth in vegetation. The results of 

this study showed that object-based change detection helps to gain insight in LULC changes 

over time.  

 

Keywords: object-based change detection, remote sensing, LULC, object-based image analyse, 
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1.0 Introduction 

1.1 Background 

Monitoring LULC transformations is important because of the impact these changes have on 

climate, eco and live systems. For example, a human-driven LULC change in the form of 

urbanization has led to a rise in surface temperatures (Kalnay and Cai, 2003). Insight in LULC 

change is contributing to sustainable land management, for example in the fields of urban 

planning, agricultural development and climate change (Dewan and Yamaguchi, 2009, Kalnay 

and Cai, 2003, Wu et al., 2006). Urbanization is a human-altered driver of LULC change. 

According to a study by Grimm et al. (2008), the growth of the urban population led to the 

result that since 2010 more people live in cities than on the rural countryside. Growing urban 

areas are causing ecological problems and challenges in food production (Grimm et al., 2008). 

Urbanization is driven by economic and population growth and the improvement of 

infrastructure (Antrop, 2004).   

Around 2100 the continuous changes on the LULC surface of the earth have a bigger impact on 

the environmental systems than climate change (Chapin III et al., 2000). LULC changes caused 

by humans is affecting several aspects of the earth such as eco-systems, freshwater resources, 

air quality and climate change (Foley et al., 2005). For example, deforestation in the Amazon 

resulted in the loss of forests and in a decrease of eco-systems (Fearnside, 2005). The surface 

of the earth is changing with high speed at both global and local scale, due to human-caused 

LULC change (Turner et al., 1994).   

According to Seto et al. (2012) urban areas keep growing and until 2030 these areas will 

expand to 1.2 million km2. The study notes that at this time the urban population will exceed 

towards 5 billion people. This continuous growth will increase the pressure on food security, 

ecological systems and climate. In China, urban expansion between 1992 and 2012 has led to a 

loss in habit and is threatening several species (He et al., 2014). In other studies, urban 

expansion is linked with agricultural land loss and with a rise in surface temperature (del Mar 

López et al., 2001, Fazal, 2000, Kalnay and Cai, 2003). 

An important effect of ongoing urbanization is the loss of agricultural lands, which is affecting 

food production. The loss of farmlands is going fast in countries with a high pace of 

urbanization such as China and India (Fazal, 2000, Tan et al., 2005). As a result, in China, the 

loss of farmlands is threatening the overall food production (Jiang et al., 2013). The 
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transformation from an agricultural economy to an industry-based economy has in many 

countries resulted in a loss of agricultural grounds (del Mar López et al., 2001). 

In Europe, urbanization is an ongoing process at high speed since the industrial revolution. 

Nowadays around 80% of the European population is living in urban areas (Antrop, 2004). The 

last decennia most cities in Europe expanded on agricultural lands (Kasanko et al., 2006). 

Future outlooks predict that agricultural lands in Europe will continue to decrease (Seto et al., 

2013). Mainly due to a moving population from rural to urban areas, technologic development 

and urbanization (Antrop, 2004). 

Agricultural land loss due to urbanization is not only a problem of European countries with a 

high population density, but also happens in less populated countries (Skog and Steinnes, 

2016, Wästfelt and Zhang, 2016). In their study, Wästfelt and Zhang (2016) found out that 85% 

of the Swedish population is already living in urban areas. The research also showed that 

agricultural lands in Sweden are transformed to urban areas. With a rise in population, it is 

expected that urban areas will grow and put more pressure on agricultural lands.  

There is a demand to monitor LULC changes such as urbanization and agricultural land loss 

(Antrop, 2004, Skog and Steinnes, 2016). Monitoring LULC transformations is important 

because of the impact that these changes have on climate, eco and live systems. Studying LULC 

changes can help to identify vulnerable areas where agricultural lands are under pressure. 

These insights in LULC changes can help to develop a more sustainable land policy (Kasanko et 

al., 2006).  

Remote sensing has proved to be a useful instrument for mapping and monitoring LULC 

changes. In many studies, remote sensing images are used to gain an understanding of an 

altering landscape (Yuan et al., 2005, Ward et al., 2000, Shalaby and Tateishi, 2007). Remote 

sensing is used in studies to observe and analyse changes in urbanization, agricultural lands, 

landscapes and more (Brannstrom et al., 2008, del Mar López et al., 2001).  

In remote sensing, change detection is often applied to study changes in the surface of the 

earth. Change detection is about comparing two or more temporal images of the same study 

area, in order to identify transformations of an object or phenomenon (Singh, 1989). The 

development of change detection techniques has emerged in the last decades and the topic is 

researched in many studies (Hussain et al., 2013). 
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1.2 Literature study 

1.2.1 Change detection 

Change detection is about comparing two or more temporal images of the same study area, to 

identify transformations of an object or phenomenon (Singh, 1989). Change detection 

techniques are used for different purposes, such as forest and vegetation change monitoring 

(Hayes and Sader, 2001), urban sprawl (Zanganeh Shahraki et al., 2011), LULC change (Abd El-

Kawy et al., 2011), wetland change detection (Munyati, 2000), monitoring landscape changes 

(Taylor et al., 2000) and more. These change detection techniques are based on multi-date 

images acquired with remote sensing applications.  

Many change detection techniques are developed in the past decennia and they are roughly 

divided in two approaches: pixel-based and object-based (Hussain et al., 2013). The pixel-

based change detection approach is focused on the spectral difference of pixels in the same 

area but from different times (Lu et al., 2004). In object-based change detection, objects from 

different times are compared. These image objects are grouped pixels that represent objects 

in the real world, such as vegetation of buildings (Chen et al., 2012). 

The availability of a pixel or object-based change detection approach has led to numerous 

studies in discussing and reviewing these techniques (Hussain et al., 2013, Lu et al., 2004, 

Singh, 1989). Hussain et al (2013) divided these change detection methods in the following 

categories: direct comparison, transformation, classification based, machine learning, GIS, 

advanced methods, direct object comparison based, object classification comparison based, 

multitemporal object and data mining. Despite the enormous amount of literature, not one 

single technique is suitable for every change detection application (Lu et al., 2004). In their 

paper, Hussain et al (2013) explain that the selection of a change detection method depends 

on the objectives of the research, since every method has their own specialities. Some 

methods only provide a binary change result for example ‘change’ or ‘no-change’ and others 

like, the post-classification change detection method, reveal ‘from-to’ changes (Hussain et al., 

2013). Therefore, choosing a change detection method is an important part of every LULC 

change research.  

 

1.2.2 Pixel-based change detection 

Pixel-based change detection techniques have been used successfully for several decades to 

map and monitor LULC changes (Hussain et al., 2013). For example, Deng et al., (2008) applied 

a Principal Component Analysis technique to detect transformations in an urban environment 
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derived from multi-sensor and multi-temporal satellite data. They found out that several 

changes in land use occurred in the study area. However, the researchers used a combination 

of the Principal Component Analysis and supervised classification. The Principal Component 

Analysis only detects change or no-change between images. Yuan et al. (2005), used a post-

classification change detection method. Four Landsat images were used to study LULC changes 

in the study area. First, the images were classified into six land classes. Then a post-

classification comparison was applied. The method revealed ‘from-to’ information or in other 

words what was the former class and what is the present one. With this method, it is possible 

to calculate the loss of land classes and visualize them on a map. However, the study of 

Tehrany et al. (2013) reveals that the success of this method depends on the classification 

accuracy. The study shows that misclassifications in each image will affect the change 

detection result negatively. Furthermore, applying a post-classification method costs a lot of 

time and expertise from the analyst (Lu et al., 2004).  

1.2.3 Object-based change detection 

With the launch of high-resolution satellites, object-based change detection techniques for 

mapping and monitoring LULC changes are emerging. The object-based change detection 

approach has been successfully used to map and monitor LULC changes (Lefebvre et al., 2008, 

Hussain et al., 2013). To detect variations between objects, several statistical operators are 

available. Hussain et al. (2013) described three object-based change detection methods: Direct 

Object Chang Detection, Classified Objects Change Detection and Multitemporal/multidate-

object change detection. 

Direct Object Change Detection (DOCD) 

Chen et al. (2012) describe that the direct object change detection method is comparing image 

objects from two different dates. They point out that change detection focusses on different 

spectral values or variances in shape, size and compactness of image objects. The downside of 

this method is that it is not possible to gain insight in ‘from-to’ information (Chen et al., 2012).  

Classified Objects Change detection (COCD)  

Hussain et al. (2013) explain that classified objects change detection is comparable with the 

pixel-based post-classification change detection method. First pixels are segmented into 

geographical objects, followed by classification. After classification post-classification is applied 

to detect changes. However, research shows that the success of this change detection method 

is depending on the classification accuracy and proper segmentation (Zhou et al., 2008, 

Tehrany et al., 2013). Objects can have different sizes, especially if different sensors are used 
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and these differences can affect the change detection results (Hussain et al., 2013). Just with 

the pixel-based post classification approach, this method is revealing ‘from-to’ statistics. 

Multitemporal/multidate-object change detection  

Hussain et al. (2013) describe that multitemporal or multidate-object change detection is 

about stacking two or more images from different times together. They point out that the 

stacked image is then segmented and classified, followed by a statistical operation to detect 

changes. The downside of this method is that it only detects changes based on the first image.  

New geographical objects that appear in the second image and not exist in the first one, will 

not count as change (Hussain et al., 2013). 

Of all these methods, Classified Objects Change Detection is the most used (Chen et al., 2012). 

The development of new change detection methods will increase, especially with the fact that 

more high-resolution satellites will be launched. 

1.2.4 Advantages of object-based vs. pixel-based change detection 

The implementation of an object-based change detection method has several advantages 

compared to pixel-based change detection approaches. Classification is an important step 

when change detection is applied. Studies show that object-based classification has a higher 

accuracy compared to pixel-based classification. For example, the study of Yan et al. (2006) 

discovered that the object-based classification with medium resolution images was 33% more 

accurate, compared with pixel-based classification. In another study object-based classification 

was applied to map urban dynamics in China. An et al. (2007) found that out that - compared 

with pixel-based classification - the object-based approach had a higher accuracy. In their 

study they used Landsat Thematic Mapper data with a pixel size of 30 meters. 

Another benefit of applying the object-based approach for LULC change mapping is the 

disabling of the ‘salt and pepper’ effect (Blaschke et al., 2000). The disabling of this effect is 

resulting in a quieter image.  

1.2.5 Challenges in object-based change detection 

Despite that object-based image classification achieved higher accuracies compared to pixel-

based classification, object-based change detection still has its challenges: 

Sliver polygons 

Segmentation and object-based classification of images and then applying change detection, 

for example with a post-classification approach, lead to sliver polygons. Sliver polygons are a 

result of overlapping two or more GIS-layers and are small scattered polygons in a vector or 
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raster image (McDermid et al., 2008). In their study Chen et al. (2012) explain that sliver 

polygons are caused when images are taken at different sun angles and times. Furthermore, 

they are caused by misregistration, misclassifications and unappropriated segmentation (Chen 

et al., 2012). 

Over or under segmentation 

Segmentation of an image is an important part of object-based image classification. Images are 

segmented into heterogenous objects that have similar shape, size, spectral and textural 

values. Under or over segmentation is a common problem in object-based image analysis 

(Hussain et al., 2013). With over segmentation, geographical objects are divided into smaller 

parts instead of one part, whereas under segmentation is when several different geographical 

objects are grouped as one object (Liu and Xia, 2010). Over or under segmentation can result 

in misclassification, which leads to poor classification accuracy and false change detection 

registration (Song et al., 2005). Several researchers suggest that optimal parameters for 

segmentation are achieved by trial and error (Hussain et al., 2013). Despite that several 

researchers showed methodologies that can be applied to decrease the effect of under or over 

segmentation, there is still not one solution. 

1.2.6 Emerging issues in change detection 

Early change detection techniques were pixel-based and are steadily developing in more 

object-based methods. With the launch of more satellites, data availability is expanding but 

some challenges are also emerging.   

Big data and remote sensing 

The launch of earth observation satellites with high-resolution sensors such as Quickbird (0.61 

m), Ikonos (1 m) and Spot-5 (2.5 m) leads to terabytes of data (Ma et al., 2015). This 

development is caused due to the fact that more and more people use geographic and remote 

sensing data for a wide range of applications. Scientists are naming these enormous datasets 

‘big data’ (Philip Chen and Zhang, 2014). In the literature there are different definitions for big 

data. In general, it has the following characteristics: large datasets (volume) that are 

transferred at high speed (velocity), the datasets consist of complex and varied data (variety) 

(Lewis et al., 2016, Ma et al., 2015). 

Big data is an emerging field in the literature and this is the same for big data in combination 

with remote sensing. There is large potential to use big data in remote sensing for monitoring 

and mapping LULC changes. On the other hand, with the current computer technologies, there 
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are several challenges before big data can be used regularly for remote sensing applications. 

There are challenges in data storage, handling of big data sets and presentation of the data 

(Ma et al., 2015, Nativi et al., 2015, Oliveira et al., 2012). For example, traditional storage 

devices are not capable of handling enormous datasets (Oliveira et al., 2012). Especially since 

datasets from earth observation devices are already containing terabytes of data (Ma et al., 

2015). Current computers are not able to process these quantities. In their study, Li et al. 

(2016) explain that that traditional database structures (such as SQL) are not capable of 

handling big data sets. Problems are also in the visual presentation of big data (Nativi et al., 

2015). 

Opportunities change detection 

Despite the current challenges in the use of big data in remote sensing, there are opportunities 

for successful implementation in earth observation applications. For example, the global scale 

monitoring of LULC changes is possible with multiscale and temporal datasets (Lewis et al., 

2016). Also, the implementation of datasets from different sensors become easier (Giuliani et 

al., 2017). An example of a promising research direction is the development of a data frame for 

large remotely sensed datasets (Giuliani et al., 2017, Lewis et al., 2016).  

The study of Lewis et al., (2016) showed that fast accessing and processing large Landsat 

datasets is possible. In this study, Landsat data of 27 years of the Australian continent was 

used in a High-Performance Data (HPD) and High-Performance Computing (HPC) setting to 

detect changes in surface water. This setting or data frame is named the earth observation 

data cube. The study shows that it was possible to analyse and measure surface water changes 

at high speed from big datasets derived from the Australian continent. However, the spatial 

scale of the data was 25 m. With high-resolution data (pixel size < 5m) the data load would be 

bigger and more difficult to handle for the earth observation data cube. 

Developments in big data and data frameworks can lead to major possibilities in the field of 

LULC change detection. In the future, researchers are able to process and analyse LULC data 

faster and with more precision. These advances in LULC change detection will contribute to 

face the challenges in urbanization, the protection of agricultural lands and lead to more 

sustainable land planning policies. 
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1.3 research aim and individual objectives 

1.3.1 Research aim 

The aim of this study is to map and analyse the LULC changes in the municipality of Kalmar 

(Sweden), with an object-based change detection method.  

Literature shows that there is a demand to monitor and map LULC changes (Antrop, 2004, 

Skog and Steinnes, 2016). The results of this study will help to provide insight into the LULC 

changes between 1999 and 2017 and help to raise the awareness of these changes. 

Furthermore, the results help to improve future land planning policies for sustainable urban 

planning. 

1.3.2 Individual research objectives 

The objectives to for fill the research aim are: 

• Implement an object-based change detection method in a GIS workflow. 

• Map the LULC in Kalmar with use of multi-temporal satellite images.  

• Analyse the LULC changes in the study area between 1999 and 2017.  

• Highlight the strengths and weaknesses of using an object-based change detection 

method to map LULC change. 
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2.0 Study area, data and software 

This chapter describes the study area, data and methodology used in this research. First, the 

study region is described, followed by the data that is used for mapping the LULC changes. In 

the last part of this chapter, the software used for this research is described.    

2.1 Study area 

The study area (Figure 1) is the municipality of Kalmar and is located in the southeastern part 

of Sweden. The coordinates of the municipality are 56° 40′ 0″ N, 16° 22′ 0″ E. 

The research area has a size of 1,250.96 km2 from which size 956.9 km2 consists of land and 

294.06 km2 is water. The municipality has 66.571 inhabitants, divided over 16 localities where 

Kalmar is the biggest with 35.170 inhabitants  (Centralbyrån, 2017).   

The study area contains a diversity of land classes, such as urban areas, croplands, pastures, 

water, forests and other vegetation. Forest and other vegetation are covering the majority of 

the study area, followed by croplands and pastures. The biggest urban areas are the city of 

Kalmar with 35.170 inhabitants, followed by the villages of Lindsdal with 5.709 inhabitants and 

Smedby with 3.607 inhabitants (Centralbyrån, 2017). Most of the agricultural lands are found 

in the eastern part of the municipality, the western part is dominated by forests for wood 

production.   

Figure 1: Map with the study area (data: Sentinel 2a ESA and naturalearthdata.com)  
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2.2 Data 

In this study data from various sources is used. The main sources for mapping the LULC 

changes are Landsat and Sentinel 2a datasets. Landsat and Sentinel 2a satellite imagery has 

proven to be useful in earth observation studies (Coulter et al., 2016, Immitzer et al., 2016). 

The used datasets are listed in Table 1. 

 

2.2.1 Landsat 7 ETM+  

Landsat ETM+ 7 satellite was launched in 1999 by NASA. The device has eight spectral bands 

and a spatial resolution of 30 meters and a panchromatic band of 15 meters. Each scene is 183 

km long by 170 km wide (NASA, 2017).  

One Landsat image of the 11th of July 1999 (subset is shown in Figure 2), with a cloud cover less 

than 20%, is freely collected from the website https://earthexplorer.usgs.gov/. Downloaded 

STUDY DATA 

Data Acquisition 

date 

Features Resolution Scene 

size 

Bands Source 

Landsat 

7 ETM+ 

11 July 1999 Multispectral 

and 

Panchromatic 

30 m 

15 m 

170 x 

183 

km 

9 https://earthexplorer.usgs.gov/ 

Sentinel 

2a 

27 May 

2017 

Multispectral 10 m 

20 m 

60 m 

100 x 

100 

km 

12 https://earthexplorer.usgs.gov/ 

Table 1: Data sources used for the research. 

Figure 2: Subset of the study area Landsat 7 bands 3, 2, 1. 
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data is part of Tier 1 (t1) collection. The satellite data is radiometrically and atmospherically 

corrected by algorithms. Data is orthorectified and georeferenced into UTM 33 and the World 

Geodetic System 1984 (USGS, 2017). The collected ETM+ image is from before 2003 and is not 

disturbed by the failure of the scan line corrector. Technical details of Landsat 7 ETM+ are 

available in Table 2.  

 

Table 2: Technical details of Landsat 7 ETM+ (USGS, 2017). 

 

2.2.2 Sentinel – 2a 

The Sentinel program consists of multiple satellites from the European Union. The first satellite 

was launched in April 2014. The Sentinel-2a satellite is launched in June 2015. Applications of 

the Sentinel 2 satellite are LULC change, water bodies, disaster mapping and vegetation health 

(ESA, 2017). The repeat circle of the satellite is 10 days. The system has 13 spectral bands, with 

a resolution of 60, 20 and 10 meters.  

 

Band Name Um Resolution 

1 Blue 0.45 – 0.515 30 m 

2 Green 0.525 – 0.605 30 m 

3 Red 0.63 – 0.69 30 m 

4 Near Infrared (NIR 0.775 – 0.90 30 m 

5 Shortwave Infrared (SWIR) 1 1.55 – 1.75 30 m 

6 Thermal 10.4 – 12.5 60 m 

7 Shortwave Infrared (SWIR) 2 2.08 – 2.35 30 m 

8 Panchromatic 0.52 – 0.9 15 m 
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Two Sentinel 2a images of 27 May 2017, with a cloud cover less than 20%, were collected from 

the website https://earthexplorer.usgs.gov/. Downloaded data is part of the 1C collection and 

radiometrically, atmospherically corrected by algorithms. A subset of the Sentinel 2a data is 

shown in Figure 3. Furthermore, this data is orthorectified and georeferenced into UTM 33 and 

the World Geodetic System 1984 (WGS 84). The footprint of the image is 290 km (ESA, 2017). 

Technical details of the Sentinel 2a satellite are available in Table 3. 

Table 3: Technical characteristics of the Sentinel 2A sensor (ESA, 2017). 

Band Name Um Resolution 

1 Coastal aerosol 0.443 60 m 

2 Blue 0.490 10 m 

3 Green 0.560 10 m 

4 Red 0.665 10 m 

5 Vegetation Red edge 0.705 20 m 

6 Vegetation Red edge 0.740 20 m 

7 Vegetation Red edge 0.783 20 m 

8 NIR 0.842 10 m 

8a Vegetation Red Edge 0.865 20 m 

9 Water vapour 0.945 60 m 

10 SWIR – Cirrus 1.375 60 m 

11 SWIR 1.610 20 m 

12 SWIR 2.190 20 m 

Figure 3: Subset of the study area Sentinel 2a bands 2, 3, 4. 
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2.2.3 Reference data 

To verify the classified images reference data is used. The research reference data consists of 

aerial imagery and data from Google Earth. Details of the reference data are listed in Table 4. 

 

Table 4: Reference data used to verify the classification results. 

 

2.3 Software 

The segmentation and classification of the satellite images is done with eCognition. eCognition 

distinguishes itself from other classification software because it classifies images into objects 

instead of pixels. ArcGIS is used to manage the datasets and to apply some adjustments on the 

data. Furthermore, this software was used for mapping and analysing the LULC 

transformations. Excel was used for calculation and statistics.  

  

 

 
 
  

REFERENCE DATA 

Data Acquisition date Features Resolution Source 

Aerial photo 1998 Black & White 10 m Lantmäteriet 

Google Earth 2003 Colour 1 m Digital Globe/Google Earth Pro 

Google Earth 19 August 2015 Colour 1 m Digital Globe/Google Earth Pro 
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3.0 Methods 

In this chapter, the research methodology is presented. The focus in this chapter is on the 

following research objective: 

•  Implement an object-based change detection method in a GIS workflow. 

This chapter will first focus on general steps that are needed in object-based change detection. 

Then the steps that have been taken for object-based change detection for this research are 

being described and explained.  

3.1 General steps of object-based change detection  

In general, the process of change detection consists of the following major steps: pre-

processing, choosing a change detection technique and accuracy assessment (Lu et al., 2004). 

Before getting started with detecting changes in LULC, data needs to be pre-processed. 

Especially data from different aerial or satellites. As sensors have their own characteristics, 

differences within a study area can appear, which lead to errors and poor change detection 

results (Lu et al., 2008).  

In this study, a post-classification method is applied and therefore the images of 1999 and 

2017 are classified separately, before they were used for change detection. To verify the 

classification result of the satellites images, an accuracy assessment performed. Change 

detection is then performed by cross-tabulation and overlay-intersection. The workflow is 

presented in Figure 4. 
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Figure 4: Workflow diagram for the application of an Object-Based Change Detection method for the study area. 
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3.2 Pre-processing 

Remotely sensed data by different sensors can have several errors, which result in miss-

alignments, poor classification and change detection results (Lu et al., 2004). Therefore, it is 

necessary to correct these differences in the pre-processing phase before being applied to 

other actions regarding change detection. Important steps in pre-processing are atmospheric 

and radiometric corrections and multi-temporal image registration (Jianya et al., 2008). In this 

research the following pre-processing steps are described: radiometric correction, 

georeferencing, geometric correction, image enhancement, merging, bit depth conversion, 

resampling and raster clipping. 

3.2.1 Radiometric correction 

Radiometric corrections are necessary when further steps in change detection are applied.  

Changing radiometric conditions like snow, rain, and sun angles can lead to poor results when 

LULC change detection is applied without corrections (Paolini et al., 2006). Especially when 

multi-date satellite images from different sensors for change detection studies are used. With 

radiometric correction, the effects of a different sun angle, image data, can be minimised 

(Chen et al., 2005).  

In this study radiometric correction is not applied to the datasets, due to several reasons: First, 

a post-classification change detection is applied and this method reduces the impact of 

different sensors, changing atmospherical and radiometric conditions (Hussain et al., 2013). 

Secondly, the acquired datasets are already corrected to some degree. For example, Landsat 

TM datasets are collected from T1 level (USGS, 2015). This is the highest available data quality 

and the datasets have undergone standard radiometric calibration. Sentinel 2a datasets have 

the 1C processing level and are also radiometric and atmospherically corrected (USGS, 2015).  

3.2.2 Georeferencing 

Often raw satellite images do not have a relation with a geodetic system such as the World 

Geodetic System 1984 (WGS 84). Before getting started with image processing, the satellite 

image needs to be georeferenced in a coordinate system that represents real coordinates on 

the physical surface of the earth. In practice, this means that location information of the raw 

image is used to connect it to a geodetic system (Hackeloeer et al., 2014). Nowadays there are 

multiple tools available in GIS software to georeference an image. After georeferencing an 

image information such as latitude, longitude or UTM coordinates are showed in a GIS-system. 

In this study images of Landsat 7 ETM+ and Sentinel 2a were already georeferenced into UTM 

33 and the World Geodetic System 1984 (WGS 84).  
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3.2.3 Geometric correction  

Remotely sensed images must be geometrically corrected before they can be used for 

monitoring changes. Often satellites or aeroplanes fly at different heights and this results in 

image distortions (Jianya et al., 2008). Errors in the geometric registration will lead to errors 

and poor change detection results. In practice, an error in geometric registration means that 

two different locations are compared with each other to detect LULC changes (Townshend et 

al., 1992).  

In this study, the Sentinel 2a and Landsat 7 were already geometrically corrected. Before 

proceeding to the next step, the images were also visually inspected to see if there were no 

discrepancies in the geometric alignment.  

 

3.2.4 Image enhancement 

With image enhancement users can change the digital values of pixels so that the image is 

easier to interpret with the human eye for visual inspection (Lillesand et al., 1987). For 8-bit 

images these values are between 0 – 256.  Different sensors, atmospheric conditions and land 

classes result in the fact that the spectral response values of brightness are not the same in 

every image (Song and Woodcock, 2003). These aspects lead to a difficult interpretation of 

aerial or satellite images, even when they are already radiometrically corrected. Several 

techniques for image enhancement are available, but the most common are linear contrast 

stretch, histogram stretch, standard deviation stretch and a gamma correction (Lillesand et al., 

1987). With these techniques, it is possible to adjust the digital values that lay between 0 to 

256 for 8-bit images.  

In this study, a standard deviation is applied for the Landsat 7 ETM+. The band combination for 

this dataset was (RGB) 3, 2, 1. This process was done in eCognition software. For the Sentinel 

2a image also a standard deviation stretch was applied with band combination 2, 3, 4.  

3.2.5 Merge 

The dataset of Sentinel 2a consists of two images, because one image was not enough to cover 

the study area. The whole municipality of Kalmar is covered in a newly merged image.  

3.2.6. Bit depth conversion 

Sentinel 2a dataset was 16-bits and was converted to 8-bits with the export data tool in 

ArcMap. This action was needed so that the Sentinel 2a dataset is comparable with the 

Landsat 7 ETM+ dataset.  
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3.2.7 Resampling 

Sentinel 2a images were resampled from 10 meters to a pixel size of 30 meters, to create the 

same spatial resolution as the Landsat ETM+ dataset. The images were resampled with the 

resample tool in ArcMap. For resampling, the nearest neighbour method was used, which is 

often used for landcover data and classification purposes (Deng et al., 2008, Yuan et al., 2005).  

3.2.8 Raster clipping 

To decrease the data load and only focus on the municipality of Kalmar the datasets in this 

study were clipped.  

3.3 Image segmentation 

In object-based image analysis segmentation is an important step before an analyst can analyse and use the images. 
Often a proper image segmentation improves the classification result (Blaschke, 2010). Segmentation is the process 
of grouping pixels from an image into objects (segments) that have the same spectral, pixel and textual values 
(Hussain et al., 2013). These image segments are used for further analyse processes. There are several segmentation 
algorithms available. The most common segmentation algorithms provided in eCognition are multiresolution 
segmentation, quad-tree segmentation, chessboard segmentation, contrast split segmentation, spectral difference 
segmentation and contrast filter segmentation (eCognition®, 2016). 
 
Image segmentation was performed in this study with the multi-resolution logarithm in eCognition. The multi-
resolution logarithm is often used with good results for the segmentation of images (Dingle Robertson and King, 
2011, Yan et al., 2006). The algorithm starts at the one-pixel level in an image and works bottom-up based. During 
the process, more and more pixels are grouped together in larger segments (eCognition®, 2016). Pixels are grouped 
together if the heterogeneity of the spectral and spatial values does not exceed a minimum (Baatz and Schäpe, 
2000). Different parameters can be applied to affect the segmentation result. The value scale parameter is an 
important threshold for determining how big the segmented object is. A higher scale parameter value results in a 
bigger group of pixels with spectral similarity (Baatz et al., 2004). Users can define parameters which influence the 
shape and size of the segment as shown in  

 

 

 

Table 5.  

 

 

 

 

Table 5: The parameters in eCognition for the segmentation of pixels in (eCognition®, 2016). 

Parameter Description 

Weight of image 

channels 

Adjust the weight for each layer. 1 means full weighting in the process,  

0 ignores the layer.  

Scale parameter Adjust the parameter to in- or decrease the size of the segmented object.  

A low value is a small object, high value increases the size of the object. 
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Shape Parameter for defining the weight value for the shape. A low value means a 

bigger influence for colour.   

Compactness The higher the value, the more compact the object is.  

Smoothness Increasing this value results in smoother objects.  

 

Determining the appropriate parameters for segmentation is often achieved by ‘trial and error’ 

and a visual inspection of the segmentation result (Dingle Robertson and King, 2011, Im et al., 

2008, Yan et al., 2006). 

 

In this research, the ‘trial and error’ method with visual inspection was applied. Based on the 

results for every dataset different segmentation parameters were used. This was because the 

spectral values of the Landsat ETM+ and Sentinel 2a were not the same. Visual inspection was 

applied to assess the segmentation results. The segmentation multi-resolution parameters for 

the Landsat 7 ETM+ and Sentinel 2a dataset are shown in Table 6. 

 

 

 

 

 

 

 

 

 

 

 

Table 6: Segmentation parameters used for the two datasets in this study. 

Parameter Landsat 7 ETM+ Sentinel 2a 
Scale 10 15 
Shape 0.5 0.3 

Compactness 0.5 0.3 
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After the segmentation pixels were divided in several objects. In figure 5 is the segmented 

Sentinel 2a image shown and in figure 6 the segmented Landsat ETM+ image.  

3.4 Classification 

Classification is about the assigning of objects or pixels to a pre-defined land class. In this study 

first, the classification scheme was defined. Then a condition was applied and followed by the 

Standard Nearest Neighbour classifier, provided in eCognition. Additionally, some thresholds 

were applied to improve the classification performance. The result was visually inspected and 

if needed wrongly classified objects were manually edited.  

3.4.1 Classification scheme 

For the assigning of objects to land classes, there are multiple classification schemes available 

such as the Corine landcover nomenclature (EEA, 2010), and the classification scheme 

developed by Anderson (1977). Both classification schemes use different levels for the 

classification of land classes. Land class levels are divided between a general description to a 

detailed description of a class.  

Figure 5: segmented Landsat ETM+ image in eCognition. 

Figure 6: Segmented Sentinel 2a image in eCognition. 
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In this study, a detailed classification of LULC classes was not the purpose, since the aim of this 

research is to map LULC changes between 1999 and 2017. After visual inspection of the 

Landsat 7 ETM+ and Sentinel 2a images, a modified classification system based on Corine 

landcover nomenclature was implemented. Furthermore, this classification scheme was 

developed for European countries and therefore useful in this study area.  

The classification scheme in Table 7 shows four classes: agricultural land, vegetation, urban 

and water. 

Table 7: The modified classification scheme (original scheme derived from the European Environment Agency, 
2010). 

Class Description Class name 
eCognition 

Agricultural 
land 

Arable land, permanent crops, pastures 1 

Vegetation Forests, shrub, herbaceous associations, open space with little or 
no vegetation 

2 

Urban Urban fabric, industrial, commercial and transport units, mine 
dump and construction sites, artificial areas, houses, build 

structures 

3 

Water Inland waters, marine waters 4 

 

3.4.2 Standard nearest neighbour classifier 

For classification of the study area the standard nearest neighbour classifier with a fuzzy rule 

set was used. This classifier is provided in eCognition and is comparable with a supervised 

classification. The choice to apply the standard nearest neighbour classifier was made based 

on the users knowledge of the program. The standard nearest neighbour classifier is a 

supervised classification algorithm. Before the algorithm assigns a class to an object, it 

calculates the Euclidean distance between a training sample and the object to be classified (Im 

et al., 2008). The algorithm takes in account several reservations, such as doubts in sensors 

measurements, mixed pixel problems due to limited resolution and imprecise class 

descriptions (Im et al., 2008). The classifier assigns a class to an object if it has the same or 

near identical value with a sample value. Values of the segmented objects are between 0 and 

1. The value of 0 represents no identical value with the training sample and the value of 1 

represents an identical value, which leads to the assignment of the object (Benz et al., 2004, 

Im et al., 2008). Before the start of the classification, users derive class samples from the 

segmented objects. In the classification process, an object is assigned to a class that has the 
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same or near spectral values as the predefined sample (Yan et al., 2006). The equation of the 

standard Nearest Neighbour Classifier is:  

𝑑 = ∑
𝑣 (𝑠) − 𝑣 (𝑜)

𝜎
 

Whereas: 

d = Distance between sample object s and image object o 

vf (s) = Feature value of sample object for feature f 

vf (o) = Feature value of image object for feature f 

σf = Standard deviation of the feature values for feature f 

(eCognition®, 2016) 

The classification result depends not only on the classification of the image and the usage of 

training samples, but next to this the quality of the segmentation is important for achieving 

accurate classification results.  

In this study, after the segmentation, the class hierarchy was created in eCogntion with five 

classes: agricultural lands (1), vegetation (2), urban (3) and water (4) and NoData (5), shown in 

Figure 7. Then training samples were collected. The collecting of samples (Figure 8) was based 

on visual inspection of the datasets and the use of aerial images of 1998 and 2015 and Google 

Earth images.  

 

Figure 7: The implemented class hierarchy 
in eCognition for classification. 

Figure 8: Samples used for classification of the datasets. 
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To classify the image objects with the standard nearest neighbour classifier, the mean values 

of the Blue, Green, Red, NIR and SWIR bands were used. In Figure 9 the expression is showed 

for classification of the Agricultural lands.  

Thresholds and conditions 

To improve the classification, some thresholds and conditions were used during the 

implementation. For example, the water class was classified with a condition for the Near 

Infra-Red (NIR) band. The spectral value of water is low in the NIR band (Figure 10). In some 

Figure 9: The classification expression used in eCognition for the 
agricultural lands class. 

Figure 10: NIR Layer in eCognition. Low NIR values are represented as dark colours. 
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trial runs, the nearest neighbour classifier had difficulties with the classification of water near 

the coast of Kalmar. Therefore, a condition was applied to water class.  

To improve the classification of the urban class, a Normalized Difference Vegetation Index 

(NVDI) threshold was applied. The NVDI index is used to distinguish vegetated and non-

vegetated areas (Dash et al., 2007). The index implements the spectral values of the Red and 

NIR bands in an algorithm to calculate vegetation indices. As a result, values between -1 and 1 

are shown. The higher the value, the more vegetation is present in the image. The equation to 

calculate the NDVI is: 

NDVI = ((NIR – Red) / (NIR + Red)) 

Whereas: 

NIR = spectral values Near Infra-Red band 

Red = spectral values Red band 

(Yuan and Bauer, 2007)    

 

In this study the NDVI index was used as a threshold with the standard nearest neighbour 

classifier, for a better distinguish between the urban class and the vegetation and agricultural 

classes (Figure 11). In several studies the NDVI index is used as classifier condition or threshold 

for classifying (Chuai et al., 2013, Dash et al., 2007). 

Figure 11: The standard nearest neighbour classifier in eCognition with 
the NVDI threshold for the classification of the Urban class. 
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After a classification cycle, the image was inspected on errors. Misclassifications were adjusted 

with extra training samples, and the classification cycle was repeated. Then the image was 

visually inspected, and misclassifications were manually edited.  

The merge tool was applied to improve performance later in ArcMap. The whole ruleset is 

shown in Figure 12. After classifying the images, the results were exported as a vector polygon 

layer to ArcMap. 

3.5 Accuracy assessment 

Accuracy assessment is about the verification of the classified data and is an important part of 

the workflow in LULC change detection. With an accuracy assessment, the quality of the 

classification is determined. To observe the LULC changes in the study area the classification 

results of the datasets must be verified (Stehman and Czaplewski, 1998). In a classification 

process several errors can occur that can lead to insufficient results. Errors can occur from 

incorrect image registration, wrong interpretation of a class due to coarse resolution or 

insufficient training samples (Lu and Weng, 2007).  

There are several options to perform an accuracy assessment. The error matrix is a well-known 

method and is used in multiple LULC change detection studies (Congalton and Green, 2008). 

An error matrix contains the following elements: (a) Ground data collection, (b) Classification 

scheme, (c) Sampling scheme, (d) Spatial auto correlation, (e) Sample size and sample unit. 

Elements such as Kappa coefficient, overall accuracy, omission and commission error 

complement the error matrix (Congalton and Plourde, 2002).  

Ground control points (GCPs) are collected from reference data or field visits to compare the 

classified data with the data from the GCPs. The collected data is then compared with the 

classified data in the error matrix.  

Figure 12: The workflow for the classification of the datasets in eCognition. 
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To verify the classification results for the images of 1999 and 2017, in this study an error matrix 

was implemented to calculate the classification accuracy per class. With the input of the error 

matrix, the Kappa coefficient and the user and producer accuracy could be derived.  

To assess how the classification results performed, ground control points were deployed with 

the creating random points tool from software Geospatial Modelling Environment. Several 

authors suggest using 50 ground control points samples for each class (Congalton and Plourde, 

2002). Since there are four classes in this study, this leads to a total of 200 ground control 

points. A stratified sampling method was applied to ensure that 50 samples were distributed in 

each class.   

Google Earth images and aerial photos were used as reference data to check if the 

classification was appropriate. Google Earth images were from 2003 and 2015, areal images 

were from 1998 and 2016. For the classified Landsat ETM+ image of 1999, areal images from 

1998 and Google Earth images of 2003 were used. The high-resolution images of Google Earth 

from 2003 were not covering the whole study area. Therefore, additionally areal images from 

1998 with a resolution of 10 meters were used for the accuracy assessment of the classified 

image from 1999.  

Several studies have proven that Google Earth images can be used to verify the accuracy of 

classified images (Knorn et al., 2009, Kuemmerle et al., 2009). Because this research contains 

only four land classes, no GPS ground control points from field visits were collected.  

Figure 13: Subset of study area in Google Earth with the ground control points to 
compare classified results with the aerial data. 
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First 50 stratified sample points per class were distributed in the study area. Then the 

distributed points were converted in ArcMap into a KMZ file and opened in Google Earth 

(Figure 13). The classified class was then verified in Google Earth and in ArcMap against the 

areal reference data from 1998 or 2016.  

3.6 Change detection 

With change detection the purpose is to discover changes between two or more multidate 

images. As stated before, there are multiple change detection techniques developed but none 

of them is suitable for every purpose. Choosing an appropriate change detection technique 

depends on the objectives of the study and the characteristics of the study area. 

3.6.1 Post-classification change detection 

In this research, an object-based post-classification change detection method was applied. 

First, with this method it is possible to minimise the atmospheric effects and differences 

between the sensors of Landsat 7 ETM+ and Sentinel 2a. Secondly, the post-classification 

method generates a conversion matrix. With this matrix it is possible to see the transformation 

from one class into another (Shalaby and Tateishi, 2007). Furthermore, this classification 

method is often used in change detection studies (Hussain et al., 2013). However, the change 

detection accuracy is highly depended on the accuracy of the classified images, since poor 

classification leads to inaccurate change detection results (Lu et al., 2004). 

In this study, and after classification in eCogntion, the images of 1999 and 2017 were exported 

as a thematic vector shapefile in ArcMap. LULC Statistics for the classified maps were 

calculated separately. Then the percentage of LULC changes is calculated by the following 

equation:  

Percentage LULC change = (Area final year – Area initial year)/ (Area initial year) * 100.  

The overlay-intersection method was used to detect changes between the classified images of 

1999 and 2017. This method revealed ‘from-to’ changes of land classes. A from-to map was 

created to visualize the LULC changes. The focus in this study is on change from the vegetation 

and agricultural lands into urban areas. Also, a change threshold of > 0.1 square kilometres 

was used to delete sliver polygons and wrong detected changes. In the last step the tabulate 

area tool was applied in ArcMap to calculate the change in square kilometres between the 

classes.   
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4.0 Results 

In this chapter the results the study are described an presented. The focus in this chapter is on 

the following research objectives: 

• Map the LULC in Kalmar with use of multi-temporal satellite images.  

• Analyse the LULC changes in the study area between 1999 and 2017.  

First, the results of the object-based classification will be described, including classification 

accuracy, map statistics and thematic maps of LULC for the study dates. Secondly, the results 

of the post-classification object-based change detection method will be described and 

visualized, including drivers for the LULC transformation between 1999 and 2017.  

4.1 Accuracy assessment  

4.1.1 Landsat 7 ETM+ 1999 

The classification result of the Landsat ETM+ image achieved satisfying accuracy results (Table 

8). The overall accuracy of the Landsat image is 95% with a Kappa index of 93%. The four 

classes have an individual users accuracy between 88% and 100%.  

Table 8: Error matrix with for the Landsat ETM+ dataset with classification results. 

Landsat 7 ETM+ 1999 Reference data Classification Accuracy  

LULC classes Agriculture Vegetation Urban Water Producers accuracy Users accuracy 

Agricultural lands 45 4 1 0 90% 88% 

Vegetation 2 48 0 0 92% 96% 

Urban 4 0 46 0 98% 92% 

Water 0 0 0 50 100% 100% 

Overall accuracy     95%  

Kappa Index     93%  

 

The lowest accuracy was in the agricultural lands class with a producers accuracy of 90% and a 

users accuracy of 88%.  Water was the class with the highest accuracy with a score of 100% for 

both the producers and users accuracy. The error matrix shows that in the agricultural lands 

class the most errors were made with vegetated areas. Also, in the urban class, there were 

misclassifications with the agricultural land class.  
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4.1.2 Sentinel 2a 2017 

The Sentinel image of 2017 had an overall accuracy of 95% and a Kappa statistic of 93%. The 

individual producers and users accuracies of the four classes ranged between 90% and 100%.  

The error matrix with and the accuracy results are shown in Table 9. 

Table 9: Error matrix with for the Sentinel 2a dataset with classification results. 

Sentinel 2a 

2017 

Reference 

data 

   Classification 

Accuracy 

 

LULC classes Agriculture vegetation Urban Water Producers 

accuracy 

Users 

accuracy 

Agricultural 

lands 

46 4 0 0 90% 92% 

Vegetation 3 45 2 0 92% 90% 

Urban 2 0 48 0 96% 96% 

Water 0 0 0 50 100% 100% 

Overall 

accuracy 

    95%  

Kappa Index     93%  

 

The lowest accuracy in the classified images of 2017 was in the agricultural lands and 

vegetation class. Agricultural lands had a producers accuracy of 90% and a users accuracy of 

92%. The vegetation class had a producers accuracy of 92% and a users accuracy of 90%. In this 

map, the users accuracy of the classification of agricultural lands was higher compared to the 

classified map of 1999. The urban class achieved a high score of 96% for the producers and 

users accuracy. Water was again the class with the highest accuracy with a score of 100% for 

both the producers and users accuracy. The error matrix for 2017 shows that in the agricultural 

lands class the most errors were made again with vegetated areas. Also, in the urban class 

there were misclassifications with the agricultural land class.  
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4.2 Classification and map statistics 

LULC maps 1999 and 2017 are shown in Figure 14 and Figure 15. Map statistics (Table 10) for 

1999 revealed that vegetation covers the biggest area in the study area with 695 km2 (55.20%). 

The second major class is water with 298 km2 (23.66%), followed by agricultural lands with 231 

km2 (18.34%) and urban 35 km2 (2.77%).  

Figure 14: Land use and land cover in the municipality of Kalmar in 1999. 
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Figure 15: Land use and land cover in the municipality of Kalmar in 2017. 
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In 2017 vegetation is still the biggest land class with 713 km2 (56,63%), followed by the water 

class with 299 km2 (23,74%). Agricultural lands covered the area with 207 km2 (16,44%) and 

urban areas covered around 42 km2 (3,33%) in 2017. 

Table 10: Map statistics for the classified images. 

Land use/cover categories 1999  2017  

 Km2 Percentage Km2 Percentage 

Agricultural lands 231 18.34 207 16.44 

Vegetation 695 55.20 713 56.63 

Urban 35 2.77 42 3.33 

Water 298 23.66 299 23.74 

Total 1259 100 1259 100 

 

Comparing the statistics of 1999 and 2017 reveals that there is a decline in agricultural lands. 

An increase is visible in the classes vegetation, urban and water. Vegetation increased from 

695 km2 to 713 km2, urban class increased also from 35 km2 to 42 km2. Water stayed stable 

with only a small increase from 298 km2 to 299 km2. The classification shows a decrease of 

agricultural lands from 231 km2 in 1999 to 207 km2 in 2017.  

Change in LULC between 1999 and 2017 

Class % Km2 

Agricultural lands -10.38 -24 

Vegetation 2.58 18 

Urban 20 7 

Water 0.33 1 

 

Post-classification comparison of the two classified (Table 11) images shows significant LULC 

changes in the study area. This study shows a decrease of agricultural lands containing a loss of 

24 km2 (-10.38%) between 1999 and 2017. Urban areas expanded with 7 km2 (20%) and the 

vegetation class expanded with 18 km2 (2.58%). The water class did not increase significantly 

(1 km2, 0.33%). 

Table 11: LULC changes between 1999 and 2017. 
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4.3 Change Detection 

4.3.1 change detection statistics 

The cross-tabulation matrix in Table 12 provides insight in the changes between the classes. 

The total study area is 1258,08 km2. Between 1999 and 2017 around 1123,75 km2 did not 

change, the remainder of 134,38 km2 converted in other classes.  

 

 

The nature of changes revealed that major changes occurred between the agricultural and 

vegetation class. For instance, 231,02 km2 of agricultural land covered the area in 1999 and 

206,49 km2 in 2017. Out of 231,02 km2 that was agricultural land in 1999, 165,55 km2 was still 

in 2017 but 59,88 km2 was transformed in vegetation, 6,51 km2 converted into urban areas 

and 0,08 km2 into water. 

The vegetation class covered the study area with 693,81 km2 in 1999 and 711,89 km2 in 2017. 

Out of the vegetation class 640,72 km2 was still vegetation in 2017 but 39,02 km2 was 

transformed into agricultural lands class, 10,14 km2 was converted into urban areas and 3,92 

km2 into the water class.  

The urban class was covering the study area with 34,96 km2 in 1999 and 42,10 km2 in 2017. 

Around 25 km2 was still urban in 2017 but 2,88 km2 was converted into the agricultural class, 

6,92 km2 was converted into vegetation and 0,14 km2 transformed into the water class.  

Table 12: From-to changes between 1999 and 2017 in km2. 

From-to changes in km2 

1999 

20
17

 

LULC-classes Agricultural lands Vegetation Urban Water Total 

Agricultural lands 165,55 39,02 2,88 0,03 206,49 

Vegetation 59,88 640,72 6,92 4,37 711,89 

Urban 6,51 10,14 25,02 0,43 42,10 

Water 0,08 3,92 0,14 293,46 297,59 

Total 231,02 693,81 34,96 298,29 
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In the water class the smallest transformations took place. Water was covering the study area 

with 298,29 km2 in 1999 and 297,59 km2 in 2017. Out of the water class 293,46 km2 was still 

water in 2017 but 0,03 km2 was converted in agricultural lands, 4,37 km2 converted into 

vegetation and 0,43 km2 converted into the urban class.  

In Table 13 are the change percentages shown between the classes. In percentages the biggest 

transformation changes occurred in the agricultural land class and the urban class. The third 

biggest change was in the vegetation class. In the water class the smallest change in 

percentage occurred between 1999 and 2017.    

 

 

 

 

 

 

 

 

 

 

 

  

Table 13: From-to changes between 1999 and 2017 in percentages. 

From to changes in percentages 

2017 

1999 

LULCclasses Agricultural lands Vegetation Urban Water 

Agricultural lands 71,19 25,91 2,82 0,03 

Vegetation 5,62 92,22 1,46 0,56 

Urban 8,25 19,78 71,57 0,39 

Water 0,01 1,46 0,14 98,34 
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4.3.2 change detection maps 

Figure 16 shows the LULC types and the from vegetation or agricultural lands that changed 

into urban areas between 1999 and 2017. To visualize the LULC changes and to delete false 

transformations a threshold of > 0.1 km2 was applied. Most of the changes occurred near the 

edges of villages and the city of Kalmar. An image of the whole map is shown in appendix A. 

  

Figure 16: Subset of study area with LULC transformations into urban areas between 1999 and 2017. 
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Figure 17 shows a subset of the ‘from-to’ change map but more zoomed in around the biggest 

urban areas: Kalmar, Lindsdal and Smedby. In the northern part of the city of Kalmar, urban 

areas expanded between 1999 and 2017. Mostly vegetated areas were converted into urban 

classes. In the southwestern part of Kalmar agricultural lands were lost and converted in urban 

parts. Near the village of Smedby the mainly agricultural lands were converted. In general, 

most expansions took place at the edges of the villages and the city.     

  

  

Figure 17: Subset of LULC changes near Kalmar, Smedby and Lindsdal.  
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Also, clearly visible is the extension of the highway E22 (Figure 18). This highway is extended 

between 1999 and 2017. The figures (Figure 20 and Figure 19) below from Google Earth are 

also showing this LULC transformation.  

 

 

 

Figure 20:  Google Earth image of 2003 without the 
extended highway E22. 

Figure 18: Subset of study area that shows the extension of highway E22. 

Figure 19: Google Earth image of 2016 with the extended 
highway E22. 
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5.0 Discussion 

In this chapter the research results will be discussed, and the focus will be on the following 

research objective: 

 Highlight the strengths and weaknesses of using an object-based change detection 

method to map LULC change.  

The strengths of the object-based change detection method will be discussed, followed by the 

weak points of this method.  

5.1 Strengths of using an object-based classification and change detection 

The object-based classification of the Landsat 7 ETM+ and the Sentinel 2a images with a spatial 

resolution of 30 meters for 1999 and 2017 was successful. In this research, the overall 

accuracies of both images were 95% and per class accuracy is between 90% and 100%. Kappa 

index was for the Landsat 7 ETM+ and Sentinel 2a image 93%. Minimum thresholds for the 

overall accuracy set at 85% by Andersson (1977). For the individual classes the minimum is set 

at 70% (Thomlinson et al., 1999). Thus object-based classification with the standard nearest 

neighbour classifier combined with visual inspection and manual classification was accurate.  

Post-classification change detection between 1999 and 2017 showed a decrease in agricultural 

lands. This trend is also visible in other parts of Sweden and in Europe (Kasanko et al., 2006, 

Wästfelt and Zhang, 2016). However, drivers for the loss of agricultural lands were not only 

due to urbanization. The expansion of vegetated areas was also a part of this decrease in 

agricultural lands. The loss of farmlands caused by the increase of vegetated areas was 

probably caused by the expansion of forestries in the study area.  

The ‘from-to’ map was reduced to show only the ‘vegetation to urban’ and ‘agricultural lands 

to urban’ changes. It was assumed that other changes such as ‘urban to vegetation’ and ‘urban 

to agricultural lands’ were unlikely. A threshold was applied of 0.1 km2 to reduce the amount 

of false change detection errors. Every change below 0.1 km2 was handled as ‘no-change’. The 

change detection map showed that near the city and village edges often land was converted 

into urban areas. The change detection techniques showed that it can locate areas were LULC 

conversions took place in the study area. The map also showed the areas were no changes 

occurred between 1999 and 2017.  

For segmentation of the images a multi-resolution segmentation algorithm was used for 

grouping the pixels into heterogeneous groups. Appropriate segmentation parameters were 
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found by trial and error as suggested by Hussain at all (2013). After segmentation a visual 

inspection was needed to analyse the result. Finding the right parameters differs for each 

sensor. Furthermore, different thresholds were used, but there was no quick solution that 

improved the result.  

In general: Applying the standard nearest neighbour method with visual inspection and 

manual classification for classifying the images was useful in this research. However, in this 

study, there were difficulties in classifying agricultural lands versus vegetation. For example, 

the classifier often classified woodlands (vegetation class) into the agricultural class. To solve 

this problem different vegetation indices (e.g. NVDI) and thresholds were used (e.g. 

rectangular fit) but these did not improve the classification results.  
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5.2 Problems of the study 

The change detection method with the overlay method was not without errors. Some values in 

the change-matrix are not realistic. For example, it is unlikely that 6,92 km2 from urban areas 

are converted into vegetation as shown in Table 12. Also, the conversion from urban areas into 

agricultural lands (2,88 km2) between 1999 and 2017 is unrealistic. As stated before and by 

other researchers (Lu et al., 2004) the accuracy depends on the classified images. If a class is 

wrongly classified, this will result in a false change error. Despite high classification accuracies, 

there were several false changes errors that were caused by misclassifications. In Figure 21 is 

the unmodified ‘from-to’ map shown for the study area. The map shows many small and false 

change detection errors. A bigger size of the ‘from-to map’ for the study area is available in 

appendix B. 

Figure 21: Unmodified map of LULC change between 1999 and 2017. 
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The object-based change detection approach in the study area led to several sliver polygons. In 

Figure 22 a subset of the study area is shown with several sliver polygons. These polygons 

resulted in false change detection errors. Near the edges of the land classes, these false 

change detection errors are visible. These sliver polygons are a result of overlapping the 

classified images of 1999 and 2017. Chen et al. (2012) stated that this problem arises when 

different segmentation parameters are used. To reduce the impact of this problem, in this 

study a threshold was applied of > 0.1. Changes below this threshold were ignored. The 

downside of this approach is that also correct change detection information is lost. Despite 

some practical solutions more research is still needed to overcome the problem of sliver 

polygons (Tewkesbury et al., 2015). 

 

Figure 22: Subset study area with sliver polygons at the edges of land classes. 
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Some misclassifications were caused by the use of medium resolution images. In this study the 

pixel-size was 30 meters and segmented objects could represent multiple classes. This is 

because the used pixel size used was bigger than some geographical objects. As a result, there 

were several false change detection errors. Chen et all (2012) suggested to use high-resolution 

images to solve this problem and to create a more stable comparison between two classified 

images. In this study, medium resolution images were used since high-resolution images were 

not freely available.  

There were also problems with the classification between agricultural lands and urban areas. 

Especially if the agricultural lands were related to crop, these grounds were often classified as 

urban areas. Probably this has to do with the fact that the classifier has difficulties with the 

spectral signature between these areas and the heterogeneity in urban and agricultural areas 

(Zhang et al., 2014).   

A limitation in this study is that the change detection map has no accuracy assessment. 

Therefore, it is not possible to assess the quality of the LULC change map. However, literature 

shows that applying an accuracy assessment on the change detection result is not always 

applied  (Kindu et al., 2013, Rawat et al., 2013). In this study the accuracy assessment for the 

change detection result was not applied due to the time limit.  
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6.0 Conclusion 

The aim of this study was to use an object-based change detection method to map and LULC 

change in the municipality of Kalmar. The specific research objectives related to this research 

were to: 

1. Implement an object-based change detection method in a GIS workflow. 

2. Map the LULC in Kalmar with use of multi-temporal satellite images. 

3. Analyse the LULC changes in the study area between 1999 and 2017. 

4. Highlight the strengths and weaknesses of using an object-based change detection 

method to map LULC change.  

This chapter will revisit the research objectives, summarize the findings and conclude this 

research work. In the last part, recommendations for future research will be described.  

6.1 Research objectives, summary of findings and conclusions 

6.1.1 Objective 1: Implement object-based change detection method in a GIS workflow. 

In this study, a post-classification change detection technique was applied to avoid the impact 

of different sensors, atmospheric influences on the classification and change detection results. 

Furthermore, with the post-classification method it is possible to show the ‘from-to’ changes 

of land classes. Two satellite images of 1999 and 2017 were collected and pre-processing of 

the data was done in ArcMap. Images were segmented in geographical objects and classified in 

four classes with the eCognition software. Then the classified images were exported as vector 

layer into ArcMap. The accuracy of the classified images was checked with an accuracy 

assessment based on reference images. To detect changes and to discover ‘from-to’ changes 

the overlay and tabulate method was applied in ArcMap.  

The main conclusion that can be drawn when implementing an object-based change detection 

method in a GIS-workflow, is that there is no perfect fit for every case. The application of this 

method depends in several stages of the workflow on trial and error and every satellite image 

has its own influence on the segmentation and classification results. Many parameters can be 

applied to adjust the result, but much depends on the skills of the research analyst.  

6.1.2 Objective 2: Map the LULC in Kalmar with use of multi-temporal satellite images. 

The LULC of the municipality was mapped for the years of 1999 and 2017. The two classified 

maps show the distribution of land classes. The overall accuracies for both maps were 95% and 

the Kappa index was 93%. Map statistics show that in the map of 1999 vegetation is the 
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biggest class in the study region followed by water, agricultural lands and urban. This 

distribution order is the same for the classified image of 2017.  

The main conclusion that can be drawn is that -with an object-based classification of two 

medium resolution images- it is possible to achieve high classification accuracies. Furthermore, 

this method has proven to be very useful to map and gain insight in the LULC distribution at a 

local scale for different years.  

6.1.3 Objective 3: Analyse the LULC changes in the study area between 1999 and 2017. 

Object-based post-classification change detection method revealed several LULC 

transformations in the study area. Agricultural lands decreased between 1999 and 2017 from 

231 km2 to 207 km2 (-10.38%). Urban areas expanded significantly from 35 km2 to 42 km2 

(20%). Vegetation increased from 695 km2 to 713 km2 (2.58%). ‘From-to tables’ showed the 

drivers for the LULC changes. Urbanization in the study area was responsible for the 

conversion of agricultural lands and vegetation areas. Besides that, the expansion in vegetated 

areas was also responsible for a decrease in farmlands. The ‘from-to map’ provided insight 

where the urban expansion occurred in the study area.  

The conclusion that can be drawn for this objective is that agricultural land decreased in the 

study area and that the urban expansion is for a part responsible for this decline. This trend is 

also visible at a national and worldwide scale. 

6.1.4 Objective 4: Highlight the strengths and weaknesses of using an object-based change 

detection method to map  

The object-based classification of the Landsat 7 ETM+ and the Sentinel 2a images was 

successful. Overall accuracies of both images were 95% and per class producers accuracy is 

between 90% and 100%. 

Post-classification change detection revealed map statistics that showed the changing size of 

LULC classes between 1999 and 2017. Another advantage of this method was the discovery of 

the drivers for LULC transformations. A downside of this method is that the change detection 

results contained several errors. Often the results contained false change detection errors that 

were caused by misclassifications. The amount square kilometres in the conversion table 

(Table 12) is therefore overestimated and some transformations such as urban to vegetation 

are unrealistic. More research is needed to overcome the problem of sliver polygons, when 

classified images are combined. Object-based post-classification change detection derives 

insights in a changing landscape and what caused these changes. This information can help to 
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develop better planning policies for a sustainable land management. However, analysts must 

realize that the method is not faultless, and classifications of satellite images must be of high 

accuracy.  

6.2 Recommendations for future research 

Future research for this study area should be carried out with high-resolution images. For 

example, Sentinel 2a data has a spatial resolution of 10 meters and is freely available. This 

satellite is available since 2016. With high-resolution images, it is possible to map the LULC 

changes more accurately and to analyse the LULC transformations more precisely.  

Despite the standard Nearest Neighbour Classifier in eCognition worked well for this study 

area with four land classes, future research should be concentrated in developing a more 

robust ruleset for classifying remotely sensed images. Especially for study areas with a mix of 

agricultural and vegetated areas and with medium (30m) resolution images. Focus can be on 

developing a segmentation method that is not based on trial and error which can save time for 

the analyst.  

To decrease the false change detection errors future research should focus on a segmentation 

method that reduces the differences between the shape and size of segmented objects of two 

multi-date images. This can help to increase the accuracy of a post-classification change 

detection method.   

It is also recommended to map and analyse LULC changes for other parts of Sweden, to 

investigate if the trend of decreasing agricultural lands and increasing urban areas is also 

happening in other regions. More LULC change studies can help to face challenges like the 

declining agricultural lands in combination with growing population in a better way. With as 

result more sustainable regional and local planning policies.  
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Appendix A: vegetation or agricultural lands that changed into 

urban areas between 1999 and 2017 
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Appendix B: Unmodified from-to change map study area. 

 

 

 


