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Abstract 

Abstract 

The forest area in the Alpine region is increasing. Agricultural land is being abandoned – 

shrub and tree encroachment and reforestation are the consequences. Various actors 

from agriculture, nature conservation and tourism assess this process as negative. The 

importance of alpine and mountain farming will continue to be high in the future. Experts 

and layperson in Switzerland reject a strong reforestation for a variety of reasons, 

especially in alpine pastures, which are an outstanding element of the cultural landscape 

of Switzerland. 

Various projects have the goal of making such areas suitable for agriculture again. 

Adapted grazing, other livestock or initial interventions with felling of trees or rooting out 

bushes to keep them open in the long term. 

This thesis investigates, whether with ALS data (Airborne Laser Scanning) areas of shrub 

and tree encroachment can be identified. Therefore, a workflow was developed using a 

method for the identification of such vegetation structures implemented in free and open 

source software. The resulting information can be visualised, analysed and prioritised – 

depending on the needs of the specific project. 

Based on evaluations of the Swiss Land Use Statistics conducted by the Federal Statistical 

Office and the availability of ALS data, three study areas were selected. For these areas, 

data from two aerial surveys with a time difference of at least 10 years, using a point 

density of 0.8 to 4.2 p/m2 (2001/2002) and 9.8 to 21.7 p/m2 (2011-2015) are available. 

In a 3m grid, the Vertical Complexity Index (VCI), which provides information about the 

vertical distribution of laser points and the maximum Z value of the vegetation per grid 

cell are calculated. 

The results of the ALS data evaluation were compared with manually collected data from 

the interpretation of orthophotos. ALS data evaluation indicated that with higher point 

density, the detection rate for areas with shrub and tree encroachment is higher. With 

more than 4 points/m2, the correspondence between the calculation of the ALS data and 
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Abstract 

the interpretation of the orthophotos is between 57 and 79 percent for the category shrub 

and tree encroachment and between 90 and 98 percent for the category other. 

The achieved accuracies for the encroachment indicator are sufficient for the localization 

of encroachment. In order to identify areas of priority among potential stakeholders, the 

visualization and quantification of the resulting data are a solid basis. 
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Zusammenfassung 

Zusammenfassung 

Die Waldfläche im Alpenraum nimmt zu. Landwirtschaftliche Nutzflächen werden 

aufgegeben – Verbuschung und Wiederbewaldung sind die Folgen. Verschiedene Akteure 

aus Landwirtschaft, Naturschutz und Tourismus beurteilen diesen Prozess negativ. Die 

Bedeutung der Alp- und Landwirtschaft in Bergregionen wird auch in Zukunft hoch sein. 

Experten und Laien in der Schweiz lehnen eine starke Wiederbewaldung aus vielfältigen 

Gründen ab, insbesondere die Verbuschung von Alpweiden, die ein herausragendes 

Element der Kulturlandschaft der Schweiz sind. 

Verschiedene Projekte haben zum Ziel verbuschende oder verwaldende Flächen durch 

angepasste Beweidung, andere Nutztiere oder mittels Initialeingriffen wieder 

landwirtschaftlich nutzbar zu machen und langfristig offen zu halten.  

In dieser Arbeit wird untersucht, ob mit Hilfe von ALS (Airborne Laser Scanning) Daten 

solche Flächen identifiziert werden können. Dazu wird mit frei verfügbarer Software ein 

Arbeitsablauf entwickelt und eine Methode zur Identifizierung solcher 

Vegetationsstrukturen eingesetzt. In der Folge können die resultierenden Informationen 

projektspezifisch visualisiert, analysiert und priorisiert werden.  

Basierend auf Auswertungen der Arealstatik des Bundesamt für Statistik sowie der 

Verfügbarkeit von ALS Daten wurden drei Versuchsregionen ausgewählt. Für diese 

Regionen sind Daten aus zwei Befliegungen mit einem Abstand von mindestens 10 Jahren 

und mit einer Punkdichte von 0.8 bis 4.2 Punkten/m2 (erster Zeitstand) und 9.8 bis 21.7 

Punkten/m2 (zweiter Zeitstand) vorhanden. 

In einem 3 Meter Raster wird der Vertical Complexity Index (VCI) und der maximale Z-Wert 

der Vegetation pro Rasterzelle ermittelt. Mit dem VCI wird die vertikale Verteilung von 

Laserpunkten berechnet. 

Die Resultate der Auswertung der ALS Daten wurden mit manuell erhobenen Daten aus 

der Interpretation von Orthophotos verglichen. In den Studiengebieten hat sich gezeigt, 

dass bei höherer Punktdichte der Daten die Erkennung von Flächen mit 

Verbuschungscharakter grösser ist. Bei mehr als vier Punkten pro m2 liegt die 
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Übereinstimmung zwischen dem berechneten Indikator aus den ALS Daten und der 

Interpretation der Orthophotos zwischen 57 und 79 Prozent für die Kategorie Gebüsche 

und Bäume und zwischen 90 und 98 Prozent für die Kategorie Anderes.  

Für die Lokalisierung von Verbuschungsflächen ist die aufgezeigte Genauigkeit 

ausreichend. Die Visualisierung und Quantifizierung der resultierenden Daten können 

somit für Entscheidungsträger eine Grundlage für die Priorisierung von Massnahmen 

bilden. 
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Introduction 

1 Introduction 

1.1 Motivation 

Regions with alpine pastures1 are areas with distinguished value for biodiversity and an 

above-average richness of species, particularly in patches with forested areas. Zoller and 

Bischof (1980) summarise that alpine pastures show three times the number of species 

than the forest they replace. As part of the AlpFutur collaborative project, Koch and Schmid 

(2013) highlight in their study the significant influence of dwarf shrubs on decreasing of 

herb and grass species composition. According to Battaglini et al. (2014), the traditional 

use of meadows and pastures has ”fundamental positive externalities and ecosystem 

services”, such as the conservation of genetic resources, water flow regulation, climate 

regulation or landscape maintenance. 

Seasonal alpine grazing fulfils several functions for the environment, agriculture and 

regional economy – around 25 % of total livestock of Switzerland (Mack et al., 2013) spends 

the summer on one of 7058 alpine summer farms in the mountain area (agriculture 

census 2013, Bundesamt für Landwirtschaft BLW, 2016). Letting cows, cattle and goats 

graze on summer pastures has a long tradition and formed a unique alpine landscape. 

As in all mountain areas in Europe, wooded area in Switzerland is increasing due to 

agriculture abandonment (MacDonald et al., 2000). Particularly in regions with alpine 

pastures where two-thirds of encroachment areas grew between the middle of the 80ies 

and the middle of the 90ies. The tendency for intensification of well accessible meadows 

on one hand and extensification or abandonment of remote or steep meadows on the 

other hand has not been broken (Baur et al., 2007). In the region of alpine pastures and 

meadows in Switzerland forest increases by 2’400 ha per year (Lauber et al., 2013, Brändli 

et al., 2014). 

 

                                                   
1 In this thesis the term ‘alpine pasture’ is used for seasonal used grazing areas in Swiss mountains, including 

partly mowed pastures or meadows that only are mowed and not grazed by livestock. 
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Impact of this spontaneous reforestation on the ecosystem function is not necessarily 

negative at global scale. From the view of pastoral land use encroachment of woody plants 

tends to have a negative impact on the asked ecosystem function grazing of grassland 

(Eldridge et al., 2011). Due to the regulation for direct payments (Schweizerischer 

Bundesrat, 2013) the area of alpine pasture has to be protected from shrub and tree 

encroachment (Art. 29 Abs. 1). But carrying out and controlling in practice is difficult 

(Agridea, 2015). 

Different stakeholder have initialised projects to work against the process of 

reforestation. To identify areas of encroachment over a large area with remote sensing 

could help to assign priorities.  
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1.2 Objective 

The objective of this thesis is to compare a method for detection of shrub and tree 

encroachment from ALS data in farming areas of Switzerland with manual digitized 

reference data from orthophotos. 

The comparison shall answer the followed questions: 

1. Is it possible to detect shrub and tree encroachment from ALS data with open 

source tools and standard available data? 

2. What is the detection rate for ALS based method compared to manually digitized 

data? 

3. What is the minimal point density of ALS data to obtain a reasonable detection 

rate? 

 

1.3 Structure 

Chapter 2 introduces the technology of Airborne Laser Scanning, processing of LiDAR data 

and gives background information about alpine pastures. The question where 

encroachment is present in Switzerland will be addressed in chapter 2.4. In chapter 3 

criteria for selecting the study areas and the three study areas are described.  Chapter 4 

will explain the methodology and describe the applied LiDAR data processing workflow. 

In chapter 5 and 6, the results from the three study areas are presented and discussed. 

Finally, conclusions are drawn and potential future work is listed. 
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2 Background 

2.1 LiDAR 

Light Detection And Ranging (LiDAR) is an active optical remote sensing technique using 

laser light, operating in the wavelength regions from visible to infrared. From a platform 

(airborne, terrestrial or even satellite), laser pulses are sent out and reflected by buildings, 

vegetation, the ground or so called noise like birds, clouds or aerosols (Figure 1). From the 

return time of each pulse the distance to each object is calculated. The signal is stored as 

discrete return data or as full-waveform information (Lillesand et al., 2014, McGill, 2003). 

Airborne Laser Scanning (ALS) is often used when the data is acquired from a plane or a 

UAV (Unmanned Aerial Vehicle). 

 

 

Figure 1: Acquisition of Airborne LiDAR data (source: Karan et al., 2013)  

Multiple-return LiDAR systems enable to detect different vegetation layers. When the 

laser pulse hits an object, a part of the energy is reflected back to the receiver (first return). 

Figure 2 illustrates the case, where the object does not completely block the pulse. The 

remaining part intercepts with lower branches, trunks, shrubs or the ground.  This results 

in up to five returns from the same laser pulse. From these multiple returns information 

about canopy height, forest structure or even tree species can be obtained (e.g. Hyyppä 

et al., 2009, Cao et al., 2016). 
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Figure 2: Multiple returns from laser 

pulse (source: Balenović et al., 2013) 

For a wide range of applications in many fields LiDAR is used as basis for visualisation, 

analysis and surveying (Heipke, 2017; Caldwell, 2013). Some common products and use 

cases are: 

 DTM, DEM, and DSM: Calculation of a digital terrain model (DTM), digital elevation- 

model (DEM) or digital surface- model (DSM) from LiDAR point data is very 

common. These products are essential for a wide range of application in the 

private and public sectors and divisions. In Switzerland, the Federal Office of 

Topography swisstopo provides a DTM with an accuracy of 2 m (Bundesamt für 

Landestopographie swisstopo, 2016). 

 Collecting detailed forest information: Important forest structural parameters 

such as e.g. basal area, canopy heights, stand volume, subcanopy topography and 

biomass can be accurately estimated with LiDAR. This helps collecting accurate 

data for small to medium areas for forest planning and managing purpose or 

research. Furthermore, parameters, such as single tree detection or forest 3D 

metrics and spatial pattern can be determined. For many purposes in forestry, 

using LiDAR has become a standard  (Ginzler and Waser, 2017; Mongus and Žalik, 

2015; Blaschke et al., 2004).  

 Building models and facades reconstruction (aerial and terrestrial LiDAR): 

Extracting accurate 3D models of buildings from LiDAR data for solar potential 
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(Bizjak et al., 2015) or detailed visualization for construction renovating, urban 

planning and security monitoring (Yang et al., 2016). 

 Detection an explanation of archaeological features and sites: Large scale 

phenomena and showing unknown relationships in structure or arrangement 

hidden from forest canopies (e.g. Devereux et al., 2005). 

 Dimensioning and monitoring mine dump or location of emplacement (Esposito et 

al., 2017). 

 Detection of impact due to natural disaster and analysis for prevention: Modelling 

floodplains, natural coastal hazards, observation of landslides and hydrogeological 

risk mapping. 

 Bathymetry, Underwater laser scanning (Mandlburger, 2017). 

 Measurement of snow depth (Deems et al., 2013). 

 Repeating LiDAR data collection in the same area in defined and reasonable time 

interval leads to further interesting fields of application: landscape and vegetation 

change or monitoring wildlife habitat. 

Point Density 

The density of point cloud data is important for several reason. Less density means less 

cost for data acquisition. For many purpose low to middle density is sufficient. In order to 

generate a DTM for natural disasters prevention, fewer points per square meter are 

needed then for detailed archaeological purpose. 

According to Hellesen and Matikainen (2013) a density of 2 points/m2 can be sufficient for 

the detection of individual trees. The same authors used an average point density of 13 

points/m2 for the mapping of even small shrubs and trees. For aboveground biomass 

(AGB) estimation, Wu et al. (2016) obtained high accuracies using 8 points/m2. 
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Full-waveform LiDAR 

Waveform LiDAR systems enable to measure time-varying signals of the laser pulse. Full-

waveform data enable to describe the 3D structure of vegetation canopies more 

accurately than discrete return data, in particular the canopy understorey (Anderson et 

al., 2016). Even tree species can be extracted from full-waveform LiDAR for example for 

tree inventories (Bruggisser et al., 2017). For classifying grassland vegetation in open 

landscape, Alexander et al. (2015) showed advantages of full-waveform ALS over other 

remotely sensed data. 

Full-waveform data on one hand are cost intensive regarding data processing but on the 

other hand enable an improved method for measuring the three-dimensional structure 

of vegetation systems. In the future, improved toolkits will reduce these costs and thus 

increase accessibility of this information for a wider range of analysis and applications. 
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2.2 Processing LiDAR Data 

Nowadays, a wide range of free and open source and non-free software for processing 

LiDAR data is available. Table 1 lists software for LiDAR-processing and their 

functionalities. The list is not complete; it gives an overview of available software and tools 

found during the investigations for this thesis. Workflows and processes in R, python and 

toolboxes for other software or standalone solutions are listed as well.  

Table 1: Software in comparison 

Name Company / 

Developer 

Functions Licence* 

Ecognition 

Developer 

Trimble Filter, analysis, extraction, combining with OBIA 

 

non-free 

Fugro 

Viewer 

Fugro .las / .laz viewer FTU 

R r-project rLiDAR 

- 2D / 3D Convex hull of individual tree 

- 3D stand visualization of individual tree 

- Canopy Height Model (CHM) 

- CHM smoothing 

- Individual tree detection 

 

OS 

AGPLv3 

lidR 

- read, write .las, .laz 

- plot / - filter (first, last, first and last, firstofmany, single, by 

classification) 

- ground (progressive morphological filter) 

- normalization 

- Canopy height model 

 

OS 

GPL-3 

TIFFS Globalidar Filter, data conversion, DEM, DSM, object height models (OHM), 

object extraction (individual trees, buildings) 

 

non-free 

Lastool I Rapidlasso laszip / lasindex / lasvalidate / lasliberate / lasinfo / las2las / 

lasdiff / lasmerge / las2txt & txt2las / lasprecision / LASzip (with 

static linking exception) / LASlib (with LASzip) - the API used by 

LAStools. 

Free but not open source:  

Lasview / laspublish 

 

FTU 

LGPL 2.1 

 

LASzip: OS 

*OS: open source / FTU: free to use 
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Lastool II Rapidlasso blast2dem / blast2iso / lasground & lasground_new / lasheight / 

lastrack / lasclassify / lasgrid / lascanopy / lasboundary / 

lascontrol / lasoverlap / lasoverage / lasduplicate / lassplit / 

lasreturn 

las2tin / las2iso / las2dem / lasthin & lasnoise / lassort / lastile /  

lasplanes / lascolor / lasclip / las2shp & shp2las 

 

non-free 

ArcGIS ESRI 3D Analyst Tools > Data Management > LAS Dataset (Change 

Class, Classify, Extract, Statistics, Locate, Set Class Using 

Features) / Conversion > LAS Dataset to TIN, LAS to Multipoint 

  

non-free 

FUSION US 

Department 

of 

Agriculture 

Cover.exe (Canopy Cover) 

Dtm2ascii.exe (export .asc for import in qgis) 

gridsurfacecreate.exe (average elevation perc ell) 

canopymodel.exe (canopy surface model) 

 

FTU 

LiForest 

2.1 

Greenvalley 

International 

Point Classification 

Surface Models 

Canopy Cover 

Tree segmentation, tree location, crown size, tree height 

 

free 

PDAL Hobu, Inc. Able to manipulate data with Python OS 

BSD  

OPALS Vienna 

University 

of 

Technology 

Modular based functions for processing ALS data: 

georeferencing, quality check, filter, algebra, DSM 

non-free 

GRASS GRASS 

Developmen

t Team 

Import, filtering, analysing (outliers, edge detection, building 

contour determination) DEM, terrain change,  

visualization 

OS 

GPL 

SPDlib  Converting, merging, DTM, Classify ground returns, processing 

large datasets, vegetation metrics (HSCOI, Canopy Openness, 

waveform 

OS 

Laspy  python library for reading, modifying, and creating .las files 

- lascopy 

- lasexplorer 

- lasvalidate 

OS 

BSD 2 

pyLidar  Turn data in to structured arrays for further processing and 

working with the data directly in numpy arrays. Check, analyse 

data in small blocks. 

Based on SPDlib, built on RIOS 

OS 

GPL-3 

LibLAS  LibLAS has been almost entirely superseded by Martin 

Isenburg‘s LASlib library Conversion, links with GDAL 

functionality. 

OS 

BSD 
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ARSF DEM 

scrips 

Daniel 

Clewley 

Library (‘wrapper’) for GRASS-tools combined with Python 

functions. 

DEM, DSM, DTM, Intensity, Density, Create mosaic from DEM, 

load LiDAR to GRASS 

OS 

GPL-3 

QGIS QGIS 

Developmen

t Team 

QGIS toolbox for LAStools. Easy way of using LAStools – 

depended on licence the tools from Lastool I or Lastool II (see 

above) are available. 

QGIS: OS 

GPL 

LAStools: 

see above 

Cloud 

Compare 

Daniel 

Girardeau-

Montaut 

Visualizing point clouds OS 

GPL 

Greyhound Hobu, Inc. Stream and query point cloud data over network OS 

Apache 

License 2.0 

Entwine Hobu, Inc. Data organization library. Organisation tool for massive point 

cloud collection 

OS 

LGPL 

Plas.io  WebGL HTML5 point cloud renderer OS 

MIT  

Potree  WebGL HTML5 point cloud viewer for large datasets OS 

PCL  Standalone, large scale, open project for 2D/3D image and point 

cloud processing. 

Filtering, Segmentation, Surface reconstruction, Model fitting 

OS 

BSD-3 
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2.3 Alpine Pastures: Borders and Limitations 

Definition and borders of alpine pastures and meadows may differ from region to region. 

The regulation for zoning the agricultural used area says: “The limits of alpine pasture and 

meadows are defined by the management before 1999 and taking into account the 

conventional-traditional management” (Art. 3, Bundesamt für Landwirtschaft BLW, 2017). 

A lower altitude limit for alpine pastures is clearly defined in most regions by the boundary 

to all season’s meadows and pastures. The upper altitude limit for grazing areas differs 

from region to region, but in general is set by approx. 2000 m a.s.l. for the northern Pre-

Alps and up to approx. 2400 m a.s.l. for the Central-Alps (McC. Netting, 1972; Mack et al., 

2013; Hedinger, 2014). 

In the register of agricultural production (Bundesamt für Landwirtschaft BLW, 2017) the 

agricultural area is divided into 1) summer pastures, 2) mountainside areas, 3) hilly areas 

and 4) valley areas. The mountainside areas themselves are divided into four zones. For 

this classification, the following criteria have to be considered due to Art. 2 of the 

regulation (Bundesamt für Landwirtschaft BLW, 2017): 

- Climatic location, in particular the duration of the growing period 

- Traffic situation and development 

- Morphology and topography, in particular the proportion of hillside and steep 

slope 

Various measures in the field of the agricultural law are based on the zoning. For example, 

payments for promotion of ecological network and farmland biodiversity differ between 

the zones. 

Apart from the question of the upper and lower borders of alpine pastures, slope is 

another category of interest for this thesis. Whether a pasture can be grazed due its slope 

or not, depends primarily on cattle species and race. According to Sutter (2007) the upper 

limit of slope is 40% for cows, 60 % for cattle and up to 80% for sheep and goats. 
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2.4 Landscape Dynamic in Agriculture  

The Swiss Land Use Statistics conducted by the Federal Statistical Office is based on 

sample points of a 100 m regular raster, in total 4.1 million (Bundesamt für Statistik BFS, 

2014). The classification scheme distinguishes 72 categories, which are aggregated to 17 

and 27 classes respectively. These aggregated classes are allocated to one of the four 

major division: 1) settlement and urban areas, 2) agricultural areas, 3) wooded areas and 4) 

unproductive areas. In this thesis, the change of classification from the major class 

agricultural area to wooded area is used as an indicator for shrub and tree encroachment. 

The dataset (Bundesamt für Statistik BFS, 2016) provides information about the change 

of land use between 1992/97 and 2004/09. All sample points that indicate a change of 

land use in this time are visualized in Figure 3. 

 

Figure 3: Change of classification agricultural areas to wooded areas (illustration by author, data: swisstopo2, 

BAFU3) 

                                                   
2 Swiss Federal Office of Topography: swissTLM3D 
3 BAFU: Bio-geographical regions, number of biogeographic region corresponding to Figure 6 
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Figure 3 shows the characteristic of change of land use classification from agricultural 

areas to wooded areas corresponding to the biogeographic region (see chapter 3.2). The 

plateau region (2), which is a region of particularly intensive agriculture, is characterized 

by fewer changes of agricultural areas into wooded areas. Areas with a high density of 

encroachment points are in particular located in the southern parts of Switzerland, in the 

Alps and Prealps, and in the western parts of the Jura. 

Table 36 (Appendix A) shows the results of landscape dynamic analyses as total 

encroachment points per canton and per square kilometre. The mean encroachment 

points per square kilometre range between 0.03 for the canton Basel-Stadt, rise up to 0.37 

for the canton Valais, and 0.48 for canton Ticino. 
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Belt of Potential Encroachment Concentration 

The border for summer pastures from the register of agricultural production as 

mentioned in chapter 2.3 is not digitized very accurately and includes errors such as 

borders around lakes, but not around settlements or forested area. Nevertheless, for 

analysing a potential concentration of encroachment in this area of interest, a buffer 

around this borderline was used in this thesis. 

Overlaying the density map of encroachment points in Figure 3 with the summer pasture 

border, a concentration of encroachment around this border is obvious (see Figure 4, 

Table 2 and  

Table 3).  

 

Figure 4: Belt of potential encroachment concentration (illustration by author, data: swisstopo4, BLW,5) 

Overall, 2330 encroachment points remain (from a total of 10535 points) within an area 

of 500 m around the border from all-season agriculture to summer pastures (buffer 

                                                   
4 Swiss Federal Office of Topography: swissTLM3D, swissalti3D 
5 BLW: Boundaries of agricultural zones 
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radius of 250 m). The encroachment belt covers an area of 10.6 % of the total area of 

Switzerland and 22.1 % of encroachment points. 

Table 2: Encroachment points in potential encroachment belt, national 

Canton area [km2] 

Total 

encroachment 

points 

percentage of 

total area [%] 

percentage 

of total 

points [%] 

Points 

per km2 

in belt 

Switzerland 41290.76 10535 100 100 0.251 

belt area 4388.90 2330 10.6 22.1 0.531 

 

Table 3: Encroachment points per canton with more than 0.40 p/km2 

Canton Total area 

[km2] 

Total 

encroachment 

points 

belt area [km2] belt area 

percentage of 

total area [%] 

points 

in belt 

belt area 

percentage 

of total 

points [%] 

Points 

per km2 

in belt 

VS 5224.49 1957 496.6 9.5 368 18.8 0.74 

TI 2812.21 1358 342.6 12.2 253 18.6 0.74 

GR 7105.39 2157 1262.3 17.8 841 39.0 0.67 

VD 3211.94 1049 243.6 7.6 126 12.0 0.52 

BE 5959.59 1255 732.2 12.3 334 26.6 0.46 

SZ 907.89 221 163.8 18.0 71 32.1 0.43 

OW 490.58 165 63.8 13.0 27 16.4 0.42 

NW 275.84 64 51.8 18.8 21 32.8 0.41 

LU 1493.51 199 117.1 7.8 47 23.6 0.40 

 

Table 36 (Appendix A) shows that wall-to-wall LiDAR data later than 2011 is only available 

for the cantons of Vaud and Berne. Due to the availability of data from the cadastral 

survey, the data of Berne were considered for further analysis. 

In the canton of Berne eleven communes show a density above 0.20 encroachment points 

per square kilometre, from which five belong to the biogeographic region of the Jura (1) 

and six to the region of the Northern Alps (3). 
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Table 4: Communes in canton Bern with more than 0.20 encroachment points per km2 

 

Commune No. FSO Total area [km2] 

Points in 

belt 

Biogeographic 

region 

Points per 

km2 

1 Grandval 694 8.25 5 1 0.61 

2 Saxeten 591 19.42 10 3 0.51 

3 Sauge 449 13.46 4 1 0.30 

4 Horrenbach-Buchen 932 20.40 6 3 0.29 

5 Saanen 843 120.06 35 3 0.29 

6 St. Stephan 793 60.89 17 3 0.28 

7 Lenk 792 123.09 32 3 0.26 

8 Courtelary 434 22.21 5 1 0.23 

9 Valbirse 717 18.68 4 1 0.21 

10 Gsteig 841 62.43 13 3 0.21 

11 Tramelan 446 24.83 5 1 0.20 
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2.5 Assessing of Shrub and Tree Encroachment 

Observation of encroachment process can be easily done in the field over small areas, but 

monitoring large areas with remote sensing is challenging. Changes in land cover concern 

often small patches and discrimination from other land uses is difficult (Kolecka et al., 

2015). 

In forestry, many studies describe metrics for measuring 3D structure of forest, forest 

inventory, stem volume or biomass using LiDAR (Penner et al., 2015, Hyyppä et al., 2009, 

Blaschke, 2010). Using image-based point clouds, Wang et al. (2015) assessed short-term 

forest cover changes with good results for managed mixed forests. Van Ewijk et al. (2011) 

discriminated by assessing LiDAR based indices four stages of forest succession but not 

the stage of reforestation. Using multispectral images manly for forest change detection 

by Object Bases Image Analysis OBIA in combination with ALS data is widely used an 

achieves good results (Szostak et al., 2014, Blaschke, 2010). Waser et al. (2008) used CIR 

aerial images to asses change detection of forest and wooded area in mire biotope. 

Sahara et al. (2015) used repeat aerial photographic analysis and dendroecology for 

quantifying tree encroachment into a savannah.  

Focusing on shrub and tree encroachment in grazing areas for livestock, literature and 

studies are rare. Anadón et al. (2014) recorded: “The impact of this global phenomenon 

[woody-plant encroachment] on livestock production, the main ecosystem service 

provided by grasslands, remains largely unexplored “.  



 

31 

Study Areas 

3 Study Areas 

Three study areas in Switzerland were chosen based on the following criteria: 

1. Availability of ALS data 

2. Different biogeographic region 

3. High density of encroachment points (change of land use classification from 

agriculture to wooded area) 

For the third criteria, data from the Swiss Land Use Statistics were analysed and integrated 

in chapter 2.4 Landscape Dynamic in Agriculture. 
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3.1 Available ALS Data 

The countrywide ALS data set for Switzerland from the Federal Office of Topography 

swisstopo based on data collected between 2000 and 2007, providing a mean point 

density 0.5 points per square metre (Bundesamt für Landestopographie swisstopo, 

2010a). 

Furthermore, several cantons undertook their own flight missions for ALS data collection 

(compare flight year in Table 36, Appendix A). Fifteen cantons undertook their own flight 

mission between 2006 and 2015. Additionally, WSL collected ALS data for four larger areas 

in the canton Grison. 

 The raster in Figure 5 representing all available ALS data in Switzerland by point density. 

 

Figure 5: ALS data availability for Switzerland in 2015 illustrated by point density (Ginzler, 2016) 
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3.2 Biogeographic Regions 

The biogeographical classification is based on patterns of the distribution of flora and 

fauna and consists of the six regions: Jura (1), Plateau (2), Northern Alps (3), Western 

Central-Alps (4), Eastern Central-Alps (5) and Southern Alps (6). The classification enables 

a better comparability of (biological) studies and serves as basis for current and future 

nature protection projects (Gonseth et al., 2001). 

 

Figure 6: Biogeographic regions (illustration by author, data: swisstopo6, BAFU7) 

  

                                                   
6 Swiss Federal Office of Topography: swissTLM3D 
7 BAFU: Bio-geographical regions 
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3.3 Study Areas Saxeten and Grandval 

The selection of representative study areas was based on the availability of ALS data and 

different biogeographic regions in the same canton (Figure 7). The two communes 

Saxeten and Grandval with highest number of encroachment points per km2, met the 

requirements. Due to unique conditions in the region of Maienfeld (canton Grison), an 

additional study area as described in chapter 3.4 was selected. 

 

Figure 7: Overview canton Bern, study areas Grandval and Saxeten (illustration by author, data swisstopo8, AGI9) 

Table 5 gives an overview of the land cover characteristics in the communes Saxeten and 

Grandval. Compared to the canton of Bern, areas of forest and agriculture of both Saxeten 

and Grandval are above average. 

 

 

                                                   
8 Swiss Federal Office of Topography: swissTLM3D 
9 Amtliche Vermessung vereinfacht © Amt für Geoinformation des Kantons Bern 
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Table 5: Land cover area Saxeten and Grandval10 

Study area Total area Forested 

area 

Agriculture 

area 

other Elevation       

(m a.s.l.) 

Saxeten 19.4 km2 

100 % 

6.4 km2 

33.1 % 

9.2 km2 

47.5 % 

3.8 km2 

19.4 % 

min: 820 

max:2724 

Grandval 8.3 km2 

100 % 

3.6 km2 

43 % 

4.2 km2 

50.8 % 

0.5 km2 

6.2 % 

min: 565 

max: 1302 

Canton 

BERN 

5959.6 km2 

100 % 

1701 km2 

28.5 % 

2634.5 km2 

44.2 % 

1624 km2 

27.3 % 

min: 401 

max: 4274 

Figure 8 gives an overview of land cover of the commune Saxeten and Figure 11 of the 

commune Grandval.  

 

Figure 8: Commune Saxeten in the alpine region of the canton Bern (illustration by author, data: swisstopo11, 

AGI12), green= forest, grey= rock, sand / white = agriculture area 

                                                   
10 Data from cadastral survey of canton Bern (Amtliche Vermessung vereinfacht © Amt für Geoinformation des 

Kantons Bern / published: 15.09.2016). Minor variation to data from the Federal Office of Statistics due to 

generalisation of dataset. 
11 

Swiss Federal Office of Topography: swissBoudaries3d 
12 

Amtliche Vermessung vereinfacht © Amt für Geoinformation des Kantons Bern 
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Figure 9: Example of an area with typical shrub and 

tree encroachment in the pasture. (location: 

Sytiweideni, Saxeten, image by author, 26.09.2017) 

Figure 10: The corresponding orthophoto from 2012 

 

Figure 11: Commune Grandval in the Jura region of canton Bern (illustration by author, data: swisstopo13, AGI14), 

green= forest, grey= rock, sand / white = agriculture area  

                                                   
13 Swiss Federal Office of Topography: swissBoudaries3d 
14 Amtliche Vermessung vereinfacht © Amt für Geoinformation des Kantons Bern 
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3.4 Study Area Maienfeld 

The area around the commune of Maienfeld in the canton Grison characterized by a 

relatively high ALS point density in the acquisition from 2002. During the investigations in 

the framework of this thesis, the area of Maienfeld stood out with its point density of more 

than 4 points per square meter. Moreover, WSL collected data from the same area in 2015 

with a very high point density of more than 20 points per square meter. The extension of 

the area is exactly one tile (13.14 km2) of the orthophoto mosaic Swissimage from 

swisstopo. These data were probably collected for testing purposes. 

 

 

Figure 12: Area 1156-31, near Maienfeld in canton Grison, point density of data collected in 2002 (illustration by 

author, data: swisstopo15, WSL16) 

                                                   
15

 Swiss Federal Office of Topography: swissBoudaries3d 
16

 Normalised LiDAR data 2015, WSL 
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Figure 13 Communes Maienfeld, Malans, Fläsch and Jenins in canton Grison (illustration by author, data: 

swisstopo17) 

The area covers parts of the communes Maienfeld, Malans, Fläsch and Jenins. The values 

for land cover categories has been calculated based on the cadastral survey.  

 

Table 6: Land cover area Maienfeld18 

Study area Total area Forested 

area (%) 

Agriculture 

area 

other Altitude         

(m a.s.l.) 

Maienfeld 

[area 

1156-31] 

13.14 km2 

100 % 

6.69 km2 

52.9 % 

5.36 km2 

40.8 % 

0.83 km2 

6.3 % 

min: 606 

max:2445 

 

 

                                                   
17 Swiss Federal Office of Topography: swissBoudaries3d 
18 Cadastral survey, source: Amtliche Vermessung (AV), Kanton Graubünden, 17.09.2017 
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Figure 14 Communes Maienfeld, Malans, Fläsch and Jenins in canton Grison (illustration by author, data: 

swisstopo19, Kanton Graubünden20) green= forest, grey= rock, sand / white = agriculture area 

The area is characterized by forest from the lower to the middle part up to the treeline 

around 1700 to 1800 m a.s.l. Above the treeline, land is mainly used as alpine pastures 

and meadows. This area between the summit Vilan (2375 m) and Glegghorn (2445 m) is 

characterized by fens and shrub vegetation.  

 

                                                   
19 Swiss Federal Office of Topography: swissBoudaries3d, tilling Swissimage 
20 Cadastral survey, source: Amtliche Vermessung (AV), Kanton Graubünden, 17.09.2017 
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4 Materials and Methods 

In order to identify shrub and tree encroachment, two data sets from different years are 

required. The optimal time interval depends on the aim of the data comparison and the 

accuracy of the collected data. In this thesis, the focus was laid on shrub and tree 

vegetation located between 600 and 2200 m a.s.l. in Switzerland. 

Growth of trees and shrubs depends on several parameter such as exposition, altitude, 

soil, precipitation etc. For example, the impact of altitude to the height growth of spruce 

(Picea abies) has been examined by Holzer (1967) who observed an annual height growth 

of 22cm in areas around 1400 m a.s.l. 

The accuracy of the used ALS data from 2001 and 2002 is around ±50cm for height 

(Bundesamt für Landestopographie swisstopo, 2010a). The data collected by the canton 

of Berne in 2012 have an height accuracy of less than ±20cm (Amt für Wald des Kantons 

Bern, 2014). In order to detect new grown spruces with a height of 50cm using these data, 

a minimum time difference of five to eight years is required. 

Old ALS data and the ALS data of Berne were collected under leave-off conditions between 

the end of autumn and start of spring. To minimize the influence of grass vegetation on 

pastures, this is a decisive point for encroachment identification. ALS data in the area of 

Maienfeld was collected in August 2015, under leave-on conditions. These specific 

conditions are essential for the interpretation of the results. 
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Figure 15 Concept and workflow of data analysis 

Figure 15 shows the workflow of analysing the old and new orthophotos and the ALS data, 

which is carried out for every study area. The accuracy of the calculated Vertical 

Complexity Index (VCI, see chapter 4.2) combined with a maximum Z value is proofed 

compared to manually digitized information. For each orthophoto, 450 sample plots were 

classified. The area of shrub and tree encroachment is obtained from the difference 

between the calculated indicator from old and new ALS data. In the following chapters 

input data, the VCI, software and the workflow will be described. 
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4.1 Data 

ALS Data I 

The first ALS data set was acquired by swisstopo between 2000 and 2007. The data was 

first normalised and then merged into tiles of 5 by 5 km by WSL for other ALS based 

studies. The used ALS data have the following characteristics for the three study areas of 

this thesis: Density in Table 7 and Table 8 was calculated for LAZ-tiles clipped with the 

corresponding boundary of study area using lasinfo from Lastools (Isenburg, 2017). 

Table 7: ALS data I 

Study area flight 

year 

density 

[p/m2] 

Size of tile 

[km2] 

Tiles cover 

study area 

Tiles name 

Saxeten October 

2001 

 

1.5 25  4 nDSM_625000_165000.laz 

nDSM_630000_165000.laz 

nDSM_625000_160000.laz 

nDSM_630000_160000.laz 

Grandval  October 

2001 

1.2 25 4 nDSM_595000_235000.laz 

nDSM_600000_235000.laz 

nDSM_595000_230000.laz 

nDSM_600000_230000.laz 

Maienfeld March 

2002 

4.2 25 2 nDSM_760000_205000.laz 

nDSM_760000_210000.laz 
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ALS Data II 

The second ALS data set for Saxeten was acquired by the canton of Bern in April 2012 and 

for Grandval in April 2011. For all analyses the raw point cloud data were used (Amt für 

Wald des Kantons Bern, 2014).  

For the study area Maienfeld, a dataset with a high point density of more than 20 

points/m2 was used, which was acquired by the WSL in August 2015. 

Table 8: ALS data II 

Study area flight 

year 

density 

[p/m2] 

Size of tile 

[km2] 

Tiles cover 

study area 

Tiles name 

Saxeten April 

2012 

18.9 1 30 627_162.laz, 627_163.laz, 627_164.laz, 

628_160.laz, 628_161.laz, 628_162.laz, 

628_163.laz, 628_164.laz, 628_165.laz, 

629_160.laz, 629_161.laz, 629_162.laz, 

629_163.laz, 629_164.laz, 629_165.laz, 

629_166.laz, 630_160.laz, 630_161.laz, 

630_162.laz, 630_163.laz, 630_164.laz, 

630_165.laz, 630_166.laz, 631_162.laz, 

631_163.laz, 631_164.laz, 631_165.laz, 

631_166.laz, 632_164.laz, 632_165.laz 

Grandval  April 

2011 

9.8 1 19 597_236.laz, 597_237.laz, 598_234.laz, 

598_235.laz, 598_236.laz, 598_237.laz, 

598_238.laz, 598_239.laz, 599_234.laz, 

599_235.laz, 599_236.laz, 599_237.laz, 

599_238.laz, 599_239.laz, 600_234.laz, 

600_235.laz, 600_236.laz, 600_238.laz, 

600_239.laz 

Maienfeld August 

2015 

21.7 1 18 764000_211000.laz, 764000_210000.laz, 

764000_209000.laz, 763000_211000.laz, 

763000_210000.laz, 763000_209000.laz, 

762000_211000.laz, 762000_210000.laz, 

762000_209000.laz, 761000_211000.laz, 

761000_210000.laz, 761000_209000.laz, 

760000_211000.laz, 760000_210000.laz, 

760000_209000.laz 
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Orthophotos 

The Federal Office of Topography swisstopo provides geometrically corrected aerial 

photographs (orthophotos). For the study area Saxeten, the orthophotos available date 

from 2004 and 2012. For the study area Grandval, orthophotos from 2004 and 2011 are 

available. From the year 2001, when ALS data was collected no orthophotos are available. 

The ground pixel size of the orthophotos before 2005 is 0.5 m and after 2005 0.25 m for 

areas below 2000 m a.s.l. (Bundesamt für Landestopographie swisstopo, 2010b / 

Bundesamt für Landestopographie swisstopo, 2008). 

For study area Maienfeld the orthophotos available date from 2002 and 2014 

corresponding with the ALS data collection years of 2001 and with one year difference to 

the second ALS data set from 2015. 

Table 9: Orthophotos study area 

Study area Year Ground pixel 

size [m] 

Tiles cover 

study area 

Tiles name 

Saxeten 2004 

2012 

0.5 

0.25 / 0.5 

4 1228-14 / 1228-23 / 1228-32 / 1228-41 

Grandval  2004 

2012 

0.5 

0.25 

4 1106-22 /1106-23 / 1106-24 / 1106-42 

Maienfeld 2002 

2014 

0.5 

0.25 

1 1156-31 
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4.2 Vertical Complexity Index VCI 

The Vertical Complexity Index is an implementation of the concept of evenness to a LiDAR 

point cloud for quantifying the vertical distribution of the points. It is based on the 

information theory index developed by Shannon (1948), which has been used to quantify 

species diversity and species evenness in ecology. The evenness index should be at a 

maximum, when in a sample all species are equally abundant and should decrease 

towards zero, as the relative abundances of species become more and more unequal (van 

Ewijk et al., 2011, Penner et al., 2015). 

𝑉𝐶𝐼 = (−∑ [(𝑝𝑖) ∙ ln(𝑝𝑖)])/ln⁡(𝐻𝐵)
𝐻𝐵

𝑖=1
 

A normalised point cloud is divided into a number of height bins 𝐻𝐵. The number of LiDAR 

returns per height bin as a proportion of the total number of LiDAR returns is used to 

define 𝑝𝑖.  

A 𝑉𝐶𝐼⁡value close to 1 indicates that most height bins have equal numbers of points. As 

the distribution of points per height bin becomes more uneven, 𝑉𝐶𝐼⁡decreases (van Ewijk 

et al., 2011). 

 

Figure 16: Expected value of Vertical Complexity Index 𝑉𝐶𝐼 (illustration by author, values: van Ewijk et al., 2011) 

Figure 16 shows the expected 𝑉𝐶𝐼⁡value for different stages (a-d) of the vegetation 

development: a) low 𝑉𝐶𝐼⁡values for small vegetation such as shrub and tree 

encroachment, whan all returns are concentrated in the lowest height bin(s); b) mid-range 

𝑉𝐶𝐼⁡values for the stem exclusion stage, as returns are concentrated in a grouping of 
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height bins representing the upper canopy; c) for the understory re-initiation stage mid- 

to high 𝑉𝐶𝐼⁡values are expected, as returns would be concentrated in two separate 

groupings of height bins. Finally, (d) for an old growth stage a high 𝑉𝐶𝐼⁡value, since returns 

are expected to be more evenly distributed over the entire vertical column (van Ewijk et 

al., 2011). 

The authors investigated the differentiation between stages of forest succession, but not 

the differentiation between pastures (no forest) and initiation stage. For stem exclusion 

stage, same authors measured a mean 𝑉𝐶𝐼 of 0.63, for the understory re-initiation stage 

0.75, and for old growth stage 0.80. 
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4.3 Software 

Point Data Abstraction Library PDAL 

PDAL is an open source software (BSD-licence) for basic point cloud processing operations 

like translation, filtering, clipping and exploitation. It allows to compose operations on 

point clouds into pipelines of stages (Butler and Gerlek, 2017). To run the pre-built version 

of PDAL on Windows the containerization software Docker is used. 

Used Version: 1.5 

RStudio 

RStudio is an integrated development environment (IDE) for R and is licenced under GNU 

as open source21 software (R Development Core Team, 2017). It was preliminary used in 

this thesis for executing the calculation of the VCI (see 4.2, page 45), which is provided by 

the package lidR (Roussel, 2017). The functions provided by package rLiDAR (Silva et al., 

2015) have been tested for the calculation of the Canopy Height Model (CHM) and the 

LiDAR-processing of small sample data set, but not for the final processing. The well 

working functions of the package rLIDAR did not fit the requirements of shrub and tree 

detection in alpine pastures.  

Used Version: 1.0.136 

LasTools 

LasTools is a powerful tool package for processing LiDAR data. It provides scriptable tools 

with multi-core batching. In this thesis only the free to use parts of the tools were tested 

(see chapter 2.2) and finally las2las and lasinfo (-compute_density) was used for pre-

processing and point density calculation (Isenburg, 2017). 

Used Version: 170628 

 

 

                                                   
21 https://cran.r-project.org/doc/FAQ/R-FAQ.html 

https://cran.r-project.org/doc/FAQ/R-FAQ.html
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QGIS 

QGIS was used in this thesis for exploring intermediate results, analysing and processing 

vector and raster data, and for the visualisation of the final results (QGIS Development 

Team, 2017).  

Used Version: 2.14.19-Essen 

PostgreSQL/PostGIS 

PostgreSQL is an open source object-relational database management system. PostGIS is 

a spatial database extender for PostgreSQL and adds support for geographic objects 

allowing location queries to be run in SQL (PostgreSQL Global Development Group, 2017/ 

Refractions Research et al., 2017). The database was used to store results from R-

processing and PostGIS for calculating the combined indicator of VCI and maximum Z 

value and for excluding areas based on land use classification from the cadastral survey. 

Used Version: PostgreSQL 9.5.7 / PostGIS 2.2.1 
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4.4 Calculation of Shrub and Tree Encroachment Indicator 

For both ALS datasets, an encroachment indicator was calculated as shown in Figure 17. 

In a first step, DTMs were generated based on the ALS data. Then both altitude and slope 

data from the DTM were used to exclude all areas that are of no agricultural interest 

(compare chapter 2.3). Secondly, ground and vegetation points were filtered and 

normalised and the VCI was calculated (see chapter 4.2). Thirdly, maximum Z value, a 

further criteria for exclusion of established trees from the final encroachment indicator 

was generated from normalised vegetation data. 

 

Figure 17: Process indicator calculation 

 

Grid Cell Size 

In order to implement the tested approach for large areas, particular attention during 

testing was paid on scalability and computation costs. Van Ewijk et al. (2011) used circular 

plots with an area of 400 m2 (radius = 11.28 m). The used implementation in R-package 
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lidR required a squared plot cell. Testing different cell size revealed a grid cell size of 3 m 

is a suitable compromise between accuracy and computation costs (see chapter 4.5). 

 

Pre-processing 

ALS data were normalised with PDAL. In order to process all files of a folder, a pipeline 

(code in Table 10) executes the filter ‘Height Above Ground’ (filters.hag22). In a first step, 

the filter calculates the height above the nearest (x,y) ground point for each point in the 

point cloud according the ASPRS classes for vegetation 3, 4 and 5 (ASPRS, 2013). 

In a second step, points with Z values bellow zero and above 50 m are dropped with 

filters.range23 and only points classified as vegetation are selected and written to a new 

LAZ file. 

 

Table 10: Code pipeline for Docker, vegetation normalization 

{ 

  "pipeline":[ 

    "/data/629_165.laz", 

    { 

      "type":"filters.hag" 

    }, 

    { 

      "type":"filters.ferry", 

      "dimensions":"HeightAboveGround = Z" 

    }, 

    { 

      "type":"filters.range", 

      "limits":"Z[0:50], Classification[3:5]" 

    }, 

    { 

      "type":"writers.las", 

      "filename":"/data/629_165_v_norm50.laz" 

    } 

]  

} 

                                                   
22 https://www.pdal.io/stages/filters.hag.html (visited 19.05.2017) 
23 https://www.pdal.io/stages/filters.range.html (visited 19.05.2017) 

https://www.pdal.io/stages/filters.hag.html
https://www.pdal.io/stages/filters.range.html
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For looping through all files in a folder, the pipeline in Table 12 is executed in Docker by 

code as described in Table 11. One problem of Docker for Windows is to keep the 

container running until the loop script has started. The ‘tail –f /dev/null’ command keeps 

the container running in the foreground, even when the main command runs in 

background24. 

 

Table 11: Run Docker on Windows and execute code from loop.sh 

 

PS C:\> docker run -d -v /c/data:/data pdal/pdal:1.5 tail -f /dev/null 

PS C:\> docker exec -it 

        67f8d1f857a3ee6d41ba193f28ee0812b17a0a4d155e3a56c2b22af3542d4534 

        /bin/bash 

PS C:\> /data/loop/.loop.sh 

 

 

Table 12: Code looping through all files 

s *.laz | xargs –I{} pdal pipeline -i /data/pipeline_hag_norm.json --readers.las.filename=out/{} --

writers.las.filename=hag/{} 

 

 

Generating Digital Terrain Model 

The DTM is generated with PDAL using the same workflow as described above, but with 

adapted pipeline (see Table 13). 

Table 13: Code pipeline for Docker, DTM 

{ 

  "pipeline":[ 

        "/data/631_176_2.laz", 

        { 

      "type":"filters.range", 

      "limits":"Classification[2:2]" 

    },       

    {"type":"writers.gdal", 

            "resolution": 1, 

            "output_type": "mean", 

            "output_format":"tif", 

                                                   
24 https://stackoverflow.com/questions/30209776/ (visited 02.06.2017) 

https://stackoverflow.com/questions/30209776/
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            "filename":"/data/631_176_mean.tif"             

        } 

    ] 

} 

 

VCI Calculation 

VCI is calculated based on the normalised vegetation LAZ files with the package lidR in R.  

 

Table 14: Code VCI calculation in R 

 

lasFiles <- list.files(startingDir, pattern = ".laz", full.names = TRUE) 

for (fileName in lasFiles) { 

  las = readLAS(fileName) 

  vci = las %>% grid_metrics(VCI(Z, by=1, zmax = 40), res = 3) 

  vci2 <- data.table(vci)[, .(X, Y,V1)] 

  names(vci2)[names(vci2)=="X"] <-"x" 

  names(vci2)[names(vci2)=="Y"] <-"y" 

  names(vci2)[names(vci2)=="V1"] <-"vci" 

  dbWriteTable(con, c("master","be_vci12"), value=vci2, append=TRUE, row.names = FALSE)} 

 

 

Maximum Z Value 

Z elevation in a 3 m grid is calculated based on the normalised vegetation LAZ files with 

the package lidR in R. 

Table 15: Z-max calculation in R for all tiles in folder 

 
lasFiles <- list.files(startingDir, pattern = ".laz", full.names = TRUE) 

for (fileName in lasFiles) { 

  las = readLAS(fileName) 

  zmax = las %>% grid_metrics(max(Z), 3) 

  zmax2 <- data.table(zmax)[, .(X, Y,V1)] 

  names(zmax2)[names(zmax2)=="X"] <-"x" 

  names(zmax2)[names(zmax2)=="Y"] <-"y" 

  names(zmax2)[names(zmax2)=="V1"] <-"zmax" 

  dbWriteTable(con, c("master","be_zmax12"), value=zmax2, append=TRUE, row.names = FALSE)} 
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Combining VCI and Maximum Z Value 

The Vertical Complexity Index can be low even if maximum height (Z) is higher than 

expected (compare Figure 16, page 45). Thus, the maximal Z value is cell-wise computed 

from the CHM and excluded if Z is below 0.2 m or above 3.6 m. With the lower limit, 

returns from short vegetation (e.g. grass) are excluded. According to the Swiss National 

Forest Inventory (LFI), 3 m is the minimal tree height of forest (Brassel, 2001). Values of 

VCI smaller than 0.01 and higher than 0.61 are also excluded (derivation of threshold see 

chapter 5.1). 

Table 16: Classifying VCI and z-max 

 

##encroachment indicator old data 

DROP TABLE master.be_index02; 

CREATE TABLE master.be_index02 

AS SELECT vci,zmax, be_vci02.geom, be_vci02.gid 

FROM master.be_vci02, master.be_zmax02 WHERE ST_Within(be_vci02.geom, be_zmax02.geom) 

AND vci BETWEEN 0.01 AND 0.61 AND zmax BETWEEN 0.2 AND 3.6 

 

##indicator new data 

DROP TABLE master.be_index02; 

CREATE TABLE master.be_index12 

AS SELECT vci,zmax, be_vci12.geom, be_vci12.gid 

FROM master.be_vci12, master.be_zmax12 WHERE ST_Within(be_vci12.geom, be_zmax12.geom) 

AND vci BETWEEN 0.01 AND 0.61 AND zmax BETWEEN 0.2 AND 3.6 

 

 

Difference between Old and New Indicator Values 

Differences between new and old indicator values were calculated in PostGIS using the 

code shown in Table 17. 

Table 17: Extract difference of VCI old and VCI new in PostGIS 

 

##difference old to new 

CREATE TABLE master.be_diff AS SELECT i12.gid, i12.vci, i12.zmax, i12.geom 

FROM master.be_index12 as i12 LEFT JOIN 

master.be_index02 as i02 ON 

ST_WITHIN(i12.geom, i02.geom) 

WHERE i02.gid IS NULL; 

SELECT DISTINCT gid, count(gid) as count FROM master.be_diff GROUP BY gid ORDER BY count desc; 

ALTER TABLE master.be_diff ADD PRIMARY KEY(gid); 
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4.5 Ground Truth and Sampling Design 

Orthophoto Interpretation 

The validation is based on a comparison calculated indicator from ALS data, classified as 

shrub and tree encroachment and the results of orthophoto interpretation.  

Obviously, orthophotos interpretation using a 3 m grid led to operational difficulties due 

to the 0.5 m spatial resolution of the orthophotos from 2004 since 3 m are 36 pixels, 9 m 

324 pixels and a 12 m are 576 pixels (see Figure 18, Figure 19).  

  
Figure 18: Evaluation cell size for orthophoto 

interpretation, side length 3, 9 and 12 m (orthophoto 

2004, Grandval) 

Figure 19: Evaluation cell size for orthophoto 

interpretation (orthophoto 2012, Grandval) 

For this reason, regular grids of 3, 9 and 12 m were tested (see Figure 18 and Figure 19). 

Interpretation of smaller orthophoto samples is more difficult and leads to uncertainty of 

classification. The test revealed that a 12 m grid was most appropriate regarding accuracy 

and operational efficiency. 

Sample Size 

Based on the study of Foody (2009), which analyses sample size determination for image 

classification accuracy assessment, the following approach was adopted to determinate 

sample size. 

For an initial estimate of the minimum required sample size the same author suggests: 
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𝑛′ = [
𝑧𝛼√𝑃0(1 − 𝑃0) + 𝑧𝛽√𝑃1(1 − 𝑃1)

𝑃1 − 𝑃0
]

2

 

Where n’ is the target sample size, 𝑃0 Proportion (accuracy of orthophoto interpretation), 

𝑃1 accuracy of a classification (indicator derived form LiDAR data). Foody (2009) 

recommends to refine the sample size through the inclusion of a continuity correction. 

𝑛 =
𝑛′

4
(1 +√1 +

2

𝑛′|𝑃1 − 𝑃0|
) 

Thus using 𝑃0 = 0.85 and 𝑃1= 0.90, 𝑧𝛼 = 1.95, 𝑧𝛽=0.8 the results in n’ = 350.7 and n = 370.4, 

respectively. Based on a confidence interval of 95% and sampling errors of 5% 370 sample 

plots remain. Additional 20% were added for supposedly unclassified samples, 450 cells 

were randomly selected outside of the exclusion layer.  

Table 18: Random sample in R  

 

## aggregation of exclusion layer to cells of 12 m 

excl1 <-aggregate(excl, fact=4, fun=max) 

excl2 <- mask(excl1, gmd_sax) ## or gmd_gdv or area_mf 

 

sp12 <- sampleRandom(excl2, size=450, asRaster=TRUE) 

pol <- rasterToPolygons(sp12, fun=NULL, n=4, na.rm=TRUE, digits=12, dissolve=FALSE) 

## Write sample cells to PostgreSQL DB 

dbWriteTable(con, c("master","sample450"), value=pol, append=TRUE, row.names = FALSE)}  

 

 

The 450 plots per study area have been evaluated and categorized as sample plots with 

shrub and tree encroachment and plots without. The threshold for the class shrub and 

tree is set in the case of at least ¼ of the area is covered. Forested areas or areas with 

large trees were assigned to unclassified. Plots that are affected by shadow of e.g. large 

trees or the topography were assigned to unclassified as well (see Table 19 on next 

page). 
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Table 19: Examples of orthophoto classification 

  2004 2012 

2004: no shrubs 

and trees 

  

2012: no shrubs 

and trees 

 

 

103_04 

 

 

103_12 

2004: shrubs 

and trees  

 

2012: shrubs 

and trees 

 

 

71_04 

 

 

71_12 

2004: other (less 

than ~1/4 of the 

area is covered 

by shrubs and 

trees) 

2012: 

unclassified due 

to shadows 

 

 

374_04 

 

 

374_12 

2004: 

unclassified due 

to shadows 

 

2012: shrubs 

and trees 

 

 

 

7_04 

 

 

374_12 
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4.6 Aggregation of the Encroachment Indicator 

To compare the encroachment indicator, calculated in a 3 m grid, with the results from 

orthophoto interpretation (grid size 12 m), an aggregation was executed. 

The final shrub and tree encroachment indicator saved as raster provides the information 

of encroachment per grid cell as value 0 for no encroachment and as value 1 for cells 

classified as shrub and tree encroachment. With executing cell statistics, this information 

is summarised for each sample plot. When all 3 m grid cell in a sample plot are classified 

as shrub and tree, a value of 16 is written to the given sample plot. When four or more 

cells from the grid are classified as shrub and tree the sample plot is interpreted as 

encroachment plot. This threshold is based upon the threshold for orthophoto 

interpretation (see chapter 4.5).  

The sample plot on the right side in Figure 20 (blue square) contains five cells from the 

encroachment indicator classified as shrub and tree, is aggregated to a sample plot with 

encroachment. The left square contains only two cells classified as shrub and tree and is 

therefore interpreted as sample plot without encroachment. 

 

 

Figure 20: Aggregation of 3m grid information to 12 m sample plot 
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4.7 Accuracy Assessment 

Data from orthophoto interpretation were used as reference data for the accuracy 

assessment. The number of correctly classified sample plots by the encroachment 

indicator calculation are A and D in Table 20. Hence, the producer’s accuracy for class 

shrub and tree is from primary interest. 

 

Table 20: Accuracy assessment of encroachment indicator and Kappa calculation 

 classified (ALS data)   

other 

(plots) 

shrub and 

tree (plots)  

Totals (plots) User accuracy (%) 

reference 

(orthophoto) 

other (plots) 𝑨 𝐵 𝑨 + 𝑩 𝐴

𝐴 + 𝐵
 

 shrub and 

tree (plots) 

𝐶 𝑫 𝑪 +𝑫 𝐶

𝐶 + 𝐷
 

  𝑨 + 𝑪 𝑩 + 𝑫 𝑨 + 𝑩 + 𝑪 + 𝑫  

Producer’s 

accuracy (%) 

 𝐴

𝐴 + 𝐶
 

𝐵

𝐵 + 𝐷
   

 

Kappa coefficient : 
𝑜𝑣𝑒𝑟𝑎𝑙𝑙⁡𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦⁡−⁡𝑟𝑎𝑛𝑑𝑜𝑚⁡𝑟𝑒𝑠𝑢𝑙𝑡

1⁡−⁡𝑟𝑎𝑛𝑑𝑜𝑚⁡𝑟𝑒𝑠𝑢𝑙𝑡
 

 

 

Random result:  
(𝐴+𝐶)∗(𝐴+𝐵)+(𝐵+𝐷)∗(𝐶+𝐷)

(𝐴+𝐵+𝐶+𝐷)2
 

 

 

The Kappa coefficient, introduced by Cohen (1960), is widely used in accuracy assessment 

of remotely sensed data (Hofmann, 2015, Schaepman et al., 2015). Although newer 

discussions suggest using other indices than Kappa for accuracy assessment in remote 

sensing (Pontius Jr and Millones, 2011), the Kappa coefficient is used for this thesis. 
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5 Results 

5.1 VCI 

By analysing results from encroachment indicator calculation, the threshold for 𝑉𝐶𝐼 is 

determined. In the three study areas 2162 cells where classified as shrub and tree. In Table 

21 mean VCI, standard deviation 90th quantile for old and new ALS-data are given. Figure 

21, Figure 22 and Figure 23 shows the corresponding histograms. 

Table 21: VCI value in sample plots shrub and tree encroachment 

 data old data new data old and 

new 

Mean VCI 0.25 0.35 0.33 

Standard 

deviation  

0.12 0.19 0.18 

90th quantile 0.42 0.61 0.59 

Samples (n) 498 1665 2162 

 

Old data: mean value for 𝑉𝐶𝐼 in shrub and tree plots is 0.25, standard deviation 0.12. The 

90th percentile is a 𝑉𝐶𝐼 value of 0.42. 

 

 

Figure 21: Histogram of 𝑉𝐶𝐼 from classified new orthophoto sample plots, n = 498 
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New data: mean value for 𝑉𝐶𝐼 in shrub and tree plots is 0.35, standard deviation 0.19. The 

90th percentile is a 𝑉𝐶𝐼 value of 0.61. 

  

Figure 22: Histogram of 𝑉𝐶𝐼 from classified new orthophoto sample plots, n = 1665  

  

For old and new data, mean value for 𝑉𝐶𝐼 in shrub and tree plots is 0.33, standard deviation 

0.18. The 90th percentile is a 𝑉𝐶𝐼 value of 0.59. 

 

  

Figure 23: Histogram of 𝑉𝐶𝐼 from classified old and new orthophoto sample plots, n = 2162 

To identify the stem exclusion stage, examined by van Ewijk et al. (2011) with a mean 𝑉𝐶𝐼 

of 0.63, a threshold of maximum 0.61 is set for the encroachment indicator calculation. 
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5.2 Orthophoto Interpretation 

The results of the orthophoto interpretation and indicator calculations for the three study 

areas are listed below. Each sample plot from a total of 450 randomly generated sample 

plots was assigned to one of the three categories shrub and tree, other or unclassified.  

 

Saxeten 

In the study area Saxeten 400 (old data) and 405 plots (new data) were classified as shrub 

and tree or other. 

Table 22: Results Orthophoto interpretation Saxeten 

Category orthophoto 

old [n] 

orthophoto 

old [%] 

orthophoto 

new [n] 

orthophoto 

new [n] 

shrub and tree 78 17.1 94 20.7 

other  322 70.8 311 68.4 

unclassified 55 12.1 50 11.0 

Plots classified 

(number and %) 

400 100 405 100 

 

Grandval 

In the study area Grandval 394 (old data) and 397 plots (new data) were classified as shrub 

and tree or other. 

Table 23: Results Orthophoto interpretation Grandval 

Category orthophoto 

old [n] 

orthophoto 

old [%] 

orthophoto 

new [n] 

orthophoto 

new [n] 

shrub and tree 8 1.8 33 7.3 

other 386 85.8 364 80.9 

unclassified 39 8.6 53 11.8 

Plots classified 

(number and %) 

394 100 397 100 
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Maienfeld 

In the study area 442 (old data) and 447 plots (new data) were classified as shrub and tree 

or other. 

Table 24: Results Orthophoto interpretation Maienfeld 

Category orthophoto 

old [n] 

orthophoto 

old [%] 

orthophoto 

new [n] 

orthophoto 

new [n] 

shrub and tree 30 6.7 54 12.0 

other 412 91.6 393 87.3 

unclassified 8 1.8 3 0.7 

Plots classified 

(number and %) 

442 100 447 100 
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5.3 Encroachment Indicator 

The indicator calculation resulted in plots with shrub and tree encroachment and such 

without encroachment. To compare these results with the orthophoto interpretation, the 

class unclassified was excluded. 

Saxeten 

In Table 25 the achieved accuracies for the old data set and in Table 26 for the new data 

set are given. 

Table 25: Accuracy assessment of the old data Saxeten 

 classified (ALS data)   

other 

(plots) 

shrub and 

tree (plots)  

Totals (plots) User accuracy (%) 

reference 

(orthophoto) 

other (plots) 299 23 322 93 

 shrub and 

tree (plots) 

61 17 68 25 

  360 40 400  

Producer’s 

accuracy (%) 

 83 34   

Kappa: 0.29 

n = 400 

 

Table 26: Accuracy assessment of the new data Saxeten 

 classified (ALS data)   

other 

(plots) 

shrub and tree 

(plots)  

Totals (plots) User accuracy (%) 

reference 

(orthophoto) 

other (plots) 266 45 311 86 

 shrub and 

tree (plots) 

31 63 94 67 

  297 108 405  

Producer’s 

accuracy (%) 

 90 58   

Kappa: 0.55 

n = 405 
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Grandval 

In Table 27 achieved accuracies for the old data set and in Table 28 for the new data set 

are given. 

Table 27: Accuracy assessment of the old data Grandval 

 classified (ALS data)   

other 

(plots) 

shrub and 

tree (plots)  

Totals (plots) User accuracy (%) 

reference 

(orthophoto) 

‘other’ 

(plots) 

386 8 394 98 

 shrub and 

tree (plots) 

11 6 17 35 

  397 14 411  

Producer’s 

accuracy (%) 

 97 43   

Kappa: 0.35 

n = 400 

 

Table 28: Accuracy assessment of the new data Grandval 

 classified (ALS data)   

other 

(plots) 

shrub and 

tree (plots)  

Totals (plots) User accuracy (%) 

reference 

(orthophoto) 

other (plots) 344 20 364 95 

 shrub and 

tree (plots) 

7 26 33 79 

  351 46 397  

Producer’s 

accuracy (%) 

 98 57   

Kappa: 0.62 

n = 397 
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Maienfeld 

In Table 29 the achieved accuracies for the old data set and in Table 30 for the new data 

set are given. 

Table 29: Accuracy assessment of the old data Maienfeld 

 classified (ALS data)   

other 

(plots) 

shrub and 

tree (plots)  

Totals (plots) User accuracy (%) 

reference 

(orthophoto) 

other (plots) 407 5 412 99 

 shrub and 

tree (plots) 

16 14 30 47 

  423 19 442  

Producer’s 

accuracy (%) 

 96 74   

Kappa: 0.55 

n = 442 

 

Table 30: Accuracy assessment of the new data Maienfeld 

 classified (ALS data)   

‘other’ 

(plots) 

shrub and 

tree (plots)  

Totals (plots) User accuracy (%) 

reference 

(orthophoto) 

other (plots) 385 8 393 98 

 shrub and 

tree (plots) 

23 31 54 57 

  408 39 447  

Producer’s 

accuracy (%) 

 94 79   

Kappa: 0.63 

n = 442 
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5.4 Overview 

Table 31 summaries the results of the orthophoto interpretation. In all areas the 

percentage of encroachment increased between the old and the new data sets. Whereas 

plots of the category unclassified decreased in the study areas Saxeten and Maienfeld, 

they didn’t in the study area Grandval. 

Table 31: Comparison of Orthophoto interpretation 

 Saxeten Grandval Maienfeld 

 old new old new old new 

year of orthophoto 2004 2012 2004 2012 2002 2014 

category I 

shrub and tree [%] 17.1 20.7 1.8 7.3 6.7 12 

category II 

other [%] 70.8 68.4 85.8 80.9 91.6 87.3 

category III 

unclassified [%] 12.1 11 8.6 11.8 1.8 0.7 

plots classified 

(category I and II) [n] 400 405 394 397 442 447 

 

Table 32 shows the year of data collection and mean point density of ALS data. 

Table 32: Summary of point density 

Study area Year of 

old data 

mean density 

[p/m2] 

Year of new 

data 

mean density 

[p/m2] 

Saxeten 2001 1.5 2012 18.9 

Grandval 2001 1.2 2011 9.8 

Maienfeld 2002 4.2 2015 21.7 

 

Table 33 lists Cohen’s kappa, producer’s and overall accuracy for all examined data in the 

three study areas. Cohen’s kappa ranges from 0.29 to 0.55 in the old data and from 0.55 

to 0.63 in the new data. 

Table 33: Comparison of Cohen’s Kappa, producer’s and overall accuracy 

Study 

area 

old data 

[Cohen’s 

kappa] 

Class 

other 

[%] 

Class shrub 

and tree [%] 

old data  

Overall 

accuracy [%] 

new data 

[Cohen’s 

kappa] 

Class 

other 

[%] 

Class shrub 

and tree [%] 

new data  

Overall 

accuracy [%] 

Saxeten 0.29 83 43 79 0.55 90 58 81 

Grandval 0.35 97 43 95 0.62 98 57 93 

Maienfeld 0.55 96 74 95 0.63 94 79 93 
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The producer’s accuracy indicates the number of correctly classified samples using the 

indicator calculation. The accuracy for class other ranges from 83 to 98%, for both the old 

and new ALS data sets. For the class shrub and tree, accuracies between 34 and 74% for 

the old data set and between 57 and 79% for the new data set are obtained (Table 34). 

Table 34: Comparison of producer’s accuracies 

Study area old data  

other [%] 

old data  

shrub an tree 

[%] 

new data 

other [%] 

new data  

shrub an tree 

[%] 

Saxeten 83 34 90 58 

Grandval 97 43 98 57 

Maienfeld 96 74 94 79 
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6 Discussion 

6.1 Encroachment Indicator 

The thesis shows that the Vertical Complexity Index (VCI), implemented in the R-package 

lidR, in combination with the maximal Z value is suitable for the developed workflow. VCI 

was chosen due to the objective of using free or open source software for ALS processing. 

Without this limitation, maybe a modified workflow using a different software would have 

been implemented.  

Producer’s accuracies for the class other was only in one area smaller than 90% (old data 

Saxeten with 83%). For each study area, more than 300 plots were classified as other by 

the orthophoto interpretation. Regarding producer’s accuracies for the class shrub and 

tree only for study area Maienfeld (old and new data) an accuracy of more than 70% were 

obtained. For the study area Grandval only eight plots (old data) respectively 33 plots (new 

data) were classified as shrub and tree by the orthophoto interpretation. Due to the fact 

that less samples led to more weight of an individual sample plot, errors for the indicator 

calculation were more effective. Consequently, lower producer’s accuracies of 43% (old 

data), respectively 57% (new data) were obtained. 

Table 35: Summary of point density, interpreted sample plots, producer’s accuracy and Cohen’s kappa 

Study area Year of 

ALS 

data 

Mean 

density 

[p/m2] 

Interpreted 

sample plots 

Class shrub and 

tree [n]  

Producer’s accuracy 

Class shrub and tree 

[%]  

 

Producer’s 

accuracy 

Class other [%] 

Cohen’s 

kappa 

Grandval 2001 1.2 14 43 97 0.35 

Saxeten 2001 1.5 40 43 83 0.29 

Maienfeld 2002 4.2 19 74 96 0.55 

Grandval 2011 9.8 46 57 98 0.62 

Saxeten 2012 18.9 108 58 90 0.55 

Maienfeld 2015 21.7 39 79 94 0.63 

 

Congalton (1991) recommends classifying at least 50 samples per class. This ‘rule of thumb’ 

has not been considered in the sample design used in this thesis. Otherwise, a stratified 

random sampling with at least 50 sample plots per class could have been implemented. 
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As shown in Table 35 only in the new data set for the study area Saxeten more than 50 

sample plots were classified as shrub and tree. Due to amount of sample plots classified 

as others overall accuracies, which range between 79 and 95% for all study areas, must be 

interpreted carefully. 

The interpretation of Kappa results turned out to be difficult. On one hand, Kappa used 

as an index for remote sensing assessment is a controversial issue and on the other hand, 

comparable studies are rare. Table 35 gives an overview of obtained Cohen’s Kappa, 

producer’s and overall accuracy.  

Apart from the old data from Saxeten (Kappa = 0.29) and Grandval (Kappa = 0.35), the 

other data sets in the three study areas achieved a Kappa of 0.55 or higher. Due to 

Schaepman et al. (2015) there is no universal interpretation of Kappa values. 

Nevertheless, values between 0.41 and 0.60 in general are interpreted as values with a 

moderate, and values from 0.61 to 0.80 as values with a good agreement to the reference. 

 

6.2 Orthophoto Interpretation 

For all three study areas, the number of sample plots classified as shrub and tree increased 

from the old to the new image. Furthermore, for all study areas total number of plots 

classified were stable between the two ALS data sets. Overall for 9 % of sample plots an 

interpretation was not possible due to shadows large trees or the topography. 

The orthophoto interpretation was not verified by ground truth data, as for a comparison 

of the two remote sensing techniques the accuracy can be regarded as sufficient. 

Potential sources of errors include the omission of small trees in pastures due to small 

spectral differences in the imagery and the detection of high vegetation as encroachment 

due to misinterpretation of height. 
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6.3 Software and Workflow 

To familiarise oneself with the use of ALS processing software required more time than 

initially expected. All tools were appropriate regarding their purpose in the workflow and 

turned out to be robust, also for large datasets.  

In order to reduce computation time, the classes forest, roads, buildings, rock and others 

from land use dataset (cadastral survey) were excluded from VCI and maximum Z value 

calculation. This step can be time consuming depending on the area of interest and data 

availability from the cadastral survey. Regarding the implementation of writing results of 

calculations directly to a PostgreSQL database (Table 37), the author suggests to calculate 

the VCI and maximum Z value area-wide for further analysis. Exclusion of area of non-

interest can be done easier afterwards in PostGIS. 

The direct implementation of the indicator calculation in PDAL or LAStools may be faster 

than the combination of PDAL, R and PostgreSQL/PostGIS. Currently, LAStools offers the 

possibility25 to calculate vegetation cover. When executing this calculation for each single 

height bin, the VCI could be calculated with a few intermediate step in the tool lascanopy 

(not free to use, compare chapter 2.2).  

 

6.4 Minimal Point Density 

A minimal point density of ALS data to obtain a reasonable detection rate is not derivable 

from the results. Study area specific difficulties and different sources of errors may have 

more impact than the point density (see chapter 6.5). The two lowest producer’s 

accuracies are obtained from ALS data with low point density of 1.2, respectively 1.5 

points/m2 (Table 35). In contrast with a point density of 4.2 points/m2 in the study area 

Maienfeld a producer’s accuracy of 74% is reached. 

  

                                                   
25 https://groups.google.com/forum/#!topic/lastools/nEYDRc5jdu8 (visited 01.10.2017) 

https://groups.google.com/forum/#!topic/lastools/nEYDRc5jdu8
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6.5 Study Area Characteristics  

Grandval 

Wooded pastures (pastures with high density of trees) and stonewalls that border these 

pastures are typical for the Jura region. Such specific elements resulted in an erroneous 

positive shrub and tree encroachment indicator (Figure 24 and Figure 25). Moreover, for 

the orthophoto interpretation tree shadows were the main reason for the relatively high 

number of unclassified sample plots.  

 

Figure 24: The linear element in the centre is a typical stonewall of Jura region (false positive) 

 

Figure 25: High density of trees in pasture in Jura region 
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Saxeten 

The rocky area of Saxeten is characterized by steep relief with large shadows in the 

orthophotos that resulted in many unclassified sample plots (example in Figure 26). 

 

 
Figure 26: Shadows caused by topography in Saxeten 

 

Maienfeld 

Since a technical border, that involves parts of four communes as shown in Figure 13, 

defines the study area Maienfeld, additional work to collect the data from the cadastral 

survey was required. Roads and settlements are less present compared to the entire area 

of the commune or to the two other study areas. However, this did not affect the 

workflow. The new ALS data from 2015 has been collected in August of that year under 

leaf-on conditions. Depending on use of the pastures, e.g. as grazing or hay meadow, 

grass vegetation may still be high in August. Thus, small shrubs and trees might very likely 

not be detected. 
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7 Conclusion 

LiDAR data contains numerous information and provides manifold possibilities for the 

analysis of landscape and particularly of vegetation. This thesis showed, that it is possible 

to assign shrub and tree encroachment in alpine pastures in Switzerland from ALS data 

with middle to high point density. 

By extending the Vertical Complexity Index (VCI) with a maximum Z value, a stable shrub 

and tree encroachment indicator for alpine regions was calculated. In Maienfeld, one of 

the three study areas, for both the old and new ALS data sets, data with middle to high 

point density was available. This good data quality led to the following results: for the 

classification category shrub and tree encroachment an accuracy of 74% (ALS data 2002, 4.2 

points/m2) and 79% (ALS data 2015, 21.7 points/m2) was achieved. A minimal point density 

could not be determined.  

In the Jura region, traditional wooded pastures led to elevated false positive sample plots. 

The used software PDAL, R and PostgreSQL/POSTGIS in the implemented workflow was 

practical and stable for processing and analysing the ALS data.  
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8 Outlook 

Overall, the approach to detect shrub and tree encroachment as developed in this thesis 

is relevant for practical application. It can easily be implemented into projects and applied 

to larger areas. 

The projected data availability of ALS data in the next 6 years (Bundesamt für 

Landestopographie swisstopo, 2017) will be an excellent basis for further studies related 

to shrub and tree encroachment.  

From a technical point of view, pulses with certain scan angles off-nadir could be excluded 

from analysis from ALS data with higher density. Thus, more accurate and precise results 

for areas like e.g. Grandval with a dominance of traditional wooded pastures, might be 

obtained. 

The achieved accuracies for the encroachment indicator may be a solid basis for 

discussing areas of priority. In particular, aggregation of small encroachment patches and 

visualisation over large areas can assist decision makers in prioritising intervention areas. 

Furthermore, analysing full waveform ALS data as provided by swisstopo in the next years, 

is promising regarding an extension of vegetation detection and classification.  
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10 Appendix 

A) Overview selection criteria by canton 

 

Table 36: Selection criteria by canton 

Canton 

Area 

[km2] 

Flight year 

swisstopo 

Flight year 

canton  

Density 

[p/m2] 

Biogeographic 

region (number of 

region) 

encroachment 

points 

Mean 

encroachment 

[points per km2] 

GR 7105 2003 

2015 

(partially 

by WSL) 

> 18 3 / 5 / 6 2157 0.3 

VS 5224 
2001, 

(2002), 2005 
- - 4 1957 0.37 

TI 2812 (2003), 2005 - - 6 1358 0.48 

BE 5959 
2000-2002 

(2005) 

2011 - 

2013 
4 - 8 1 / 2 / 3 1255 0.21 

VD 3212 2001 2015 10 - 15 1 / 2 / 3 1049 0.33 

SG 2026 2002, 2003 - - 2 / 3 514 0.25 

FR 1671 2000, 2001 - - 2 / 3 367 0.22 

SZ 908 2002 - - 2 / 3 221 0.24 

GL 685 2002 2012  3 204 0.3 

LU 1493 2000-2002 
2012 

(partially) 
5 2 / 3 199 0.13 

UR 1077 2002, 2003 - - 3 / 5 188 0.17 

OW 491 2002- 2007 - - 3 165 0.34 

NE 803 2000, 2001 2010 7 1 / 2  136 0.17 

ZH 1729 2001, 2002 2014 8 2 / 3 129 0.07 

TG 991 2002 2014 8 2 123 0.12 

AG 1404 2001, 2002 2013 5 - 7 1 / 2 86 0.06 

JU 839 
2001, 2006, 

2007 

2006-

2007 
 1 77 0.09 

NW 276 2002 - 2007 - - 3 64 0.23 

AR 243 2002 2014 19.35 2 / 3 62 0.26 

SO 791 2000, 2001 2014 4 1 / 2 59 0.07 

GE 16 2001, 2005 - - 2 41 0.15 

BL 518 2001, 2007 2012 7 1 / 2  37 0.07 

AI 173 2002 - - 3 36 0.21 

SH 298 2002 2013 5 1 / 2  33 0.11 

ZG 239 2002 
2012 – 

2013 
4 2 / 3 17 0.07 

BS 37 2007 2012  2 1 0.03 
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B) Improved workflow, writing data to PostgreSQL table from R 

 

Table 37: Example workflow, writing data to PostgreSQL  

 

library(data.table) 

library(RPostgreSQL) 

library(lidR) 

pw <- {"password"} 

drv <- dbDriver("PostgreSQL") 

con <- dbConnect(drv, dbname = "dbname", host = "host", port = 5432, user = "user", password = pw) 

dbExistsTable(con, c("master","mf_vci02")) 

startingDir <- "E:/Geodaten/lidar_mt/maienfeld/2002/norm" 

lasFiles <- list.files(startingDir, pattern = ".laz", full.names = TRUE) 

for (fileName in lasFiles) { 

  las = readLAS(fileName) 

  vci = las %>% grid_metrics(VCI(Z, by=1, zmax = 40), res = 3) 

  vci2 <- data.table(vci)[, .(X, Y,V1)] 

  names(vci2)[names(vci2)=="X"] <-"x" 

  names(vci2)[names(vci2)=="Y"] <-"y" 

  names(vci2)[names(vci2)=="V1"] <-"vci" 

  dbWriteTable(con, c("master","mf_vci02"), value=vci2, append=TRUE, row.names = FALSE)} 
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C) Generalization of data for further analysis and presentation CODE 

For further analysis and for evaluate areas priority, encroachment indicator is converted 

to polygons. Therefore, the area of clustered encroachment points can be calculated and 

visualized. 

Table 38: Cluster point data and convert in polygon in PostGIS 

 

CREATE OR REPLACE FUNCTION master.funct_clust( 

    name character varying, 

    geom character varying, 

    gid character varying, 

    radius numeric) 

  RETURNS SETOF record AS 

$BODY$ 

DECLARE 

    lid_new    integer; 

    dm_nr      integer := 1; 

    outr       record; 

    innr       record; 

    r          record; 

BEGIN 

 

    DROP TABLE IF EXISTS master.tmp; 

    EXECUTE 'CREATE TEMPORARY TABLE master.master.tmp AS SELECT '||gid||', '||geom||' FROM '||name; 

    ALTER TABLE master.tmp ADD COLUMN dmn integer; 

    ALTER TABLE master.tmp ADD COLUMN chk boolean DEFAULT FALSE; 

    EXECUTE 'UPDATE master.tmp SET dmn = '||dm_nr||', chk = FALSE WHERE '||gid||' = (SELECT MIN('||gid||') 

FROM master.tmp)'; 

 

    LOOP 

        LOOP 

            FOR outr IN EXECUTE 'SELECT '||gid||' AS gid, '||geom||' AS geom FROM master.tmp WHERE dmn = 

'||dm_nr||' AND NOT chk' LOOP 

                FOR innr IN EXECUTE 'SELECT '||gid||' AS gid, '||geom||' AS geom FROM master.tmp WHERE dmn IS NULL' 

LOOP 

                    IF ST_DWithin(outr.geom, innr.geom, radius) THEN                     

                    --IF ST_DWithin(outr.geom, innr.geom, radius) THEN 

                        EXECUTE 'UPDATE master.tmp SET dmn = '||dm_nr||', chk = FALSE WHERE '||gid||' = '||innr.gid; 

                    END IF; 

                END LOOP; 

                EXECUTE 'UPDATE master.tmp SET chk = TRUE WHERE '||gid||' = '||outr.gid; 

            END LOOP; 

            SELECT INTO r dmn FROM master.tmp WHERE dmn = dm_nr AND NOT chk LIMIT 1; 

            EXIT WHEN NOT FOUND; 

       END LOOP; 

       SELECT INTO r dmn FROM master.tmp WHERE dmn IS NULL LIMIT 1; 

       IF FOUND THEN 

           dm_nr := dm_nr + 1; 
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           EXECUTE 'UPDATE master.tmp SET dmn = '||dm_nr||', chk = FALSE WHERE '||gid||' = (SELECT MIN('||gid||') 

FROM master.tmp WHERE dmn IS NULL LIMIT 1)'; 

       ELSE 

           EXIT; 

       END IF; 

    END LOOP; 

 

    RETURN QUERY EXECUTE 'SELECT ST_ConvexHull(ST_Collect('||geom||')) FROM master.tmp GROUP by dmn'; 

 

    RETURN; 

END 

$BODY$ 

  LANGUAGE plpgsql VOLATILE 

  COST 100 

  ROWS 1000; 

ALTER FUNCTION master. funct_clust (character varying, character varying, character varying, numeric) 
 

Source, adapted from https://gis.stackexchange.com/questions/11567/spatial-clustering-with-postgis 

 

Table 39: Generalization and smoothing of clustered data in PostGIS 

 

CREATE TABLE master.poly AS SELECT * FROM funct_clust('master.index15', 'geom', 'gid', 4.5) AS g(geom 

geometry); 

 

## Add column with area 

ALTER TABLE master.poly ADD AREA INTEGER; 

UPDATE master.poly SET area = ST_Area(geom);  

UPDATE master.poly SET geom = (SELECT ST_Buffer(geom,5.5)); 

 

CREATE TABLE master.poly2 AS SELECT (ST_Dump(singlegeom)).geom 

FROM ( 

   SELECT ST_Multi(ST_Union(poly.geom)) as singlegeom 

   FROM master.poly) AS p; 

ALTER TABLE master.poly2 ADD AREA INTEGER; 

UPDATE master.poly2 SET area = ST_Area(geom); 

ALTER TABLE master.poly2 ADD GID SERIAL; 

ALTER TABLE master.poly2 ADD PRIMARY KEY(gid); 

  

## delete holes in polygons 

UPDATE master.poly2 p 

SET geom = a.geom 

FROM ( 

    SELECT gid, ST_Collect(ST_MakePolygon(geom)) AS geom 

    FROM ( 

        SELECT gid, ST_NRings(geom) AS nrings,  

            ST_ExteriorRing((ST_Dump(geom)).geom) AS geom 

        FROM master.poly2 

        WHERE ST_NRings(geom) > 1 

        ) s 

https://gis.stackexchange.com/questions/11567/spatial-clustering-with-postgis
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    GROUP BY gid, nrings 

    HAVING nrings > COUNT(gid) 

    ) a 

WHERE p.gid = a.gid; 

 

##smooth outline with buffer 

UPDATE master.poly2 SET geom = (SELECT ST_Buffer(geom,-4)); 

UPDATE master.poly2 SET geom = (SELECT ST_Buffer(geom,1)); 

UPDATE master.poly2 SET geom = (SELECT ST_Buffer(geom,-2)); 

UPDATE master.poly2 SET geom = (SELECT ST_Buffer(geom,1)); 

 

## explode multipolygon, delete small patches 

CREATE TABLE master.poly3 AS  

    SELECT gid, area, (ST_DUMP(geom)).geom::geometry(Polygon,21781) AS geom FROM master.poly2; 

UPDATE master.poly3 SET area = ST_Area(geom);  

DELETE FROM master.poly3 WHERE area<100; 
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D) Generalization of data for further analysis and presentation 

EXAMPLE MAP  

 

  

Figure 27: example of area with indicator values as 

encroachment points 

 

Figure 28: example area with summarized 

encroachment area as polygon 

 

 

 

Figure 29: example area with summarized 

encroachment area as polygon, orthophoto 
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