

Master Thesis
im Rahmen des

Universitätslehrganges „Geographical Information Science & Systems“
(UNIGIS MSc) am Interfakultären Fachbereich für GeoInformatik (Z_GIS)

der Paris Lodron-Universität Salzburg

zum Thema

”Client-side Visualisation of Scientific
Raster Data Using WebGL and Open-
Source Web Mapping Technologies“

vorgelegt von

Bernhard Baumrock, BA
1423598, UNIGIS MSc Jahrgang 2015

Zur Erlangung des Grades
„Master of Science (Geographical Information Science & Systems) – MSc(GIS)”

Wien, 21.02.2018

Statutory Declaration II

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the

declared sources/resources, and that I have explicitly marked all material which has been

quoted either literally or by content from the used sources.

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere

als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen

wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Wien, 21.02.2018

 Bernhard Baumrock, BA

Acknowledgement III

Acknowledgement

This thesis was written in 2017/2018 at EOX IT Services GmbH in Vienna. First of all, I

would like to thank Mag. Joachim Ungar, who was my first point of contact for all

questions regarding my thesis. I was really struggling finding a topic for my thesis until I

met Joachim and he told me about EOX and what they are doing. I doubt it would have

been possible to finish my study without him. Thank you!

Next, I want to thank Mag. Fabian Schindler and Mag. Daniel Santillan for helping me

with the implementation of the prototype and for having answers to all my questions re-

garding geotiff.js and plotty.

Last but not least, I want to thank Dr. Gerhard Triebnig for having me in their team

while I was working on my thesis, for letting me join the EO Open Science conference at

the European Space Agency in 2017 and for all the support regarding this thesis.

Furthermore, I want to thank everybody of the UNIGIS team for their support during my

study, especially Mag. Julia Moser for answering all my administrative questions and

Dr. Gudrun Wallentin for supervising this thesis.

Abstract IV

Abstract

Web mapping has come a long way from its beginnings in 1993. Browsers get more pow-

erful and modern web technologies allow highly performant operations to be done on the

client-side using the processing power of local graphic cards. This thesis discusses the

possibilities of utilizing these resources in web mapping applications for displaying com-

plex scientific raster data, improving the overall user experience while reducing server

load.

The developed prototype demonstrates feasibility of such a highly performant client con-

cept for managing GeoTIFF data within browsers. It has been implemented using WebGL

technology and integrates various open source software libraries among which are

OpenLayers, geotiff.js and plotty.

A comparison of this (load wise) client-focused prototype has been performed against

traditional server-focused service setups (WMS, WMTS) by measuring defined key per-

formance indicators (timings and amount of data transferred). Available network band-

width between client and server has been taken into consideration as well. A benchmark

tool has been custom-built and used for deriving the quantitative benchmark results.

The results show that the network speed is the main determining parameter for interaction

timings, meaning that the new client-side processing method makes the user experience

better (faster) when the network speed is high. On the other hand, it is also shown that it

can make sense to use this method at slow network speeds, fetching data only once and

then interacting with this data solely on the client-side (having an offline usage scenario).

The data transferred between the server and the client is most likely less using traditional

methods with good compression (JPG tiles). This is also the reason why the network

speed is such an important factor.

Keywords: Web mapping, WebGL, GeoTIFF, OpenLayers, geotiff.js, plotty, perfor-

mance, benchmark, WMS, WMTS

Table of Contents V

Table of Contents

Statutory Declaration .. II

Eidesstattliche Erklärung.. II

Acknowledgement ... III

Abstract .. IV

Table of Contents ... V

List of Figures .. VII

Abbreviations .. IX

1 Introduction ... 1

1.1 Motivation ... 1

1.2 Literature Overview ... 1

1.2.1 Web Map Service (WMS) ... 2

1.2.2 Web Map Tile Service (WMTS) ... 3

1.2.3 Web Coverage Service (WCS) .. 5

1.2.4 OpenLayers .. 6

1.2.5 Geotiff.js .. 7

1.2.6 Plotty .. 8

1.3 Research Questions ... 9

2 Method .. 10

2.1 Server- and Client-side Processing of Web Maps ... 10

2.1.1 Server-side Processing ... 11

2.1.2 Client-side Processing ... 12

2.2 Benchmarking .. 14

2.2.1 Key Performance Indicators .. 14

2.2.2 Variables Influencing the KPIs ... 16

3 The Prototype ... 22

3.1 Use Case: Visualisation of Multiband Sentinel-2 Satellite Data 23

3.2 Sample Data ... 24

3.3 Implementation .. 26

3.3.1 Architecture ... 26

3.3.2 Prototype Code .. 28

3.3.3 The olGeoTiff Plugin .. 31

4 Results ... 37

4.1 Tool Explanation ... 37

Table of Contents VI

4.1.1 Settings .. 38

4.1.2 Results (Table) ... 41

4.1.3 Chart (Timings) ... 43

4.1.4 Chart (Transfer) ... 44

4.1.5 Log ... 45

4.1.6 Test Cases .. 46

4.2 Results ... 48

4.2.1 Test Case 1: 7 Interactions (Client and Server) ... 48

4.2.2 Test Case 2: 20 Interactions on Client ... 53

4.2.3 Test Case 3: 5 Interactions on Server .. 57

4.3 Discussion .. 61

4.3.1 Test Case 1: 7 Interactions (Client and Server) ... 61

4.3.2 Test Case 2: 20 Interactions on Client ... 66

4.3.3 Test Case 3: 5 Interactions on Server .. 67

5 Conclusion .. 70

6 Bibliography ... 72

List of Figures VII

List of Figures

Figure 1: GetMap response of a sample WMS request .. 3

Figure 2: WMTS image tile concept [8] ... 4

Figure 3: GitHub commits for OpenLayers .. 6

Figure 4: GitHub insights for geotiff.js .. 8

Figure 5: GitHub insights for plotty ... 8

Figure 6: Basic illustration of server-side and client-side processing 10

Figure 7: Sequence-diagram of server-side processing .. 11

Figure 8: Sequence-diagram of client-side processing ... 12

Figure 9: Main KPIs (client-side example) ... 15

Figure 10: Variables Influencing the KPIs (Server-side Processing) 16

Figure 11: Variables influencing the KPIs (client-side processing) 16

Figure 12: ORTs (server-side example) .. 19

Figure 13: ORTc (client-side example) .. 20

Figure 14: Break-even (ORT) ... 20

Figure 15: Break-even (ODT) ... 21

Figure 16: Components of the prototype .. 22

Figure 17: Sentinel-2 data rendered on an OpenLayers web-map 23

Figure 18: Spatial resolutions of Sentinal-2 spectral bands .. 24

Figure 19: Sequence diagram including the prototype components 26

Figure 20: Basic HTML structure ... 28

Figure 21: HEAD of the prototype ... 29

Figure 22: Map and user input .. 30

Figure 23: s2layer – WMTS source for the OpenLayers map. 31

Figure 24: olGeoTiff initialisation .. 32

Figure 25: Calculation of different indices using “dataFunctions” 32

Figure 26: Inspecting olGeoTiff using Chrome dev-tools .. 33

Figure 27: Basic structure of the olGeoTiff plugin ... 33

Figure 28: Initialisation of olGeoTiff ... 34

Figure 29: Default OpenLayers tileLoadFunction .. 34

Figure 30: olGeoTiff tileLoadFunction code .. 35

Figure 31: Illustration of the olGeoTiff.fetchTiff() method ... 36

Figure 32: olGeoTiff benchmark tool ... 37

Figure 33: TTFB for a WMS request .. 40

Figure 34: Results table .. 41

Figure 35: Callback “interactiondone” ... 41

Figure 36: Timings chart ... 43

Figure 37: Transfer Chart ... 44

Figure 38: olGeoTiff benchmark log .. 45

Figure 39: Test cases ... 46

Figure 40: Definition of a sample test-case .. 47

List of Figures VIII

Figure 41: Results for network speed 2,00MB/s (PTS 300/400/500)............................. 49

Figure 42: Results for network speed 1,31MB/s (PTS 300/400/500)............................. 50

Figure 43: Results for network speed 0,5MB/s (PTS 300/400/500)............................... 51

Figure 44: Results for ODT (Tilesize 20/60/100kB) .. 52

Figure 45: Results for network speed 2,6MB/s (PTS 300/400/500)............................... 54

Figure 46: Results for network speed 0,5MB/s (PTS 300/400/500)............................... 55

Figure 47: Results for different tile-sizes (20/60/100kB) ... 56

Figure 48: Results for network speed 2,7MB/s (PTS 300/400/500)............................... 58

Figure 49: Results for network speed 0,45MB/s (PTS 300/400/500)............................. 59

Figure 50: Results for different tile-sizes (20/60/100kB) ... 60

Figure 51: Comparing PTS at different network speeds... 62

Figure 52: Different network speeds at PTS 400 .. 63

Figure 53: ORT and NS at PTS 400 ... 64

Figure 54: Estimate effect of network speed on ORT .. 64

Figure 55: ODT according to tile-size .. 65

Figure 56: Break-even of ODT at different tile-sizes ... 66

Figure 57: ODT depending on tile-size .. 67

Figure 58: Time consuming components of one interaction .. 68

Abbreviations IX

Abbreviations

OGC Open Geospatial Consortium

WMS Web Map Service

WMTS Web Map Tile Service

WCS Web Coverage Service

AJAX Asynchronous JavaScript and XML

DOM Document Object Model

KPI Key Performance Indicator

RT Request Time

ORT Overall Request Time

DT Data Transferred

ODT Overall Data Transferred

NS Network Speed

TF Tile Filesize

PTS Processing Time on Server

PTC Processing Time on Client

NOT Number Of Tiles

NOI Number Of Interactions

kB Kilobyte

MB Megabyte

NDVI Normalized Difference Vegetation Index

GLI Green Leaf Index

UI User Input / User Interface

TTFB Time To First Byte

1 Introduction 1

1 Introduction

1.1 Motivation

Web-mapping started soon after the emergence of the world wide web with the introduc-

tion of the Xerox PARC Map Viewer in 1993 [1]. A little more than ten years later Google

Maps, OpenStreetMap, Google Earth and OpenLayers came up (2004/2005) [2]. In recent

years one can observe a shift from raster to vector web maps – both Google and Apple

transitioned their maps and also MapBox (founded in 2010) announced the use of Vector

Tiles in 2013 [3]. The idea is that vector tiles are applying the strengths of tiling –

developed for caching, scaling and serving map imagery rapidly – to vector data, making

it possible to get different styles of the same map (same data) depending on user input or

user settings [4]. What is already possible for regular (street) web maps could also be a

great possibility for the visualisation of complex scientific raster data.

1.2 Literature Overview

The evolution of web mapping lead to the implementation of several mature web service

standards, making it possible to have distributed systems that work well together. As in

this thesis the objective has been to evolve selected aspects of web mapping and to make

heavy use of related web service protocols, a condensed overview of the most relevant

software technology and interoperability standards which were investigated during the

thesis in detail is provided in the following.

The OGC (Open Geospatial Consortium) is the organisation that creates and manages

those standards and describes itself on their website as follows [5]:

The OGC is an international not for profit organization committed to making

quality open standards for the global geospatial community. These standards

are made through a consensus process and are freely available for anyone to

use to improve sharing of the world's geospatial data. OGC standards are used

in a wide variety of domains including Environment, Defense, Health, Agri-

culture, Meteorology, Sustainable Development and many more.

The OGC standards baseline comprises more than 30 standards – for this thesis the most

important ones are the Web Map Service (WMS), the Web Map Tile Service (WMTS)

and the Web Coverage Service (WCS).

1 Introduction 2

1.2.1 Web Map Service (WMS)

As of writing this thesis the current WMS standard by OGC is version 1.3.0 published in

2006 and described as follows [6]:

The OpenGIS® Web Map Service Interface Standard (WMS) provides a sim-

ple HTTP interface for requesting geo-registered map images from one or

more distributed geospatial databases. A WMS request defines the geo-

graphic layer(s) and area of interest to be processed. The response to the re-

quest is one or more geo-registered map images (returned as JPEG, PNG, etc)

that can be displayed in a browser application. The interface also supports the

ability to specify whether the returned images should be transparent so that

layers from multiple servers can be combined or not.

On the WMS introduction page a sample WMS request can be found [7]:

http://metaspatial.net/cgi-bin/ogc-wms.xml

 ?VERSION=1.3.0

 &REQUEST=GetMap

 &SERVICE=WMS

 &LAYERS=DTM,Overview,Raster_250K,

 Topography,nationalparks,Infrastructure,Places

 &STYLES=,,,,,,

 &CRS=EPSG:27700

 &BBOX=424735.97883597884,96026.98412698413,

 467064.02116402116,127773.01587301587

 &WIDTH=400

 &HEIGHT=300

 &FORMAT=image/png

 &BGCOLOR=0xffffff

 &TRANSPARENT=TRUE

 &EXCEPTIONS=XML

1 Introduction 3

Figure 1: GetMap response of a sample WMS request

Changing any of the parameters in the example request would result in a different map.

This has some advantages but also some major disadvantages and will be discussed in the

next chapter about WMTS.

1.2.2 Web Map Tile Service (WMTS)

The first and latest WMTS standard was published in 2010. The standard shares many

concepts with the WMS standard. The difference is very well explained in the foreword

to the standard’s specification [8]:

WMS focuses on rendering custom maps and is an ideal solution for dy-

namic data or custom styled maps (combined with the OGC Style Layer De-

scriptor (SLD) standard). WMTS trades the flexibility of custom map ren-

dering for the scalability possible by serving of static data (base maps) where

the bounding box and scales have been constrained to discrete tiles. The fixed

set of tiles allows for the implementation of a WMTS service using a web

server that simply returns existing files. The fixed set of tiles also enables the

use of standard network mechanisms for scalability such as distributed cache

systems.

The concept of predefined tiles enables the tiles to be pre-generated and cached which

speeds up map delivery and makes it a lot more scalable. The tiles are organized in zoom

1 Introduction 4

levels, where each zoom level is a matrix of tiles (tile matrix). These tile matrices are

themselves organized in a structure which is called tile pyramid:

Figure 2: WMTS image tile concept [8]

For each zoom level of the map there is one tile matrix in the pyramid. These tiles can

either be created on demand (just like any regular WMS request) or cached (prerendered)

like mentioned in the introduction to the WMTS standard’s specification [8]:

The RESTful pattern provides the ability to set up conformant WMTS servers

simply. If all the images are prerendered, a WMTS server could even be cre-

ated using no image processing logic at all but relying only on a normal web

server to return the static ServiceMetadata XML document and provide the

image tile files. This is important for deployment purposes as many Internet

service providers (especially the free ones) allow web pages and static content

hosting but do not allow using CGI, ASP, or more advanced applications for

security reasons. The RESTful approach therefore enables small organiza-

tions to provide geographic data using readily available services or simple

web server configurations. This approach also scales dramatically since the

issues of serving fixed resources in high volumes have been continuously

tackled over the past decades. Finally, this approach can benefit from network

scaling effects since the images are considered by the HTTP protocol to be

standard web resources and network providers can leverage their existing

technologies to improve the flow of those resources to requesting clients.

1 Introduction 5

Since this approach is quite common among a variety of service providers such as Open-

StreetMap there is a special profile only for this purpose, called “WMTS Simple”.

1.2.2.1 WMTS Simple Profile

The description of the WMTS Simple Profile by OGC is as follows [9]:

The Web Map Tile Service (WMTS) Simple profile defines restrictions that

limit the flexibility in implementing a WMTS instance. Adding additional

requirements has the goal of simplifying the creation of services and clients.

By implementing this profile, clients can more easily combine data coming

from different services including from other WMTS instances and even from

some tile implementations that are not OGC WMTS based, such as some cur-

rent distributions of OSM. In fact, most of these tiling services are implicitly

following most of the WMTS requirements. Many current WMTS services

that implement this profile will have to undergo some changes on how tiles

are exposed, and a client that is compatible with WMTS 1.0 will be immedi-

ately compatible with this profile. The aim is to align the WMTS standard to

other popular tile initiatives which are less flexible but widely adopted.

Using this profile, it is not necessary to setup a fully functional mapserver – the files just

need to be placed in the right folders, get requested on the client-side by the web map and

are served on the server-side by the webserver (Apache, NGINX).

1.2.3 Web Coverage Service (WCS)

The latest WCS standard was published in 2012 as version 2.0.1. The introduction to the

specification explains the purpose of the standard and the main difference to WMS [10]:

A WCS provides access to coverage data in forms that are useful for client-

side rendering, as input into scientific models, and for other clients. The WCS

may be compared to the OGC Web Feature Service (WFS) and the Web Map

Service (WMS). As WMS and WFS service instances, a WCS allows clients

to choose portions of a server's information holdings based on spatial con-

straints and other query criteria.

Unlike WMS, which returns spatial data to be portrayed as static maps (ren-

dered as pictures by the server), the Web Coverage Service provides available

1 Introduction 6

data together with their detailed descriptions; defines a rich syntax for re-

quests against these data; and returns data with its original semantics (instead

of pictures) which may be interpreted, extrapolated, etc., and not just por-

trayed.

The crucial detail here is that WCS returns data with its original semantics that is meant

to be rendered on the client. This means that the client can not only display this data but

can also process this data before displaying. WCS can return a variety of different file

formats, including GeoTIFF, netCDF, JPEG2000, GMLJP2 and many more.

1.2.4 OpenLayers

OpenLayers is a well-known JavaScript library for creating web maps. On their official

website it is described as follows [11]:

OpenLayers makes it easy to put a dynamic map in any web page. It can dis-

play map tiles, vector data and markers loaded from any source. OpenLayers

has been developed to further the use of geographic information of all kinds.

It is completely free, Open Source JavaScript, released under the 2-clause

BSD License (also known as the FreeBSD).

In this thesis version 4.6.4 was used that can be downloaded from GitHub under the fol-

lowing link: https://github.com/openlayers/openlayers/tree/v4.6.4

Figure 3: GitHub commits for OpenLayers

OpenLayers is hosted on GitHub since 2006 and as of writing this thesis has 22.574

commits, 174 releases and 207 contributors. Another well-known JavaScript library for

https://github.com/openlayers/openlayers/tree/v4.6.4

1 Introduction 7

webmapping is Leaflet [12], having 6.528 commits since 2010, 38 releases (current

version is 1.3.1) and 556 contributors [13]. The prototype in chapter 3 is built on

OpenLayers and there was no reason for this decision other than that the company

supporting this thesis is already working with OpenLayers in several applications.

Though, the method used should be adoptable for other libraries like Leaflet as well.

OpenLayers supports the WMS and WMTS standards but it is not possible to display data

generated by a WCS request (like GeoTIFF files). On the basic concepts page the possible

layers are listed [14]:

Layer

A layer is a visual representation of data from a source. OpenLayers has three

basic types of layers: ol.layer.Tile, ol.layer.Image and ol.layer.Vector.

ol.layer.Tile is for layer sources that provide pre-rendered, tiled images in

grids that are organized by zoom levels for specific resolutions.

ol.layer.Image is for server rendered images that are available for

arbitrary extents and resolutions.

ol.layer.Vector is for vector data that is rendered client-side.

Displaying GeoTIFF tiles is not possible, because this is something in between those three

options: GeoTIFF tiles are raster data but need to be rendered on the client-side.

1.2.5 Geotiff.js

geotiff.js is a JavaScript library for reading geospatial metadata and raw array data from

a wide variety of different GeoTIFF file types directly in the browser. It is hosted on

GitHub since 2015, has 197 commits in 17 releases, 6 contributors and is released under

the MIT licence [15].

1 Introduction 8

Figure 4: GitHub insights for geotiff.js

1.2.6 Plotty

Plotty is a JavaScript library for helping plot 2D data into a HTML5 canvas element using

WebGL or JavaScript as a fall-back. It was published on GitHub under MIT license in

2015 and has had 61 commits, 12 versions and two contributors since then [16].

Figure 5: GitHub insights for plotty

1 Introduction 9

1.3 Research Questions

The previous section showed state of the art regulations and technology and leads to the

following research questions:

• Is it possible to combine the principles of WCS (providing subsets of the original

data with original semantics) and WMTS (providing the data as tile pyramids for

fast and efficient transmission to the client) using existing open source solutions?

• In which scenarios could the user benefit of using this technique regarding per-

formance of the web map (response timings and data transfer)?

• Which are the main factors influencing the results?

• What are the benefits (opportunities) or drawbacks (limitations) of such an ap-

proach?

2 Method 10

2 Method

The research was done in a hands-on manner implementing a web mapping prototype that

is built on existing open source software and combines the essential parts to one new

concept. Results were collected by defining important key performance indicators, meas-

uring them by implementing a benchmarking setup and comparing them to existing work-

flows.

It is key to better understand the characteristics and differences of server- and client-side

processing of web maps. Therefore, these different concepts are explained in the follow-

ing sections to give further important background for explaining what has been achieved

within the thesis.

2.1 Server- and Client-side Processing of Web Maps

Figure 6: Basic illustration of server-side and client-side processing

Figure 6 shows the main difference between server-side and client-side processing in a

simplified illustration. The important part is that on the left side (server-side processing)

the client sends the request to a server and gets a PNG/JPG file back from that server. All

the processing is done on the server-side. On the right side, the server returns a GeoTIFF

file that is parsed and rendered on the client. Those two examples will be discussed in

detail in the following two chapters.

2 Method 11

2.1.1 Server-side Processing

Figure 7: Sequence-diagram of server-side processing

This example of server-side processing is what happens on any regular WMS or WMTS

request. A user visits a website with a web-map on it. First, the client requests the HTML

markup of the requested site and returns it to the client. Then the web-map starts request-

ing all tiles of the current view through several AJAX requests from the WMTS server

that is defined as the layer’s source. The webserver and the WMTS server can technically

be the same server, but in the diagram we keep them separate to have a better visualisation

of what is going on where. The requested tiles get processed and rendered on the server-

side and are returned as regular web images like JPG or PNG. The client’s browser then

only has to display these images.

This process happens on every single user interaction. Every pan, every zoom and also

every modification of parameters that influence the final rendering leads to a new request

to the server. This repeatable nature is illustrated by grouping those actions as “Group:

User Input” in the diagram.

2 Method 12

2.1.2 Client-side Processing

Figure 8: Sequence-diagram of client-side processing

Client-side processing is already possible for vector data but not for raster data. This the-

sis extends this concept and applies it to rendering of raster data in form of GeoTIFF as

one possible result of a WCS request. This is a new concept and therefore not part of any

standard. The principle is shown in Figure 8 and it is similar to the illustration in the

previous chapter. The differences are highlighted in orange:

2 Method 13

1. There is no processing on the server-side.

Since the processing will be done on the client, the server does not have to do any

processing for the requested tiles. Of course, this is only the case when the re-

quested tiles do already exist as pre-processed GeoTIFF files on the server. Ap-

plying this caching technique on the server-side is only possible for client-side

processing, because at server-side processing the server has to return tiles based

on the user settings and therefore the cache would grow extremely large and would

presumably make no sense.

2. Tiles are rendered on the client and not on the server.

Since browsers don’t allow to display GeoTIFF files directly and OpenLayers also

has no “GeoTIFF support”, it is necessary to take an extra step to parse the file

and render it as an image based on the user’s parameter settings. This is shown as

“render maptiles” in the illustration.

3. Two different cases of user input.

Other than in the previous case of server-side processing two different cases for

user input can be distinguished:

a. User input that needs to request new data from the server.

Whenever the user zooms or pans to an area that he has not viewed before,

the web-map library will request new data from the server. This is illus-

trated as “User Input (Case Server)” in the diagram.

b. User input that does NOT need to request new data from the server.

Whenever the user only modifies parameters that change the visual repre-

sentation of the data but do not change the underlying data itself (for ex-

ample changing the colour palette but not changing the map view or

zoom), the web-map will not request any new data from the server and all

the rendering will be done on the client-side. This is illustrated as “User

Input (Case Client)” in the diagram.

2 Method 14

2.2 Benchmarking

To be able to evaluate the new method key metrics are defined and afterwards compared

for both methods. The goal of the new method is to improve the user experience of inter-

acting with the web-map, so the user is our main target for the evaluation. This is im-

portant to mention, because if the goal was to decrease the load on the server, the focus

would be totally different and therefore it would be necessary to define totally different

key performance indicators (KPIs).

2.2.1 Key Performance Indicators

The main KPIs for this thesis – focusing on the client’s user experience – are listed here

and shown in two illustrations on the following pages:

• Request time = RT

This describes the time needed from the user input until the map is rendered and

fully displayed.

• Overall request time = ORT

This describes the overall time needed for all user interactions and is the most

important measurement for this thesis, because the user is our focus and the time

that is needed for waiting should be as low as possible.

ORT = ∑ 𝑅𝑇

• Data transferred = DT

This describes the amount of data that is transferred from the server to the client

during one user interaction.

• Overall Data Transferred = ODT

This describes the amount of data that is transferred from the server to the client

over all user interactions.

ODT = ∑ 𝐷𝑇

2 Method 15

These KPIs are illustrated in the following figure:

Figure 9: Main KPIs (client-side example)

The results in this example would be:

ORT = 𝑅𝑇(𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛1) + 𝑅𝑇(𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛2) + 𝑅𝑇(𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛3)

𝑂𝐷𝑇 = 𝐷𝑇(𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛1)

It is obvious that the ORT heavily depends on the number of user interactions. Since there

is only one request that fetches data from the server the ODT equals the DT of user inter-

action 1. In interaction 2 and 3 the data is processed on the client so the ODT stays un-

changed.

2 Method 16

2.2.2 Variables Influencing the KPIs

Of course, the final results for the defined KPIs will heavily depend on the use case (user

interactions) and also on the (hardware) setup of the whole application. Three main fac-

tors can be identified, illustrated in two figures and explained on the next page:

Figure 10: Variables Influencing the KPIs (Server-side Processing)

Figure 11: Variables influencing the KPIs (client-side processing)

2 Method 17

The Variables are:

2.2.2.1 Network Speed (NS)

The slower the network the longer it will take to download data from the server to the

client. This will affect every user interaction at server-side processing and all user inter-

action that fetch data from the server at client-side processing (“Case Server”).

Measurement: The network speed can easily be throttled through the browsers’ dev-tools.

It is also easy to calculate the network speed by dividing the amount of data transferred

by the time needed.

Effect: The slower the NS, the higher will be the RT.

2.2.2.2 Tile Filesize (TF)

The tile filesize will only vary between the two methods but be almost constant for each

single tile of one methods. Tiles at client-side processing are GeoTIFF tiles and therefore

usually a lot larger than JPG/PNG tiles at server-side processing.

Measurement: The tile filesize can easily be analysed by the operating system or by in-

specting available web services via the browsers’ dev-tools.

Effect: The larger the tile filesize, the higher will be the RT.

2.2.2.3 Processing Time on the Server (PTS)

The processing time on the server is the time needed from receiving the request on the

server until sending the response with the rendered JPG/PNG tile. This timeframe is a

huge unknown and depends a lot on the server setup.

Measurement: This variable will not be measured. Instead the benchmarks will be done

with different values and recommendations and findings will be discussed.

Effect: The longer it takes the server to render the tiles, the higher will be the RT.

2 Method 18

2.2.2.4 Processing Time on the Client (PTC)

The PTC will depend on the client computer and browser. This variable is divided in two

parts: First, the time needed for parsing the GeoTIFF and second, the time needed for

plotting the date to the canvas. Parsing is only done once for each tile while rendering is

done on any user input that changes the parameters.

Measurement: Run benchmarks from different computers and browsers.

Effect: The longer it takes the client to render the tiles, the higher will be the RT.

2.2.2.5 Number of Tiles (NOT)

Many variables occur on every tile load and therefore need to be multiplied by the number

of tiles that were requested. The larger the map, the more tiles get requested, the bigger

the impact of the described variables and KPIs.

The number of tiles requested does not only depend on the size of the map, but also on

the user interaction itself. A user panning a 4x4 map to the side (meaning 4 tiles horizon-

tally and 4 tiles vertically) could mean a request of 4 new tiles if the map was only slightly

panned but could also mean a request of 16 or more tiles if the map was panned far to that

direction.

2.2.2.6 ORT for Server-side Processing

In case of server-side processing the calculation is quite simple. ORT was defined as

follows:

ORT = ∑ 𝑅𝑇

Knowing all the variables for RT we can modify the formula:

RT = 𝑁𝑂𝑇 ∙ (
𝑇𝐹

𝑁𝑆
+ 𝑃𝑇𝑆)

Basic example: A user requesting a map, each tile having 300kB, network speed

10.000kB/s and PTS as constant throughout this chapter of 50ms. The user does 3 inter-

actions:

1. Display map (16 tiles)

2. Zoom in (16 tiles)

2 Method 19

3. Three times: Modify parameters

RT1 = 16 ∙ (
300

10000
+ 0,005)

RT2 = 16 ∙ (
300

10000
+ 0,005)

RT3 = 3 ∙ 16 ∙ (
300

10000
+ 0,005)

𝑶𝑹𝑻𝑺 = 𝟎, 𝟓𝟔 + 𝟎, 𝟓𝟔 + 𝟏, 𝟔𝟖 = 𝟐, 𝟖 𝐬𝐞𝐜𝐨𝐧𝐝𝐬

Figure 12: ORTs (server-side example)

2.2.2.7 ORT for Client-side Processing

The same example for client-side processing would be almost the same but resulting in

larger tilesize (here assumed as 600kB per tile) and needing additional client-side pro-

cessing time PTC (here assumed as 20ms per tile) for user interaction 1 and 2 (called RTs

in the example, S standing for Server), but needing no network communication for user

interactions 3 (called RTc in the example, C standing for Client):

RTS = NOT ∙ (
TF

NS
+ PTS + PTC) RTC = NOT ∙ PTC

RT1 = 16 ∙ (
600

10000
+ 0,005 + 0,002)

RT2 = 16 ∙ (
600

10000
+ 0,005 + 0,002)

RT3 = 3 ∙ 16 ∙ 0,002

𝑶𝑹𝑻𝑪 = 𝟏, 𝟎𝟕𝟐 + 𝟏, 𝟎𝟕𝟐 + 𝟎, 𝟎𝟗𝟔 = 𝟐, 𝟐𝟒 𝐬𝐞𝐜𝐨𝐧𝐝𝐬

2 Method 20

Figure 13: ORTc (client-side example)

This result shows that the overall request time (after all interactions) at client-side pro-

cessing is slightly lower than at server-side processing:

Figure 14: Break-even (ORT)

2.2.2.8 Break-Even (ODT)

The calculation of the ODT is even simpler and also shows a benefit for the client-side

processing (remember though that this is fictional data and only shows the method of

what we are going to do):

𝐎𝐃𝐓𝐒 = 16 ∙ 300 + 16 ∙ 300 + 3 ∙ 16 ∙ 300 = 𝟐𝟒. 𝟎𝟎𝟎𝐤𝐁

𝐎𝐃𝐓𝐂 = 16 ∙ 600 + 16 ∙ 600 + 0 = 𝟏𝟗. 𝟐𝟎𝟎𝐤𝐁

2 Method 21

Figure 15: Break-even (ODT)

3 The Prototype 22

3 The Prototype

The prototype will build upon existing technologies shown in chapter 1.2 and extend the

lacking part with a new library called “olGeoTiff” – a JavaScript class that modifies the

behaviour of OpenLayers so it can display GeoTIFF files directly on the web-map in the

browser.

Figure 16: Components of the prototype

3 The Prototype 23

3.1 Use Case: Visualisation of Multiband Sentinel-2 Satellite Data

For the prototype and the benchmarking chapter a use case will be analysed that shows

multiband satellite data of a Sentinel-2 pre-processed as GeoTIFF files [17]. The user will

have the possibilities to zoom and pan around the map and to choose between different

colour palettes and to change parameters for the visualization on the fly.

Figure 17: Sentinel-2 data rendered on an OpenLayers web-map

The map shows the S2-cloudless layer by EOX IT Services GmbH as baselayer [18] and

as an overlay it shows an NDVI (Normalized Difference Vegetation Index) [19]

calculated from our sample data and rendered with colour palette “blackbody”.

As seen in the figure above, the user has several ways to interact with the map:

• There is the web-map itself for panning and zooming.

• Underneath the map there are two sliders, one for setting the domain values for

the colour palette and one for setting the opacity of the overlay layer.

• Underneath the sliders there are two select fields to change the colour palette and

the type of index that gets calculated.

3 The Prototype 24

3.2 Sample Data

The sample data used for this thesis is Sentinel-2 Level 1C open data provided by the

European Space Agency and the European Commission’s Copernicus programme [20]:

Figure 18: Spatial resolutions of Sentinal-2 spectral bands

3 The Prototype 25

This figure shows that Sentinel-2 data has 12 available bands at different resolutions. For

our prototype we use the bands with the highest possible resolution of 10 meters: RGB –

Red (Band 4), Green (Band 3), Blue (Band 2) and Near Infrared (Band 8).

This data was processed by EOX IT Services GmbH using mapchete [21] and creating

GeoTIFF tile pyramids that can be requested just like PNG/JPG tile pyramids of a regular

WMTS (Simple) request. The tilesize of the GeoTIFF tiles is heavily dependent on the

number of bands that are stored in the tif and also the bit-depth of the data. The sample

data used is a 16 bit GeoTIFF and has four different bands. The average tilesize of this

dataset is around 346kB.

3 The Prototype 26

3.3 Implementation

3.3.1 Architecture

Referencing the sequence diagram from chapter 2.1.2, Figure 19 shows where and when

the components do their jobs:

Figure 19: Sequence diagram including the prototype components

It starts on the client side when the browser initialises the OpenLayers web-map. It then

requests the map tiles (data) via several AJAX requests from the WM(T)S Server. In the

3 The Prototype 27

prototype setup this is actually not a WMTS server but a regular Apache webserver using

the WMTS simple profile (see chapter 1.2.2.1) to return the pre-processed tiles.

The returned GeoTIFF file then has to be parsed by geotiff.js and rendered by plotty.

The newly developed class olGeoTiff handles this process. This sequence is the same for

all user inputs where tiles are requested from the server. When the user only changes

some parameters, the data does not need to be requested from the server. This case is

shown in the figure as group “User Input (Case Client)”. The difference to the upper

group is that the user does not interact with the web-map, it only interacts with the pa-

rameter settings of the plot (e.g. colour palette, domain limit values, …), illustrated as UI

in the diagram. There is absolutely no interaction with the server (everything happening

in the browser) and therefore the data does not have to be parsed any more. Only the

rendering has to be done via plotty.

3 The Prototype 28

3.3.2 Prototype Code

All code examples of this thesis can be downloaded from GitLab [22]. The basic HTML

is as follows:

Figure 20: Basic HTML structure

First, all dependencies and stylings are added to the head, then the map and UI markup is

added to the body and finally the map is initialised via some JavaScript that also handles

the user input.

3 The Prototype 29

Figure 21: HEAD of the prototype

As shown in Figure 16 plotty is included for rendering the tiles (line 9), nouislider for

handling and styling the sliders for user input (lines 10 and 16), geotiff.js for parsing the

GeoTIFFs (line 11), OpenLayers for the web-map (lines 12 and 17), jQuery for easier

prototyping (line 14), some simple style instructions (lines 19 to 23) and finally olGeo-

Tiff.js (line 13) that makes everything play together.

3 The Prototype 30

The HTML for the user inputs is kept very simple:

Figure 22: Map and user input

The map is a single div element and the UI elements are two DIVs that are rendered as

sliders via the nouislider library and two SELECT fields with several options for colour

palette and the dataFunction that defines what value is calculated from the multiple bands

in the GeoTIFFs.

The plugin code itself is discussed in the next section. The setup of the web-map is almost

a basic OpenLayers setup and there are only a few things to mention:

3 The Prototype 31

Figure 23: s2layer – WMTS source for the OpenLayers map.

s2layer is a regular OpenLayers WMTS source [23], but in this case (line 89) a GeoTIFF

is requested instead of a PNG or JPG. Also, a relative URL is used, pointing to a local

folder “wmts_simple”. This means that the “WM(T)S Server” in Figure 19 is actually not

a WMTS Server but a regular webserver returning prerendered GeoTiff tiles. The

“WMTS Server” and the “WebServer” in that figure are actually the same machine. This

makes it easier to develop and test all the client related work, but it is something that

needs to be taken account for in the benchmark chapter, where the impact of network

speed and transfer sizes is analysed.

The baselayer seen in the figure is a regular WMTS layer hosted online at s2maps-tiles.eu

and removed for the benchmarks not to sophisticate any results.

3.3.3 The olGeoTiff Plugin

For combining all the existing tools and components a JavaScript class was developed.

The initialisation of the plugin is simple. After setting up the OpenLayers map and its

layer holding the GeoTIFF data, the plugin needs to be initialised like this:

3 The Prototype 32

Figure 24: olGeoTiff initialisation

The code is quite self-explaining: First, the class is initialised on the s2layer that was

defined some lines before. Next, the domain limits are set: In this case a lower limit of

minus 0,5 and an upper limit of 0,2. The noDataValue is defined as 10 (resulting in trans-

parent areas if the value at this pixel is 10) and the colour palette is set to “blackbody”.

Finally, the NDVI function that was also defined some lines before is assigned to the

plugin as its “dataFunction”.

Figure 25: Calculation of different indices using “dataFunctions”

The datafunction is responsible for the client-side rendering process. Here, an object con-

taining two datafunctions is created. First, a Green-Red NDVI [24] and second, an Green

Leaf Index (GLI) [25]. In both cases 10 is returned if there is no data available. This value

matches the “noDataValue” setting shown in the previous figure so that the resulting plot

will be transparent at those places.

Another thing to mention is that the number of bands does NOT correlate with the original

Sentinel band number (Figure 18), because the sample data contains only a subset of the

bands available and those bands are referenced by an incremental array index (in this case

0 to 3):

3 The Prototype 33

Figure 26: Inspecting olGeoTiff using Chrome dev-tools

olGeoTiff.urlToTiff holds all the data that was already downloaded from the server and

parsed via geotiff.js. Each tile is referenced by its URL and the different bands are stored

in the “rasters” array.

The next figure shows the code of the Plugin itself:

Figure 27: Basic structure of the olGeoTiff plugin

On initialisation of the class (line 7) some default options are set. The most important part

is the method “tileLoadFunction” (line 130): This function is set at the very end of class

initialisation as a replacement of the default tileLoadFunction that ships with OpenLay-

ers:

3 The Prototype 34

Figure 28: Initialisation of olGeoTiff

The default tileLoadFunction is very simple because the WMTS usually requests regular

PNG/JPG images and just sets the SRC attribute of the image tile [26]:

Figure 29: Default OpenLayers tileLoadFunction

The new concept requests GeoTIFF tiles and therefore needs to take some extra steps

shown in the following code example:

3 The Prototype 35

Figure 30: olGeoTiff tileLoadFunction code

This tileLoadFunction is executed on every tile load and creates a canvas element and

calls the fetchTiff method. This method takes care of drawing the TIFF to the web-map

and works as shown in this diagram:

3 The Prototype 36

Figure 31: Illustration of the olGeoTiff.fetchTiff() method

Rendering of the GeoTIFFs has to be done in a callback function (called “plotCallback()”

in the illustration above). This is necessary because the tileLoadFunction is executed im-

mediately when the tile is requested by the client. On a regular OpenLayers WMTS map

this is not an issue because the SRC attribute of the image tile is set to the tile’s URL and

the browser takes care of downloading and placing the image.

In case of client-side processing the data to draw is not yet available when the tileload-

function executes, thus the callback function needs to be stored as a callback to the cached

tile (urlToTiff[url]) and executes right when the AJAX request was successful.

4 Results 37

4 Results

The KPIs that were defined in chapter 2 are benchmarked against traditional methods

(WMS, WMTS) using a custom-built benchmark tool. All tests are done on a desktop

computer using the chrome browser with WebGL support (stating that mobile usage is

not a necessity for analysing and visualising complex scientific data). The plain

JavaScript fallback for geotiff.js is not benchmarked.

4.1 Tool Explanation

Figure 32: olGeoTiff benchmark tool

The tool was developed to compare server-side processing to client-side processing in an

interactive way. The assumptions in the method chapter where that the results depend a

lot on the user interactions, so we needed a way to benchmark the two situations while

the user is interacting with the map.

Like shown in the figure above the tool consists of two main areas: The web-map on the

left and the settings & results on the right. Some of the KPIs can be monitored through

the browsers dev-tools, but not all of them. That’s why we needed to modify the olGeoTiff

plugin so that we can measure all our defined KPIs.

All the following screenshots will be taken from the same test-case:

-- 20 Interactions on Client --

1: Initial Map load

2: Change lower domain

3: Change lower domain

4 Results 38

4: Change lower domain

5: Change lower domain

6: Change lower domain

7: Change lower domain

8: Change lower domain

9: Change lower domain

10: Change lower domain

11: Change lower domain

12: Change lower domain

13: Change lower domain

14: Change lower domain

15: Change lower domain

16: Change lower domain

17: Change lower domain

18: Change lower domain

19: Change lower domain

20: Change lower domain

This test-case makes no sense practically but is easy and makes the understanding of the

tool a lot simpler. The tool settings are 400ms for PTS and 20kB tile-size if not declared

differently.

4.1.1 Settings

In the settings section of the tool the user can define the parameters for the map rendering.

This is the same user interface as shown in the prototype of chapter 3.1 only without the

opacity setting that does not influence any of the variables since this setting is done by

the browsers CSS engine in both server- and client-side processing scenarios.

On the right, there are two input fields for two variables: The time needed for processing

on the server (PTS) in milliseconds and the tilesize per tile in kilobytes. These two vari-

ables are defined by the user. This is because the tool does only measure the KPIs and

variables for the CLIENT side. The values “measured” for the server side are actually

estimates based on the user input (like zooming, panning, parameter changes) and then

calculated to estimates as realistically as possible.

4 Results 39

This is a crucial point to know when discussing the results and there are several reasons

for choosing this route. First, setting up a benchmark scenario that measures both the

client-side and the server-side would be a whole more complex and would take a lot more

time. This would go beyond the scope of this thesis.

Second, the effort taken for this addition would not gather a lot more benefit since the

values measured always depend a lot on the used hardware. For example, you could have

a slow server that takes a lot more time processing the WMTS requests than another. This

would lead to totally different results and the desired findings of the tool – comparing

client-side to server-side rendering – would take a wrong direction and develop more

towards comparing different hardware setups.

Finally, having those variables definable through simple input fields makes it possible to

change values with a single user input, making it possible to compare different (virtual)

hardware setups and therefore gather more results and new findings with a lot less effort.

4.1.1.1 PTS Server (ms)

This setting shows the number of milliseconds that is needed for processing the request

on the server. Using server-side processing the server gets a WMTS request and returns

a rendered PNG or JPG tile to the client. This process takes some time and is for sure

slower than just returning a regular, pre-rendered tile as it is the case at client-side ren-

dering.

Caching is not possible in this case, because the client can request a virtually endless set

of variation of those tiles. Every change in the user settings (domain, colour palette, …)

leads to a different result, thus the server would have to return a different tile to the client.

To find a realistic setting for this value a WMS request was made to the sentinel-hub

website that returns a 256x256 JPG tile: 1

1 https://services.sentinel-hub.com/ogc/wms/f3ab47b0-ac4c-4a67-a5db-24e2122a80d9?SER-

VICE=WMS&VERSION=1.1.1&REQUEST=GetMap&FORMAT=image%2Fjpg&TRANSPAR-

ENT=true&LAYERS=TRUE_COLOR&STYLES=&time=2018-01-20T00%3A00%3A00%2F2018-

01-

21T00%3A00%3A00&WIDTH=256&HEIGHT=256&SRS=EPSG%3A4326&BBOX=10.546875%2

C55.546875%2C11.25%2C56.25

4 Results 40

Figure 33: TTFB for a WMS request

The TTFB (Time To First Byte) describes the time from sending the request to returning

the first byte. [27] In the figure above it shows that the request took 486ms. Another 29

requests were made to build average values and lower and upper limits to work with.

From those 30 requests the lowest 5 and the highest 5 values were removed (one runaway

took 2,6 seconds!) which resulted in a minimum time of 327ms, a maximum of 491ms

and an average of 402ms. For the tests later on 300, 400 and 500ms will be used as PTS

settings.

4.1.1.2 Tilesize per tile (kB)

This variable is a lot easier to estimate. Analysing other WMTS requests it can be seen

that one 256x256 pixel tile has around 20kB as a JPG and around 100kB as PNG. 20kB

is used as the default value since JPG should be fine for most cases and the value is a lot

lower, meaning the KPIs would get even better using PNGs.

4 Results 41

4.1.2 Results (Table)

Figure 34: Results table

The results table shows all the KPIs for the last interaction and a total for all interactions

both for client-side processing and server-side processing. It also shows an estimated net-

work speed that is calculated by dividing the total amount of data transferred and the total

amount of time consumed for that transactions.

Figure 35: Callback “interactiondone”

The table is updated on each interaction (lines 581ff) and also both charts get updated

with the new data (lines 618 – 622). At the end the network speed is calculated, formatted

and written to the DOM element with the id “ns”.

4 Results 42

4.1.2.1 NOI

NOI stands for “Number Of Interactions”. Every user input is counted as one interaction

(like panning, zooming, changing parameters).

4.1.2.2 NOT

NOT stands for “Number Of Tiles requested”. Figure 34 shows an example of a client-

side interaction: 16 tiles where requested from the server on the right table while 0 tiles

where requested on the left.

4.1.2.3 RT

RT stands for “Request Time”. For client-side processing the PTS (TTFB) is not meas-

ured, because it was stated that the tiles are already pre-rendered and cached on the server,

therefore the server just has to return the requested files without any further processing.

Also, the RT measures the overall time needed for sending the ajax request until finishing

the download of the time, which already includes any processing on the server.

The RT consists of the time needed for downloading the data from the server to the client

and – in case of client-side processing – the time needed for parsing this data and render-

ing it to the map.

4.1.2.4 DT

DT stands for “Data Transferred”. This is the overall data transferred for each interaction.

For client-side processing this is a measured value, for server-side processing this is

simply the tile-size setting multiplied by the number of tiles requested.

4.1.2.5 PTC

PTC stands for “Processing Time on Client”. This value is only available for client-side

processing. It consists of the time needed for parsing the data (only when it was requested

from the server and not requested from the cache) and rendering it to the map.

4.1.2.6 PTS

PTS stands for “Processing Time on Server”. This is only available for the server-side

processing and as explained above, this is a static setting that can be input by the user.

Details are discussed in chapter 4.1.1.1.

4 Results 43

4.1.3 Chart (Timings)

Figure 36: Timings chart

The visual representation gives an instant idea of what is going on regarding the RT for

each interaction (red and blue bars) and the accumulated values (red and blue lines),

showing the ORT. The x-axis shows the interactions that where triggered by user input,

the y-axis shows the RT in milliseconds.

4 Results 44

4.1.4 Chart (Transfer)

The transfer chart has the same concept but is showing a different KPI. The x-axis stays

the same, the y-axis shows the DT in kilobytes. Both charts are interactive and instantly

updated when the user does some input. This makes it very intuitive and creates an instant

understanding of the differences between both techniques (server-side and client-side pro-

cessing).

Figure 37: Transfer Chart

4 Results 45

4.1.5 Log

Figure 38: olGeoTiff benchmark log

The benchmark log helps to interpret the chart. It shows all interactions that have taken

place, prefixed with the interaction number and in case of an automated test-case the name

of the test-case (here “20 Interactions on Client” from log-item 2 to 20).

4 Results 46

4.1.6 Test Cases

Figure 39: Test cases

Test cases can easily be defined in the code of the benchmark tool. At the user interface

they get listed with all their actions followed by a “run” button that starts the execution

of this case. Those test-cases make it possible to compare different standardised situations

at different circumstances (like different network speeds for example).

4 Results 47

Figure 40: Definition of a sample test-case

This simple test-case sets the lower domain to -0.5, sets the zoom to 12 and then changes

the colour palette to “bone”.

4 Results 48

4.2 Results

In this chapter the results of three test cases will be shown. It was already mentioned that

the results heavily depend on the user input – especially the type of user input (namely

user input that leads to communication with the server or user input that happens com-

pletely on the client). Test case 1 has interactions of both types, test case 2 has 20 inter-

actions happening completely on the client and finally test case three shows an example

of interactions that involve communication to the server.

4.2.1 Test Case 1: 7 Interactions (Client and Server)

This test case is a mix of interactions that happen only on the client (when data was al-

ready fetched from the server and only has to be processed by the client due to changes

of rendering parameters, for example) and involve some data transfer from the server to

the client (for example panning and zooming). The log of the test case is as follows (the

benchmark log shows action in reversed order so that the last interaction is always on

top):

7: 7 Interactions (Client and Server): Change lower domain

6: 7 Interactions (Client and Server): Change upper domain

5: 7 Interactions (Client and Server): Pan map

4: 7 Interactions (Client and Server): Change Colour Palette

3: 7 Interactions (Client and Server): Zoom map

2: 7 Interactions (Client and Server): Change lower domain

1: Initial Map load

This test case shows the two main KPIs: The request time for each interaction (RT) and

overall (ORT) and the data transferred – also for each interaction (DT) and overall (ODT).

All setups are tested with different settings for the server-side (PTS 300, 400 and 500ms)

and at different network speeds:

4 Results 49

Figure 41: Results for network speed 2,00MB/s (PTS 300/400/500)

4 Results 50

Figure 42: Results for network speed 1,31MB/s (PTS 300/400/500)

4 Results 51

Figure 43: Results for network speed 0,5MB/s (PTS 300/400/500)

4 Results 52

Figure 44: Results for ODT (Tilesize 20/60/100kB)

4 Results 53

4.2.2 Test Case 2: 20 Interactions on Client

Testcase two is a very monotonous test. Again, the timings and the data transferred were

tested. For all tests regarding the timings the tilesize was 20kB. The log of the test is as

follows:

20: 20 Interactions on Client: Change lower domain

19: 20 Interactions on Client: Change lower domain

18: 20 Interactions on Client: Change lower domain

17: 20 Interactions on Client: Change lower domain

16: 20 Interactions on Client: Change lower domain

15: 20 Interactions on Client: Change lower domain

14: 20 Interactions on Client: Change lower domain

13: 20 Interactions on Client: Change lower domain

12: 20 Interactions on Client: Change lower domain

11: 20 Interactions on Client: Change lower domain

10: 20 Interactions on Client: Change lower domain

9: 20 Interactions on Client: Change lower domain

8: 20 Interactions on Client: Change lower domain

7: 20 Interactions on Client: Change lower domain

6: 20 Interactions on Client: Change lower domain

5: 20 Interactions on Client: Change lower domain

4: 20 Interactions on Client: Change lower domain

3: 20 Interactions on Client: Change lower domain

2: 20 Interactions on Client: Change lower domain

1: Initial Map load

The reason for this test is to show both extreme situations: One having no data transfer

from the server to the client at all after the initial map load and one having transfer at each

user interaction (see test number 3 in the next chapter).

4 Results 54

Figure 45: Results for network speed 2,6MB/s (PTS 300/400/500)

4 Results 55

Figure 46: Results for network speed 0,5MB/s (PTS 300/400/500)

4 Results 56

Figure 47: Results for different tile-sizes (20/60/100kB)

4 Results 57

4.2.3 Test Case 3: 5 Interactions on Server

This test case shows the other extreme situation: User-input where every operation in-

volves communication to the server both in client-side as well as server-side processing.

Again, the tilesize for the timing-tests was always 20kB. The log is as follows:

5: 5 Interactions on Server: Pan map

4: 5 Interactions on Server: Pan map

3: 5 Interactions on Server: Pan map

2: 5 Interactions on Server: Zoom map

1: Initial Map load

Every interaction leads to a complete reload of the map, meaning all tiles are reloaded.

This could be different when the map was panned only slightly to one direction and there-

fore would only reload a subset of all displayed tiles. The effects would still be the same,

but the resulting lines would be less steep.

4 Results 58

Figure 48: Results for network speed 2,7MB/s (PTS 300/400/500)

4 Results 59

Figure 49: Results for network speed 0,45MB/s (PTS 300/400/500)

4 Results 60

Figure 50: Results for different tile-sizes (20/60/100kB)

4 Results 61

4.3 Discussion

4.3.1 Test Case 1: 7 Interactions (Client and Server)

The analysation of the results of test case 1 showed several interesting insights. First of

all, the client-side request time is lower than the request time of server-side processing in

all three cases (after the seventh interaction). We see, that the client-side timings for in-

teractions 2, 4, 6 and 7 are very low compared to the both the other client-side interactions

and all server-side interactions. Timings for those interactions are around 10ms, consist-

ing of 0ms for parsing (because parsing is only done once when the GeoTIFF gets down-

loaded) and 10ms for rendering/plotting.

Obviously, the client timings at different PTS didn’t change at all. Only the values for

server-side processing changed. To see those changes better, a chart was created that

shows the result of 3 individual tests in one chart. Again, client-side processing is in red

colour, server-side processing is blue. PTS 300 has 80% opacity, PTS 400 has 40% and

PTS 500 has 0% opacity. All three client lines have the same position whereas the server-

side lines get steeper by increasing PTS.

This same principle was used for two more charts comparing the same relation but at a

different network speed. The first chart shows the results for 2MB/s network speed, the

second for 1,31MB/s and the last for 0,5MB/s.

Interestingly the blue lines do not change as much as the red lines change from one chart

to another. To make this easier to see another chart was created, showing the same relation

but this time it compares the results of different network speeds at the same PTS (Figure

52).

The last chart of the next page shows the most interesting case: Client- and server-side

processing are almost heads-up. Every server-side interaction makes the client-side

method slower, every interaction that is only rendered on the client makes the server-side

method slower. This shows powerfully the impact of the user and the kind of interactions

he makes. Though – in both other cases (faster network) this effect would be a lot less

distinct or could even be no matter.

4 Results 62

Figure 51: Comparing PTS at different network speeds

0

20000

40000

60000

80000

1 2 3 4 5 6 7

O
R

T(
m

s)

Interactions

Relation between RT and PTS (NS = 2,00MB/s)

client(300) client(400) client(500)

server(300) server(400) server(500)

0

20000

40000

60000

80000

1 2 3 4 5 6 7

O
R

T(
m

s)

Interactions

Relation between RT and PTS (NS = 1,31MB/s)

client(300) client(400) client(500)

server(300) server(400) server(500)

0

20000

40000

60000

80000

1 2 3 4 5 6 7

O
R

T(
m

s)

Interactions

Relation between RT and PTS (NS = 0,50MB/s)

client(300) client(400) client(500)

server(300) server(400) server(500)

4 Results 63

Figure 52: Different network speeds at PTS 400

The first insight is that the spread of the blue lines (server-side processing results) is a lot

less than the spread of the red lines (client-side processing results). Both show an increase

of ORT with lower network speeds, but the increase at client-side processing is a lot

higher than at server-side processing. The network speed, on the other hand, changes al-

most linearly from 0,5 to 1,31 (+0,81) and from 1,31 to 2,0 (+0,69).

This is a very interesting behaviour, so another chart was created to show this effect:

0

10000

20000

30000

40000

50000

60000

70000

80000

1 2 3 4 5 6 7

O
R

T(
m

s)

Interactions

Results for different Network Speeds (PTS = 400ms)

client(0,5MB/s) client(1,31MB/s) client(2MB/s)

server(0,5MB/s) server(1,31MB/s) server(2MB/s)

4 Results 64

Figure 53: ORT and NS at PTS 400

This chart shows the ORT at different network speeds after the final interaction. The be-

spoken effect is clearly visible: The pitch of the red line clearly increases from 1,3 to 0,5.

Trendlines show an estimate trend of both results. To check this estimation a fourth

benchmark was taken:

Figure 54: Estimate effect of network speed on ORT

The fourth value (taken at a NS of 0,94MB/s) shows a very good estimation, at least in

the investigated range of network speeds. The reason for this effect is also discussed in

the chapter to test-case 3.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 0,5 1 1,5 2 2,5

O
R

T(
m

s)

NS(MB/s)

ORT and NS (PTS = 400ms)

client server Potenz (client) Potenz (server)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 0,5 1 1,5 2 2,5

O
R

T(
m

s)

NS(MB/s)

ORT and NS (PTS = 400ms)

client server Potenz (client) Potenz (server)

4 Results 65

The discussion of the results regarding the transferred date (ODT) is a lot easier. This KPI

is constant across all tests on the client-side and it also does not vary at different network

speeds. Therefore we need only one line for the client-side and three lines for the server-

side: One at 20kB tilesize, one at 60kB and one at 100kB:

Figure 55: ODT according to tile-size

The average tile-size at client-side processing (loading GeoTIFF tiles instead of JPGs or

PNGs) is 346kB per tile (total of 20,63MB over 61 tiles). Whereas the traffic increases

only at interactions 1, 3 and 5 on the client-line, it increases linearly on the server-lines.

This does not have to be like that, though – this is only the case when every interaction

effects the same number of tiles (like zooming). Panning the map only slightly to one

direction could lead to a lower number of tiles affected and therefore less traffic consumed

(both on the client- and server-line).

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 7

O
D

T(
kB

)

Interactions

ODT according to Tilesize

client(346) server(20) server(60) server(100)

4 Results 66

Figure 56: Break-even of ODT at different tile-sizes

Figure 56 shows that both the ODT for client-side processing and the ODT for server-

side processing are linear lines. Whereas the ODT for the server-line is directly dependent

from the tile-size the ODT of the client-line stays constant for all tile-sizes at the server-

side. The break-even where the overall data transferred is the same for client- and server-

side processing is (for this special test-case) at around 140kB, but again this is heavily

dependent on the kind of interactions the user takes.

4.3.2 Test Case 2: 20 Interactions on Client

Looking at the timings this test-case does not show any new findings other than those

shown in test-case 1. Client-side processing is – as expected – a lot faster than server-side

processing, because the server is only involved in the initial map load. At fast network

speeds it is even faster from the beginning! At slower network speeds it will be slightly

slower for the initial load and rapidly get faster with each interaction (more on that in the

details for test case 3).

Combining the charts with the data transferred it can be shown that the break-even for

this test-case is at different positions depending on the tilesize of the tiles that are trans-

ferred from the server to the client. The tilesize for client-side processing is always the

same, because each tile already includes all the necessary data and is only transferred on

the initial map load.

0

5000

10000

15000

20000

25000

0 20 40 60 80 100 120 140 160

O
D

T(
kB

)

Tilesize at server-side processing

Break-Even of ODT at different Tile-Sizes

server client Linear (server) Linear (client)

4 Results 67

Figure 57: ODT depending on tile-size

The higher the tile-size, the earlier the break-even occurs. In case of 100kB per tile the

break-even is reached at the fourth interaction, in case of 60kB it is reached at the sixth

and in case of 20kB per tile it is reached at the eighteenth interaction.

4.3.3 Test Case 3: 5 Interactions on Server

Figure 48 shows that client-side processing is faster than server-side processing in all

three tested scenarios (different PTS). Figure 49, on the other hand, shows the opposite:

Here the server-side processing is faster – both over all interaction and also on each in-

teraction separately. The difference is only the network speed and its effect was already

discussed in the related chapter.

In this test-case, though, it gets obvious that every single client-interaction is slower or

faster than the server-one depending on the network speed, whereas in test-case 1 only

the final timings were analysed.

0

5000

10000

15000

20000

25000

30000

35000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

O
D

T(
kB

)

Interactions

ODT depending on Tilesize

20 60 100 client(346)

4 Results 68

Figure 58: Time consuming components of one interaction

Figure 58 shows the details of one single interaction and analyzes which component of

the interaction consumes which amount of time. Every interaction can consist of parsing

and rendering the data (which only happens at client-side processing), processing the re-

quest (PTS – only at server-side processing) and the time needed for the download. The

diagram shows powerfully the effect of a fast network compared to a slow one. For server-

side processing the PTS is constant, because it only depends on the server setup. The

lower bars (showing client-side processing) on the other hand show that parsing and ren-

dering (so low that it is not visible in the chart) are almost constant and a lot lower than

PTS on the server. So the component that has the greatest impact on the overall time is

“download” and this part is still (and will always be) higher at client-side processing but

since parsing and rendering are so fast on the client overall the client-side gets faster.

0 2000 4000 6000 8000 10000 12000

client

server

Time(ms)

P
ro

ce
ss

in
g-

ty
p

e

Slow network: 0,5MB/s

parsing rendering PTS download

0 2000 4000 6000 8000 10000 12000

client

server

Time(ms)

P
ro

ce
ss

in
g-

ty
p

e

Fast network: 2MB/s

parsing rendering PTS download

4 Results 69

Looking at the data transferred (ODT) the server-side processing is more efficient. In this

test-case the server-side processing is compared to client-side processing with GeoTIFF

tiles at an average of 346kB each. The more bands are stored in those files the bigger the

filesize would get and the bigger the difference to server-side processing would get.

5 Conclusion 70

5 Conclusion

By building a prototype (chapter 3) it was shown that it is possible to combine the prin-

ciples of WCS (providing subsets of the original data with original semantics) and WMTS

(providing the data as tile pyramids for fast and efficient transmission to the client) using

a handful of open source tools.

Benchmarking this working prototype (chapter 4) showed that the network speed is the

factor with the biggest impact on the overall request timings. This can mean that a client

requesting a web-map and doing some interactions (like zooming, panning, changing ren-

dering parameters) can get faster results using client-side processing than using server-

side processing and waiting for the server to process all his requests. The kind of interac-

tions that the user takes (an interaction can involve the server for downloading new data

or can happen exclusively on the client when the data was already requested earlier) can

have an impact on the result but it does not have to have an impact. If the network is fast

enough and the server is slow, the client-side processing method can even be faster on

each single request, even if the request involves downloading data from the server in both

the server- and the client-side case (chapter 4.3.3).

Where the user really benefits from this new approach is when he needs to do lots of

interactions with the same data (like modifying the colour palette or upper and lower

domain limits for the rendering). In those cases, client-side processing can be a lot faster

and return instant results whereas sending requests to the server and waiting for a response

always implies a delay.

Unfortunately, the way the developed OpenLayers plugin works right now, it is not pos-

sible to update the map seamlessly with every user input. There is a short delay that is

needed for resetting the map’s internal cache to instruct it to redraw all the tiles. This

leads to a short flicker on each redraw making it impossible to redraw the map while the

user is moving around a slider, for example. This aspect could be topic of further work

and would open up a lot of possibilities that would not be possible using server-side pro-

cessing. An example could be showing animation-like time series of data directly reacting

to the users input (sliders, settings, colour palettes, ...).

The concept could be taken even further and be used for offline applications running

solely in the browser without the need of any complex additional software. Data could be

downloaded once, stored locally on the filesystem and the analyses could be done later

wherever and as often as needed.

5 Conclusion 71

All tests were done on state of the art desktop computers. Browser support and perfor-

mance on mobile devices was not tested and could also be topic for further research.

Another topic that could be interesting for further research is how this method impacts

the server compared to traditional WMTS/WCS requests. At the shown method of client-

side processing it is possible to build cached tile pyramids of pre-processed GeoTIFF tiles

which would not be possible at regular WMTS requests with an almost unlimited number

of user-input-variations.

6 Bibliography 72

6 Bibliography

[1] M. Haklay, A. Singleton, and C. Parker, ‘Web Mapping 2.0: The Neogeography

of the GeoWeb’, Geogr. Compass, vol. 2, no. 6, pp. 2011–2039, Nov. 2008.

[2] ‘Web mapping’, Wikipedia. 03-Feb-2018.

[3] J. Gaffuri, ‘Toward Web Mapping with Vector Data’, in Geographic Information

Science, 2012, pp. 87–101.

[4] ‘Vector Tiles’, Mapbox. [Online]. Available: https://www.mapbox.com/vector-

tiles/. [Accessed: 15-Feb-2018].

[5] ‘Welcome to the OGC | OGC’. [Online]. Available: http://www.opengeospa-

tial.org/. [Accessed: 29-Jan-2018].

[6] ‘Web Map Service | OGC’. [Online]. Available: http://www.opengeospa-

tial.org/standards/wms. [Accessed: 30-Jan-2018].

[7] ‘Introduction to WMS | OGC’. [Online]. Available: http://www.opengeospa-

tial.org/standards/wms/introduction. [Accessed: 30-Jan-2018].

[8] ‘OpenGIS® Web Map Tile Service Implementation Standard’, 06-Apr-2010.

[Online]. Available: http://portal.opengeospatial.org/files/?artifact_id=35326.

[Accessed: 04-Dec-2017].

[9] J. Masó, ‘OGC® Web Map Tile Service (WMTS) Simple Profile’, WMS SWG,

19-Jan-2016. [Online]. Available: http://docs.opengeospatial.org/is/13-082r2/13-

082r2.html. [Accessed: 30-Jan-2018].

[10] ‘OGC® WCS 2.0 Interface Standard’, 2012.

[11] ‘OpenLayers - Welcome’. [Online]. Available: https://openlayers.org/. [Accessed:

02-Feb-2018].

[12] ‘Leaflet — an open-source JavaScript library for interactive maps’. [Online].

Available: http://leafletjs.com/. [Accessed: 02-Feb-2018].

[13] ‘Leaflet:  :leaves: JavaScript library for mobile-friendly interactive maps’, 02-Feb-

2018. [Online]. Available: https://github.com/Leaflet/Leaflet. [Accessed: 02-Feb-

2018].

[14] ‘OpenLayers - Basic Concepts’. [Online]. Available: http://openlayers.org/en/lat-

est/doc/tutorials/concepts.html. [Accessed: 02-Feb-2018].

[15] F. Schindler, ‘geotiff.js: Read raw data from GeoTIFF files’, 01-Feb-2018.

[Online]. Available: https://github.com/constantinius/geotiff.js. [Accessed: 02-

Feb-2018].

[16] D. Santillan, ‘plotty: Plotting library experiments using WebGL and Canvas2D to

apply color scale to a bufferarray object’, 24-Jan-2018. [Online]. Available:

https://github.com/santilland/plotty. [Accessed: 02-Feb-2018].

[17] ‘Sentinel-2 - Missions - Sentinel Online’. [Online]. Available: https://senti-

nel.esa.int/web/sentinel/missions/sentinel-2. [Accessed: 04-Feb-2018].

[18] ‘Sentinel-2 cloudless map of the world by EOX’. [Online]. Available:

https://s2maps.eu/. [Accessed: 04-Feb-2018].

6 Bibliography 73

[19] W. J. Frampton, J. Dash, G. Watmough, and E. J. Milton, ‘Evaluating the capabil-

ities of Sentinel-2 for quantitative estimation of biophysical variables in vegeta-

tion’, ISPRS J. Photogramm. Remote Sens., vol. 82, pp. 83–92, Aug. 2013.

[20] ‘Spatial - Resolutions - Sentinel-2 MSI - User Guides - Sentinel Online’. [Online].

Available: https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/resolu-

tions/spatial. [Accessed: 04-Feb-2018].

[21] ‘Mapchete: geospatial processing — Mapchete 0.19 documentation’. [Online].

Available: http://mapchete.readthedocs.io/en/latest/index.html. [Accessed: 15-

Feb-2018].

[22] ‘Bernhard Baumrock / thesis’, GitLab. [Online]. Available:

https://gitlab.com/baumrock/thesis. [Accessed: 04-Feb-2018].

[23] ‘OpenLayers v4.5.0 API - Class: WMTS’. [Online]. Available: http://openlay-

ers.org/en/v4.5.0/apidoc/ol.source.WMTS.html. [Accessed: 04-Feb-2018].

[24] R. Main, M. A. Cho, R. Mathieu, M. M. O’Kennedy, A. Ramoelo, and S. Koch,

‘An investigation into robust spectral indices for leaf chlorophyll estimation’, IS-

PRS J. Photogramm. Remote Sens., vol. 66, no. 6, pp. 751–761, Nov. 2011.

[25] E. R. Hunt, C. S. T. Daughtry, J. U. H. Eitel, and D. S. Long, ‘Remote Sensing

Leaf Chlorophyll Content Using a Visible Band Index’, Agron. J., vol. 103, no. 4,

pp. 1090–1099, Jul. 2011.

[26] ‘OpenLayers GitHub (openlayers/src/ol/source/tileimage.js)’, 04-Feb-2018.

[Online]. Available: https://github.com/openlayers/openlayers. [Accessed: 05-

Feb-2018].

[27] ‘Understanding Resource Timing | Tools for Web Developers’, Google Develop-

ers. [Online]. Available: https://developers.google.com/web/tools/chrome-dev-

tools/network-performance/understanding-resource-timing. [Accessed: 09-Feb-

2018].

