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Abstract 

In an era of intense environmental change, monitoring biodiversity is a fundamental need. Bird 

populations have proven to be practical and meaningful indicators for tracking these changes. One of the 

key methods in monitoring bird populations is territory mapping. This work evaluated whether bird 

monitoring data collected with this method can be analysed automatically. The analysis of territory 

mapping data is not only time-consuming but also known to leave substantial scope for interpretation by 

human analysts. This subjectivity makes the analysis of territory mapping data susceptible to changes the 

way the data are interpreted across time and space. The call for automation is hence neither new nor 

surprising. But previous attempts to automate the analysis are either outdated (dating back to the 80’s), 

failed to develop algorithms that were generally applicable for many species, failed to use methods that 

were flexible and adaptive to local conditions and input data or are only applicable to extremely labour-

intensive forms of territory mapping (requiring 8-12 surveys per season). Two novel approaches were 

developed that estimate between-territory distances based on information in the recorded observation 

data. These site-, year- and species-specific distances are used to terminate a hierarchical clustering 

algorithm the right moment. Application on a large data set of the common breeding bird monitoring in 

Switzerland revealed that automatic analysis returns similar territory counts as manual solutions. 

Specifically automatic analysis was rather precise deviating from manual territory delimitation by only 12% 

on average. Globally the number of territories was overestimated by 2%. Comparison with accuracy of 

manual territory delimitation revealed that these deviations are of similar magnitude indicating that 

automation of analysis for many species is possible. Further optimisation of parameters is however 

recommended. Removal of subjectivity in the analysis of territory mapping by automation will reduce risks 

for biases in the data dramatically and is putting the analysis of already highly valued long term monitoring 

data on even more sound grounds. 
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1 Introduction 

1.1 Why is counting birds important? 

Humans impact their environment and change it dramatically – climate change, deforestation or releases 

of pesticides like DDT are just some examples. These changes and their effect chains are often 

multivariate and complex, span across large spatial and temporal scales and are hence elusive for humans. 

In order to better understand and maybe halt or manage the impacts we have on our environment it can 

be helpful to reduce complexity by indicators that aggregate multiple aspects of environmental impacts 

(Bubb et al., 2010). The well-being of bird populations (especially population sizes) are considered to be 

good and practical indicators for the state of our environment (Bibby et al., 2000; Gregory and van Strien, 

2010; Klvanova et al., 2009; Robinson and Sutherland, 2002). Birds seem prone to serve as indicators due 

to (at least) the following reasons:  

 They inhabit almost all habitats and have diverse habitat requirements. 

 They are often high up in the food chain and sensitive to change. 

 They can live in close vicinity to humans, profit from their activities but also respond very 

sensibly to human-induced environmental impacts (e.g. habitat changes like agricultural 

intensification, pollutants like DDT).  

 Compared to other taxonomic groups: They are relatively easy to count because they are well-

known, easily recognisable and simpler to locate than many other organisms (Bibby et al., 2000). 

As a consequence many people are willing to volunteer in counting birds. 

 For many countries there is, at least in Western Europe, good knowledge about population sizes 

and their development for decades – allowing for comparison with historical situations.  

 Finally birds are also popular and are useful to convey high impact conservation messages. 

According to Voříšek et al. (2008) collecting quantitative data on bird numbers serves two main tasks: 

status assessment and monitoring. Status assessment is used to evaluate the current situation and is an 

important prerequisite for prioritisation. The national share of a species international population is for 

example often an important criterion for initiating special protection measures at national level. 

Monitoring adds a temporal component by repeating counting events and hence allowing conclusions 

about trends and development of bird populations. This information can for example be used to measure 

success of conservation measures. 

1.2 How to count birds 

Even if it is easier than counting other organisms, counting birds is nevertheless not straightforward – 

there are challenges like avoiding double-counting or correcting for non-detected birds. Three commonly 

used methods are available: Line transects, point transects and territory mapping (Voříšek et al., 2008): 

During line transects field workers follow a predefined line and record every bird seen or heard. Line 

transects are usually combined with distance sampling: Distances from the transect to each observation 

are recorded precisely or in distance bands (categories). Repeated visit help to cover the whole range of 

species from non-migratory birds to late-arriving trans-Saharan migrants. Line transects are a rather time-

efficient method but it is sensitive to proper distance estimations (Bibby et al., 2000; Voříšek et al., 2008) 
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The point transect method is closely related to the line transect method and usually combined with 

distance sampling as well. Instead of constantly moving along a line transect, field workers record species 

and their distance from given points during a predefined duration without moving. Point counts are also 

considered time-efficient even though some time is “lost” moving from one point to the next. It is 

however quite sensible to errors in the distance estimates (more so than line transects) and not ideal for 

low-density or/and cryptic species that are missed easily during short, localised surveys (Bibby et al., 2000; 

Voříšek et al., 2008). 

Territory mapping makes use of the territoriality of many bird species: During the breeding season 

individuals are often restricted to relatively small areas they actively defend against conspecifics and rarely 

leave in order to monopolize limited resources (i.e. nesting sites, food sources). For territory mapping bird 

observations are mapped in repeated visits inside a defined area. The idea behind the method is that 

accumulation of observations of birds’ locations leads to clusters of observations that can be interpreted 

as territories(Voříšek et al., 2008). Mapping has the advantage of being spatially explicit allowing for 

additional analysis with respect to habitat besides the mere count data. However it is a rather time-

intensive field method (Bibby et al., 2000) that takes a lot of time due to a high number of repeated visits 

and the complex analysis of field data after fieldwork (create territories from clusters). The analysis of the 

field data (i.e. the delimitation of the territories) is to some extent a subjective and demanding task and 

asks for the application of consistent rules and/or a thorough checking process (Voříšek et al., 2008). 

Additionally it is an inefficient method for non-territorial species, semi-colonial species, those that range 

wide, or those that are not monogamous (Bibby et al., 2000; Voříšek et al., 2008). 

All three methods may correct statistically for imperfect detection (i.e. the fact that an observer never 

finds all birds actually present). In point and line transects the general idea is that detection probability is 

100% at the position of the observer (the transect or the point) and becomes smaller with increasing 

distance. The relationship between distance and detection probability can be estimated with the data and 

used to correct for imperfect detection (Bibby et al., 2000; Voříšek et al., 2008). While for traditional 

territory mapping it was often assumed that all territories are found, in the last decades it has become 

common to also correct for imperfect detections in this method: In territory mapping detection 

probability can be modelled with the territory detection histories (or aggregations of it) in the course of 

repeated visits (Kéry et al., 2005; Kéry and Royle, 2016; Knaus et al., 2018; Royle et al., 2011, 2007, 2005). 

1.3 Counting birds in Switzerland 

Territory mapping has a long tradition in Switzerland and early forms were already in use by the late 1940s 

(Voříšek et al., 2008). It quickly became a standard and in 1993-1996 it was for the first time used on a 

broad scale for the 2nd Swiss breeding bird atlas (Schmid et al., 1998). Since 1999 it is in use in the 

common breeding bird monitoring scheme (MHB, “Monitoring häufige Brutvögel”) where trends of 

common breeding birds are analysed with yearly surveys in 267 representative sample sites across 

Switzerland (Schmid et al., 2001). The method was also used in the latest Swiss breeding bird atlas 2013-

2016 where territories in 2318 sample sites were mapped (Knaus et al., 2018). 

1.3.1 The methodology in a nutshell 

While traditional territory mapping requires up to 10 visits (Voříšek et al., 2008) in Switzerland a 

“simplified” territory mapping method with only 2-3 repeated visits per season is applied in most projects. 

Usually sampling sites of 1x1 km are visited on 2-3 mornings distributed regularly across the early 
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breeding season (Schmid et al., 2001). During these visits all bird observations are recorded on paper maps 

while following a predefined transect (left on figure 1). The observations are then digitized and for each 

species observations of all three visits are brought together on so-called “species maps” (right on figure 1). 

In a final step observations of the three visits are grouped into territories (transparently blue shaded 

polygons in figure 1). Important criteria for grouping observations are (Knaus and Schmid, 2014; Schmid, 

2017; Schmid and Spiess, 2008): 

 Always separate observations that are marked with a simultaneous observations. 

 Try to have only one observation from the same visit per territory unless they are sexually 

compatible (i.e. two individuals that can reproduce together). 

 Try to have observations from more than one visit per territory. 

 Territory size varies naturally from species to species (e.g. Golden Eagle vs. Goldcrest). Territory 

sizes that correspond to the biology of a species should be applied when delimiting territories. 

The number of territories per sample site is the desired result of simplified territory mapping while shape 

and location of territories are not relevant! The count data are then available for further analysis in order 

to correct for observer limitations like imperfect detection. Two prominent products in Switzerland that 

are based on territory mapping data are national species trends (Sattler et al., 2017) and abundance maps in 

atlas projects (Knaus et al., 2018; Schmid et al., 1998). 

 

Figure 1: Territory mapping in progress. Left: Field map of one (out of three) visits at one example sample site (1x1 
km square). Each observation is recorded with a three-letter-code for the bird species (all species of the visits are 
depicted). On the right the so-called “species map” for the Blue Tit Cyanistes caeruleus is shown. Different colours of 
the observations (points) represent the three different visits. Shaded polygons visualise the grouping of the 
observations to “territories”. Base maps by swisstopo. 

1.3.2 Important terms & expressions 

In the course of this thesis some specific terms, linked to territory mapping in Switzerland, are used 

repeatedly. They are subsequently introduced and explained in detail. During territory mapping field 

workers are instructed to use a set of limited symbols to code the behaviour of each bird observation and 

also interactions to other birds. Table 1 presents an overview across all symbols and how they translate to 

other codes. The following expressions are the ones most crucial for the understanding of the thesis: 
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Simultaneous observation: Observations of two individuals at the same time (i.e. simultaneously) 

that indicate the presence of two territories. The most common example: Two simultaneously 

singing males. Such observations should always, by definition, be placed into two separate 

territories. 

Double observation: Observations of the same individual at different locations. If a male is for 

example seen singing on two different roof tops this can be recorded with two observations 

linked by a double observation. 

Potential double observation: Two observations that most likely but not certainly concern the same 

individual. During field work it can occur that an observation is made where circumstances 

indicate that it could well be a previously recorded individual. Such observations can be marked 

as potential double observations. 

Flight observation: Observations of flying birds. Often the starting and/or the end point of the flight 

are not known. This is common for soaring birds, swallows and swifts but also for species that 

fly long distances to access ideal feeding grounds (e.g. Common Starlings Sturnus vulgaris). 

Atlas code: Atlas codes are coding the behaviour of a bird (table 2). The purpose of these codes is to 

assess the probability that a species is breeding at a particular site. These codes were developed 

for atlas projects on breeding birds – hence the name. They are relevant to the algorithm 

because there are a species-specific minimal atlas codes that have to be met in order to create a 

valid territories (for detail see Knaus et al., 2018). In other words: Territories are only accepted if 

there is a certain likelihood of breeding. 

Territory: Ecologically the term is referring to the space that a pair is occupying and defending against 

conspecifics during a breeding season in order to monopolize limited resources (i.e. nesting 

sites, food sources). In the context of simplified territory mapping “territory” is equivalent to a 

cluster/group of observations. While observations are grouped by means of polygons the shape 

of the polygon has no ecological meaning but only serves the purpose of grouping. 

Table 1: Symbols used in territory mapping (digitized symbols), their meaning as well as their corresponding 
point/line code and atlas codes (table 2). Point and line codes are only relevant to readers that study the program 
code carefully. They identify the respective symbol. 

Symbol Meaning 
Corresponding 
point/line code 

Corresponding 
atlas code 

 
Male 14 2 

 
Female 15 2 

 
Pair 16 4 

 
Singing male present (or breeding calls heard) in breeding 
season 

12 3 

 
Other observation (seen, calling) 13 2 

 
Imprecise localisation 2 2 

 
Agitated behaviour or anxiety calls from adults 23 8 

 
Transport of nesting material, nest-building or excavating of 
nest-hole by adult 

11 10 
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 Adult carrying food for young 17 16 

 Recently fledged young 22 13 

 Nest with breeding adult, eggs or young 19 18 

 Simultaneous observation 3 - 

 Potential double observation 9 - 

 Double observation 8 - 

 Flight observation (in the direction of the arrow) 4 2 

 

Table 2: Atlas codes and definitions used in Switzerland (slightly modified from international standards). 

Code Meaning 

   Possible breeding 
1 Species observed during breeding period but suspected to be still on migration or to be a summering non-

breeder 
2 Species observed in breeding season in possible nesting habitat 
3 Singing male(s) present (or breeding calls heard) in breeding season 
  
 Probable breeding 
4 Pair observed in suitable nesting habitat in breeding season 
5 Permanent territory presumed through registration of territorial behaviour (song, etc.) on at least two 

different days a week or more apart at same place 
6 Courtship and display (female and male) 
7 Visiting probable nest-site 
8 Agitated behaviour or anxiety calls from adults indicating presence of young or nest site close by 
9 Brood patch on adult examined in the hand 
10 Transport of nesting material, nest-building or excavating of nest-hole by adult 
  
 Confirmed breeding 
11 Distraction-display or injury-feigning 
12 Used nest found (occupied or laid within period of survey) 
13 Recently fledged young (nidicolous species) or downy young (nidifugous species) 
14 Adults entering or leaving nest-site in circumstances indicating occupied nest (including high nests or nest 

holes, the contents of which cannot be seen) or adult seen incubating 
15 Adult carrying a faecal sac of young 
16 Adult carrying food for young 
17 Eggshells of hatched young found (occupied or laid within period of survey) 
18 Nest with breeding adult found 
19 Nests containing eggs or young found 

 

1.4 Need to automate 

Territory mapping is long known two be (at least potentially) affected by two major sources of observer-

related error (Best, 1975; Bibby et al., 2000; Enemar et al., 1978; Scheffer, 1987; Svensson, 1974; Verner 

and Milne, 1990):  

1) Observational error due to different identification skills of observers, observation conditions, type 

of habitat (open country vs. forest) and conspicuousness of bird species 
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2) Interpretational error resulting from different interpretations of observational data (i.e. different 

delimitation of territories) 

Observational error is generally believed to be of more importance or pose a greater threat to sound 

analysis of territory mapping data than interpretational bias (see for example Verner and Milne, 1990). 

Therefore it is not surprising that observational errors were at least partially tackled by means of statistical 

corrections for example for imperfect detection or incomplete coverage (Kéry et al., 2005; Royle et al., 

2011). As this thesis is not focusing on this type of error, it will not be discussed further despite its 

importance. Instead we’ll have a closer look at the second source of error that received far less attention. 

The delimitation of territories is not an entirely objective task and leaves considerable scope for 

interpretation (Best, 1975; Bibby et al., 2000; Enemar et al., 1978; Scheffer, 1987; Svensson, 1974; Verner 

and Milne, 1990). While interpretational freedom may be beneficial in cases where regional knowledge can 

be incorporated in the delimitation process, it is however making territory mapping vulnerable to two 

biases:  

1) Risk for spatial bias: If people in one corner of a study area delimit territories more generously 

than elsewhere spatial differences may appear that don’t reflect reality. This would for example be 

problematic if abundance maps were modelled on biased territory mapping data.  

2) Risk for temporal bias: Even if all sample sites were analysed by the same person and there was 

no spatial bias there remains a temporal uncertainty. The same analyst may produce different 

results when repeating the delimitation another year. If the delimitation became for example more 

generous over the years this may have a significant influence on species population trends. 

To avoid such biases the “the application of consistent rules by all analysts” is required (Voříšek et al., 

2008). Approaches to apply consistent rules are currently often limited to sound instructions and thorough 

checking of the analyst by experts. The Swiss Ornithological Institute is doing so by providing instructions 

(Schmid, 2017; Schmid and Spiess, 2008), individual feedback on conducted territory delimitations, 

example territory delimitations (Knaus and Schmid, 2014), yearly workshops for field workers and most 

importantly a rigorous checking of all territory delimitations by a handful of experts that remain the same 

for many years (see for example Knaus et al., 2018). But even with well trained and experienced experts 

variation in interpretations cannot be eliminated completely (see for example figure 2). Furthermore this 

checking and feedback process has its cost: The annual checking of 267 sample sites requires about 50 

days of work (roughly 1.5h per site). 

In order to apply rules consistently across time and space and save time in the analysis of territory 

mapping the call for automation is self-evident. In fact with the advent of computers first promising 

approaches to analyse territory mapping data have already been developed in England (North, 1977), 

Germany (Gerß, 1984) and the Netherlands (Scheffer, 1987). Of the 39 countries participating in the Pan-

European Common Bird Monitoring Scheme (Klvanova et al., 2009) only Germany, Liechtenstein, 

Luxembourg, the Netherlands, Russia and Switzerland use territory mapping: Of those only the 

Netherlands are analysing since 2011 more than half of their sample sites automatically (van Dijk et al., 

2013). For Germany and Switzerland who use both a simplified territory mapping approach with only 2-4 

visits per site an automated approach is still lacking but highly desired. 
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Figure 2: Four independent territory delimitations for the Common Wood Pigeon based on identical data. All four 
delimitations where made by experienced employees of the monitoring department of the Swiss Ornithological 
Institute. The total number of delimited territories varied between 9 and 19 territories. Variation illustrated in this 
square and species is large but not an extreme outlier. Base maps by swisstopo. 

1.5 How to automate? 

Despite the fact that territory mapping has been in use for a long time there are surprisingly few attempts 

to automate the analysis. While the shortcomings of manual territory delimitation are well known for 

some time (Best, 1975; Bibby et al., 2000; Enemar et al., 1978; Scheffer, 1987; Svensson, 1974; Verner and 

Milne, 1990) I only found five published algorithms that analyse territory mapping data.  

1.5.1 Automatic analysis in existing algorithms 

North (1977) developed an algorithm to analyse the British Common Birds Census data. Gerß (1984) 

developed an algorithm for German monitoring data. Scheffer (1987) and in 2011 van Dijk et al. (2013) 

developed solutions for the Netherlands. And finally Marchand (2015) published first ideas on how to 

analyse Swiss monitoring data. The only algorithm actively in use today is the one of van Dijk et al. (2013). 

Common to these algorithms is that they all use hierarchical agglomerative clustering to group 

observations into territories. Cluster analysis seems indeed destined for such a task as it tries to “group 
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data objects based only on information found in the data that describe the objects and their relationships. 

The goal is that the objects within a group be similar to one another and different from the objects in 

other groups” (Tan et al., 2005). Hierarchical agglomerative clustering starts with as many clusters as there 

are data points and joins the two closest clusters step by step until all data points are joined in one big 

cluster. The second similarity of the five algorithms is that they all use Euclidian distance of projected 

coordinates (i.e. distance between observations in meters) as a dissimilarity or closeness measure. 

There are however different methods to calculate what clusters are “closest”. North (1977) and Gerß 

(1984) used the single linkage method that combines two cluster if the nearest points of existing clusters 

are closest. This method has the disadvantage of creating chain-like clusters. Scheffer (1987) improved this 

by using the average linkage method that defines “closeness” based on the distances between the centres 

of clusters. Marchand (2015) used Ward’s method (Ward Jr, 1963) that is similar to the average linkage 

method as Ward’s method assumes that a cluster is represented by its centroid, but it measures the 

proximity between to clusters in term of increase in SSE that results from merging the two clusters (Tan et 

al., 2005). 

But already Scheffer (1987) wrote that the most difficult part in developing an automatism is defining the 

moment where the clustering process should stop. Completing clustering is leaving only one 

cluster/territory which is obviously not the desired result. North (1977) simply used one static maximal 

fusion distance above which points could not be combined and the clustering was stopped. This is 

unsatisfactory because this distance depends highly on the habitat and more importantly on the species 

analysed. Gerß (1984), Scheffer (1987) and Marchand (2015) assumed a sudden increase in the fusion 

distance the moment the algorithm moves from intra-territorial to inter-territorial distances and tried to 

find this point with various methods. However all these methods revealed occasionally unsatisfactory 

results. 

The only operational method – the one of van Dijk et al. (2013) – is also using species-specific maximum 

distances. But their algorithm relies heavily on simultaneous observations (and observations from the 

same visit) so that these maximal distances are rarely used. Their algorithm tries to create as few clusters as 

possible but strictly prevents two observations from the same visit to be in the same territory. In other 

words: new clusters are created when points cannot be assigned to existing clusters because there are 

already observations of the same visit. Maximal distances only causes a new territory if an observation 

based on the “same visit” criterion could be grouped into an existing cluster but is farther away than the 

maximum distance. Their approach is based a lot on rules, i.e. whether or not two observations can be 

joined depending on the presence of simultaneous observations or observations from the same visit. 

1.5.2 Alternative approaches? 

It seems natural to use Euclidian distances of projected coordinates as “dissimilarity” input for clustering 

as we record bird observations in territory mapping on maps. Also Euclidian distance is a commonly used 

criterion to separate observations from different territories in manual analysis. However the distance 

metric could potentially also be of different type because pure linear distance (in meters) is not the only 

decisive criteria for territory delimitation. Close observation could nevertheless be from different 

territories if territories are separated by habitat types that act like barriers (e.g. highways or rivers). A 

potential approach to deal with such situations is calculating cost surfaces based on habitat variables (see 

for example Dean et al. 2015). It is for example imaginable that for some forest species crossing a 

deforested area is more “costly” (they don’t like to do it) than moving inside a closed forest. This could be 

used for territory delimitation and implemented in computers with rasterized cost surfaces. For each cell a 

cost is defined. Based on this cost surface the least costly path/distance between any two points can be 
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calculated. The general approach is probably familiar to everyone that has ever used a route-finding 

algorithm to drive a car as fast as possible from A to B. For territory delimitation the cost surface could 

potentially combine different costs (e.g. slope, forest cover, roads or rivers). Instead of Euclidian distances 

least cost distances could potentially be biologically more meaningful. Nevertheless this path was not 

followed because of the following shortfalls: 1) Costs for crossing different habitat type have to be known, 

which is rarely the case (i.e. Is crossing a river of 10 m a problem for a Common Blackbird Turdus merula?). 

2) For long term monitoring schemes cost surfaces of all sample sites would need to be updated regularly. 

3) Habitat information, the basis for cost surfaces, is (currently) always outdated compared to bird 

observation data. 4) Cost surfaces and cell size need potentially be species-specific which would increase 

efforts for computation and data management (generate and update cost surfaces for 100+ species). 5) 

From personal experience the potential to improve clustering is doubtful as birds are highly mobile 

animals that can quickly cross unsuitable habitat. It’s less the habitat that creates territory boundaries but 

interaction with conspecifics. 

Principal Component Analysis (PCA) is another potential procedure to incorporate multiple 

characteristics (e.g. geographic distance and sexual distance) in order to find clusters in multivariate data. 

This approach was however not followed further because Principle component remains a black box that is 

difficult to understand or control. 

Yet another approach to combine multiple characteristics is deep learning. It has been shown that using 

deep neural networks it is possible to transform multivariate data into more clustering-friendly 

representation (Aljalbout et al., 2018). This path was also not followed further because sufficiently 

understanding the complex theory behind deep neural networks was beyond the scope of this thesis and 

would potentially leave a black box that is similarly complicated to explain as principle component 

analysis. 

1.5.3 Choice taken for this thesis 

Based on the previous experience of other authors (specifically Marchand (2015)) and theoretical thoughts 

discussed above it was chosen to develop an algorithm that uses hierarchical agglomerative clustering with 

Euclidian distances as dissimilarity measures. Work in this thesis focused on finding the optimal moment 

to terminate clustering and incorporating non-Euclidian distance information (e.g. sexual 

incompatibilities) by modifying Euclidian distances. 

1.6 Aims and research questions 

The thesis pursued the following aims: 

 Develop an algorithm that is capable of clustering observations from territory mapping, 

incorporating habitat, topographic and behavioural information.  

 Compare clustering results (number of territories) with manual territory delimitation and it’s 

variation. 

 Support decision-makers on whether or not an automatic territory analysis could be implemented 

in long term-monitoring programs. 
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Based on these aims the following research questions were formulated: 

1. Is it possible to produce one algorithm that gives reasonable results for all species of breeding 

birds? 

2. Can an automatic analysis produce results that are comparable with results produced by manual 

territory delimitation? 

3. Are there sensitivities to environmental conditions (e.g. area of settlements) or parameter values 

that could pose a risk for the long term use of the developed automatic solution? 

4. Is calculation time a limitation in the use of such an algorithm? 
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2 Methods 

2.1 About the raw data 

The raw data used to develop the presented algorithm in this thesis consists of territory counts per sample 

sites and bird observations made during field work (e.g. the point and line symbols shown in figure 1). 

The data originate from the common breeding bird monitoring scheme (MHB = “Monitoring häufige 

Brutvögel”) and the Swiss biodiversity monitoring (BDM) (Schmid et al., 2001). Both projects use the 

same methodology – simplified territory mapping in 1x1 km sample sites. The analysis incorporated data 

from 475 sample sites from the period 2013-2016 (figure 3). As most sites were surveyed annually this 

resulted in a total of 1268 surveys (each survey consisting of 2-3 visits).  

 

Figure 3: Location of the 475 sample sites. Each square represent a sample site of 1x1km size. Relief by Institute of 
Cartography and Geoinformation, ETH Zurich. 

2.2 Autoterri – an algorithm for automatic territory delimitation 

In the course of this thesis an algorithm (actually three slightly different approaches) to automatically 

analyse territory mapping data was written. This chapter documents how this algorithm, named 

“Autoterri” works. Chapter 2.2.1 summarizes how the algorithms work and gives a brief overview. 

Chapters 2.2.2-2.2.8 then explain the algorithm and code parts in more detail. 
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2.2.1 How Autoterri works – summary of the most important concepts for quick 

readers 

Autoterri groups bird observations into clusters named “territories”. The clustering of observations is 

primarily based on Euclidian distances as similarity metrics: The closer two observations are the more 

likely that they are from the same territory. A second important concept applied is “compatibility”. There 

are observations that are considered “incompatible” and independent of their Euclidian distance they 

should not (or less likely) be clustered into the same territory. Two singing males observed at the same 

time should for example not be grouped together. Compatibilities are used to modify (shorten or prolong) 

Euclidian distances. And thirdly the algorithm uses so-called “normalisation distances” that can be 

understood as “between-territory distances”. If two observations are separated by more than the 

normalisation distance they will be grouped into two different territories. With these concepts in mind the 

general operating mode of Autoterri involves the following steps (explained in more detail in the indicated 

chapters): 

1. Calculate Euclidian distances between all bird observations (chapter 2.2.3). 

2. Modify these distances (shorten or prolong) according to their compatibility (chapter 2.2.4 and 

2.2.6). 

3. Perform hierarchical clustering on the modified distances using Ward’s clustering method (Ward 

Jr, 1963) (chapter 2.2.7). 

4. Cut the resulting dendrogram at the height of the species-specific normalisation distance. 

Observations that remain linked after the cutting are considered to be from the same territory. 

(chapter 2.2.5 and 2.2.7). 

A very crucial aspect of this algorithm is the calculation of a reasonable normalisation distance because it 

is the deciding criteria whether two observations will be grouped or separated. Autoterri calculates this 

distance based on bird observations at a particular sample site in a particular year. The normalisation 

distance may hence vary between species, sites and years – depending on the distribution of observations. 

This is a desired property because it allows for example for higher territory density in bird-rich habitats 

compared to poor habitat. Subsequently I introduce the two most promising approaches for the 

calculation of the normalisation distance (out of three developed approaches): 

The “Quantile Value” approach selects the normalisation distance from all distances that indicate 

between-territories distances with the help of a species-specific quantile. Let’s elaborate this with an 

example: For the Common Chaffinch Fringilla coelebs the quantile value was set to q=0.035. So the 3.5% 

smallest distance of all the Euclidian distances that indicate different territories is used as the 

normalisation distance. Depending on the site and year this distance may for example be 86.3 m (random 

number chosen for illustrative purposes). So while the value of the quantile is static (but species-specific) 

the normalisation distance is not, as it depends on observational data that change from year to year and 

site to site. 

The “Mean Nearest Neighbour” approach calculates a species-specific normalisation distance based on 

the average distance to the nearest neighbours. Distances used are filtered by their information content on 

the next neighbour (double observations are for example excluded because they only point to identical 

individuals but not to neighbours). 

If there is not enough data to calculate meaningful normalisation distances (e.g. only two observations 

from different visits) or if calculated normalisation distances lay outside realistic minimum and maximum 

distance values, pre-defined and species-specific distance values are used as normalisation distances. For 

common species predefined distances are rarely applied. 



 

17 
 
 

While the previous paragraphs explain how Autoterri works in a generalised manner the following 

chapters will go more into the details of the algorithm. For this purpose the algorithm was divided into 

seven steps (figure 4). 

 

Figure 4: Overview over Autoterri 

2.2.2 Step 1: Prepare input data 

In the first part of the code all data necessary to continue with the algorithm is requested from a 

PostgreSQL database. This includes all observations (points and lines), as well as information regarding 

sex, number of individuals, altitude and whether two observations were marked as simultaneous, double 

or potential double observation in the field. 

2.2.2.1 Extract observational data from PostgreSQL 

Observational data are stored as points (observations) and lines (flights and relationships between 

observations) in a PostgreSQL database. The data request extracts these observations and also request the 

altitude for each observation form a digital elevation model in the data base (st_value). Point observations 

and flight observations (stored as lines) are saved to one table structure for the further course of the 

algorithm. For this purpose flights (lines) are represented by their centroid. Because flights may go outside 

the sample site only the part inside the sample site (st_intersection) is used for the calculation of the 

centroid. This guarantees that flight are always taken into consideration as soon as the bird once was 

inside the sample site. Also flights that are snapped to a starting point observation (for an example see 

figure 5) will be treated like double observations (i.e. starting point & centroid of flight = double 

observations). 
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Figure 5: Flight observation snapped to a starting point. Here an example for White-throated Dipper Cinclus cinclus 
singing and then flying downstream. Base map by swisstopo. 

The following sql-statement illustrates exemplarily how flight observations are extracted. Point 

observations are extracted analogously. Point and line codes refer to the symbols introduced in table 3 

req_sql <- paste(" 
select 'rel'||relations.id as id, relations.bird_id, linecodes.atlascode, round(st
_x(st_centroid(st_intersection(relations.geom,sampleareas.geom)))) as coord_x,  
round(st_y(st_centroid(st_intersection(relations.geom,sampleareas.geom)))) as coor
d_y, 
relations.linecode_id as pointcode_id, inventories.inventory_id, relations.count,  
st_value(rast, st_centroid(st_intersection(relations.geom,sampleareas.geom))) as c
oord_z, linecodes.atlascode-birds.atlascode as ac_fullfilled, name_dt, 
CASE WHEN to_date('",year,"-'||start_month||'-'||start_day, 'YYYY-MM-DD') > invent
ory_date  
    THEN 1 
    ELSE 0  
    END as before_datelimit 
from altitude, relations  
INNER JOIN linecodes ON relations.linecode_id = linecodes.id  
INNER JOIN inventories ON relations.inventory_id = inventories.id 
INNER JOIN sampleareas ON sampleareas.id = inventories.samplearea_id 
INNER JOIN birds ON relations.bird_id=birds.id 
where relations.inventory_id in  
  (select id from inventories where samplearea_id=(select id from sampleareas wher
e id  
  =",samplearea,") and (extract (year from inventory_date) = ",year,"))",spchoice,
" and st_intersects(sampleareas.geom,  
  relations.geom) and relations.linecode_id=4 and st_intersects(relations.geom, al
titude.rast) and count> 0 and st_value(rast, st_centroid(st_intersection(relations
.geom,sampleareas.geom))) is not null --centroid is important, otherwise lines tha
t cross 2 raster appear twice 
order by coord_y desc", sep="") 
 
req_flight <- dbSendQuery(con,req_sql) 
df_flight <- fetch(req_flight,n=-1) 

Besides the actual bird observations field workers also record if two observations somehow have a special 

relationship (i.e. if they are simultaneous, double or potential double observations). These data are also 

requested in this step and used later to infer for example incompatibilities. 
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2.2.2.2 Translate the count value into count-of-territory-values 

The count value stored in the observation (points and flights) is used in the algorithm to increase the 

default territory count of 1 to higher values if multiple individuals were counted within 1 digitized 

observation. Hence the number of individuals needs translation into the number of territories that would 

correspond to such a number of individuals. The symbols recorded during field work are translated to 

number of territories (count_terri) according to the table 3. Two singing males correspond to two 

territories, while two warning adults will only lead to one territory. 

Table 3: Field symbols and translation of recorded count values to count of territory values. 

Symbol Meaning count 
corresponding 
territory count 

 
Male 2 2 

 
Female 2 2 

 
Pair (take note that the count is by default set to 2 for this symbol) 2 1 

 
Singing male present (or breeding calls heard) in breeding 
season 

2 2 

 
Other observation (seen, calling) 2 1 

 
Imprecise localisation 2 1 

 
Agitated behaviour or anxiety calls from adults 2 1 

 
Transport of nesting material, nest-building or excavating of 
nest-hole by adult 

2 1 

 Adult carrying food for young 2 1 

 Recently fledged young 10 1 

 Nest with breeding adult, eggs or young 2 2 

 Flight observation (in the direction of the arrow) 2 1 

 

Some special cases were implemented as well. For the Red Crossbill Loxia curvirostra for example manual 

territory delimitation follows the rule of thumb that for every 5 individuals there is 1 territory  (see Schmid 

and Spiess, 2008). 

2.2.3 Step 2: Calculate distances between observations 

Based on the data extracted from the PostgreSQL-DB in the step 1, different distances are calculated in 

step 2. These distances contain important information for modifications of Euclidian distances in step 5 

and the clustering of observations in step 6.  

 Euclidian distance: Distance in meters between any two points. Euclidian distance is calculated 

based on x-, y- and also z (i.e. altitude) coordinates as illustrated by the following code chunk: To 

my knowledge Autoterri is the first territory mapping algorithm that incorporates altitude for 
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distance calculation. A characteristic not irrelevant in areas with steep terrain – a large rock cliff 

for example may well separate bird territories on top and at the bottom of the cliff.  

# creates a matrix with Euclidian distances from x, y, and z coordinate 
dist.geo <- dist(df_obs[,c(4,5,9)], method="euclidean") 

 

 Temporal distance: Binary variable distinguishing if two observations are from the same visit 

(value=0) or from different visits (value=1). This distance is important for compatibility 

reflections as some observations are incompatible if they are from the same visit (i.e. two singing 

males). Observations from different visits are per se compatible.  

2.2.4 Step 3: Check compatibility of observations 

In this step compatibility of observations is checked. Depending of their compatibility, factors for 

modifying the Euclidian distances between observations are defined that will be used in step 5. 

Compatibility is checked with respect to sexual compatibility (e.g. two males are incompatible) and 

behavioural observations (simultaneous observations are not compatible, double observations are highly 

compatible, potential double observations have an increased compatibility and flight observations have an 

increased compatibility due to spatial uncertainty). Factors defined for modifying distances depending on 

the compatibility of observations in step 4 are static and identical for all species. 

2.2.4.1 Sexual compatibility 

Based on the symbol chosen during field work (see table 2) each observation is assigned to one of the 

following: 

 pair (point code 16) 

 male (14, 12) 

 female (15) 

 juvenile (22) 

 adult (13, 2, 23, 11, 17, 4) 

 nest (19) 
 

Some combinations of these symbols are sexually not compatible. Table 4 shows what symbols should not 

be placed into the same territory (i.e. are sexually incompatible) if they are from the same visit. While 

incompatibility is absolute for nests that cannot move around during a visit the incompatibility for other 

observations should not be absolute, as birds are mobile and may accidentally be recorded twice. For this 

reason Euclidian distances between nests are increased 100 fold while distances between the other 

“incompatible” observations are only increased by factor 1.5 in step 5 (chapter 2.2.6). Euclidian distances 

between compatible observations are not modified. 
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Table 4: Compatibility of observations and modification factors chosen to prolong distances between incompatible 
observations (red). Green fields indicate combinations of observations that are compatible. 

 male female juvenile pair adult nest 

male 1.5   1.5   
female  1.5  1.5   
juvenile       
pair 1.5 1.5  1.5 1.5  
adult    1.5   
nest      100 

 

The choice to increase Euclidian distances between nests by factor 100 is arbitrary – it could also be set to 

1000. It only needs to be sufficiently high in order to guarantee placement of two nests recorded during 

the same visit into different territories. In other words this factor leads to binary decisions (same territory 

vs. not same territory). On the other hand the choice to increase distances between the other incompatible 

observations by one third is more subtle and critical: The factor should increase the chance of two 

“incompatible” observations to be in different territories but not prevent grouping in the same territory in 

an absolute manner. The influence of this parameter on clustering results was therefore analysed with a 

simple sensitivity analysis (see chapter 3.5.1). 

2.2.4.2 Simultaneous, double and potential double observations 

Simultaneous, double and potential double observations contain very informative observational 

information gathered directly in the field. This information is also used to check compatibility of 

observations and define how Euclidian distances between such observations are modified (table 5): 

Table 5: Modifications of Euclidian distances by Autoterri between observations that were marked as simultaneous, 
double or potential double observations. 

Type of observation Modification of Euclidian distance 

Simultaneous observation Increase distance by factor 100 
Double observation Set distance to 0 
Potential double observation Decrease distance by factor 0.8 

 

If observations are linked with a simultaneous observation symbol the distance between these two 

observations will be increased 100-fold in step 5 making it almost impossible that these two observations 

can end up in the same territory. The choice of increasing the distance by factor 100 should not be critical 

because it is so high that it is equivalent to a binary decision (placing to points with this symbol always 

into different territories). 

If there are double observations (i.e. same individual at two different locations) their Euclidian distance is 

set to 0. Remember that observations concerning a flight observation that is snapped to a point are treated 

like a double observation. The choice to reduce these distances to 0 is not crucial because they concern 

the same individual. By reducing the distance to 0 it is guaranteed that the two observations are correctly 

place into the same territory. 

If two observations are linked with a potential double observation symbol (line with ?) they will be marked 

accordingly and their distance is reduced to 80% of the original Euclidian distance. The idea behind this 

factor is bringing observations that could potentially concern the same individual closer together than 

normal observations. Hence potential double observations are more likely to be grouped into the same 

territory. The choice for a factor to deal with potential double observation distances could be anywhere 
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between 0 and 1 (not including 0 and 1). Despite the fact that the current choice is based on personal 

experience and is hence to some extent arbitrary it is not a crucial choice because only 0.2% of all 

distances (i.e. distances between the same species and the same visit) concern potential double 

observation. While the factor can be relevant in single situations the overall performance of the algorithm 

is certainly not strongly influenced by this choice. 

2.2.4.3 Flight observations 

Flight observations are more difficult to evaluate then normal observations. Flights may temporarily go 

outside a territory (figure 6), for example for visiting a temporarily available food source (e.g. freshly 

mown field) and they are generally less informative about the location of a territory. Distances to flight 

observations are therefore not considered when calculating the normalisation distance (i.e. the between-

territory distance). Additionally the algorithm tries to group flights more easily to already existing 

territories instead of assigning them to new ones. Distances between any observation and a flight are for 

this purpose reduced to 67% of the original Euclidian distance. Thanks to this decrease flights fall more 

easily into close by territories. Reasonable values for such a factor to treat flight observations could be 

anywhere between say 0.3 and 1. The actual choice of 0.67 is based on personal impression and some 

basic trial and errors. It is not expected that this factor can influence the overall performance of the 

algorithm a lot because these distances are relatively rare. Only 2.5% of all distances (i.e. distances between 

the same species and the same visit) concern distances to flight observations.  

 

Figure 6: Showing a situation where a Common Wood Pigeon Columba palumbus flew outside of the core area of its 
territory (green arrow). Despite the distance to other observations it should be grouped together with the green and 
red point. Base map by swisstopo. 

2.2.5 Step 4: Identification of normalization distance 

The normalisation distance is a very crucial parameter of this algorithm. The normalisation distance can be 

understood as the minimal distance that separates two observations from different territories. If possible 

this parameter is calculated for each species and for each site and year separately based on the information 

contained in the observation data. This flexibility allows for between-year variation and also between-

habitat variation (open grassland vs. dense alluvial forest). The normalisation distance is used in step 5 to 

normalise modified (due to compatibilities) Euclidian distances. Or in other words: The normalisation 

distance decides which (possibly modified) distances between points are two big to place points into the 

same territory. Three different approaches were tested in order to identify meaningful distances: 
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1) Linear Regression: Distances between all observations of a species originating from the same visit are 

used to create cumulative histograms of the distance measures. The values between the 25% and 75% 

quantile of the histogram are used for the calculation of a linear regression. The x-axis intercept of this 

linear regression is then used as the “normalisation distance“. 

2) Quantiles Values: In this approach distances between all points of a species are filtered to include 

only distances that point to distances between observations from different territories (i.e. exclude for 

example distances between males and females that can well be in the same territory). From the set of these 

distances a species-specific value (quantile) is defined in order to choose the normalisation distance - for 

example the 5% smallest distance. 

3) Mean Nearest Neighbour: The idea of this approach is to calculate for each observation the distance 

to the closest neighbour of the same species that is most likely not from the same territory. The average of 

all these “nearest neighbour distances” is used as the normalisation distance. 

2.2.5.1 Approach 1: Linear Regression 

Marchand (2015) observed that cumulative histograms of distances between all observations contained 

smaller distances than cumulative histograms of only distances from the same visit. He concluded that the 

difference might be from the exclusion of within-territory distances in the histogram containing only the 

distances between observations from the save visit, assuming that the remaining distances contain 

information about the between-territory distances (i.e. the normalisation distance). 

He proposed an approach where distances between all observations originating from the same visit are 

used to create cumulative histograms of the distance measures. In accordance to Marchand (2015) the 

values between the 25% and 75% quantile of the histogram containing all distances are used for a linear 

regression. The x-axis intercept of this linear regression is then used as the “normalisation distance” (see 

figure 7 for illustration of the approach). 

 



 

24 
 
 

 

Figure 7: Schematic sketch of the Linear Regression approach. The cumulative histogram for a particular species 
shows distance measures between all observations selected. Blue lines indicate the 25% and 75% quantile. The yellow 
line depicts the linear regression. Modified after Marchand (2015). 

2.2.5.2 Approach 2: Quantile Values 

The distances between the observations contain a lot of information about the distance between 

territories. Nevertheless there are regularly some distances between observations that are smaller than the 

between-territory distance (e.g. if two rivals fight against each other at their territory borders). The idea 

behind this approach is to use the distances that seem “informative” but at the same time base the choice 

for the normalisation distance not on the smallest, most extreme value. Flight observations, double 

observations, potential double observations, distances between observations of different date and 

distances of observations that have no sexual incompatibility (e.g. female and male) are not considered for 

the calculation of the normalisation distance as these observations potentially contain no information 

about the distance between two territories (i.e. are not considered “informative”). From distances filtered 

this way the normalisation distance is chosen with the help of a species-specific quantile. The quantile-

value is always bigger than 0 in order to not base the choice on the smallest available value. So if a species-

specific quantile for species xy was for example set to 5% then the normalisation distance is equal to the 

5% smallest distance of all the filtered distances. Figure 8 illustrates the general idea with the help of this 

example. So while the quantile is a static but species-specific value (i.e. 5%) the normalisation distance 

chosen is variable and depends on the distribution of the informative distances. 
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Figure 8: Schematic sketch of the Quantile Values approach. The cumulative histogram shows distance measures 
between all observations selected. The blue line indicates the 5% quantile that in this case is the value chosen for the 
normalisation distance that corresponds to about 170 m. 

The following code illustrates how this approach is implemented. 

# Loop species by species and calculate normalisation distance 
for (spc in t_sp$species){ 
 
  # select distance data of observations that likely point to different  
  territories 
   selection<-sort(result$dist.geo[which(result$species==spc & result$doubleobs==0    
   & result$potdoubleobs==0 & result$flight!=1 & result$dist.compatsex!=1 &  
   result$dist.date==0)]) 
   
  # Calculate normalisation distance based on species-specific quantile of  
  filtered distance measures and write normalization distance to result table 
  q <- birds$quantile[birds$species==spc] 
  result$dist.normalisation[which(result$species==spc)]<-quantile(selection, q) 
} 

As the following example code output shows the normalisation distance of the Common Chaffinch at this 

sample site was calculated to be 96.5 m which lies within the expert-defined ranges of 40 to 200 m. The 

value was found with the help of a quantile of 0.035.  

## species      dist.normalisation  max_distance   min_distance     quantile 
## Coal Tit              93.2           200            40            0.035 
## Common Chaffinch      96.5           200            40             0.035 
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2.2.5.3 Approach 3: Mean Nearest Neighbour  

This approach calculates a species-specific normalisation distance based on the average distance to the 

nearest neighbour (illustrated in figure 9). First, for each observation the nearest informative neighbour 

distance is found: Flight observations, double observations, potential double observations, distances 

between observations of different date and distances of observations that have no sexual incompatibility 

(e.g. female and male) are not considered as these observations potentially contain no information about 

the distance to the next neighbour and are hence considered “non-informative” (they could also be 

distances to the partner of the same territory). Then these distances are further restricted to lie between 

expert-defined minimum and maximum possible distance. 

 

Figure 9: Mean Nearest Neighbour approach explained visually. First, informative nearest neighbour distances are 
identified (illustrated with yellow lines in the top illustration). Non-informative distances, i.e. between observations 
of different visits and compatible observations, are not considered. Secondly, these distances are limited to the 
expert-defined minimum and maximum distance (middle). Thirdly, the average of the remaining distances is 
calculated and used as the normalisation distance (bottom). Base map by swisstopo. 
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This restriction is important in situations where there are few observations and/or scattered breeding 

habitat. In these situations nearest neighbour distances can be artificially high and not representative for a 

value that indicates how closely neighbours could actually be (see figure 10 for exemplary illustration).  

 

Figure 10: Example why limitation of distances between minimum and maximum distance is important for the 
calculation of the Mean Nearest Neighbour. Shown is an example for Eurasian Blackcap Sylvia atricapilla. All 
distances that indicate in principle nearest neighbour distances are indicated by lines. Red lines are above or below 
the maximum and minimum distance – and in fact they do not indicate meaningful nearest neighbour distances but 
distances that appear because suitable habitat (bushes) is very scattered in this sample site. Yellow lines however 
indicate true neighbours – i.e. distances that are probably established because of territorial behaviour of birds and not 
because of habitat distribution. Aerial image by swisstopo. 

The following code snippet shows how this approach is implemented in R. Specifically the code shows 

how a matrix “nncomp” that contains information about whether a distance is informative with respect to 

between-territory distance is used to exclude non-informative distances (set to NA) from the mean nearest 

neighbour calculation. Then the mean nearest neighbour distance is calculated for each species with those 

distances values that are between the minimum and maximum distances.  

# calculate distances to nearest neighbours   
nearest<-nn2(df_obs[,c(4,5,9)],df_obs[,c(4,5,9)], k=nrow(df_obs)) 
nn.idx<-as.data.frame(nearest$nn.idx) 
nn.dist<-as.data.frame(nearest$nn.dist) 
 
# Set distances that are non-informative (e.g. different species, sexually compa- 
tible observations, double observations…) to NA 
for (row in 1:nrow(nn.dist)) { 
  for (column in 1:nrow(nn.dist)) { 
    if (nncomp[row,nn.idx[row,column]]==0) {nn.dist[row, column]<-NA} 
  } 
} 
 
# Extract the smallest distance/the nearest neighbour for each observation 
nndistance<-apply(as.matrix(nn.dist), 1, min, na.rm=TRUE) 
nndistance[nndistance==Inf]<-NA 
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# Loop species by species and calculate normalisation distance. Nearest neighbour 
distances that are above or below the max_distance, min_distance are not  
considered. They often concern distances of different corners of a sample site. 
for (spc in unique(result$species[result$species!=0])){ 
  nndistance[which(df_obs$bird_id==spc &  
  (nndistance>birds$max_distance[birds$species==spc] | 
  nndistance<birds$min_distance[birds$species==spc]))]<-NA 
   
  # Calculate the average smallest distance to the next neighbour 
  avenn<-mean(nndistance[which(df_obs$bird_id==spc)], na.rm=TRUE) 

 

2.2.5.4 Use of static normalisation distances when data-driven calculation of 

normalisation distance fails 

If a normalisation distance cannot be calculated or the calculated distances is above or below a predefined, 

species-specific maximum or minimum values (mostly due to lack of sufficient data) the normalisation 

distance is replaced with a predefined maximum or minimum distance. The use of maximum and 

minimum distances is commonly applied in manual territory delimitation but distances are not explicitly 

stated and vary between different people. I defined these values for each species based on personal 

experience during correction of manual territory delimitation and the development of this algorithm. 

Examples for three species are given in table 6. How heavily the algorithm relies on this values is highly 

species-specific. For common species like the Common Chaffink 99% of the territories are delimited 

without using static distance measures. This value is lower in medium rare species like the Mistle Thrush 

Turdus viscivorus (58% in the Mean Nearest Neighbour approach) and even lower in rare species like the 

Eurasian Sparrowhawk Accipiter nisus (2%, Mean Nearest Neighbour approach). In the Mean Nearest 

Neighbour approach the value is not only used when no normalisation distance can be calculated but also 

to limit the values that go into the calculation for the Mean Nearest Neighbour. The value could be 

influential and leave room for species-specific adaptation/optimization of the algorithm. To evaluate the 

importance of these limits the influence of changing limits was elaborated for two species in chapter 3.5.2. 

Table 6: Examples of species-specific values of the maximum and minimum normalisation distance. 

species max_distance min_distance 

Common Blackbird Turdus merula 200 40 

Common Chiffchaff Phylloscopus collybita 200 50 

Tree Pipit Anthus trivialis 300 50 

 

2.2.6 Step 5: Modify & normalise distances 

The general logic behind the algorithm is to run a hierarchical cluster analysis on modified and normalised 

Euclidian distances named “normalised distances”. First, Euclidian distances between observations are 

normalized by the “normalisation distance”. The later can be understood as the species-specific distance 

between territories (“Revierabstand” in German). By this normalisation step all species are made 

comparable/analysable together (the Common Kestrels Falco tinnunculus large distances are scaled down to 

the tiny distances of Common Firecrests Regulus ignicapilla). Secondly, these normalised distances are 

further modified by taking compatibilities into account, e.g. two singing males observed simultaneously 

should for example not be placed into the same territory even if their Euclidian distance is very small. Or, 
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to name another example of this 2nd step, distances between points that are linked by simultaneous 

observations are increased 100-fold so they are very unlikely to be placed into the same territory. The 

modifications in this 2nd step enlarge the normalised distances in case incompatibilities suggest so. They 

however also decrease the normalised distances in case it is indicated (for example for potential double 

observations). And finally the normalised distances between different species are set to the arbitrary high 

value of 5 (higher than the cut value of 1 used in step 6) to ensure that different species cannot be 

grouped into the same territory. The following formula summarises the modifications to the Euclidian 

distances: 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =

𝐸𝑢𝑐𝑙𝑖𝑑𝑖𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑖𝑡𝑦
 

 

2.2.7 Step 6: Cluster observations 

This part of the algorithm actually groups observation by creating a dendrogram (for an example see 

figure 11) using Ward’s hierarchical clustering algorithm (Ward Jr, 1963). Hierarchical clustering starts with 

as many groups as elements and then continuously joins the 2 “closest” elements. This is repeated until all 

elements end up in one big cluster (Tan et al., 2005). In our situation the elements are bird observations. 

While many different methods for doing agglomerative hierarchical clustering are available, Ward’s 

method seemed most promising when aiming at compact, regular clusters (Eger, 2018; Eisank and Koch, 

2016; R Core Team, 2018): Ward’s method attempts to minimize the sum of the squared distances of 

elements from their cluster centroids (Tan et al., 2005). Single and complete linkage methods were 

excluded on theoretical grounds because they are sensible to outliers and extreme points and/or are 

known to create chain-like clusters (Scheffer, 1987; Tan et al., 2005). The latter is an undesired behaviour 

in territory delimitation (Schmid and Spiess, 2008). Other available methods (average, centroid or median) 

were experimented with but did not reveal more convincing results. 

Following the clustering the dendrogram is cut at a height of 1. The cut height can be set to 1 because all 

between-point distances were normalised with normalisation distances which represent the species-

specific between-territory distances. This is equivalent to cutting the dendrogram at the species-specific 

normalisation distance when working with non-normalized distance measures. Observations that remain 

“linked” after the cut are grouped into the same territory. 

 

Figure 11: Dendrogram of observations at one sample site. Branches at the lowest level correspond to bird 
observations. These are continuously grouped until all observations belong to one single cluster. Cutting this tree at 
height=1 (red line) will leave some observations linked and hence members of the same territory. Distances used are 
“normalised distances” as explained in chapter 2.2.6.  
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The following code illustrates the hierarchical clustering with the function “hclust” (Müllner, 2013) and 

the subsequent grouping with “cutree”. 

# Define "cut height" 
cutheight <-1 
 
# Creation of dendrogram 
dendro<-hclust(result$dist.norm, method="ward.D2") 
GRP <- cutree(dendro,h=cutheight) 
 

2.2.8 Step 7: Create and save territories 

In this final step territories in the form of polygons containing all the points of a particular cluster are 

generated. Points are grouped into a well-known-text multipoints and a buffer is created around these 

multipoints. Before saving the territories the validity of the resulting polygon is checked with respect to 

the following aspects: 

 Minimal atlas code criteria: Territories are only accepted if they contain at least one observation 

that has an atlas code that is equal to or higher than the minimal atlas code criteria. For details on 

the species-specific atlas code criteria refer to Knaus et al. (2018). 

 Date limit criteria: Territories are only accepted if they contain at least one observation after the 

species-specific date limit. The use of date limits is applied in territory mapping to exclude 

migrants. For details on the species-specific date limits refer to Knaus et al. (2018). 

 Maximal altitude: Territories are only accepted if they contain observations that are below a 

predefined species-specific altitude. Observations above this altitude are not considered as 

“breeding birds”. The same limits as used in the 3rd Swiss Breeding Bird atlas were applied (Knaus 

et al., 2018).  

 Availability of breeding habitat: For some species territory validity is checked against the 

availability of suitable habitat. Specifically for Common Swift, Barn Swallow and Common House 

Martin territories are only accepted if there is a minimal area of buildings available in the sample 

site. 

2.3 Quantifying errors in territory delimitation: measuring bias 

and precision 

2.3.1 Requirements 

In territory mapping the true number of territories is unknown. Known is however the number of 

territories delimited manually by the ornithologist who executed the fieldwork. This manual solution is 

always validated by experts of the Swiss Ornithological Institute and is hereafter referred to as the 

“original user’s solution”. All comparisons made in this thesis are made against the “original user’s 

solution”. It may seem unnatural to do so at first, because the validated solution of the original user could 

still be far away from the true territory number. In the absence of knowledge about the truth it is however 

important to guarantee continuity in the long-term data series of the common breeding bird monitoring. 

Any automatic solution should hence imitate what was done so far by hand as well as possible. 
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In order to evaluate the quality of Autoterri (or in fact any alternative territory delimitation) we are hence 

interested in knowing how far away we are from the original users (precision) and how much we generally 

over- or underestimate the number of territories (bias). Two statistical measures were developed in order 

to measure “accuracy” and “bias”. While a “precision” measure should quantify the overall deviation from 

the manual territory count (i.e. the original user’s solution), ignoring the direction of error (i.e. over- vs 

underestimating), a “bias” measure should quantify this systematic over- or underestimating but fail to 

detect a deviation if over- and underestimation compensate each other. Both are important features to 

evaluate alternative territory delimitations. In order to suit the nature of the here produced raw data such 

measures need to fulfil the following criteria. For explanatory purposes the criteria are illustrated giving 

examples referring to the fictive raw data table (table 7).  

1. The absolute value of a measure should be insensitive to the direction of the deviation from 

the number of delimited territories by the original user, i.e. it should be symmetric. The measures 

should have the same absolute value if the automatic delimitation leads to a doubling or halving 

of the number of territories delimited manually. Example: Site 1 and 2 should lead to the same 

absolute values. 

2. The measure should be insensitive to sample size. The measures value for the analysis of 2000 

sites should be comparable with an analysis of only 100 sites. Example: The measure resulting 

from an analysis of only site 1 should be comparable with an analysis consisting of site 1 and 2. 

3. The measure should be weighted by the number of territories involved. I.e. a deviation from 5 

to 10 territories at one sample site should be less influential than a deviation of 10 to 20 territories 

at another sample site. Example: Site 3 should have more influence on a measure than site 2 

because more territories are involved. 

4. The measure needs to be able to deal with 0 values. The manual number of territories as well as 

the automatic number of territories can occasionally be 0. Example: Accuracy measures need to 

be computable also for sites like site 4 and 5. 

5. The measure should be easily interpretable. The value should have some meaning that can easily 

be referred to the data.  

Table 7: Fictive raw data for manually (original users solution) and automatically delimited territories for a fictive 
species “A” at 5 different sites. Ratio and difference of these values per sample site are also shown. 

  Number of territories delimited   
site species manually m automatically a Ratio Difference 

1 A 10 5 0.5 -5 
2 A 5 10 2 +5 
3 A 10 20 2 +10 
4 A 2 0 0 -2 
5 A 0 2 NA +2 

 

2.3.2 Mean Absolute Error (MAE) and Mean Error (ME) 

Based on the above mentioned criteria the following measures were used to quantify the precision and 

bias in this thesis: Mean Absolute Error (MAE) for measuring the precision and Mean Error (ME) for the 

bias. Both measures are based on the comparison of the number of territories delimited manually m and 

automatically a as depicted in table 7. In its most basic form the measures can be calculated for the 

comparison of the two territory numbers at one sample site for one species (i.e. for one line in table 7). 

The values can be understood as the “average deviation per territory”. To clarify the calculation the 

measures are below calculated exemplarily for sample site 1 of table 7: 
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𝑀𝐴𝐸 = =  
|𝑎 − 𝑚|

max (𝑚, 𝑎)
=

|5 − 10|

max (5,10)
=  

5

10
= 0.5 

𝑀𝐸 = =  
𝑎 − 𝑚

max(𝑚, 𝑎)
=

5 − 10

max(5,10)
=

−5

10
= −0.5 

This most basic form (i.e. comparison at one sample site for one species in one year) is aggregated in 

various forms to give information about precision and bias for entire species (not just at one sample site), 

different sample sites and the entire algorithm. The aggregation is achieved by taking weighted means of 

the MAE and ME values presented above. The values are weighted by the number of territories giving 

more weight to situations with many territories. Depending on the aggregation the MAE and ME are 

complemented with different subscripts to distinguish them: “sp” when values are aggregate across all 

sample sites for one particular species, “s” when values are aggregated across all species for one particular 

sample site and “algo” when values are aggregated across all species and sample sites for an overall 

measure of the algorithm. 

Per species: 

𝑀𝐴𝐸𝑠𝑝 =  
∑ (max(𝑚, 𝑎) ∗  𝑀𝐴𝐸)𝑠

 

∑ max(𝑚, 𝑎)𝑠
 

=  
∑ (|𝑎 − 𝑚|)𝑠 

 

∑ max(𝑚, 𝑎)𝑠 
 

 

𝑀𝐸𝑠𝑝 =  
∑ (max(𝑚, 𝑎) ∗  𝑀𝐸)𝑠

 

∑ max(𝑚, 𝑎) 
𝑠

=
∑ (𝑎 − 𝑚) 

𝑠

∑ max(𝑚, 𝑎) 
𝑠

 

 

Per sample site: 

𝑀𝐴𝐸𝑠 =   
∑ (|𝑎 − 𝑚|)

𝑠𝑝 

∑ max(𝑚, 𝑎)𝑠𝑝 
 

 

𝑀𝐸𝑠 =  
∑ (𝑎 − 𝑚)

𝑠𝑝

∑ max(𝑚, 𝑎)𝑠𝑝
 

 

 

Per algorithm: 

𝑀𝐴𝐸𝑎𝑙𝑔𝑜 =   
∑ (|𝑎 − 𝑚|)𝑠𝑝,𝑠 

 

∑ max(𝑚, 𝑎)𝑠𝑝,𝑠 
 

 

𝑀𝐸𝑎𝑙𝑔𝑜 =  
∑ (𝑎 − 𝑚)𝑠𝑝,𝑠

 

∑ max(𝑚, 𝑎)𝑠𝑝,𝑠
 

 

m = count of manually delimited territories by original user of particular species sp and at particular site year combination s 

a = count of automatically delimited territories of particular species sp and at particular site year combination s 

𝑠 = year and sample site combination 

s𝑝 = particular species 
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2.3.3 Comparison with manual territory delimitation 

Manual territory delimitation is not an entirely objective task. Subjective decisions can create different 

outcomes (see for example figure 2). In order to evaluate the quality of any automatic territory 

delimitation it will be important to know the magnitude of error inherent to the manual territory 

delimitation to which results of an automated analysis will be compared to. In order to quantify this error 

repeated manual territory delimitation was conducted for 7 selected species in 35 representative sample 

sites independently by 8 different people (7 “experts” and 1 “original user”).  

2.3.3.1 Site selection 

A stratified random sample site selection lead to 35 sample sites evenly distributed across the 

biogeographic sub-regions of Switzerland (Gonseth et al., 2001) as depicted in figure 3.  

 

Figure 12: Biogeographic sub-regions of Switzerland and the location of the 35 sampling sites (red squares) used for 
error quantification of manual territory delimitation. Relief © Institute of Cartography and Geoinformation, ETH 
Zurich. 

Apart from good biogeographical coverage sample sites were also chosen to be representative for the 

following six covariates because it is at least imaginable that they could influence the amount of 

uncertainty during manual territory delimitation:  

 Forest: The percentage of forest cover within the 1x1 km sample site. Sites with dense forest are 

usually more difficult for manual territory delimitation because of higher bird numbers and 

poorer visibility/orientation. 

 Buildings: The number of square meters covered by buildings within the 1x1 km sample site. 

Sites with very high share of buildings (dense cities) are usually more difficult for manual territory 

delimitation because of higher bird numbers and poorer visibility/orientation. 
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 Farm: Percentage of the area covered with farmland (meadows and acres). On Farmland it is 

thought to be easier to manually delimit territories due to lower bird density and better 

visibility/orientation. 

 Roads: Length of all the roads inside the 1x1 km sample site. Usually easily accessible sample 

sites can be sampled with more spatial precision and hence manual territory delimitation is 

thought to be easier. 

 Elevation: Average elevation of the sample site. Elevation is always a very important variable in 

Switzerland. It is often linked to vegetation coverage, bird densities, etc. and could potentially 

influence uncertainty in manual territory delimitation.  

 Route length: The length of the path walked during the visits (i.e. during bird counting). It is 

highly likely that longer routes lead to better spatial coverage and more observations during the 

sampling process. This could also influence the amount of error during manual territory 

delimitation. 

Figure 13 shows that the selected 35 sample sites were representative for the Swiss landscape (or in case of 

the “route length” for the Atlas sampling scheme) with respect to the 6 covariates.  

 

Figure 13: Sample sites in comparison to distributions in Switzerland. Boxplots showing (in black) the distribution of 
the variables: percentage covered with forest, m2 of buildings, percentage covered with farmland, length of roads, 
average elevation of 1x1 km squares of the Swiss national grid (N=41301). The boxplot for route length shows the 
distribution of route length for the sampling sites used in the atlas 2013-2016 (N=2148). Red circles show the values 
for the 35 selected sampling sites. The red horizontal line shows the median value of the 35 selected sites.  
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2.3.3.2 Species selection 

In order to keep the work load at a bearable level a choice on what species should be analysed had to be 

made. Based on the following criteria seven species were finally selected for the analysis (table 8). 

 Species should be sufficiently common to be well represented and usually have more than 1 

territory inside a particular sample site. If there is only one territory, delimitation is normally 

straight forward. In the set of 1268 sampling events conducted between 2013-2016 a possible 

species had to have at least 1000 manually delimited territories and on average >3 territories per 

site (not considering sites that lack the species) to be a potential candidate. 

 The species should be of different systematic families in order to cover different ecological 

groups and hence behaviour and nesting strategies. 

 The species list should include species that are expected to be easy to analyse as well as some 

expected to be difficult for an automated territory delimitation approach. From manual territory 

delimitation we know already by experience that species that clearly occupy and defend a territory 

are better suited for territory delimitation than species that fly vast distances in search of food or 

behave colonial or the like. This point was hence included in a more or less subjective manner 

based on preliminary results, experience during algorithm development and experience in manual 

territory delimitation. 

Table 8: List of the seven species selected for error quantification in manual territory delimitation. Also the expected 
behaviour in (automated) territory delimitation is indicated. 

Species Expected behaviour 

Common Wood Pigeon Columba palumbus difficult 

Black Redstart Phoenicurus ochruros easy 

Common Blackbird Turdus merula easy 

Eurasian Blackcap Sylvia atricapilla easy 

Goldcrest Regulus regulus easy 

Common Starling Sturnus vulgaris difficult 

European Greenfinch Carduelis chloris difficult 

 

2.3.3.3 Error quantification: Coefficient of Variation (CV), MAE & ME 

In order to quantify the error in manual territory delimitations three different values were calculated: For 

comparison with automatic territory delimitation on the one hand mean absolute error (𝑀𝐴𝐸𝑠𝑝) and mean 

error (𝑀𝐸𝑠𝑝) were calculated analogously as explained previously. Expert’s solutions are hence set in 

relation to the original user’s solution. In the formulas presented in chapter 2.3.2 automatic territory count 

values a are simply replaced by territory count values of the experts delimitations. 

On the other hand studies quantifying the variance due to manual territory delimitation by different 

analysts often reported the coefficient of variation (𝐶𝑉𝑠𝑝 
). For the sake of perfect comparability of errors 

due to manual delimitation with data from literature the coefficient of variation was also calculated and 

referenced in some chapters of this study. Figure 14 shows however that 𝑀𝐴𝐸𝑠𝑝 and 𝐶𝑉𝑠𝑝 
are highly 

correlated and hence comparable.  

𝐶𝑉 =  
∑ (𝑚̅ ∗  

𝑠𝑑(𝑚)
𝑚̅ ) 

 

∑ 𝑚̅ 
 

=
∑ (𝑠𝑑(𝑚)) 

 

∑ 𝑚̅ 
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𝑚̅ = average number of manually delimited territories (experts and original user) for a particular species and at particular site-year 
combination from manual territory delimitation by multiple analysts 

sd(m) = standard deviation of the number of manually delimited territories (expert and original user) for a particular species and 
at particular site-year combination from manual territory delimitation by multiple analysts 

 

Figure 14: Comparison of coefficient of variation (𝐶𝑉 ) and mean absolute error (𝑴𝑨𝑬𝑠𝑝) for seven species analysed 

by multiple experts. The green line corresponds to the ideal case of complete accordance of the two measures. 
Paersons correlation was 97.5%. 

2.4 Optimizing quantiles for the Quantile Value approach 

When identifying the normalization distance with the Quantile Value approach (see chapter 2.2.5.2) the 

species-specific quantile is a rather influential parameter. In an initial version of this approach this 

parameter was chosen for every species based on expert knowledge and some trial and error experience. 

To assess the potential to improve Autoterri this parameter was optimized for the data of all sample sites 

of the years 2013 and 2015. In a second step the improvement in 𝑀𝐴𝐸𝑠𝑝and 𝑀𝐸𝑠𝑝was evaluated based 

on data not involved in the optimization process: Namely all sample sites for the years 2014 and 2016. 

A first approach choosing quantiles randomly form a uniform distribution and repeating this 1000 times 

proofed unfeasible in the scope of this thesis due to very long computation times. Instead Autoterri 

(approach “Quantile Value”) was run for each species and for 60 predefined quantiles ranging from 0.005 

to 0.1 in steps of 0.005 and from 0.1 to 0.5 in steps of 0.01. During the optimization process the limitation 

of the normalisation distance between a species-specific minimum and maximum was deactivated so 

results were not masked by these limits. For each quantile territories were automatically delimited and 

accuracy measures calculated (figure 15). The best quantile was chosen based on the minimal value for the 

sum of 𝑀𝐴𝐸𝑠𝑝+𝑀𝐸𝑠𝑝. As 𝑀𝐸𝑠𝑝 is by its nature smaller than 𝑀𝐴𝐸𝑠𝑝, 𝑀𝐴𝐸𝑠𝑝 has more weight in this 

combined value. For 95 out of 163 species an optimum quantile was identified (see appendix table 21). 

For 67 species it was not possible to identify an optimised quantile mainly due to lack of informative data 

(figure 15). For many raptors for example there is usually only 1 territory per sample site which makes it 

impossible to calculate an optimal quantile.  
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Figure 15. Accuracy (𝑴𝑨𝑬𝑠𝑝 and absolute values of 𝑴𝑬𝑠𝑝) for different quantiles show pronounced optima for 

many common species like the European Greenfinch (left) that seems to have a minimal deviation to the manual 
territory delimitation at a quantile value of 0.085. For 67 mainly rare species like the Eurasian Sparrowhawk (right) 
finding an optimum often failed because there is rarely more than 1 territory per sample site available to test the 
influence of different quantiles. 
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3 Results 

3.1 Accuracy of Autoterri 

3.1.1 Per algorithm 

Autoterri was run with three approaches to calculate the normalisation distance. The overall deviation 

from the manual territory delimitation is summarized in table 9. Across all 162 species and all 475 sample 

sites in 2013-2016 the overall 𝑀𝐴𝐸𝑎𝑙𝑔𝑜 varied between 17.7% for the Linear Regression approach and 

12.0% for the Mean Nearest Neighbour approach. The bias (𝑀𝐸𝑎𝑙𝑔𝑜) varied between 4.8% for the Linear 

Regression approach and 2.1% for the Quantile Value approach. All approaches tend to overestimate the 

number of territories. Pearson’s correlation between the number of manually delimited territories and the 

automatic solution at each species-year-site combination was always high – at maximum 0.973 for the 

Mean Nearest Neighbour approach. 

Table 9: Accuracy measures for Autoterri run with three different approaches for the calculation of the normalisation 

distance. 𝑟𝑎𝑙𝑔𝑜 denotes the Pearson’s correlation between the number of manually delimited territories and the 

automatic solution at each species-year-site combination. 

 Approach for identification of normalisation distance 

Accuracy Linear Regression  Quantile Value Mean Nearest Neighbour 

𝑀𝐴𝐸𝑎𝑙𝑔𝑜  0.177 0.123 0.120 

𝑀𝐸𝑎𝑙𝑔𝑜  0.048 0.021 0.023 

𝑟𝑎𝑙𝑔𝑜  0.946 0.972 0.973 

 

3.1.2 Per sample site 

When aggregating the accuracy by sample site the three approaches compared as shown in figure 16. For 

the Linear Regression approach the median 𝑀𝐴𝐸𝑠 equaled to 16.4% (min: 0%, max: 53.3%) and the 

median 𝑀𝐸𝑠𝑝 was 4.7% (min: -37.9, max: 53.0%). For the optimised Quantile Value approach the median 

𝑀𝐴𝐸𝑠 equaled to 11.4% (min: 0%, max: 52.9%) and the median 𝑀𝐸𝑠𝑝 was 1.8% (min: -36.8%, max: 

46.9%). And for the Mean Nearest Neighbour approach the median 𝑀𝐴𝐸𝑠 equaled to 11.0% (min: 0%, 

max: 49.2%) and the median 𝑀𝐸𝑠𝑝 was 2.5% (min: -36.3%, max: 42.1%). 
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Figure 16: Distribution of 𝑀𝐸𝑠 for the three different approaches for calculating the normalisation distance. 

Figure 17 illustrates exemplarily how manual and automatic solutions compared at three different sites. 

Sample site 505 had a low 𝑀𝐴𝐸𝑠 of 1.7% while the 𝑀𝐴𝐸𝑠 in sample site 408 was 31.7%. The accuracy of 

sample site 338 was with a 𝑀𝐴𝐸𝑠 of 11.4% in between. Sample site 408 contains some dramatic outliers 

(species that produced completely different automatic than manual territory counts). 

 

Figure 17: Manually delimited territories vs. automatically delimited territories at three different sample sites with low 

𝑀𝐴𝐸𝑠 (left) to high 𝑀𝐴𝐸𝑠 (right). Shown are results analysed with the Mean Nearest Neighbour approach. Points 
represent the different species. The black line indicates the ideal case of perfect fit between manual and automatic 
territory delimitation. Points above the black line hence indicate an overestimation of the number of territories for a 
particular species compared to the manual solution of the original user. 

3.1.3 Per species 

Performance varied largely between species. Table 10 shows 𝑀𝐴𝐸𝑠𝑝 and 𝑀𝐸𝑠𝑝 values for the 10 most 

common species (for all species refer to appendix 0). The Mean Nearest Neighbour approach 

overestimated the number of Common Chaffinch territories for example by 0.8% (𝑀𝐸𝑠𝑝). In absolute 

numbers this corresponds to 34’633 automatically delimited vs. 34’349 manually delimited Common 

Chaffinch territories. 
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Table 10: Accuracy values for the 10 most common species. Values are given for the three different approaches for 
identifying the normalisation distance. The list is sorted according to number of the manually delimited territories 
analysed from 2013–2016. Scientific names for species not previously mentioned: European Robin Erithacus rubecula, 
Coal Tit Periparus ater, House Sparrow Passer domesticus, Eurasian Wren Troglodytes troglodytes, Great Tit Parus major, Song 
Thrush Turdus philomelos, Black Redstart Phoenicurus ochruros. 

  Linear 
Regres-
sion 

Quantile 
Value 

Mean 
Nearest 
Neighbour 

Linear 
Regres-
sion 

Quantile 
Value 

Mean 
Nearest 
Neighbou
r 

Species 
manual 
count 

𝑀𝐴𝐸𝑠𝑝 𝑀𝐴𝐸𝑠𝑝 𝑀𝐴𝐸𝑠𝑝 𝑀𝐸𝑠𝑝 𝑀𝐸𝑠𝑝 𝑀𝐸𝑠𝑝 

Common Chaffinch 34349 0.164 0.083 0.076 -0.075 0.004 0.008 
Eurasian Blackcap 20734 0.153 0.078 0.071 -0.054 0.019 -0.017 
Common Blackbird 19205 0.163 0.113 0.097 -0.007 0.018 0.007 
European Robin 16134 0.145 0.093 0.085 0.008 0.018 -0.004 
Coal Tit 15799 0.155 0.095 0.085 -0.028 0.015 -0.013 
House Sparrow 15292 0.192 0.175 0.203 -0.105 -0.082 -0.131 
Eurasian Wren 14378 0.155 0.084 0.076 0.035 0.019 -0.003 
Great Tit 13596 0.149 0.112 0.101 -0.013 0.042 0.001 
Song Thrush 9766 0.132 0.096 0.096 0.057 0.017 0.052 
Black Redstart 9209 0.151 0.103 0.092 0.093 0.034 0.038 

 

The plots in figure 18 show for the ten most common species how automatically delimited territory 

numbers per site compared to manually delimited territories. While these plots are very intuitive to read 

one has to keep in mind that exceptional values are visually more prominent because they are often less 

covered by results in other sample sites. Results of one dot in in figure 18, i.e. the territories delimited, are 

plotted exemplarily on maps in figure 19 (for the Common Chaffinch). 
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Figure 18: Number of manually delimited territories vs. number of automatically delimited territories for the 10 most 
common species for the Quantile Value approach (left) and the Mean Nearest Neighbour (right) approach. Each 
point represents one sample site in a particular year. The green line is indicating the ideal case when all automatic 
territory delimitations are identical to the manual solution. 
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Figure 19: Automatic (red) and manual (transparent blue) territory delimitation for the Common Chaffinch in a 
randomly chosen sample site. The two plots show the results for the Linear Regression (left) and the Quantile Value 
& the Mean Nearest Neighbour approach (right). The latter two produce in this case identical clusters. Remember 
that the number of territories is the important end product of territory mapping (given on top of each map). Size and 
position of territory-polygons is only relevant for illustration but not further analyses. Base maps by swisstopo. 

While previous results in this chapters only covered accuracies of the ten most common species table 11 

depicts accuracy values for the ten species that worked best and worst with respect to precision (𝑀𝐴𝐸𝑠𝑝). 

Rare species with less than 200 manually delimited territories in 2013-2016 were excluded. Best 𝑀𝐴𝐸𝑠𝑝-

performance was measured for the Garden Warbler Sylvia borin in the Mean Nearest Neighbour approach. 

The Eurasian Blackcap was the most common species under the top ten. On the other hand the Common 

Swift Apus apus showed worst precision and the Common Starling was the most common species out of 

the worst ten. 

Table 11: Results for species that perform best (upper half) and worst (lower half) with respect to their minimal 
precision in either Quantile Value or Mean Nearest Neighbour approach. The species set was limited to species 
where territory mapping data is actually used to calculate national species trends and to species that had at least 200 
manually delimited territories in all the sites across all years analysed. Scientific names for species not previously 
mentioned: Spotted Flycatcher Muscicapa striata, Western Bonelli's Warbler Phylloscopus bonelli, Red-backed Shrike 
Lanius collurio, Dunnock Prunella modularis, Lesser Whitethroat Sylvia curruca, Eurasian Siskin Carduelis spinus, Common 
House Martin Delichon urbicum, Barn Swallow Hirundo rustica, Common Buzzard Buteo buteo, Red Kite Milvus milvus, 
Mallard Anas platyrhynchos, Carrion Crow Corvus corone corone. 

  Linear 
Regres-
sion 

Quantile 
Value 

Mean 
Nearest 
Neighbour 

Linear 
Regres-
sion 

Quantil
e Value 

Mean 
Nearest 
Neighbour 

Species 
Count 
manual 

𝑀𝐴𝐸𝑠𝑝 𝑀𝐴𝐸𝑠𝑝 𝑀𝐴𝐸𝑠𝑝 𝑀𝐸𝑠𝑝 𝑀𝐸𝑠𝑝 𝑀𝐸𝑠𝑝 

Garden Warbler 1305 0.089 0.068 0.042 0.027 -0.038 -0.002 
Spotted Flycatcher 1322 0.077 0.082 0.061 0.014 -0.048 0.006 
Western Bonelli's Warbler 1891 0.120 0.072 0.069 0.085 0.009 0.033 
Goldcrest 6647 0.118 0.075 0.070 -0.023 0.008 -0.016 
Eurasian Blackcap 20734 0.153 0.078 0.071 -0.054 0.019 -0.017 
Common Redstart 762 0.113 0.077 0.072 0.092 -0.028 0.055 
Red-backed Shrike 402 0.149 0.082 0.073 0.119 -0.014 0.044 
Dunnock 6926 0.130 0.084 0.074 0.048 0.001 0.008 
Eurasian Wren 14378 0.155 0.084 0.076 0.035 0.019 -0.003 
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Lesser Whitethroat 825 0.112 0.076 0.083 0.073 -0.011 0.049 

Eurasian Siskin 304 0.259 0.196 0.198 0.137 0.052 0.055 
Common Starling 3897 0.238 0.220 0.201 0.150 0.050 0.030 
Common House Martin 2157 0.245 0.203 0.217 0.132 0.036 0.057 
Barn Swallow 2472 0.251 0.208 0.212 0.172 0.063 0.079 
Common Buzzard 987 0.293 0.217 0.229 0.243 0.157 0.170 
Red Kite 510 0.293 0.224 0.247 0.264 0.193 0.217 
Red Crossbill 787 0.331 0.252 0.283 0.260 0.117 0.165 
Mallard 714 0.287 0.254 0.272 0.177 0.092 0.136 
Carrion Crow 3693 0.367 0.264 0.278 0.353 0.226 0.240 
Common Swift 1138 0.322 0.295 0.304 0.153 0.093 0.108 

 

Table 12 summarises the findings across all species: The Quantile Value approach revealed the best results 

for most species. The results of the Mean Nearest Neighbour approach were however not far away. For 

the Quantile Value approach 86 species showed a 𝑀𝐴𝐸𝑠𝑝 of <15%. These species make up 76.6% of all 

territories. For the Mean Nearest Neighbour approach 80 species had a 𝑀𝐴𝐸𝑠𝑝 below 15% which 

corresponds to 77.4% of all territories. While 77 species showed a bias of less than 5% (𝑀𝐸𝑠𝑝) for the 

Quantile Value approach, for the Mean Nearest Neighbour approach this held true for 59 species. The 

Linear Regression approach was always performing substantially worse. 

Table 12: Summarised performance of the three approaches. Values indicate the number of species for which an 
approach was performing best or below a specific accuracy value (see chapter 4.1.3 for a discussion of acceptable 
error). Analysis was run for 162 species. If two approaches performed equally well for a particular species, the 
species was counted for both approaches. 

 Number of species for which an approach performed best 

 Linear Regression Quantile Value Mean Nearest 
Neighbour 

Number of species with lowest 𝑀𝐴𝐸𝑠𝑝 49 105 99 

Number of species with lowest 𝑎𝑏𝑠(𝑀𝐸𝑠𝑝) 56 128 69 

Number of species with 𝑀𝐴𝐸𝑠𝑝<15% 55 86 80 

Number of species with 𝑎𝑏𝑠(𝑀𝐸𝑠𝑝)<5% 42 77 59 

3.1.4 Comparison with manual territory delimitation 

 

Figure 20: Number of delimited territories by seven different experts (boxplots and black dots) and the original user 
(red dots) for different test sample sites. Plots for all seven species are found in appendix 7.4. 



 

44 
 
 

The so far presented accuracies are difficult to interpret without knowing about the error that is inherent 

to manual territory delimitation. We know that there is considerable variation when delimitation is done 

by different people (see figure 2 or figure 20 for illustration). In this chapter we’ll compare inaccuracies 

due to manual analysis (analyst effect) with inaccuracies found in automatic analysis. Figure 21 and figure 

22 give a first impression on how the number of manually delimited territories compared to the number 

of automatically delimited territories. They show how well automatic solutions (black) fitted to the original 

user’s solution across all analysed sample sites. Plotted on top (red) is the comparison of the experts’ 

territory delimitation to the original user. The plots show for both the automatic and experts’ analyses 

comparable scatter along the green line that would represent perfect match between original user and 

automatic or expert analysis. 

 

Figure 21: Direct comparison of results from the Quantile Value approach (black circles) and manual territory 
delimitation by experts (red dots). The x-axis shows the number of territories delimited by the original user. The y-
axis shows the number of territories delimited by the algorithm or the experts respectively. Each point corresponds 
to one sample site. The green line indicates perfect match between the original user’s solution and the 
algorithm/experts.  
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Figure 22: Direct comparison of results from the Mean Nearest Neighbour approach (black circles) and manual 
territory delimitation by experts (red dots). The x-axis shows the number of territories delimited by the original user. 
The y-axis shows the number of territories delimited by the algorithm or the experts respectively. Each point 
corresponds to one sample site. The green line indicates perfect match between the original user’s solution and the 
algorithm/experts. 

The distribution of the deviations from the original users territory count shown in figure 21 and figure 22 

is visualised with histograms in figure 23. The shape of an ideal histogram would be narrow (indicating 

high precision) and centred at 0 (indicating no systematic bias, i.e. no over or underestimation of the 

number of territories). For automatic solutions always two histograms are depicted: once observed 

deviations across all sample sites and once deviations in the 35 test sample sites. The analysis of the 

automatic approaches in the 35 sample sites is based on a limited sample size because the seven species 

considered hardly ever occurred in all the 35 test sample sites. In fact only the Common Redstart was 

present in all 35 sites, while the Common Starling at the other end of the spectrum was only present in 14 

sample sites. Figure 23 shows that histogram shapes of automatic solutions (white) are always close to or 

even more ideal than what is observed in expert manual territory delimitation (red) for Black Redstart, 

Common Blackbird, Eurasian Blackcap, Goldcrest. For the Common Wood Pigeon, the Common 

Starling and the European Greenfinch some of the automatic solutions show somewhat deviating 

distributions. Generally over-all distributions (across all sites) resemble the experts’ accuracy distributions 

more closely than result in the 35 test sample sites for these three species. 
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Figure 23: Distribution of ME for seven species when analysed automatically or manually by experts. The top two 
figures show results for all sample sites or the 35 test sample site when analysed automatically by the Quantile Value 
approach. Plot 3 and 4 from top show the same for automatic analysis with the Mean Nearest Neighbour approach. 
The bottom plots of each page show (in red) the accuracies observed in manual analysis by experts. Values depicted 

in the top right corner of each plot are Mean absolute error (𝑀𝐴𝐸𝑠𝑝) and Mean Error (𝑀𝐸𝑠𝑝).  
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Table 13 summarizes the accuracies shown above when automatic and expert territory delimitation are 

applied on the same 35 sample sites (exact same input data). Table 14 compares the expert accuracy found 

in the 35 test sample sites with the accuracy of automatic solution across all sample sites. The precision 

values (𝑀𝐴𝐸𝑠𝑝) of automatic solutions were often quite similar to those found in manual territory 

delimitation and ranged between 0% and 25.0% depending on the species. For the species expected to be 

easier to analyse (Black Redstart, Common Blackbird, Eurasian Blackcap, Goldcrest) accuracy values were 

very close to the original user’s solution and regularly even closer than observed in the experts’ solution. 

Bias values (𝑀𝐸𝑠𝑝) were (by definition) considerably smaller but deviated in some automatic analyses 

more heavily from 0 than the experts solutions where deviation was never larger than 8% even for 

difficult species. The worst automatic solution revealed a bias of 25% (Quantile value approach within the 

35 test sample sites). Biases observed for some species under some automatic solution were less extreme 

when analysing all sample sites. Extreme values were obviously compensated to some extent in other 

sample sites. 

Table 13: Accuracies in 35 test sample sites comparing expert territory delimitation with automatic solutions. 
Comparison was always conducted against the original user’s solution. Values in bold are smaller or equal to what 
was found in the experts solutions. 

 Expert Quantile Value 
(35 test sites) 

Mean Nearest 
Neighbour (35 test sites) 

Species 𝐶𝑉𝑠𝑝 𝑀𝐴𝐸𝑠𝑝 𝑀𝐸𝑠𝑝 𝑀𝐴𝐸𝑠𝑝 𝑀𝐸𝑠𝑝 𝑀𝐴𝐸𝑠𝑝 𝑀𝐸𝑠𝑝 

Common Wood Pigeon 0.203 0.183 -0.018 0.083 0.083 0.241 0.241 
Black Redstart 0.103 0.096 0.038 0.061 0.044 0.062 0.009 
Common Blackbird 0.105 0.106 0.034 0.092 0.000 0.084 -0.042 
Eurasian Blackcap 0.082 0.084 0.006 0.062 0.018 0.082 -0.045 
Goldcrest 0.072 0.070 0.028 0.000 0.000 0.029 -0.029 
Common Starling 0.175 0.191 0.080 0.250 0.194 0.197 0.030 
European Greenfinch 0.126 0.129 -0.020 0.111 -0.111 0.121 0.017 

 

Table 14: Accuracies in all automatically analysed sample sites comparing expert territory delimitation with automatic 
solutions. Comparison was always conducted against the original user’s solution. Values in bold are smaller or equal 
to what was found in the experts solution. 

 Expert Quantile Value  
(all sites) 

Mean Nearest 
Neighbour (all sites) 

Species 𝐶𝑉𝑠𝑝 𝑀𝐴𝐸𝑠𝑝 𝑀𝐸𝑠𝑝 𝑀𝐴𝐸𝑠𝑝 𝑀𝐸𝑠𝑝 𝑀𝐴𝐸𝑠𝑝 𝑀𝐸𝑠𝑝 

Common Wood Pigeon 0.203 0.183 -0.018 0.172 -0.027 0.172 0.107 
Black Redstart 0.103 0.096 0.038 0.103 0.034 0.092 0.038 
Common Blackbird 0.105 0.106 0.034 0.113 0.018 0.097 0.007 
Eurasian Blackcap 0.082 0.084 0.006 0.078 0.019 0.071 -0.017 
Goldcrest 0.072 0.070 0.028 0.075 0.008 0.070 -0.016 
Common Starling 0.175 0.191 0.080 0.220 0.050 0.201 0.030 
European Greenfinch 0.126 0.129 -0.020 0.114 0.011 0.109 0.021 

 

3.2 Computation times 

The average computation time (table 15) for one sample site was between 12 (Quantile Value approach) 

and 32 seconds (Mean Nearest Neighbour approach). The analysis was run in R-Studio 1.1.453 (RStudio 

Team, 2016) using the R-Software 3.5.0 (R Core Team, 2018). The code was run on a personal computer 

with 16 Gigabyte RAM and an Intel Core i5-3570 CPU with 4 cores at 3.4 GHz. It was accessing a 

PostgreSQL 9.5 database running on a Linux Server (Ubuntu 16.04). 



 

51 
 
 

Table 15: Average computation times for the analysis of one sample site. 

Approach Average duration [s] 

Linear Regression 13 
Quantile Value 12 
Mean Nearest Neighbour 32 

 

3.3 Sensitivity to habitat and route length 

This chapter evaluated whether automatic analyses varied in relationship to habitat covariates and route 

length. This could become relevant if covariates changed during the course of long term monitoring 

schemes that typically run for many decades. Five covariates and the route length calculated for each 1x1 

km sample site were analysed: Percentage of area covered in forest (“forest”), area of all buildings in 

square meters (“buildings”), percentage of area covered in farmland (“farm”), length of all roads in meters 

(“roads”), elevation in meters above sea level (“elevation”) and length of the route (i.e. the transect) 

covered during field work in meters (“route length”). For details on the calculation refer the Swiss 

breeding bird atlas (Knaus et al., 2018).  

The bias (𝑀𝐸𝑠) of the Quantile Value approach did not seem to be influenced by forest, buildings, farm, 

roads nor elevation. The 95% confidence interval of the slope of the linear regression always included 0. 

There was however a weak negative relationship with the length of the route. If route length increased 

from the smallest to the longest length of routes the global bias for that sample site would “increase” by -

5.6% (figure 24). The bias of the Mean Nearest Neighbour approach seemed more influenced by these 

covariates (figure 25). There was a weak negative relationship with forest, buildings and route length. 

Strongest relationships were found with roads length (slope m = -0.105) and the elevation (m = 0.118).  
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Figure 24: Relationship between habitat/route length and bias per sample site (𝑀𝐸𝑠) for the Quantile Value 

approach. Each point represents one sample site. The red line shows the linear regression of 𝑀𝐸𝑠 on the respective 
covariate. The slope of the linear regression and its 95% confidence interval (in brackets) are given on top of each 
graph. Forest and farm represent the share of the sample site covered in these habitat types. Buildings (m2), roads 
(m), elevation (m) and route length (m) were standardised by their maximum value.  
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Figure 25: Relationship between habitat/route length and bias per sample site (𝑀𝐸𝑠) for the Mean Nearest 

Neighbour approach. Each point represents one sample site. The red line shows the linear regression of 𝑀𝐸𝑠 on the 
respective covariate. The slope of the linear regression and its 95% confidence interval (in brackets) are given on top 
of each graph. Forest and farm represent the share of the sample site covered in these habitat types. Buildings (m2), 
roads (m), elevation (m) and route length (m) were standardised by their maximum value. 

Precision (𝑀𝐴𝐸𝑠) of the automatic solutions seemed only weakly influenced by habitat or route length. 

Precision did not systematically change with the length of the route or the elevation for both approaches. 

There were however rather weak relationships between precision and forest, buildings, farm and roads for 

both the Quantile Value (figure 26) and the Mean Nearest Neighbour approach (figure 27).  
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Figure 26: Relationship between habitat covariates and precision per sample site (𝑀𝐴𝐸𝑠) for the Quantile Value 

approach. Each point represents one sample site. The red line shows the linear regression of 𝑀𝐴𝐸𝑠 on the respective 
covariate. The slope of the linear regression and its 95% confidence interval (in brackets) are given on top of each 
graph. Forest and farm represent the share of the sample site covered in these habitat types. Buildings (m2), roads 
(m), elevation (m) and route length (m) were standardised by their maximum value. 
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Figure 27: Relationship between habitat covariates and precision per sample site (𝑀𝐴𝐸𝑠) for the Mean Nearest 

Neighbour approach. Each point represents one sample site. The red line shows the linear regression of 𝑀𝐴𝐸𝑠 on 
the respective covariate. The slope of the linear regression and its 95% confidence interval (in brackets) are given on 
top of each graph. Forest and farm represent the share of the sample site covered in these habitat types. Buildings 
(m2), roads (m), elevation (m) and route length (m) were standardised by their maximum value. 
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3.5 Sensitivity to parameters 

During several steps Autoterri relies on different parameters. These parameters were mentioned and 

explained in detail in the methods section and listed again in table 16 to give an overview about all 

parameters. The sensitivity of automated territory analysis to four potentially influential parameters was 

analysed in the following chapters. 

Table 16: Overview about parameters and values used in the two most promising approaches (Mean Nearest 
Neighbour, Quantile Value) of Autoterri. 

Name Current 
value(s) 

Species-
specific 

Potential 
influence 

Remark 
 

quantile 0.01-0.8 yes 
very 

strong 
Only used in Quantile Value approach to 
choose the normalisation distance 

min_distance 20-300 m yes strong 
Used to restrict possible normalisation 
distances 

max_distance 100-1000 m yes strong 
Used to restrict possible normalisation 
distances; used as normalisation distance 
when no other information available 

Factor for sexually 
incompatible observations 

1.5 no strong 
Used to increase Euclidian distances between 
observations that are incompatible 

Factor for simultaneous 
observations 

100 no 
none 

 
Used to increase Euclidian distances between 
simultaneous observations 

Factor for flight observations 0.67 no weak 
Used to reduce Euclidian distances of 
observations to flight observation 

Factor for potential double  
observations 

0.8 no 
weak 

 
Used to decrease Euclidian distances for 
potential double observations 

Factor for nests 100 no none 
Used to increase Euclidian distances between 
nests 

Factor for double 
observations 

0 no none 
Sets Euclidian distances between double 
observations to 0 

3.5.1 Sensitivity to sexual incompatibility factor 

The factor increasing the distances between sexually incompatible observations is a potentially influential 

parameter in the algorithm because it is applied to many distances. In order to understand better how 

strongly this factor influences the outcome the analysis across all sites was repeated with four different 

factor values ranging from 1.25 to 3. The Mean Nearest Neighbour approach was applied for this analysis. 

Across all species the precision changed from at best 11.9% to at worst 12.2% deviation from the original 

user’s solution (table 17). While the precision improved with increasing factor values the opposite was 

observed for overall bias. Bias was at lowest 0.4% with a factor of 1.25 and at most 4% with a factor of 3. 

Increasing factor values reduced the amount of underestimation more strongly then it increased the 

amount of overestimation (figure 28): While the median value remained more or less stable the lower 

whisker and the lower end of the box (1st quartile) changed more strongly into the direction of the median 

than the upper equivalents (whisker and 75% quantile) moved away from it. This resulted in increased 

precision at the price of higher general overestimation (bias). 

 

 



 

57 
 
 

Table 17: Response of accuracy to different factors for modifying the distances between sexually incompatible 
observations. Given are accuracy values resulting from the analysis with the Mean Nearest Neighbour approach. 

 Increase of sexually incompatible distances 

Accuracy measure 1.25x 1.5x 2x 3x 

𝑀𝐴𝐸𝑎𝑙𝑔𝑜  0.122 0.120 0.119 0.119 

𝑀𝐸𝑎𝑙𝑔𝑜  0.004 0.023 0.032 0.040 

 

 

Figure 28: Response of mean error to changing factors modifying the distances between sexually incompatible 
observations. Boxplots show the distribution of mean errors (ME) for all species and sample sites. The four boxplots 
summarizes results for four different factor values. The value implemented in the algorithm presented in this thesis 
was 1.5. 

The changes observed for the entire algorithm were also common when looking at individual species. 

Generally the above described patterns were regularly found in common species (e.g. Coal Tit, Common 

Chiffchaff, Goldcrest or Dunnock). There were however also species that didn’t follow this pattern. The 

Common Wood Pigeon for example showed worse bias and precision (wider box) with higher factor 

values (see figure 29).  
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Figure 29: Response of mean error (𝑀𝐸) to changing factors modifying the distances between sexually incompatible 
observations for two species – Common Wood Pigeon and Goldcrest. The four boxplots summarise results for four 
different factor values. The value implemented in the algorithm presented was 1.5. 

The modest influence of this factor is also exemplarily illustrated by direct comparisons with the manual 

solution (figure 30). While for the Common Wood Pigeon there was no change evident only few extreme 

values were influenced by the parameter in the Goldcrest. 

 

 

Figure 30: Comparison of automatic to manual solution with changing factors for modifying the distances between 
sexually incompatible observations for two species – Common Wood Pigeon (upper series) and Goldcrest (lower 
series). 
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3.5.2 Sensitivity to minimum and maximum distance 

The maximum and minimum distances are used as default normalisation distance when data-based 

calculation of it fails. In the Mean Nearest Neighbour approach it is additionally used to limit distances 

that go into the calculation of the mean of the nearest neighbour distances. The influence of these 

distances was evaluated for one species that is common and showed a rather high bias (in order to 

estimate the potential to improve results) and for one common species already performing well: The 

Common Wood Pigeon and the Common Chaffinch.  

Table 18: Accuracy of Autoterri (Mean Nearest Neighbour approach) for the Common Wood Pigeon and the 
Common Chaffinch under different minimum and maximum distance values. 

 min_distance Common Wood Pigeon  max_distance Common Chaffinch 

Accuracy 40 m 50 m 100 m 150 m  100 m 150 m 200 m 250 m 

𝑀𝐴𝐸𝑠𝑝  0.176 0.172 0.148 0.153  0.140 0.085 0.076 0.084 

𝑀𝐸𝑠𝑝  0.111 0.107 0.050 -0.019  0.132 0.051 0.008 -0.022 

 

Both examples showed clearly that the species-specific distances are very influential. The overall bias 

(𝑀𝐸𝑠𝑝) in the Common Wood Pigeon was reduced from 11.1% to -1.9%. This corresponds to an overall 

reduction of the number of delimited territories from 5402 to 4648. The precision (𝑀𝐴𝐸𝑠𝑝) changed less 

strongly and varied between 17.6% and 14.8% (table 18). By increasing the maximum distance the number 

of Common Chaffinch territories was continuously reduced: Best performance – 𝑀𝐸𝑠𝑝 and 𝑀𝐴𝐸𝑠𝑝 

closest to 0 – was achieved for a maximum distance of 200 m. In both species modifications of the 

distances influenced the bias more strongly than the precision: While positions of medians in figure 31 

changed visibly the box width was not altered dramatically. 

 

Figure 31: Sensitivity of accuracy to changing distance values for the Common Wood Pigeon and the Common 

Chaffinch. Boxplots show the distribution of mean errors (𝑀𝐸) across all sample sites for four different minimum 
and maximum distance values respectively. The value implemented in the algorithm presented in this thesis was 50 m 
(Common Wood Pigeon) and 200 m (Common Chaffinch). For this analysis the Mean Nearest Neighbour approach 
was applied. 

Figure 32 shows the same data depicted as in the boxplots above. Interestingly the raise of the minimum 

distance seemed to influence sample sites with high territory counts (i.e. with dense and small territories) 
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the most - visible in the plots of the Common Wood Pigeon (upper four plots in figure 32). On the other 

hand increasing max_distance was more influencing sample sites with median territory densities while the 

sample sites with high densities were not affected a lot. This is not surprising as high density plots will 

have a lot of very short nearest neighbour distances and the influence of the filtering (to below 

max_distance) becomes negligible. 

 

 

Figure 32: Sensitivity of automatic solutions to changing minimum distance values for the Common Wood Pigeon 
(upper series) and changing maximum distance for the Common Chaffinch (lower series). The scatterplots show 
how the comparison of automatic vs. manual analysis changed with different minimum/maximum distance values 
used in the automatic analysis. For this analysis the Mean Nearest Neighbour approach was applied. 

3.5.3 Optimizing the quantile value for the Quantile Value approach 

The species-specific quantile used in the Quantile Value approach is directly influencing the normalisation 

distance. Without any doubt the quantile value has in important influence on the performance of the 

Quantile Value approach. This chapter evaluates how much accuracy was improved by choosing optimal 

quantile values.  

Across all species precision improved little from 12.9% error to 12.1%. The bias was halved from 6% to 

3% after optimization (table 19). 

Table 19: Improvement of mean absolute error and mean error for the entire algorithm due to optimized quantiles in 

sample sites of 2014 and 2016 

before optimization  after optimization  improvement in % 

𝑀𝐴𝐸𝑎𝑙𝑔𝑜  𝑀𝐸𝑎𝑙𝑔𝑜 𝑀𝐴𝐸𝑎𝑙𝑔𝑜  𝑀𝐸𝑎𝑙𝑔𝑜 𝑀𝐴𝐸𝑎𝑙𝑔𝑜  𝑀𝐸𝑎𝑙𝑔𝑜 

0.129 0.060 0.121 0.030 6.2% 50.4% 
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While overall improvement was modest for some species the improvement was quite substantial (table 

20). For the Common Chaffinch for example precision improved from 11% error before optimization to 

8.4% after optimization. The bias lowered from 9.5% to 0.7%. Figure 33 shows two examples how error 

developed with different quantile values – for many species there was a clear optimum identifiable. 

Table 20: Improvement of accuracy for the 10 most common species due to optimized quantiles in sample sites of 
2014 and 2016. 

 before optimization after optimization improvement in % 
species 𝑀𝐴𝐸𝑠𝑝 𝑀𝐸𝑠𝑝 𝑀𝐴𝐸𝑠𝑝 𝑀𝐸𝑠𝑝 𝑀𝐴𝐸𝑠𝑝 𝑀𝐸𝑠𝑝 

Common Chaffinch 0.110 0.095 0.084 0.007 24 93 
Eurasian Blackcap 0.098 0.079 0.078 0.032 21 60 
Common Blackbird 0.122 0.076 0.105 0.026 14 66 
European Robin 0.087 0.026 0.087 0.026 0 0 
Coal Tit 0.115 0.083 0.091 0.017 21 80 
Eurasian Wren 0.086 0.037 0.083 0.020 4 45 
House Sparrow 0.174 -0.061 0.174 -0.063 0 -3 
Great Tit 0.124 0.083 0.111 0.061 10 26 
Song Thrush 0.098 0.034 0.096 0.023 3 33 
Black Redstart 0.100 0.046 0.100 0.046 0 0 

 

 

Figure 33: Values for the mean absolute error (red) and the mean error (blue) as a function of the quantile value for 
the two most common species. The data-derived optimum (solid line) and manually chosen quantile (dashed line) 
were close but not identical illustrating the potential for improvement. 
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Figure 34: Comparison of territory counts for the years 2014 and 2016 from manual and automatic territory 
delimitation before (left) and after (right) quantile optimization. Figures show the situation for Common Chaffinch 
(top), Eurasian Blackcap (bottom). 
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4 Discussion 

4.1 Accuracy of Autoterri 

4.1.1 Substantial variation between “easy” and “difficult” species 

The automatic delimitation of territories revealed striking performance differences between species (see 

for example table 11 or appendix 0). While for some species it was easily possible to reproduce similar 

territory counts as in manual territory delimitation for other species this was difficult. For the 10 best 

performing species (Garden Warbler, Spotted Flycatcher, Western Bonelli's Warbler, Goldcrest, Eurasian 

Blackcap, Common Redstart, Red-backed Shrike, Dunnock, Eurasian Wren, Lesser Whitethroat) precision 

(𝑀𝐴𝐸𝑠𝑝) of the Quantile Value und Mean Nearest Neighbour approach was always below 8.5%. For the 

10 worst-performing yet still common species (Eurasian Siskin, Common Starling, Common House 

Martin, Barn Swallow, Common Buzzard, Red Kite, Red Crossbill, Mallard, Carrion Crow, Common 

Swift) precision ranged between 19.6% and 30.4%. In some exceptionally difficult species like the Alpine 

Chough Pyrrhocorax graculus precision was as bad as 44.6% (appendix 0). 

These differences in precision between species are however little surprising as they reflect a common 

pattern: Well-performing species are all highly territorial and more or less monogamous during one 

breeding season. This is not the case for species performing badly. They usually don’t defend a territory or 

at most only a small area around their nest site. Species like the Common House Martin, Barn Swallow, 

Common Swift and to some extent also Common Starling and Eurasian Siskin may all form colonies or 

lose aggregations where many pairs can breed in very close vicinity. And very obviously all of these species 

fly around a lot (for example for visiting temporarily available food sources like a freshly mown meadow). 

These characteristics make consistent territory delimitation at least difficult if not impossible because they 

violate a basic assumption of the territory mapping method: territoriality of birds. The warning in Bibby et 

al. (2000) and Voříšek et al (2008) that territory mapping is inefficient for non-territorial species, semi-

colonial species, those that range wide, or those that are not monogamous is aiming exactly at this 

violation of the basic assumption and can be confirmed with the findings presented above. 

This problem is however not limited to automatic analysis but is equally prevalent in manual territory 

delimitation (see also discussion in O’Connor and Marchant, 1981). A finding the comparison of 

automatic vs. manual territory delimitation in this thesis confirmed: Common Starling, European 

Greenfinch and Common Wood pigeon, three species specifically chosen for the analysis because they 

stress the assumption of territory mapping, showed worse precision values than clearly territorial species 

in automatic solution but also in manual territory delimitation by experts (see chapter 3.1.4 and discussion 

in the following chapter 4.1.2). 

4.1.2 Comparison with manual territory delimitation 

Comparing manual territory delimitation to the two most promising approaches of Autoterri (Quantile 

Value and Mean Nearest Neighbour) quickly revealed that accuracy values are often surprisingly similar - a 

first but strong indication that either of these two approaches have the potential to replace manual 

territory delimitation. Compared to manual territory delimitation by experts automatic solutions were 

often closer to the results of the original user: The Quantile Value approach performed better than the 

experts with respect to precision in six out of the seven species investigated (table 13). The bias was 
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however only closer to 0 in two of the seven species. The Mean Nearest Neighbour approach was more 

precise in five and less biased in three species. All in all values differed only by a few percent compared to 

manual delimitation by experts. It seems that inaccuracies measured are not a characteristic of the 

algorithms but are to a large extent inherent uncertainty in the data that cannot be interpreted more 

accurately even by a powerful machine like the human brain. 

There were two distinct exceptions in the comparison of the 35 test sites: The Mean Nearest Neighbour 

approach overestimated the number of territories for the Wood Pigeon considerably compared to the 

analysis by experts (𝑀𝐸𝑠𝑝 of 24.1% compared to -1.8%). And the Quantile Value approach showed a 

substantially higher overestimation for the Common Starling (𝑀𝐸𝑠𝑝 of 19.4% compared to 8%). While the 

species-specific quantile in the Quantile Value Approach has been subject to optimisation (see chapter 0 

and 3.5.3) the Mean Nearest Neighbour approach was never subject to an optimization process. All 

parameters and values were chosen based on the author’s opinion. While it will be more difficult to 

optimize the Mean Nearest Neighbour approach as it has not one very influential value like the quantile, 

there is room for optimization. Modifications in the species-specific minimum and maximum distance 

values are promising starting points (also for further improvement of the Quantile Value approach). In 

fact, for the Common Wood Pigeon it has for example been shown in chapter 3.5.2 that a modification of 

the minimum distance value from 50 m to 150 m reduced the global bias of the Mean Nearest Neighbour 

approach from 10.7% to -1.9%. This example is illustrating the possibility and need for optimisation of 

parameters. 

The behaviour of the automatic territory delimitation was analysed for seven species – once for the 35 test 

sample sites to allow for a non-confounded comparison with the experts solution and once for all 1268 

surveys in the data set. It is striking how strong accuracy values sometimes changed when comparing the 

analysis of 35 sites with the complete data set (compare table 13 and table 14): While overall error for the 

Mean Nearest Neighbour approach for the Common Wood Pigeon in the 35 sites was for example 24.1% 

it was only 10.7% across all sample sites (i.e. the 1268 surveys). The differences could probably be 

explained by the small sample size. Usually not all 35 sample sites analysed were occupied by a species. 

The Common Wood Pigeon for example only occupied 21 of the 35 test sample sites. The accuracy 

calculation for automatic solution for the 35 test sample sites was hence based on only 21 data points. The 

delimitation by the experts was repeated 7 times per sample site so the data size was bigger, i.e. 147 data 

points for the Common Wood Pigeon. While simple chance effects may play some role the differences 

nevertheless show that there may be substantial variation between sites. This is also visible in the 

histograms of   
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figure 23 – distributions are rather wide for those species that show big changes between the analysis 

across 35 test sample sites vs. the overall data set. 

Because the true number of bird territories is unknown automatic delimitation aims at copying manual 

territory delimitation as closely as possible. But because manual delimitation allows for different 

interpretations it is impossible to reach the exact same result. So inevitably there will be differences but 

how much difference is acceptable? The comparison of the manual vs. automatic territory delimitation is 

really the only option for evaluating how well an automatic approach is behaving. This became evident for 

the Common Starling where 𝑀𝐴𝐸𝑠𝑝 of the Mean Nearest Neighbour approach was 20.1%: a value that 

seems at first sight unacceptably high. However even the experts showed substantial deviation from the 

original users solution for the Common Starling. Their 𝑀𝐴𝐸𝑠𝑝 across 35 test sample sites was 19.1% and 

hence comparably high. So while we should potentially be prepared to accept bad precision values as long 

as they are comparable with manual solutions, there are probably some limits to what seems acceptable for 

bias values (𝑀𝐸𝑠𝑝). Something discussed in the following chapter. 

4.1.3 What are acceptable accuracy values? 

The analysis of automatic solutions provides us with accuracy and bias values. But only for seven species I 

was able to directly compare with inaccuracies measured in manual territory delimitation. For the other 

species the question remains if the found precisions and biases are acceptable. How much variation is 

normal in manual analysis and hence also acceptable for an automatic territory analysis? 

How much territory numbers vary when different people analyse the same observations was quantified in 

several studies. The variation was usually expressed with the coefficient of variation (CV). A measure 

strongly correlated to the MAE used in this thesis (see 2.3.3.3). Scheffer (1987) found across 16 species 

maps analysed by 14 ornithologist a CV of 21.6%. Svensson (1974) calculated a CV of 21.3% when 58 

persons analysed 37 species maps of 6 species. Another trial in the same study revealed a CV of 20% 

when 17 persons analysed six species maps. Best (1975) obtained a CV of 23% for one species analysed by 

5 different people. Verner and Milne (1990) found in two different sites CV of 14.6% and 27.2%. On the 

other hand O’Connor and Marchant (1981) found in an analysis of the British Common Birds Census 

only for two out of 26 species significant analysts effects. The median CV over all species was only 5% in 

their study with very well trained and experienced analysts. They also showed that CVs vary from species 

to species and also depending on the person that conducted the field work. CV for the Common Linnet 

Carduelis cannabina for example varied from 13.3%-34.4% depending on the field worker. CV for the 

Chaffinch only varied between 2.4% and 3.7%. In a field project on disturbance of Yves Bötsch (personal 

communication, July 2018) repeated analysis by three different people revealed CV of 20.3% for Great 

Tits and 13.3% for Blue Tits. 

All these publications reveal some general patterns: First of all, across all these studies average CV values 

are astonishingly similar and vary around 20% (with the exception of the findings of O’Connor and 

Marchant (1981)). The average values found across the seven species analysed in the here presented study 

was 12.4% (if weighted by the number of territories CV=10.7%). The fact that CVs in O’Connor and 

Marchant (1981) and this study are lower than in other studies is probably a consequence of rigorous 

checking and validation implemented in the common breeding bird monitoring schemes in Britain and 

Switzerland. It is also not surprising that values in O’Connor and Marchant (1981) are yet slightly lower 

than in Switzerland as the British mapping scheme is based on 8-10 visits while in Switzerland it’s only 2-3 

visits. With more visits it is expected to have more precise information about the number of territories. 

Secondly CVs are highly species-specific. For one thing this makes comparison between different studies 
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difficult. It was also shown that species that behave highly territorial, don’t fly around a lot and don’t 

breed in colonies are easiest to analyse consistently (see 4.1.1 and also discussion in O’Connor and 

Marchant, 1981). 

Of 99 species that rely at least partially on territory mapping data for the calculation of their Swiss national 

population trend 30 or 34 (Quantile Value or Mean Nearest Neighbour approach respectively) show 

𝑀𝐴𝐸𝑠𝑝-values below 0.1, 58 or 55 show values below 0.15, 79 or 78 below 0.2 and 95 or 94 below 0.3. In 

comparison to error values found in literature and in the manual territory delimitation these values seem 

by no means extreme and indicate that a large part of the species could actually be analysed automatically 

with respect to overall precision. Four species however never reached 𝑀𝐴𝐸𝑠𝑝values below 0.3 neither for 

the Quantile Value nor the Mean Nearest Neighbour approach: Corn Bunting Emberiza calandra, Meadow 

Pipit Anthus pratensis, Common Grasshopper Warbler Locustella naevia and Willow Warbler Phylloscopus 

trochilus. Interestingly the last three species were also mentioned in van Dijk et al. (2013) as problematic 

species because manual territory delimitation was not applied consistently (Gerard Troost, personal 

communication, August 2018). These four species are well-known cases where it is notoriously difficult to 

distinguish migrants/vagrants from local breeding birds. The decision whether one saw a migrant or a 

local breeding bird leaves substantial scope for subjective decisions in manual territory delimitation, which 

is probably the reason for the unprecise automatic territory delimitation. 

To summarize the previous reflections I argue, based on direct comparison with manual territory 

delimitation and literature values, that acceptable species-specific precision (𝑀𝐴𝐸𝑠𝑝) values could be as 

high as 15% for stereotypically territorial species and up to 30% for species that stress the territoriality 

assumption of the method. With respect to overall bias (𝑀𝐸𝑠𝑝) it is probably somewhat different. The 

maximal bias (𝑀𝐸𝑠𝑝) in manual territory delimitation by experts was 8% for the Common Starling. For all 

other species values were below 4%. Even if it’s difficult to arrive at the same number of territories as the 

original user we’d expect that an algorithm is not badly over- or underestimating the total number of 

territories across all sample sites. This could induce biases in subsequent analyses (e.g. jumps in species 

population trends). For species like the Red Kite that show an overestimation of 19% there is a urgent 

need for further optimisation. During development of the algorithm presented the focus was primary on 

the abundant species. While it was for example possible to improve 𝑀𝐸𝑠𝑝values for the ten most 

common species on average by 40% by finding an optimum quantile in the Quantile Value approach (see 

chapter 3.5.3), this optimisation process was ineffective for species like the Red Kite that show little 

simultaneous observations and occur in low densities (i.e. have little between territory distance 

information in the data). In these cases all approaches of Autoterri regularly make use of the species-

specific minimum and maximum distance (just as a human analyst would). By modifying these distances 

there is room to reduce biases seen in many of these species and improve overall results of Autoterri 

substantially. 

4.2 Computation time 

Average computation time per sample site varied between slightly more than 10 sec (Linear Regression 

and the Quantile Value approach) and 32 sec (Mean Nearest Neighbour). As these are average values, it 

probably takes more than 1 min to analyse extremely bird-rich sample sites with the Mean Nearest 

Neighbour approach (exact computation times for each site were not monitored).  

If Autoterri were to be used productively it would either be implemented as a button “delimit territories 

now” in the user interface of the Web GIS used to analyse the data or run automatically after volunteers 
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have digitized their field data completely (trigger Autoterri upon status change). Waiting for 1 min would 

probably be acceptable for most volunteers considering the analysis time of approximately 1 hour that 

they save. More drastic is the potential gain for the Swiss Ornithological Institute that is currently 

investing roughly 50 man-days for validating manual territory delimitations. If manual delimitation was 

completely replaced by automatic delimitation checking could be reduced dramatically. Alternatively 

automatic solutions could be used to identify situations where manual territory delimitation should be 

checked and hence help improve checking efficiency. 

Nevertheless some thought should be put into speeding up the algorithm once it is decided to actually use 

it productively. So far no effort was invested in optimising computation time. Possible options to check 

would be the following: First, optimize R script where possible. Secondly, evaluate if procedural language 

PL/R (Conway, 2009) that allows to write PostgreSQL function and triggers in the R programming 

language is more performant. Thirdly, see how performance is improved if Autoterri is run on servers 

instead of a personal computer. Fourthly, consider rewriting the entire code in a more performant 

programming language. Options one to three are probably inevitable anyway when implementing the 

algorithm. 

4.3 Robustness of Autoterri 

4.3.1 Sensitivity to habitat and route length 

Precision and bias of automatic solutions are obviously correlated to some habitat variables and often also 

route length. This is potentially relevant for a long term monitoring program if these variables change. 

Long term bird monitoring wants to monitor changes in bird population sizes but not changes in habitat. 

If bird populations are underestimated in cities compared to rural landscapes urban scrawl could lead to a 

“measured” decline in bird population that doesn’t correspond to the real population changes. 

Of the analysed variables not all seem problematic. While elevation does not change enough in human 

times scales and the length of the route can be controlled by project managers other variables (forest, 

buildings, farm and roads) will however change continuously. But how realistic are changes that actually 

exhibit an influence on the monitoring data? The strongest effect was found for the influence of roads on 

the bias of the Mean Nearest Neighbour approach (figure 25). If a sample site changed from a square with 

0 m of roads to almost 27 km of roads (i.e. most extreme sample site in Zurich down town) the number 

of territories would be estimated 10% lower. While 10% is a not an irrelevant value such extreme changes 

in habitat are not realistic. Even an increase of road length from 0% to 10% highest value would be 

extreme and would only result in a 1% lower territory estimate. All in all the potential to influence results 

is for the current algorithms smaller than the uncertainty inherent to manual territory delimitation where 

bias values of 0.6%-8% (table 13) were observed. We should nevertheless keep an eye on this issue and 

update this analysis after modifying/optimizing parameter because it has a broad effect (i.e. on all sample 

sites).  

In the above paragraph I only discussed the influence of covariates on bias but not on precision. While I 

already illustrated why an effect on bias can be problematic it seems less problematic if precision is 

reduced in different habitats as these changes will be much smaller than imprecision observed due to 

different analysis. 

The Quantile Value approach seems less susceptible than the Mean Nearest Neighbour approach to being 

biased “by” covariates. While the Quantile Value approach is only influenced by the (controllable) route 
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length the Mean Nearest Neighbour results may be biased by forest, buildings, roads, elevation and route 

length. This may be explained by the optimization process the Quantile Value approach has experienced 

(leaving us with optimal quantiles) but has not yet been done for the Mean Nearest Neighbour approach. 

In chapter 3.5.2 it was exemplarily shown that optimizing parameters like the minimum distance can 

influence results of sample sites with high Common Wood Pigeon densities – high densities are very likely 

observed in similar habitat types. So if parameters are optimized also correlations to covariates could 

vanish or at least be weakened.  

Finally the observed correlations between covariates and bias (ME) could either be introduced directly by 

the habitat (or route length) by influencing the way field workers record and analyse birds. It is for 

example easier to detect, separate and precisely locate birds in open spaces – something that could 

influence the number of territories we delimit. On the other hand the observed correlations could also 

appear by mere differences in species composition. If for example alpine species are more overestimated 

this will show up as a positive slope in the elevation plot of figure 25. A visual scan of species-specific 

responses to these covariates did not show an evident common pattern within a covariate hence indicating 

species-composition effect. But a more thorough analysis is needed to understand the actual mechanism 

better. 

4.3.2 Sensitivity to parameters of Autoterri 

Different approaches of Autoterri apply fixed or species-specific parameters. The analyses in chapter 3.4 

illustrated that some of these parameters are influential on the overall results (like minimum distance, 

maximum distance, quantile) while others are obviously of less importance despite their regular use (factor 

for sexual incompatible observations). Because some are influential they absolutely need to be optimized 

to the data available. That this can substantially improve overall performance was illustrated for the 

quantile value optimization (chapter 3.5.3) that halved overestimation and improved accuracy from 12.9% 

to 12.1%. Nevertheless here presented accuracy and bias values are expected to not worsen but improve 

more or less moderately depending on the species. 

Minimum and maximum distances are two parameters that contain a lot of room for optimization as has 

been illustrated for the Common Wood Pigeon. It seems tempting to adjust these distances so Autoterri 

fits best to the data. However if the minimum and maximum distance are too close together it is almost 

equivalent as using fixed distances for delimiting the territories. This is something that should be avoided 

with respect to natural changes in territory densities across time. The Common Wood Pigeon for example 

has become more common in the recent decades (Knaus et al., 2018), which probably lead to denser 

breeding i.e. smaller distances between territories. The Mean Nearest Neighbour approach for example 

can only take such changes into consideration if a sufficiently wide range of nearest neighbour distances is 

accepted for the calculation of the normalisation distance. Simultaneous observations – that will be easier 

to record if a species starts breeding more densely – can to some extent compensate for too restrictive 

nearest neighbour distances as they always generate different territories, no matter how big the 

normalisation distance is. I conclusion one has to be aware that for the maximum and minimum distance 

parameters there is a risk of losing flexibility of the algorithms to adjust for future situations by fitting 

parameters too optimally to current data. 

While other parameters seem less influential they could still be optimized. There is however several ways 

to do so – I’ll give a few thoughts: Optimization of the factor for flight observation could for example be 

optimized for species that show a large proportion of flight observations. An optimized factor for this 

parameter is maybe more important for Red Kite than for Common Chaffinch territory delimitation. 

Because potential double observations are so rare they offer however no big potential to improve the 
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algorithm. Sexually incompatible observations from the same visit are in some countries almost treated 

like simultaneous observations (van Dijk et al., 2013) – which would ask for a much higher factor for 

sexually incompatible observation than the currently chosen 1.5. I argue that sexually incompatible 

observations from the same visit should not be treated equally as simultaneous observation as it is easily 

possible in the field to record the same individual twice – especially for species ranging widely. And finally 

while it is theoretically possible to make many of these parameters species-specific I recommend being 

parsimonious on doing so: The more complex and specific an algorithm becomes the more difficult it gets 

do understand the algorithm itself and even more so consequences to it if environment or field methods 

change (i.e. recording by smartphone app instead of paper maps). 

4.3.3 Sensitivity to field method 

The influence of parameters used in Autoterri was extensively discussed and partially evaluated. The way 

how field data are recorded was not yet looked at. There are many influencing factors that could change 

the way field workers record data over time. I will just name two: Regular feedback from the Swiss 

Ornithological Institute pushes observers to put more attention on recording as many simultaneous 

observations as possible. Also the introduction of a mobile app to record observations digitally instead on 

paper maps is under discussion and could potentially influence input data to Autoterri. On the other hand 

there is also different territory mapping projects that apply more visits and/or have sample sites that are 

of different shape and size than the 1x1 squares analysed so far. While generally I believe that Autoterri 

should be more or less resistant to such differences in field method this should be verified with simulated 

data. 

4.4 Comparison with existing algorithms 

Subsequently I’ll compare Autoterri with five other algorithms found in literature to analyse territory 

mapping data (see introduction in chapter 1.5.1 for details on these algorithms).  

The algorithms of North (1977) and Gerß (1984) use the single linkage clustering method which is 

creating chain-like clusters – something that is undesired for bird territories. Scheffer (1987), Marchand 

(2015) and the here presented Autoterri improved this shortcoming by using an “average closeness” 

(average linkage or Wards clustering method) and not the closeness of the two most extreme points. 

North (1977) simply used one maximum fusion distance above which clusters could not be combined. 

Already Scheffer (1987) remarked that a fixed maximal fusion distances as used by North (1977) is not a 

feasible way to analyse territory mapping data as “the optimal value of maximum distance is strongly 

dependent on the species analysed as well as on the habitat that has been censused”. Scheffer (1987) 

subsequently tried to detect the optimal distance by finding the point where clustering jumped from 

within-territory distances to between territory distances with his own method and Cook’s distances 

proposed by Gerß (1984). But Scheffer (1987) abandoned the approach because finding this point 

“inevitably fails occasionally because of misleading structure of the data”. Instead he used fixed maximum 

distances for two groups of species (species with large territories and species with small territories). And 

also Marchand’s (2015) algorithm – that was a precursor of the Linear Regression approach of Autoterri – 

failed to detect this point sufficiently well as the comparisons in chapter 3.1 showed. Finally the algorithm 

of van Dijk et al. (2013) sounds promising as it is operational for several years now. Due to differences in 

the field work I argue that their algorithm is nevertheless not applicable to Swiss conditions: While the 

Netherlands apply territory mapping with 8-12 visits Switzerland is using a simplified territory mapping 

approach with only 2-3 visits. Due to the incredible amount of data there will be almost always a 
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simultaneous observation (or incompatible observations from the same visit) separating two territories at 

least in one out of the 8-12 visits in the Netherlands. This is not the case for the 2-3 visits in Switzerland. 

Many territories are not separated by simultaneous observations (nor observations of the same visit). An 

application of the approach of van Dijk et al. (2013) would most likely lead to severe underestimation in 

simplified territory mapping. 

While there is five algorithms only three - North (1977), Scheffers (1987) and van Dijk et al. (2013) - 

provided quantitative comparison of automatic with manual solutions. North (1977) presented a table 

with results for different maximal distance values for the Common Blackbird and Chaffinch. From the 

table I chose per species the distance delivering best results and calculated the 𝑀𝐴𝐸𝑎𝑙𝑔𝑜 which was 

roughly 8.5%. This value is comparable with what is found in Autoterri. However the result of Autoterri is 

probably better because for one thing the 𝑀𝐴𝐸𝑎𝑙𝑔𝑜 for the algorithm of North (1977) is most likely 

suffering from overfitting as it was chosen to be optimal for one specific sample site. And secondly North 

(1977) based his analysis also on traditional territory mapping with up to 10 visits which could be expected 

to result in increased precision when compared to the analysis of simplified territory mapping data. 

Scheffer (1987) analysed 16 species maps with his algorithm and at the same time manually by 14 

experienced ornithologist. While the average deviation by the ornithologists (expressed as CV) was 21.6% 

the algorithms average absolute deviation of the computed numbers from the estimations made by 

original user was only 5.6%! This value is only half as big at what is found in Autoterri. The difference to 

Autoterri may be explainable by two points: Firstly, Scheffer (1987) probably based his analysis on 

traditional territory mapping data, hence having data from many visits. This could reduce uncertainty in 

the analysis because more information about neighbourhood (especially simultaneous observations) will 

be available with more visits. Secondly it is unfortunately unclear what species he analysed. The choice of 

species will be highly relevant to the output of an overall result (see discussion in chapter 4.2). 

Nevertheless the strong reduction in uncertainty when analysing territories automatic instead of manually 

is surprising/impressive. Van Dijk et al. (2013) evaluated the influence of their “Autocluster” on species 

population trends and found that 12 of 92 species changed significantly compared to trend based on 

manual delimitation - more than expected by chance. According to their analysis Autocluster in 

comparison to manual territory delimitation only led to larger counts in 3 species ( +9% to +19%) and 

smaller counts in 9 species (-10% to -31%). A direct comparison with Autoterri is currently not possible 

because comparisons are reported in different units.  

The comparison showed that Autocluster (van Dijk et al., 2013) is most likely not applicable to the Swiss 

data and “historic” algorithms suffer from conceptual shortcomings (single linkage, fixed maximum 

distance values) that were remedied in Autoterri. Despite the difficulties in comparing quantitative 

accuracy values the order of magnitude (between 0-30% deviation per species) is comparable to what is 

found in Autoterri. In conclusion I would argue that Autoterri is currently the best available option to 

analyse simplified territory mapping data. 

4.5 Research questions revisited 

1. Is it possible to produce one algorithm for the analysis of all species of breeding birds? 

In principle yes it is possible. Only for 4 out of 99 species that base their trend on territory 

mapping data it was not possible to produce precision values below 30%. For species that stress 

the territoriality assumption of the territory mapping method automatic analysis is however 

difficult (as is manual analysis). 
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2. Can an automatic analysis produce results that are comparable with results produced by manual territory 

delimitation? 

Yes errors observed in manual territory delimitation by experts were of the same magnitude as 

automatic solutions. 

 

3. Are there sensitivities to environmental conditions (e.g. area of settlements) or parameter values that could pose a 

risk for the long term use of the developed automatic solution? 

Yes there are correlations with habitat and/or route length parameters but they are weak in their 

effect strength and currently pose no risk. But they need to be reanalysed after optimization of 

Autoterri. 

Yes some parameters (specifically the minimum and maximum distance values) are very 

influential and have to be carefully chosen in an optimisation process. For long-term analysis the 

parameter values are not a threat as long as the span between minimum and maximum distance is 

sufficiently wide to allow the algorithm to adapt for changes in density.  

 

4. What is the computation time to analyse one sample site? 

Average computation time per sample site varied between a bit more than 10 sec (Linear 

Regression and the Quantile Value approach) and 32 sec (Mean Nearest Neighbour approach).  

4.6 Conclusion & perspectives 

It has been shown that automatic analysis of territory mapping data by Autoterri reveals similar results like 

manual territory analysis. Two approaches – Quantile Value and Mean Nearest Neighbour approach – 

showed similar accuracy values. Personally I find the Mean Nearest Neighbour approach more promising 

for the following two reasons:  

1) Intuitively and conceptually it is more comprehensive that the average of all distances to the next 

neighbour (nearest neighbour distances) is a value that could be used as a distance to separate 

territories. By definition these distances seem destined to differentiate territories while choosing a 

species-specific quantile is a more artificial approach trying to optimize fit between manual and 

automatic territory delimitation. 

2) The most influential parameter in the Quantile Value approach - the quantile - was already 

optimized. The Mean Nearest Neighbour approach has not undergone an optimisation process 

yet and still it performs similarly. By optimizing the minimum and maximum distance the Mean 

Nearest Neighbour approach has a greater potential to improve than the Quantile Value 

approach.  

In order to improve and eventually use Autoterri productively in long term monitoring I propose the 

following next steps 

 Optimise all parameters and carefully discuss results, especially minimum and maximum results 

with respect to future flexibility of the Autoterri to adapt to changes.  

 Re-evaluate the correlation of accuracy and habitat covariates and route length. Evaluate realistic 

effect strengths and evaluate if they are problematic. 

 Evaluate influence of changes in the field method. What happens for example if the number of 

simultaneous observations is reduced? What happens if more observations per territory are 

recorded? What happens if sample site size was different than 1x1 km? What happens if we 

record birds in four instead of three visits? 



 

72 
 
 

 Tackle single difficult species with special rules. Find for example ways to detect observations that 

are related to temporal vertical movements due to late snow in alpine species (“Schneeflüchter”) 

that should not lead to territories. 

 Develop a polygon representation of the territories that is non-overlapping and where each point 

is only contained in one polygon. 
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7 Appendix 

7.1 Quantile optimization 

Table 21: Overview over the quantile optimization showing whether a better quantile could be calculated and how 
quantiles changed from non-optimized (before) to optimized (after). Optimization was not possible for 67 mainly 
rare species. 

Name manual count 
2013-2016 optimized 

quantile 
before 

quantile 
after remark 

Mute Swan 35 yes 0.05 0.31  
Mallard 714 yes 0.05 0.49  
Hazel Grouse 88 yes 0.05 0.46  
Rock Ptarmigan 234 yes 0.05 0.26  
Black Grouse 651 yes 0.1 0.43  
Common Pheasant 15 yes 0.05 0.42  
Great Crested Grebe 59 yes 0.05 0.5  
Red Kite 510 yes 0.25 0.48  
Common Buzzard 987 yes 0.25 0.37  
Common Kestrel 656 yes 0.25 0.38  

Common Moorhen 24 yes 0.05 0.07  
Eurasian Coot 266 yes 0.05 0.21  
Feral Pigeon 773 yes 0.03 0.015  
Common Wood Pigeon 4781 yes 0.08 0.16  
Eurasian Collared Dove 450 yes 0.05 0.48  
Common Swift 1138 yes 0.2 0.41  
Eurasian Wryneck 96 yes 0.05 0.48  
European Green Woodpecker 918 yes 0.05 0.49  
Great Spotted Woodpecker 3011 yes 0.05 0.25  
Lesser Spotted Woodpecker 53 yes 0.05 0.21  

Woodlark 21 yes 0.05 0.18  
Eurasian Skylark 955 yes 0.1 0.25  
Eurasian Crag Martin 287 yes 0.05 0.34  
Barn Swallow 2472 yes 0.1 0.5  
Common House Martin 2157 yes 0.05 0.5  
Tree Pipit 2881 yes 0.1 0.095  
Water Pipit 5983 yes 0.03 0.075  
Grey Wagtail 531 yes 0.05 0.36  
White Wagtail 3057 yes 0.03 0.01  
Eurasian Wren 14378 yes 0.03 0.035  

Dunnock 6926 yes 0.03 0.05  
Alpine Accentor 848 yes 0.1 0.41  
European Robin 16134 yes 0.04 0.04  
Common Nightingale 90 yes 0.05 0.05 manually to 0.05 
Black Redstart 9209 yes 0.05 0.05  
Common Redstart 762 yes 0.05 0.25  
Whinchat 443 yes 0.05 0.15  
Northern Wheatear 1569 yes 0.07 0.18  
Common Rock Thrush 80 yes 0.05 0.3  
Ring Ouzel 1939 yes 0.07 0.17  

Common Blackbird 19205 yes 0.03 0.04  
Fieldfare 1355 yes 0.05 0.47  
Song Thrush 9766 yes 0.05 0.055  
Mistle Thrush 5120 yes 0.05 0.03  
Eurasian Reed Warbler 290 yes 0.05 0.075  
Lesser Whitethroat 825 yes 0.05 0.27  
Garden Warbler 1305 yes 0.05 0.08  
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Eurasian Blackcap 20734 yes 0.02 0.03  
Western Bonelli's Warbler 1891 yes 0.05 0.07  
Wood Warbler 243 yes 0.05 0.47  

Common Chiffchaff 8274 yes 0.05 0.04  
Willow Warbler 113 yes 0.05 0.46  
Goldcrest 6647 yes 0.04 0.035  
Common Firecrest 8306 yes 0.03 0.025  
Spotted Flycatcher 1322 yes 0.05 0.14  
European Pied Flycatcher 666 yes 0.05 0.16  
Long-tailed Tit 623 yes 0.07 0.15  
Eurasian Blue Tit 7105 yes 0.03 0.015  
Great Tit 13596 yes 0.03 0.035  
Coal Tit 15799 yes 0.02 0.035  

European Crested Tit 4042 yes 0.04 0.025  
Marsh Tit 2627 yes 0.04 0.01  
Alpine or Willow Tit 197 yes 0.05 0.05 like Alpine Tit 
Alpine Tit 2917 yes 0.05 0.05  
Willow Tit 132 yes 0.05 0.05 like Alpine Tit 
Eurasian Treecreeper 3362 yes 0.05 0.055  
Short-toed Treecreeper 1503 yes 0.05 0.055  
Eurasian Golden Oriole 153 yes 0.05 0.2 manually to 0.2 
Red-backed Shrike 402 yes 0.05 0.34  
Eurasian Jay 2430 yes 0.05 0.49  

Eurasian Magpie 1184 yes 0.05 0.48  
Spotted Nutcracker 860 yes 0.2 0.49  
Alpine Chough 578 yes 0.05 0.47  
Carrion Crow 3693 yes 0.1 0.09  
Hooded Crow 126 yes 0.05 0.09 like Carrion Crow 
Carrion x Hooded Crow 1 yes 0.05 0.09 like Carrion Crow 
Common Starling 3897 yes 0.05 0.04  
House Sparrow 15292 yes 0.02 0.025  
Italian Sparrow 1239 yes 0.03 0.03  
House x Italian Sparrow 52 yes 0.1 0.16  

Eurasian Tree Sparrow 2388 yes 0.05 0.18  
White-winged Snowfinch 325 yes 0.1 0.5  
Common Chaffinch 34349 yes 0.02 0.035  
European Serin 1299 yes 0.1 0.11  
Citril Finch 423 yes 0.3 0.17  
European Greenfinch 2910 yes 0.1 0.085  
European Goldfinch 1820 yes 0.2 0.49  
Common Linnet 1048 yes 0.25 0.46  
Lesser Redpoll 628 yes 0.1 0.46  
Red Crossbill 787 yes 0.3 0.46  
Eurasian Bullfinch 1598 yes 0.1 0.26  

Hawfinch 396 yes 0.1 0.38  
Yellowhammer 2212 yes 0.1 0.16  
Cirl Bunting 50 yes 0.05 0.2 manually to 0.2 
Rock Bunting 658 yes 0.05 0.15  
Greylag Goose 4 no 0.05 0.05  
Tufted Duck 1 no 0.05 0.05  
Common Merganser 10 no 0.05 0.05  
Common Quail 23 no 0.05 0.05  
Rock Partridge 72 no 0.05 0.05  
Western Capercaillie 8 no 0.05 0.05  
Little Grebe 35 no 0.05 0.05  

Great Cormorant 0 no 0.05 0.05  
Grey Heron 37 no 0.05 0.05  
White Stork 9 no 0.05 0.05  
European Honey Buzzard 32 no 0.25 0.25  
Black Kite 441 no 0.8 0.8  
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Northern Goshawk 55 no 0.25 0.25  
Eurasian Sparrowhawk 121 no 0.25 0.25  
Golden Eagle 5 no 0.25 0.25  
Eurasian Hobby 33 no 0.25 0.25  
Peregrine Falcon 7 no 0.25 0.25  

Water Rail 3 no 0.05 0.05  
Corn Crake 1 no 0.05 0.05  
Northern Lapwing 9 no 0.05 0.05  
Little Ringed Plover 3 no 0.05 0.05  
Common Sandpiper 2 no 0.05 0.05  
Eurasian Woodcock 18 no 0.05 0.05  
Yellow-legged Gull 13 no 0.05 0.05  
Stock Dove 132 no 0.05 0.05  
European Turtle Dove 29 no 0.05 0.05  
Common Cuckoo 924 no 0.5 0.5  

Eurasian Scops Owl 1 no 0.05 0.05  
Eurasian Pygmy Owl 12 no 0.05 0.05  
Tawny Owl 135 no 0.05 0.05  
Long-eared Owl 10 no 0.05 0.05  
Boreal Owl 7 no 0.05 0.05  
European Nightjar 0 no 0.05 0.05  
Alpine Swift 53 no 0.05 0.05  
Common Kingfisher 26 no 0.05 0.05  
Eurasian Hoopoe 4 no 0.05 0.05  
Grey-headed Woodpecker 24 no 0.05 0.05  
Black Woodpecker 627 no 0.7 0.7  

Middle Spotted Woodpecker 75 no 0.05 0.05  
White-backed Woodpecker 1 no 0.05 0.05  
Eurasian Three-toed Woodpecker 60 no 0.05 0.05  
Tawny Pipit 2 no 0.05 0.05  
Meadow Pipit 27 no 0.05 0.05  
Western Yellow Wagtail 6 no 0.05 0.05  
White-throated Dipper 190 no 0.05 0.05  
European Stonechat 43 no 0.05 0.05  
Cetti's Warbler 1 no 0.05 0.05  
Common Grasshopper Warbler 5 no 0.05 0.05  
Savi's Warbler 5 no 0.05 0.05  

Icterine Warbler 11 no 0.05 0.05  
Melodious Warbler 12 no 0.05 0.05  
Marsh Warbler 169 no 0.05 0.05  
Great Reed Warbler 4 no 0.05 0.05  
Common Whitethroat 46 no 0.05 0.05  
Collared Flycatcher 10 no 0.05 0.05  
Bearded Reedling 1 no 0.05 0.05  
Eurasian Nuthatch 3987 no 0.03 0.03  
Wallcreeper 38 no 0.05 0.05  
Red-billed Chough 30 no 0.05 0.05  
Western Jackdaw 32 no 0.05 0.05  

Rook 71 no 0.05 0.05  
Northern Raven 429 no 0.25 0.25  
Eurasian Siskin 304 no 0.2 0.2  
Common Rosefinch 5 no 0.05 0.05  
Ortolan Bunting 0 no 0.05 0.05  
Common Reed Bunting 33 no 0.05 0.05  
Corn Bunting 8 no 0.05 0.05  
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7.2 Normalisation distance: data-defined vs. expert-defined 

distances 

Table 22: Share of sample sites and territories where territories are delimited by data derived normalisation distances. 
Reading example: Both the Mean Nearest Neighbour and Quantile Value approach used data derived (instead of 
predefined normalisation distances) for 99% of the territories. For 7% of the sample sites the Quantile Value 
approach used however predefined normalisation distances. 

 Mean Nearest Neighbour Quantile Value 

species sample 
sites 

manual 
territories 

sample 
sites 

territories sample 
sites 

territories 

Common Chaffinch 1137 34349 94% 99% 93% 99% 
Eurasian Blackcap 1010 20734 90% 99% 88% 98% 
Common Blackbird 1034 19205 80% 96% 73% 93% 
European Robin 1043 16134 87% 97% 82% 96% 
Coal Tit 951 15799 82% 97% 76% 95% 
House Sparrow 502 15292 45% 74% 5% 9% 
Eurasian Wren 1085 14378 86% 97% 81% 95% 
Great Tit 904 13596 81% 96% 78% 95% 
Song Thrush 1001 9766 69% 90% 60% 84% 
Black Redstart 1157 9209 66% 86% 55% 79% 

Common Firecrest 806 8306 74% 94% 63% 90% 
Common Chiffchaff 995 8274 72% 91% 61% 86% 
Eurasian Blue Tit 767 7105 55% 81% 49% 78% 
Dunnock 809 6926 68% 91% 57% 86% 
Goldcrest 816 6647 60% 86% 48% 77% 
Water Pipit 475 5983 61% 94% 53% 89% 
Mistle Thrush 894 5120 36% 58% 28% 51% 
Common Wood Pigeon 773 4781 53% 82% 38% 66% 
European Crested Tit 698 4042 40% 72% 32% 67% 
Eurasian Nuthatch 785 3987 31% 52% 24% 46% 

Common Starling 515 3897 35% 58% 23% 44% 
Carrion Crow 841 3693 17% 31% 10% 21% 
Eurasian Treecreeper 713 3362 42% 69% 27% 56% 
White Wagtail 834 3057 15% 30% 7% 16% 
Great Spotted Woodpecker 882 3011 23% 45% 7% 15% 
Alpine Tit 395 2913 58% 84% 46% 75% 
European Greenfinch 555 2910 45% 75% 31% 60% 
Tree Pipit 489 2881 67% 92% 54% 85% 
Marsh Tit 621 2627 22% 45% 15% 34% 
Barn Swallow 528 2472 13% 26% 2% 4% 

Eurasian Jay 854 2430 9% 19% 0% 0% 
Eurasian Tree Sparrow 370 2388 28% 49% 12% 23% 
Yellowhammer 435 2212 55% 80% 24% 37% 
Common House Martin 280 2157 25% 52% 10% 30% 
Ring Ouzel 399 1939 36% 69% 17% 34% 
Western Bonelli's Warbler 305 1891 53% 88% 43% 83% 
European Goldfinch 567 1820 27% 52% 5% 10% 
Eurasian Bullfinch 567 1598 23% 45% 6% 14% 
Northern Wheatear 312 1569 53% 86% 38% 71% 
Short-toed Treecreeper 402 1503 35% 63% 22% 48% 

Fieldfare 398 1355 12% 25% 2% 5% 
Spotted Flycatcher 477 1322 22% 47% 8% 21% 
Garden Warbler 435 1305 34% 65% 21% 52% 
European Serin 367 1299 37% 70% 22% 51% 
Italian Sparrow 38 1239 61% 91% 32% 44% 
Eurasian Magpie 430 1184 12% 27% 1% 2% 
Common Swift 330 1138 3% 8% 0% 0% 
Common Linnet 396 1048 29% 55% 7% 13% 
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Common Buzzard 731 987 4% 9% 1% 2% 
Eurasian Skylark 218 955 55% 86% 37% 68% 

Common Cuckoo 598 924 24% 45% 7% 17% 
European Green Woodpecker 574 918 16% 31% 4% 10% 
Spotted Nutcracker 328 860 13% 39% 1% 3% 
Alpine Accentor 217 848 38% 64% 4% 6% 
Lesser Whitethroat 293 825 32% 55% 10% 17% 
Red Crossbill 354 787 8% 21% 1% 3% 
Feral Pigeon 78 773 9% 44% 3% 28% 
Common Redstart 265 762 35% 66% 10% 20% 
Mallard 289 714 27% 59% 10% 33% 
European Pied Flycatcher 277 666 25% 53% 7% 17% 

Rock Bunting 149 658 39% 66% 20% 39% 
Common Kestrel 606 656 7% 16% 0% 1% 
Black Grouse 235 651 28% 52% 5% 15% 
Lesser Redpoll 249 628 22% 45% 3% 6% 
Black Woodpecker 519 627 7% 14% 1% 4% 
Long-tailed Tit 328 622 5% 12% 1% 4% 
Alpine Chough 257 578 5% 11% 1% 2% 
Grey Wagtail 358 531 11% 24% 3% 6% 
Red Kite 455 510 4% 12% 1% 4% 
Eurasian Collared Dove 137 450 37% 72% 15% 30% 

Whinchat 108 443 52% 82% 33% 56% 
Black Kite 383 441 4% 13% 0% 0% 
Northern Raven 443 429 5% 11% 0% 1% 
Citril Finch 178 423 22% 44% 7% 19% 
Red-backed Shrike 203 402 23% 44% 4% 9% 
Hawfinch 208 396 4% 15% 0% 6% 
White-winged Snowfinch 118 325 14% 28% 3% 5% 
Eurasian Siskin 149 304 9% 22% 1% 7% 
Eurasian Reed Warbler 50 290 50% 90% 34% 74% 
Eurasian Crag Martin 160 287 5% 12% 1% 1% 

Eurasian Coot 70 266 29% 52% 20% 39% 
Wood Warbler 145 243 19% 45% 3% 7% 
Rock Ptarmigan 142 234 15% 26% 1% 2% 
Alpine or Willow Tit 48 197 27% 73% 19% 63% 
White-throated Dipper 166 190 2% 5% 0% 0% 
Marsh Warbler 58 169 40% 76% 28% 62% 
Eurasian Golden Oriole 80 153 19% 45% 9% 28% 
Tawny Owl 117 135 4% 8% 0% 0% 
Stock Dove 100 132 7% 11% 2% 5% 
Willow Tit 63 131 19% 39% 2% 6% 

Hooded Crow 50 126 28% 53% 6% 10% 
Eurasian Sparrowhawk 122 121 1% 2% 0% 0% 
Willow Warbler 86 113 28% 52% 5% 10% 
Eurasian Wryneck 68 96 31% 52% 6% 13% 
Common Nightingale 37 90 32% 58% 19% 42% 
Hazel Grouse 68 88 1% 8% 1% 7% 
Common Rock Thrush 65 80 12% 22% 0% 0% 
Middle Spotted Woodpecker 43 75 0% 0% 0% 0% 
Rock Partridge 57 72 9% 19% 2% 8% 
Rook 6 71 17% 52% 17% 52% 

Eurasian Three-toed Woodpecker 49 60 6% 17% 2% 14% 
Great Crested Grebe 22 59 45% 80% 14% 18% 
Northern Goshawk 55 55 2% 4% 0% 0% 
Alpine Swift 6 53 0% 0% 0% 0% 
Lesser Spotted Woodpecker 47 53 2% 4% 2% 4% 
House x Italian Sparrow 8 52 25% 63% 0% 0% 
Cirl Bunting 24 50 25% 41% 8% 20% 
Common Whitethroat 36 46 11% 27% 6% 16% 
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European Stonechat 25 43 20% 24% 4% 6% 
Wallcreeper 37 38 0% 0% 0% 0% 

Grey Heron 14 37 7% 6% 0% 0% 
Mute Swan 29 35 7% 6% 3% 2% 
Little Grebe 19 35 11% 15% 0% 0% 
Eurasian Hobby 34 33 6% 9% 0% 0% 
Common Reed Bunting 21 33 29% 50% 5% 13% 
European Honey Buzzard 33 32 3% 6% 0% 0% 
Western Jackdaw 10 32 0% 0% 0% 0% 
Red-billed Chough 21 30 0% 0% 0% 0% 
European Turtle Dove 16 29 38% 63% 25% 53% 
Meadow Pipit 29 27 17% 40% 3% 14% 

Common Kingfisher 23 26 0% 0% 0% 0% 
Grey-headed Woodpecker 19 24 11% 28% 0% 0% 
Common Moorhen 16 24 6% 18% 6% 18% 
Common Quail 20 23 5% 9% 0% 0% 
Woodlark 9 21 22% 52% 11% 30% 
Eurasian Woodcock 14 18 21% 39% 0% 0% 
Common Pheasant 4 15 50% 72% 0% 0% 
Yellow-legged Gull 13 13 0% 0% 0% 0% 
Eurasian Pygmy Owl 12 12 0% 0% 0% 0% 
Melodious Warbler 10 12 10% 23% 0% 0% 
Icterine Warbler 11 11 0% 0% 0% 0% 

Long-eared Owl 10 10 0% 0% 0% 0% 
Collared Flycatcher 4 10 75% 80% 25% 40% 
Common Merganser 8 10 63% 67% 13% 11% 
White Stork 5 9 40% 67% 40% 67% 
Northern Lapwing 1 9 0% 0% 0% 0% 
Corn Bunting 4 8 75% 92% 50% 75% 
Western Capercaillie 8 8 0% 0% 0% 0% 
Peregrine Falcon 22 7 0% 0% 0% 0% 
Boreal Owl 7 7 0% 0% 0% 0% 
Western Yellow Wagtail 4 6 25% 25% 25% 25% 

Common Grasshopper Warbler 9 5 11% 27% 11% 27% 
Golden Eagle 6 5 0% 0% 0% 0% 
Savi's Warbler 3 5 33% 40% 0% 0% 
Common Rosefinch 4 5 0% 0% 0% 0% 
Greylag Goose 4 4 0% 0% 0% 0% 
Great Reed Warbler 4 4 0% 0% 0% 0% 
Eurasian Hoopoe 3 4 0% 0% 0% 0% 
Water Rail 3 3 0% 0% 0% 0% 
Little Ringed Plover 1 3 0% 0% 0% 0% 
Tawny Pipit 2 2 0% 0% 0% 0% 

Tufted Duck 1 1 100% 100% 0% 0% 
Carrion x Hooded Crow 2 1 0% 0% 0% 0% 
Corn Crake 1 1 0% 0% 0% 0% 
Eurasian Scops Owl 1 1 0% 0% 0% 0% 
White-backed Woodpecker 1 1 0% 0% 0% 0% 
Bearded Reedling 1 1 0% 0% 0% 0% 
Cetti's Warbler 1 1 0% 0% 0% 0% 
European Nightjar 1 0 0% 0% 0% 0% 
Ortolan Bunting 1 0 0% 0% 0% 0% 
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7.3 Accuracy values for all species 

Table 23: Accuracy values per species for the three different approaches for identifying the normalisation distance. 
The list is sorted according to the manually delimited number of territories in MHB and BDM sample sites analysed 
from 2013–2016. 

  Linear 
Regres- 
sion 

Quantile 
Value 

Mean 
Nearest 
Neighbour 

Linear 
Regres- 
sion 

Quantile 
Value 

Mean 
Nearest 
Neighbour 

Species 
Count 
manual 

𝑀𝐴𝐸𝑠𝑝 𝑀𝐴𝐸𝑠𝑝 𝑀𝐴𝐸𝑠𝑝 𝑀𝐸𝑠𝑝 𝑀𝐸𝑠𝑝 𝑀𝐸𝑠𝑝 

Common Chaffinch 34349 0.164 0.083 0.076 -0.075 0.004 0.008 
Eurasian Blackcap 20734 0.153 0.078 0.071 -0.054 0.019 -0.017 
Common Blackbird 19205 0.163 0.113 0.097 -0.007 0.018 0.007 
European Robin 16134 0.145 0.093 0.085 0.008 0.018 -0.004 
Coal Tit 15799 0.155 0.095 0.085 -0.028 0.015 -0.013 
House Sparrow 15292 0.192 0.175 0.203 -0.105 -0.082 -0.131 
Eurasian Wren 14378 0.155 0.084 0.076 0.035 0.019 -0.003 
Great Tit 13596 0.149 0.112 0.101 -0.013 0.042 0.001 
Song Thrush 9766 0.132 0.096 0.096 0.057 0.017 0.052 
Black Redstart 9209 0.151 0.103 0.092 0.093 0.034 0.038 
Common Firecrest 8306 0.153 0.088 0.091 -0.052 0.016 -0.067 

Common Chiffchaff 8274 0.149 0.092 0.084 0.063 0.019 0.010 
Eurasian Blue Tit 7105 0.144 0.163 0.112 -0.003 0.061 -0.019 
Dunnock 6926 0.130 0.084 0.074 0.048 0.001 0.008 
Goldcrest 6647 0.118 0.075 0.070 -0.023 0.008 -0.016 
Water Pipit 5983 0.175 0.140 0.131 0.085 0.008 0.098 
Mistle Thrush 5120 0.207 0.179 0.177 0.175 0.122 0.132 
Common Wood Pigeon 4781 0.248 0.172 0.172 0.207 -0.027 0.107 
European Crested Tit 4042 0.132 0.129 0.100 0.011 0.007 -0.017 
Eurasian Nuthatch 3987 0.132 0.126 0.114 0.031 -0.023 -0.014 
Common Starling 3897 0.238 0.220 0.201 0.150 0.050 0.030 

Carrion Crow 3693 0.367 0.264 0.278 0.353 0.226 0.240 
Eurasian Treecreeper 3362 0.139 0.125 0.103 0.060 0.006 0.024 
White Wagtail 3057 0.177 0.164 0.149 0.114 0.007 0.000 
Great Spotted Woodpecker 3011 0.274 0.147 0.207 0.234 0.000 0.103 
Alpine Tit 2913 0.137 0.117 0.101 0.041 0.041 0.039 
European Greenfinch 2910 0.155 0.114 0.109 0.105 0.011 0.021 
Tree Pipit 2881 0.181 0.115 0.105 0.134 0.002 0.042 
Marsh Tit 2627 0.104 0.104 0.098 0.057 0.063 0.063 
Barn Swallow 2472 0.251 0.208 0.212 0.172 0.063 0.079 
Eurasian Jay 2430 0.253 0.150 0.186 0.203 0.040 0.094 
Eurasian Tree Sparrow 2388 0.153 0.182 0.166 0.062 -0.097 -0.058 

Yellowhammer 2212 0.177 0.104 0.136 0.153 0.000 0.102 
Common House Martin 2157 0.245 0.203 0.217 0.132 0.036 0.057 
Ring Ouzel 1939 0.237 0.159 0.171 0.219 0.041 0.137 
Western Bonelli's Warbler 1891 0.120 0.072 0.069 0.085 0.009 0.033 
European Goldfinch 1820 0.232 0.161 0.172 0.169 -0.006 0.086 
Eurasian Bullfinch 1598 0.162 0.128 0.129 0.100 -0.049 0.036 
Northern Wheatear 1569 0.226 0.202 0.157 0.196 -0.047 0.088 
Short-toed Treecreeper 1503 0.140 0.117 0.107 0.078 0.022 0.043 
Fieldfare 1355 0.295 0.185 0.198 0.270 0.063 0.117 
Spotted Flycatcher 1322 0.077 0.082 0.061 0.014 -0.048 0.006 
Garden Warbler 1305 0.089 0.068 0.042 0.027 -0.038 -0.002 

European Serin 1299 0.158 0.106 0.108 0.124 0.017 0.076 
Italian Sparrow 1239 0.160 0.143 0.140 0.088 0.055 -0.002 
Eurasian Magpie 1184 0.335 0.163 0.211 0.308 0.067 0.142 
Common Swift 1138 0.322 0.295 0.304 0.153 0.093 0.108 
Common Linnet 1048 0.232 0.203 0.185 0.167 -0.055 0.058 
Common Buzzard 987 0.293 0.217 0.229 0.243 0.157 0.170 
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Eurasian Skylark 955 0.247 0.124 0.128 0.231 -0.032 0.095 
Common Cuckoo 924 0.295 0.143 0.225 0.260 0.078 0.190 
European Green Woodpecker 918 0.223 0.129 0.170 0.186 0.072 0.129 
Spotted Nutcracker 860 0.359 0.166 0.275 0.343 0.091 0.230 
Alpine Accentor 848 0.250 0.133 0.183 0.233 0.059 0.154 
Lesser Whitethroat 825 0.112 0.076 0.083 0.073 -0.011 0.049 
Red Crossbill 787 0.331 0.252 0.283 0.260 0.117 0.165 
Feral Pigeon 773 0.391 0.414 0.351 0.354 0.273 0.117 
Common Redstart 762 0.113 0.077 0.072 0.092 -0.028 0.055 
Mallard 714 0.287 0.254 0.272 0.177 0.092 0.136 
European Pied Flycatcher 666 0.173 0.176 0.152 0.130 0.057 0.127 
Rock Bunting 658 0.177 0.100 0.107 0.138 -0.035 0.039 

Common Kestrel 656 0.155 0.104 0.148 0.132 0.076 0.121 
Black Grouse 651 0.217 0.136 0.158 0.167 0.007 0.085 
Lesser Redpoll 628 0.233 0.142 0.182 0.187 0.050 0.120 
Black Woodpecker 627 0.195 0.127 0.140 0.139 0.066 0.084 
Long-tailed Tit 622 0.121 0.080 0.091 0.060 0.009 0.024 
Alpine Chough 578 0.483 0.436 0.446 0.251 0.149 0.171 
Grey Wagtail 531 0.184 0.114 0.138 0.136 0.023 0.081 
Red Kite 510 0.293 0.224 0.247 0.264 0.193 0.217 
Eurasian Collared Dove 450 0.306 0.217 0.171 0.265 -0.096 0.061 
Whinchat 443 0.193 0.105 0.100 0.148 -0.011 0.062 

Black Kite 441 0.265 0.194 0.233 0.235 0.148 0.201 
Northern Raven 429 0.224 0.158 0.182 0.213 0.146 0.171 
Citril Finch 423 0.212 0.170 0.183 0.126 0.011 0.076 
Red-backed Shrike 402 0.149 0.082 0.073 0.119 -0.014 0.044 
Hawfinch 396 0.231 0.180 0.188 0.204 0.146 0.155 
White-winged Snowfinch 325 0.298 0.216 0.245 0.267 0.155 0.197 
Eurasian Siskin 304 0.259 0.196 0.198 0.137 0.052 0.055 
Eurasian Reed Warbler 290 0.153 0.123 0.151 -0.006 -0.043 -0.090 
Eurasian Crag Martin 287 0.252 0.178 0.201 0.225 0.124 0.149 
Eurasian Coot 266 0.309 0.216 0.188 0.277 -0.045 0.027 
Wood Warbler 243 0.176 0.154 0.173 0.142 0.066 0.145 

Rock Ptarmigan 234 0.204 0.136 0.170 0.176 0.098 0.141 
Alpine or Willow Tit 197 0.126 0.097 0.082 0.042 0.000 0.024 
White-throated Dipper 190 0.084 0.071 0.080 0.044 0.010 0.020 
Marsh Warbler 169 0.035 0.023 0.041 0.012 0.000 -0.029 
Eurasian Golden Oriole 153 0.193 0.146 0.152 0.171 0.064 0.129 
Tawny Owl 135 0.140 0.069 0.088 0.140 0.069 0.088 
Stock Dove 132 0.280 0.268 0.272 0.269 0.257 0.261 
Willow Tit 131 0.272 0.311 0.333 -0.213 -0.252 -0.274 
Hooded Crow 126 0.316 0.317 0.331 0.236 0.118 0.000 
Eurasian Sparrowhawk 121 0.008 0.008 0.016 0.008 0.008 0.016 

Willow Warbler 113 0.368 0.346 0.339 0.310 0.259 0.291 
Eurasian Wryneck 96 0.234 0.159 0.228 0.218 0.142 0.211 
Common Nightingale 90 0.074 0.064 0.043 0.032 0.021 0.022 
Hazel Grouse 88 0.074 0.054 0.065 0.053 0.033 0.043 
Common Rock Thrush 80 0.223 0.184 0.200 0.223 0.184 0.200 
Middle Spotted Woodpecker 75 0.194 0.039 0.051 0.194 0.013 0.051 
Rock Partridge 72 0.148 0.150 0.138 0.074 0.050 0.063 
Rook 71 0.289 0.111 0.111 0.133 -0.083 -0.083 
Eurasian Three-toed Woodpecker 60 0.200 0.178 0.155 0.200 0.178 0.155 
Great Crested Grebe 59 0.514 0.380 0.449 0.423 -0.042 0.225 
Northern Goshawk 55 0.000 0.000 0.000 0.000 0.000 0.000 

Alpine Swift 53 0.190 0.190 0.190 0.127 0.127 0.127 
Lesser Spotted Woodpecker 53 0.086 0.070 0.070 0.086 0.070 0.070 
House x Italian Sparrow 52 0.365 0.365 0.423 -0.365 -0.365 -0.423 
Cirl Bunting 50 0.169 0.143 0.140 0.136 0.071 0.105 
Common Whitethroat 46 0.098 0.061 0.061 0.098 0.061 0.061 
European Stonechat 43 0.233 0.256 0.233 -0.233 -0.256 -0.233 
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Wallcreeper 38 0.050 0.050 0.050 0.050 0.050 0.050 
Grey Heron 37 0.154 0.154 0.154 -0.051 -0.051 -0.051 
Little Grebe 35 0.158 0.167 0.111 0.000 -0.111 -0.056 
Mute Swan 35 0.849 0.849 0.851 0.849 0.831 0.833 
Eurasian Hobby 33 0.029 0.029 0.029 0.029 0.029 0.029 

Common Reed Bunting 33 0.114 0.088 0.029 0.000 -0.029 0.029 
European Honey Buzzard 32 0.059 0.059 0.059 0.059 0.059 0.059 
Western Jackdaw 32 0.610 0.538 0.538 -0.171 -0.179 -0.179 
Red-billed Chough 30 0.370 0.356 0.356 0.326 0.311 0.311 
European Turtle Dove 29 0.212 0.212 0.156 0.030 0.030 0.031 
Meadow Pipit 27 0.612 0.510 0.509 0.582 0.431 0.472 
Common Kingfisher 26 0.161 0.161 0.161 0.161 0.161 0.161 
Common Moorhen 24 0.148 0.083 0.083 0.074 -0.083 -0.083 
Grey-headed Woodpecker 24 0.333 0.294 0.250 0.333 0.294 0.250 
Common Quail 23 0.083 0.083 0.083 0.000 0.000 0.000 

Woodlark 21 0.091 0.048 0.087 0.000 -0.048 0.087 
Eurasian Woodcock 18 0.286 0.250 0.200 0.000 -0.050 0.000 
Common Pheasant 15 0.167 0.063 0.167 0.167 0.063 0.167 
Yellow-legged Gull 13 0.519 0.519 0.519 0.519 0.519 0.519 
Eurasian Pygmy Owl 12 0.077 0.077 0.077 0.077 0.077 0.077 
Melodious Warbler 12 0.077 0.077 0.077 0.077 0.077 0.077 
Icterine Warbler 11 0.214 0.214 0.214 0.214 0.214 0.214 
Common Merganser 10 0.100 0.100 0.100 -0.100 -0.100 -0.100 
Long-eared Owl 10 0.000 0.000 0.000 0.000 0.000 0.000 
Collared Flycatcher 10 0.182 0.182 0.182 0.000 0.000 0.000 

White Stork 9 0.000 0.000 0.000 0.000 0.000 0.000 
Northern Lapwing 9 0.889 0.889 0.889 -0.889 -0.889 -0.889 
Western Capercaillie 8 0.000 0.000 0.000 0.000 0.000 0.000 
Corn Bunting 8 0.467 0.333 0.385 0.467 0.333 0.385 
Peregrine Falcon 7 0.682 0.682 0.682 0.682 0.682 0.682 
Boreal Owl 7 0.000 0.000 0.000 0.000 0.000 0.000 
Western Yellow Wagtail 6 0.333 0.333 0.333 -0.333 -0.333 -0.333 
Golden Eagle 5 0.167 0.167 0.167 0.167 0.167 0.167 
Common Grasshopper Warbler 5 0.545 0.545 0.545 0.545 0.545 0.545 
Savi's Warbler 5 0.000 0.000 0.000 0.000 0.000 0.000 
Common Rosefinch 5 0.000 0.000 0.000 0.000 0.000 0.000 

Greylag Goose 4 0.636 0.667 0.667 0.636 0.667 0.667 
Eurasian Hoopoe 4 0.250 0.250 0.250 -0.250 -0.250 -0.250 
Great Reed Warbler 4 0.000 0.000 0.000 0.000 0.000 0.000 
Water Rail 3 0.000 0.000 0.000 0.000 0.000 0.000 
Little Ringed Plover 3 0.667 0.667 0.667 -0.667 -0.667 -0.667 
Common Sandpiper 2 1.000 1.000 1.000 -1.000 -1.000 -1.000 
Tawny Pipit 2 0.333 0.333 0.333 0.333 0.333 0.333 
Tufted Duck 1 0.667 0.667 0.667 0.667 0.667 0.667 
Corn Crake 1 0.000 0.000 0.000 0.000 0.000 0.000 
Eurasian Scops Owl 1 0.000 0.000 0.000 0.000 0.000 0.000 
White-backed Woodpecker 1 0.000 0.000 0.000 0.000 0.000 0.000 

Carrion x Hooded Crow 1 0.500 0.500 0.500 0.500 0.500 0.500 
Bearded Reedling 1 0.000 0.000 0.000 0.000 0.000 0.000 
Cetti's Warbler 1 0.000 0.000 0.000 0.000 0.000 0.000 
Great Cormorant 0 NA NA NA NA NA NA 
European Nightjar 0 1.000 1.000 1.000 1.000 1.000 1.000 
Ortolan Bunting 0 1.000 1.000 1.000 1.000 1.000 1.000 
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7.4 Variation in manual territory delimitation by experts 
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Figure 35: Territory delimitation for seven species by eight different experts. Boxplots show the range of eight 
different manual territory delimitations for different sample sites. Dots show the count values that are behind the 
boxplots. Red dots show values of the “original user” (i.e. the person also conducting the field work) after validation 
by the Swiss Ornithological Institute.  
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7.5 Species-specific coefficient of variation (CV) 

Table 24: Species-specific coefficient of variations (CV) for the analyst effect, i.e. the differences that appear when 
different people delimit territories with the same data. 

species this study O'Conner & 
Marchant (1981) 

Svensson (1974) Bötsch 
(unpublished data) 

Common Wood Pigeon 20.3% 14.7%   
Eurasian Collared Dove  19.9%   
Tree Pipit  12.0%   
Eurasian Wren  6.3%   
Dunnock  3.4%   

European Robin  3.2%   
Black Redstart 10.3%    
Common Blackbird 10.5% 3.0% 36.0%  
Song Thrush  3.9%   
Mistle Thrush  23.3%   

Common Whitethroat  8.7%   
Eurasian Blackcap 8.2% 7.5%   
Willow Warbler  4.5% 16.0%  
Goldcrest 7.2% 9.3%   
Long-tailed Tit  9.5%   

Eurasian Blue Tit  5.1%  13.3% 
Great Tit  10.2%  20.3% 
Coal Tit  3.1%   
Marsh Tit  12.6%   
Eurasian Magpie  18.8%   

Common Starling 17.5%    
Common Chaffinch  3.3%   
European Greenfinch 12.6% 18.0%   
European Goldfinch  12.0%   
Common Linnet  22.1%   
Eurasian Bullfinch  11.5%   
Yellowhammer  11.1%   

 


