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Abstract

Nowadays, there are a variety of ways to get free access to satellite imagery of various

Earth Observation missions via the Internet. The sheer mass of data often makes it difficult

for  users to search for the content that is relevant to them in a targeted manner.  The

classic  web  interfaces  of  satellite  image  providers  do  not  have image  understanding

capabilities,  which is  why the filter  options for  selecting satellite  scenes are limited to

metadata and image-wide overview statistics. To remedy this shortcoming, the University

of  Salzburg  used  Open  Data  Cube  (ODC)  technology  to  develop  several  prototypical

semantic  data  cubes that  enable  users  to  query  Sentinel-2  data  based on the  image

content. In their data cubes, satellite scenes are preclassified into categories representing

semi-concepts equal or inferior to real-world classes using the Satellite Image Automatic

Mapper™ (SIAM™) software. Those semi-concepts can be used as model building blocks

for deriving real-world classes. However, this promising approach is not yet interoperable,

which means that queries are limited to their existing ecosystem and cannot be applied to

data cubes built with other technology. The aim of this work is to test how the concept of a

semantic data cube  developed by the University of Salzburg  can be combined with the

interoperability standards of the Open Geospatial Consortium (OGC) in order to promote

the general accessibility of semantic data cube queries. The array database management

system  (DBMS)  rasdaman  supports  OGC's  standardized  Web  Coverage  Processing

Service (WCPS), a coverage processing language that enables the retrieval of raster data

or information derived from such data from data cube hosting servers. This thesis shows

how a semantic data cube can be implemented with rasdaman  and how WCPS can be

used in combination with SIAMTM semi-categories in order to build semantic queries.
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Zusammenfassung

Heutzutage gibt es eine Vielzahl von Möglichkeiten, über das Internet freien Zugang zu

Satellitenbildern  verschiedener  Erdbeobachtungsmissionen  zu  erhalten.  Die  schiere

Masse an Daten erschwert es Nutzern oft, gezielt nach den für sie relevanten Inhalten zu

suchen. Die klassischen Weboberflächen von Satellitenbildanbietern verfügen über keine

Bildverständnisfunktionen,  weshalb  sich  die  Filtermöglichkeiten  zur  Auswahl  von

Satellitenbildszenen auf Metadaten und bildweite Übersichtsstatistiken beschränken.  Um

dieses Manko zu beheben, entwickelte die Universität Salzburg mithilfe der Open Data

Cube-Technologie  (ODC)  mehrere  prototypische  semantische  Datenwürfel,  mit  denen

Benutzer  Sentinel-2-Daten  basierend  auf  dem  Bildinhalt  abfragen  können.  In  ihren

Datenwürfeln  werden  Satellitenszenen  mit  der  Satellite  Image  Automatic  Mapper™

(SIAM™) Software in als "Semi-Konzepte" bezeichnete Kategorien vorklassifiziert. Semi-

Konzepten können eine reale Klasse abbilden, sind aber in vielen Fällen Vorprodukte die

nicht  als  vollwertige  Klassen  behandelt  werden,  sondern  als  Modellbausteine  für  die

Ableitung realer Klassen verwendet werden. Dieser vielversprechende Ansatz ist jedoch

noch nicht interoperabel, was bedeutet, dass Abfragen auf ihr bestehendes Ökosystem

beschränkt  sind  und  nicht  mit  auf  anderer  Technologie  basierenden  Datenwürfeln

kombiniert werden können. Das Ziel dieser Arbeit ist, zu testen, wie das Konzept eines

semantischen Datenwürfels der Universität  Salzburg mit Interoperabilitätsstandards des

Open  Geospatial  Consortium  (OGC)  kombiniert  werden  kann,  um  die  allgemeine

Zugänglichkeit  von semantischen Datencube-Abfragen zu fördern. Das Array Database

Management System (DBMS) rasdaman unterstützt den standardisierten Web Coverage

Processing  Service  (WCPS)  von  OGC,  eine  Coverage-Verarbeitungssprache,  die  den

Abruf von Raster-Daten oder daraus abgeleiteten Informationen von den Hosting-Servern

des Datenwürfels ermöglicht.  Diese Arbeit  zeigt,  wie ein  semantischer  Datenwürfel  mit

rasdaman implementiert werden kann und wie WCPS in Kombination mit  SIAM™-Semi-

Kategorien verwendet werden kann, um semantische Abfragen zu erstellen.
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1 Introduction

Since the launch of the first Landsat satellite in July 1972, satellite remote sensing has

provided valuable information about the state and evolution of Earth's surface, contributing

to provide us insights  into  the physical  and socio-economic processes that  shape our

world. Throughout the history of remote sensing, the degree to which civil  users could

profit  from satellite data has always been connected to its availability and accessibility.

This was and still is strongly but not solely determined by the state of the art technology.

For  example,  albeit  accessible  for  civilian  use,  the  costs  of  acquiring  satellite  images

remained a limiting factor for scientists from those early days until the first decade of this

century,  with  prizes  fluctuating  considerably  in  periods in  which  the  system was state

owned and in which it was privatized (Morain, 1998). Widespread use of satellite images

only began with the opening of the free Landsat archive in 2008. As it proofed beneficial

for  creating  economic  value,  this  concept  was  later  adapted  by  other  national  and

international Earth Observation (EO) programs  (Zhu  et al.,  2019), the most well-known

probably being the freely available data from the Copernicus program of the European

Union, which sent it’s first satellite Sentinel-2A into Earths atmosphere in June 2015 (The

Sentinel  missions,  2021).  With  the  increase in  the  number  of  freely  available  satellite

images, the number of people using the data increased significantly and the user base

expanded from remote sensing specialists to scientists that were not necessarily experts in

remote sensing but came from other domains such as Biology, Ecology, Geology or Marine

Science  (Sudmanns, Lang and Tiede, 2018).

Today, the remote sensing community is in the middle of a process of adapting to the

sheer amount of data available that presents both an opportunity and a challenge for using

satellite  data  effectively.  With  images  coming  from  several  hundreds  of  EO  satellite

sensors  and  comprising  a  huge  variety  of  spatial,  temporal,  radiometric  and  spectral

resolutions, the volume of overall remotely sensed data today is estimated  by the Open

Geospatial Consortium (OGC) to be likely surpassing one exabyte. Producing, processing

and transmitting such big EO data at high velocity leads to high technological requirements

for the storing, loading and processing capacity of infrastructures (Ma et al., 2015; Esbrí,

2021). Traditionally, storage was connected to high costs. Thus remotely sensed data has

mostly  been  stored  in  raw  form  on  tape  storage  infrastructures  hosted  by  various
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Government  Agencies.  This  made  retrieval  and  data  preparation  tedious  and  time

consuming.  Consequently, only a small portion of the available images was being used,

coining the term ‘dark data’ for the large amounts of potentially useful data not considered

in research (Purss et al., 2015).  During the last years, a lot of work has been going into

developing reliable infrastructure capable of efficiently storing, organizing, analyzing and

retrieving large amounts of data. Since the handling of image data from satellite-based

sensors is essential for EO, structures that deal with raster data are of utmost importance.

Different approaches for storing and handling large amounts of raster data exist today. For

example, raster data could be managed in data warehouse software systems such as

Hive,  Apache  Spark  and  ClimateSpark,  in  a  NoSQL database  management  system

(DBMS)  like  MongoDB,  or  in  an  array-based  DBMS  such  as  rasdaman  and  SciDB

(Baumann et al., 1998; Thusoo et al., 2009; Stonebraker et al., 2013; Zaharia et al., 2016;

Hu et al., 2018; Bradshaw, Brazil and Chodorow, 2019). In the remote sensing community,

organizing satellite images in a data cube has proven to be a very useful structuring tool

that has become increasingly popular over the last years (Baumann et al., 2019).

Data cubes can be described as massive multi-dimensional arrays containing gridded data

(raster data) organized along dimension axes (Baumann et al., 2019). A cube supports at

least one through four spatial, temporal and other dimensions, but may have even more

(Baumann, 2017).  A Geospatial Data Cube  necessarily comprises two or three spatial

dimensions, and a data cube used for EO has at least one non-spatial dimension, e.g. time

(Sudmanns, Lang and Tiede, 2018). Organizing data in a cube does not only have the

advantage of avoiding the traditional cumbersome looking through files stored in a file

system with metadata encoded in file and directory names, but allows neat slicing and

dicing,  filtering,  aggregation,  and even ad hoc analysis  of  the  data.  This  is  extremely

powerful  when  coupled  with  remotely  sensed  analysis  ready  data  (ARD)  that  has

undergone a series of corrections, from radiometric to geographic processing, making the

data more accessible to a wider public of non-remote sensing experts  (Killough, 2019;

Kopp et al., 2019). A data cube containing ARD can function as a data center where data

is served according to the needs of the users who can query exactly the data or results

they  need  without  the  need  for  excessive  downloads  or  in  some  cases,  without  any

downloads at all (Baumann et al., 2019). Using data cubes as web-based access points or

‘geospatial web services’ is a step away from traditional geoscience applications that have
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been developed for siloed environments towards distributed services fostering technical

interoperability and thus accessibility – from GISystems to GIServices  (Yue et al., 2015).

Standards for implementing web services dealing with raster data have been developed by

the OGC and are currently in the process of being improved and extended, such as OGC

Web Map Service (WMS), Web Coverage Service (WCS) and Web Coverage Processing

Service (WCPS) (Wagemann et al., 2018). 

Several data cubes are used in the remote sensing community today, implementing OGC

standards to different levels.  The multidimensional database system rasdaman (Raster

Data Manager) already existed in the 90s (Baumann, 1994; Baumann et al., 1998). While

the data cube was originally derived from the OLAP (Online Analytical Processing) cubes

for  business  and  statistic  applications  (Baumann  et  al.,  2021;  Strobl  et  al.,  2017),

rasdaman developers  sought  to close  the technological  gap  that  hindered  the  use  of

database technology in scientific applications due to a lack of support for ordered data

structures in database management systems. It is not explicitly designed for geodata but

for a variety of scientific disciplines  (Baumann and Holsten, 2011).  Another well-known

data cube project that targets science in general and can handle satellite data is SciDB

(Stonebraker et al.; 2013, Joshi et al., 2019). A third popular cube, Open Data Cube (ODC)

has it’s origins closer tied to geosciences: It is inspired of and extended from the Australian

Geoscience Data Cube, that marked an important step in the advancement of data cube

technology as it showed how big time series of satellite images could effectively be stored

and  worked  with.  Referring  to  this  best  practice  example,  the  Committee  on  Earth

Observations Satellites’ (CEOS) data cube team established the Open Data Cube initiative

to foster the creation of similar data cubes (ODC, 2018; Kopp et al., 2019). 

Currently,  the  potential  of  semantic  data  cubes  for  EO  is  being  researched  at  the

Department of Geoinformatics at the University of Salzburg, known as Z_GIS. A semantic

data cube can be defined as 'a spatio-temporal data cube containing EO data, where for

each observation at least one nominal (i.e., categorical) interpretation is available and can

be queried in the same instance', an approach that goes beyond providing ARD (Augustin

et  al.,  2019).  While  optical  EO  data  might  be  ARD,  it  is  still  merely  digital  numbers

representing spectral values. It has to go through further processing in some way to make

it meaningful, useful, valuable and relevant to become information and/or even knowledge.
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(Rowley, 2007; Sudmanns, Lang and Tiede, 2018). In a semantic data cube, EO data has

gone through an interpretation process that loaded a satellite scene with meaning. This is

also called semantic enrichment. At Z_GIS, Sen2Cube.at was developed as the prototype

of a web-application that allows users to access several semantic data cubes and provides

a Graphical  User Interface (GUI) to interact with them  (Sudmanns  et al.,  2021).  While

smaller cubes have been designed for subregions of Syria and Afghanistan, the main data

cube accessible on the Sen2Cube.at platform is a cube of Austria comprising semantically

enriched categorical Sentinel-2 satellite data from the start of the mission until today.  To

produce the semantically enriched layers, the Satellite Image Automatic Mapper  (SIAM™)

software was used on the input Sentinel-2 data that provides sensor-agnostic classification

capabilities.  SIAM™  separates  pixels  into  categories  based  on  their  spectral

characteristics  using  a  prior  knowledge-based  decision-tree  preliminary  classifier.  This

works automatically and in near real-time  (Baraldi, 2019). It should be emphasized, that

the resulting categories are not equivalent to real world land cover classes a user might be

interested in. Instead, the resulting semantic categories are regarded as generic 'semi-

concepts'  equal or inferior to land cover classes but globally valid (Baraldi and Boschetti,

2012a; Augustin et al., 2018). These semi-concepts can be combined much like building

blocks to create models that produce real-world land cover classes of interest for a specific

EO task.  (Augustin  et  al.,  2018).  In  Sen2Cube.at  models can be build  using a model

builder  GUI  (Sudmanns  et  al.,  2021).  They  are  stored  within  the  application  and  are

reusable. This way, a model can be applied to different data cubes that might be based on

different sensor data, as long as semantic enrichment was done in the same way. This

ultimately  allows for  automatic processing.  In  Sen2Cube.at,  the original  data and their

derived first stage information SIAM™ layers as well as optional additional layers such as

a Digital Elevation Model (DEM) stored in the cube are therefore called the ‘factbase’. In

addition, there is also the knowledgebase, in which the models are stored as rules. An

inference engine allows to combine the two by applying the rules to the facts (Sudmanns

et al., 2021). Successfully processed inferences can be downloaded either as TIFF file or

as QGIS project. Additionally, an OGC WMS link is provided. 

Even  though  an  early  approach  for  a  semantic  data  cube  has  been  created  using

rasdaman  (Sudmanns et al.,  2017),  Z_GIS now has adopted Open Data Cube as the

underlying technology for this purpose. Open Data Cube provides a common analytical
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framework with  a series of  data structures and tools  to  facilitate  the organization and

analysis  of  large gridded data  collections  (ODC,  2021).  Sen2Cube.at  is  accessible  to

people who aren't used to programming and working with command-line interfaces, as it

allows you to create models and start inferences with a GUI. However, it still remains an

isolated environment to some extent. Even though there is the possibility to add a web

service extension to ODC, Sen2Cube.at does currently not support geospatial standards

like  OGC WCS and WCPS that  foster  interoperability  between geographic  information

systems.  The  increasing  number  of  platforms providing  access  to  EO data  holds  the

negative potential of developing a user-unfriendly landscape of geo-applications in which

users  have  to  tediously  apply  separate  workflows  for  each  system.  In  other  words

‘Standalone array stores form just another silo, even with query capabilities’ (Baumann et

al.,  2021).  This  is  where  the  important  role  of  interoperability  becomes  evident.

Interoperability can be described as the ‘The ability of systems to provide services to and

accept services from other systems and to use the services so exchanged to enable them

to operate effectively together’ ISO TC204, document N271 as cited by (Kuhn, 2005). The

extent to which remote sensing data and derived products will be accessible to a wide

range of  users in the future will  be positively  influenced if  standardized interfaces are

omnipresent in geodata technology.

This work aims to explore how semantic image retrieval can be combined with the concept

of interoperability to enable better general accessibility of EO data. It investigates how the

concept of  a data cube semantically enriched with SIAMTM can be applied to an array

DMBS with OGC WCPS capabilities in order to find out whether WCPS provides adequate

functionality to deal with semantic semi-concepts. As system, the rasdaman array DBMS

was chosen, as it is the reference implementation for OGC WCS and in addition, supports

WCPS. With the exception of a data cube set up to test the observation of flooding events

in Somalia (Sudmanns et al., 2017), no semantic data cube has been realized so far with

rasdaman. Two topics were researched. First, the process of building a cube by loading

semantically enriched SIAMTM layers together with Sentinel-2 data into a rasdaman array

database was explored. As a proof of concept for a working semantic data cube, a small

prototype  of  a  cube  with  only  one  Sentinel  granule  and  13  satellite  scenes  was

implemented. Second, it was examined how the WCPS constructs currently implemented

in  rasdaman can  be  used  to  query  SIAMTM semi-concepts.  The  goal  was  to  develop
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sample queries that could be components of models intended to map real-world land cover

classes, similar to what can be done in Sen2Cube.at.

The thesis is structured as follows: Chapter 2 provides background information on the

approach of creating a semantic data cube based on SIAMTM classification, rasdaman's

technological structure as well as OGC standards. Special attention is paid to the OGC

WCPS query language. It's syntax as implemented in rasdaman is explained in a quite

detailed manner Chapter 2.4 and appendix A in order to foster better understanding of

queries presented in the result  part.  Chapter 3 demonstrates the actual  data structure

setup as it  gives an overview over the system and data sets used (all  images can be

viewed in appendix B), presents the conceptual data cube model used in this thesis and

describes the data import process applied. In addition, six topics for which queries were

tested are presented. The queries examined consisted only of those that returned results

with 0 to 2 dimensions. In Chapter 4, the testing results are depicted. This includes the

description of caveats for the process of loading data into the rasdaman array store as well

as the presentation of sample queries tested. For readability reasons, import scripts and

the code of the tested queries have been largely outsourced to Appendices C and D. In

Chapter  5,  the results  are further  analyzed with  regard to  the strengths,  weaknesses,

future opportunities and potential obstacles of using rasdaman with SIAMTM   data, before

the work is summarized in the final chapter.

2 Background

2.1 Semantic data cubes based on SIAM™ semi-concepts

Offering  free  available  satellite  images,  processed  in  an  ARD  manner  and  stored

conveniently in data cubes that can be accessed via web interfaces, has facilitated access

to remotely sensed satellite data and fostered general awareness of available data which

has  been  argued  as  contributing  to  ‘democratizing’ satellite  data  (Kopp  et  al.,  2019).

However, to become truly accessible to a broad range of users that are no remote sensing

experts,  producing  retrievable  information  goes  beyond  producing  ARD.  Even  though

many possibilities to access satellite data exist, relevant data can be hard to find in the

vast  amount  of  data  offered  online.  Some  Content  Based  Image  Retrieval  (CBIR)
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mechanisms based on metadata in the form of text information or image-wide summary

statistics are integrated into web interfaces offering satellite images such as the Earth

Explorer platform (EarthExplorer, n.d.) run by the US Geological Survey (USGS)  or the

EO browser featured at the Sentinel Scientific Data Hub (Sentinel-hub EO-Browser, n.d.)

run by the European Space Agency (ESA). Here, the scene selection via geographic area

of interest (AOI), timespan and some textual metadata like mission name, image path/row,

data category is possible and helps users to reduce the amount of data they have to look

through for finding relevant data. However, they lack real image understanding capabilities

(Tiede et al., 2017), meaning that a selection of satellite scenes based on the geographical

entities they contain is not possible.  A semantic EO data cube that allows for Semantic

Content Based Image Retrieval (SCBIR) is proposed as a solution. In a semantic data

cube, at least one categorical interpretation of it's spectral characteristic is available for

each pixel  (Augustin et al., 2019). Filtering scenes can therefore happen on the basis of

these categories.

To be useful for large amounts of data, the generation of a categorical interpretation for a

EO satellite must be as automated as possible.  However, this is not an easy task. As

vision is an ill-posed problem in the Hadamard sense, it is not possible to recreate an

unambiguous real world model based on an 2D image by trying to inductively infer it from

spectral pixel information only. When reducing a 4-dimensional world to a 2-dimensional

image, information is lost. The resulting information gap cannot be compensated for by

deriving an interpretation of the world exclusively on the basis of quantitative sensory data,

as this is not sufficient to infer stable symbolic percepts of the world (Tiede et al., 2016).

Each time when using machine learning to derive real world classes from satellite images

for a selected region, manual user input is needed in the form of providing labeled training

or  validation data by contributing reference data collected from the field,  from existing

maps or from tabular data. Therefore, classification cannot happen in a fully automated

way, making the analysis of large amounts of satellite data costly in terms of labor and

time (Baraldi, Gironda and Simonetti, 2010). To circumvent the problem, a solution inspired

by human vision can be applied. In the much-quoted seminal work of Marr, human vision is

presented  as  going  from  a  first-stage  primal  sketch  based  on  feature  extraction  of

fundamental  components of  a scene right to  symbolic almost  immediately  and without

losing information  (Marr, 1982). To achieve this, the human vision system consists of a
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preattentive (low-level)  vision first  phase,  in  which our  brain  extracts  picture primitives

based  on  general-purpose  image  processing  criteria  independent  of  the  scene  under

analysis, and an attentive (high-level) vision second phase, in which our brain operates as

a  careful  scanning  system employing  a  focus  of  attention  mechanism based on  prior

knowledge  (Baraldi  and Humber,  2014).  To process what  we see,  our  brain  combines

inductive inference (progressing from particular  cases,  or  sub-symbolic  true  facts  to  a

general model of our environment) with deductive inference (progressing from a general

model of the world which is based upon the knowledge acquired through our experience to

a particular case). For example, if we look at a landscape in a park, we could identify a

series of linear lines that border contiguous areas of light and dark color (the sub-symbolic

true facts) as a park bench (entity with meaning also called a ‘symbol').  Based on our

knowledge about  the world,  we can discriminate it  from it's  surroundings immediately.

Thus,  human vision can be described as 'a  symbolic  hybrid  (combined deductive and

inductive) inference system where (symbolic) prior knowledge is injected into the sensory

data interpretation process starting from the preattentive vision first stage'  (Baraldi  and

Boschetti, 2012a, 2012b).

It is an important finding, that a priori knowledge of the world needs to be incorporated into

a computer vision system for it to produce useful results (Mulier and Cherkassky (2007) as

cited  by  (Baraldi  and  Humber,  2014).  It  is  necessary  that  top-down knowledge  partly

guides lower level processing, as is the case in a hybrid system (Vecera and Farah, 1997).

The Satellite Image Automatic Mapper™ (SIAM™) software used to produce classified

input raster layers for the Sen2Cube.at data cubes as well as for the data cube of this

thesis mimics the preattentive first phase of human vision. It’s output can thus be viewed

as the ‘primal sketch’ of a semantic interpretation of the input satellite scene. SIAM™ is a

preclassifier of satellite data that does not require any user input in the form of training and

supervision  to  run.  Instead,  it  relies  on  spectral  categorization  through  following  non-

adaptive  decision  trees  that  are  based  on  prior  knowledge.  The  resulting  symbolic

preattentive categories belong to  a discrete,  mutually  exclusive and finite  set  of  fuzzy

semi-concepts which are greater than zero and equal  or  inferior  to a real  world class

(Baraldi  and  Boschetti,  2012b,  2012a). In  other  words,  they  have  a  1:1  or  many:1

relationship  to  a  real  world  class.  Mapping  back  from  such  a  SIAM™  preliminary

classification map to the input image value domain should create a piecewise constant
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approximation of the input scene much like an edge-preserving smoothing filter with image

details that represent high spatial-frequency components clearly recognizable (Baraldi and

Boschetti,  2012a).  The SIAM™ classification system is pixel-based and as such relies

purely on spectral (color) information and is insensitive to context such as size, shape,

location,  texture  and  semantic  information.  No  reference  data  set  or  supervised  data

learning  mechanism is  used  (Baraldi  et  al.,  2006).  SIAM™ is sensor-agnostic  when it

comes to handle data that has been calibrated to Top-of-Atmosphere (TOA) reflectance,

but it’s input requirements are based on Landsat high-resolution data. When used with

Sentinel-2  data,  six  bands of  the sensor’s  multi-spectral  instrument (MSI)  are used to

derive SIAM™ categories. These are the blue, green, red and near infrared band as well

as two medium infrared bands which are resampled from 20m pixels to 10m pixels to meet

the input criteria. A constant is working as an input placeholder for the thermal band, which

Sentinel-2’s MSI does not possess but is included to apply additional thermal decision

rules in SIAM™ with other sensors  (Augustin et al., 2018; Baraldi and Boschetti, 2012).

Following  the  SIAM™  decision  rules,  the  Sentinel-2  bands  are  converted  to  several

products: four semi-concept granularities providing 18, 33, 48 and 96 symbolic variables

(categories)  as  well  as  four  additional  information  layers  comprising  sub-symbolic

variables. These are the ‘binary vegetation mask’ based on the vegetation-related semi-

concepts,  the ‘pentanary haze mask’,  a greenness index and panchromatic brightness

image.  Furthermore,  text  files  providing  image-wide  summary  statistics  are  produced

(Augustin  et al., 2018; Baraldi, 2019) Only the 33 categories product has been used for

this thesis. Table 2.1 shows the categories together with their ID and short name. The

SIAM™ raster  layer  gets  returned in  pseudo-colors  that  match  what  people  generally

associate with a semi-concept (e.g. green for vegetation related semi-concepts, blue for

water-related semi-concepts etc.).

Table  2.1  The 33 SIAM™ semi-concepts derived from Sentinel-2  data.  Adapted from

(Sen2Cube.at Manual, 2022) 

N° Spectral Category Short

1 Strong vegetation with high NIR SVHNIR

2 Strong vegetation with low NIR SVLNIR

3 Average vegetation with high NIR AVHNIR
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4 Average vegetation with low NIR AVLNIR

5 Weak vegetation WV

6 Shadow area with vegetation SHV

7 Shrub Rangeland with high NIR SHRBRHNIR

8 Shrub Rangeland with low NIR SHRBRLNIR

9 Herbaceous Rangeland HRBCR

10 Weak Rangeland WR

11 Pit or bog PB

12 Greenhouse GH

13 Very bright barren land or built-up VBBB

14 Bright barren land or built-up BBB

15 Strong barren land or built-up SBB

16 Average barren land or built-up ABB

17 Dark barren land or built-up DBB

18 Weak barren land or shadow area with barren land WBBorSHB

19 Near infrared-peaked barren land or built-up NIRPBB

20 Burned area BA

21 Deep water or shadow DPWASH

22 Shallow water or shadow SLWASH

23 Turbid water or shadow TWASH

24 Salty shallow water SASLWA

25 Cloud CL

26 Smoke plume SMKPLM

27 Thin clouds over vegetation TNCLV

28 Thin clouds over water area or barren land or built-up
areas

TNCLWA_BB

29 Snow or water ice SN

30 Shadow snow SHSN

31 Shadow areas SH

32 Flame FLAME

33 Unknown UN

255 No data NO DATA
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Due to  the  ill-posed nature  of  vision,  it  is  important  to  stretch  that  the  fuzzy  spectral

categories derived by SIAM™ can not be understood as real world classes but can be the

building blocks for them. Semi-concepts derived by SIAM™ still have to be coupled with a

system that acts as an attentive vision second phase. Therefore, the semantic data cube

concept of the Sen2Cube.at platform developed at the University of Salzburg offers users

the opportunity to create rules that combines the SIAM™ semi-concepts in a meaningful

way in order to obtain real land cover classes. In this way, prior knowledge finds its way

into the classification.  Once rules have been defined to create land cover classes for a

specific application, they can be saved as a model. Saved models can be used in an

automated way for the fast derivation of real-world land cover classes of Sentinel-2 data.

Chapter 4.2 shows which sample queries were used in this thesis to test whether the

coverage processing standard WCPS is suitable for building models based on SIAMTM

semi-concepts.

2.2 Rasdaman

Rasdaman (Raster Data Manager) is a domain independent array DBMS which is capable

of managing array data of arbitrary size and structure, from medical images to geospatial

data.  While  it’s  conceptual  roots  date  back  to  the  late  80s  (Baumann  et  al.,  2021),

rasdaman has been developed since 1996 as a product of a series of EU funded projects.

A commercial version was marketed by the research spin-off rasdaman GmbH since 2003.

Since rasdaman GmbH and Jacobs University teamed up in 2008/2009 there is in an open

source  community  version  onto  which  the  work  of  this  thesis  is  based  (Rasdaman

developers, 2022, Chapter 1).  Rasdaman is designed to handle multidimensional data.

While the word ‘cube’ invokes the mental image of three dimensions, the arrays managed

by rasdaman can have 1 to 4 and even more dimensions and are therefore described as

Multidimensional  Discrete  Data  (MDD),  as  raster  data  or  regularly  gridded  data.

Sometimes, the description ‘massive multi-dimensional array‘ is used to emphasize on the

capability  of  a  cube  to  store  data  of  sizes  that  can  go  significantly  beyond  the  main

memory resources of the server hardware (Baumann, 2017); (Baumann et al., 2019). The

array  possesses  n-dimensional  axes  which  allows  for  unambiguous  querying  of  cell
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values. Each dimension axis of an array has an extent with an upper and lower bound

known as the axis’ domain. The index values of a domain have to be integers but can be

negative. The cell values (pixel or voxel values depending on the array’s dimension) of the

array can either be a base type as used in the C/C++ language or a composite type

(struct). All values within one array have to have the same type. The possibility to slice and

trim axes allows for a quick access of subsets based on selected timespans and areas of

interest  (Baumann,  2017).  Several  arrays  are  stored  as  collections  which  can  be

compared to a table in a relational database but have only two columns/attributes: there is

an object identifier (OID) which is maintained by the rasdaman system, as well as the

array itself (Rasdaman developers, 2022a, Chapter 1). Due to that structure it is possible

to  link  the  arrays  via  foreign  keys  with  conventional  tables  and  therefore  reference

particular array objects or subsets of them by querying a specific domain specification.

Rasdaman partitions arrays into subarrays called tiles and stores each tile either in a file

system directory maintained by rasdaman with  metadata stored in an SQLite instance

embedded in  rasdaman,  or  in  a  binary  large  object  (BLOB)  with  a  spatial  index  in  a

Postgres database that allows to maintain arrays of unlimited size. The storage variant can

be chosen during installation in custom installations. When installing from a preconfigured

package, the SQLite variant is installed by default (Rasdaman developers, 2022a, Chapter

2.5.3).  The  partitioning  scheme  can  be  adapted  by  the  rasdaman  user  (Rasdaman

developers, 2022a Chapter 1). The rasdaman array management system can be run in a

distributed way on different servers thus leveraging computing power. Figure 2.1 shows its

architecture.  There  is  a  central  master  node,  the  rasdaman host,  which is  the  central

request dispatcher and controls all server processes. It accepts requests sent by the client

node and assigns server processes to handle them. The server processes are resolving

the assigned requests and produce calls to one or more relational servers each belonging

to a database host. The relational server retrieves the requested data from a relational

data base store and sends it back to the client node using the network (Hu et al., 2018).
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As the rasdaman array DBMS is domain agnostic, it does not provide specific semantics of

space and time – these are ‘outsourced’ to the rasdaman petascope module, which is built

on top of the array engine (Rasdaman developers, 2022a, Chapter 5). Petascope provides

geospatial  query  functionality  by  employing  raster  related  OGC  Web  Services  as

presented in Chapter 2.3. Petascope’s ability to identify, understand and create Coordinate

Reference  Systems  (CRSs)  is  based  on  SECORE  (Semantic  Coordinate  Reference

System Resolver). SECORE was created by the rasdaman developer team from Jacobs

University  Bremen.  It  resolves conforming  URLs  that  contain  a  CRS ID to  their  CRS

definitions expressed in Geography Markup Language (GML) available in a BaseX XML

database deployed as registry service (Misev, Rusu and Baumann, 2012). A public registry

service that can be used for deriving CRS definitions is the ‘OGC Definitions Server’ by the

OGC  Name  Authority.  It  provides  URLs  for  CRS  definitions  beginning  with

‘https://www.opengis.net/def’  (OGC 09-048r5,  2019;  OGC Naming Authority  SC,  2022).

For example, a coverage can contain the the URL shown in Listing 2.1. By requesting this

URL, the CRS gets resolved to its GML definition which will help to identify the coverage

as WGS 84.
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https://www.opengis.net/def/crs/EPSG/0/4326

Listing 2.1

SECORE is currently operated for the OGC by it’s member rasdaman GmbH and Jacobs

University  (Hobona, 2021). When rasdaman is installed, it will install a local BaseX XML

database containing CRS definitions by default, so CRS resolving can also be deployed

locally (rasdaman team, 2022, Chapter 5).

To query data, rasdaman provides the declarative query language rasql that allows for

query rewriting through the server  for  more efficient  requests  (Baumann  et  al.,  2021).

Rasql is much like SQL but for multidimensional arrays and is in fact the reference model

for the ISO SQL/MDA (“Multi-Dimensional Arrays”) standard (ISO/IEC 9075-15:2019). On

top of that, querying data in rasdaman can also be done using the OGC standardized

WCPS language. In rasdaman, WCPS querys get internally transformed into rasql queries.

WCPS is closely related to Xquery. Its syntax is presented separately in Chapter 2.4 and

Appendix A.

2.3 Big raster data and standards to work with them

Geodata  come  in  a  variety  of  forms  and  formats.  To  foster  interoperability  between

applications  for  presenting  and  processing  them,  the  OGC  consisting  of  enterprises,

government  organizations,  research  organizations  and  universities  in  the  geospatial

domain, oversees the development of open gesopatial standards (OGC, n.d.). A common

classification of geodata in the GIS world is a separation between 'discrete' vector data

and 'continuous' raster data. Within a vector data model, the spatial characteristics of a

discrete  real-world  phenomenon like buildings,  streams and measurement  stations are

represented as one or more geometric primitives such as points, curves, surfaces or solids

(OGC 07-011,  2006).  Those primitives are understood to  be a geospatial  'feature'  (an

abstraction of real world phenomena) with their additional characteristics being stored as

feature attributes (OGC 06-103r4, 2011). Contrary, raster data is used to store real-world

phenomena that vary continuously over space such as temperature, soil composition or

elevation (OGC 07-011, 2006). In fact, a raster is not the only data format that can be used

for storing continuous data. Other formats such as point clouds might be suitable as well,

and therefore the term coverage is applied by the OGC to generally define coverages as
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'[…]  digital  geospatial  information  representing  space/time-varying  phenomena,

specifically spatio-temporal regular and irregular grids, point clouds, and general meshes'

(OGC 17-089r1, 2018). The defining commonality of these different formats is that the

values stored in them have a geospatial unique position and, moreover, can only accept

values within a clearly defined range: 'A coverage is a feature that associates positions

within a bounded space (its domain) to feature attribute values (its range). In other words,

it is both a feature and a function. […] A coverage may represent a single feature or a set

of features'  (OGC 07-011, 2006). They can be multidimensional  (OGC 09-146r8, 2019).

Coverage values possess the same type, known as the coverage’s range type. Admissible

types have named components called fields (also known as bands or channels) with a

unique field name which can contain either (atomic) numeric or Boolean types. The range

fields of a coverage are not required to be of the same type (OGC 08-068r3, 2021).

Coverages can be offered via a web service that allow access to resources by specifying

GET or  POST HTTP requests.  Several  OGC standards exists  for  doing  so in  a  well-

defined manner.  For  example,  OGC WMS is  a  visualization service that  produces 2D

maps  targeted  at  human  consumption  (rasdaman  team,  2022,  Chapter  5).  Another

example,  the  OGC  WCS  provides  the  core  functionality  for  any  web  server  offering

coverages suitable fur further processing. The primary goal of WCS is to enable simple but

effective data retrieval with the focus on spatio-temporal subsetting, range subsetting (in

some domains equal to "band selection"), reprojection, scaling and data format encoding

(Baumann,  2010). Rasdaman  GmbH  and  Jacobs  University  Bremen  were  submitting

organizations of this standard (OGC 17-089r1, 2018). The OGC Web Coverage Service –

Transaction Extension (WCS-T or WCS Transaction) is an extension of the WCS Core that

defines how to modify a WCS server’s coverage offering. Three request are defined (OGC

13-057r1, 2016): 

• The ‘InsertCoverage’ request allows to add a coverage as parameter to the WCS

server’s coverage offering which can then be accessed by using WCS operations

• Similarly, ‘DeleteCoverage’ allows to remove a coverage from the WCS offering

• The ‘UpdateCoverage’ request allows to modify parts of a coverage offered by the

WCS server

The  OGC  Web  Coverage  Processing  Service  (WCPS)  is  defined  as  a  language  for

retrieval and processing of multi-dimensional geospatial coverages that might represent
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sensor, image or statistics data. WCPS offers functionality similar to WCS requests but

goes well  beyond that.  It  is  designed to support  more powerful  processing capabilities

such as advanced extraction and server-side analysis of large, possibly multi-dimensional

coverage repositories. To achieve that, it provides further coverage processing primitives

and allows the nesting of functions which enables arbitrarily complex requests for a range

of imaging, signal processing and statistical operations in order to be rendered, inserted

into scientific models or used in some other client applications (Baumann, 2010; OGC 08-

068r3, 2021). For example, provided that a web service offers a multi-spectral coverage

comprising red and near-infrared bands, a coverage showing the Normalized Difference

Vegetation Index (NDVI)  could easily  be returned by making use of  the WCPS query

capabilities (Baumann, 2010). In fact, in rasdaman WCS is implemented in WCPS (which

in turn is  internally  implemented in  rasql)  (Misev,  2020). Both WCS-T and WCPS are

integrated into rasdaman. Notably, rasdaman founder Peter Baumann served as an editor

of WCS-T extension standard and WCPS Language Interface Standard which underlines

the close relationship between software and standard.
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2.4 WCPS Syntax in rasdaman

2.4.1 Sources of information about WCPS in rasdaman

Chapter 2.4 is dedicated to how WCPS queries are written and executed in rasdaman. In

fact, there is already a lot of material published on this. For example, the official rasdaman

documentation v10.0 is available at https://doc.rasdaman.org/  includes two sections on

WCPS dealing with WCPS syntax (Chapter 5 and Chapter 11)  (rasdaman team, 2022).

However, some information on syntax used in this thesis could not be found there and

were derived from other sources closely related to the rasdaman project. For instance, the

possibility to construct a coverage defining a list using < > was featured in the WCPS

standard (OGC 08-068r3, 2021, Chapter 7.1.30). Even though it was not described in the

current  rasdaman  WCPS  documentation  it  could  be  found  in  the  rasdaman  training

material  from  EarthServer1.  To  better  understand  the  WCPS  grammar  currently

implemented in rasdaman and needed for building the semantic queries that are forming

the objective of this thesis, WCPS constructs were gathered and tested in advance. They

are presented in Chapter 2.4.3 and Appendix A. Wherever possible, a working example is

shown. The sample data used for this is based on the sample files available in petascope

by default when installing rasdaman from a preconfigured package. It is very important to

note that all WCPS constructs have been tested in a rasdaman v10.0.0-beta3 version and

not in a stable release. Some of the problems encountered with queries may have been

solved in the stable version of rasdaman that has since be published, but could not be

taken into account in this work due to time constraints.  The following resources about

coverages and WCPS are all  created by or are maintained under the responsibility  of

rasdaman head developer Peter Baumann and were  consulted for the subchapters of this

chapter :

• WCPS standard 1.1 (OGC 08-068r3, 2021)

• Rasdaman web documentation v10.0 , especially Chapter 5.5 and 11.2 (rasdaman 

team, 2022)

• (Baumann, 2010)

1 The EarthServer federation is an organization whose members are large-scale Earth data providers. It

offers a single point of access where members can publish their data and services so that they can be

mixed and matched (Earth Server Federation, n.d.)
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• EarthServer webinars (Baumann et al., n.d.)

• EarthServer Webinars WCPS 1 ‘Introduction to WCPS - Part 1: Basic’ and 

‘Introduction to WCPS - Part 2: Advanced‘ uploaded to youtube.com by Peter 

Baumann on 29.07.2015 (Baumann and Merticariu, 2015a, 2015b)

• Hands-On Demos about INSPIRE2 conform coverages (Baumann, Schleidt and 

Escriu, n.d.) available at https://inspire.rasdaman.org/ (last accessed on 

20.04.2022)

• Rasdaman workshop page provided by the rasdaman developer team (Rasdaman 

Workshop, n.d.)

• Rasdaman  user  forum  available  at  https://groups.google.com/g/rasdaman-users

(last accessed 24.04.2022, requires registration)

2.4.2 Executing WCPS queries

In rasdaman, a WCPS request can be submitted to Petascope as GET request using the

WCS  GET/KVP  protocol  binding  (Rasdaman  developers,  2022,  Chapter  5.5.1).  For

specifying the WCPS query in a GET/KVP request, either the keyword query or the non-

standard shortcut q can be used (Listings 2.2, 2.3). Only one query parameter in an URL is

allowed.

http://localhost:8080/rasdaman/ows?service=WCS&version=2.0.1&

REQUEST=ProcessCoverage&query=<wcps-query>

Listing 2.2

http://localhost:8080/rasdaman/ows?service=WCS&version=2.0.1&

REQUEST=ProcessCoverage&q=<wcps-query>

Listing 2.3

Rasdaman provides access to several OGC web services (WMS, WCS, WCS-T, WCPS)

via an OGC Web service (OWS) client that gets installed as a servlet with every rasdaman

installation (rasdaman team, 2022, Chapters 2.4.2 and 11.2). It is available under the URL

2 The INSPIRE directive (Infrastructure for  Spatial  Information in Europe) aims at  creating a common

spatial  data  infrastructure in  the EU to  form a basis  for  a common environmental  policy  (European

Commission, 2022)
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shown in Listing 2.4. Here, a console can be found into which WCPS queries can be typed

and executed (Figure 2.2).

http://localhost:8080/rasdaman/ows#/services

Listing 2.4

When using the rasdaman OWS client, WCPS queries can be prefixed with the desired

output style (diagram or image) and two right pointing single angle quotation marks (Listing

2.5) that enable the result of the query to be returned directly in the query window as

shown in Figure 2.2 (There is even a possibility of projecting images on a globe by using

the command wwd(specifiedBoundingBox)>> ).
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image >> [WCPS query expression]

Listing 2.5

2.4.3 General query structure of WCPS

Inspired by Structured Query Language (SQL), WCPS was designed to be a declarative

query language that allows for server-side optimization and parallelization. WCPS queries

either written by human users or automatically generated by a client during interaction are

shipped  to  the  data  on  a  server  and  processed  there  (Baumann  et  al.,  2019).  The

declarative style of the language allows users to define what the result of a query should

look like, rather than dictating each processing step. This makes queries easier to write

and allows servers to flexibly optimize queries by rearranging the evaluation sequence in

order  to  calculate  faster  results. WCPS  is  ‘safe  in  evaluation’  meaning  that  every

admissible request can be evaluated in a finite number of steps and will terminate after

finite time (Baumann, 2010). This avoids the possibility of Denial of Service (DoS) attacks

on the level of a single request which, like in SQL, is achieved by avoiding explicit loop and

recursion constructs  (Baumann, 2010).  Despite this it is possible to send requests with

high workload to a server  (OGC 08-068r3, 2021, Chapter 7 Note 2).  The language is

semantically closely related to XQuery, a XML query language that is specified by the

World Wide Web Consortium (W3C) for XML databases. A future integration with XQuery

is planned to allow for integrated data and metadata retrieval in WCPS 2.0 (Baumann and

Merticariu,  2015a,  5:25).  The  heart  of  a  XQuery  expression  is  a  FLWOR  statement,

meaning that it can contain the following components:

• FOR

• LET

• WHERE

• ORDER

• RESULT

WCPS is based on this schema except that explicit ORDER statements are not currently

implemented to the author's knowledge. The meaning of the individual components will be

explained in more detail in the course of this chapter as well in Appendix A.  The current
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WCPS syntax is defined in the WCPS 1.1 standard published in 2021. To date, not all

constructs are implemented in rasdaman, as currently only WCPS 1.0 is implemented,

WCPS 1.1 being still under work (Baumann, 2022a). In some cases rasdaman does also

feature WCPS functions that are currently not mentioned in the WCPS standard, such as

the clip function explained in Appendix A.

A WCPS processing request consists of a processCoveragesExpr which allows clients to

query  of  one  or  more  coverages  offered  on  a  WCPS server  and  returns  an  ordered

sequence of one or more scalar values or coverages (OGC 08-068r3, 2021). The frame for

each  WCPS  query  are  the  for and  the  return clause.  Queries  iterate  over  lists  of

coverages specified  in  the  for clause;  here a  coverage object  A or  multiple  coverage

objects A, B, C etc. are sequentially tied to an iterator variable $c on which the query is

applied. Prefixing the variable with ‘$’ is not mandatory,  but a rasdaman convention to

resemble to a XQuery-style syntax  (Baumann, 2010). It is used like this throughout this

thesis. If the query output is a simple scalar or a list of scalars which can be Boolean,

numeric, or a string, it gets returned as ASCII text. If the result is a coverage or a list of

coverages, then a format encoding has to be specified as MIME type using an encode

statement  in  the  return clause  (OGC 08-068r3,  2021).  Coverage expressions support

multidimensionality but attention has to be paid to chose the right MIME type that can

handle  the  respective  dimensionality  of  the  output  for  a  successful  query  (Baumann,

2010).  For  example,  a  three dimensional  output  could  be  stored in  a  netCDF file  but

cannot be stored in a TIFF, so the query would fail if ‘image/tiff’ or ‘tiff’ was specified. The

WCPS  standard  stipulates  that  data  items  returned  can  have  different  dimensions,

domains, range types and thus be heterogeneous in size and in structure (OGC 08-068r3,

2021, Chapter 7 Note 3). This is not well implemented in rasdaman v10.0.0-beta3 and

problems were observed when multiple results were to be returned as can be seen in

Table 2.2. WCPS 1.1 also stipulates a store() function that allows an encoded coverage to

be stored on the server side for a retrieval at a later time when specifying the returned URL

(OGC 08-068r3,  2021).  However,  this  function  is  not  available  in  rasdaman  yet.  It  is

possible to combine coverages. The WCPS equivalent to a SQL join operation is defining

two  iterator  variables  and  combining  them in  queries.  This  translates  to  nested loops

(Baumann and Merticariu, 2015b, 8:12; rasdaman team, 2022, Chapter 11.2).
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Table 2.2 Basic WCPS queries

Syntax Rasdaman Example

for $c in ( A)
return scalar

for $c in ( mean_summer_airtemp )
return 42

→ 42

for $c in ( A, B, C )
return scalar

for $c in ( AverageChlorophyll, 
AverageTemperature )
return 42

→ 42 42 

for $c in (A)
return encode($c, „image/tiff“)

for $c in ( mean_summer_airtemp )
return encode($c, "image/tiff") 

→ returns the input coverage in tiff format

for $c in ( A, B, C )
return encode($c, „image/tiff“)

for $c in ( AverageChlorophyll, 
AverageTemperature )
return encode(
$c[ansi("2015-01-01T00:00:00.000Z")]
, "image/tiff") 

→ Caveat: The result here is likely a bug. 
Instead of returning two separate and 
distinct tiff files, two times the first coverage 
is returned and written into one tiff file. This 
results in a broken tiff whose content can be
opened in a text editor, but not with an 
image program or a GIS.

for $c in (A)
return store(encode($c, „image/tiff“))

This query should return an URL under 
which the server stores the tiff-encoded 
result coverage. This functionality is not 
implemented in rasdaman yet.

for $a in (A1,,A2,...,An),
    $b in (B1,B2,...Bn),
    ...,
    $n in (N1,N2,...Nn)
return f($a,$b,...,$n)(same as above)

for $c in ( AverageTemperature), $d in 
(AverageTemperature)
return encode(
    (unsigned char)
    $c.Red[ansi("2012-12-
01T20:07:00.500Z")] * 2  - 
$d.Red[ansi("2012-12-09T20:47:12.500Z")]
, "tiff")
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2.4.4 WCPS metadata/probing functions in rasdaman

According to  the WCPS 1.1 standard,  the focus of  WCPS lies on providing coverage

processing  functionality  and  metadata  functions  are  only  integrated  to  the  extent

necessary for a coherent service in order to fit into the OGC standard family  (OGC 08-

068r3, 2021 Chapter 7 Note 4) Nevertheless, some probing functions are very useful to

better understand how to work with a specific coverage and some might be useful for

processing constructs as well. Table 2.3 shows probing functions currently implemented in

rasdaman. Table 2.4 shows functions featured in the WCPS 1.1 standard currently not

implemented in rasdaman.

Table  2.3 WCPS probing functions in rasdaman.  Adapted from  (rasdaman team, 2022,

Chapter 11.2.4)

Syntax Result

imageCrsDomain($c) Returns a list of comma-separated axes bounds

imageCrsDomain($c, a) Returns the low and high (lo, hi) grid bounds for axis a

imageCrsDomain($c, a).x Returns the upper or lower grid bounds. For  x, either ‘lo’ or 
‘hi’ has to be specified

domain($c) Returns a list of comma-separated axes bounds according 
to the coverage’s CRS orders respectively. Each list element
contains an axis a with the lower and upper bounds in the 
axis CRS

Caveat:
While for a geospatial axis domain($c, a) it returns the 
domain limits in geocoordinates, it does return image 
coordinates here as well for the time axis. 

domain($c, a) Returns the low and high (lo, hi) geo  for axis a

domain($c, a).x Returns the upper or lower geo bounds. For  x, either ‘lo’ or 
‘hi’ has to be specified
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Syntax Result

domain($c, a, c) Returns the geo (lo, hi) bounds for axis a in CRS c

domain($c, a, c).x Returns the upper or lower geo bounds for axis a in CRS c. 
For x, either ‘lo’ or ‘hi’ has to be specified

crsSet($c) Returns a set of CRS identifiers

imageCrs($c) Returns the grid CRS (CRS:1)

nullSet($c) Returns a set of null values

identifier($c) Returns the name of the coverage

describe($c, 
"application/json", 
"outputType=GeneralGridC
overage")

Returns a coverage description for a requested coverage 
without the range set in JSON

describe($c, 
"application/gml+xml"))

Returns a coverage description for a requested coverage 
without the range set in GML

Table  2.4 Probing functions not yet implemented in rasdaman. Adapted from (OGC 08-

068r3, 2021, Chapter 6.2 Table 3)

Syntax Result

value($c,p) Returns the coverage grid point ("pixel"), "voxel",... ) values, 

of data type rangetype($c) for all p  imageCrsDomain(∈ $c) 

dimensionList($c) Returns an unordered list (i.e., set) of all of the coverages 

dimension names

rangeType($c) Returns the data type of the coverage’s grid point values, 

given as a set of pairs of field Name and (atomic) data type

24



rangeFieldType($c, f ) Returns the data type of one coverage range field, given as 

some atomic type name 

rangeFieldNames($c) Returns a set all of the coverage's range fields names 

nullSet($c,r ) Returns a set of all values that represent null as coverage 

range field value for all r  rangeType(∈ $c ) 

interpolationDefault($c,r) Returns the default interpolation method per coverage field 

for all r  rangeType(∈ $c ) 

interpolationSet($c,r) All interpolation methods applicable to the particular 

coverage range field for all r  rangeType(∈ $c ); must list at 

least the default interpolation method 

interpolationType(im ) Interpolation type of a particular interpolation method for all

im  interpolationList(∈ $c)

nullResistance(im ) Null resistance level of a particular interpolation methods for 

all im  interpolationList(∈ $c) 

2.4.5 Further WCPS constructs

Central  WCPS  functionality  comprises  trimming  and  slicing  as  well  as  conditional

evaluation.  On  top  of  that,  two  kind  of  operations  are  particularly  noteworthy  when

handling  an  EO data  cube:  Operations  for  constructing  coverages  and  operations  for

summarizing  or  condensing  them.  Furthermore,  special  operations  like  scaling  and

reprojection can be applied (Baumann, 2010). Examples for all of these operations can be

found in Appendix A.
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3 Methods

3.1 Hardware setup and rasdaman installation

Several ways of installing rasdaman are offered:

• Prepackaged installation for CentOS or Debian/Ubuntu

• Downloading a Virtual Machine with a fully configured system with a rasdaman

install ready to run

• Downloading and compiling yourself

For this thesis,  a prepackaged rasdaman v10.0.0-beta3 install  for  Ubuntu 20.04 ‘Focal

Fossa’  was  chosen,  as  it  provided  more  WCPS  functionality  that  the  latest  stable

rasdaman release of version 9.8 from 25.07.2019. The stable release of rasdaman v10.0.0

did only come out at the 18.03.22 an is now also available for newer Ubuntu version 22.04

(rasdaman team, n.d.). The data cube tested was deployed locally on a laptop with a 11th

Gen  Intel®  Core™  i7-1165G7  @  2.80GHz  processor  with  8  threads,  a  disk  storage

capacity of approximately 512 GB and memory of 32 GiB.

3.2 Data sets

A small  data set  was sufficient  for  the test  purposes of  this  thesis.  As test  area,  one

Sentinel-2 granule (the minimum indivisible partition of a Sentinel product, also known as

tile) was selected, extending from approximately 11.9469° E to 13.5885° E and from to

54.0214° N to  55.0388° N.  As can be viewed in  Figure 3.1,  the area covered by the

granule comprised a part of the German Baltic coast, stretching approximately from the

city of Rostock to the island of Hiddensee. In some images a large part of the island of

Rügen can be seen, in others, this area is not included anymore. In the North-East corner,

parts of the Danish islands Møn and Falster are visible but the most central and prominent

feature is the German peninsula Fischland-Darß. The red outline in Figure 3.1 marks the

borders of an area that has been used as an Area of Interest (AOI) for some of the sample

queries presented in the result chapter.
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13 Sentinel-2 scenes were downloaded from the Copernicus Open Access Hub for a time

period  from  09.08.2015  to  13.02.2021  (Open  Access  Hub,  2022).  The  images  were

selected manually.  With the exception of 2015,  the year in which Sentinel-2A, the first

satellite of the Copernicus EO program was launched on June 23, a ‘winter’ image and a

subsequent  ‘summer’  image  were  selected  for  each  year  to  introduce  some  form  of

regularity to the data cube. With the exception of one scene that has been taken at the end

of March, the winter pictures are from the months of January and February. The summer

images are from June with one exception where the scene has been taken in May. The

choice of scenes to consider also depended on other factors. For example, care was taken

to ensure that some winter images contained snow and ice in order to have some easy to

spot land cover variability in the scenes. In addition, some images were desired to have

some clouds for testing purposes, but the images should not have too much cloud cover

overall. Sentinel-2 images are offered at Copernicus hub at two different processing levels.

Images that are processed to meet level L1C are geometrically corrected to cartographic

geometry and radiometrically corrected to Top-of-Atmosphere (TOA) reflectance (Sentinel-

2  User  Handbook,  2015).  L2A  products  additionally  went  through  an  atmospheric

correction  and  represent  Bottom-of-Atmosphere  (BOA)  reflectance.  Since  automatic

processing of L2A was not available in the first years of the Sentinel-2 mission, the BOA

products are only available for more recent images. Thus, all scenes were acquired in their

L1C variant. As SIAM™ can produce a preliminary classification from both L1C and L2A

data, this was not a problem. The size of a L1C satellite scene comprising 13 bands and

an  additional  true  color  image  (TCI)  varied  between  443,8  MB  and  724,3  MB  with

individual bands having sizes from 1,1MB (usually Band 10, 60 m Short Wave Infrared with

Central Wavelength 1375 nm) to 135,6 MB (TCI). To save storage space, not all bands

were  imported into  rasdaman.  Only  the  bands with  a spatial  resolution  of  10 m were

completely  loaded into  the DBMS. They required 12.54 GB of  storage space.  For the

bands with a spatial resolution of 60 m, only one scene was imported  to save disk space.

This accounted for 20.09 MB of storage used. Bands with a resolution of 20 m were not

imported at all. 

All Sentinel-2 images downloaded were undergoing a semantic enrichment process with

SIAM™ which was done at Z_GIS. While by default several products are produced, only

layers categorized into 33 semi-concepts where used for this thesis. The size of each data
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set with 33 categories was 120.56 MB so the total semantically enriched data loaded into

rasdaman had a size of 1.57 GB. For all images the CRS used was EPSG 32633. All 13

Sentinel-2 scenes and their semantically enriched counterparts can be viewed in Appendix

B.
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Figure 3.1 Area of the Sentinel-2 granule used. The red-bordered polygon marks the AOI

used in query examples that demonstrate WCPS clipping functionality



3.3 Importing images with wcst-import.sh

Satellite  images  in  several  formats  such  as  TIFF,  netCDF,  GRIB  and  others  can  be

imported  into  the  rasdaman  array  store  using  WCS-T functionality.  For  easier  import,

rasdaman offers the wcst_import.sh utility. It hides the more complex underlying WCS-T

requests from the user and additionally maintains the geo-related metadata in rasdamans

petascopedb. The import process is shown in Figure 3.2.  The rasdaman documentation

describes the wcst_import.sh tool to be based on the following two concepts:

• ‘Recipe -  A recipe defines how a set of data files can be combined into a well-

defined coverage (e.g. a 2-D mosaic, regular or irregular 3-D timeseries, etc.);

• Ingredients - A JSON file that configures how the recipe should build the coverage

(e.g.  the  server  endpoint,  the  coverage  name,  which  files  to  consider,  etc.) ’

(rasdaman team, 2022, Chapter 5.7.1).

Recipes are written in python and contain classes that define how to validate and read

input  data  containing  specifications  for  bands,  axes,  metadata,  CRS,  etc.  Rasdaman

already provides some predefined recipes, e.g for  importing regular and irregular time

series and for importing Sentinel-1 or 2 data. Furthermore, users can create their own

custom recipe using python. Ingredients are JSON files that contain parameters in which

input options have to be set. An ingredient file contains several sections. In the config

section, the service URL of the server on which the coverages shall be offered is specified

and  the  importing  behavior  can  be  influenced.  For  example,  data  can  be  imported

blockwise or file by file. Furthermore, there is an input section where the coverage ID and

the paths to the input files have to be defined. There is also a recipe section in which the

recipe used for the import is specified. Optionally, there might also be a hook section in

which shell commands that shall run before or after the data import can be set. Ingredient

files are run together with a bash script using the shell command in Listing 3.1 (It can also

be run in the background as a daemon by adding the flag '--daemon start'). While some

ingredient options are found and need to be set in every ingredient file, the availability of

other additional options is dependent on the recipe file the ingredient file is chosen to work

with.
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$ wcst_import.sh path/to/my_ingredients.json

Listing 3.1

Satellite data loaded into rasdaman are stored in a (multidimensional) array also known as

collection. New data can be added to an existing collection as long as its data type, spatial

resolution and CRS match the existing collection. A geospatial collection complies with the

OGC coverage definition cited above (see Chapter 2.3) and can thus be regarded as a

coverage (Rasdaman also allows for the import  of non-geospatial  raster data using its

native query language rasql. Such rasters are not considered to be coverages). It can also

be called a data cube.  However,  the  prototypical  data  cube designed for  this  work is

intended to contain multi-spectral Sentinel-2 data as well as categorical SIAM™data. Can

these data sources with their  different  types be merged into  one cube at  all?  Indeed,

rasdaman supports the creation of custom composite data types. Theoretically, it would

thus be possible to create a collection with values that include a custom type with multi-

spectral band values as well as a categorical value. However, creating such a cube would

be impractical, as it would lead to a large overhead in preparation of the data imported.

Fortunately, this is not necessary. It is sufficient to load the images whose characteristics

match into a common collection. In the end, several collections form a 'virtual' data cube in

rasdaman.  The use of  WCPS allows to  retrieve,  process and fuse the  data  from the

different collections by providing adequate functionality. This concept can be compared to

views in relational DBMS (Baumann et al., 2021).
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Figure 3.2 Data importing process with wcst_import.sh. Retrieved from (rasdaman team,

2022, Chapter 5.7.1 Figure 5.1).



3.4 Querying categorical data with WCPS in rasdaman

Working with SIAM™ semi-concepts in the rasdaman implementation of WCPS has been

tested by investigating several queries that are potentially useful for displaying land cover

data, analyzing it or preparing it for further analysis. Test queries were developed along the

following six topics:

1. Descriptive statistics of a 2D image

◦ Calculating histograms and statistical  values for a 2D image sliced along the

time axis.

◦ Potential use case  : Gathering general information about the occurrence of land

cover classes that have been derived from SIAM™ semi-concepts for a selected

date. For example, calculating the occurrence of snow for the 21.02.2017.

2. Simple selection and display of (composite) categories

◦ Displaying a selection of SIAM™ categories in 2D maps. Composite categories

means  that  more  than  one  SIAM™  semi-concept  are  combined  to  form  a

composite class potentially representing a real-world land cover class.

◦ Potential use case  : Creating an overview map for a land cover type of interest.

For example, select all areas classified as having strong or average vegetation

with high NIR.

3. Fusing Sentinel-2 and SIAM™ data sets

◦ Displaying SIAM™ data on top of a Sentinel-2 background in 2D maps.

◦ Using SIAM™ data to select Sentinel-2 data and vice versa which can be used

for further analysis.

◦ Potential use case  : Creating a map that shows selected land cover classes in a

specified color on top of a custom Sentinel-2 band combination. For example:

Select all categories that are not related to vegetation and display them black so

as not to take the focus of the vegetation classes displayed as a Sentinel-2 color

infrared band combination.

4. Investigating categorical trajectories

◦ Combining different time slices of the same SIAM™ coverage to gain insights

about land use change trajectories.
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◦ Potential  use case  :  Tracing how certain land cover types have changed into

other land cover types.  For example:  Check where areas classified as deep

water in 2015 have changed into areas classified as shallow water and where

they changed into land.

5. Time series analysis

◦ Creating  time  series  of  categorical  change  and/or  calculating  descriptive

statistical values condensed along the time axis.

◦ Potential  use  case  :  Calculating  land  cover  statistics  per  time  period.  For

example,  generating  a  time  series  with  the  yearly  maximum snow cover  or

producing a map that shows areas frequently covered with snow.

6. Edge detection based on categorical data

◦ Applying a Sobel operator to detect edges of land use classes that are based on

SIAM™ categories. 

◦ Potential  use  case  :  Extracting  borders  between  land  cover  classes.  For

example, extracting a shoreline.

As part of the results presented in the respective chapter, a catalog of sample queries

tested can be found in Appendix D. For many queries only a subset of the total satellite

scene was processed to speed up response times. The focus of this thesis was on queries

that return 1 and 2 dimensional data. Queries with 3 dimensional output were not tested.
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4 Results

4.1 Building the cube

For this thesis, three collections have been created by running the import script based on

the data sets presented in Chapter 3.2. Two collections consisted of Sentinel-2 data: one

containing the four bands with 10 m resolution (Band 2-4 and Band 8) and one with the

three bands at 60 m resolution (Band 1, Band 9, Band 10). To import them, the Sentinel-2

recipe already predefined in rasdaman was used. An ingredient file in JSON format was

created by only slightly adapting the Sentinel-2 sample ingredient file featured in Chapter

5.7.9 of the rasdaman documentation  (rasdaman team, 2022). The changed parameters

were 'coverage_id', 'paths', 'resolutions' and 'levels'. The parameter 'crss' was left blank in

order  to  import  the  Sentinel-2  scenes in  the  CRS they where  delivered  in.  A sample

ingredient file for importing the scenes with the 10 m and 60 m resolution bands at once

can be found in Appendix C.1. The third collection was the SIAM™ coverage consisting of

only one band. The generic 'general coverage recipe' was chosen to import the SIAM™

data. It offers a multitude of setting options that have not been fully investigated in this

thesis. The ingredient file used for importing SIAM™ data  can be found in Appendix C.2.

According to the test character of this work, the raster data was imported to localhost. As

storage space was scarce, all 13 scenes taken from different dates between 2015 and

2021 were only imported for the SIAM™ and Sentinel-2 10 m resolution collections. For

the Sentinel-2 coverage with the 60 m resolution only the one date that has been used in

the test queries was imported. The fact that each of the collections that make up the virtual

cube can be easily changed without affecting other parts proved to be advantageous here.

After importing, the resulting 'virtual cube' was a 3D cube with two spatial and a temporal

axes made from three actual cubes.  

Problems encountered and caveats

It is important to note that in the rasdaman community version, the chronological order of

image  recording  dates  must  be  adhered  to  when  importing  coverages.  Images  with

timestamps earlier than the image with the most recent timestamps fail to be imported, as

this function is only supported in the commercial rasdaman version (Pham Huu, 2022).
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A  known  limitation  is  that  rasdaman  can  currently  not  deal  with  categorical  data.

Categorical IDs can thus only be expressed in a number format and the meaning of an ID

can only be transferred in the metadata of the coverage. It is also worth mentioning that

the explanation of some input parameters in the ingredient files was not  perceived as

simple  to  understand.  For  example,  the  need  to  set  the  axis  order  parameter  option

remained unclear because omitting the parameter or arbitrarily changing the axis order

when importing a sequence of 2D scenes did not appear to affect the result. This may be

different when importing a 3D netCDF file, but has not been tested because it was beyond

the scope of this work.

4.2  Example queries tested

4.2.1 Structure of the results presented 

With a few exceptions where queries are depicted in their entirety, only the essential parts

are shown in the WCPS listings of the subsections of chapter 4.2. If a sample query with a

query ID is referenced, its complete syntax can be found in Appendix D. For each query,

the result is also displayed there and peculiarities and caveats are pointed out. The three

coverages that  make up the virtual  data cube of  this  thesis  are referred to  as ‘siam’,

‘sen2_10m’ and  ‘sen2_60m’ in  the  queries  shown  in  the  rest  of  this  chapter  and  in

Appendix D.

4.2.2 Descriptive statistics of a 2D image

For each date in the data cube, a 2D scene could be generated with WCPS, optionally

trimming the  latitude and longitude for  the requested area (Listing  4.1).  The specified

MIME type can optionally be shortened to 'tiff' instead of 'image/tiff' (or to 'csv' instead of

'text/csv').

for $s in ( siam )
return encode(
$s[ E(305863:315593), N(5996151:6008781),
ansi("2017-06-19T00:00:00.000Z")], "tiff")

Listing 4.1

35



Several descriptive statistical values can be created to describe the content of a scene.

The total pixel count of a category that is relevant for calculating the area covered can

simply be queried by using a conditional statement on the coverage subset in the return

clause (Listing 4.2). As SIAM™ categories are semi-concepts and more often than not

need  to  be  combined  to  form a  real-world  class,  'composite'  categories  are  generally

generated by querying multiple categories together using an 'or' operator (Listing 4.3).

for $s in (siam)
return encode (count(
($s[ansi("2017-01-10T00:00:00.000Z")]=29)), "csv" )

Listing 4.2

for $s in (siam)
return encode (count(
($s[ansi("2017-01-10T00:00:00.000Z")]=21 or 
$s[ansi("2017-01-10T00:00:00.000Z")]=22) ), "csv" )

Listing 4.3

It is possible to use arithmetic operations on the pixel count to convert it to m² or some

other square measure (Q1). The count of a category can also be performed for an AOI

only by using a clip function with the vertices of the target polygon specified in the text

markup language Well Known Text (WKT) (Q3). The query for getting back the share of a

single category is shown in Q2. Values representing a histogram showing the pixel count

for a category in the image can also be derived. For this, a coverage constructor iterating

over the IDs of the 33 categories of the SIAM™ layer and counting each pixel per bucket

can be used. The part of the query showing only the coverage constructor can be seen in

listing 4.4, the full query is presented in Q4.

coverage histogram 
over $bucket x( 1 : 33)
values count($s[ansi("2017-01-10T00:00:00.000Z")] = $bucket)

Listing 4.4

The values returned come without axis information (unless the 'diagram >>'  command

precedes the query in the OWS console, as described in Chapter 2.4.2). This needs to be
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considered when interpreting the result. In order to query the pixel count of the 'no data'

value (SIAM™ category 255) it is possible to change the bucket span from 1:33 to 1:255,

but the result will contain a lot of empty buckets in between. Iteration is only possible over

a range, not over fixed indices. A workaround for building a histogram based on categories

whose IDs are not neighbors is iterating over the number of categories and querying the

category indexes via a switch statement and conditional phrases as shown in listing 4.5

(Q5). 

coverage histogram 
over $bucket x( 1 : 2)
values switch
case $bucket=1 return count(($s[ansi("2017-01-10T00:00:00.000Z")] = 25))
default return count(($s[ansi("2017-01-10T00:00:00.000Z")] = 29))

Listing 4.5

By combining  the  coverage constructor  of  Listing  4.4  with  a  division  operation  and a

Boolean expression that excludes pixels that are not within the 1:33 category range, the

percentage of each category of the overall scene can be queried (Listing 4.6 and Q6).

coverage histogram 
over $bucket x( 1 : 33)
values (count($s[ansi("2017-01-10T00:00:00.000Z")] = $bucket))) /
count(($s[ansi("2017-01-10T00:00:00.000Z")]>0) and ($s[ansi("2017-01-
10T00:00:00.000Z")]<34))*100

Listing 4.6

4.2.3 Simple selection and display of (composite) categories

A simple,  relatively  intuitive  query  is  the  basic  selection  of  categories  for  a  selected

timestamp (Q7).  The query can be extended by a switch statement to  color  code the

requested categories as shown in listing 4.7. For each category, the output color is defined

by defining the respective RGB value (Q8). As with descriptive statistics, the queries for a

custom AOI can be done by using the clip function (Q9).
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((unsigned char)
switch
case $s[$sub]=25 return {red:255; green: 255; blue: 255}
case $s[$sub]=29 return {red:0; green: 255; blue: 255}
default return {red: 0; green: 0; blue: 0}
)

Listing 4.7

The importance of keeping track of data types in queries is paramount to working with

rasdaman. The result of a Boolean expression is returned as true and false values and

needs to be explicitly cast to unsigned character here, as rasdaman otherwise throws the

error message shown in listing 4.8.

<ows:ExceptionText>Execution error 457 in line 1, column 8, near token encode:

MDD has a non-char cell type, cannot apply color palette table.</ows:ExceptionText>

Listing 4.8

4.2.4 Fusing Sentinel-2 and SIAM™ data sets

There are several ways of mixing a Sentinel-2 coverage with a SIAM™ coverage in a 2D

output map. The overlay function is probably best used for displaying selected and color-

coded SIAM™ categories on a Sentinel-2 'background' consisting of a RGB image (Q10)

or  any  other  custom  chosen  band  combinations. While  the  operation  name  'overlay'

suggests that there are two coverages lying on top of each other, it should be noted that in

fact there is only one output coverage. The color values of the selected SIAM™ categories

assigned to the RGB channels in the switch statement blend in with the Sentinel-2 band

values. The notion 'background' might therefore be misleading. The mixing of values in

one result coverage is also the reason that the coverages to be fused have to have the

same data type. While the SIAM™ coverage is of type 'Byte - Eight bit unsigned integer'

with  a maximal  value of  255,  the Sentinel-2  coverage is  of  type 'UInt16 -  Sixteen bit

unsigned integer' with the maximal values for each band ranging between 4998 (Band 3)

and 7849 (Band 4). To fuse the two coverage, both data sets need to be cast to the same

data type. For example, both coverage could be cast to unsigned short (16 bit)  like in

listing 4.9. In Q10 and Q11, both coverages are cast to unsigned char. A histogram stretch
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formula is applied to all Sentinel bands to allow for a translation of 16 bit values into a 8 bit

color space. It should be noted that as the color values assigned to the categorical values

blend in with the continuous satellite values, they have an influence on the image statistics

and thus on the way the 'background' is displayed when opening the coverage in a GIS. 

((unsigned int
switch
case
$c[$sub]=21 return {red:1; green: 1; blue: 255}
default return {red: 0; green: 0; blue: 0}
)
overlay
(unsigned int){
red: $s2[$sub].B4 ;
green: $s2[$sub].B3;
blue: $s2[$sub].B2
}

Listing 4.9

When combining bands from coverages that have different pixel resolutions, the scaling

function needs to be applied as shown in Q11. Here, a Sentinel-2 band combination of B4,

B3 and the coastal Aerosol band B1 was chosen as 'background'. Contrary to B3 and B4,

the  coastal  Aerosol  band  has  a  spatial  resolution  of  60  m,  is  thus  stored  in  another

coverage  and is  therefore  resampled  with  the  scale  function  to  match with  the  10 m

resolution bands.

When using the overlay function it is possible to assign values to SIAM™ categories that

can later be excluded from being displayed by defining them as Null-values in a GIS. In

this way, the SIAM™ categories, similar to a cookie cutter, can be used as a preselection

for Sentinel-2 areas that should be subjected to further analysis. However, there is a more

straight-forward way to use SIAM™ categories to achieve this. Two coverages can simply

be combined by multiplying a Boolean mask that is the result of some condition based on

SIAM™ categories with a Sentinel-2 scene of the same extent like in listing 4.10 (Q12). Of

course, it is also possible to derive only SIAM™ categories for areas for which a condition

based on a Sentinel band is true. For example, all SIAM™ categories for locations where a

specified Sentinel-2 band has a value that is above a certain threshold could be queried

(Q13).  Chaining  conditions  by  multiplying  multiple  masked  coverages  with  an  original
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coverage is also possible, as Q14 shows. Here, only values of Band 2-4 of the Sentinel-2

coverage are shown for pixels which are not part of SIAM™ category 21 or 22 and also do

not possess B4 values greater or equal to 500.

(unsigned char) (($s[ansi("2021-06-18T00:00:00.000Z")]= 21) *  
($s2[ansi("2021-06-18T00:00:00.000Z")]))   

Listing 4.10

4.2.5 Investigating categorical trajectories

Rasdaman  allows  for  a  quick  investigation  of  land  cover  change.  Analogously  to

multiplying a SIAM™ coverage that is masked using a Boolean expression with a Sentinel-

2 image, the masked coverage can multiplied with itself at a different timestamps. In Q15,

it can be seen that it is easily possible to find out to which categories pixels belong to in

the newest image of the data cube that have been deep water in the oldest image by using

the query syntax of listing 4.11.

($s[$sub_lo] = 21) * $s[$sub_hi])

Listing 4.11

Using the subsetting function to slice the coverage at different timestamps in combination

with the switch statement, pixels can be color coded according to their land cover change

trajectory like in listing 4.12. For example, pixels that have been classified as deep water in

the earliest satellite scene and  became shallow water can be assigned a different color

than those that became land or those that stayed the same (Q16, Q17). Many different

trajectories could be distinguished in this way, but with each additional case, the query

becomes more confusing, at least for human readers (Q18). It should be noted that the

overlay  function  can be used to  achieve a  similar  goal  (Q19),  but  the  syntax  for  this

purpose is not as clear and straight-forward compared to the switch statement. The final

land use change trajectory example shown in Q20 demonstrates how the switch statement

in combination with time slices can be used to compare at which time intervals deep water

changed into land. Two periods are considered: Period one starts with the earliest image in

the cube and ends in 19.06.2017. Consequently, period two starts the day period one ends
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and ends with the latest image in the cube. Pixels that have changed from deep water into

shallow water during the first  period and on to  land in  the second period are colored

yellow. Those that were changing to land in the first period right away and stayed land in

the second period are displayed in red.

switch
case $s[$sub_lo] = 21 and $s[$sub_hi] = 21 return {red:0; green: 0; blue: 100}
case $s[$sub_lo] = 21 and ($s[$sub_hi] = 22 or $s[$sub_hi] = 23 or 
         $s[$sub_hi] = 24 return {red:0; green: 100; blue: 200}
default return {red: 0; green: 0; blue: 0}

Listing 4.12

4.2.6 Time series analysis

For each geographic coordinate in a data cube represented by a pixel, it is possible to

calculate how often it belonged to a particular SIAM™ (composite) category for all  the

timestamps within a time interval by summing up each occurrence of the category along

the timeline using a condenser function as demonstrated in listing 4.13. The result is a 2D

map with each pixel containing its value count for the specified category. For example, by

condensing the water occurrence of several years in one map, we get the frequency with

which water was observed per pixel (Q21). This water count example with rasdaman has

been shown in scientific literature before (Sudmanns et al., 2017).

condense +
over $t ansi(imageCrsDomain($sub[ansi("2017-06-19T00:00:00.000Z":
"2021-06-18T00:00:00.000Z")], ansi))
using $sub[ansi($t)]=21 or $sub[ansi($t)]=22 or $sub[ansi($t)]=23 
or $sub[ansi($t)]=24

Listing 4.13

The occurrence of a category in a scene over a period of time can be viewed by combining

a coverage constructor with the count condenser function to form a time series (Listing

4.14). As with the histograms describing a 2D image for a specified time slice, this can be

done for both absolute values and shares (Q22, Q23). By simply enclosing the time series
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constructor with a maximum/minimum/ average pixel count function as depicted in listing

4.15, one can derive the respective aggregate value (Q24, Q25).

coverage timeseries
over $p ansi(imageCrsDomain($s[ansi("2017-01-01T00:00:00.000Z":
"2020-12-31T00:00:00.000Z")], ansi))
values count($s[ansi($p)] = 29)

Listing 4.14

max(coverage timeseries
over $p ansi(imageCrsDomain($s[ansi("2017-01-01T00:00:00.000Z":
"2017-12-31T00:00:00.000Z")], ansi))
values count($s[ansi($p)] = 29))

Listing 4.15

Unfortunately, rasdaman lacks an index querying functionality. Only the pixel/voxel values

can be queried based on axis index values, but the opposite is not true. One can neither

query  the  timestamp  or  timespans  for  which  a  pixel/voxel  condition  is  true,  nor

(geographical) coordinates or bounding boxes. It is thus not possible to find out at which

date the maximum categorical count was observed directly. Here the user has to resort to

the second best solution and stick with the time series to find out when the maximum

happened.  It  should  be  noted,  that  especially  for  irregular  data  cubes  with  many

timestamps this might not be a trivial task as the values delivered come without any time

indices. Therefore, the information has to be extracted elsewhere (e.g. by using the WCPS

describe function) and applied separately.

To the author's knowledge it is not possible to form queries based on the temporal units of

the time index directly. We cannot address a certain month  precisely which would help

when building a query that returns a time series based only on the categorical count for ice

pixels for each February from 2016 to 2021. It is also not easily feasible to build a time

series from the maximum ice cover per year for the same timespan. However, depending

on the cube design, a workaround can solve this problem. For example, in a regular data

cube comprising exactly one image per month, retrieving a time series over several years

which is always showing the target value count of the same month can be done by using a

coverage constructor.  The newly constructed index in the over clause of the coverage

constructor needs to be set to match the total numbers of years that are of interest. In the
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values clause, an arithmetic operation where  each year index $t is multiplied by 12 and

added by  an additional offset can then be used to find the right month to slice for each

year in the original coverage. Choosing the right offset value is important in order to get

the values of the right month. Listing 4.16 would return February values, if the first image

in a regular data cube was taken in January. However, if the first image stored was taken

in July, it would return an August value. Hence, the queries are not transferable to another

cube without adapting them to this cube’s temporal settings. It should also be remembered

that the query can fail if no image data is available for a month in the last year of the query

period.  Therefore,  it  is  important  to  always know the  boundaries  of  the  temporal  axis

domain of a data cube.

for $s in (oneImagePerMonthCube)
return
encode(coverage timeseries
over $t year(0:9) 
values count($s[ansi($t*12+1)] = 29)
,"text/csv")

Listing 4.16

As the irregular cube built for this thesis was not suitable for querying the snow trajectory

for one month over several years, an alternative query has been produced to present an

example  using  the  same  query  structure  as in  Listing  4.16.  The  test  cube  can  be

understood as alternately having a summer and a winter month. So apart from the first

year, every year comprises two seasonal scenes (instead of 12 months). Table 4.1 gives

an overview of this division. Thus, when iterating over the 6 years in the cube, the query

structure of Listing 4.17 is used in Q26a. Of course, aside from pixels that have probably

been misclassified, there won't be a high number of snow pixels for the summer season.

But  to  get  the  values  for  the  winter  month,  we just  have  to  change the  slice  on  the

temporal axis 'ansi'  to ($t*2+1) as was done in  Q26b.  Attention should be paid to stay

within the domain boundaries of the temporal axis for the query to work.

Table 4.1 A cube with seasonal regularity

ansi index season

"2015-08-09T00:00:00.000Z" 0 Summer

"2016-01-06T00:00:00.000Z" 1 Winter
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"2016-05-12T00:00:00.000Z" 2 Summer

"2017-01-10T00:00:00.000Z" 3 Winter

"2017-06-19T00:00:00.000Z" 4 Summer

"2018-01-07T00:00:00.000Z" 5 Winter

"2018-05-30T00:00:00.000Z" 6 Summer

"2019-02-16T00:00:00.000Z" 7 Winter

"2019-06-26T00:00:00.000Z" 8 Summer

"2020-03-27T00:00:00.000Z" 9 Winter

"2020-06-15T00:00:00.000Z" 10 Summer

"2021-02-13T00:00:00.000Z" 11 Winter

"2021-06-18T00:00:00.000Z" 12 Summer

coverage timeseries
over $t year(0:6) 
values count($s[ansi($t*2)] = 29)

Listing 4.17

Using  this  schema,  the  query  can  be  adapted  to  get  an  aggregate  value  such  as a

maximum/minimum or average of timestamps grouped together into some temporal unit,

e.g. a year, a season or a month. Listing 4.18 shows how the maximum snow per year is

calculated in Q28.

coverage timeseries
over $t year(1:6) 
values max(   count($s[ansi($t*2)] = 29)  , count($s[ansi($t*2+1)] = 29)   )

Listing 4.18

Listing 4.19 shows this  concept  applied to  a hypothetical  regular  cube containing one

image per month for the maximum snow count in the winter season. The winter season

here consists  of  the months December,  January and February.  The first  image of  the

imaginary cube with the temporal image was taken in January.
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for $s in (oneImagePerMonthCube)
return
encode(coverage timeseries
over $t year(0:9) 
values max(count($s[ansi($t*12+0)] = 29), count($s[ansi($t*2+1)] = 29),
count($s[ansi($t*12+11)] = 29))
,"text/csv")

Listing 4.19

Irregular cubes without any patterns are difficult to query for time series, as there is no real

understanding of the time axis currently implemented in rasdaman. It should be noted that

supposedly regular data cubes are not always so in reality. A data cube containing one

satellite image scene per day has 356 images in a normal year and 366 in a leap year.

Months have 28-31 days. That could make it complicated to summarize the images in a

yearly  or  monthly  value.  A  potentially  viable  approach  could  be  to  employ  switch

statements to define different calculating branches, similar to the case distinction which

returned condenser values in Q5. However, the feasibility was not tested in this work.

4.2.7 Edge detection based on categorical data

The Sobel  operator is an edge detection algorithm used to find vertical  and horizontal

edges in an image. An example of the Sobel operator working at a RGB image can be

found  at  https://standards.rasdaman.com/demo_convolution.html  (Jacobs  University  &

rasdaman GmbH, 2020).

Two 3x3 convolution kernels with values representing different weights are moved in a

moving window style across the input image, in order to add the weights to each input

pixel. Usually, the Sobel operator is run on input images with values representing different

levels of brightness and detects edges where these values differ the most. It was tested

how it could work together with SIAM™ categories by trying to extract the shoreline for an
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Figure  4.1 Sobel  operation.  A =  2D  input  image,  Gx  =  convolution  kernel  1,  Gy  =

convolution kernel 2, G = filtered 2D output. Figure taken from (Baumann et al., n.d.).



extent of the Sentinel-2 granule that covers a small part in the east of the most northern

point of the Fischland-Darß Peninsula (Figure 4.2). The SIAM™ scene investigated was

from the 19.06.2017. For this query, everything that is dark blue (21) and turquoise (30) is

considered to be water3, all other categories shown are thought to be land. The idea to

derive the shoreline was to mask the water values and apply the Sobel operator to the

result. Three different approaches were investigated.

3 SIAM™ category 30 actually corresponds to the semi-concept ‘Shadow snow’ (SHSN). It was prominent

in the classification product of the 19.06.2017 in areas that are most likely shallow water. As the focus of

this thesis is on the mechanics of WCPS in combination with  SIAM™  semi-concepts, and not on the

evaluation of semi-concepts themselves, this has not been further investigated.
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Figure 4.2 Subregion used to test  the Sobel operator in WCPS on

SIAM™ semi-concepts in order to discriminate land from water



The first approach was to mask the water categories by applying conditional phrases in the

where-clause  in  the  coverage  condensers.  When  working  with  categorical  data

represented by integers, the integer is falsely interpreted as a brightness value. So when

applying the Sobel operator to a coverage by using a condition in the where-clause of a

coverage condenser that leads to only pixels of category 21 being considered (Q29), the

filter's weight is applied to pixel either of value 0 or 21. This works well enough as long as

only category is incorporated. But when using two or more categories in the condition of

the condenser's where clause in order to simulate a composite category, this likely poses a

problem. Presumably, the Sobel operator detects edges between categories that we would

lump together  as  one,  with  the  edges  getting  more  defined  the  bigger  the  difference

between  categories  get.  For  example,  when  extracting  a  shoreline  and  consider  the

categories 21 and 30 as water and everything else as land, the Sobel filter might find

edges (= fake coastlines) between those categories as shown in Q30. Better results could

be achieved with the second approach by employing the Boolean condition to select the

categories in the using-clause of the coverage constructor in order to multiply the kernel

with a mask (Q31, Q32). This is similar to what has been done when fusing SIAM™ and

Sentinel-2 data or when querying land use change trajectories without the overlay function.

The third approach tested failed. Here, approach a mask coverage has been predefined

using a coverage constructor in the let statement using either a switch statement (Q33a) or

a simple condition (Q34a). While this was possible, the next step of running the Sobel filter

on the mask was unsuccessful  in both cases because they ended up in long running

WCPS queries that eventually lost the connection to the rasdaman host and returned an

error  (Q33b,  Q34b).  As  the  data  cube  was  running  on  a  local  machine  with  limited

resources,  this  might  have contributed to  this outcome. As can be seen in  Q33b and

Q34b, it was tried to reduce the query complexity by using only one kernel for the Sobel

operator, but to no avail. However, the reason remained unclear. A further investigation of

this issue was not carried out, as this would have gone beyond the scope of this work.

It is important to note, that always when a new coverage is created by using a coverage

constructor like an image that has gone a Sobel filter operation, the geographic CRS is lost

and it can therefore not be placed correctly in a GIS.
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5 Discussion

The results showed that it is possible to set up a semantically enriched data cube with

SIAM™-classified data in the rasdaman array DBMS and query it with WCPS. To subsume

the findings, they are discussed by structuring them into strengths, weaknesses, future

opportunities and potential obstacles presented below.

Strengths

Importing Sentinel-2 data and SIAM™ data to the cube

• Importing the Sentinel-2 data and the SIAM™ data was straightforward as soon at it

was clear which parameters need to be used and adapted in the ingredients file in

order to load valid coverages. It was sufficient to slightly adapt some parameters

and employ the general  coverage recipe to  import  SIAM™ data as well  as the

Sentinel-2  recipe  for  the  Sentinel-2  data.  Both  recipes  are  shipped  with  the

rasdaman installation when installing from a preconfectioned package. Rasdaman's

additional functionality for writing a custom recipe file did not need to be used.

• New collections containing data with different resolutions or different data types can

be added to rasdaman anytime without changing the data structure of the other

collections in the array store. They can be queried in combination with the other

collections  using  data  fusion  syntax  of  WCPS.  Therefore,  the  'virtual  cube'  can

easily be extended without breaking anything in the existing collections.

Querying functionality

• In a Geospatial Data Cube, descriptive statistics like pixel counts and shares for

composites  made  from  SIAM™  semi-concepts  can  be  easily  derived  for  a  2D

coverage slice of a selected date. Returned results are either scalars or a list of

histogram values in csv format. Calculating a histogram for categories whose IDs

are  neighbors  is  straightforward  when  employing  a  combination  of  coverage

constructor and condenser functions. For categories with IDs not next to each other

or composite categories, calculating a histogram is more difficult  but can still  be

achieved.

• Composite SIAM™ categories can easily be displayed in  a 2D map derived by

slicing the coverage at  a  timestamp.  If  needed,  data can be color  coded using
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conditional branching and shown on background Sentinel-2 data. WCPS provides

convenient  functionality  to  build  and  display  custom  band  combinations  from

Sentinel-2 data. Conditional branching can also be used to compare different land

cover change trajectories.

• Using  conditional  masking  on  a  SIAM™  coverage  sliced  at  a  timestamp  and

multiplying the result with a slice of a different timestamp is a very powerful tool for

land  cover  change  trajectory  observation.  The  same  syntax  can  be  used  for

preselecting a Sentinel-2 coverage based on SIAM™ categories (or vice versa). It is

also very useful in a Sobel operator where a conditional mask based on selected

semi-concepts  can  be  multiplied  by  a  convolution  kernel.  This  makes  edge

detection based on composite SIAM™ categories possible that can for example be

useful in shoreline detection.

• Rasdaman allows for neat condensing of the time axis to produce a 2D map of

aggregated values for a given period of time. Time series can easily be produced

for composite categorical counts and percentages provided that for each timestamp

in the cube a data point shall be displayed. Time series that only take into account

certain timestamps and skip others (e.g.  a time series with February values for

snow cover  for  the  last  ten years)  or  time series  that  should show aggregated

values (e.g. showing the maximum snow cover for each year in the last ten years)

can be produced with reasonable effort provided that the data cube has regular

characteristics in the time period targeted.

• WCPS in rasdaman is currently actively developed and new helpful functionality is

expected to be available in rasdaman with the full integration of WCPS standard

1.1.

• The query functionality provided together with the possibility to run rasdaman in a

distributed  system  makes  it  likely  that  a  big  data  cube  similar  to  the  Austrian

Sentinel-2 data cube can be implemented in rasdaman.

Weaknesses

Importing Sentinel-2 data and SIAM™ data to the cube

• Importing  files  that  are  not  in  the  right  temporal  order  is  not  possible  in  the

rasdaman community version.
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• Currently there is no true support of categorical values in rasdaman, so information

on categories have to be included in the metadata of a coverage

• The effect of some import parameters was not clear.

Querying functionality

• As WCPS does not natively support categorical data, care should be taken that

rasdaman does not mistakenly interpret the ID of a category as a continuous cell

value.

• Using the coverage constructor has the downside of not resulting in georeferenced

images. In the future, the rasdaman developers plan to integrate a function that

allows to set a geographic or temporal CRS to a coverage to comply with WCPS

1.1 (Baumann, 2022b).

• A functional limitation of WCPS is that currently, there is no way of querying the

indices of  a dimension axis.  With  such a functionality  not  available,  users must

forego the ability to query for timestamps and time periods on which a certain cell

value can be observed. For example, the direct query 'Return all dates when more

than  1000  pixels  of  category  29  (representing  snow  or  water  ice)  have  been

present' is not possible.

• There is also no option of querying a month directly or aggregating values  for a

common time interval such as month or year. Workarounds are possible for regular

cubes, but require good knowledge of a data cube with regard to its axes domain

borders. For irregular cubes, a workaround might not always be possible.

• With increasing query complexity,  WCPS syntax can get very verbose and thus

difficult to read and write for humans.

• It is not yet clear until when the functionality from the new WCPS Standard 1.1. will

be available in rasdaman.

Future Opportunities

• WCPS can be used flexibly for working with SIAM™ coverages. Queries build can

be reused equivalent to the models build in Sen2Cube.at. The query possibilities

have certainly  not  been  exhausted  in  this  work.  In  the  future  a  repository  with

WCPS  queries  for  SIAM™data  could  be  created,  much  like  the  Sen2Cube.at

knowledgebase. It might even be possible to build a translator to transform models
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created in  the Sen2Cube.at  GUI into  WCPS queries.  This  could make the GUI

independent on the structure of the underlying data cube (provided the underlying

cube implements WCPS)

• Extending  WCPS  functionality  to  query  dimension  axes  based  on  SIAM™

composite categories or otherwise derived land cover classes would mean a large

increase in potential applications. Coupled with real time understanding that allows

for selecting and aggregating values for common time intervals would make it very

powerful.  Semantic content based image retrieval  could be further developed to

become ad hoc semantic content based image analysis.

Possible Obstacles

• Ad hoc investigation of data using WCPS is tedious for a user inexperienced with

the language. For a user without programming background at all, making good use

of WCPS might be difficult.  The incentive to engage with query language in the

future depends on how widely used WCPS will  be. Only if  it  is implemented by

many applications a true interoperability of systems will be achieved

• Theoretically,  it  should be possible with WCPS to fuse coverages from different

servers and different data holders to generate combined results. However, it is not

clear how coverages stored on different servers could be addressed in one query to

be merged together.

Based on a small prototypical data cube, this  thesis demonstrated that  rasdaman is well

suited to create a semantic data cube with SIAM™ data. It could be seen, that it has a

flexible import  mechanism that can be adjusted relatively easily to load SIAM™ raster

data. On top of  that,  the  variety of  WCPS queries presented showed that  rasdaman's

WCPS in combination with SIAM™ semi-concepts enables a range of semantic queries

that can be used and extended for SCBIR. A next step would now be to use the knowledge

gained to build a semantically enriched 'big' rasdaman data cube containing a denser time

series with more satellite scenes and set up on an external server or a group of servers to

simulate use in a production environment.  To further extend the code base for WCPS

sample queries it would be helpful to gather common workflows and requirements in the

field  of  land  cover  analysis  from the  remote  sensing  community  and  beyond  to  build
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WCPS  queries  that  are  truly  needed.  The  full  potential  of  currently  possible  query

constructs has not been investigated in this thesis. For example, queries that produce 3D

results  have not  yet  been taken into  account.  Further  testing based on computational

linguistic knowledge would need to be performed to get a good estimate of which query

targets could be achieved with WCPS in combination with semantically enriched SIAM™

data sets. This could also help to identify gaps where the language itself could be further

developed to enable or simplify useful queries. Interoperable semantic data cubes hold

great  potential  both  in  terms  of  easier  accessibility  of  remote  sensing  data  and  the

generation of information from such data. Future research could look at how the whole

process chain of semantic enrichment and even the derivation of real-world classes based

on models could occur automatically in the data cube when new optical satellite imagery is

added. The process chain could even be extended. On the basis of the derived real-world

classes, e.g. metrics for landscape structure analysis could be calculated directly in the

data cube.

6 Conclusion

This thesis showed the creation of a small prototype of a semantic data cube in the open

source rasdaman community version. 13 Sentinel-2 scenes as well as their corresponding

semantically enriched SIAM™ products were loaded into the rasdaman array database as

collections. These collections form the basis of a 'virtual' data cube which can be queried

using OGC WCPS. Several WCPS queries of varying complexity, targeted to work with

SIAM™ semi-concepts and outputting zero to two dimensional data were demonstrated

and discussed.  Various useful  constructs could be found.  Basic  retrieval  of  categories

consisting of one or more SIAM™ semi-concepts as well as the calculation of categorical

statistics and basic time series were fast and easy. Even though it can get very verbose,

the WCPS switch statement allowing for case distinction was found to be very convenient

for  color  coding different  Land Cover  or  Land Cover  Change categories  derived from

SIAM™  categories  or  customizing  classes  shown  in  a  histogram.  Another  especially

powerful construct in WCPS is the possibility to multiply a boolean coverage that is the

result of a conditional phrase with another coverage to select AOIs. In combination with

SIAM™ data this can be used to built a preselector for Sentinel-2 data (or vice-versa),

select areas in a satellite scene of a newer image based on a selection in an older image
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or detect edges, e.g. for shoreline extraction. A perceived shortcoming was the lack of an

index  querying  functionality  that  would  allow  to  return  a  date,  a  time  interval  or  a

geographic region based on selected pixel values. Furthermore, it is not possible to ad hoc

aggregate values for common time intervals such as for a month or a year. To a certain

degree,  workarounds  for  this  are  possible  provided  the  cube  has  some  regular

characteristics. Based on the insights gained with the prototypical data cube created in this

work, it can be summarized that the rasdaman/SIAM™ combination holds great potential

for the creation of accessible semantic EO data cubes and should be further investigated

in the future.
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Appendix A - WCPS Syntax

A.1 Coverage Subsetting

A coverage can be subset by either a trim or a slice operation. While trimming leaves the

number of dimensions unchanged, slicing always involves a reduction of dimensions. In

the  special  case that  subsetting  a  coverage leads  to  a  single  point,  the  result  is  still

considered a coverage with the dimension 0  (OGC, 2021, Chapter 7.1.23 Note 1). It is

important to keep track of the dimension returned to chose a matching output format, as

otherwise, the query will fail.  The sequence in which the subsetting axes are specified is

not important, as each axis needs to be specified by name. 

Syntax Example

Trimming
for $c in (A)
return encode(
$c[ 
axisX( lowerValue : upperValue ), 
axisY( lowerValue : upperValue ), 
axisZ( lowerValue : upperValue )],  
"MIME Type" )

for $c in ( AverageTemperature )
return encode(
$c[
ansi("2012-12-01T20:07:00.500Z":"2012-12-
03T20:07:00.500Z"), 
Lat(-38:40), Lon(-18:55)]
, "netcdf")

→ Returns a 3D netCDF with changed ranges 
for each dimension

Slicing on the time axis returning a 
2D image for a specified date
for $c in (A)
return encode(
$c[ 
axisZ( sliceValue )],  "MIME Type" )

for $c in ( AverageTemperature )
return encode(
$c[
ansi("2012-12-01T20:07:00.500Z"), 
, "image/tiff")  

→ Returns a 2D image that was taken at the 
requested timestamp

Special case of returning the 2D 
image for the latest available date
for $c in (A)
return encode (

for $c in (AverageTemperature)
return encode (
$c[ansi:"CRS:1"(domain($c, ansi).hi)], "tiff")
)
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Syntax Example

$c[axisZ:"CRS:1"(domain($c, 
axisZ).hi)],  "MIME Type" )
)

→ Caveat:  As has been explained in table 2.3 
the domain function does return image 
coordinates for the temporal axis, therefore  
domain($c, ansi).hi will not work to retrieve the 
latest image without transforming the slice into 
grid coordinates  by specifying "CRS:1".

Slicing on geographical 
coordinates returning a point
for $c in (A)
return encode(
$c[ 
axisX( sliceValue ), 
axisY( sliceValue ),
axisZ( sliceValue )],  "MIME Type" )

for $c in ( AverageTemperature )
return   encode(
$c[Lat(41.716667), Lon(44.791667)]
, "text/csv")  

→ Returns a 1D value for the requested 
coordinate

Offsets can be applied within a trim
operation but ONLY when the axis 
values are transformed into grid 
coordinates
for $c in (A)
return encode(
$c[ 
axisX( lowerValue + offset1 : 
upperValue + offset2 ), 
axisY( lowerValue : upperValue ),   
"MIME Type" )

for $c in ( AverageTemperature )
return encode(
$c[
ansi("2012-12-01T20:07:00.500Z"), 
Lat:"CRS:1"(0+50:80+100), 
Lon(-18:55)]
, "image/tiff")

→ Results in a 2D image with the Latitude 
range changed

CAVEAT: This does not work:

for $c in ( AverageTemperature )
return encode(
$c[
ansi("2012-12-01T20:07:00.500Z"), 
Lat(-38:40+10), 
Lon(-18:55)]
, "image/tiff")
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Syntax Example

→    <ows:Exception 
exceptionCode="WcpsError" >
        <ows:ExceptionText>Invalid subset 
expression: Lat(-38:40 + 10). Expressions 
inside subsets are only allowed on grid axes.
HINT: Try a grid subset instead. E.g. 
Lat:"CRS:1"(-38:40 + 10) subsets directly on 
the grid.</ows:ExceptionText>
    </ows:Exception>

A.2 Let Clause

The let clause allows binding alias variables to valid WCPS sub-expressions  (rasdaman

team, 2022, Chapter 5.5.6).

Syntax Example

for $c in (A)
let $alias1 := expression, 
     $alias2 := anotherExpression,
     $aliasN :=  yetAnotherExpression
return
  encode( $c[ $alias ] , "MIME Type" )

for $c in (mean_summer_airtemp)
let $sub1 := $c[Lat(-20:-10), Lon(130:150)],
    $sub2 := 10  
return encode (
$sub1* $sub2
,"tiff")

→ Returns the subset of a coverage 
whose values have been multiplied by 10
throughout the image

A.3 Deriving single bands and Multiband Constructor

It is possible to change the band sequence of coverages with multiple bands for example

to generate different false color images.

Syntax Example

for $c in (A) for $c in (AverageTemperature)
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return encode(
$c.BandX
,  "MIME Type" )

return encode(
$c[ansi("2012-12-01T20:07:00.500Z")].Blue
, "image/tiff")  

→ Returns an image with the values of 
the Blue band only

for $c in (A)
return encode(
{
red: $c.BandX3;
green: $c.BandX2;
blue: $c.BandX1
}
, "MIME Type" )

for $c in ( AverageTemperature )
return   encode(
(unsigned char){
red: $c[ansi("2012-12-
01T20:07:00.500Z")].Blue;
green: $c[ansi("2012-12-
01T20:07:00.500Z")].Green;
blue: $c[ansi("2012-12-
01T20:07:00.500Z")].Red
}
, "image/tiff")  

→Returns an image where the red and 
the blue band values are switched

6.1 A.4 Induced Operations

Operations available for a values range type are automatically lifted to the whole coverage.

These  ‘Induced  operations’  thus  apply  on  all  cells  of  a  coverage  simultaneously

(Baumann, 2010).

Syntax Example

for $c in ( A)
return
function($c)
, “MIME Type”)

for $c in ( mean_summer_airtemp )
return encode(
sin($c)+20
, "tiff")

→ Returns an image where the sinus 
function + 10 was applied to the cell 
value of each pixel
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A.5 Conditional evaluation/Case distinction

It  is  possible  to  return  apply  different  functions  for  pixels  of  a  coverage  based  on

conditional  evaluation  using  the  switch  statement.  As  in  the  underlying  rasql

implementation,  WCPS conditions  used  in  a  statement  must  be  specified  in  order  of

generality by using the case keyword. The first condition should be the most specific. Each

subsequent  condition  should  be  more  general,  the  most  general  being  the  default

condition (rasdaman team, 2022, Chapters 4.10.4.4 and 5.5.10). Either a scalar value or a

coverage are returned. The domain of all conditional expressions as well as the result has

to be the same. This means, they have to have the same extent,  resolution and CRS

(rasdaman team, 2022, Chapters 5.5.10 and 11.2.2).

Syntax Example

for $c in (A)
return encode(
switch
  case boolCovExpr return covExpr
  case boolCovExpr return covExpr
  ...
  default return covExpr

, "MIME Type" )

for $c in ( mean_summer_airtemp )
return encode(
(unsigned char)
switch
case $c < 10 return {red:0; green: 0; blue: 
100}
case $c < 30 return {red:255; green: 255; 
blue: 0}
case $c < 50 return {red:255; green: 150; 
blue: 0}
default return {red: 255; green: 0; blue: 0}
, "tiff")

→ Returns an image where pixels have 
been colored according to the conditions
they met

A.6 General Coverage Constructor

Using  a  coverage  constructor  is  useful  when  the  coverage  is  either  to  large  to  be

described as a constant or when the coverage‘s range values are derived from another

source (OGC 08-068r3, 2021, Chapter 7.1.29). The dimensionality of the new coverage is

dependent  on  the  number  of  iteration  variables  defined  in  the  over  clause  of  the
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constructor.  2D coverages constructed in this way are returned in the non geographic

coordinate  system  „Index2D“.  This  can  be  tested  by  using  the  probing  function

'crsSet($newCoverage)'.

Syntax Example

Creating a 1D coverage
for $c in ( A)
return encode(
coverage covName
over $iterVar axis(lo:hi)
values scalarExpr

, "MIME Type" )

for $c in (mean_summer_airtemp)
return encode (
coverage oneDim 
     over $px x(100:200)
          values $px
, "csv")

→ returns each value in the range 100 - 200 

same as above for $c in (mean_summer_airtemp)
return encode (
coverage oneDim 
     over $px x(100:200)
          values $c[Lon:"CRS:1"(500), Lat:"CRS:1"($px)]
, "csv")

→ returns the cell values of pixels that have an 
index of 500 on the Longitude axis (! in grid 
values) and an index in the range of 100-200 at the 
Latitude axis (! grid values as well)

Creating a 2D coverage by 
inserting values directly using 
a list
for $c in ( A)
return encode(
coverage covName
over $iterVar1 axis1(lo:hi), 
$iterVar2 axis2(lo:hi)
values valueList

, "MIME Type" )

for $s in (mean_summer_airtemp)
let $kernel:= coverage exampleKernel 
   over $x x(-1:1), $y y (-1:1)
                     value list < 1; 0; -1; 2; 0; -2; 1; 0; -1>        
return 
encode ($kernel, "image/tiff")

→ creates 3x3 coverage with the specified values

Creating a 2D coverage based 
on another 2D coverage
for $c in ( A)

for $c in (mean_summer_airtemp)
return encode(
coverage newCov
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return encode(
coverage covName
over $iterVar1 axis1(lo:hi), 
$iterVar2 axis2(lo:hi)
values scalarExp

,  "MIME Type" )

over $px x(imageCrsDomain( $c, Lon )), 
  $py y(imageCrsDomain( $c, Lat))

values $px+$py
, "image/tiff")

→ returns a coverage with the extent (grid 
coordinates) of 'mean_summer_airtemp' 
comprising cell values raising from 0 (top-left) to 
1,570 (bottom-right). 

same as above for $c in (mean_summer_airtemp)
return encode(
coverage newCov
over $px x(imageCrsDomain( $c, Lon )), 

 $py y(imageCrsDomain( $c, Lat))

values $c[Lon($px+100), Lat($py-100)]
, "image/tiff")

→ returns a coverage with the extent (grid 
coordinates) and the values of 
'mean_summer_airtemp'. The values of the original
coverage are shifted by +100 in the x direction and 
by -100 in the y direction, so the whole image 
extent is shifted into the bottom-left direction . 
New values on the top-right are 0 values.

A.7 Aggregation operations

Coverages can be summarized into  a scalar  value using aggregation operations,  also

known as condensers.  Multiple  types of  aggregation  can be applied  (rasdaman team,

2022, 11.2.1).

Condensing numeric coverages using a shorthand condenser operation

Syntax Example

Numeric coverages can be summarized 
with

for $c in ( AverageTemperature)
return max( $c.Red )
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avg(), add(), min(), max()

→returns the maximum value of the red 
band

Condensing Boolean coverages using a shorthand condenser operation

Syntax Example

Count the number of true values

for $c in ( A)
return encode(
count( booleanExpr),  "MIME Type" )

for $c in ( AverageTemperature)

return encode(

count($c.Red<50), "csv")

→ Returns the number of pixel whose 
cell values is greater than 50

Return true if some/all values are true

for $c in ( A)
return encode(
some( booleanExpr),  "MIME Type" )

or

for $c in ( A)
return encode(
all( booleanExpr),  "MIME Type" )

for $c in ( AverageTemperature)

return encode(

some($c.Red<50), "csv")

Caveat: Unexpected behavior when using 
some(), all() instead of count, an empty csv 
is produced. It is not clear whether this is a 
bug in the v10.0.0-beta3 version tested or 
whether the operation has not been applied 
correctly.

General condenser

Syntax Example

for $c in ( A)
return
condense op
over $iterVar axis(lo:hi), …
using scalarExpr

for $c in (AverageChlorophyll)
return 
condense +
over $p x(imageCrsDomain($c[ansi("2015-
01-01T00:00:00.000Z":"2015-03-
31T00:00:00.000Z")],ansi))
using 1
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Syntax Example

→ This query can be used to find how 
many images are in a cube for a 
specified timespan as it adds one for 
every timestamp found in this range. 
Caveat: The timespan queried is not 
allowed to exceed the date of the oldest 
or newest image for the query to work

for $c in ( A)
return encode(
condense op
over $iterVar axis(lo:hi), …
using scalarExpr
 ,"MIME Type" )

for $c in ( AverageTemperature)
return encode(
condense max
  over     $pt t(imageCrsDomain( $c, ansi ))
  using    $c.Red[ansi($pt)], "tiff")

→ condenses the input coverage along 
the time axis and returns an image that 
contains the maximal cell value in the 
red band for each pixel

A.8 Combining constructor and aggregation queries

Coverage condenser can be combined with coverage constructors.

Syntax Example

for $c in ( A)
return
  encode(
    coverage covName
    over $iterVar axis(lo:hi), …
    values count( $c[ansi("2012-12-
01T20:07:00.500Z")].Red = $bucket )
, "MIME Type" )

for $c in ( AverageTemperature)
return
  encode(
    coverage histogram
    over $bucket x( 0 : 255 )
    values count( $c[ansi("2012-12-
01T20:07:00.500Z")].Red = $bucket ),
    "text/csv" )

→ For each value from 0 to 255 the 
number of times this value has been 
found in the red band of the 
AverageTemperature at the specified 
timestamp is returned
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A.9 Coverage Filtering with where

A where clause in the for clause evaluates whether a coverage meets a condition. This is

handy for filtering out coverages suitable for further processing. Coverage that don’t meet

the condition are not further processed (Baumann and Merticariu, 2015a, 5:40).

Syntax Example

for $c in ( A)
where boolScalarExpr
return covExpr

for $c in ( AverageChlorophyll, 
AverageTemperature)
where max($c.Red)=250
return max($c.Red)

Caveat: There  is  a  bug  in  the   v10.0.0-

beta3 version which has been discussed in

the rasdaman-users group (Misev, 2022).

As only AverageTemperature meets the 
condition and has a maximal value of 250 
(AverageChlorophyll a maximal value of 
254) this query should return only return 
250 once. Instead, it seems like the 
condition is only evaluated for the first 
coverage in the list, and this result is 
returned twice. As noted in the linked 
discussion, this bug should have been fixed 
with the stable v10.0.0 release which has 
not been tested in this thesis.

for $c in ( A)
return encode(
condense op
over $iterVar axis(lo:hi), …
where boolScalarExpr
using scalarExpr
,  "MIME Type" )

for $c in ( AverageTemperature)
return encode(
condense min
  over     $pt t(imageCrsDomain( $c, ansi ))
  where   max($c.Red)=250
  using    $c.Blue[ansi($pt)], "tiff") 

→ If max($c.Red)=250 is true, a result 2D 
coverage is returned showing only the 
minimum values of the blue band that 
have been observed over the four 
timesteps. 
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Caveat: If max($c.Red)=250 is false for all 
timesteps, a 0 is returned for each timestep.
This can not be reflected in a tiff, so another
MIME-Type has to be selected for the query
to work.

A.10 Clipping

AOI for WCPS processing can be selected by specifying coordinates in WKT that are used

for clipping the image. The examples in the table below show this for a polygon clip of a

2D image. Additional  clip  functionality  like  clipping  multipolygons,  linestrings  on  a  2D

coverage  or  curtain  and  corridor  clippling  on  a  3D  coverage  are  implemented  in

rasdaman's version of WCPS but are not further regarded here.

Syntax Example

for $c in ( A)
return encode(
clip( coverageExpression, wkt )
, "MIME Type" )

for $c in (mean_summer_airtemp)
return encode(
clip( 
$c, POLYGON((
-16.497041763341 137.99530162413,
-16.497041763341 140.626392111369,
-25.9819605568445 138.016956689869,
-16.497041763341 137.99530162413 ))
),"tiff")

→ returns the values for the clipped 
polygon area

for $c in ( A)
return encode(
clip( coverageExpression, wkt , 
subsettingCrs ])
 , "MIME Type" )

for $c in (mean_summer_airtemp)
return encode(
clip( 
$c, POLYGON((
-1116990.22057387 8114947.98756654, -
823682.254419523 8046915.10152991,
-771728.418861184,8600745.08905634  -
1014083.79157432 7041755.33238844, 
-1116990.22057387 8114947.98756654 )),
"http://localhost:8080/def/crs/EPSG/
0/28356"
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),"tiff")

→ returns the values for the clipped 
polygon area (in the same CRS as the 
input coverage, despite being clipped 
with coordinates of another CRS)

A.11 Additional Functions

Rasdaman WCPS provides useful functions for extending and scaling a coverage domain

as well as to reproject CRS. On top of that it is possible to transform coverage matching

the CIS 1.0 standard (OGC 09-146r2, 2012) to a CIS 1.1 (OGC 09-146r8, 2019) conform

standard.

Syntax Example

for $c in (A), 
return encode(
extend( covExpr, { axis1(lo:hi), 
axis2:crs(lo:hi), ... } )
 , "MIME Type" )

for $c in (mean_summer_airtemp)
return
encode( 
extend( $c, { Long(100:170), Lat(-50:-
12) } ), "tiff" )

→ returns an image which the domain of 
the Longitude axis extended in both East
und West directions (original values 
111.975:156.275) and  extends the 
domain of the Latitude axis in the South 
direction while making it smaller in the 
North directions (compare with original 
values -44.52499...:-8.974999...). The 
target extent can be defined as grid CRS 
as well as geographical CRS

for $c in (A), $d in (B),
return
scale($c[$c, {imageCrsDomain($c)})
, "MIME Type" )

for $c in (mean_summer_airtemp), $d in 
(AverageChlorophyll)
let $sub := $c[Lat(-20:-10), Lon(130:150)]
return encode(
scale($c, {imageCrsDomain($d[ansi("2015-
01-01T00:00:00.000Z")])}) ,"tiff")
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→ Returns an image showing the mean 
summer air temperature in Australia that 
is scaled to match the extent of the 
AverageChlorpophyll image for the 
selected timestamp

Auto-ratio for spatial scaling
for $c in (A)
return
encode( scale( $c, { Long:"CRS:1"(lo:hi) } )
, "MIME Type" )

for $c in (mean_summer_airtemp)
return
  encode( scale( $c, { Long:"CRS:1"(0:100) }
), "tiff" )

→ When specifying just one spatial 
horizontal axis, the the other spatial 
horizontal axis will be determined 
automatically while preserving the 
original ratio between these axes. The 
target extent can be defined as grid CRS 
as well as geographical CRS

Changing the spatial CRS for a coverage
for $c in (A)
return encode(
crsTransform( covExpr, { axis1:crs1, 
axis2:crs2, ... } )
 , "MIME Type" )

for $c in (mean_summer_airtemp)
return
encode(
crsTransform( $c, 
{ 
Long:"http://localhost:8080/def/crs/EPSG/0/
28356",
Lat:"http://localhost:8080/def/crs/EPSG/
0/28356"} )
, "tiff" )

→ returns an image in the defined CRS

Transforming a CIS 1.0 to a CIS 1.1. 
coverage encoding
for $c in (A)
return encode( 
$c, "application/gml+xml",
  "{\"outputType\":\"GeneralGridCoverage\"}"
)  

for $c in ( AverageTemperature)
return encode( $c, "application/gml+xml",     
"{\"outputType\":\"GeneralGridCoverage\"}" )

→The coverage is returned as CIS 1.1 
GeneralGridCoverage.
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Appendix B - Images in the data cube

Sentinel-2 RGB SIAM™ Preclassification (33 categories)

2015-08-09T00:00:00.000Z

2016-01-06T00:00:00.000Z
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2016-05-12T00:00:00.000Z

2017-01-10T00:00:00.000Z

xxix



2017-06-19T00:00:00.000Z

2018-01-07T00:00:00.000Z
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2018-05-30T00:00:00.000Z

2019-02-16T00:00:00.000Z
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2019-06-26T00:00:00.000Z

2020-03-27T00:00:00.000Z

xxxii



2020-06-15T00:00:00.000Z

2021-02-13T00:00:00.000Z
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2021-06-18T00:00:00.000Z

xxxiv



Appendix C - Ingredient files for data import

C.1 Ingredients file for importing Sentinel-2 data

xxxv

{
  "config": {
    "service_url": "http://localhost:8080/rasdaman/ows",
    "automated": true
  },
  "input": {
    "coverage_id": "S2_${resolution}",
    "paths": [ "S2*.zip" ],
    // Optional filtering settings
    "resolutions": ["10m", “60m”],
    "levels": ["L1C"]
  },
  "recipe": {
    "name": "sentinel2",
    "options": {
      "coverage": {
        "metadata": {
          "type": "xml",
          "global": {
            "Title": "'Sentinel-2 data served by rasdaman'"
          }
        }
      },
      "tiling": "ALIGNED [0:0, 0:1999, 0:1999] TILE SIZE 32000000",
      "wms_import": true
    }
  }
}



C.2 Ingredient file for importing SIAM™ data

xxxvi

{
  "config": {
    "service_url": "http://localhost:8080/rasdaman/ows",
    "tmp_directory": "/tmp/",
    "crs_resolver": "http://localhost:8080/def/",
    "default_crs": "http://localhost:8080/def/OGC/0/Index2D",
    "mock": false,
    "automated": true,
    "track_files": false,
    "subset_correction": false
  },
  "input": {
    "coverage_id": "siam",
    "paths": [
         // Comma-separated lists of paths
    ]
  },
  "recipe": {
    "name": "general_coverage",
    "options": {
      "coverage": {
        "crs": "OGC/0/AnsiDate@EPSG/0/32633",
        "metadata": {
          "type": "json",
          "colorPaletteTable": "auto"
        },

        "slicer": {
          "type": "gdal",

          "axes": {
            "ansi": {
              "min": "datetime(regex_extract('${file:name}', '(.*[0-9]+.*$)', 1), 'YYYYMMDD')",
              "type": "ansidate",
              "irregular": "true",
              "dataBound": "false",
               "gridOrder": 0
            },
            "E": {
              "min": "${gdal:minX}",
              "max": "${gdal:maxX}",
              "resolution": "${gdal:resolutionX}",
              "gridOrder": 2
            },
            "N": {
              "min": "${gdal:minY}",
              "max": "${gdal:maxY}",
              "resolution": "${gdal:resolutionY}",
              "gridOrder": 1
            }
          }
        }
      },
      "tiling": "ALIGNED [0, 0:1023, 0:1023] TILE SIZE 4194304"
    }
  }
}



Appendix D - WCPS queries tested

D.1 Descriptive statistics of a 2D image

Single statistical values

Q1 Categorial statistics of a 2D image:

How many m² of the image were covered by Snow or water ice (SN; 29) 
on 10.01.2017 (Pixel resolution is 10x10m)?

Query for $s in (siam)
return encode (count(
($s[ansi("2017-01-10T00:00:00.000Z")]=21 or $s[ansi("2017-01-
10T00:00:00.000Z")]=22))*10*10, "csv" )

Result 73719300

Q2 Categorial statistics of a 2D image (%):
How much of the specified image subset was covered by cloud (CL; 25)
on 19.06.2017?

Query for $s in ( siam )
let $sub := [ E(305863:315593), N(5996151:6008781), ansi("2017-06-
19T00:00:00.000Z")]
return 
(count($s[$sub]=25)) / (count($s[$sub]>1 and $s[$sub]<34)) *100

Result 31.56563562098051

Q3 Categorical statistics of a 2D image for a chosen polygon:

How many pixels in the specified AOI were of category 29 (SN) on 
10.01.2017?

Query for $s in ( siam )
return count(
clip( 
($s[ansi("2017-01-10T00:00:00.000Z")]=29), POLYGON((
323014.428445768 6018724.6989753, 337518.076649877 
6042736.29433543, 337518.076649877 6042736.29433543, 
337518.076649877 6042736.29433543, 372326.832339739 
6038465.77569756, 375549.865273986 6035967.92517351,
363302.340123849 6022350.61102632, 345736.810632206 
6025654.21978393, 333489.285482069 6010344.81334626,
323014.428445768 6018724.6989753))
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))

Result 82246

Histograms

Q4 Create values for a histogram with the number of pixels for each 
category for the 10.01.2017

Query for $s in (siam)
return
encode(coverage histogram 
over $bucket x( 1 : 33)
values count($s[ansi("2017-01-10T00:00:00.000Z")] = $bucket),
"text/csv")

Result

21 0 1540165 1226635 2923585 178058 115228 73887 504 103813 6 1

17517 30938 614776 483205 123941 674 53 0 47847486 510706 4597023

0 3390980 0 7967283 10663439 737193 4007812 851273 0 184065

Q5 Create values for a histogram with the number of pixels for categories 
25 (CL) and 29 (SN) for the 10.01.2017

Query for $s in (siam)

return

encode(

coverage histogram 

over $bucket x( 1 : 2)

values switch

case $bucket=1 return count(($s[ansi("2017-01-10T00:00:00.000Z")] = 25))

default return count(($s[ansi("2017-01-10T00:00:00.000Z")] = 29))

,"text/csv")

Result 3390980 737193

Q6 Create values for a pie chart/stacked bar chart with share of pixels for 

each category per total amount of pixels (%) for the 10.01.2017

Query for $s in (siam)
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return
encode( coverage histogram 
over $bucket x( 1 : 33)
values (count($s[ansi("2017-01-10T00:00:00.000Z")] = $bucket)) /
       count(($s[ansi("2017-01-10T00:00:00.000Z")]>0) and ($s[ansi("2017-01-
10T00:00:00.000Z")]<34))*100
,"text/csv")

Note Results returned by rasdaman have not been rounded, this has been done 

with a spreadsheet program

Result

0 0 2 1 3 0 0 0 0 0 0 0 0 0 1 1 0

0 0 0 54 1 5 0 4 0 9 12 1 5 1 0 0
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6.2 D.2 Simple selection and display of (composite) 

categories

Queries that focus at a chosen date (slice on the time axis) and 

return a 2D map - Selection based on categories

Q7 Simple selection of a composite category consisting of semi-concepts 

25 and 29 (CL and SN) for one scene

Query for $s in ( siam )
let $sub := [ ansi("2016-01-06T00:00:00.000Z")]
return encode(
(unsigned char)
($s[$sub]=25 or $s[$sub]=29)
, "tiff")

Result
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Q8 Simple selection of categories 25 (CL) and 29 (SN) in one scene and 

color coding them (CL = white, SN = blue)

Query for $s in ( siam )
let $sub := [ ansi("2016-01-06T00:00:00.000Z")]
return encode(
((unsigned char)
switch
case $s[$sub]=25 return {red:255; green: 255; blue: 255}
case $s[$sub]=29 return {red:0; green: 255; blue: 255}
default return {red: 0; green: 0; blue: 0}
)
, "tiff")

Caveat Potential bug in rasdaman v10.0.0-beta3. It should be noted, that expression 
optimization did not work as stated in the section 'Induced Operations' found 
at www.earthserver.eu/wcs (Last accessed: 25.04.2022).

The following query did not work but threw an exception:

for $c in ( siam )
let $sub := [ ansi("2017-01-10T00:00:00.000Z")]
return encode(
((unsigned char)
switch
case $c=29 return {red:0; green: 0; blue: 255}
case $c=30 return {red:0; green: 255; blue: 0}
default return {red: 0; green: 0; blue: 0}
)[$sub]
, "tiff")

→
<ows:ExceptionText>Failed closing rasdaman db connection: RasManager 
Error: Could not connect to RasServer .</ows:ExceptionText>

This might have been fixed already in the stable release of rasdaman 
v10.0.0. 
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Result

Q9 Simple selection of categories 25 (CL) and 29 (SN) in one scene and 

color coding them (CL = white, SN = blue) WITH clipping of an AOI

Query for $s in ( siam )
let $sub := [ ansi("2016-01-06T00:00:00.000Z")]
return encode(
clip(

((unsigned char)
switch
case $s[$sub]=25 return {red:255; green: 255; blue: 255}
case $s[$sub]=29 return {red:0; green: 255; blue: 255}
default return {red: 0; green: 0; blue: 0}
),
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POLYGON((
323014.428445768 6018724.6989753, 337518.076649877 
6042736.29433543, 337518.076649877 6042736.29433543, 
337518.076649877 6042736.29433543, 372326.832339739 
6038465.77569756, 375549.865273986 6035967.92517351,
363302.340123849 6022350.61102632, 345736.810632206 
6025654.21978393, 333489.285482069 6010344.81334626,
323014.428445768 6018724.6989753
))

)
, "tiff")
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D.3 Fusing Sentinel-2 and SIAM™ data sets

Using the Overlay function to fuse SIAM™ and Sentinel-2
data

Q10 Select category 'Deep water or shadow' (DPWASH; 21) as a blue are and
return it with a Sentinel-2 RGB composite background

Query for $c in ( siam ), $s2 in (S2_10m)
let $sub := [ E(337580:341342), N(6038490:6041067), ansi("2017-01-
10T00:00:00.000Z")]
return encode(

((unsigned char)

switch
case
$c[$sub]=21 return {red:1; green: 1; blue: 255}
default return {red: 0; green: 0; blue: 0}
)

overlay

(unsigned char){
red: ($s2[$sub].B4 - min($s2[$sub].B4)) / (max($s2[$sub].B4) - 
min($s2[$sub].B4))*255;
green: ($s2[$sub].B3 - min($s2[$sub].B3)) / (max($s2[$sub].B3) - 
min($s2[$sub].B3))*255;
blue: ($s2[$sub].B2 - min($s2[$sub].B2)) / (max($s2[$sub].B2) - 
min($s2[$sub].B2))*255
}
, "tiff")

Caveat • The datasets fused with an overlay operator have to have the same 
data type and are therefore both casted to 8 bit integer (unsigned 
char).

• As the range of the Sentinel-2 values in each band exceed the 256 
digits that can be stored with an unsigned char, the band values have 
to be recalculated to match this requirement. Here, the histogram 
stretch formula (Band - min(Band)) / (max(Band) - min(Band)) is 
applied to each Sentinel-2 band to solve this issue.
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Result

Q11 Hide SIAM™ categories that are not DPWASH (21) or Shadow snow* 
(SHSN; 30) to get only the relevant Sentinel-2 band combination (Band 
4, Band 3, Band 1) for an AOI defined by a clip

* Selecting Shadow snow (SHSN) delivered better results when trying to 
select the laguna in front of the Darß Peninnsula than selecting a water-
related SIAM™ category like SLWASH, TWASH or SASLWA (22, 23 or 24). 
The reason has not been further investigated in this thesis, as the focus is on
WCPS mechanics and not on SIAM™ evaluation

Query for $s in ( siam ), $s2 in (S2_10m), $s2_60m in 
(S2_20170110_32633_60m_L1C)
let $sub := [  ansi("2017-01-10T00:00:00.000Z")],
$scale_used := $s2[$sub]
return encode(
clip( (
((unsigned char)
switch
case
$s[$sub]!=21 and $s[$sub]!=30 return {red:1; green: 1; blue: 1}
default return {red: 0; green: 0; blue: 0})

overlay

((unsigned char){
red: $s2[$sub].B4 / 10;
green: $s2[$sub].B3 / 10;
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blue: scale($s2_60m[$sub], {imageCrsDomain($scale_used)}).B1 / 10
})
),
POLYGON((
323014.428445768 6018724.6989753, 337518.076649877
6042736.29433543, 337518.076649877 6042736.29433543, 
337518.076649877 6042736.29433543, 372326.832339739 
6038465.77569756, 375549.865273986 6035967.92517351,
363302.340123849 6022350.61102632, 345736.810632206 
6025654.21978393, 333489.285482069 6010344.81334626,
323014.428445768 6018724.6989753
))
)
, "tiff") 

Note • The overlay function requires the coverages to be fused to have the 
same resolution. As the coastal aerosol band of Sentinel-2 (Band 1) 
has a resolution of only 60m compared to Band 3 and Band 4 which 
have 10m, the scaling function is used to resample the band to match 
with the other bands.

• In the output coverage, the selected SIAM™ categories are displayed 
as black, as  {red:1; green: 1; blue: 1} have been chosen. Note that 
thus the output coverage has a value of 1 in each band for coverage =
21 or coverage = 30. For the result image here, 1 was classified as 
additional no data value in QGIS to a) exclude it from being displayed,
and b) from having an influence on the min/max settings for 
calculating the histogram stretch

Result
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Select pixels of a coverage based on a condition met in another 

coverage

Q12 Deriving a coverage with Sentinel Band 2-4 and 8 only for pixels that 

are DPWASH (21)

Query for $s in (siam), $s2 in (S2_10m)
return encode(
 (unsigned char) (($s[ansi("2021-06-18T00:00:00.000Z")]
     = 21)*  ($s2[ansi("2021-06-18T00:00:00.000Z")]))   
     , "tiff")

Note • Image returned was opened in QGIS and Bands 8, 4, 3 were chosen 

in this order for the result presented here

• The approach is more direct than the overlay approach of Q10 to 

select Sentinel-2 data only for specific target categories

Result
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Q13 Deriving a coverage with SIAM™ categories only for pixels that have 

values in the B4 band that are higher than 500

Query for $s in (siam), $s2 in (S2_10m)
return 
encode(
(unsigned char) 
(($s2[ansi("2021-06-18T00:00:00.000Z")].B4 > 500) * 
$s[ansi("2021-06-18T00:00:00.000Z")])
, "tiff") 

Note The coverage gets exported without a color palette applied. For this image, 

the color palette of the standard SIAM™ layer was copied and pasted to the 

output image in QGIS.

Result
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Q14 Deriving a coverage with Sentinel Band 2-4 and 8 only for pixels that 

are DPWASH (21) or Shallow water or shadow (SLWASH; 23) and where 

Sentinel-2 values in the B4 band are higher than 500

Query for $s in (siam), $s2 in (S2_10m)
return encode(
 ($s2[ansi("2021-06-18T00:00:00.000Z")].B4 < 500) *    
 (($s[ansi("2021-06-18T00:00:00.000Z")]!=21) and ($s[ansi("2021-06-
18T00:00:00.000Z")]!=22)) *  
  $s2[ansi("2021-06-18T00:00:00.000Z")]
 , "tiff") 

Note Image returned was opened in QGIS and Bands 8, 4, 3 were chosen for 

output image

Result
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D.4 Investigating categorical trajectories

Queries 2D Land cover change

Q15 What categories do pixels that were classified as DPWASH (21) in the 
oldest image belong to in the latest image?

Query for $s in ( siam )
let $sub_hi := [ E(337580:341342), N(6038490:6041067), 
ansi:"CRS:1"(imageCrsDomain($s, ansi).hi)],
  $sub_lo := [ E(337580:341342), N(6038490:6041067), 
ansi:"CRS:1"(imageCrsDomain($s, ansi).lo)]
return encode(
(unsigned char)
(($s[$sub_lo] = 21) * $s[$sub_hi])
, "tiff")

Result

Q16 Observing the trajectory of a category. 

Selecting pixels, that have been classified as 'Deep water or shadow' 
(DPWASH; 21) in the oldest satellite scene and either 

• stayed the same (dark blue)
• was classified as ‘Shallow water or shadow’ (SLWASH; 22), 

‘Turbid water or shadow’ (TWASH; 23) or ‘Salty shallow water’ 

l



(SASLWA; 24) (light blue)
• was not classified a water related category anymore (yellow)

Query for $s in ( siam )
let 
$sub_hi := [ E(337580:341342), N(6038490:6041067), 
ansi:"CRS:1"(imageCrsDomain($s, ansi).hi)],
$sub_lo := [ E(337580:341342), N(6038490:6041067), 
ansi:"CRS:1"(imageCrsDomain($s, ansi).lo)]
return encode(

((unsigned char)
switch
case $s[$sub_lo] = 21 and $s[$sub_hi] = 21 return {red:0; green: 0; blue: 
100}
case $s[$sub_lo] = 21 and ($s[$sub_hi] = 22 or $s[$sub_hi] = 23 or 
$s[$sub_hi] = 24 return {red:0; green: 100; blue: 200}
case $s[$sub_lo] = 21 and $s[$sub_hi] != 21 and $s[$sub_hi] != 22 and 
$s[$sub_hi] != 23 and $s[$sub_hi] != 24 return {red:200; green: 200; blue: 0}

default return {red: 0; green: 0; blue: 0}
), "tiff")

Note The red part is not necessary and only included to be more explicit. The 
cases excluded should have been caught already in the case statements 
before as explained in Appendix A.5

Result
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Q17 Observing the trajectory of a category (Same query as Q16 but clipped)

Query for $s in ( siam )
let $sub_hi := [ ansi:"CRS:1"(imageCrsDomain($s, ansi).hi)],
  $sub_lo := [  ansi:"CRS:1"(imageCrsDomain($s, ansi).lo)]
return encode(

clip( (unsigned char) ((unsigned char)
switch
case $s[$sub_lo] = 21 and $s[$sub_hi] = 21 return {red:0; green: 0; blue: 
100}
case $s[$sub_lo] = 21 and ($s[$sub_hi] = 22 or $s[$sub_hi] = 23 or 
$s[$sub_hi] = 24 return {red:0; green: 100; blue: 200}
case $s[$sub_lo] = 21 and $s[$sub_hi] != 21 return {red:200; green: 200; 
blue: 0}
default return {red: 0; green: 0; blue: 0}
)
), POLYGON((
323014.428445768 6018724.6989753, 337518.076649877 
6042736.29433543, 337518.076649877 6042736.29433543, 
337518.076649877 6042736.29433543, 372326.832339739 
6038465.77569756, 375549.865273986 6035967.92517351,
363302.340123849 6022350.61102632, 345736.810632206 
6025654.21978393, 333489.285482069 6010344.81334626,
323014.428445768 6018724.6989753
))
), 
"tiff)

Result
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Q18 Observing the trajectory of a category.

Selecting pixels that 
• were not part of any water related category in the oldest satellite 

scene and are DPWASH (21) in the most recent scene (red)
• were not part of any water related category in the oldest satellite 

scene and are SLWASH, TWASH or SASLWA (22, 23, 24) in the 
most recent scene (orange)

• were 21 and did not change (dark blue)
• were 21 and turned into 22, 23, 24 (light blue)
• were 21 and turned into something non water-related (yellow)

• were 22, 23, 24 and did not change (green)
• were 22, 23, 24 and turned into 21 ( dark purple)
• were 22, 23, 24 and turned into something non water-related (light

purple)

Query for $s in ( siam )
let 
$sub_hi := [ E(337580:341342), N(6038490:6041067), 
ansi:"CRS:1"(imageCrsDomain($s, ansi).hi)],
$sub_lo := [ E(337580:341342), N(6038490:6041067), 
ansi:"CRS:1"(imageCrsDomain($s, ansi).lo)]

return encode(
((unsigned char)

switch

case $s[$sub_lo] != 21 and $s[$sub_lo] != 22 and $s[$sub_lo] != 23 and 
$s[$sub_lo] != 24 and $s[$sub_hi] = 21 return {red:250; green: 0; blue: 0}
case $s[$sub_lo] != 21 and $s[$sub_lo] != 22 and $s[$sub_lo] != 23 and 
$s[$sub_lo] != 24 and ($s[$sub_hi] = 22 or $s[$sub_hi] = 23 or $s[$sub_hi] = 
24) return {red:250; green: 150; blue: 0}

case $s[$sub_lo] = 21 and $s[$sub_hi] = 21 return {red:0; green: 0; blue: 
100}
case $s[$sub_lo] = 21 and ($s[$sub_hi] = 22 or $s[$sub_hi] = 23 or 
$s[$sub_hi] = 24 return {red:0; green: 100; blue: 200}
case $s[$sub_lo] = 21  return {red:200; green: 200; blue: 0}

case $s[$sub_lo] = 22 or $s[$sub_lo] = 23 or $s[$sub_lo] = 24 and 
($s[$sub_hi] = 22 or $s[$sub_hi] = 23 or $s[$sub_hi] = 24 return {red:0; 
green: 100; blue: 0}
case $s[$sub_lo] = 22 or $s[$sub_lo] = 23 or $s[$sub_lo] = 24 and 
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$s[$sub_hi] = 21 return {red:100; green: 0; blue: 100}
case $s[$sub_lo] = 22 or $s[$sub_lo] = 23 or $s[$sub_lo] = 24 and 
$s[$sub_hi] != 21 return {red:250; green: 0; blue: 250}

default return {red: 0; green: 0; blue: 0}

)
, "tiff")

Note The last two cases 
• were 22, 23, 24 and turned into 21 ( dark purple)
• were 22, 23, 24 and turned into something non water-related (light 

purple)
did not occur for the two timestamps queried, so no purple can be seen in the
output image

Result

Q19 Alternative method using overlay
Which pixel are DPWASH (21) and which have been SLWASH, TWASH 
or SASLWA (22, 23, 24)  in in the newest images that have not been 
classified like that in the oldest images

Query for $s in ( siam )
let $sub_hi := [ E(337580:341342), N(6038490:6041067), 
ansi:"CRS:1"(imageCrsDomain($s, ansi).hi)],
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  $sub_lo := [ E(337580:341342), N(6038490:6041067), 
ansi:"CRS:1"(imageCrsDomain($s, ansi).lo)]
return encode(

((unsigned char)
switch
case $s[$sub_lo] = 21 return {red:0; green: 0; blue: 100}
case $s[$sub_lo] = 22 or $s[$sub_lo] = 23 or $s[$sub_lo] = 24 return {red:0; 
green: 100; blue: 200}
default return {red: 0; green: 0; blue: 0}
)

overlay

(unsigned char)
switch

case $s[$sub_hi] = 21  return {red:200; green: 0; blue: 0}
case $s[$sub_hi] = 22  or $s[$sub_hi] = 23 or $s[$sub_hi] = 24 return 
{red:200; green: 200; blue: 0}
default return {red: 0; green: 0; blue: 0}

, "tiff")

Note: 
Query 
result is 
equivalent 
to
Query 
above

for $s in ( siam )
let 
$sub_hi := [ E(337580:341342), N(6038490:6041067), 
ansi:"CRS:1"(imageCrsDomain($s, ansi).hi)],
$sub_lo := [ E(337580:341342), N(6038490:6041067), 
ansi:"CRS:1"(imageCrsDomain($s, ansi).lo)]
return encode(

((unsigned char)

switch
case $s[$sub_lo] = 21 return {red:0; green: 0; blue: 100}
case $s[$sub_lo] = 22 or $s[$sub_lo] = 23 or $s[$sub_lo] = 24 return {red:0; 
green: 100; blue: 200}

case $s[$sub_hi] = 22 or $s[$sub_hi] = 23 or $s[$sub_hi] = 24 return 
{red:200; green: 200; blue: 0}
case $s[$sub_hi] = 21 return {red:200; green: 0; blue: 0}

default return {red: 0; green: 0; blue: 0}

)
, "tiff")
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Result

Q20 Tracking different trajectories and comparing them:
Checking which pixels have gone through the development 

'Deep Water' (DPWASH; 21) - 'Shallow water' (SLWASH, TWASH, 
SASLWA; 22, 34, 24) - 'Non-water'

compared to those that have gone through 

'Water' - 'Non-water'- 'Non-water' 

from the oldest image to 19.06.2017 to the newest image

Query for $s in ( siam )
let $sub_hi := [ E(337580:341342), N(6038490:6041067), 
ansi:"CRS:1"(imageCrsDomain($s, ansi).hi)],
  $sub_lo := [ E(337580:341342), N(6038490:6041067), 
ansi:"CRS:1"(imageCrsDomain($s, ansi).lo)],
   $sub_mi := [ E(337580:341342), N(6038490:6041067), ansi("2017-06-
19T00:00:00.000Z")]
  
return encode(
((unsigned char)

switch
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case $s[$sub_lo] = 21 and 
($s[$sub_mi] = 22 or $s[$sub_mi] = 23 or $s[$sub_mi] = 24) and ($s[$sub_hi]
!= 21 and $s[$sub_hi] != 22 and $s[$sub_hi] != 23 and $s[$sub_hi] != 24 ) 
return {red:255; green: 255; blue: 0}

case $s[$sub_lo] = 21 and 
($s[$sub_mi] != 21 and $s[$sub_mi] != 22 and $s[$sub_mi] != 23 and 
$s[$sub_mi] != 24) and 
($s[$sub_hi] != 21 and $s[$sub_hi] != 22 and $s[$sub_hi] != 23 and 
$s[$sub_hi] != 24 ) return {red:255; green: 0; blue: 0}

default return {red: 0; green: 0; blue: 0}

)
, "tiff")

Result
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6.3 D.5 Time series analysis

2D map with values aggregated for a selected period of time

Q21 Condensing along the time axis by summing up all observations of a 
(composite) category at a selected location and timespan. Example: 
Count all water-related pixels ( DPWASH, SLWASH, TWASH, SASLWA; 
21, 22, 34, 24) for all images between 19.06.2017 and 18.06.2021 (n=9)

Query for $c in (siam)
let $sub := $c[ E(333775:344085), N(6034398:6041229)]
return encode(
condense +
over $t ansi(imageCrsDomain($sub[ansi("2017-06-
19T00:00:00.000Z":"2021-06-18T00:00:00.000Z")], ansi))
using $sub[ansi($t)]=21 Or $sub[ansi($t)]=22 Or $sub[ansi($t)]=23 Or 
$sub[ansi($t)]=24, "tiff")

Note The result map shows values from black (0 observations) to white (9 
observations)

Result

lviii



Time series (and derived aggregate values) in which each 
timestamp is taken into account for a period of time

Q22 Follow how a category's occurrence (SN; 29) has changed over time for a 
selected period of time

Query for $s in (siam)
return
encode(coverage timeseries
over $p ansi(imageCrsDomain($s[ansi("2017-01-01T00:00:00.000Z":"2020-12-
31T00:00:00.000Z")], ansi))
values count($s[ansi($p)] = 29),
"text/csv")

Result 737193 23130 15625 667 2352 1062 702 892

Q23 Follow how the share of clouds of the satellite scene has changed over 
time for a selected period of time (%)

Query for $s in (siam)
return
encode( coverage timeseries 
over $t ansi(imageCrsDomain($s[ansi("2017-01-01T00:00:00.000Z":"2020-12-
31T00:00:00.000Z")], ansi))
values count($s[ansi($t)] = 25) /
       count(($s[ansi($t)]>0) and ($s[ansi($t)]<34))*100
,"text/csv")

Result 3,85 5,64 0,01 0,04 0,04 0,11 0,07 0,07

Q24 Count pixels that belong to SN (29) for the year 2017 in the data cube
and derive the maximum value

Query for $s in (siam)
return
encode(max(coverage timeseries
over $p ansi(imageCrsDomain($s[ansi("2017-01-01T00:00:00.000Z":"2017-12-
31T00:00:00.000Z")], ansi))
values count($s[ansi($p)] = 29)),
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"text/csv")

Caveat Make sure that the start and the endpoint of the requested interval lies within 
the time axis domain

• Unfortunately, we don’t know when the maximum happened
• When using many or all dates of the data cube, this query becomes 

naturally slower

Result 737193

Q25 Calculate average cloud cover (CL; 25) for one year

Query for $s in (siam)
return
encode( avg(coverage timeseries 
over $t ansi(imageCrsDomain($s[ansi("2017-01-01T00:00:00.000Z":"2017-12-
31T00:00:00.000Z")], ansi))
values count($s[ansi($t)] = 25) /
       count(($s[ansi($t)]>0) and ($s[ansi($t)]<34))*100)
,"text/csv")

Caveat Make sure that the start and the endpoint of the requested interval lies within 
the time axis domain

Result 4.74080453174745

Time series in which only selected timestamps are taken into 
account for a period of time

Q26a Following the development of pixels classified as Snow or water ice (SN; 
29) over all summers :-) in a selected period of time

Query for $s in (siam)
return
encode(coverage timeseries
over $t year(0:6) 
values count($s[ansi($t*2)] = 29)
,"text/csv")

Result 996 1277 23130 667 1062 892 1213

Q26b Following the development of SN (29) over all winters in a selected period 
of time
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Query for $s in (siam)
return
encode(coverage timeseries
over $t year(0:6) 
values count($s[ansi($t*2+1)] = 29)
,"text/csv")

Result 518704 737193 15625 2352 702 22335348

Q28 Deriving the maximum SN (29) of a year or a season

Caveat It is important to know how many images are in the target timespan to iterate 
over an adequate temporal range in the coverage constructor.

Query for $s in (siam)
return
encode(coverage timeseries
over $t year(1:6) 
values max(   count($s[ansi($t*2)] = 29)  , count($s[ansi($t*2+1)] = 29)   )
,"text/csv")

Result 518704 737193 15625 2352 892 22335348
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D.6 Edge detection based on categorical data

Edge detection based on categorical data with the Sobel filter

Q29 Using the Sobel Operator on just one SIAM™ category by defining a 
Boolean condition in the where-clause of each coverage condenser

Query for $s in (siam)
let $sub := $s[ E(340230:341230), N(6039800:6040800), ansi("2017-06-
19T00:00:00.000Z")],
$kernel1 := coverage kernel1
over $x x(-1:1), $y y (-1:1)
value list < 1; 0; -1; 2; 0; -2; 1; 0; -1>,
$kernel2 := coverage kernel2
over $x x(-1:1), $y y (-1:1)
value list < 1; 2; 1; 0; 0; 0; -1; -2; -1>
return encode(
sqrt(
pow(
coverage Gx
over $px1 E(imageCrsDomain($sub, E)),
$py1 N(imageCrsDomain($sub, N))
values
condense +
over $kx1 x(imageCrsDomain($kernel1, x)),
$ky1 y(imageCrsDomain($kernel1, y))
where $sub[E($px1), N($py1)] =21
using $kernel1[x($kx1), y($ky1)] * $sub[E($px1+$kx1), N($py1+$ky1)], 2.0
) 
+ 
pow( 
coverage Gy
over $px2 E(imageCrsDomain($sub, E)),
$py2 N(imageCrsDomain($sub, N))
values
condense +
over $kx2 x(imageCrsDomain($kernel2, x)),
$ky2 y(imageCrsDomain($kernel2, y))
where $sub[E($px2), N($py2)] =21
using $kernel1[x($kx2), y($ky2)] * $sub[E($px2+$kx2), N($py2+$ky2)], 2.0
) ),"image/tiff")
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Q30 Using the Sobel Operator on two SIAM™ categories (forming a 
composite category and potentially a real-life class) by defining two 
Boolean conditions in the where-clause of each coverage condenser

Query for $s in (siam)
let  $sub  :=  $s[  E(340230:341230),  N(6039800:6040800),  ansi("2017-06-
19T00:00:00.000Z")],
$kernel1 := coverage kernel1
over $x x(-1:1), $y y (-1:1)
value list < 1; 0; -1; 2; 0; -2; 1; 0; -1>,
$kernel2 := coverage kernel2
over $x x(-1:1), $y y (-1:1)
value list < 1; 2; 1; 0; 0; 0; -1; -2; -1>
return encode( sqrt(
pow( coverage Gx
over $px1 E(imageCrsDomain($sub, E)),
$py1 N(imageCrsDomain($sub, N))
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values
condense +
over $kx1 x(imageCrsDomain($kernel1, x)),
$ky1 y(imageCrsDomain($kernel1, y))
where $sub[E($px1), N($py1)] =21 or $sub[E($px1), N($py1)] =30
using $kernel1[x($kx1), y($ky1)] * $sub[E($px1+$kx1), N($py1+$ky1)], 2.0) 
+ 
pow( coverage Gy
over $px2 E(imageCrsDomain($sub, E)),
$py2 N(imageCrsDomain($sub, N))
values
condense +
over $kx2 x(imageCrsDomain($kernel2, x)),
$ky2 y(imageCrsDomain($kernel2, y))
where $sub[E($px2), N($py2)] =21 or $sub[E($px2), N($py2)] =30
using $kernel1[x($kx2), y($ky2)] * $sub[E($px2+$kx2), N($py2+$ky2)], 2.0) 
),"image/tiff")
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Q31 Using the Sobel Operator on just one SIAM™ category by defining a 
Boolean condition in the using-clause of each coverage condenser

Query for $s in (siam)
let $sub := $s[ E(340230:341230), N(6039800:6040800), ansi("2017-06-
19T00:00:00.000Z")],
$kernel1 := coverage kernel1
over $x x(-1:1), $y y (-1:1)
value list < 1; 0; -1; 2; 0; -2; 1; 0; -1>,
$kernel2 := coverage kernel2
over $x x(-1:1), $y y (-1:1)
value list < 1; 2; 1; 0; 0; 0; -1; -2; -1>
return 
encode(
sqrt(
pow(
coverage Gx
over $px1 E(imageCrsDomain($sub, E)),
$py1 N(imageCrsDomain($sub, N))
values
condense +
over $kx1 x(imageCrsDomain($kernel1, x)),
$ky1 y(imageCrsDomain($kernel1, y))
using $kernel1[x($kx1), y($ky1)] * ($sub[E($px1+$kx1), N($py1+$ky1)]=21 ), 
2.0
) 
+ 
pow( 
coverage Gy
over $px2 E(imageCrsDomain($sub, E)),
$py2 N(imageCrsDomain($sub, N))
values
condense +
over $kx2 x(imageCrsDomain($kernel2, x)),
$ky2 y(imageCrsDomain($kernel2, y))
using $kernel1[x($kx2), y($ky2)] * ($sub[E($px2+$kx2), N($py2+$ky2)]=21 ) ,
2.0
) 
)
,"image/tiff")
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Q32 Using the Sobel Operator on two SIAM™ categories (forming a 
composite category and potentially a real-life class) by defining two 
Boolean conditions in the using-clause of each coverage condenser

Query for $s in (siam)
let $sub := $s[ E(340230:341230), N(6039800:6040800), ansi("2017-06-
19T00:00:00.000Z")],
$kernel1 := coverage kernel1
over $x x(-1:1), $y y (-1:1)
value list < 1; 0; -1; 2; 0; -2; 1; 0; -1>,
$kernel2 := coverage kernel2
over $x x(-1:1), $y y (-1:1)
value list < 1; 2; 1; 0; 0; 0; -1; -2; -1>
return encode( sqrt(
pow( coverage Gx
over $px1 E(imageCrsDomain($sub, E)),
$py1 N(imageCrsDomain($sub, N))
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values
condense +
over $kx1 x(imageCrsDomain($kernel1, x)),
$ky1 y(imageCrsDomain($kernel1, y))
using $kernel1[x($kx1), y($ky1)] * ($sub[E($px1+$kx1), N($py1+$ky1)]=21 or
$sub[E($px1+$kx1), N($py1+$ky1)]=30), 2.0) 
+ 
pow( coverage Gy
over $px2 E(imageCrsDomain($sub, E)),
$py2 N(imageCrsDomain($sub, N))
values
condense +
over $kx2 x(imageCrsDomain($kernel2, x)),
$ky2 y(imageCrsDomain($kernel2, y))
using $kernel1[x($kx2), y($ky2)] * ($sub[E($px2+$kx2), N($py2+$ky2)]=21 or
$sub[E($px2+$kx2), N($py2+$ky2)]=30) , 2.0) 
),"image/tiff")
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Q33a Creating the mask coverage on which the Sobel filter should be applied 
by using a switch statement

Query for $s in (siam)
let  $sub  :=  $s[  E(340230:341230),  N(6039800:6040800),  ansi("2017-06-
19T00:00:00.000Z")],
$mask :=  coverage mask
                 over $mx1 E(imageCrsDomain($sub, E)),
                         $my1 N(imageCrsDomain($sub, N))
                 values switch 
                  case ($sub[E($mx1), N($my1)] = 21 or  $sub[E($mx1), 
                           N($my1)] = 24) return 1
                  default return 0
return encode( $mask ,"image/tiff")

Note • In the output image, the white areas have a value of 1, the black areas
a value of 0

• The coverage constructor requires that axes are given in image 
coordinates. Currently it is not possible to retain or define a 
geographic CRS for a coverage produced in such a way.

Result
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Q33b Testing the Sobel filter on the mask created by a coverage constructor 
using a switch statement in the values clause. Note that to speed up the
processing time, applying only the horizontal edge detector kernel 1 
was tried.

Query for $s in (siam)
 let $sub := $s[ E(340230:341230), N(6039800:6040800), ansi("2017-06-
19T00:00:00.000Z")],
$kernel1 := coverage kernel1
         over $x x(-1:1), $y y (-1:1)
                   value list < 1; 0; -1; 2; 0; -2; 1; 0; -1>,
$mask :=  coverage mask
                 over $mx1 E(imageCrsDomain($sub, E)),
                         $my1 N(imageCrsDomain($sub, N))
                  values switch 
                  case ($sub[E($mx1), N($my1)] = 21 or  $sub[E($mx1), 
                           N($my1)] = 24) return 1
                  default return 0
return 
encode(
sqrt(
pow(
    coverage Gx
    over $px1 E(imageCrsDomain($mask, E)),
 $py1 N(imageCrsDomain($mask, N))
    values 
    condense +
    over $kx1 x(imageCrsDomain($kernel1, x)),
     $ky1 y(imageCrsDomain($kernel1, y))
     using ($kernel1)[x($kx1), y($ky1)] * 
     ($mask)[E($px1+$kx1), N($py1+$ky1)], 2.0)
)
,"image/tiff")

Result The query run for more than an hour and returned the following exception:

<ows:Exception exceptionCode="RasdamanError">
        <ows:ExceptionText>Failed closing rasdaman db connection: 
RasManager Error: Could not connect to RasServer .</ows:ExceptionText>
    </ows:Exception>
    <ows:Exception exceptionCode="RasdamanError">
        <ows:ExceptionText>Failed internal rasql query: 

lxix



%query%</ows:ExceptionText>
    </ows:Exception>

Q34a Creating a mask coverage on which the Sobel filter should be applied 
by only using conditions in the values clause of the coverage 
constructor

Query for $s in (siam)
let $sub := $s[ E(340230:341230), N(6039800:6040800), ansi("2017-06-
19T00:00:00.000Z")],
$mask := coverage mask
                over $mx1 E(imageCrsDomain($sub, E)),
      $my1 N(imageCrsDomain($sub, N))
                values 
                $sub[E($mx1), N($my1)] = 21 or
                $sub[E($mx1), N($my1)] = 24 
return 
encode(
$mask 
,"image/tiff")

Result The result image looks the same as in Q33a, but while black values have 
also a value of 0, the white areas have a value of 255.

Q34b Testing the Sobel filter on a mask created based on a coverage 
constructor with conditions in the value clause. Note that to speed up 
the processing time, applying only the horizontal edge detector kernel 1
was tried.

Query for $s in (siam)
let $sub := $s[ E(340230:341230), N(6039800:6040800), ansi("2017-06-
19T00:00:00.000Z")],
$kernel1 := coverage kernel1
         over $x x(-1:1), $y y (-1:1)
                   value list < 1; 0; -1; 2; 0; -2; 1; 0; -1>,
$mask := coverage mask
                over $mx1 E(imageCrsDomain($sub, E)),
      $my1 N(imageCrsDomain($sub, N))
                values 
                $sub[E($mx1), N($my1)] = 21 or
                $sub[E($mx1), N($my1)] = 24 
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return encode(
    sqrt(

pow(
    coverage Gx
    over $px1 E(imageCrsDomain($mask, E)),
         $py1 N(imageCrsDomain($mask, N))
         values
         condense +
         over $kx1 x(imageCrsDomain($kernel1, x)),
          $ky1 y(imageCrsDomain($kernel1, y))
         using $kernel1[x($kx1), y($ky1)] * 
                  ($mask)[E($px1+$kx1), N($py1+$ky1)], 2.0 )
    )
    ,"image/tiff")

Result Resulted in the same exception as Q33b.
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