
Master Thesis
submitted within the UNIGIS MSc programme

Interfaculty Department of Geoinformatics - Z_GIS
University of Salzburg

A Semantic Data Cube in Rasdaman
Building a geodata cube from semantically enriched

satellite imagery and querying it with WCPS

by

M.Sc. Lena Elisabeth Krupp
104014

A thesis submitted in partial fulfilment of the requirements of
the degree of

Master of Science – MSc

Advisor:

Dr. Martin Sudmanns

Rostock, 30.04.2022

Science Pledge

I hereby declare that the thesis is entirely the result of my work. I have cited all sources I

have used in my thesis, I have always indicated their origin. This thesis was not previously

presented to another examination board and has not been published.

Rostock, 30.04.2022

ii

Acknowledgments

I would like to thank Dirk Tiede and especially Martin Sudmanns for the excellent

supervision of this thesis. I would also like to thank the rasdaman developers Bang Pham

Huu, Dimitar Misev and Peter Baumann for the feedback and solutions for my questions

posed in the rasdaman user group.

Ich bedanke mich bei Daniel Glup für seine allgemeine Unterstützung, sein offenes Ohr

und Kartoffelgratin. Bei Utz Fleischer für seinen Humor. Bei Justus Winter für erhellende

Gespräche. Und bei Dorle Osterode für schnelle Korrekturen, Inspiration und vor allem

dem Interesse an dieser Arbeit.

iii

Abstract

Nowadays, there are a variety of ways to get free access to satellite imagery of various

Earth Observation missions via the Internet. The sheer mass of data often makes it difficult

for users to search for the content that is relevant to them in a targeted manner. The

classic web interfaces of satellite image providers do not have image understanding

capabilities, which is why the filter options for selecting satellite scenes are limited to

metadata and image-wide overview statistics. To remedy this shortcoming, the University

of Salzburg used Open Data Cube (ODC) technology to develop several prototypical

semantic data cubes that enable users to query Sentinel-2 data based on the image

content. In their data cubes, satellite scenes are preclassified into categories representing

semi-concepts equal or inferior to real-world classes using the Satellite Image Automatic

Mapper™ (SIAM™) software. Those semi-concepts can be used as model building blocks

for deriving real-world classes. However, this promising approach is not yet interoperable,

which means that queries are limited to their existing ecosystem and cannot be applied to

data cubes built with other technology. The aim of this work is to test how the concept of a

semantic data cube developed by the University of Salzburg can be combined with the

interoperability standards of the Open Geospatial Consortium (OGC) in order to promote

the general accessibility of semantic data cube queries. The array database management

system (DBMS) rasdaman supports OGC's standardized Web Coverage Processing

Service (WCPS), a coverage processing language that enables the retrieval of raster data

or information derived from such data from data cube hosting servers. This thesis shows

how a semantic data cube can be implemented with rasdaman and how WCPS can be

used in combination with SIAMTM semi-categories in order to build semantic queries.

iv

Zusammenfassung

Heutzutage gibt es eine Vielzahl von Möglichkeiten, über das Internet freien Zugang zu

Satellitenbildern verschiedener Erdbeobachtungsmissionen zu erhalten. Die schiere

Masse an Daten erschwert es Nutzern oft, gezielt nach den für sie relevanten Inhalten zu

suchen. Die klassischen Weboberflächen von Satellitenbildanbietern verfügen über keine

Bildverständnisfunktionen, weshalb sich die Filtermöglichkeiten zur Auswahl von

Satellitenbildszenen auf Metadaten und bildweite Übersichtsstatistiken beschränken. Um

dieses Manko zu beheben, entwickelte die Universität Salzburg mithilfe der Open Data

Cube-Technologie (ODC) mehrere prototypische semantische Datenwürfel, mit denen

Benutzer Sentinel-2-Daten basierend auf dem Bildinhalt abfragen können. In ihren

Datenwürfeln werden Satellitenszenen mit der Satellite Image Automatic Mapper™

(SIAM™) Software in als "Semi-Konzepte" bezeichnete Kategorien vorklassifiziert. Semi-

Konzepten können eine reale Klasse abbilden, sind aber in vielen Fällen Vorprodukte die

nicht als vollwertige Klassen behandelt werden, sondern als Modellbausteine für die

Ableitung realer Klassen verwendet werden. Dieser vielversprechende Ansatz ist jedoch

noch nicht interoperabel, was bedeutet, dass Abfragen auf ihr bestehendes Ökosystem

beschränkt sind und nicht mit auf anderer Technologie basierenden Datenwürfeln

kombiniert werden können. Das Ziel dieser Arbeit ist, zu testen, wie das Konzept eines

semantischen Datenwürfels der Universität Salzburg mit Interoperabilitätsstandards des

Open Geospatial Consortium (OGC) kombiniert werden kann, um die allgemeine

Zugänglichkeit von semantischen Datencube-Abfragen zu fördern. Das Array Database

Management System (DBMS) rasdaman unterstützt den standardisierten Web Coverage

Processing Service (WCPS) von OGC, eine Coverage-Verarbeitungssprache, die den

Abruf von Raster-Daten oder daraus abgeleiteten Informationen von den Hosting-Servern

des Datenwürfels ermöglicht. Diese Arbeit zeigt, wie ein semantischer Datenwürfel mit

rasdaman implementiert werden kann und wie WCPS in Kombination mit SIAM™-Semi-

Kategorien verwendet werden kann, um semantische Abfragen zu erstellen.

v

Table of Contents

Acronyms...ix

1 Introduction...1

2 Background...6

2.1 Semantic data cubes based on SIAM™ semi-concepts...6

2.2 Rasdaman..11

2.3 Big raster data and standards to work with them..14

2.4 WCPS Syntax in rasdaman...17

2.4.1 Sources of information about WCPS in rasdaman..17

2.4.2 Executing WCPS queries...18

2.4.3 General query structure of WCPS..20

2.4.4 WCPS metadata/probing functions in rasdaman...23

2.4.5 Further WCPS constructs...25

3 Methods...26

3.1 Hardware setup and rasdaman installation...26

3.2 Data sets..26

3.3 Importing images with wcst-import.sh...29

3.4 Querying categorical data with WCPS in rasdaman...32

4 Results..34

4.1 Building the cube...34

4.2 Example queries tested..35

4.2.1 Structure of the results presented..35

4.2.2 Descriptive statistics of a 2D image...35

4.2.3 Simple selection and display of (composite) categories....................................37

4.2.4 Fusing Sentinel-2 and SIAM™ data sets...38

4.2.5 Investigating categorical trajectories..40

4.2.6 Time series analysis...41

4.2.7 Edge detection based on categorical data...45

5 Discussion...48

6 Conclusion..52

vi

References..ix

Appendix A - WCPS Syntax...xv

A.1 Coverage Subsetting...xv

A.2 Let Clause..xvii

A.3 Deriving single bands and Multiband Constructor...xvii

6.1 A.4 Induced Operations...xviii

A.5 Conditional evaluation/Case distinction..xix

A.6 General Coverage Constructor...xix

A.7 Aggregation operations...xxi

A.8 Combining constructor and aggregation queries..xxiii

A.9 Coverage Filtering with where..xxiv

A.10 Clipping..xxv

A.11 Additional Functions..xxvi

Appendix B - Images in the data cube...xxviii

Appendix C - Ingredient files for data import..xxxv

C.1 Ingredients file for importing Sentinel-2 data...xxxv

C.2 Ingredient file for importing SIAM™ data..xxxvi

Appendix D - WCPS queries tested..xxxvii

D.1 Descriptive statistics of a 2D image...xxxvii

6.2 D.2 Simple selection and display of (composite) categories......................................xl

D.3 Fusing Sentinel-2 and SIAM™ data sets...xliv

D.4 Investigating categorical trajectories..l

6.3 D.5 Time series analysis...lviii

D.6 Edge detection based on categorical data...lxii

vii

Table of Figures

Figure 2.1 The Rasdaman architecture...13

Figure 2.2 WCPS console available under http://localhost:8080/rasdaman/ows................19

Figure 3.1 Area of the Sentinel-2 granule used...28

Figure 3.2 Data importing process with wcst_import.sh..31

Figure 4.1 Sobel operation...45

Figure 4.2 Subregion used to test the Sobel operator in WCPS on SIAM™ semi-concepts

in order to discriminate land from water...46

Index of Tables

Table 2.1 The 33 SIAM™ semi-concepts derived from Sentinel-2 data................................9

Table 2.2 Basic WCPS queries..22

Table 2.3 WCPS probing functions in rasdaman...23

Table 2.4 Probing functions not yet implemented in rasdaman...24

Table 4.1 A cube with seasonal regularity..43

viii

Acronyms

AOI Area of Interest

ARD Analysis Ready Data

BOA Bottom of atmosphere reflectance

CRS Coordinate Reference System

DBMS Data Base Management System

EO Earth Observation

EPSG The EPSG Geodetic Parameter Dataset is a public registry of geodetic

datums, spatial reference systems, Earth ellipsoids, coordinate

transformations and related units of measurement originally created by the

European Petroleum Survey Group. Each entity has an unique EPSG code by

which it can be referenced

GUI Graphical User Interface

MDD Multidimensional Discrete Data

MIME

type

A MIME type specifies a media type definition (acronym derived from

Multipurpose Internet Mail Extensions) indicating the nature and format of a

document, file, or assortment of bytes. Examples for MIME types are ‘text/csv’

or ‘image/tiff’

MSI Sentinel-2's multi-spectral instrument

ODC Open Data Cube

OGC Open Geospatial Consortium

OWS OGC Web Services

QGIS Free and Open Source Desktop Geographical Information System, formerly

known as ‘Quantum GIS’

SCBIR Semantic Content-Based Image Retrieval

SIAMTM Satellite Image Automatic Mapper™ (SIAM™) software for preclassifying

ix

optical satellite data

TCI Sentinel-2 True Color Image

TOA Top of atmosphere reflectance

WCPS Web Coverage Processing Service

WCS Web Coverage Service

WCS-T Web Coverage Service – Transaction Extension

WFS Web Feature Service

WKT Well Known Text

WMS Web Map Service

XML Extensible Markup Language

x

1 Introduction

Since the launch of the first Landsat satellite in July 1972, satellite remote sensing has

provided valuable information about the state and evolution of Earth's surface, contributing

to provide us insights into the physical and socio-economic processes that shape our

world. Throughout the history of remote sensing, the degree to which civil users could

profit from satellite data has always been connected to its availability and accessibility.

This was and still is strongly but not solely determined by the state of the art technology.

For example, albeit accessible for civilian use, the costs of acquiring satellite images

remained a limiting factor for scientists from those early days until the first decade of this

century, with prizes fluctuating considerably in periods in which the system was state

owned and in which it was privatized (Morain, 1998). Widespread use of satellite images

only began with the opening of the free Landsat archive in 2008. As it proofed beneficial

for creating economic value, this concept was later adapted by other national and

international Earth Observation (EO) programs (Zhu et al., 2019), the most well-known

probably being the freely available data from the Copernicus program of the European

Union, which sent it’s first satellite Sentinel-2A into Earths atmosphere in June 2015 (The

Sentinel missions, 2021). With the increase in the number of freely available satellite

images, the number of people using the data increased significantly and the user base

expanded from remote sensing specialists to scientists that were not necessarily experts in

remote sensing but came from other domains such as Biology, Ecology, Geology or Marine

Science (Sudmanns, Lang and Tiede, 2018).

Today, the remote sensing community is in the middle of a process of adapting to the

sheer amount of data available that presents both an opportunity and a challenge for using

satellite data effectively. With images coming from several hundreds of EO satellite

sensors and comprising a huge variety of spatial, temporal, radiometric and spectral

resolutions, the volume of overall remotely sensed data today is estimated by the Open

Geospatial Consortium (OGC) to be likely surpassing one exabyte. Producing, processing

and transmitting such big EO data at high velocity leads to high technological requirements

for the storing, loading and processing capacity of infrastructures (Ma et al., 2015; Esbrí,

2021). Traditionally, storage was connected to high costs. Thus remotely sensed data has

mostly been stored in raw form on tape storage infrastructures hosted by various

1

Government Agencies. This made retrieval and data preparation tedious and time

consuming. Consequently, only a small portion of the available images was being used,

coining the term ‘dark data’ for the large amounts of potentially useful data not considered

in research (Purss et al., 2015). During the last years, a lot of work has been going into

developing reliable infrastructure capable of efficiently storing, organizing, analyzing and

retrieving large amounts of data. Since the handling of image data from satellite-based

sensors is essential for EO, structures that deal with raster data are of utmost importance.

Different approaches for storing and handling large amounts of raster data exist today. For

example, raster data could be managed in data warehouse software systems such as

Hive, Apache Spark and ClimateSpark, in a NoSQL database management system

(DBMS) like MongoDB, or in an array-based DBMS such as rasdaman and SciDB

(Baumann et al., 1998; Thusoo et al., 2009; Stonebraker et al., 2013; Zaharia et al., 2016;

Hu et al., 2018; Bradshaw, Brazil and Chodorow, 2019). In the remote sensing community,

organizing satellite images in a data cube has proven to be a very useful structuring tool

that has become increasingly popular over the last years (Baumann et al., 2019).

Data cubes can be described as massive multi-dimensional arrays containing gridded data

(raster data) organized along dimension axes (Baumann et al., 2019). A cube supports at

least one through four spatial, temporal and other dimensions, but may have even more

(Baumann, 2017). A Geospatial Data Cube necessarily comprises two or three spatial

dimensions, and a data cube used for EO has at least one non-spatial dimension, e.g. time

(Sudmanns, Lang and Tiede, 2018). Organizing data in a cube does not only have the

advantage of avoiding the traditional cumbersome looking through files stored in a file

system with metadata encoded in file and directory names, but allows neat slicing and

dicing, filtering, aggregation, and even ad hoc analysis of the data. This is extremely

powerful when coupled with remotely sensed analysis ready data (ARD) that has

undergone a series of corrections, from radiometric to geographic processing, making the

data more accessible to a wider public of non-remote sensing experts (Killough, 2019;

Kopp et al., 2019). A data cube containing ARD can function as a data center where data

is served according to the needs of the users who can query exactly the data or results

they need without the need for excessive downloads or in some cases, without any

downloads at all (Baumann et al., 2019). Using data cubes as web-based access points or

‘geospatial web services’ is a step away from traditional geoscience applications that have

2

been developed for siloed environments towards distributed services fostering technical

interoperability and thus accessibility – from GISystems to GIServices (Yue et al., 2015).

Standards for implementing web services dealing with raster data have been developed by

the OGC and are currently in the process of being improved and extended, such as OGC

Web Map Service (WMS), Web Coverage Service (WCS) and Web Coverage Processing

Service (WCPS) (Wagemann et al., 2018).

Several data cubes are used in the remote sensing community today, implementing OGC

standards to different levels. The multidimensional database system rasdaman (Raster

Data Manager) already existed in the 90s (Baumann, 1994; Baumann et al., 1998). While

the data cube was originally derived from the OLAP (Online Analytical Processing) cubes

for business and statistic applications (Baumann et al., 2021; Strobl et al., 2017),

rasdaman developers sought to close the technological gap that hindered the use of

database technology in scientific applications due to a lack of support for ordered data

structures in database management systems. It is not explicitly designed for geodata but

for a variety of scientific disciplines (Baumann and Holsten, 2011). Another well-known

data cube project that targets science in general and can handle satellite data is SciDB

(Stonebraker et al.; 2013, Joshi et al., 2019). A third popular cube, Open Data Cube (ODC)

has it’s origins closer tied to geosciences: It is inspired of and extended from the Australian

Geoscience Data Cube, that marked an important step in the advancement of data cube

technology as it showed how big time series of satellite images could effectively be stored

and worked with. Referring to this best practice example, the Committee on Earth

Observations Satellites’ (CEOS) data cube team established the Open Data Cube initiative

to foster the creation of similar data cubes (ODC, 2018; Kopp et al., 2019).

Currently, the potential of semantic data cubes for EO is being researched at the

Department of Geoinformatics at the University of Salzburg, known as Z_GIS. A semantic

data cube can be defined as 'a spatio-temporal data cube containing EO data, where for

each observation at least one nominal (i.e., categorical) interpretation is available and can

be queried in the same instance', an approach that goes beyond providing ARD (Augustin

et al., 2019). While optical EO data might be ARD, it is still merely digital numbers

representing spectral values. It has to go through further processing in some way to make

it meaningful, useful, valuable and relevant to become information and/or even knowledge.

3

(Rowley, 2007; Sudmanns, Lang and Tiede, 2018). In a semantic data cube, EO data has

gone through an interpretation process that loaded a satellite scene with meaning. This is

also called semantic enrichment. At Z_GIS, Sen2Cube.at was developed as the prototype

of a web-application that allows users to access several semantic data cubes and provides

a Graphical User Interface (GUI) to interact with them (Sudmanns et al., 2021). While

smaller cubes have been designed for subregions of Syria and Afghanistan, the main data

cube accessible on the Sen2Cube.at platform is a cube of Austria comprising semantically

enriched categorical Sentinel-2 satellite data from the start of the mission until today. To

produce the semantically enriched layers, the Satellite Image Automatic Mapper (SIAM™)

software was used on the input Sentinel-2 data that provides sensor-agnostic classification

capabilities. SIAM™ separates pixels into categories based on their spectral

characteristics using a prior knowledge-based decision-tree preliminary classifier. This

works automatically and in near real-time (Baraldi, 2019). It should be emphasized, that

the resulting categories are not equivalent to real world land cover classes a user might be

interested in. Instead, the resulting semantic categories are regarded as generic 'semi-

concepts' equal or inferior to land cover classes but globally valid (Baraldi and Boschetti,

2012a; Augustin et al., 2018). These semi-concepts can be combined much like building

blocks to create models that produce real-world land cover classes of interest for a specific

EO task. (Augustin et al., 2018). In Sen2Cube.at models can be build using a model

builder GUI (Sudmanns et al., 2021). They are stored within the application and are

reusable. This way, a model can be applied to different data cubes that might be based on

different sensor data, as long as semantic enrichment was done in the same way. This

ultimately allows for automatic processing. In Sen2Cube.at, the original data and their

derived first stage information SIAM™ layers as well as optional additional layers such as

a Digital Elevation Model (DEM) stored in the cube are therefore called the ‘factbase’. In

addition, there is also the knowledgebase, in which the models are stored as rules. An

inference engine allows to combine the two by applying the rules to the facts (Sudmanns

et al., 2021). Successfully processed inferences can be downloaded either as TIFF file or

as QGIS project. Additionally, an OGC WMS link is provided.

Even though an early approach for a semantic data cube has been created using

rasdaman (Sudmanns et al., 2017), Z_GIS now has adopted Open Data Cube as the

underlying technology for this purpose. Open Data Cube provides a common analytical

4

framework with a series of data structures and tools to facilitate the organization and

analysis of large gridded data collections (ODC, 2021). Sen2Cube.at is accessible to

people who aren't used to programming and working with command-line interfaces, as it

allows you to create models and start inferences with a GUI. However, it still remains an

isolated environment to some extent. Even though there is the possibility to add a web

service extension to ODC, Sen2Cube.at does currently not support geospatial standards

like OGC WCS and WCPS that foster interoperability between geographic information

systems. The increasing number of platforms providing access to EO data holds the

negative potential of developing a user-unfriendly landscape of geo-applications in which

users have to tediously apply separate workflows for each system. In other words

‘Standalone array stores form just another silo, even with query capabilities’ (Baumann et

al., 2021). This is where the important role of interoperability becomes evident.

Interoperability can be described as the ‘The ability of systems to provide services to and

accept services from other systems and to use the services so exchanged to enable them

to operate effectively together’ ISO TC204, document N271 as cited by (Kuhn, 2005). The

extent to which remote sensing data and derived products will be accessible to a wide

range of users in the future will be positively influenced if standardized interfaces are

omnipresent in geodata technology.

This work aims to explore how semantic image retrieval can be combined with the concept

of interoperability to enable better general accessibility of EO data. It investigates how the

concept of a data cube semantically enriched with SIAMTM can be applied to an array

DMBS with OGC WCPS capabilities in order to find out whether WCPS provides adequate

functionality to deal with semantic semi-concepts. As system, the rasdaman array DBMS

was chosen, as it is the reference implementation for OGC WCS and in addition, supports

WCPS. With the exception of a data cube set up to test the observation of flooding events

in Somalia (Sudmanns et al., 2017), no semantic data cube has been realized so far with

rasdaman. Two topics were researched. First, the process of building a cube by loading

semantically enriched SIAMTM layers together with Sentinel-2 data into a rasdaman array

database was explored. As a proof of concept for a working semantic data cube, a small

prototype of a cube with only one Sentinel granule and 13 satellite scenes was

implemented. Second, it was examined how the WCPS constructs currently implemented

in rasdaman can be used to query SIAMTM semi-concepts. The goal was to develop

5

sample queries that could be components of models intended to map real-world land cover

classes, similar to what can be done in Sen2Cube.at.

The thesis is structured as follows: Chapter 2 provides background information on the

approach of creating a semantic data cube based on SIAMTM classification, rasdaman's

technological structure as well as OGC standards. Special attention is paid to the OGC

WCPS query language. It's syntax as implemented in rasdaman is explained in a quite

detailed manner Chapter 2.4 and appendix A in order to foster better understanding of

queries presented in the result part. Chapter 3 demonstrates the actual data structure

setup as it gives an overview over the system and data sets used (all images can be

viewed in appendix B), presents the conceptual data cube model used in this thesis and

describes the data import process applied. In addition, six topics for which queries were

tested are presented. The queries examined consisted only of those that returned results

with 0 to 2 dimensions. In Chapter 4, the testing results are depicted. This includes the

description of caveats for the process of loading data into the rasdaman array store as well

as the presentation of sample queries tested. For readability reasons, import scripts and

the code of the tested queries have been largely outsourced to Appendices C and D. In

Chapter 5, the results are further analyzed with regard to the strengths, weaknesses,

future opportunities and potential obstacles of using rasdaman with SIAMTM data, before

the work is summarized in the final chapter.

2 Background

2.1 Semantic data cubes based on SIAM™ semi-concepts

Offering free available satellite images, processed in an ARD manner and stored

conveniently in data cubes that can be accessed via web interfaces, has facilitated access

to remotely sensed satellite data and fostered general awareness of available data which

has been argued as contributing to ‘democratizing’ satellite data (Kopp et al., 2019).

However, to become truly accessible to a broad range of users that are no remote sensing

experts, producing retrievable information goes beyond producing ARD. Even though

many possibilities to access satellite data exist, relevant data can be hard to find in the

vast amount of data offered online. Some Content Based Image Retrieval (CBIR)

6

mechanisms based on metadata in the form of text information or image-wide summary

statistics are integrated into web interfaces offering satellite images such as the Earth

Explorer platform (EarthExplorer, n.d.) run by the US Geological Survey (USGS) or the

EO browser featured at the Sentinel Scientific Data Hub (Sentinel-hub EO-Browser, n.d.)

run by the European Space Agency (ESA). Here, the scene selection via geographic area

of interest (AOI), timespan and some textual metadata like mission name, image path/row,

data category is possible and helps users to reduce the amount of data they have to look

through for finding relevant data. However, they lack real image understanding capabilities

(Tiede et al., 2017), meaning that a selection of satellite scenes based on the geographical

entities they contain is not possible. A semantic EO data cube that allows for Semantic

Content Based Image Retrieval (SCBIR) is proposed as a solution. In a semantic data

cube, at least one categorical interpretation of it's spectral characteristic is available for

each pixel (Augustin et al., 2019). Filtering scenes can therefore happen on the basis of

these categories.

To be useful for large amounts of data, the generation of a categorical interpretation for a

EO satellite must be as automated as possible. However, this is not an easy task. As

vision is an ill-posed problem in the Hadamard sense, it is not possible to recreate an

unambiguous real world model based on an 2D image by trying to inductively infer it from

spectral pixel information only. When reducing a 4-dimensional world to a 2-dimensional

image, information is lost. The resulting information gap cannot be compensated for by

deriving an interpretation of the world exclusively on the basis of quantitative sensory data,

as this is not sufficient to infer stable symbolic percepts of the world (Tiede et al., 2016).

Each time when using machine learning to derive real world classes from satellite images

for a selected region, manual user input is needed in the form of providing labeled training

or validation data by contributing reference data collected from the field, from existing

maps or from tabular data. Therefore, classification cannot happen in a fully automated

way, making the analysis of large amounts of satellite data costly in terms of labor and

time (Baraldi, Gironda and Simonetti, 2010). To circumvent the problem, a solution inspired

by human vision can be applied. In the much-quoted seminal work of Marr, human vision is

presented as going from a first-stage primal sketch based on feature extraction of

fundamental components of a scene right to symbolic almost immediately and without

losing information (Marr, 1982). To achieve this, the human vision system consists of a

7

preattentive (low-level) vision first phase, in which our brain extracts picture primitives

based on general-purpose image processing criteria independent of the scene under

analysis, and an attentive (high-level) vision second phase, in which our brain operates as

a careful scanning system employing a focus of attention mechanism based on prior

knowledge (Baraldi and Humber, 2014). To process what we see, our brain combines

inductive inference (progressing from particular cases, or sub-symbolic true facts to a

general model of our environment) with deductive inference (progressing from a general

model of the world which is based upon the knowledge acquired through our experience to

a particular case). For example, if we look at a landscape in a park, we could identify a

series of linear lines that border contiguous areas of light and dark color (the sub-symbolic

true facts) as a park bench (entity with meaning also called a ‘symbol'). Based on our

knowledge about the world, we can discriminate it from it's surroundings immediately.

Thus, human vision can be described as 'a symbolic hybrid (combined deductive and

inductive) inference system where (symbolic) prior knowledge is injected into the sensory

data interpretation process starting from the preattentive vision first stage' (Baraldi and

Boschetti, 2012a, 2012b).

It is an important finding, that a priori knowledge of the world needs to be incorporated into

a computer vision system for it to produce useful results (Mulier and Cherkassky (2007) as

cited by (Baraldi and Humber, 2014). It is necessary that top-down knowledge partly

guides lower level processing, as is the case in a hybrid system (Vecera and Farah, 1997).

The Satellite Image Automatic Mapper™ (SIAM™) software used to produce classified

input raster layers for the Sen2Cube.at data cubes as well as for the data cube of this

thesis mimics the preattentive first phase of human vision. It’s output can thus be viewed

as the ‘primal sketch’ of a semantic interpretation of the input satellite scene. SIAM™ is a

preclassifier of satellite data that does not require any user input in the form of training and

supervision to run. Instead, it relies on spectral categorization through following non-

adaptive decision trees that are based on prior knowledge. The resulting symbolic

preattentive categories belong to a discrete, mutually exclusive and finite set of fuzzy

semi-concepts which are greater than zero and equal or inferior to a real world class

(Baraldi and Boschetti, 2012b, 2012a). In other words, they have a 1:1 or many:1

relationship to a real world class. Mapping back from such a SIAM™ preliminary

classification map to the input image value domain should create a piecewise constant

8

approximation of the input scene much like an edge-preserving smoothing filter with image

details that represent high spatial-frequency components clearly recognizable (Baraldi and

Boschetti, 2012a). The SIAM™ classification system is pixel-based and as such relies

purely on spectral (color) information and is insensitive to context such as size, shape,

location, texture and semantic information. No reference data set or supervised data

learning mechanism is used (Baraldi et al., 2006). SIAM™ is sensor-agnostic when it

comes to handle data that has been calibrated to Top-of-Atmosphere (TOA) reflectance,

but it’s input requirements are based on Landsat high-resolution data. When used with

Sentinel-2 data, six bands of the sensor’s multi-spectral instrument (MSI) are used to

derive SIAM™ categories. These are the blue, green, red and near infrared band as well

as two medium infrared bands which are resampled from 20m pixels to 10m pixels to meet

the input criteria. A constant is working as an input placeholder for the thermal band, which

Sentinel-2’s MSI does not possess but is included to apply additional thermal decision

rules in SIAM™ with other sensors (Augustin et al., 2018; Baraldi and Boschetti, 2012).

Following the SIAM™ decision rules, the Sentinel-2 bands are converted to several

products: four semi-concept granularities providing 18, 33, 48 and 96 symbolic variables

(categories) as well as four additional information layers comprising sub-symbolic

variables. These are the ‘binary vegetation mask’ based on the vegetation-related semi-

concepts, the ‘pentanary haze mask’, a greenness index and panchromatic brightness

image. Furthermore, text files providing image-wide summary statistics are produced

(Augustin et al., 2018; Baraldi, 2019) Only the 33 categories product has been used for

this thesis. Table 2.1 shows the categories together with their ID and short name. The

SIAM™ raster layer gets returned in pseudo-colors that match what people generally

associate with a semi-concept (e.g. green for vegetation related semi-concepts, blue for

water-related semi-concepts etc.).

Table 2.1 The 33 SIAM™ semi-concepts derived from Sentinel-2 data. Adapted from

(Sen2Cube.at Manual, 2022)

N° Spectral Category Short

1 Strong vegetation with high NIR SVHNIR

2 Strong vegetation with low NIR SVLNIR

3 Average vegetation with high NIR AVHNIR

9

4 Average vegetation with low NIR AVLNIR

5 Weak vegetation WV

6 Shadow area with vegetation SHV

7 Shrub Rangeland with high NIR SHRBRHNIR

8 Shrub Rangeland with low NIR SHRBRLNIR

9 Herbaceous Rangeland HRBCR

10 Weak Rangeland WR

11 Pit or bog PB

12 Greenhouse GH

13 Very bright barren land or built-up VBBB

14 Bright barren land or built-up BBB

15 Strong barren land or built-up SBB

16 Average barren land or built-up ABB

17 Dark barren land or built-up DBB

18 Weak barren land or shadow area with barren land WBBorSHB

19 Near infrared-peaked barren land or built-up NIRPBB

20 Burned area BA

21 Deep water or shadow DPWASH

22 Shallow water or shadow SLWASH

23 Turbid water or shadow TWASH

24 Salty shallow water SASLWA

25 Cloud CL

26 Smoke plume SMKPLM

27 Thin clouds over vegetation TNCLV

28 Thin clouds over water area or barren land or built-up
areas

TNCLWA_BB

29 Snow or water ice SN

30 Shadow snow SHSN

31 Shadow areas SH

32 Flame FLAME

33 Unknown UN

255 No data NO DATA

10

Due to the ill-posed nature of vision, it is important to stretch that the fuzzy spectral

categories derived by SIAM™ can not be understood as real world classes but can be the

building blocks for them. Semi-concepts derived by SIAM™ still have to be coupled with a

system that acts as an attentive vision second phase. Therefore, the semantic data cube

concept of the Sen2Cube.at platform developed at the University of Salzburg offers users

the opportunity to create rules that combines the SIAM™ semi-concepts in a meaningful

way in order to obtain real land cover classes. In this way, prior knowledge finds its way

into the classification. Once rules have been defined to create land cover classes for a

specific application, they can be saved as a model. Saved models can be used in an

automated way for the fast derivation of real-world land cover classes of Sentinel-2 data.

Chapter 4.2 shows which sample queries were used in this thesis to test whether the

coverage processing standard WCPS is suitable for building models based on SIAMTM

semi-concepts.

2.2 Rasdaman

Rasdaman (Raster Data Manager) is a domain independent array DBMS which is capable

of managing array data of arbitrary size and structure, from medical images to geospatial

data. While it’s conceptual roots date back to the late 80s (Baumann et al., 2021),

rasdaman has been developed since 1996 as a product of a series of EU funded projects.

A commercial version was marketed by the research spin-off rasdaman GmbH since 2003.

Since rasdaman GmbH and Jacobs University teamed up in 2008/2009 there is in an open

source community version onto which the work of this thesis is based (Rasdaman

developers, 2022, Chapter 1). Rasdaman is designed to handle multidimensional data.

While the word ‘cube’ invokes the mental image of three dimensions, the arrays managed

by rasdaman can have 1 to 4 and even more dimensions and are therefore described as

Multidimensional Discrete Data (MDD), as raster data or regularly gridded data.

Sometimes, the description ‘massive multi-dimensional array‘ is used to emphasize on the

capability of a cube to store data of sizes that can go significantly beyond the main

memory resources of the server hardware (Baumann, 2017); (Baumann et al., 2019). The

array possesses n-dimensional axes which allows for unambiguous querying of cell

11

values. Each dimension axis of an array has an extent with an upper and lower bound

known as the axis’ domain. The index values of a domain have to be integers but can be

negative. The cell values (pixel or voxel values depending on the array’s dimension) of the

array can either be a base type as used in the C/C++ language or a composite type

(struct). All values within one array have to have the same type. The possibility to slice and

trim axes allows for a quick access of subsets based on selected timespans and areas of

interest (Baumann, 2017). Several arrays are stored as collections which can be

compared to a table in a relational database but have only two columns/attributes: there is

an object identifier (OID) which is maintained by the rasdaman system, as well as the

array itself (Rasdaman developers, 2022a, Chapter 1). Due to that structure it is possible

to link the arrays via foreign keys with conventional tables and therefore reference

particular array objects or subsets of them by querying a specific domain specification.

Rasdaman partitions arrays into subarrays called tiles and stores each tile either in a file

system directory maintained by rasdaman with metadata stored in an SQLite instance

embedded in rasdaman, or in a binary large object (BLOB) with a spatial index in a

Postgres database that allows to maintain arrays of unlimited size. The storage variant can

be chosen during installation in custom installations. When installing from a preconfigured

package, the SQLite variant is installed by default (Rasdaman developers, 2022a, Chapter

2.5.3). The partitioning scheme can be adapted by the rasdaman user (Rasdaman

developers, 2022a Chapter 1). The rasdaman array management system can be run in a

distributed way on different servers thus leveraging computing power. Figure 2.1 shows its

architecture. There is a central master node, the rasdaman host, which is the central

request dispatcher and controls all server processes. It accepts requests sent by the client

node and assigns server processes to handle them. The server processes are resolving

the assigned requests and produce calls to one or more relational servers each belonging

to a database host. The relational server retrieves the requested data from a relational

data base store and sends it back to the client node using the network (Hu et al., 2018).

12

As the rasdaman array DBMS is domain agnostic, it does not provide specific semantics of

space and time – these are ‘outsourced’ to the rasdaman petascope module, which is built

on top of the array engine (Rasdaman developers, 2022a, Chapter 5). Petascope provides

geospatial query functionality by employing raster related OGC Web Services as

presented in Chapter 2.3. Petascope’s ability to identify, understand and create Coordinate

Reference Systems (CRSs) is based on SECORE (Semantic Coordinate Reference

System Resolver). SECORE was created by the rasdaman developer team from Jacobs

University Bremen. It resolves conforming URLs that contain a CRS ID to their CRS

definitions expressed in Geography Markup Language (GML) available in a BaseX XML

database deployed as registry service (Misev, Rusu and Baumann, 2012). A public registry

service that can be used for deriving CRS definitions is the ‘OGC Definitions Server’ by the

OGC Name Authority. It provides URLs for CRS definitions beginning with

‘https://www.opengis.net/def’ (OGC 09-048r5, 2019; OGC Naming Authority SC, 2022).

For example, a coverage can contain the the URL shown in Listing 2.1. By requesting this

URL, the CRS gets resolved to its GML definition which will help to identify the coverage

as WGS 84.

13

Figure 2.1 The Rasdaman architecture. Retrieved from (Hu et al., 2018)

https://www.opengis.net/def/crs/EPSG/0/4326

Listing 2.1

SECORE is currently operated for the OGC by it’s member rasdaman GmbH and Jacobs

University (Hobona, 2021). When rasdaman is installed, it will install a local BaseX XML

database containing CRS definitions by default, so CRS resolving can also be deployed

locally (rasdaman team, 2022, Chapter 5).

To query data, rasdaman provides the declarative query language rasql that allows for

query rewriting through the server for more efficient requests (Baumann et al., 2021).

Rasql is much like SQL but for multidimensional arrays and is in fact the reference model

for the ISO SQL/MDA (“Multi-Dimensional Arrays”) standard (ISO/IEC 9075-15:2019). On

top of that, querying data in rasdaman can also be done using the OGC standardized

WCPS language. In rasdaman, WCPS querys get internally transformed into rasql queries.

WCPS is closely related to Xquery. Its syntax is presented separately in Chapter 2.4 and

Appendix A.

2.3 Big raster data and standards to work with them

Geodata come in a variety of forms and formats. To foster interoperability between

applications for presenting and processing them, the OGC consisting of enterprises,

government organizations, research organizations and universities in the geospatial

domain, oversees the development of open gesopatial standards (OGC, n.d.). A common

classification of geodata in the GIS world is a separation between 'discrete' vector data

and 'continuous' raster data. Within a vector data model, the spatial characteristics of a

discrete real-world phenomenon like buildings, streams and measurement stations are

represented as one or more geometric primitives such as points, curves, surfaces or solids

(OGC 07-011, 2006). Those primitives are understood to be a geospatial 'feature' (an

abstraction of real world phenomena) with their additional characteristics being stored as

feature attributes (OGC 06-103r4, 2011). Contrary, raster data is used to store real-world

phenomena that vary continuously over space such as temperature, soil composition or

elevation (OGC 07-011, 2006). In fact, a raster is not the only data format that can be used

for storing continuous data. Other formats such as point clouds might be suitable as well,

and therefore the term coverage is applied by the OGC to generally define coverages as

14

'[…] digital geospatial information representing space/time-varying phenomena,

specifically spatio-temporal regular and irregular grids, point clouds, and general meshes'

(OGC 17-089r1, 2018). The defining commonality of these different formats is that the

values stored in them have a geospatial unique position and, moreover, can only accept

values within a clearly defined range: 'A coverage is a feature that associates positions

within a bounded space (its domain) to feature attribute values (its range). In other words,

it is both a feature and a function. […] A coverage may represent a single feature or a set

of features' (OGC 07-011, 2006). They can be multidimensional (OGC 09-146r8, 2019).

Coverage values possess the same type, known as the coverage’s range type. Admissible

types have named components called fields (also known as bands or channels) with a

unique field name which can contain either (atomic) numeric or Boolean types. The range

fields of a coverage are not required to be of the same type (OGC 08-068r3, 2021).

Coverages can be offered via a web service that allow access to resources by specifying

GET or POST HTTP requests. Several OGC standards exists for doing so in a well-

defined manner. For example, OGC WMS is a visualization service that produces 2D

maps targeted at human consumption (rasdaman team, 2022, Chapter 5). Another

example, the OGC WCS provides the core functionality for any web server offering

coverages suitable fur further processing. The primary goal of WCS is to enable simple but

effective data retrieval with the focus on spatio-temporal subsetting, range subsetting (in

some domains equal to "band selection"), reprojection, scaling and data format encoding

(Baumann, 2010). Rasdaman GmbH and Jacobs University Bremen were submitting

organizations of this standard (OGC 17-089r1, 2018). The OGC Web Coverage Service –

Transaction Extension (WCS-T or WCS Transaction) is an extension of the WCS Core that

defines how to modify a WCS server’s coverage offering. Three request are defined (OGC

13-057r1, 2016):

• The ‘InsertCoverage’ request allows to add a coverage as parameter to the WCS

server’s coverage offering which can then be accessed by using WCS operations

• Similarly, ‘DeleteCoverage’ allows to remove a coverage from the WCS offering

• The ‘UpdateCoverage’ request allows to modify parts of a coverage offered by the

WCS server

The OGC Web Coverage Processing Service (WCPS) is defined as a language for

retrieval and processing of multi-dimensional geospatial coverages that might represent

15

sensor, image or statistics data. WCPS offers functionality similar to WCS requests but

goes well beyond that. It is designed to support more powerful processing capabilities

such as advanced extraction and server-side analysis of large, possibly multi-dimensional

coverage repositories. To achieve that, it provides further coverage processing primitives

and allows the nesting of functions which enables arbitrarily complex requests for a range

of imaging, signal processing and statistical operations in order to be rendered, inserted

into scientific models or used in some other client applications (Baumann, 2010; OGC 08-

068r3, 2021). For example, provided that a web service offers a multi-spectral coverage

comprising red and near-infrared bands, a coverage showing the Normalized Difference

Vegetation Index (NDVI) could easily be returned by making use of the WCPS query

capabilities (Baumann, 2010). In fact, in rasdaman WCS is implemented in WCPS (which

in turn is internally implemented in rasql) (Misev, 2020). Both WCS-T and WCPS are

integrated into rasdaman. Notably, rasdaman founder Peter Baumann served as an editor

of WCS-T extension standard and WCPS Language Interface Standard which underlines

the close relationship between software and standard.

16

2.4 WCPS Syntax in rasdaman

2.4.1 Sources of information about WCPS in rasdaman

Chapter 2.4 is dedicated to how WCPS queries are written and executed in rasdaman. In

fact, there is already a lot of material published on this. For example, the official rasdaman

documentation v10.0 is available at https://doc.rasdaman.org/ includes two sections on

WCPS dealing with WCPS syntax (Chapter 5 and Chapter 11) (rasdaman team, 2022).

However, some information on syntax used in this thesis could not be found there and

were derived from other sources closely related to the rasdaman project. For instance, the

possibility to construct a coverage defining a list using < > was featured in the WCPS

standard (OGC 08-068r3, 2021, Chapter 7.1.30). Even though it was not described in the

current rasdaman WCPS documentation it could be found in the rasdaman training

material from EarthServer1. To better understand the WCPS grammar currently

implemented in rasdaman and needed for building the semantic queries that are forming

the objective of this thesis, WCPS constructs were gathered and tested in advance. They

are presented in Chapter 2.4.3 and Appendix A. Wherever possible, a working example is

shown. The sample data used for this is based on the sample files available in petascope

by default when installing rasdaman from a preconfigured package. It is very important to

note that all WCPS constructs have been tested in a rasdaman v10.0.0-beta3 version and

not in a stable release. Some of the problems encountered with queries may have been

solved in the stable version of rasdaman that has since be published, but could not be

taken into account in this work due to time constraints. The following resources about

coverages and WCPS are all created by or are maintained under the responsibility of

rasdaman head developer Peter Baumann and were consulted for the subchapters of this

chapter :

• WCPS standard 1.1 (OGC 08-068r3, 2021)

• Rasdaman web documentation v10.0 , especially Chapter 5.5 and 11.2 (rasdaman

team, 2022)

• (Baumann, 2010)

1 The EarthServer federation is an organization whose members are large-scale Earth data providers. It

offers a single point of access where members can publish their data and services so that they can be

mixed and matched (Earth Server Federation, n.d.)

17

• EarthServer webinars (Baumann et al., n.d.)

• EarthServer Webinars WCPS 1 ‘Introduction to WCPS - Part 1: Basic’ and

‘Introduction to WCPS - Part 2: Advanced‘ uploaded to youtube.com by Peter

Baumann on 29.07.2015 (Baumann and Merticariu, 2015a, 2015b)

• Hands-On Demos about INSPIRE2 conform coverages (Baumann, Schleidt and

Escriu, n.d.) available at https://inspire.rasdaman.org/ (last accessed on

20.04.2022)

• Rasdaman workshop page provided by the rasdaman developer team (Rasdaman

Workshop, n.d.)

• Rasdaman user forum available at https://groups.google.com/g/rasdaman-users

(last accessed 24.04.2022, requires registration)

2.4.2 Executing WCPS queries

In rasdaman, a WCPS request can be submitted to Petascope as GET request using the

WCS GET/KVP protocol binding (Rasdaman developers, 2022, Chapter 5.5.1). For

specifying the WCPS query in a GET/KVP request, either the keyword query or the non-

standard shortcut q can be used (Listings 2.2, 2.3). Only one query parameter in an URL is

allowed.

http://localhost:8080/rasdaman/ows?service=WCS&version=2.0.1&

REQUEST=ProcessCoverage&query=<wcps-query>

Listing 2.2

http://localhost:8080/rasdaman/ows?service=WCS&version=2.0.1&

REQUEST=ProcessCoverage&q=<wcps-query>

Listing 2.3

Rasdaman provides access to several OGC web services (WMS, WCS, WCS-T, WCPS)

via an OGC Web service (OWS) client that gets installed as a servlet with every rasdaman

installation (rasdaman team, 2022, Chapters 2.4.2 and 11.2). It is available under the URL

2 The INSPIRE directive (Infrastructure for Spatial Information in Europe) aims at creating a common

spatial data infrastructure in the EU to form a basis for a common environmental policy (European

Commission, 2022)

18

shown in Listing 2.4. Here, a console can be found into which WCPS queries can be typed

and executed (Figure 2.2).

http://localhost:8080/rasdaman/ows#/services

Listing 2.4

When using the rasdaman OWS client, WCPS queries can be prefixed with the desired

output style (diagram or image) and two right pointing single angle quotation marks (Listing

2.5) that enable the result of the query to be returned directly in the query window as

shown in Figure 2.2 (There is even a possibility of projecting images on a globe by using

the command wwd(specifiedBoundingBox)>>).

19

Figure 2.2 WCPS console available under http://localhost:8080/rasdaman/ows

image >> [WCPS query expression]

Listing 2.5

2.4.3 General query structure of WCPS

Inspired by Structured Query Language (SQL), WCPS was designed to be a declarative

query language that allows for server-side optimization and parallelization. WCPS queries

either written by human users or automatically generated by a client during interaction are

shipped to the data on a server and processed there (Baumann et al., 2019). The

declarative style of the language allows users to define what the result of a query should

look like, rather than dictating each processing step. This makes queries easier to write

and allows servers to flexibly optimize queries by rearranging the evaluation sequence in

order to calculate faster results. WCPS is ‘safe in evaluation’ meaning that every

admissible request can be evaluated in a finite number of steps and will terminate after

finite time (Baumann, 2010). This avoids the possibility of Denial of Service (DoS) attacks

on the level of a single request which, like in SQL, is achieved by avoiding explicit loop and

recursion constructs (Baumann, 2010). Despite this it is possible to send requests with

high workload to a server (OGC 08-068r3, 2021, Chapter 7 Note 2). The language is

semantically closely related to XQuery, a XML query language that is specified by the

World Wide Web Consortium (W3C) for XML databases. A future integration with XQuery

is planned to allow for integrated data and metadata retrieval in WCPS 2.0 (Baumann and

Merticariu, 2015a, 5:25). The heart of a XQuery expression is a FLWOR statement,

meaning that it can contain the following components:

• FOR

• LET

• WHERE

• ORDER

• RESULT

WCPS is based on this schema except that explicit ORDER statements are not currently

implemented to the author's knowledge. The meaning of the individual components will be

explained in more detail in the course of this chapter as well in Appendix A. The current

20

WCPS syntax is defined in the WCPS 1.1 standard published in 2021. To date, not all

constructs are implemented in rasdaman, as currently only WCPS 1.0 is implemented,

WCPS 1.1 being still under work (Baumann, 2022a). In some cases rasdaman does also

feature WCPS functions that are currently not mentioned in the WCPS standard, such as

the clip function explained in Appendix A.

A WCPS processing request consists of a processCoveragesExpr which allows clients to

query of one or more coverages offered on a WCPS server and returns an ordered

sequence of one or more scalar values or coverages (OGC 08-068r3, 2021). The frame for

each WCPS query are the for and the return clause. Queries iterate over lists of

coverages specified in the for clause; here a coverage object A or multiple coverage

objects A, B, C etc. are sequentially tied to an iterator variable $c on which the query is

applied. Prefixing the variable with ‘$’ is not mandatory, but a rasdaman convention to

resemble to a XQuery-style syntax (Baumann, 2010). It is used like this throughout this

thesis. If the query output is a simple scalar or a list of scalars which can be Boolean,

numeric, or a string, it gets returned as ASCII text. If the result is a coverage or a list of

coverages, then a format encoding has to be specified as MIME type using an encode

statement in the return clause (OGC 08-068r3, 2021). Coverage expressions support

multidimensionality but attention has to be paid to chose the right MIME type that can

handle the respective dimensionality of the output for a successful query (Baumann,

2010). For example, a three dimensional output could be stored in a netCDF file but

cannot be stored in a TIFF, so the query would fail if ‘image/tiff’ or ‘tiff’ was specified. The

WCPS standard stipulates that data items returned can have different dimensions,

domains, range types and thus be heterogeneous in size and in structure (OGC 08-068r3,

2021, Chapter 7 Note 3). This is not well implemented in rasdaman v10.0.0-beta3 and

problems were observed when multiple results were to be returned as can be seen in

Table 2.2. WCPS 1.1 also stipulates a store() function that allows an encoded coverage to

be stored on the server side for a retrieval at a later time when specifying the returned URL

(OGC 08-068r3, 2021). However, this function is not available in rasdaman yet. It is

possible to combine coverages. The WCPS equivalent to a SQL join operation is defining

two iterator variables and combining them in queries. This translates to nested loops

(Baumann and Merticariu, 2015b, 8:12; rasdaman team, 2022, Chapter 11.2).

21

Table 2.2 Basic WCPS queries

Syntax Rasdaman Example

for $c in (A)
return scalar

for $c in (mean_summer_airtemp)
return 42

→ 42

for $c in (A, B, C)
return scalar

for $c in (AverageChlorophyll,
AverageTemperature)
return 42

→ 42 42

for $c in (A)
return encode($c, „image/tiff“)

for $c in (mean_summer_airtemp)
return encode($c, "image/tiff")

→ returns the input coverage in tiff format

for $c in (A, B, C)
return encode($c, „image/tiff“)

for $c in (AverageChlorophyll,
AverageTemperature)
return encode(
$c[ansi("2015-01-01T00:00:00.000Z")]
, "image/tiff")

→ Caveat: The result here is likely a bug.
Instead of returning two separate and
distinct tiff files, two times the first coverage
is returned and written into one tiff file. This
results in a broken tiff whose content can be
opened in a text editor, but not with an
image program or a GIS.

for $c in (A)
return store(encode($c, „image/tiff“))

This query should return an URL under
which the server stores the tiff-encoded
result coverage. This functionality is not
implemented in rasdaman yet.

for $a in (A1,,A2,...,An),
 $b in (B1,B2,...Bn),
 ...,
 $n in (N1,N2,...Nn)
return f($a,$b,...,$n)(same as above)

for $c in (AverageTemperature), $d in
(AverageTemperature)
return encode(
 (unsigned char)
 $c.Red[ansi("2012-12-
01T20:07:00.500Z")] * 2 -
$d.Red[ansi("2012-12-09T20:47:12.500Z")]
, "tiff")

22

2.4.4 WCPS metadata/probing functions in rasdaman

According to the WCPS 1.1 standard, the focus of WCPS lies on providing coverage

processing functionality and metadata functions are only integrated to the extent

necessary for a coherent service in order to fit into the OGC standard family (OGC 08-

068r3, 2021 Chapter 7 Note 4) Nevertheless, some probing functions are very useful to

better understand how to work with a specific coverage and some might be useful for

processing constructs as well. Table 2.3 shows probing functions currently implemented in

rasdaman. Table 2.4 shows functions featured in the WCPS 1.1 standard currently not

implemented in rasdaman.

Table 2.3 WCPS probing functions in rasdaman. Adapted from (rasdaman team, 2022,

Chapter 11.2.4)

Syntax Result

imageCrsDomain($c) Returns a list of comma-separated axes bounds

imageCrsDomain($c, a) Returns the low and high (lo, hi) grid bounds for axis a

imageCrsDomain($c, a).x Returns the upper or lower grid bounds. For x, either ‘lo’ or
‘hi’ has to be specified

domain($c) Returns a list of comma-separated axes bounds according
to the coverage’s CRS orders respectively. Each list element
contains an axis a with the lower and upper bounds in the
axis CRS

Caveat:
While for a geospatial axis domain($c, a) it returns the
domain limits in geocoordinates, it does return image
coordinates here as well for the time axis.

domain($c, a) Returns the low and high (lo, hi) geo for axis a

domain($c, a).x Returns the upper or lower geo bounds. For x, either ‘lo’ or
‘hi’ has to be specified

23

Syntax Result

domain($c, a, c) Returns the geo (lo, hi) bounds for axis a in CRS c

domain($c, a, c).x Returns the upper or lower geo bounds for axis a in CRS c.
For x, either ‘lo’ or ‘hi’ has to be specified

crsSet($c) Returns a set of CRS identifiers

imageCrs($c) Returns the grid CRS (CRS:1)

nullSet($c) Returns a set of null values

identifier($c) Returns the name of the coverage

describe($c,
"application/json",
"outputType=GeneralGridC
overage")

Returns a coverage description for a requested coverage
without the range set in JSON

describe($c,
"application/gml+xml"))

Returns a coverage description for a requested coverage
without the range set in GML

Table 2.4 Probing functions not yet implemented in rasdaman. Adapted from (OGC 08-

068r3, 2021, Chapter 6.2 Table 3)

Syntax Result

value($c,p) Returns the coverage grid point ("pixel"), "voxel",...) values,

of data type rangetype($c) for all p imageCrsDomain(∈ $c)

dimensionList($c) Returns an unordered list (i.e., set) of all of the coverages

dimension names

rangeType($c) Returns the data type of the coverage’s grid point values,

given as a set of pairs of field Name and (atomic) data type

24

rangeFieldType($c, f) Returns the data type of one coverage range field, given as

some atomic type name

rangeFieldNames($c) Returns a set all of the coverage's range fields names

nullSet($c,r) Returns a set of all values that represent null as coverage

range field value for all r rangeType(∈ $c)

interpolationDefault($c,r) Returns the default interpolation method per coverage field

for all r rangeType(∈ $c)

interpolationSet($c,r) All interpolation methods applicable to the particular

coverage range field for all r rangeType(∈ $c); must list at

least the default interpolation method

interpolationType(im) Interpolation type of a particular interpolation method for all

im interpolationList(∈ $c)

nullResistance(im) Null resistance level of a particular interpolation methods for

all im interpolationList(∈ $c)

2.4.5 Further WCPS constructs

Central WCPS functionality comprises trimming and slicing as well as conditional

evaluation. On top of that, two kind of operations are particularly noteworthy when

handling an EO data cube: Operations for constructing coverages and operations for

summarizing or condensing them. Furthermore, special operations like scaling and

reprojection can be applied (Baumann, 2010). Examples for all of these operations can be

found in Appendix A.

25

3 Methods

3.1 Hardware setup and rasdaman installation

Several ways of installing rasdaman are offered:

• Prepackaged installation for CentOS or Debian/Ubuntu

• Downloading a Virtual Machine with a fully configured system with a rasdaman

install ready to run

• Downloading and compiling yourself

For this thesis, a prepackaged rasdaman v10.0.0-beta3 install for Ubuntu 20.04 ‘Focal

Fossa’ was chosen, as it provided more WCPS functionality that the latest stable

rasdaman release of version 9.8 from 25.07.2019. The stable release of rasdaman v10.0.0

did only come out at the 18.03.22 an is now also available for newer Ubuntu version 22.04

(rasdaman team, n.d.). The data cube tested was deployed locally on a laptop with a 11th

Gen Intel® Core™ i7-1165G7 @ 2.80GHz processor with 8 threads, a disk storage

capacity of approximately 512 GB and memory of 32 GiB.

3.2 Data sets

A small data set was sufficient for the test purposes of this thesis. As test area, one

Sentinel-2 granule (the minimum indivisible partition of a Sentinel product, also known as

tile) was selected, extending from approximately 11.9469° E to 13.5885° E and from to

54.0214° N to 55.0388° N. As can be viewed in Figure 3.1, the area covered by the

granule comprised a part of the German Baltic coast, stretching approximately from the

city of Rostock to the island of Hiddensee. In some images a large part of the island of

Rügen can be seen, in others, this area is not included anymore. In the North-East corner,

parts of the Danish islands Møn and Falster are visible but the most central and prominent

feature is the German peninsula Fischland-Darß. The red outline in Figure 3.1 marks the

borders of an area that has been used as an Area of Interest (AOI) for some of the sample

queries presented in the result chapter.

26

13 Sentinel-2 scenes were downloaded from the Copernicus Open Access Hub for a time

period from 09.08.2015 to 13.02.2021 (Open Access Hub, 2022). The images were

selected manually. With the exception of 2015, the year in which Sentinel-2A, the first

satellite of the Copernicus EO program was launched on June 23, a ‘winter’ image and a

subsequent ‘summer’ image were selected for each year to introduce some form of

regularity to the data cube. With the exception of one scene that has been taken at the end

of March, the winter pictures are from the months of January and February. The summer

images are from June with one exception where the scene has been taken in May. The

choice of scenes to consider also depended on other factors. For example, care was taken

to ensure that some winter images contained snow and ice in order to have some easy to

spot land cover variability in the scenes. In addition, some images were desired to have

some clouds for testing purposes, but the images should not have too much cloud cover

overall. Sentinel-2 images are offered at Copernicus hub at two different processing levels.

Images that are processed to meet level L1C are geometrically corrected to cartographic

geometry and radiometrically corrected to Top-of-Atmosphere (TOA) reflectance (Sentinel-

2 User Handbook, 2015). L2A products additionally went through an atmospheric

correction and represent Bottom-of-Atmosphere (BOA) reflectance. Since automatic

processing of L2A was not available in the first years of the Sentinel-2 mission, the BOA

products are only available for more recent images. Thus, all scenes were acquired in their

L1C variant. As SIAM™ can produce a preliminary classification from both L1C and L2A

data, this was not a problem. The size of a L1C satellite scene comprising 13 bands and

an additional true color image (TCI) varied between 443,8 MB and 724,3 MB with

individual bands having sizes from 1,1MB (usually Band 10, 60 m Short Wave Infrared with

Central Wavelength 1375 nm) to 135,6 MB (TCI). To save storage space, not all bands

were imported into rasdaman. Only the bands with a spatial resolution of 10 m were

completely loaded into the DBMS. They required 12.54 GB of storage space. For the

bands with a spatial resolution of 60 m, only one scene was imported to save disk space.

This accounted for 20.09 MB of storage used. Bands with a resolution of 20 m were not

imported at all.

All Sentinel-2 images downloaded were undergoing a semantic enrichment process with

SIAM™ which was done at Z_GIS. While by default several products are produced, only

layers categorized into 33 semi-concepts where used for this thesis. The size of each data

27

set with 33 categories was 120.56 MB so the total semantically enriched data loaded into

rasdaman had a size of 1.57 GB. For all images the CRS used was EPSG 32633. All 13

Sentinel-2 scenes and their semantically enriched counterparts can be viewed in Appendix

B.

28

Figure 3.1 Area of the Sentinel-2 granule used. The red-bordered polygon marks the AOI

used in query examples that demonstrate WCPS clipping functionality

3.3 Importing images with wcst-import.sh

Satellite images in several formats such as TIFF, netCDF, GRIB and others can be

imported into the rasdaman array store using WCS-T functionality. For easier import,

rasdaman offers the wcst_import.sh utility. It hides the more complex underlying WCS-T

requests from the user and additionally maintains the geo-related metadata in rasdamans

petascopedb. The import process is shown in Figure 3.2. The rasdaman documentation

describes the wcst_import.sh tool to be based on the following two concepts:

• ‘Recipe - A recipe defines how a set of data files can be combined into a well-

defined coverage (e.g. a 2-D mosaic, regular or irregular 3-D timeseries, etc.);

• Ingredients - A JSON file that configures how the recipe should build the coverage

(e.g. the server endpoint, the coverage name, which files to consider, etc.) ’

(rasdaman team, 2022, Chapter 5.7.1).

Recipes are written in python and contain classes that define how to validate and read

input data containing specifications for bands, axes, metadata, CRS, etc. Rasdaman

already provides some predefined recipes, e.g for importing regular and irregular time

series and for importing Sentinel-1 or 2 data. Furthermore, users can create their own

custom recipe using python. Ingredients are JSON files that contain parameters in which

input options have to be set. An ingredient file contains several sections. In the config

section, the service URL of the server on which the coverages shall be offered is specified

and the importing behavior can be influenced. For example, data can be imported

blockwise or file by file. Furthermore, there is an input section where the coverage ID and

the paths to the input files have to be defined. There is also a recipe section in which the

recipe used for the import is specified. Optionally, there might also be a hook section in

which shell commands that shall run before or after the data import can be set. Ingredient

files are run together with a bash script using the shell command in Listing 3.1 (It can also

be run in the background as a daemon by adding the flag '--daemon start'). While some

ingredient options are found and need to be set in every ingredient file, the availability of

other additional options is dependent on the recipe file the ingredient file is chosen to work

with.

29

$ wcst_import.sh path/to/my_ingredients.json

Listing 3.1

Satellite data loaded into rasdaman are stored in a (multidimensional) array also known as

collection. New data can be added to an existing collection as long as its data type, spatial

resolution and CRS match the existing collection. A geospatial collection complies with the

OGC coverage definition cited above (see Chapter 2.3) and can thus be regarded as a

coverage (Rasdaman also allows for the import of non-geospatial raster data using its

native query language rasql. Such rasters are not considered to be coverages). It can also

be called a data cube. However, the prototypical data cube designed for this work is

intended to contain multi-spectral Sentinel-2 data as well as categorical SIAM™data. Can

these data sources with their different types be merged into one cube at all? Indeed,

rasdaman supports the creation of custom composite data types. Theoretically, it would

thus be possible to create a collection with values that include a custom type with multi-

spectral band values as well as a categorical value. However, creating such a cube would

be impractical, as it would lead to a large overhead in preparation of the data imported.

Fortunately, this is not necessary. It is sufficient to load the images whose characteristics

match into a common collection. In the end, several collections form a 'virtual' data cube in

rasdaman. The use of WCPS allows to retrieve, process and fuse the data from the

different collections by providing adequate functionality. This concept can be compared to

views in relational DBMS (Baumann et al., 2021).

30

31

Figure 3.2 Data importing process with wcst_import.sh. Retrieved from (rasdaman team,

2022, Chapter 5.7.1 Figure 5.1).

3.4 Querying categorical data with WCPS in rasdaman

Working with SIAM™ semi-concepts in the rasdaman implementation of WCPS has been

tested by investigating several queries that are potentially useful for displaying land cover

data, analyzing it or preparing it for further analysis. Test queries were developed along the

following six topics:

1. Descriptive statistics of a 2D image

◦ Calculating histograms and statistical values for a 2D image sliced along the

time axis.

◦ Potential use case : Gathering general information about the occurrence of land

cover classes that have been derived from SIAM™ semi-concepts for a selected

date. For example, calculating the occurrence of snow for the 21.02.2017.

2. Simple selection and display of (composite) categories

◦ Displaying a selection of SIAM™ categories in 2D maps. Composite categories

means that more than one SIAM™ semi-concept are combined to form a

composite class potentially representing a real-world land cover class.

◦ Potential use case : Creating an overview map for a land cover type of interest.

For example, select all areas classified as having strong or average vegetation

with high NIR.

3. Fusing Sentinel-2 and SIAM™ data sets

◦ Displaying SIAM™ data on top of a Sentinel-2 background in 2D maps.

◦ Using SIAM™ data to select Sentinel-2 data and vice versa which can be used

for further analysis.

◦ Potential use case : Creating a map that shows selected land cover classes in a

specified color on top of a custom Sentinel-2 band combination. For example:

Select all categories that are not related to vegetation and display them black so

as not to take the focus of the vegetation classes displayed as a Sentinel-2 color

infrared band combination.

4. Investigating categorical trajectories

◦ Combining different time slices of the same SIAM™ coverage to gain insights

about land use change trajectories.

32

◦ Potential use case : Tracing how certain land cover types have changed into

other land cover types. For example: Check where areas classified as deep

water in 2015 have changed into areas classified as shallow water and where

they changed into land.

5. Time series analysis

◦ Creating time series of categorical change and/or calculating descriptive

statistical values condensed along the time axis.

◦ Potential use case : Calculating land cover statistics per time period. For

example, generating a time series with the yearly maximum snow cover or

producing a map that shows areas frequently covered with snow.

6. Edge detection based on categorical data

◦ Applying a Sobel operator to detect edges of land use classes that are based on

SIAM™ categories.

◦ Potential use case : Extracting borders between land cover classes. For

example, extracting a shoreline.

As part of the results presented in the respective chapter, a catalog of sample queries

tested can be found in Appendix D. For many queries only a subset of the total satellite

scene was processed to speed up response times. The focus of this thesis was on queries

that return 1 and 2 dimensional data. Queries with 3 dimensional output were not tested.

33

4 Results

4.1 Building the cube

For this thesis, three collections have been created by running the import script based on

the data sets presented in Chapter 3.2. Two collections consisted of Sentinel-2 data: one

containing the four bands with 10 m resolution (Band 2-4 and Band 8) and one with the

three bands at 60 m resolution (Band 1, Band 9, Band 10). To import them, the Sentinel-2

recipe already predefined in rasdaman was used. An ingredient file in JSON format was

created by only slightly adapting the Sentinel-2 sample ingredient file featured in Chapter

5.7.9 of the rasdaman documentation (rasdaman team, 2022). The changed parameters

were 'coverage_id', 'paths', 'resolutions' and 'levels'. The parameter 'crss' was left blank in

order to import the Sentinel-2 scenes in the CRS they where delivered in. A sample

ingredient file for importing the scenes with the 10 m and 60 m resolution bands at once

can be found in Appendix C.1. The third collection was the SIAM™ coverage consisting of

only one band. The generic 'general coverage recipe' was chosen to import the SIAM™

data. It offers a multitude of setting options that have not been fully investigated in this

thesis. The ingredient file used for importing SIAM™ data can be found in Appendix C.2.

According to the test character of this work, the raster data was imported to localhost. As

storage space was scarce, all 13 scenes taken from different dates between 2015 and

2021 were only imported for the SIAM™ and Sentinel-2 10 m resolution collections. For

the Sentinel-2 coverage with the 60 m resolution only the one date that has been used in

the test queries was imported. The fact that each of the collections that make up the virtual

cube can be easily changed without affecting other parts proved to be advantageous here.

After importing, the resulting 'virtual cube' was a 3D cube with two spatial and a temporal

axes made from three actual cubes.

Problems encountered and caveats

It is important to note that in the rasdaman community version, the chronological order of

image recording dates must be adhered to when importing coverages. Images with

timestamps earlier than the image with the most recent timestamps fail to be imported, as

this function is only supported in the commercial rasdaman version (Pham Huu, 2022).

34

A known limitation is that rasdaman can currently not deal with categorical data.

Categorical IDs can thus only be expressed in a number format and the meaning of an ID

can only be transferred in the metadata of the coverage. It is also worth mentioning that

the explanation of some input parameters in the ingredient files was not perceived as

simple to understand. For example, the need to set the axis order parameter option

remained unclear because omitting the parameter or arbitrarily changing the axis order

when importing a sequence of 2D scenes did not appear to affect the result. This may be

different when importing a 3D netCDF file, but has not been tested because it was beyond

the scope of this work.

4.2 Example queries tested

4.2.1 Structure of the results presented

With a few exceptions where queries are depicted in their entirety, only the essential parts

are shown in the WCPS listings of the subsections of chapter 4.2. If a sample query with a

query ID is referenced, its complete syntax can be found in Appendix D. For each query,

the result is also displayed there and peculiarities and caveats are pointed out. The three

coverages that make up the virtual data cube of this thesis are referred to as ‘siam’,

‘sen2_10m’ and ‘sen2_60m’ in the queries shown in the rest of this chapter and in

Appendix D.

4.2.2 Descriptive statistics of a 2D image

For each date in the data cube, a 2D scene could be generated with WCPS, optionally

trimming the latitude and longitude for the requested area (Listing 4.1). The specified

MIME type can optionally be shortened to 'tiff' instead of 'image/tiff' (or to 'csv' instead of

'text/csv').

for $s in (siam)
return encode(
$s[E(305863:315593), N(5996151:6008781),
ansi("2017-06-19T00:00:00.000Z")], "tiff")

Listing 4.1

35

Several descriptive statistical values can be created to describe the content of a scene.

The total pixel count of a category that is relevant for calculating the area covered can

simply be queried by using a conditional statement on the coverage subset in the return

clause (Listing 4.2). As SIAM™ categories are semi-concepts and more often than not

need to be combined to form a real-world class, 'composite' categories are generally

generated by querying multiple categories together using an 'or' operator (Listing 4.3).

for $s in (siam)
return encode (count(
($s[ansi("2017-01-10T00:00:00.000Z")]=29)), "csv")

Listing 4.2

for $s in (siam)
return encode (count(
($s[ansi("2017-01-10T00:00:00.000Z")]=21 or
$s[ansi("2017-01-10T00:00:00.000Z")]=22)), "csv")

Listing 4.3

It is possible to use arithmetic operations on the pixel count to convert it to m² or some

other square measure (Q1). The count of a category can also be performed for an AOI

only by using a clip function with the vertices of the target polygon specified in the text

markup language Well Known Text (WKT) (Q3). The query for getting back the share of a

single category is shown in Q2. Values representing a histogram showing the pixel count

for a category in the image can also be derived. For this, a coverage constructor iterating

over the IDs of the 33 categories of the SIAM™ layer and counting each pixel per bucket

can be used. The part of the query showing only the coverage constructor can be seen in

listing 4.4, the full query is presented in Q4.

coverage histogram
over $bucket x(1 : 33)
values count($s[ansi("2017-01-10T00:00:00.000Z")] = $bucket)

Listing 4.4

The values returned come without axis information (unless the 'diagram >>' command

precedes the query in the OWS console, as described in Chapter 2.4.2). This needs to be

36

considered when interpreting the result. In order to query the pixel count of the 'no data'

value (SIAM™ category 255) it is possible to change the bucket span from 1:33 to 1:255,

but the result will contain a lot of empty buckets in between. Iteration is only possible over

a range, not over fixed indices. A workaround for building a histogram based on categories

whose IDs are not neighbors is iterating over the number of categories and querying the

category indexes via a switch statement and conditional phrases as shown in listing 4.5

(Q5).

coverage histogram
over $bucket x(1 : 2)
values switch
case $bucket=1 return count(($s[ansi("2017-01-10T00:00:00.000Z")] = 25))
default return count(($s[ansi("2017-01-10T00:00:00.000Z")] = 29))

Listing 4.5

By combining the coverage constructor of Listing 4.4 with a division operation and a

Boolean expression that excludes pixels that are not within the 1:33 category range, the

percentage of each category of the overall scene can be queried (Listing 4.6 and Q6).

coverage histogram
over $bucket x(1 : 33)
values (count($s[ansi("2017-01-10T00:00:00.000Z")] = $bucket))) /
count(($s[ansi("2017-01-10T00:00:00.000Z")]>0) and ($s[ansi("2017-01-
10T00:00:00.000Z")]<34))*100

Listing 4.6

4.2.3 Simple selection and display of (composite) categories

A simple, relatively intuitive query is the basic selection of categories for a selected

timestamp (Q7). The query can be extended by a switch statement to color code the

requested categories as shown in listing 4.7. For each category, the output color is defined

by defining the respective RGB value (Q8). As with descriptive statistics, the queries for a

custom AOI can be done by using the clip function (Q9).

37

((unsigned char)
switch
case $s[$sub]=25 return {red:255; green: 255; blue: 255}
case $s[$sub]=29 return {red:0; green: 255; blue: 255}
default return {red: 0; green: 0; blue: 0}
)

Listing 4.7

The importance of keeping track of data types in queries is paramount to working with

rasdaman. The result of a Boolean expression is returned as true and false values and

needs to be explicitly cast to unsigned character here, as rasdaman otherwise throws the

error message shown in listing 4.8.

<ows:ExceptionText>Execution error 457 in line 1, column 8, near token encode:

MDD has a non-char cell type, cannot apply color palette table.</ows:ExceptionText>

Listing 4.8

4.2.4 Fusing Sentinel-2 and SIAM™ data sets

There are several ways of mixing a Sentinel-2 coverage with a SIAM™ coverage in a 2D

output map. The overlay function is probably best used for displaying selected and color-

coded SIAM™ categories on a Sentinel-2 'background' consisting of a RGB image (Q10)

or any other custom chosen band combinations. While the operation name 'overlay'

suggests that there are two coverages lying on top of each other, it should be noted that in

fact there is only one output coverage. The color values of the selected SIAM™ categories

assigned to the RGB channels in the switch statement blend in with the Sentinel-2 band

values. The notion 'background' might therefore be misleading. The mixing of values in

one result coverage is also the reason that the coverages to be fused have to have the

same data type. While the SIAM™ coverage is of type 'Byte - Eight bit unsigned integer'

with a maximal value of 255, the Sentinel-2 coverage is of type 'UInt16 - Sixteen bit

unsigned integer' with the maximal values for each band ranging between 4998 (Band 3)

and 7849 (Band 4). To fuse the two coverage, both data sets need to be cast to the same

data type. For example, both coverage could be cast to unsigned short (16 bit) like in

listing 4.9. In Q10 and Q11, both coverages are cast to unsigned char. A histogram stretch

38

formula is applied to all Sentinel bands to allow for a translation of 16 bit values into a 8 bit

color space. It should be noted that as the color values assigned to the categorical values

blend in with the continuous satellite values, they have an influence on the image statistics

and thus on the way the 'background' is displayed when opening the coverage in a GIS.

((unsigned int
switch
case
$c[$sub]=21 return {red:1; green: 1; blue: 255}
default return {red: 0; green: 0; blue: 0}
)
overlay
(unsigned int){
red: $s2[$sub].B4 ;
green: $s2[$sub].B3;
blue: $s2[$sub].B2
}

Listing 4.9

When combining bands from coverages that have different pixel resolutions, the scaling

function needs to be applied as shown in Q11. Here, a Sentinel-2 band combination of B4,

B3 and the coastal Aerosol band B1 was chosen as 'background'. Contrary to B3 and B4,

the coastal Aerosol band has a spatial resolution of 60 m, is thus stored in another

coverage and is therefore resampled with the scale function to match with the 10 m

resolution bands.

When using the overlay function it is possible to assign values to SIAM™ categories that

can later be excluded from being displayed by defining them as Null-values in a GIS. In

this way, the SIAM™ categories, similar to a cookie cutter, can be used as a preselection

for Sentinel-2 areas that should be subjected to further analysis. However, there is a more

straight-forward way to use SIAM™ categories to achieve this. Two coverages can simply

be combined by multiplying a Boolean mask that is the result of some condition based on

SIAM™ categories with a Sentinel-2 scene of the same extent like in listing 4.10 (Q12). Of

course, it is also possible to derive only SIAM™ categories for areas for which a condition

based on a Sentinel band is true. For example, all SIAM™ categories for locations where a

specified Sentinel-2 band has a value that is above a certain threshold could be queried

(Q13). Chaining conditions by multiplying multiple masked coverages with an original

39

coverage is also possible, as Q14 shows. Here, only values of Band 2-4 of the Sentinel-2

coverage are shown for pixels which are not part of SIAM™ category 21 or 22 and also do

not possess B4 values greater or equal to 500.

(unsigned char) (($s[ansi("2021-06-18T00:00:00.000Z")]= 21) *
($s2[ansi("2021-06-18T00:00:00.000Z")]))

Listing 4.10

4.2.5 Investigating categorical trajectories

Rasdaman allows for a quick investigation of land cover change. Analogously to

multiplying a SIAM™ coverage that is masked using a Boolean expression with a Sentinel-

2 image, the masked coverage can multiplied with itself at a different timestamps. In Q15,

it can be seen that it is easily possible to find out to which categories pixels belong to in

the newest image of the data cube that have been deep water in the oldest image by using

the query syntax of listing 4.11.

($s[$sub_lo] = 21) * $s[$sub_hi])

Listing 4.11

Using the subsetting function to slice the coverage at different timestamps in combination

with the switch statement, pixels can be color coded according to their land cover change

trajectory like in listing 4.12. For example, pixels that have been classified as deep water in

the earliest satellite scene and became shallow water can be assigned a different color

than those that became land or those that stayed the same (Q16, Q17). Many different

trajectories could be distinguished in this way, but with each additional case, the query

becomes more confusing, at least for human readers (Q18). It should be noted that the

overlay function can be used to achieve a similar goal (Q19), but the syntax for this

purpose is not as clear and straight-forward compared to the switch statement. The final

land use change trajectory example shown in Q20 demonstrates how the switch statement

in combination with time slices can be used to compare at which time intervals deep water

changed into land. Two periods are considered: Period one starts with the earliest image in

the cube and ends in 19.06.2017. Consequently, period two starts the day period one ends

40

and ends with the latest image in the cube. Pixels that have changed from deep water into

shallow water during the first period and on to land in the second period are colored

yellow. Those that were changing to land in the first period right away and stayed land in

the second period are displayed in red.

switch
case $s[$sub_lo] = 21 and $s[$sub_hi] = 21 return {red:0; green: 0; blue: 100}
case $s[$sub_lo] = 21 and ($s[$sub_hi] = 22 or $s[$sub_hi] = 23 or
 $s[$sub_hi] = 24 return {red:0; green: 100; blue: 200}
default return {red: 0; green: 0; blue: 0}

Listing 4.12

4.2.6 Time series analysis

For each geographic coordinate in a data cube represented by a pixel, it is possible to

calculate how often it belonged to a particular SIAM™ (composite) category for all the

timestamps within a time interval by summing up each occurrence of the category along

the timeline using a condenser function as demonstrated in listing 4.13. The result is a 2D

map with each pixel containing its value count for the specified category. For example, by

condensing the water occurrence of several years in one map, we get the frequency with

which water was observed per pixel (Q21). This water count example with rasdaman has

been shown in scientific literature before (Sudmanns et al., 2017).

condense +
over $t ansi(imageCrsDomain($sub[ansi("2017-06-19T00:00:00.000Z":
"2021-06-18T00:00:00.000Z")], ansi))
using $sub[ansi($t)]=21 or $sub[ansi($t)]=22 or $sub[ansi($t)]=23
or $sub[ansi($t)]=24

Listing 4.13

The occurrence of a category in a scene over a period of time can be viewed by combining

a coverage constructor with the count condenser function to form a time series (Listing

4.14). As with the histograms describing a 2D image for a specified time slice, this can be

done for both absolute values and shares (Q22, Q23). By simply enclosing the time series

41

constructor with a maximum/minimum/ average pixel count function as depicted in listing

4.15, one can derive the respective aggregate value (Q24, Q25).

coverage timeseries
over $p ansi(imageCrsDomain($s[ansi("2017-01-01T00:00:00.000Z":
"2020-12-31T00:00:00.000Z")], ansi))
values count($s[ansi($p)] = 29)

Listing 4.14

max(coverage timeseries
over $p ansi(imageCrsDomain($s[ansi("2017-01-01T00:00:00.000Z":
"2017-12-31T00:00:00.000Z")], ansi))
values count($s[ansi($p)] = 29))

Listing 4.15

Unfortunately, rasdaman lacks an index querying functionality. Only the pixel/voxel values

can be queried based on axis index values, but the opposite is not true. One can neither

query the timestamp or timespans for which a pixel/voxel condition is true, nor

(geographical) coordinates or bounding boxes. It is thus not possible to find out at which

date the maximum categorical count was observed directly. Here the user has to resort to

the second best solution and stick with the time series to find out when the maximum

happened. It should be noted, that especially for irregular data cubes with many

timestamps this might not be a trivial task as the values delivered come without any time

indices. Therefore, the information has to be extracted elsewhere (e.g. by using the WCPS

describe function) and applied separately.

To the author's knowledge it is not possible to form queries based on the temporal units of

the time index directly. We cannot address a certain month precisely which would help

when building a query that returns a time series based only on the categorical count for ice

pixels for each February from 2016 to 2021. It is also not easily feasible to build a time

series from the maximum ice cover per year for the same timespan. However, depending

on the cube design, a workaround can solve this problem. For example, in a regular data

cube comprising exactly one image per month, retrieving a time series over several years

which is always showing the target value count of the same month can be done by using a

coverage constructor. The newly constructed index in the over clause of the coverage

constructor needs to be set to match the total numbers of years that are of interest. In the

42

values clause, an arithmetic operation where each year index $t is multiplied by 12 and

added by an additional offset can then be used to find the right month to slice for each

year in the original coverage. Choosing the right offset value is important in order to get

the values of the right month. Listing 4.16 would return February values, if the first image

in a regular data cube was taken in January. However, if the first image stored was taken

in July, it would return an August value. Hence, the queries are not transferable to another

cube without adapting them to this cube’s temporal settings. It should also be remembered

that the query can fail if no image data is available for a month in the last year of the query

period. Therefore, it is important to always know the boundaries of the temporal axis

domain of a data cube.

for $s in (oneImagePerMonthCube)
return
encode(coverage timeseries
over $t year(0:9)
values count($s[ansi($t*12+1)] = 29)
,"text/csv")

Listing 4.16

As the irregular cube built for this thesis was not suitable for querying the snow trajectory

for one month over several years, an alternative query has been produced to present an

example using the same query structure as in Listing 4.16. The test cube can be

understood as alternately having a summer and a winter month. So apart from the first

year, every year comprises two seasonal scenes (instead of 12 months). Table 4.1 gives

an overview of this division. Thus, when iterating over the 6 years in the cube, the query

structure of Listing 4.17 is used in Q26a. Of course, aside from pixels that have probably

been misclassified, there won't be a high number of snow pixels for the summer season.

But to get the values for the winter month, we just have to change the slice on the

temporal axis 'ansi' to ($t*2+1) as was done in Q26b. Attention should be paid to stay

within the domain boundaries of the temporal axis for the query to work.

Table 4.1 A cube with seasonal regularity

ansi index season

"2015-08-09T00:00:00.000Z" 0 Summer

"2016-01-06T00:00:00.000Z" 1 Winter

43

"2016-05-12T00:00:00.000Z" 2 Summer

"2017-01-10T00:00:00.000Z" 3 Winter

"2017-06-19T00:00:00.000Z" 4 Summer

"2018-01-07T00:00:00.000Z" 5 Winter

"2018-05-30T00:00:00.000Z" 6 Summer

"2019-02-16T00:00:00.000Z" 7 Winter

"2019-06-26T00:00:00.000Z" 8 Summer

"2020-03-27T00:00:00.000Z" 9 Winter

"2020-06-15T00:00:00.000Z" 10 Summer

"2021-02-13T00:00:00.000Z" 11 Winter

"2021-06-18T00:00:00.000Z" 12 Summer

coverage timeseries
over $t year(0:6)
values count($s[ansi($t*2)] = 29)

Listing 4.17

Using this schema, the query can be adapted to get an aggregate value such as a

maximum/minimum or average of timestamps grouped together into some temporal unit,

e.g. a year, a season or a month. Listing 4.18 shows how the maximum snow per year is

calculated in Q28.

coverage timeseries
over $t year(1:6)
values max(count($s[ansi($t*2)] = 29) , count($s[ansi($t*2+1)] = 29))

Listing 4.18

Listing 4.19 shows this concept applied to a hypothetical regular cube containing one

image per month for the maximum snow count in the winter season. The winter season

here consists of the months December, January and February. The first image of the

imaginary cube with the temporal image was taken in January.

44

for $s in (oneImagePerMonthCube)
return
encode(coverage timeseries
over $t year(0:9)
values max(count($s[ansi($t*12+0)] = 29), count($s[ansi($t*2+1)] = 29),
count($s[ansi($t*12+11)] = 29))
,"text/csv")

Listing 4.19

Irregular cubes without any patterns are difficult to query for time series, as there is no real

understanding of the time axis currently implemented in rasdaman. It should be noted that

supposedly regular data cubes are not always so in reality. A data cube containing one

satellite image scene per day has 356 images in a normal year and 366 in a leap year.

Months have 28-31 days. That could make it complicated to summarize the images in a

yearly or monthly value. A potentially viable approach could be to employ switch

statements to define different calculating branches, similar to the case distinction which

returned condenser values in Q5. However, the feasibility was not tested in this work.

4.2.7 Edge detection based on categorical data

The Sobel operator is an edge detection algorithm used to find vertical and horizontal

edges in an image. An example of the Sobel operator working at a RGB image can be

found at https://standards.rasdaman.com/demo_convolution.html (Jacobs University &

rasdaman GmbH, 2020).

Two 3x3 convolution kernels with values representing different weights are moved in a

moving window style across the input image, in order to add the weights to each input

pixel. Usually, the Sobel operator is run on input images with values representing different

levels of brightness and detects edges where these values differ the most. It was tested

how it could work together with SIAM™ categories by trying to extract the shoreline for an

45

Figure 4.1 Sobel operation. A = 2D input image, Gx = convolution kernel 1, Gy =

convolution kernel 2, G = filtered 2D output. Figure taken from (Baumann et al., n.d.).

extent of the Sentinel-2 granule that covers a small part in the east of the most northern

point of the Fischland-Darß Peninsula (Figure 4.2). The SIAM™ scene investigated was

from the 19.06.2017. For this query, everything that is dark blue (21) and turquoise (30) is

considered to be water3, all other categories shown are thought to be land. The idea to

derive the shoreline was to mask the water values and apply the Sobel operator to the

result. Three different approaches were investigated.

3 SIAM™ category 30 actually corresponds to the semi-concept ‘Shadow snow’ (SHSN). It was prominent

in the classification product of the 19.06.2017 in areas that are most likely shallow water. As the focus of

this thesis is on the mechanics of WCPS in combination with SIAM™ semi-concepts, and not on the

evaluation of semi-concepts themselves, this has not been further investigated.

46

Figure 4.2 Subregion used to test the Sobel operator in WCPS on

SIAM™ semi-concepts in order to discriminate land from water

The first approach was to mask the water categories by applying conditional phrases in the

where-clause in the coverage condensers. When working with categorical data

represented by integers, the integer is falsely interpreted as a brightness value. So when

applying the Sobel operator to a coverage by using a condition in the where-clause of a

coverage condenser that leads to only pixels of category 21 being considered (Q29), the

filter's weight is applied to pixel either of value 0 or 21. This works well enough as long as

only category is incorporated. But when using two or more categories in the condition of

the condenser's where clause in order to simulate a composite category, this likely poses a

problem. Presumably, the Sobel operator detects edges between categories that we would

lump together as one, with the edges getting more defined the bigger the difference

between categories get. For example, when extracting a shoreline and consider the

categories 21 and 30 as water and everything else as land, the Sobel filter might find

edges (= fake coastlines) between those categories as shown in Q30. Better results could

be achieved with the second approach by employing the Boolean condition to select the

categories in the using-clause of the coverage constructor in order to multiply the kernel

with a mask (Q31, Q32). This is similar to what has been done when fusing SIAM™ and

Sentinel-2 data or when querying land use change trajectories without the overlay function.

The third approach tested failed. Here, approach a mask coverage has been predefined

using a coverage constructor in the let statement using either a switch statement (Q33a) or

a simple condition (Q34a). While this was possible, the next step of running the Sobel filter

on the mask was unsuccessful in both cases because they ended up in long running

WCPS queries that eventually lost the connection to the rasdaman host and returned an

error (Q33b, Q34b). As the data cube was running on a local machine with limited

resources, this might have contributed to this outcome. As can be seen in Q33b and

Q34b, it was tried to reduce the query complexity by using only one kernel for the Sobel

operator, but to no avail. However, the reason remained unclear. A further investigation of

this issue was not carried out, as this would have gone beyond the scope of this work.

It is important to note, that always when a new coverage is created by using a coverage

constructor like an image that has gone a Sobel filter operation, the geographic CRS is lost

and it can therefore not be placed correctly in a GIS.

47

5 Discussion

The results showed that it is possible to set up a semantically enriched data cube with

SIAM™-classified data in the rasdaman array DBMS and query it with WCPS. To subsume

the findings, they are discussed by structuring them into strengths, weaknesses, future

opportunities and potential obstacles presented below.

Strengths

Importing Sentinel-2 data and SIAM™ data to the cube

• Importing the Sentinel-2 data and the SIAM™ data was straightforward as soon at it

was clear which parameters need to be used and adapted in the ingredients file in

order to load valid coverages. It was sufficient to slightly adapt some parameters

and employ the general coverage recipe to import SIAM™ data as well as the

Sentinel-2 recipe for the Sentinel-2 data. Both recipes are shipped with the

rasdaman installation when installing from a preconfectioned package. Rasdaman's

additional functionality for writing a custom recipe file did not need to be used.

• New collections containing data with different resolutions or different data types can

be added to rasdaman anytime without changing the data structure of the other

collections in the array store. They can be queried in combination with the other

collections using data fusion syntax of WCPS. Therefore, the 'virtual cube' can

easily be extended without breaking anything in the existing collections.

Querying functionality

• In a Geospatial Data Cube, descriptive statistics like pixel counts and shares for

composites made from SIAM™ semi-concepts can be easily derived for a 2D

coverage slice of a selected date. Returned results are either scalars or a list of

histogram values in csv format. Calculating a histogram for categories whose IDs

are neighbors is straightforward when employing a combination of coverage

constructor and condenser functions. For categories with IDs not next to each other

or composite categories, calculating a histogram is more difficult but can still be

achieved.

• Composite SIAM™ categories can easily be displayed in a 2D map derived by

slicing the coverage at a timestamp. If needed, data can be color coded using

48

conditional branching and shown on background Sentinel-2 data. WCPS provides

convenient functionality to build and display custom band combinations from

Sentinel-2 data. Conditional branching can also be used to compare different land

cover change trajectories.

• Using conditional masking on a SIAM™ coverage sliced at a timestamp and

multiplying the result with a slice of a different timestamp is a very powerful tool for

land cover change trajectory observation. The same syntax can be used for

preselecting a Sentinel-2 coverage based on SIAM™ categories (or vice versa). It is

also very useful in a Sobel operator where a conditional mask based on selected

semi-concepts can be multiplied by a convolution kernel. This makes edge

detection based on composite SIAM™ categories possible that can for example be

useful in shoreline detection.

• Rasdaman allows for neat condensing of the time axis to produce a 2D map of

aggregated values for a given period of time. Time series can easily be produced

for composite categorical counts and percentages provided that for each timestamp

in the cube a data point shall be displayed. Time series that only take into account

certain timestamps and skip others (e.g. a time series with February values for

snow cover for the last ten years) or time series that should show aggregated

values (e.g. showing the maximum snow cover for each year in the last ten years)

can be produced with reasonable effort provided that the data cube has regular

characteristics in the time period targeted.

• WCPS in rasdaman is currently actively developed and new helpful functionality is

expected to be available in rasdaman with the full integration of WCPS standard

1.1.

• The query functionality provided together with the possibility to run rasdaman in a

distributed system makes it likely that a big data cube similar to the Austrian

Sentinel-2 data cube can be implemented in rasdaman.

Weaknesses

Importing Sentinel-2 data and SIAM™ data to the cube

• Importing files that are not in the right temporal order is not possible in the

rasdaman community version.

49

• Currently there is no true support of categorical values in rasdaman, so information

on categories have to be included in the metadata of a coverage

• The effect of some import parameters was not clear.

Querying functionality

• As WCPS does not natively support categorical data, care should be taken that

rasdaman does not mistakenly interpret the ID of a category as a continuous cell

value.

• Using the coverage constructor has the downside of not resulting in georeferenced

images. In the future, the rasdaman developers plan to integrate a function that

allows to set a geographic or temporal CRS to a coverage to comply with WCPS

1.1 (Baumann, 2022b).

• A functional limitation of WCPS is that currently, there is no way of querying the

indices of a dimension axis. With such a functionality not available, users must

forego the ability to query for timestamps and time periods on which a certain cell

value can be observed. For example, the direct query 'Return all dates when more

than 1000 pixels of category 29 (representing snow or water ice) have been

present' is not possible.

• There is also no option of querying a month directly or aggregating values for a

common time interval such as month or year. Workarounds are possible for regular

cubes, but require good knowledge of a data cube with regard to its axes domain

borders. For irregular cubes, a workaround might not always be possible.

• With increasing query complexity, WCPS syntax can get very verbose and thus

difficult to read and write for humans.

• It is not yet clear until when the functionality from the new WCPS Standard 1.1. will

be available in rasdaman.

Future Opportunities

• WCPS can be used flexibly for working with SIAM™ coverages. Queries build can

be reused equivalent to the models build in Sen2Cube.at. The query possibilities

have certainly not been exhausted in this work. In the future a repository with

WCPS queries for SIAM™data could be created, much like the Sen2Cube.at

knowledgebase. It might even be possible to build a translator to transform models

50

created in the Sen2Cube.at GUI into WCPS queries. This could make the GUI

independent on the structure of the underlying data cube (provided the underlying

cube implements WCPS)

• Extending WCPS functionality to query dimension axes based on SIAM™

composite categories or otherwise derived land cover classes would mean a large

increase in potential applications. Coupled with real time understanding that allows

for selecting and aggregating values for common time intervals would make it very

powerful. Semantic content based image retrieval could be further developed to

become ad hoc semantic content based image analysis.

Possible Obstacles

• Ad hoc investigation of data using WCPS is tedious for a user inexperienced with

the language. For a user without programming background at all, making good use

of WCPS might be difficult. The incentive to engage with query language in the

future depends on how widely used WCPS will be. Only if it is implemented by

many applications a true interoperability of systems will be achieved

• Theoretically, it should be possible with WCPS to fuse coverages from different

servers and different data holders to generate combined results. However, it is not

clear how coverages stored on different servers could be addressed in one query to

be merged together.

Based on a small prototypical data cube, this thesis demonstrated that rasdaman is well

suited to create a semantic data cube with SIAM™ data. It could be seen, that it has a

flexible import mechanism that can be adjusted relatively easily to load SIAM™ raster

data. On top of that, the variety of WCPS queries presented showed that rasdaman's

WCPS in combination with SIAM™ semi-concepts enables a range of semantic queries

that can be used and extended for SCBIR. A next step would now be to use the knowledge

gained to build a semantically enriched 'big' rasdaman data cube containing a denser time

series with more satellite scenes and set up on an external server or a group of servers to

simulate use in a production environment. To further extend the code base for WCPS

sample queries it would be helpful to gather common workflows and requirements in the

field of land cover analysis from the remote sensing community and beyond to build

51

WCPS queries that are truly needed. The full potential of currently possible query

constructs has not been investigated in this thesis. For example, queries that produce 3D

results have not yet been taken into account. Further testing based on computational

linguistic knowledge would need to be performed to get a good estimate of which query

targets could be achieved with WCPS in combination with semantically enriched SIAM™

data sets. This could also help to identify gaps where the language itself could be further

developed to enable or simplify useful queries. Interoperable semantic data cubes hold

great potential both in terms of easier accessibility of remote sensing data and the

generation of information from such data. Future research could look at how the whole

process chain of semantic enrichment and even the derivation of real-world classes based

on models could occur automatically in the data cube when new optical satellite imagery is

added. The process chain could even be extended. On the basis of the derived real-world

classes, e.g. metrics for landscape structure analysis could be calculated directly in the

data cube.

6 Conclusion

This thesis showed the creation of a small prototype of a semantic data cube in the open

source rasdaman community version. 13 Sentinel-2 scenes as well as their corresponding

semantically enriched SIAM™ products were loaded into the rasdaman array database as

collections. These collections form the basis of a 'virtual' data cube which can be queried

using OGC WCPS. Several WCPS queries of varying complexity, targeted to work with

SIAM™ semi-concepts and outputting zero to two dimensional data were demonstrated

and discussed. Various useful constructs could be found. Basic retrieval of categories

consisting of one or more SIAM™ semi-concepts as well as the calculation of categorical

statistics and basic time series were fast and easy. Even though it can get very verbose,

the WCPS switch statement allowing for case distinction was found to be very convenient

for color coding different Land Cover or Land Cover Change categories derived from

SIAM™ categories or customizing classes shown in a histogram. Another especially

powerful construct in WCPS is the possibility to multiply a boolean coverage that is the

result of a conditional phrase with another coverage to select AOIs. In combination with

SIAM™ data this can be used to built a preselector for Sentinel-2 data (or vice-versa),

select areas in a satellite scene of a newer image based on a selection in an older image

52

or detect edges, e.g. for shoreline extraction. A perceived shortcoming was the lack of an

index querying functionality that would allow to return a date, a time interval or a

geographic region based on selected pixel values. Furthermore, it is not possible to ad hoc

aggregate values for common time intervals such as for a month or a year. To a certain

degree, workarounds for this are possible provided the cube has some regular

characteristics. Based on the insights gained with the prototypical data cube created in this

work, it can be summarized that the rasdaman/SIAM™ combination holds great potential

for the creation of accessible semantic EO data cubes and should be further investigated

in the future.

53

References

Augustin, H. et al. (2018) ‘A Semantic Earth Observation Data Cube for Monitoring
Environmental Changes during the Syrian Conflict’, GI_Forum, 1, pp. 214–227.
doi:10.1553/giscience2018_01_s214.

Augustin, H. et al. (2019) ‘Semantic Earth Observation Data Cubes’, Data, 4(3), p. 102.
doi:10.3390/data4030102.

Baraldi, A. et al. (2006) ‘Automatic Spectral Rule-Based Preliminary Mapping of Calibrated
Landsat TM and ETM+ Images’, IEEE Transactions on Geoscience and Remote Sensing,
44(9), pp. 2563–2586. doi:10.1109/TGRS.2006.874140.

Baraldi, A. (2019) ‘Satellite Image Automatic MapperTM - SIAMTM - System and Products
Description’. doi:10.13140/RG.2.2.26295.88484.

Baraldi, A. and Boschetti, L. (2012a) ‘Operational Automatic Remote Sensing Image
Understanding Systems: Beyond Geographic Object-Based and Object-Oriented Image
Analysis (GEOBIA/GEOOIA). Part 1: Introduction’, Remote Sensing, 4(9), pp. 2694–2735.
doi:10.3390/rs4092694.

Baraldi, A. and Boschetti, L. (2012b) ‘Operational Automatic Remote Sensing Image
Understanding Systems: Beyond Geographic Object-Based and Object-Oriented Image
Analysis (GEOBIA/GEOOIA). Part 2: Novel system Architecture, Information/Knowledge
Representation, Algorithm Design and Implementation’, Remote Sensing, 4(9), pp. 2768–
2817. doi:10.3390/rs4092768.

Baraldi, A., Gironda, M. and Simonetti, D. (2010) ‘Operational Two-Stage Stratified
Topographic Correction of Spaceborne Multispectral Imagery Employing an Automatic
Spectral-Rule-Based Decision-Tree Preliminary Classifier’, IEEE Transactions on
Geoscience and Remote Sensing, 48(1), pp. 112–146. doi:10.1109/TGRS.2009.2028017.

Baraldi, A. and Humber, M.L. (2014) ‘Quality Assessment of Preclassification Maps
Generated From Spaceborne/Airborne Multispectral Images by the \textit{Satellite Image
Automatic Mapper} and \textit{Atmospheric/Topographic Correction-Spectral Classification}
Software Products: Part 1—Theory’, IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, pp. 1–23. doi:10.1109/JSTARS.2014.2349932.

Baumann, P. (1994) ‘Management of multidimensional discrete data’, The VLDB Journal,
3(4), pp. 401–444. doi:10.1007/BF01231603.

Baumann, P. et al. (1998) ‘The multidimensional database system RasDaMan’, in
Proceedings of the 1998 ACM SIGMOD international conference on Management of data
- SIGMOD ’98. the 1998 ACM SIGMOD international conference, Seattle, Washington,
United States: ACM Press, pp. 575–577. doi:10.1145/276304.276386.

ix

Baumann, P. (2010) ‘The OGC web coverage processing service (WCPS) standard’,
GeoInformatica, 14(4), pp. 447–479. doi:10.1007/s10707-009-0087-2.

Baumann, P. (2017) ‘The Datacube Manifesto’. Available at:
https://www.earthserver.eu/tech/datacube-manifesto/The-Datacube-Manifesto.pdf
(Accessed: 28 June 2021).

Baumann, P. et al. (2019) ‘Datacubes: Towards Space/Time Analysis-Ready Data’, in
Döllner, J., Jobst, M., and Schmitz, P. (eds) Service-oriented mapping: changing paradigm
in map production and geoinformation management, pp. 269–299.

Baumann, P. et al. (2021) ‘Array databases: concepts, standards, implementations’,
Journal of Big Data, 8(1), p. 28. doi:10.1186/s40537-020-00399-2.

Baumann, P. (2022a) ‘WCPS grammar’, rasdaman-users (Rasdaman Community Mailing
List). Available at:
https://groups.google.com/g/rasdaman-users/c/tRTOSQ-FjkM/m/JfBaSaY6CgAJ
(Accessed: 25 April 2022).

Baumann, P. (2022b) ‘WCPS grammar’, rasdaman-users (Rasdaman Community Mailing
List). Available at:
https://groups.google.com/g/rasdaman-users/c/tRTOSQ-FjkM/m/263mNtlUAgAJ
(Accessed: 25 April 2022).

Baumann, P. et al. (n.d.) EarthServer. Available at: https://earthserver.eu/wcs/ (Accessed:
26 April 2022).

Baumann, P. and Holsten, S. (2011) ‘A Comparative Analysis of Array Models for
Databases’, in Kim, T. et al. (eds) Database Theory and Application, Bio-Science and Bio-
Technology. Berlin, Heidelberg: Springer Berlin Heidelberg (Communications in Computer
and Information Science), pp. 80–89. doi:10.1007/978-3-642-27157-1_9.

Baumann, P. and Merticariu, V. (2015a) Introduction to WCPS - Part 1: Basic [Tutorial].
Bremen (EarthServer Webinar). Available at: https://www.youtube.com/watch?
v=MnPABAAQnXM (Accessed: 25 April 2022).

Baumann, P. and Merticariu, V. (2015b) Introduction to WCPS - Part 2: Advanced
[Tutorial]. Bremen (EarthServer Webinar). Available at: https://www.youtube.com/watch?
v=m1q2AIoQADs (Accessed: 25 April 2022).

Baumann, P., Schleidt, K. and Escriu, J. (n.d.) INSPIRE Coverages Demystified. Available
at: https://inspire.rasdaman.org/ (Accessed: 26 April 2022).

Bradshaw, S., Brazil, E. and Chodorow, K. (2019) MongoDB: the definitive guide: powerful
and scalable data storage. Third edition. Beijing Boston Farnham: O’Reilly.

Earth Server Federation (n.d.) EarthServer. Available at: https://earthserver.eu/ (Accessed:
25 April 2022).

x

Esbrí, M.Á. (2021) ‘Remote Sensing’, in Södergård, C. et al. (eds) Big Data in
Bioeconomy. Cham: Springer International Publishing, pp. 49–61. doi:10.1007/978-3-030-
71069-9_4.

European Commission (2022) INSPIRE | Welcome to INSPIRE. Available at:
https://inspire.ec.europa.eu/ (Accessed: 25 April 2022).

Hobona, G. (2021) CRS Definition Resolver. Available at:
https://external.ogc.org/twiki_public/CRSdefinitionResolver/WebHome (Accessed: 24
March 2022).

Hu, F. et al. (2018) ‘Evaluating the Open Source Data Containers for Handling Big
Geospatial Raster Data’, ISPRS International Journal of Geo-Information, 7(4), p. 144.
doi:10.3390/ijgi7040144.

ISO/IEC 9075-15 (2019) ISO/IEC 9075-15:2019 Information technology database
languages — SQL — Part 15: Multi-dimensional arrays (SQL/MDA). Available at:
https://www.iso.org/standard/67382.html (Accessed: 24 March 2022).

Jacobs University & rasdaman GmbH (2020) Big Earth Datacube Standards: Coverages,
WCS, WCPS on rasdaman. Available at:
https://standards.rasdaman.com/demo_convolution.html (Accessed: 27 April 2022).

Joshi, A. et al. (2019) ‘SciDB Based Framework for Storage and Analysis of Remote
Sensing Big Data’, The International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, XLII-5/W3, pp. 43–47. doi:10.5194/isprs-archives-XLII-
5-W3-43-2019.

Killough, B. (2019) ‘The Impact of Analysis Ready Data in the Africa Regional Data Cube’,
in IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium.
IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium,
Yokohama, Japan: IEEE, pp. 5646–5649. doi:10.1109/IGARSS.2019.8898321.

Kopp, S. et al. (2019) ‘Achieving the Full Vision of Earth Observation Data Cubes’, Data,
4(3), p. 94. doi:10.3390/data4030094.

Kuhn, W. (2005) ‘Geospatial Semantics: Why, of What, and How?’, in Spaccapietra, S. and
Zimányi, E. (eds) Journal on Data Semantics III. Berlin, Heidelberg: Springer Berlin
Heidelberg (Lecture Notes in Computer Science), pp. 1–24. doi:10.1007/11496168_1.

Ma, Y. et al. (2015) ‘Remote sensing big data computing: Challenges and opportunities’,
Future Generation Computer Systems, 51, pp. 47–60. doi:10.1016/j.future.2014.10.029.

Marr, D. (1982) Vision: a computational investigation into the human representation and
processing of visual information. San Francisco: W.H. Freeman.

Misev, D. (2020) ‘No interpolation method effect when scaling’, rasdaman-users
(Rasdaman Community Mailing List). Available at: https://groups.google.com/g/rasdaman-
users/c/1hZ642H5h_Q/m/dn1jRBPIBQAJ (Accessed: 25 April 2022).

xi

Misev, D. (2022) ‘WCPS grammar’, rasdaman-users (Rasdaman Community Mailing List).
Available at:
https://groups.google.com/g/rasdaman-users/c/tRTOSQ-FjkM/m/M5MszcePAQAJ
(Accessed: 25 April 2022).

Misev, D., Rusu, M. and Baumann, P. (2012) ‘A Semantic Resolver for Coordinate
Reference Systems’, in Di Martino, S., Peron, A., and Tezuka, T. (eds) Web and Wireless
Geographical Information Systems. Berlin, Heidelberg: Springer Berlin Heidelberg (Lecture
Notes in Computer Science), pp. 47–56. doi:10.1007/978-3-642-29247-7_5.

Morain, S.A. (1998) ‘A Brief History of Remote Sensing Applications, with Emphasis on
Landsat’, in People and pixels: linking remote sensing and social science. Washington:
D.C. : National academy Press, pp. 28–50.

ODC (2018) The ‘Road to 20’ International Data Cube Deployments. Document published
on the ODC Website. Available at:
https://www.opendatacube.org/_files/ugd/8959d6_66661f43c6c0461497854700a123cc59.
pdf (Accessed: 18 March 2022).

ODC (2021) Open Data Cube - Architecture and Ecosystem - A High-Level Overview.
Document published on the ODC Website. Available at:
https://www.opendatacube.org/_files/ugd/3632b4_269d1d61d7f04677a1d32278042aa51a.
pdf (Accessed: 18 March 2022).

OGC (no date) About OGC. Available at: https://www.ogc.org/about (Accessed: 25 April
2022).

OGC 06-103r4 (2011) OpenGIS® Implementation Standard for Geographic information -
Simple feature access - Part 1: Common architecture. Available at:
http://www.opengis.net/doc/is/sfa/1.2.1 (Accessed: 22 February 2022).

OGC 07-011 (2006) The OpenGIS® Abstract Specification Topic 6: Schema for coverage
geometry and functions. Available at: https://portal.ogc.org/files/?artifact_id=19820
(Accessed: 22 February 2022).

OGC 08-068r3 (2021) Web Coverage Processing Service (WCPS) Language Interface
Standard. Available at: https://docs.opengeospatial.org/is/08-068r3/08-068r3.html
(Accessed: 23 February 2022).

OGC 09-048r5 (2019) OGC Name Type Specification - definitions - part 1 – basic name.
Available at: https://docs.opengeospatial.org/pol/09-048r5.html (Accessed: 24 March
2022).

OGC 09-146r2 (2012) OGC® Coverage Implementation Schema. Version 1.0.1. Available
at: https://portal.ogc.org/files/?artifact_id=48553 (Accessed: 25 March 2022).

OGC 09-146r8 (2019) OGC Coverage Implementation Schema with Corrigendum OGC.
Version 1.1.1. Available at: https://docs.opengeospatial.org/is/09-146r8/09-146r8.html
(Accessed: 26 April 2022).

xii

OGC 13-057r1 (2016) OGC Web Coverage Service Interface Standard – Transaction
Extension. Available at: https://docs.opengeospatial.org/is/13-057r1/13-057r1.html
(Accessed: 23 February 2022).

OGC 17-089r1 (2018) Web Coverage Service (WCS) 2.1 Interface Standard - Core.
Available at: docs.opengeospatial.org/is/17-089r1/17-089r1.html (Accessed: 11 February
2022).

OGC Naming Authority SC (2022) OGC-NA Group Description. Available at:
https://www.ogc.org/projects/groups/ogcnasc (Accessed: 24 March 2022).

Open Access Hub (2022). Available at: https://scihub.copernicus.eu/ (Accessed: 21
February 2022).

Pham Huu, B. (2022) ‘wcst_import resume.json’, rasdaman-users (Rasdaman Community
Mailing List). Available at:
https://groups.google.com/g/rasdaman-users/c/rqypG8f2Jis/m/ZeqwMmCEKgAJ
(Accessed: 25 April 2022).

Purss, M.B.J. et al. (2015) ‘Unlocking the Australian Landsat Archive – From dark data to
High Performance Data infrastructures’, GeoResJ, 6, pp. 135–140.
doi:10.1016/j.grj.2015.02.010.

rasdaman team (2022) Rasdaman 10.0.0 documentation. Available at:
https://doc.rasdaman.org/ (Accessed: 24 March 2022).

rasdaman team (n.d.) Versions – rasdaman. Available at:
https://rasdaman.org/wiki/Versions (Accessed: 26 April 2022).

Rasdaman Workshop (n.d.). Available at: https://tutorial.rasdaman.org/ogc-and-wcs-
tutorial/#exercises-exercise-2 (Accessed: 26 April 2022).

Rowley, J. (2007) ‘The wisdom hierarchy: representations of the DIKW hierarchy’, Journal
of Information Science, 33(2), pp. 163–180. doi:10.1177/0165551506070706.

Sen2Cube.at Manual (2022) ‘Sen2Cube.at Manual’. Available at:
https://manual.sen2cube.at/ (Accessed: 25 April 2022).

Sentinel-2 User Handbook (2015). ESA Standard Document, p. 64. Available at:
https://sentinel.esa.int/documents/247904/685211/Sentinel-2_User_Handbook (Accessed:
21 February 2022).

Sinergise Laboratory for geographical information systems, Ltd. (no date) Sentinel-hub
EO-Browser. Available at: https://apps.sentinel-hub.com/eo-browser/ (Accessed: 25 April
2022).

Stonebraker, M. et al. (2013) ‘SciDB: A Database Management System for Applications
with Complex Analytics’, Computing in Science & Engineering, 15(3), pp. 54–62.
doi:10.1109/MCSE.2013.19.

xiii

Strobl, P. et al. (2017) ‘The Six Faces of the Data Cube’, in Proceedings of the 2017
conference on Big Data from Space (BIDS’ 2017): 28th 30th November 2017 Toulouse
(France)., pp. 32–35.

Sudmanns, M. et al. (2017) ‘Automatic Ex-post Flood Assessment Using Long Time Series
of Optical Earth Observation Images’, GI_Forum, 1, pp. 217–227.
doi:10.1553/giscience2017_01_s217.

Sudmanns, M. et al. (2021) ‘One GUI to Rule Them All: Accessing Multiple Semantic EO
Data Cubes in One Graphical User Interface’, GI_Forum, 1, pp. 53–59.
doi:10.1553/giscience2021_01_s53.

Sudmanns, M., Lang, S. and Tiede, D. (2018) ‘Big Earth Data: From Data to Information’,
GI_Forum, 1, pp. 184–193. doi:10.1553/giscience2018_01_s184.

The Sentinel missions (2021). Available at:
https://www.esa.int/Applications/Observing_the_Earth/Copernicus/The_Sentinel_missions
(Accessed: 21 February 2022).

Thusoo, A. et al. (2009) ‘Hive: a warehousing solution over a map-reduce framework’,
Proceedings of the VLDB Endowment, 2(2), pp. 1626–1629.
doi:10.14778/1687553.1687609.

Tiede, D. et al. (2017) ‘Architecture and prototypical implementation of a semantic
querying system for big Earth observation image bases’, European Journal of Remote
Sensing, 50(1), pp. 452–463. doi:10.1080/22797254.2017.1357432.

USGS (no date) EarthExplorer. Available at: https://earthexplorer.usgs.gov/ (Accessed: 25
April 2022).

Vecera, S.P. and Farah, M.J. (1997) ‘Is visual image segmentation a bottom-up or an
interactive process?’, Perception & Psychophysics, 59(8), pp. 1280–1296.
doi:10.3758/BF03214214.

Wagemann, J. et al. (2018) ‘Geospatial web services pave new ways for server-based on-
demand access and processing of Big Earth Data’, International Journal of Digital Earth,
11(1), pp. 7–25. doi:10.1080/17538947.2017.1351583.

Yue, P. et al. (2015) ‘Towards intelligent GIServices’, Earth Science Informatics, 8(3), pp.
463–481. doi:10.1007/s12145-015-0229-z.

Zaharia, M. et al. (2016) ‘Apache Spark: a unified engine for big data processing’,
Communications of the ACM, 59(11), pp. 56–65. doi:10.1145/2934664.

Zhu, Z. et al. (2019) ‘Benefits of the free and open Landsat data policy’, Remote Sensing
of Environment, 224, pp. 382–385. doi:10.1016/j.rse.2019.02.016.

xiv

Appendix A - WCPS Syntax

A.1 Coverage Subsetting

A coverage can be subset by either a trim or a slice operation. While trimming leaves the

number of dimensions unchanged, slicing always involves a reduction of dimensions. In

the special case that subsetting a coverage leads to a single point, the result is still

considered a coverage with the dimension 0 (OGC, 2021, Chapter 7.1.23 Note 1). It is

important to keep track of the dimension returned to chose a matching output format, as

otherwise, the query will fail. The sequence in which the subsetting axes are specified is

not important, as each axis needs to be specified by name.

Syntax Example

Trimming
for $c in (A)
return encode(
$c[
axisX(lowerValue : upperValue),
axisY(lowerValue : upperValue),
axisZ(lowerValue : upperValue)],
"MIME Type")

for $c in (AverageTemperature)
return encode(
$c[
ansi("2012-12-01T20:07:00.500Z":"2012-12-
03T20:07:00.500Z"),
Lat(-38:40), Lon(-18:55)]
, "netcdf")

→ Returns a 3D netCDF with changed ranges
for each dimension

Slicing on the time axis returning a
2D image for a specified date
for $c in (A)
return encode(
$c[
axisZ(sliceValue)], "MIME Type")

for $c in (AverageTemperature)
return encode(
$c[
ansi("2012-12-01T20:07:00.500Z"),
, "image/tiff")

→ Returns a 2D image that was taken at the
requested timestamp

Special case of returning the 2D
image for the latest available date
for $c in (A)
return encode (

for $c in (AverageTemperature)
return encode (
$c[ansi:"CRS:1"(domain($c, ansi).hi)], "tiff")
)

xv

Syntax Example

$c[axisZ:"CRS:1"(domain($c,
axisZ).hi)], "MIME Type")
)

→ Caveat: As has been explained in table 2.3
the domain function does return image
coordinates for the temporal axis, therefore
domain($c, ansi).hi will not work to retrieve the
latest image without transforming the slice into
grid coordinates by specifying "CRS:1".

Slicing on geographical
coordinates returning a point
for $c in (A)
return encode(
$c[
axisX(sliceValue),
axisY(sliceValue),
axisZ(sliceValue)], "MIME Type")

for $c in (AverageTemperature)
return encode(
$c[Lat(41.716667), Lon(44.791667)]
, "text/csv")

→ Returns a 1D value for the requested
coordinate

Offsets can be applied within a trim
operation but ONLY when the axis
values are transformed into grid
coordinates
for $c in (A)
return encode(
$c[
axisX(lowerValue + offset1 :
upperValue + offset2),
axisY(lowerValue : upperValue),
"MIME Type")

for $c in (AverageTemperature)
return encode(
$c[
ansi("2012-12-01T20:07:00.500Z"),
Lat:"CRS:1"(0+50:80+100),
Lon(-18:55)]
, "image/tiff")

→ Results in a 2D image with the Latitude
range changed

CAVEAT: This does not work:

for $c in (AverageTemperature)
return encode(
$c[
ansi("2012-12-01T20:07:00.500Z"),
Lat(-38:40+10),
Lon(-18:55)]
, "image/tiff")

xvi

Syntax Example

→ <ows:Exception
exceptionCode="WcpsError" >
 <ows:ExceptionText>Invalid subset
expression: Lat(-38:40 + 10). Expressions
inside subsets are only allowed on grid axes.
HINT: Try a grid subset instead. E.g.
Lat:"CRS:1"(-38:40 + 10) subsets directly on
the grid.</ows:ExceptionText>
 </ows:Exception>

A.2 Let Clause

The let clause allows binding alias variables to valid WCPS sub-expressions (rasdaman

team, 2022, Chapter 5.5.6).

Syntax Example

for $c in (A)
let $alias1 := expression,
 $alias2 := anotherExpression,
 $aliasN := yetAnotherExpression
return
 encode($c[$alias] , "MIME Type")

for $c in (mean_summer_airtemp)
let $sub1 := $c[Lat(-20:-10), Lon(130:150)],
 $sub2 := 10
return encode (
$sub1* $sub2
,"tiff")

→ Returns the subset of a coverage
whose values have been multiplied by 10
throughout the image

A.3 Deriving single bands and Multiband Constructor

It is possible to change the band sequence of coverages with multiple bands for example

to generate different false color images.

Syntax Example

for $c in (A) for $c in (AverageTemperature)

xvii

return encode(
$c.BandX
, "MIME Type")

return encode(
$c[ansi("2012-12-01T20:07:00.500Z")].Blue
, "image/tiff")

→ Returns an image with the values of
the Blue band only

for $c in (A)
return encode(
{
red: $c.BandX3;
green: $c.BandX2;
blue: $c.BandX1
}
, "MIME Type")

for $c in (AverageTemperature)
return encode(
(unsigned char){
red: $c[ansi("2012-12-
01T20:07:00.500Z")].Blue;
green: $c[ansi("2012-12-
01T20:07:00.500Z")].Green;
blue: $c[ansi("2012-12-
01T20:07:00.500Z")].Red
}
, "image/tiff")

→Returns an image where the red and
the blue band values are switched

6.1 A.4 Induced Operations

Operations available for a values range type are automatically lifted to the whole coverage.

These ‘Induced operations’ thus apply on all cells of a coverage simultaneously

(Baumann, 2010).

Syntax Example

for $c in (A)
return
function($c)
, “MIME Type”)

for $c in (mean_summer_airtemp)
return encode(
sin($c)+20
, "tiff")

→ Returns an image where the sinus
function + 10 was applied to the cell
value of each pixel

xviii

A.5 Conditional evaluation/Case distinction

It is possible to return apply different functions for pixels of a coverage based on

conditional evaluation using the switch statement. As in the underlying rasql

implementation, WCPS conditions used in a statement must be specified in order of

generality by using the case keyword. The first condition should be the most specific. Each

subsequent condition should be more general, the most general being the default

condition (rasdaman team, 2022, Chapters 4.10.4.4 and 5.5.10). Either a scalar value or a

coverage are returned. The domain of all conditional expressions as well as the result has

to be the same. This means, they have to have the same extent, resolution and CRS

(rasdaman team, 2022, Chapters 5.5.10 and 11.2.2).

Syntax Example

for $c in (A)
return encode(
switch
 case boolCovExpr return covExpr
 case boolCovExpr return covExpr
 ...
 default return covExpr

, "MIME Type")

for $c in (mean_summer_airtemp)
return encode(
(unsigned char)
switch
case $c < 10 return {red:0; green: 0; blue:
100}
case $c < 30 return {red:255; green: 255;
blue: 0}
case $c < 50 return {red:255; green: 150;
blue: 0}
default return {red: 255; green: 0; blue: 0}
, "tiff")

→ Returns an image where pixels have
been colored according to the conditions
they met

A.6 General Coverage Constructor

Using a coverage constructor is useful when the coverage is either to large to be

described as a constant or when the coverage‘s range values are derived from another

source (OGC 08-068r3, 2021, Chapter 7.1.29). The dimensionality of the new coverage is

dependent on the number of iteration variables defined in the over clause of the

xix

constructor. 2D coverages constructed in this way are returned in the non geographic

coordinate system „Index2D“. This can be tested by using the probing function

'crsSet($newCoverage)'.

Syntax Example

Creating a 1D coverage
for $c in (A)
return encode(
coverage covName
over $iterVar axis(lo:hi)
values scalarExpr

, "MIME Type")

for $c in (mean_summer_airtemp)
return encode (
coverage oneDim
 over $px x(100:200)
 values $px
, "csv")

→ returns each value in the range 100 - 200

same as above for $c in (mean_summer_airtemp)
return encode (
coverage oneDim
 over $px x(100:200)
 values $c[Lon:"CRS:1"(500), Lat:"CRS:1"($px)]
, "csv")

→ returns the cell values of pixels that have an
index of 500 on the Longitude axis (! in grid
values) and an index in the range of 100-200 at the
Latitude axis (! grid values as well)

Creating a 2D coverage by
inserting values directly using
a list
for $c in (A)
return encode(
coverage covName
over $iterVar1 axis1(lo:hi),
$iterVar2 axis2(lo:hi)
values valueList

, "MIME Type")

for $s in (mean_summer_airtemp)
let $kernel:= coverage exampleKernel
 over $x x(-1:1), $y y (-1:1)
 value list < 1; 0; -1; 2; 0; -2; 1; 0; -1>
return
encode ($kernel, "image/tiff")

→ creates 3x3 coverage with the specified values

Creating a 2D coverage based
on another 2D coverage
for $c in (A)

for $c in (mean_summer_airtemp)
return encode(
coverage newCov

xx

return encode(
coverage covName
over $iterVar1 axis1(lo:hi),
$iterVar2 axis2(lo:hi)
values scalarExp

, "MIME Type")

over $px x(imageCrsDomain($c, Lon)),
 $py y(imageCrsDomain($c, Lat))

values $px+$py
, "image/tiff")

→ returns a coverage with the extent (grid
coordinates) of 'mean_summer_airtemp'
comprising cell values raising from 0 (top-left) to
1,570 (bottom-right).

same as above for $c in (mean_summer_airtemp)
return encode(
coverage newCov
over $px x(imageCrsDomain($c, Lon)),

 $py y(imageCrsDomain($c, Lat))

values $c[Lon($px+100), Lat($py-100)]
, "image/tiff")

→ returns a coverage with the extent (grid
coordinates) and the values of
'mean_summer_airtemp'. The values of the original
coverage are shifted by +100 in the x direction and
by -100 in the y direction, so the whole image
extent is shifted into the bottom-left direction .
New values on the top-right are 0 values.

A.7 Aggregation operations

Coverages can be summarized into a scalar value using aggregation operations, also

known as condensers. Multiple types of aggregation can be applied (rasdaman team,

2022, 11.2.1).

Condensing numeric coverages using a shorthand condenser operation

Syntax Example

Numeric coverages can be summarized
with

for $c in (AverageTemperature)
return max($c.Red)

xxi

avg(), add(), min(), max()

→returns the maximum value of the red
band

Condensing Boolean coverages using a shorthand condenser operation

Syntax Example

Count the number of true values

for $c in (A)
return encode(
count(booleanExpr), "MIME Type")

for $c in (AverageTemperature)

return encode(

count($c.Red<50), "csv")

→ Returns the number of pixel whose
cell values is greater than 50

Return true if some/all values are true

for $c in (A)
return encode(
some(booleanExpr), "MIME Type")

or

for $c in (A)
return encode(
all(booleanExpr), "MIME Type")

for $c in (AverageTemperature)

return encode(

some($c.Red<50), "csv")

Caveat: Unexpected behavior when using
some(), all() instead of count, an empty csv
is produced. It is not clear whether this is a
bug in the v10.0.0-beta3 version tested or
whether the operation has not been applied
correctly.

General condenser

Syntax Example

for $c in (A)
return
condense op
over $iterVar axis(lo:hi), …
using scalarExpr

for $c in (AverageChlorophyll)
return
condense +
over $p x(imageCrsDomain($c[ansi("2015-
01-01T00:00:00.000Z":"2015-03-
31T00:00:00.000Z")],ansi))
using 1

xxii

Syntax Example

→ This query can be used to find how
many images are in a cube for a
specified timespan as it adds one for
every timestamp found in this range.
Caveat: The timespan queried is not
allowed to exceed the date of the oldest
or newest image for the query to work

for $c in (A)
return encode(
condense op
over $iterVar axis(lo:hi), …
using scalarExpr
 ,"MIME Type")

for $c in (AverageTemperature)
return encode(
condense max
 over $pt t(imageCrsDomain($c, ansi))
 using $c.Red[ansi($pt)], "tiff")

→ condenses the input coverage along
the time axis and returns an image that
contains the maximal cell value in the
red band for each pixel

A.8 Combining constructor and aggregation queries

Coverage condenser can be combined with coverage constructors.

Syntax Example

for $c in (A)
return
 encode(
 coverage covName
 over $iterVar axis(lo:hi), …
 values count($c[ansi("2012-12-
01T20:07:00.500Z")].Red = $bucket)
, "MIME Type")

for $c in (AverageTemperature)
return
 encode(
 coverage histogram
 over $bucket x(0 : 255)
 values count($c[ansi("2012-12-
01T20:07:00.500Z")].Red = $bucket),
 "text/csv")

→ For each value from 0 to 255 the
number of times this value has been
found in the red band of the
AverageTemperature at the specified
timestamp is returned

xxiii

A.9 Coverage Filtering with where

A where clause in the for clause evaluates whether a coverage meets a condition. This is

handy for filtering out coverages suitable for further processing. Coverage that don’t meet

the condition are not further processed (Baumann and Merticariu, 2015a, 5:40).

Syntax Example

for $c in (A)
where boolScalarExpr
return covExpr

for $c in (AverageChlorophyll,
AverageTemperature)
where max($c.Red)=250
return max($c.Red)

Caveat: There is a bug in the v10.0.0-

beta3 version which has been discussed in

the rasdaman-users group (Misev, 2022).

As only AverageTemperature meets the
condition and has a maximal value of 250
(AverageChlorophyll a maximal value of
254) this query should return only return
250 once. Instead, it seems like the
condition is only evaluated for the first
coverage in the list, and this result is
returned twice. As noted in the linked
discussion, this bug should have been fixed
with the stable v10.0.0 release which has
not been tested in this thesis.

for $c in (A)
return encode(
condense op
over $iterVar axis(lo:hi), …
where boolScalarExpr
using scalarExpr
, "MIME Type")

for $c in (AverageTemperature)
return encode(
condense min
 over $pt t(imageCrsDomain($c, ansi))
 where max($c.Red)=250
 using $c.Blue[ansi($pt)], "tiff")

→ If max($c.Red)=250 is true, a result 2D
coverage is returned showing only the
minimum values of the blue band that
have been observed over the four
timesteps.

xxiv

Caveat: If max($c.Red)=250 is false for all
timesteps, a 0 is returned for each timestep.
This can not be reflected in a tiff, so another
MIME-Type has to be selected for the query
to work.

A.10 Clipping

AOI for WCPS processing can be selected by specifying coordinates in WKT that are used

for clipping the image. The examples in the table below show this for a polygon clip of a

2D image. Additional clip functionality like clipping multipolygons, linestrings on a 2D

coverage or curtain and corridor clippling on a 3D coverage are implemented in

rasdaman's version of WCPS but are not further regarded here.

Syntax Example

for $c in (A)
return encode(
clip(coverageExpression, wkt)
, "MIME Type")

for $c in (mean_summer_airtemp)
return encode(
clip(
$c, POLYGON((
-16.497041763341 137.99530162413,
-16.497041763341 140.626392111369,
-25.9819605568445 138.016956689869,
-16.497041763341 137.99530162413))
),"tiff")

→ returns the values for the clipped
polygon area

for $c in (A)
return encode(
clip(coverageExpression, wkt ,
subsettingCrs])
 , "MIME Type")

for $c in (mean_summer_airtemp)
return encode(
clip(
$c, POLYGON((
-1116990.22057387 8114947.98756654, -
823682.254419523 8046915.10152991,
-771728.418861184,8600745.08905634 -
1014083.79157432 7041755.33238844,
-1116990.22057387 8114947.98756654)),
"http://localhost:8080/def/crs/EPSG/
0/28356"

xxv

),"tiff")

→ returns the values for the clipped
polygon area (in the same CRS as the
input coverage, despite being clipped
with coordinates of another CRS)

A.11 Additional Functions

Rasdaman WCPS provides useful functions for extending and scaling a coverage domain

as well as to reproject CRS. On top of that it is possible to transform coverage matching

the CIS 1.0 standard (OGC 09-146r2, 2012) to a CIS 1.1 (OGC 09-146r8, 2019) conform

standard.

Syntax Example

for $c in (A),
return encode(
extend(covExpr, { axis1(lo:hi),
axis2:crs(lo:hi), ... })
 , "MIME Type")

for $c in (mean_summer_airtemp)
return
encode(
extend($c, { Long(100:170), Lat(-50:-
12) }), "tiff")

→ returns an image which the domain of
the Longitude axis extended in both East
und West directions (original values
111.975:156.275) and extends the
domain of the Latitude axis in the South
direction while making it smaller in the
North directions (compare with original
values -44.52499...:-8.974999...). The
target extent can be defined as grid CRS
as well as geographical CRS

for $c in (A), $d in (B),
return
scale($c[$c, {imageCrsDomain($c)})
, "MIME Type")

for $c in (mean_summer_airtemp), $d in
(AverageChlorophyll)
let $sub := $c[Lat(-20:-10), Lon(130:150)]
return encode(
scale($c, {imageCrsDomain($d[ansi("2015-
01-01T00:00:00.000Z")])}) ,"tiff")

xxvi

→ Returns an image showing the mean
summer air temperature in Australia that
is scaled to match the extent of the
AverageChlorpophyll image for the
selected timestamp

Auto-ratio for spatial scaling
for $c in (A)
return
encode(scale($c, { Long:"CRS:1"(lo:hi) })
, "MIME Type")

for $c in (mean_summer_airtemp)
return
 encode(scale($c, { Long:"CRS:1"(0:100) }
), "tiff")

→ When specifying just one spatial
horizontal axis, the the other spatial
horizontal axis will be determined
automatically while preserving the
original ratio between these axes. The
target extent can be defined as grid CRS
as well as geographical CRS

Changing the spatial CRS for a coverage
for $c in (A)
return encode(
crsTransform(covExpr, { axis1:crs1,
axis2:crs2, ... })
 , "MIME Type")

for $c in (mean_summer_airtemp)
return
encode(
crsTransform($c,
{
Long:"http://localhost:8080/def/crs/EPSG/0/
28356",
Lat:"http://localhost:8080/def/crs/EPSG/
0/28356"})
, "tiff")

→ returns an image in the defined CRS

Transforming a CIS 1.0 to a CIS 1.1.
coverage encoding
for $c in (A)
return encode(
$c, "application/gml+xml",
 "{\"outputType\":\"GeneralGridCoverage\"}"
)

for $c in (AverageTemperature)
return encode($c, "application/gml+xml",
"{\"outputType\":\"GeneralGridCoverage\"}")

→The coverage is returned as CIS 1.1
GeneralGridCoverage.

xxvii

Appendix B - Images in the data cube

Sentinel-2 RGB SIAM™ Preclassification (33 categories)

2015-08-09T00:00:00.000Z

2016-01-06T00:00:00.000Z

xxviii

2016-05-12T00:00:00.000Z

2017-01-10T00:00:00.000Z

xxix

2017-06-19T00:00:00.000Z

2018-01-07T00:00:00.000Z

xxx

2018-05-30T00:00:00.000Z

2019-02-16T00:00:00.000Z

xxxi

2019-06-26T00:00:00.000Z

2020-03-27T00:00:00.000Z

xxxii

2020-06-15T00:00:00.000Z

2021-02-13T00:00:00.000Z

xxxiii

2021-06-18T00:00:00.000Z

xxxiv

Appendix C - Ingredient files for data import

C.1 Ingredients file for importing Sentinel-2 data

xxxv

{
 "config": {
 "service_url": "http://localhost:8080/rasdaman/ows",
 "automated": true
 },
 "input": {
 "coverage_id": "S2_${resolution}",
 "paths": ["S2*.zip"],
 // Optional filtering settings
 "resolutions": ["10m", “60m”],
 "levels": ["L1C"]
 },
 "recipe": {
 "name": "sentinel2",
 "options": {
 "coverage": {
 "metadata": {
 "type": "xml",
 "global": {
 "Title": "'Sentinel-2 data served by rasdaman'"
 }
 }
 },
 "tiling": "ALIGNED [0:0, 0:1999, 0:1999] TILE SIZE 32000000",
 "wms_import": true
 }
 }
}

C.2 Ingredient file for importing SIAM™ data

xxxvi

{
 "config": {
 "service_url": "http://localhost:8080/rasdaman/ows",
 "tmp_directory": "/tmp/",
 "crs_resolver": "http://localhost:8080/def/",
 "default_crs": "http://localhost:8080/def/OGC/0/Index2D",
 "mock": false,
 "automated": true,
 "track_files": false,
 "subset_correction": false
 },
 "input": {
 "coverage_id": "siam",
 "paths": [
 // Comma-separated lists of paths
]
 },
 "recipe": {
 "name": "general_coverage",
 "options": {
 "coverage": {
 "crs": "OGC/0/AnsiDate@EPSG/0/32633",
 "metadata": {
 "type": "json",
 "colorPaletteTable": "auto"
 },

 "slicer": {
 "type": "gdal",

 "axes": {
 "ansi": {
 "min": "datetime(regex_extract('${file:name}', '(.*[0-9]+.*$)', 1), 'YYYYMMDD')",
 "type": "ansidate",
 "irregular": "true",
 "dataBound": "false",
 "gridOrder": 0
 },
 "E": {
 "min": "${gdal:minX}",
 "max": "${gdal:maxX}",
 "resolution": "${gdal:resolutionX}",
 "gridOrder": 2
 },
 "N": {
 "min": "${gdal:minY}",
 "max": "${gdal:maxY}",
 "resolution": "${gdal:resolutionY}",
 "gridOrder": 1
 }
 }
 }
 },
 "tiling": "ALIGNED [0, 0:1023, 0:1023] TILE SIZE 4194304"
 }
 }
}

Appendix D - WCPS queries tested

D.1 Descriptive statistics of a 2D image

Single statistical values

Q1 Categorial statistics of a 2D image:

How many m² of the image were covered by Snow or water ice (SN; 29)
on 10.01.2017 (Pixel resolution is 10x10m)?

Query for $s in (siam)
return encode (count(
($s[ansi("2017-01-10T00:00:00.000Z")]=21 or $s[ansi("2017-01-
10T00:00:00.000Z")]=22))*10*10, "csv")

Result 73719300

Q2 Categorial statistics of a 2D image (%):
How much of the specified image subset was covered by cloud (CL; 25)
on 19.06.2017?

Query for $s in (siam)
let $sub := [E(305863:315593), N(5996151:6008781), ansi("2017-06-
19T00:00:00.000Z")]
return
(count($s[$sub]=25)) / (count($s[$sub]>1 and $s[$sub]<34)) *100

Result 31.56563562098051

Q3 Categorical statistics of a 2D image for a chosen polygon:

How many pixels in the specified AOI were of category 29 (SN) on
10.01.2017?

Query for $s in (siam)
return count(
clip(
($s[ansi("2017-01-10T00:00:00.000Z")]=29), POLYGON((
323014.428445768 6018724.6989753, 337518.076649877
6042736.29433543, 337518.076649877 6042736.29433543,
337518.076649877 6042736.29433543, 372326.832339739
6038465.77569756, 375549.865273986 6035967.92517351,
363302.340123849 6022350.61102632, 345736.810632206
6025654.21978393, 333489.285482069 6010344.81334626,
323014.428445768 6018724.6989753))

xxxvii

))

Result 82246

Histograms

Q4 Create values for a histogram with the number of pixels for each
category for the 10.01.2017

Query for $s in (siam)
return
encode(coverage histogram
over $bucket x(1 : 33)
values count($s[ansi("2017-01-10T00:00:00.000Z")] = $bucket),
"text/csv")

Result

21 0 1540165 1226635 2923585 178058 115228 73887 504 103813 6 1

17517 30938 614776 483205 123941 674 53 0 47847486 510706 4597023

0 3390980 0 7967283 10663439 737193 4007812 851273 0 184065

Q5 Create values for a histogram with the number of pixels for categories
25 (CL) and 29 (SN) for the 10.01.2017

Query for $s in (siam)

return

encode(

coverage histogram

over $bucket x(1 : 2)

values switch

case $bucket=1 return count(($s[ansi("2017-01-10T00:00:00.000Z")] = 25))

default return count(($s[ansi("2017-01-10T00:00:00.000Z")] = 29))

,"text/csv")

Result 3390980 737193

Q6 Create values for a pie chart/stacked bar chart with share of pixels for

each category per total amount of pixels (%) for the 10.01.2017

Query for $s in (siam)

xxxviii

return
encode(coverage histogram
over $bucket x(1 : 33)
values (count($s[ansi("2017-01-10T00:00:00.000Z")] = $bucket)) /
 count(($s[ansi("2017-01-10T00:00:00.000Z")]>0) and ($s[ansi("2017-01-
10T00:00:00.000Z")]<34))*100
,"text/csv")

Note Results returned by rasdaman have not been rounded, this has been done

with a spreadsheet program

Result

0 0 2 1 3 0 0 0 0 0 0 0 0 0 1 1 0

0 0 0 54 1 5 0 4 0 9 12 1 5 1 0 0

xxxix

6.2 D.2 Simple selection and display of (composite)

categories

Queries that focus at a chosen date (slice on the time axis) and

return a 2D map - Selection based on categories

Q7 Simple selection of a composite category consisting of semi-concepts

25 and 29 (CL and SN) for one scene

Query for $s in (siam)
let $sub := [ansi("2016-01-06T00:00:00.000Z")]
return encode(
(unsigned char)
($s[$sub]=25 or $s[$sub]=29)
, "tiff")

Result

xl

Q8 Simple selection of categories 25 (CL) and 29 (SN) in one scene and

color coding them (CL = white, SN = blue)

Query for $s in (siam)
let $sub := [ansi("2016-01-06T00:00:00.000Z")]
return encode(
((unsigned char)
switch
case $s[$sub]=25 return {red:255; green: 255; blue: 255}
case $s[$sub]=29 return {red:0; green: 255; blue: 255}
default return {red: 0; green: 0; blue: 0}
)
, "tiff")

Caveat Potential bug in rasdaman v10.0.0-beta3. It should be noted, that expression
optimization did not work as stated in the section 'Induced Operations' found
at www.earthserver.eu/wcs (Last accessed: 25.04.2022).

The following query did not work but threw an exception:

for $c in (siam)
let $sub := [ansi("2017-01-10T00:00:00.000Z")]
return encode(
((unsigned char)
switch
case $c=29 return {red:0; green: 0; blue: 255}
case $c=30 return {red:0; green: 255; blue: 0}
default return {red: 0; green: 0; blue: 0}
)[$sub]
, "tiff")

→
<ows:ExceptionText>Failed closing rasdaman db connection: RasManager
Error: Could not connect to RasServer .</ows:ExceptionText>

This might have been fixed already in the stable release of rasdaman
v10.0.0.

xli

Result

Q9 Simple selection of categories 25 (CL) and 29 (SN) in one scene and

color coding them (CL = white, SN = blue) WITH clipping of an AOI

Query for $s in (siam)
let $sub := [ansi("2016-01-06T00:00:00.000Z")]
return encode(
clip(

((unsigned char)
switch
case $s[$sub]=25 return {red:255; green: 255; blue: 255}
case $s[$sub]=29 return {red:0; green: 255; blue: 255}
default return {red: 0; green: 0; blue: 0}
),

xlii

POLYGON((
323014.428445768 6018724.6989753, 337518.076649877
6042736.29433543, 337518.076649877 6042736.29433543,
337518.076649877 6042736.29433543, 372326.832339739
6038465.77569756, 375549.865273986 6035967.92517351,
363302.340123849 6022350.61102632, 345736.810632206
6025654.21978393, 333489.285482069 6010344.81334626,
323014.428445768 6018724.6989753
))

)
, "tiff")

xliii

D.3 Fusing Sentinel-2 and SIAM™ data sets

Using the Overlay function to fuse SIAM™ and Sentinel-2
data

Q10 Select category 'Deep water or shadow' (DPWASH; 21) as a blue are and
return it with a Sentinel-2 RGB composite background

Query for $c in (siam), $s2 in (S2_10m)
let $sub := [E(337580:341342), N(6038490:6041067), ansi("2017-01-
10T00:00:00.000Z")]
return encode(

((unsigned char)

switch
case
$c[$sub]=21 return {red:1; green: 1; blue: 255}
default return {red: 0; green: 0; blue: 0}
)

overlay

(unsigned char){
red: ($s2[$sub].B4 - min($s2[$sub].B4)) / (max($s2[$sub].B4) -
min($s2[$sub].B4))*255;
green: ($s2[$sub].B3 - min($s2[$sub].B3)) / (max($s2[$sub].B3) -
min($s2[$sub].B3))*255;
blue: ($s2[$sub].B2 - min($s2[$sub].B2)) / (max($s2[$sub].B2) -
min($s2[$sub].B2))*255
}
, "tiff")

Caveat • The datasets fused with an overlay operator have to have the same
data type and are therefore both casted to 8 bit integer (unsigned
char).

• As the range of the Sentinel-2 values in each band exceed the 256
digits that can be stored with an unsigned char, the band values have
to be recalculated to match this requirement. Here, the histogram
stretch formula (Band - min(Band)) / (max(Band) - min(Band)) is
applied to each Sentinel-2 band to solve this issue.

xliv

Result

Q11 Hide SIAM™ categories that are not DPWASH (21) or Shadow snow*
(SHSN; 30) to get only the relevant Sentinel-2 band combination (Band
4, Band 3, Band 1) for an AOI defined by a clip

* Selecting Shadow snow (SHSN) delivered better results when trying to
select the laguna in front of the Darß Peninnsula than selecting a water-
related SIAM™ category like SLWASH, TWASH or SASLWA (22, 23 or 24).
The reason has not been further investigated in this thesis, as the focus is on
WCPS mechanics and not on SIAM™ evaluation

Query for $s in (siam), $s2 in (S2_10m), $s2_60m in
(S2_20170110_32633_60m_L1C)
let $sub := [ansi("2017-01-10T00:00:00.000Z")],
$scale_used := $s2[$sub]
return encode(
clip((
((unsigned char)
switch
case
$s[$sub]!=21 and $s[$sub]!=30 return {red:1; green: 1; blue: 1}
default return {red: 0; green: 0; blue: 0})

overlay

((unsigned char){
red: $s2[$sub].B4 / 10;
green: $s2[$sub].B3 / 10;

xlv

blue: scale($s2_60m[$sub], {imageCrsDomain($scale_used)}).B1 / 10
})
),
POLYGON((
323014.428445768 6018724.6989753, 337518.076649877
6042736.29433543, 337518.076649877 6042736.29433543,
337518.076649877 6042736.29433543, 372326.832339739
6038465.77569756, 375549.865273986 6035967.92517351,
363302.340123849 6022350.61102632, 345736.810632206
6025654.21978393, 333489.285482069 6010344.81334626,
323014.428445768 6018724.6989753
))
)
, "tiff")

Note • The overlay function requires the coverages to be fused to have the
same resolution. As the coastal aerosol band of Sentinel-2 (Band 1)
has a resolution of only 60m compared to Band 3 and Band 4 which
have 10m, the scaling function is used to resample the band to match
with the other bands.

• In the output coverage, the selected SIAM™ categories are displayed
as black, as {red:1; green: 1; blue: 1} have been chosen. Note that
thus the output coverage has a value of 1 in each band for coverage =
21 or coverage = 30. For the result image here, 1 was classified as
additional no data value in QGIS to a) exclude it from being displayed,
and b) from having an influence on the min/max settings for
calculating the histogram stretch

Result

xlvi

Select pixels of a coverage based on a condition met in another

coverage

Q12 Deriving a coverage with Sentinel Band 2-4 and 8 only for pixels that

are DPWASH (21)

Query for $s in (siam), $s2 in (S2_10m)
return encode(
 (unsigned char) (($s[ansi("2021-06-18T00:00:00.000Z")]
 = 21)* ($s2[ansi("2021-06-18T00:00:00.000Z")]))
 , "tiff")

Note • Image returned was opened in QGIS and Bands 8, 4, 3 were chosen

in this order for the result presented here

• The approach is more direct than the overlay approach of Q10 to

select Sentinel-2 data only for specific target categories

Result

xlvii

Q13 Deriving a coverage with SIAM™ categories only for pixels that have

values in the B4 band that are higher than 500

Query for $s in (siam), $s2 in (S2_10m)
return
encode(
(unsigned char)
(($s2[ansi("2021-06-18T00:00:00.000Z")].B4 > 500) *
$s[ansi("2021-06-18T00:00:00.000Z")])
, "tiff")

Note The coverage gets exported without a color palette applied. For this image,

the color palette of the standard SIAM™ layer was copied and pasted to the

output image in QGIS.

Result

xlviii

Q14 Deriving a coverage with Sentinel Band 2-4 and 8 only for pixels that

are DPWASH (21) or Shallow water or shadow (SLWASH; 23) and where

Sentinel-2 values in the B4 band are higher than 500

Query for $s in (siam), $s2 in (S2_10m)
return encode(
 ($s2[ansi("2021-06-18T00:00:00.000Z")].B4 < 500) *
 (($s[ansi("2021-06-18T00:00:00.000Z")]!=21) and ($s[ansi("2021-06-
18T00:00:00.000Z")]!=22)) *
 $s2[ansi("2021-06-18T00:00:00.000Z")]
 , "tiff")

Note Image returned was opened in QGIS and Bands 8, 4, 3 were chosen for

output image

Result

xlix

D.4 Investigating categorical trajectories

Queries 2D Land cover change

Q15 What categories do pixels that were classified as DPWASH (21) in the
oldest image belong to in the latest image?

Query for $s in (siam)
let $sub_hi := [E(337580:341342), N(6038490:6041067),
ansi:"CRS:1"(imageCrsDomain($s, ansi).hi)],
 $sub_lo := [E(337580:341342), N(6038490:6041067),
ansi:"CRS:1"(imageCrsDomain($s, ansi).lo)]
return encode(
(unsigned char)
(($s[$sub_lo] = 21) * $s[$sub_hi])
, "tiff")

Result

Q16 Observing the trajectory of a category.

Selecting pixels, that have been classified as 'Deep water or shadow'
(DPWASH; 21) in the oldest satellite scene and either

• stayed the same (dark blue)
• was classified as ‘Shallow water or shadow’ (SLWASH; 22),

‘Turbid water or shadow’ (TWASH; 23) or ‘Salty shallow water’

l

(SASLWA; 24) (light blue)
• was not classified a water related category anymore (yellow)

Query for $s in (siam)
let
$sub_hi := [E(337580:341342), N(6038490:6041067),
ansi:"CRS:1"(imageCrsDomain($s, ansi).hi)],
$sub_lo := [E(337580:341342), N(6038490:6041067),
ansi:"CRS:1"(imageCrsDomain($s, ansi).lo)]
return encode(

((unsigned char)
switch
case $s[$sub_lo] = 21 and $s[$sub_hi] = 21 return {red:0; green: 0; blue:
100}
case $s[$sub_lo] = 21 and ($s[$sub_hi] = 22 or $s[$sub_hi] = 23 or
$s[$sub_hi] = 24 return {red:0; green: 100; blue: 200}
case $s[$sub_lo] = 21 and $s[$sub_hi] != 21 and $s[$sub_hi] != 22 and
$s[$sub_hi] != 23 and $s[$sub_hi] != 24 return {red:200; green: 200; blue: 0}

default return {red: 0; green: 0; blue: 0}
), "tiff")

Note The red part is not necessary and only included to be more explicit. The
cases excluded should have been caught already in the case statements
before as explained in Appendix A.5

Result

li

Q17 Observing the trajectory of a category (Same query as Q16 but clipped)

Query for $s in (siam)
let $sub_hi := [ansi:"CRS:1"(imageCrsDomain($s, ansi).hi)],
 $sub_lo := [ansi:"CRS:1"(imageCrsDomain($s, ansi).lo)]
return encode(

clip((unsigned char) ((unsigned char)
switch
case $s[$sub_lo] = 21 and $s[$sub_hi] = 21 return {red:0; green: 0; blue:
100}
case $s[$sub_lo] = 21 and ($s[$sub_hi] = 22 or $s[$sub_hi] = 23 or
$s[$sub_hi] = 24 return {red:0; green: 100; blue: 200}
case $s[$sub_lo] = 21 and $s[$sub_hi] != 21 return {red:200; green: 200;
blue: 0}
default return {red: 0; green: 0; blue: 0}
)
), POLYGON((
323014.428445768 6018724.6989753, 337518.076649877
6042736.29433543, 337518.076649877 6042736.29433543,
337518.076649877 6042736.29433543, 372326.832339739
6038465.77569756, 375549.865273986 6035967.92517351,
363302.340123849 6022350.61102632, 345736.810632206
6025654.21978393, 333489.285482069 6010344.81334626,
323014.428445768 6018724.6989753
))
),
"tiff)

Result

lii

Q18 Observing the trajectory of a category.

Selecting pixels that
• were not part of any water related category in the oldest satellite

scene and are DPWASH (21) in the most recent scene (red)
• were not part of any water related category in the oldest satellite

scene and are SLWASH, TWASH or SASLWA (22, 23, 24) in the
most recent scene (orange)

• were 21 and did not change (dark blue)
• were 21 and turned into 22, 23, 24 (light blue)
• were 21 and turned into something non water-related (yellow)

• were 22, 23, 24 and did not change (green)
• were 22, 23, 24 and turned into 21 (dark purple)
• were 22, 23, 24 and turned into something non water-related (light

purple)

Query for $s in (siam)
let
$sub_hi := [E(337580:341342), N(6038490:6041067),
ansi:"CRS:1"(imageCrsDomain($s, ansi).hi)],
$sub_lo := [E(337580:341342), N(6038490:6041067),
ansi:"CRS:1"(imageCrsDomain($s, ansi).lo)]

return encode(
((unsigned char)

switch

case $s[$sub_lo] != 21 and $s[$sub_lo] != 22 and $s[$sub_lo] != 23 and
$s[$sub_lo] != 24 and $s[$sub_hi] = 21 return {red:250; green: 0; blue: 0}
case $s[$sub_lo] != 21 and $s[$sub_lo] != 22 and $s[$sub_lo] != 23 and
$s[$sub_lo] != 24 and ($s[$sub_hi] = 22 or $s[$sub_hi] = 23 or $s[$sub_hi] =
24) return {red:250; green: 150; blue: 0}

case $s[$sub_lo] = 21 and $s[$sub_hi] = 21 return {red:0; green: 0; blue:
100}
case $s[$sub_lo] = 21 and ($s[$sub_hi] = 22 or $s[$sub_hi] = 23 or
$s[$sub_hi] = 24 return {red:0; green: 100; blue: 200}
case $s[$sub_lo] = 21 return {red:200; green: 200; blue: 0}

case $s[$sub_lo] = 22 or $s[$sub_lo] = 23 or $s[$sub_lo] = 24 and
($s[$sub_hi] = 22 or $s[$sub_hi] = 23 or $s[$sub_hi] = 24 return {red:0;
green: 100; blue: 0}
case $s[$sub_lo] = 22 or $s[$sub_lo] = 23 or $s[$sub_lo] = 24 and

liii

$s[$sub_hi] = 21 return {red:100; green: 0; blue: 100}
case $s[$sub_lo] = 22 or $s[$sub_lo] = 23 or $s[$sub_lo] = 24 and
$s[$sub_hi] != 21 return {red:250; green: 0; blue: 250}

default return {red: 0; green: 0; blue: 0}

)
, "tiff")

Note The last two cases
• were 22, 23, 24 and turned into 21 (dark purple)
• were 22, 23, 24 and turned into something non water-related (light

purple)
did not occur for the two timestamps queried, so no purple can be seen in the
output image

Result

Q19 Alternative method using overlay
Which pixel are DPWASH (21) and which have been SLWASH, TWASH
or SASLWA (22, 23, 24) in in the newest images that have not been
classified like that in the oldest images

Query for $s in (siam)
let $sub_hi := [E(337580:341342), N(6038490:6041067),
ansi:"CRS:1"(imageCrsDomain($s, ansi).hi)],

liv

 $sub_lo := [E(337580:341342), N(6038490:6041067),
ansi:"CRS:1"(imageCrsDomain($s, ansi).lo)]
return encode(

((unsigned char)
switch
case $s[$sub_lo] = 21 return {red:0; green: 0; blue: 100}
case $s[$sub_lo] = 22 or $s[$sub_lo] = 23 or $s[$sub_lo] = 24 return {red:0;
green: 100; blue: 200}
default return {red: 0; green: 0; blue: 0}
)

overlay

(unsigned char)
switch

case $s[$sub_hi] = 21 return {red:200; green: 0; blue: 0}
case $s[$sub_hi] = 22 or $s[$sub_hi] = 23 or $s[$sub_hi] = 24 return
{red:200; green: 200; blue: 0}
default return {red: 0; green: 0; blue: 0}

, "tiff")

Note:
Query
result is
equivalent
to
Query
above

for $s in (siam)
let
$sub_hi := [E(337580:341342), N(6038490:6041067),
ansi:"CRS:1"(imageCrsDomain($s, ansi).hi)],
$sub_lo := [E(337580:341342), N(6038490:6041067),
ansi:"CRS:1"(imageCrsDomain($s, ansi).lo)]
return encode(

((unsigned char)

switch
case $s[$sub_lo] = 21 return {red:0; green: 0; blue: 100}
case $s[$sub_lo] = 22 or $s[$sub_lo] = 23 or $s[$sub_lo] = 24 return {red:0;
green: 100; blue: 200}

case $s[$sub_hi] = 22 or $s[$sub_hi] = 23 or $s[$sub_hi] = 24 return
{red:200; green: 200; blue: 0}
case $s[$sub_hi] = 21 return {red:200; green: 0; blue: 0}

default return {red: 0; green: 0; blue: 0}

)
, "tiff")

lv

Result

Q20 Tracking different trajectories and comparing them:
Checking which pixels have gone through the development

'Deep Water' (DPWASH; 21) - 'Shallow water' (SLWASH, TWASH,
SASLWA; 22, 34, 24) - 'Non-water'

compared to those that have gone through

'Water' - 'Non-water'- 'Non-water'

from the oldest image to 19.06.2017 to the newest image

Query for $s in (siam)
let $sub_hi := [E(337580:341342), N(6038490:6041067),
ansi:"CRS:1"(imageCrsDomain($s, ansi).hi)],
 $sub_lo := [E(337580:341342), N(6038490:6041067),
ansi:"CRS:1"(imageCrsDomain($s, ansi).lo)],
 $sub_mi := [E(337580:341342), N(6038490:6041067), ansi("2017-06-
19T00:00:00.000Z")]

return encode(
((unsigned char)

switch

lvi

case $s[$sub_lo] = 21 and
($s[$sub_mi] = 22 or $s[$sub_mi] = 23 or $s[$sub_mi] = 24) and ($s[$sub_hi]
!= 21 and $s[$sub_hi] != 22 and $s[$sub_hi] != 23 and $s[$sub_hi] != 24)
return {red:255; green: 255; blue: 0}

case $s[$sub_lo] = 21 and
($s[$sub_mi] != 21 and $s[$sub_mi] != 22 and $s[$sub_mi] != 23 and
$s[$sub_mi] != 24) and
($s[$sub_hi] != 21 and $s[$sub_hi] != 22 and $s[$sub_hi] != 23 and
$s[$sub_hi] != 24) return {red:255; green: 0; blue: 0}

default return {red: 0; green: 0; blue: 0}

)
, "tiff")

Result

lvii

6.3 D.5 Time series analysis

2D map with values aggregated for a selected period of time

Q21 Condensing along the time axis by summing up all observations of a
(composite) category at a selected location and timespan. Example:
Count all water-related pixels (DPWASH, SLWASH, TWASH, SASLWA;
21, 22, 34, 24) for all images between 19.06.2017 and 18.06.2021 (n=9)

Query for $c in (siam)
let $sub := $c[E(333775:344085), N(6034398:6041229)]
return encode(
condense +
over $t ansi(imageCrsDomain($sub[ansi("2017-06-
19T00:00:00.000Z":"2021-06-18T00:00:00.000Z")], ansi))
using $sub[ansi($t)]=21 Or $sub[ansi($t)]=22 Or $sub[ansi($t)]=23 Or
$sub[ansi($t)]=24, "tiff")

Note The result map shows values from black (0 observations) to white (9
observations)

Result

lviii

Time series (and derived aggregate values) in which each
timestamp is taken into account for a period of time

Q22 Follow how a category's occurrence (SN; 29) has changed over time for a
selected period of time

Query for $s in (siam)
return
encode(coverage timeseries
over $p ansi(imageCrsDomain($s[ansi("2017-01-01T00:00:00.000Z":"2020-12-
31T00:00:00.000Z")], ansi))
values count($s[ansi($p)] = 29),
"text/csv")

Result 737193 23130 15625 667 2352 1062 702 892

Q23 Follow how the share of clouds of the satellite scene has changed over
time for a selected period of time (%)

Query for $s in (siam)
return
encode(coverage timeseries
over $t ansi(imageCrsDomain($s[ansi("2017-01-01T00:00:00.000Z":"2020-12-
31T00:00:00.000Z")], ansi))
values count($s[ansi($t)] = 25) /
 count(($s[ansi($t)]>0) and ($s[ansi($t)]<34))*100
,"text/csv")

Result 3,85 5,64 0,01 0,04 0,04 0,11 0,07 0,07

Q24 Count pixels that belong to SN (29) for the year 2017 in the data cube
and derive the maximum value

Query for $s in (siam)
return
encode(max(coverage timeseries
over $p ansi(imageCrsDomain($s[ansi("2017-01-01T00:00:00.000Z":"2017-12-
31T00:00:00.000Z")], ansi))
values count($s[ansi($p)] = 29)),

lix

"text/csv")

Caveat Make sure that the start and the endpoint of the requested interval lies within
the time axis domain

• Unfortunately, we don’t know when the maximum happened
• When using many or all dates of the data cube, this query becomes

naturally slower

Result 737193

Q25 Calculate average cloud cover (CL; 25) for one year

Query for $s in (siam)
return
encode(avg(coverage timeseries
over $t ansi(imageCrsDomain($s[ansi("2017-01-01T00:00:00.000Z":"2017-12-
31T00:00:00.000Z")], ansi))
values count($s[ansi($t)] = 25) /
 count(($s[ansi($t)]>0) and ($s[ansi($t)]<34))*100)
,"text/csv")

Caveat Make sure that the start and the endpoint of the requested interval lies within
the time axis domain

Result 4.74080453174745

Time series in which only selected timestamps are taken into
account for a period of time

Q26a Following the development of pixels classified as Snow or water ice (SN;
29) over all summers :-) in a selected period of time

Query for $s in (siam)
return
encode(coverage timeseries
over $t year(0:6)
values count($s[ansi($t*2)] = 29)
,"text/csv")

Result 996 1277 23130 667 1062 892 1213

Q26b Following the development of SN (29) over all winters in a selected period
of time

lx

Query for $s in (siam)
return
encode(coverage timeseries
over $t year(0:6)
values count($s[ansi($t*2+1)] = 29)
,"text/csv")

Result 518704 737193 15625 2352 702 22335348

Q28 Deriving the maximum SN (29) of a year or a season

Caveat It is important to know how many images are in the target timespan to iterate
over an adequate temporal range in the coverage constructor.

Query for $s in (siam)
return
encode(coverage timeseries
over $t year(1:6)
values max(count($s[ansi($t*2)] = 29) , count($s[ansi($t*2+1)] = 29))
,"text/csv")

Result 518704 737193 15625 2352 892 22335348

lxi

D.6 Edge detection based on categorical data

Edge detection based on categorical data with the Sobel filter

Q29 Using the Sobel Operator on just one SIAM™ category by defining a
Boolean condition in the where-clause of each coverage condenser

Query for $s in (siam)
let $sub := $s[E(340230:341230), N(6039800:6040800), ansi("2017-06-
19T00:00:00.000Z")],
$kernel1 := coverage kernel1
over $x x(-1:1), $y y (-1:1)
value list < 1; 0; -1; 2; 0; -2; 1; 0; -1>,
$kernel2 := coverage kernel2
over $x x(-1:1), $y y (-1:1)
value list < 1; 2; 1; 0; 0; 0; -1; -2; -1>
return encode(
sqrt(
pow(
coverage Gx
over $px1 E(imageCrsDomain($sub, E)),
$py1 N(imageCrsDomain($sub, N))
values
condense +
over $kx1 x(imageCrsDomain($kernel1, x)),
$ky1 y(imageCrsDomain($kernel1, y))
where $sub[E($px1), N($py1)] =21
using $kernel1[x($kx1), y($ky1)] * $sub[E($px1+$kx1), N($py1+$ky1)], 2.0
)
+
pow(
coverage Gy
over $px2 E(imageCrsDomain($sub, E)),
$py2 N(imageCrsDomain($sub, N))
values
condense +
over $kx2 x(imageCrsDomain($kernel2, x)),
$ky2 y(imageCrsDomain($kernel2, y))
where $sub[E($px2), N($py2)] =21
using $kernel1[x($kx2), y($ky2)] * $sub[E($px2+$kx2), N($py2+$ky2)], 2.0
)),"image/tiff")

lxii

Q30 Using the Sobel Operator on two SIAM™ categories (forming a
composite category and potentially a real-life class) by defining two
Boolean conditions in the where-clause of each coverage condenser

Query for $s in (siam)
let $sub := $s[E(340230:341230), N(6039800:6040800), ansi("2017-06-
19T00:00:00.000Z")],
$kernel1 := coverage kernel1
over $x x(-1:1), $y y (-1:1)
value list < 1; 0; -1; 2; 0; -2; 1; 0; -1>,
$kernel2 := coverage kernel2
over $x x(-1:1), $y y (-1:1)
value list < 1; 2; 1; 0; 0; 0; -1; -2; -1>
return encode(sqrt(
pow(coverage Gx
over $px1 E(imageCrsDomain($sub, E)),
$py1 N(imageCrsDomain($sub, N))

lxiii

values
condense +
over $kx1 x(imageCrsDomain($kernel1, x)),
$ky1 y(imageCrsDomain($kernel1, y))
where $sub[E($px1), N($py1)] =21 or $sub[E($px1), N($py1)] =30
using $kernel1[x($kx1), y($ky1)] * $sub[E($px1+$kx1), N($py1+$ky1)], 2.0)
+
pow(coverage Gy
over $px2 E(imageCrsDomain($sub, E)),
$py2 N(imageCrsDomain($sub, N))
values
condense +
over $kx2 x(imageCrsDomain($kernel2, x)),
$ky2 y(imageCrsDomain($kernel2, y))
where $sub[E($px2), N($py2)] =21 or $sub[E($px2), N($py2)] =30
using $kernel1[x($kx2), y($ky2)] * $sub[E($px2+$kx2), N($py2+$ky2)], 2.0)
),"image/tiff")

lxiv

Q31 Using the Sobel Operator on just one SIAM™ category by defining a
Boolean condition in the using-clause of each coverage condenser

Query for $s in (siam)
let $sub := $s[E(340230:341230), N(6039800:6040800), ansi("2017-06-
19T00:00:00.000Z")],
$kernel1 := coverage kernel1
over $x x(-1:1), $y y (-1:1)
value list < 1; 0; -1; 2; 0; -2; 1; 0; -1>,
$kernel2 := coverage kernel2
over $x x(-1:1), $y y (-1:1)
value list < 1; 2; 1; 0; 0; 0; -1; -2; -1>
return
encode(
sqrt(
pow(
coverage Gx
over $px1 E(imageCrsDomain($sub, E)),
$py1 N(imageCrsDomain($sub, N))
values
condense +
over $kx1 x(imageCrsDomain($kernel1, x)),
$ky1 y(imageCrsDomain($kernel1, y))
using $kernel1[x($kx1), y($ky1)] * ($sub[E($px1+$kx1), N($py1+$ky1)]=21),
2.0
)
+
pow(
coverage Gy
over $px2 E(imageCrsDomain($sub, E)),
$py2 N(imageCrsDomain($sub, N))
values
condense +
over $kx2 x(imageCrsDomain($kernel2, x)),
$ky2 y(imageCrsDomain($kernel2, y))
using $kernel1[x($kx2), y($ky2)] * ($sub[E($px2+$kx2), N($py2+$ky2)]=21) ,
2.0
)
)
,"image/tiff")

lxv

Q32 Using the Sobel Operator on two SIAM™ categories (forming a
composite category and potentially a real-life class) by defining two
Boolean conditions in the using-clause of each coverage condenser

Query for $s in (siam)
let $sub := $s[E(340230:341230), N(6039800:6040800), ansi("2017-06-
19T00:00:00.000Z")],
$kernel1 := coverage kernel1
over $x x(-1:1), $y y (-1:1)
value list < 1; 0; -1; 2; 0; -2; 1; 0; -1>,
$kernel2 := coverage kernel2
over $x x(-1:1), $y y (-1:1)
value list < 1; 2; 1; 0; 0; 0; -1; -2; -1>
return encode(sqrt(
pow(coverage Gx
over $px1 E(imageCrsDomain($sub, E)),
$py1 N(imageCrsDomain($sub, N))

lxvi

values
condense +
over $kx1 x(imageCrsDomain($kernel1, x)),
$ky1 y(imageCrsDomain($kernel1, y))
using $kernel1[x($kx1), y($ky1)] * ($sub[E($px1+$kx1), N($py1+$ky1)]=21 or
$sub[E($px1+$kx1), N($py1+$ky1)]=30), 2.0)
+
pow(coverage Gy
over $px2 E(imageCrsDomain($sub, E)),
$py2 N(imageCrsDomain($sub, N))
values
condense +
over $kx2 x(imageCrsDomain($kernel2, x)),
$ky2 y(imageCrsDomain($kernel2, y))
using $kernel1[x($kx2), y($ky2)] * ($sub[E($px2+$kx2), N($py2+$ky2)]=21 or
$sub[E($px2+$kx2), N($py2+$ky2)]=30) , 2.0)
),"image/tiff")

lxvii

Q33a Creating the mask coverage on which the Sobel filter should be applied
by using a switch statement

Query for $s in (siam)
let $sub := $s[E(340230:341230), N(6039800:6040800), ansi("2017-06-
19T00:00:00.000Z")],
$mask := coverage mask
 over $mx1 E(imageCrsDomain($sub, E)),
 $my1 N(imageCrsDomain($sub, N))
 values switch
 case ($sub[E($mx1), N($my1)] = 21 or $sub[E($mx1),
 N($my1)] = 24) return 1
 default return 0
return encode($mask ,"image/tiff")

Note • In the output image, the white areas have a value of 1, the black areas
a value of 0

• The coverage constructor requires that axes are given in image
coordinates. Currently it is not possible to retain or define a
geographic CRS for a coverage produced in such a way.

Result

lxviii

Q33b Testing the Sobel filter on the mask created by a coverage constructor
using a switch statement in the values clause. Note that to speed up the
processing time, applying only the horizontal edge detector kernel 1
was tried.

Query for $s in (siam)
 let $sub := $s[E(340230:341230), N(6039800:6040800), ansi("2017-06-
19T00:00:00.000Z")],
$kernel1 := coverage kernel1
 over $x x(-1:1), $y y (-1:1)
 value list < 1; 0; -1; 2; 0; -2; 1; 0; -1>,
$mask := coverage mask
 over $mx1 E(imageCrsDomain($sub, E)),
 $my1 N(imageCrsDomain($sub, N))
 values switch
 case ($sub[E($mx1), N($my1)] = 21 or $sub[E($mx1),
 N($my1)] = 24) return 1
 default return 0
return
encode(
sqrt(
pow(
 coverage Gx
 over $px1 E(imageCrsDomain($mask, E)),
 $py1 N(imageCrsDomain($mask, N))
 values
 condense +
 over $kx1 x(imageCrsDomain($kernel1, x)),
 $ky1 y(imageCrsDomain($kernel1, y))
 using ($kernel1)[x($kx1), y($ky1)] *
 ($mask)[E($px1+$kx1), N($py1+$ky1)], 2.0)
)
,"image/tiff")

Result The query run for more than an hour and returned the following exception:

<ows:Exception exceptionCode="RasdamanError">
 <ows:ExceptionText>Failed closing rasdaman db connection:
RasManager Error: Could not connect to RasServer .</ows:ExceptionText>
 </ows:Exception>
 <ows:Exception exceptionCode="RasdamanError">
 <ows:ExceptionText>Failed internal rasql query:

lxix

%query%</ows:ExceptionText>
 </ows:Exception>

Q34a Creating a mask coverage on which the Sobel filter should be applied
by only using conditions in the values clause of the coverage
constructor

Query for $s in (siam)
let $sub := $s[E(340230:341230), N(6039800:6040800), ansi("2017-06-
19T00:00:00.000Z")],
$mask := coverage mask
 over $mx1 E(imageCrsDomain($sub, E)),
 $my1 N(imageCrsDomain($sub, N))
 values
 $sub[E($mx1), N($my1)] = 21 or
 $sub[E($mx1), N($my1)] = 24
return
encode(
$mask
,"image/tiff")

Result The result image looks the same as in Q33a, but while black values have
also a value of 0, the white areas have a value of 255.

Q34b Testing the Sobel filter on a mask created based on a coverage
constructor with conditions in the value clause. Note that to speed up
the processing time, applying only the horizontal edge detector kernel 1
was tried.

Query for $s in (siam)
let $sub := $s[E(340230:341230), N(6039800:6040800), ansi("2017-06-
19T00:00:00.000Z")],
$kernel1 := coverage kernel1
 over $x x(-1:1), $y y (-1:1)
 value list < 1; 0; -1; 2; 0; -2; 1; 0; -1>,
$mask := coverage mask
 over $mx1 E(imageCrsDomain($sub, E)),
 $my1 N(imageCrsDomain($sub, N))
 values
 $sub[E($mx1), N($my1)] = 21 or
 $sub[E($mx1), N($my1)] = 24

lxx

return encode(
 sqrt(

pow(
 coverage Gx
 over $px1 E(imageCrsDomain($mask, E)),
 $py1 N(imageCrsDomain($mask, N))
 values
 condense +
 over $kx1 x(imageCrsDomain($kernel1, x)),
 $ky1 y(imageCrsDomain($kernel1, y))
 using $kernel1[x($kx1), y($ky1)] *
 ($mask)[E($px1+$kx1), N($py1+$ky1)], 2.0)
)
 ,"image/tiff")

Result Resulted in the same exception as Q33b.

lxxi

	Acronyms
	1 Introduction
	2 Background
	2.1 Semantic data cubes based on SIAM™ semi-concepts
	2.2 Rasdaman
	2.3 Big raster data and standards to work with them
	2.4 WCPS Syntax in rasdaman
	2.4.1 Sources of information about WCPS in rasdaman
	2.4.2 Executing WCPS queries
	2.4.3 General query structure of WCPS
	2.4.4 WCPS metadata/probing functions in rasdaman
	2.4.5 Further WCPS constructs

	3 Methods
	3.1 Hardware setup and rasdaman installation
	3.2 Data sets
	3.3 Importing images with wcst-import.sh
	3.4 Querying categorical data with WCPS in rasdaman

	4 Results
	4.1 Building the cube
	4.2 Example queries tested
	4.2.1 Structure of the results presented
	4.2.2 Descriptive statistics of a 2D image
	4.2.3 Simple selection and display of (composite) categories
	4.2.4 Fusing Sentinel-2 and SIAM™ data sets
	4.2.5 Investigating categorical trajectories
	4.2.6 Time series analysis
	4.2.7 Edge detection based on categorical data

	5 Discussion
	6 Conclusion
	References
	Appendix A - WCPS Syntax
	A.1 Coverage Subsetting
	A.2 Let Clause
	A.3 Deriving single bands and Multiband Constructor
	6.1 A.4 Induced Operations
	A.5 Conditional evaluation/Case distinction
	A.6 General Coverage Constructor
	A.7 Aggregation operations
	A.8 Combining constructor and aggregation queries
	A.9 Coverage Filtering with where
	A.10 Clipping
	A.11 Additional Functions

	Appendix B - Images in the data cube
	Appendix C - Ingredient files for data import
	C.1 Ingredients file for importing Sentinel-2 data
	C.2 Ingredient file for importing SIAM™ data

	Appendix D - WCPS queries tested
	D.1 Descriptive statistics of a 2D image
	6.2 D.2 Simple selection and display of (composite) categories
	D.3 Fusing Sentinel-2 and SIAM™ data sets
	D.4 Investigating categorical trajectories
	6.3 D.5 Time series analysis
	D.6 Edge detection based on categorical data

