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Abstract 

The agricultural subsidies paid under the scope of the Common Agricultural Policy of the European 

Union amounted to around € 55 billion in 2014 and € 57 billion in 2015. Of this amount, nearly € 748 

million or € 790 million were paid to Belgian farmers and agricultural enterprises in 2014 and 2015 

respectively. 

This work attempts to answer the question whether these subsidies were geographically evenly 

distributed across Belgium. The subsidies for the budget years 2014 and 2015 were examined. The 

analysis was carried out at the municipal level as well as at the arrondissement level, the latter mainly 

to control the Modifiable Area Unit Problem (MAUP). The subsidies were compared with agricultural 

data about different livestock species and cultivation areas of different crops. In addition, an exclusive 

analysis of Flanders only was attempted with very detailed data from a different source, containing 

just agricultural areas of the most important cultivated plants. The study of the whole country of 

Belgium was carried out at three different hierarchical levels, at which the predictors were combined 

increasingly. Overall, the analysis was carried out at 16 different levels. 

Firstly, global linear regression models were calculated and checked for outliers. Subsequently, the 

geographically weighted regression (GWR) was used, three different weighting functions being tested. 

Repeatedly, some predictors proved to be stationary while others were spatially variable. Therefore, 

the mixed geographically weighted regression (MGWR) was also employed. Finally, the results of OLS, 

GWR and MGWR were compared using the corrected Akaike information criterion (AICc) to determine 

which of the models described the data best. 

In seven cases, the global linear regression was the best model, two times the GWR had the lowest 

AICc and three times the MGWR. In four cases, including the exclusive examination of Flanders, no 

suitable model was found at all. The overall results turned out to be too different to recognize a clear 

pattern. GWR and MGWR found exceptionally high values only in those municipalities and areas, which 

had previously been identified as outliers. These were mostly Leuven and Sint Truiden, two cities , in 

which large agricultural cooperatives with superregional importance are based, that receive very high 

subsidy payments. However, since there are many farmers and agricultural enterprises organized in 

those cooperatives, who often don’t have their seat in one of these two cities, one can’t claim those 
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municipalities are being favored in terms of agricultural subsidies. In the end, this work did not find 

any evidence for significant differences in the geographical distribution of subsidies within Belgium. 
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Zusammenfassung 

Die im Rahmen der Gemeinsamen Agrarpolitik der Europäischen Union ausbezahlten 

Agrarsubventionen betrugen in den Jahren 2014 und 2015 ca. 55 bzw. 57 Mrd. €. Davon wurden 2014 

fast 748 Mio. € bzw. 2015 fast 790 Mio. € an belgische Landwirte und Agrarbetriebe ausbezahlt. 

Diese Arbeit versucht die Frage zu beantworten, ob diese Subventionen innerhalb Belgiens auch 

geographisch gleichmäßig verteilt wurden. Untersucht wurden die Subventionen der Budgetjahre 

2014 und 2015. Die Analyse erfolgte dabei auf Gemeindeebene sowie auf Ebene der Arrondissements, 

letzteres vor allem, um das Modifiable Areal Unit Problem (MAUP) zu kontrollieren. Den Subventionen 

wurden landwirtschaftliche Daten zu verschiedenen Nutztierarten und Anbauflächen verschiedener 

Kulturpflanzen gegenübergestellt. Zudem wurde mit aus anderer Quelle stammendem, sehr 

detailliertem, jedoch lediglich Anbauflächen umfassendem Datenmaterial eine gesonderte, 

ausschließlich auf Flandern beschränkte Analyse versucht. Die Untersuchung ganz Belgiens erfolgte auf 

drei verschiedenen Hierarchieebenen, auf denen die Prädiktoren in zunehmendem Maße aggregiert 

wurden. Insgesamt erfolgte die Analyse somit auf 16 verschiedenen Ebenen. 

Zunächst wurden globale lineare Regressionsmodelle berechnet und auf Ausreißer überprüft. Im 

Anschluss wurde die geographisch gewichtete Regression (GWR) eingesetzt, wobei drei verschiedene 

Gewichtungsfunktionen getestet wurden. Immer wieder erwiesen sich manche Prädiktoren als 

stationär, während andere räumlich variabel waren. Deshalb kam auch die gemischte geographisch 

gewichtete Regression (MGWR) zur Anwendung. Die Ergebnisse von OLS, GWR und MGWR wurden 

schließlich mittels korrigiertem Akaike-Informationskriterium (AICc) einem Vergleich unterzogen, um 

festzustellen, welches der Modelle die Daten am besten beschrieb. 

In sieben Fällen war die einfache lineare Regression das beste Modell, zwei Mal hatte die GWR den 

niedrigsten AICc und drei Mal die MGWR. In vier Fällen konnte überhaupt kein geeignetes Modell 

gefunden werden. Die Ergebnisse waren insgesamt zu unterschiedlich, um ein klares Muster erkennen 

zu können. GWR und MGWR fanden meist nur in jenen Gemeinden und Gegenden außergewöhnlich 

hohe Werte, die zuvor bereits als Ausreißer identifiziert worden waren. Dabei handelte es sich meist 

um Leuven und Sint Truiden, zwei Städte, in denen große landwirtschaftliche Kooperativen mit 

überregionaler Bedeutung ihren Sitz haben, die sehr hohe Subventionszahlungen erhielten. Da in 
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diesen aber sehr viele Landwirte und Agrarbetriebe organisiert sind, die ihren Sitz oftmals gar nicht in 

einer dieser beiden Städte haben, kann man hier nicht von Bevorzugung dieser Gemeinden sprechen. 

Diese Arbeit konnte somit letztlich keine bedeutsamen Unterschiede bei der geographischen 

Verteilung der Subventionen innerhalb Belgiens finden. 
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1   Introduction 

1.1   Motivation 

In 1962, the Common Agricultural Policy (CAP) of the European Union was introduced. It is financed 

through the European Agricultural Guarantee Fund (EAGF) and the European Agricultural Fund for 

Rural Development (EAFRD). The share of the budget for the Common Agricultural Policy in the total 

budget of the European Union for the period 2014 - 2020 is 37.8 percent1, in 2014 (2015) the sum of 

the agricultural subsidies paid out to farmers in the European Union amounted to approximately € 55 

billion (€ 57 billion)2. Initially, the aim of the Common Agricultural Policy was to stimulate agricultural 

production, which had declined after the Second World War in most European countries, in order to 

guarantee food security of the population and ensure a secure income for the agricultural population3. 

The objectives have shifted with the changing conditions of the world economy and the Common 

Agricultural Policy has been and still is being reformed ever since the 1980s. Nevertheless, there has 

been criticism of the Common Agricultural Policy for a long time. For example, it is criticized that the 

agricultural sector disproportionately benefits from the CAP. Although, the share of the Common 

Agricultural Policy in the EU's total budget has declined for several years, it is still the largest item 

despite the fact that the percentage of people working in agriculture is declining throughout the EU. 

In 2010, the agricultural sector employed only around 10 million people (about 5 percent of the 

working population4). It is also being criticized that larger farms and agricultural businesses, which 

already have larger resources anyway, are receiving far more subsidies than small farmers, since they 

are also the larger producers. As a result, a large number of family-run businesses are squeezed out of 

the market, which distorts it. There are also debates on equity regarding the distribution of agricultural 

subsidies among the member states, as some countries have a much larger agricultural sector than 

                                                           
1 http://www.europarl.europa.eu/atyourservice/en/displayFtu.html?ftuId=FTU_5.2.2.html  

(retrieved May 2, 2017) 
2 http://ec.europa.eu/budget/library/biblio/documents/2015/internet-tables-2000-2015.xls  

(retrieved May 5, 2017) 
3 http://ec.europa.eu/agriculture/cap-overview/history_de (retrieved May 8, 2017) 
4 https://ec.europa.eu/agriculture/sites/agriculture/files/rural-area-economics/briefs/pdf/08_en.pdf 

(retrieved May 2, 2017) 

http://www.europarl.europa.eu/atyourservice/en/displayFtu.html?ftuId=FTU_5.2.2.html
http://ec.europa.eu/budget/library/biblio/documents/2015/internet-tables-2000-2015.xls
http://ec.europa.eu/agriculture/cap-overview/history_de
https://ec.europa.eu/agriculture/sites/agriculture/files/rural-area-economics/briefs/pdf/08_en.pdf


2 

 

others and thus benefit disproportionately. Numerous other criticisms exist. In order to defuse the 

increasingly louder criticism, the EU Regulation No. 1306/2013 of the European Parliament and of the 

Council of the European Union as well as the EU Commission Implementing Regulation No. 908/2014 

of the European Commission have been enacted which oblige the EU member states to publish all 

beneficiaries of subsidies paid under the scope of the Common Agricultural Policy. 

This work does not deal with any of the criticisms cited above, but rather addresses the question 

how equal the distribution of agricultural subsidies at the domestic level is, i.e., whether there is at 

least fairness in the distribution of payments to the municipalities or higher administrative units within 

a state. As it would not have been possible to scrutinize the European Union in its entirety and all of 

its member states in the course of this study, I decided to select a single country as an example. Since 

I am living in Austria, I originally wanted to investigate the situation of Austria. However, the acquisition 

of necessary data would have involved considerable costs and the data on agricultural subsidies were 

only available for reading, but not in downloadable form. After a long web search, the choice finally 

fell on Belgium as it was the country with the best data and which offered them all free of charge and 

in an uncomplicated manner for use and download.  

With a national territory of 30.528 km² and about 11.3 million inhabitants (2016)5, Belgium is one 

of the small to medium-sized countries in the European Union. Its share of the EU's total area is 0.7 

percent, and of its total population 2.2 percent (2016)6. Its share of the total expenditure of the 

European Union of around € 142.5 billion (2014) and € 145.2 billion (2015) was around 5 percent (€ 7 

billion)2 for both years. The share of the population working in the agricultural sector was less than 1 

percent in 20137.  

Belgium's administrative structure is a peculiarity within the European Union. The country is, so to 

say, divided: The Dutch-speaking region of Flanders lies to the north and the French-speaking region 

of Wallonia to the south. On the other hand, the Brussels-Capital Region is a mixed-language entity. 

For a long time, there has been a political conflict between the Flemings in the north and the Walloons 

in the south, which also has economic backgrounds. Thus, some parties and politicians of Flanders 

demand the independence of their region from Belgium. They argue that, as an economically stronger 

region, they would finance Wallonia, which has been in recession since the decline of the coal and steel 

industry. 

                                                           
5 http://statbel.fgov.be/nl/binaries/2_WEB_NL_kerncijfers_2016_tcm325-280618.pdf (retrieved May 2, 2017) 
6 http://ec.europa.eu/eurostat/tgm/refreshTableAction.do?tab=table&plugin=1&pcode=tps00001&language=en 

(retrieved May 3, 2017)  
7 http://statbel.fgov.be/nl/binaries/NL_Kerncijfers%20Landbouw_2015k_tcm325-270401.pdf  

(retrieved May 5, 2017) 

http://statbel.fgov.be/nl/binaries/2_WEB_NL_kerncijfers_2016_tcm325-280618.pdf
http://ec.europa.eu/eurostat/tgm/refreshTableAction.do?tab=table&plugin=1&pcode=tps00001&language=en
http://statbel.fgov.be/nl/binaries/NL_Kerncijfers%20Landbouw_2015k_tcm325-270401.pdf
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1.2   Research Questions 

The purpose of this master thesis is to clarify whether the agricultural subsidies paid  out to farmers 

and agricultural businesses in Belgium within the framework of the EU's Common Agricultural Policy 

in 2014 and 2015 are distributed geographically evenly among the administrative entities. Firstly, the 

investigation takes place at municipal level and, secondly, at the arrondissement level. The subsidies 

of all beneficiaries of a political municipality and arrondissement, respectively, are summed up 

regardless of their purpose or origin (EAGF or EAFRD). The sum of subsidies of each municipality or 

arrondissement functions as response variable and is compared with various explanatory variables 

from the agricultural sector. These are the number of farms, the total area used for agricultural 

purposes, the cultivation areas of different crops and the number of different livestock animals. The 

study is carried out at three levels of aggregation, which are based on the classification of Statistics 

Belgium, the agency for statistics of the Belgian Federal Government: At the highest level, all variables 

about cultivation areas and livestock animals are grouped into one each, at the second level there is a 

simple disaggregation of the variables, and at the third level an enhanced one. 

Of course, the Flemish-Walloon conflict is also of interest to the present work as the question arises 

whether one of the two parts of the country is benefiting excessively from the EU's Common 

Agricultural Policy. While this conflict is not explicitly the subject of this work and only an incidental 

aspect resulting from the selection of Belgium as target country, a potential unequal treatment of the 

two regions can also be identified on the basis of the results obtained. 

When searching for data material for my evaluations, I came across geodata of Flanders on the 

website of the Flemish Office for Geoinformation with very detailed information on the cultivation 

areas of many crops, but without information on livestock animals. Unfortunately, I didn’t succeed in 

finding a Walloon counterpart. Nonetheless, I absolutely wanted to include these data in my analyses, 

because, in contrast to the geodata used in the investigation of the whole Belgian territory, they 

contain information for all individual cultivation areas. Therefore, in addition to the investigation of 

the whole country of Belgium, I tried to conduct an analysis limited to Flanders based solely on data 

on crops and cultivated plants by making use of these geodata to see if it would produce similar results 

for the region of Flanders. 

An important concern for me, alone from financial reasons, was the exclusive use of open source 

software. Since it is accessible to everyone and its acquisition does not incur any costs, it can also be 

easily used by everyone. Open source solutions exist for a great number of applications, which are very 
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often in no way inferior to their proprietary counterparts, indeed often surpassing their functionality. 

I am an absolute advocate of open source solutions and wanted to proof that no expensive software 

is required to carry out geostatistical analyses for a master thesis. 

Also for reasons of cost, I have decided only to employ freely accessible and usable data. At this 

point, however, I must add that there is still a lot of catching up to do, concerning this matter. Data, 

whose collection or acquisition is funded by public means anyway should also be freely available to all 

interested parties, which, despite Open Data, is still a great exception. 



5 

 

2   Methods 

2.1   Data 

2.1.1   Data Acquisition 

The data on all EU agricultural subsidies paid out to beneficiaries for the budget years 2014 and 2015 

are provided by the Belgian Paying Agencies and have been downloaded free of charge as CSV files on 

their website8. The payout periods run from October 16 to December 15 of the respective budget year. 

The statistical data on agriculture originate from the website of the Belgian Office for Statistics9 and 

are available for download in tabular form. The information contained in these tables is based on 

statistical updating and therefore, to a degree, subject to uncertainties. The reference period for the 

survey of cultivated plants in 2014 and 2015 was April / May and October / November for the survey 

of livestock. The agricultural data exclusively used for the investigation of Flanders are derived from 

geodata, which were obtained from the Geoportal of the Flemish government10. The reference period 

used starts on April 21 of the preceding year and ends on the same day of the following year. 

Geodata with the municipal boundaries of Flanders (as of May 22, 2003) with a scale of 1:5,000 

were also downloaded from the Flemish government's geoportal. The Walloon counterpart with a 

scale of 1:10,000 (as of November 14, 2013) comes from the FTP server11 of the geoportal of the 

Walloon Region. Geodata with a scale of 1:2,000, which contain the agricultural areas of Flanders 

broken down by crop species, have already been mentioned above. As no geodata could be found on 

the Walloon side, I had to resort to the sectoral plan of Wallonia with a scale of 1:10,000 (as of 

November 14, 2013), provided on the FTP server of the geoportal of the Walloon Region. 

                                                           
8 http://www.belpa.be/belpa/pub/EN/data.html#download (retrieved November 29, 2016) 
9 http://statbel.fgov.be/nl/statistieken/cijfers/economie/landbouw/bedrijven/  

(retrieved December 14, 2016) 
10 http://www.geopunt.be/ (retrieved October 6, 2016) 
11 ftp://docum1.wallonie.be/DONNEES/Amenagement/Plans/Plans_secteurs/Plans_Secteur_Vectoriel/  

(retrieved October 10, 2016) 

http://www.belpa.be/belpa/pub/EN/data.html#download
http://statbel.fgov.be/nl/statistieken/cijfers/economie/landbouw/bedrijven/
http://www.geopunt.be/
ftp://docum1.wallonie.be/DONNEES/Amenagement/Plans/Plans_secteurs/Plans_Secteur_Vectoriel/
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2.1.2   Data Preparation 

Since the geodata with the administrative boundaries of the municipalities of Wallonia and Flanders 

differ in their scales, they were initially processed with QGIS version 2.18 (QGIS Development Team 

2016). The adjoining regions of Wallonia and Flanders were aligned with one another. Municipalities 

located at sea had their marine areas removed to avoid statistical distortions. For the geodata, which 

contains the sectoral plan of Wallonia, all areas not classified “agriculture” or “specific agro-economic 

activity” were removed. The two remaining classes were combined into a common one and intersected 

with the municipal boundaries of Wallonia. The geodata containing the agricultural surfaces of 

Flanders were used in two ways: For the analysis of all of Belgium unclassified areas and all those areas 

containing the class “water” were removed. Once again, all the remaining classes were merged into 

one. For the exclusive analysis of Flanders, the geodata adjusted for the class “water” and the 

unclassified areas were used, with the remaining classes left in their condition. Both the generated 

geodata with the agricultural areas for the analysis of the whole of Belgium as well as for the analysis 

of Flanders were then intersected with the municipal boundaries of Flanders. The agricultural areas of 

Wallonia and Flanders, which had been aggregated to form a common class and intersected with the 

municipal borders were combined into a single file. 

Due to data privacy concerns, recipients who received up to € 1,250 in a budget year are published 

in anonymous form12 (European Parliament & Council of the European Union 2013; European 

Commission 2014). Since there is no information on the postal code and the municipality for 

anonymous recipients, they were removed from the data on the beneficiaries. Likewise, those 

recipients whose residence or business seat is not in Belgium were removed as well. Also, all 

beneficiaries from those 44 municipalities for which no agricultural data are available, including all 19 

from Brussels-Capital Region (Table 2.1; Fig. 2.1), were dropped. In addition, this was the case for the 

municipality of Martelange in 2014 and Vilvoorde in 2015. Of course, these areas were removed from 

the geodata too. Since the statistical data on agriculture also contain a row with confidential 

municipalities and, therefore, no allocation is possible, they were also deleted. The generated geodata 

were joined with the agricultural and subsidy data using QGIS and finally saved as new files. 

                                                           
12 https://ec.europa.eu/agriculture/sites/agriculture/files/cap-funding/beneficiaries/shared/ 

threshold_en.pdf (retrieved April 12, 2017) 

https://ec.europa.eu/agriculture/sites/agriculture/files/cap-funding/beneficiaries/shared/threshold_en.pdf
https://ec.europa.eu/agriculture/sites/agriculture/files/cap-funding/beneficiaries/shared/threshold_en.pdf
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Fig. 2.1:   Excluded municipalities. 

It is important to mention that the areas of the Walloon sectoral plan do not indicate the actual use 

of the areas it contains, but merely the intended use, which of course leads to uncertainties. However, 

here I see no significant problem since the extent of the uncertainty is probably the same for all 

municipalities in Wallonia and thus, ensures a balance. Only in the comparison of Flemish and Walloon 

municipalities could there be considerable uncertainties. Unfortunately, in the absence of alternatives, 

there was no other choice. This circumstance is also responsible for differences between the size of 

the polygons of the Walloon municipalities and the areas given in the tables from the Belgian Office 

for Statistics, which is why a compromise had to be found here. Therefore, the area sizes provided by 

the Belgian Office for Statistics in combination with the polygons of the Walloon sectoral plan were 

used for the geostatistical analyses. This problem is also present in the Flemish geodata, which is why 

the overall analysis of Belgium was carried out according to the same pattern. The Walloon sectoral 

plan does not provide detailed information on the cultivated plants but has all areas generally 

designated as agricultural areas. In an analysis of the whole country of Belgium all regions have to be 
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treated statistically alike, so despite all the detailed information on the Flemish side all areas were 

aggregated regardless of their use. Thus, when analyzing the whole state of Belgium, each polygon was 

treated as if within its boundaries every crop category that had entered the statistics was cultivated. 

Since no detailed geodata were available for farm animals at all, they were treated in the same manner. 

In the analysis limited to Flanders, the detailed geodata could be used, but for the reasons mentioned 

above, without livestock. Unlike in the case of the geodata of the whole country of Belgium, in the 

analysis limited to Flanders, each area has only a single form of use, which, unfortunately, makes it 

impossible to carry out a regression involving all forms of use. In order to solve this, the table data had 

to be designed in such a way that only one field per row had a subsidy amount given, i.e., the field the 

form of usage applied. That is, a table was produced in which each area faced all types of use, but all 

the fields except the one whose use applied for the respective area had the subsidy amount of € 0. 

Table 2.1:   Overview of analyzed and excluded subsidies.  

 2014 % 2014 2015 % 2015 

Total subsidies € 747,650,156.45 100.00 € 789,532,360.83 100.00 

 Foreign and anonymized recipients € 4,356,259.94 0.58 € 3,557,907.96 0.45 

 Excluded municipalities € 8,922,342.31 1.19 € 4,561,219.14 0.58 

Not analyzed subsidies total € 13,278,602.25 1.78 € 8,119,127.10 1.03 

 Analyzed subsidies Wallonia € 381,888,546.27 51.08 € 386,168,171.53 48.91 

 Analyzed subsides Flanders € 352,483,007.93 47.15 € 395,245,062.20 50.06 

Analyzed subsidies total € 734,371,554.20 98.22 € 781,413,233.73 98.97 

2.1.3   Data Summary 

In 2014 the sum of all agricultural subsidies paid by the Belgian Paying Agencies under the EU's 

common agricultural policy amounted to € 747,650,156.45, which went to 41,792 recipients. The 

subsidies not included in the analysis due to the above reasons are € 13,278,602.25. That is, the sum 

analyzed for the year 2014 is € 734,371,554.20, which is 98.2 percent of the total subsidy sum. In 2015, 

a total of € 789,532,360.83 was paid out to 43,150 beneficiaries and the sum not taken into account 

was € 8,119,127.10. Thus, for 2015 € 781,413,233.73 (99 percent) are analyzed, of which in 2014 

(2015) € 352,483,007.93 (€ 395,245,062.20) are attributable to Flanders and € 381,888,546.27 

(€ 386,168,171.53) to Wallonia (Table 2.1). The analysis limited to the region of Flanders required an 

allocation of the subsidies to the individual areas of the cultivated plants. It should be noted that small 

polygons with an area of less than one square meter had been removed from the data prior to the 

analysis. The sum of the agricultural areas of each municipality before removing these small polygons 

differs by a few square meters from the area sums afterwards. Since the second value was used as the 
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total area for the factoring of the subsidies, but the area sums of the individual crops of each 

municipality contain these small polygons, there are marginal differences in the total sum analyzed, 

which amounts to € 352,483,302.88 (difference: € 294.95) in 2014 and € 395,246,380.39 (difference: 

€ 1,318.19) in 2015. This difference has absolutely no effect on the statistical analysis whatsoever, it is 

merely an insignificant procedural error, but has to be mentioned anyway. The highest amount 

received by a beneficiary in 2014 (2015) was € 28,812,795 (€ 36,445,938.94), followed by ten (nine) 

recipients, each with at least € 1 million. Six (eight) recipients received between € 1 million and more 

than € 0.5 million, 503 (564) recipients between € 0.5 million and more than € 100,000, 2,477 (2,689) 

recipients between € 100,000 and more than € 50,000 and another 16,262 (16,045) between € 50,000 

and more than € 10,000 in subsidies. The remainder is distributed among the remaining 22,532 

(23,836) recipients, many of whom also had negative sums. 

 

Fig. 2.2:   Regions and provinces of Belgium.  
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Fig. 2.3:   Arrondissements of Belgium. 

As mentioned above, Belgium is divided into the three regions of Flanders with an area of 13,522 

km² and a population of approximately 6.5 million inhabitants (479 inhabitants per km²), Wallonia with 

an area of 16,844 km² and a population of about 3.6 million inhabitants (214 inhabitants per km²) and 

Brussels-Capital with an area of 161 km² and a population of ca. 1.1 million inhabitants (7,074 

inhabitants per km²). The regions of Flanders and Wallonia, for their part, are divided into five 

provinces each, each of which is composed of several arrondissements (Fig. 2.2 and 2.3) (a total of 43 

including the arrondissement Brussels-Capital). Thereof, Flanders has 22 and Wallonia 20 

arrondissements. The number of Belgian political municipalities (Fig. 2.4 and 2.5) is 589, of which 308 

are in Flanders, 262 in Wallonia, and 19 in the region of Brussels-Capital. Of the 589 municipalities, all 

19 of the Brussels-Capital Region were not analyzed because they had no agricultural data available. 

This was the case with a further 15 municipalities in Flanders and 10 municipalities in Wallonia. For the 

same reason, the Walloon municipality of Martelange in 2014 and the Flemish municipality of 

Vilvoorde in 2015 were excluded from the analysis so that a total of 544 municipalities were examined 
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each year. Broken down by region, there were 293 (292) Flemish and 251 (252) Walloon municipalities 

in 2014 (2015). 

The data from the Belgian Office for Statistics show that the number of farms in the municipalities 

of northern and northeastern Flanders is generally higher than in Wallonia and central Flanders. Pig 

and poultry farming is concentrated mainly on West Flanders and the north of the province of Antwerp. 

In these areas, in northern East Flanders and Hainaut as well as in the east of the province of 

Luxembourg, cattle keeping is very well established. In the central part of Belgium, on the other hand, 

there are significantly fewer cattle. The agricultural area is larger in Wallonia and in the north and 

north-east Flanders than in the rest of Belgium. A quite similar pattern is also evident in the subsidies, 

especially the municipalities of Leuven 2014 (2015) with almost € 31.5 million (€ 39.3 million) and Sint 

Truiden with over € 13.3 million (€ 23.4 million) are clearly visible. The cultivation area of perennial 

plants is largely distributed uniformly, but there is a focus around Sint Truiden. The perennial grassland 

area is highest in southeastern Wallonia, whereas greenhouse crops are found especially in northern 

Flanders. The cultivation of industrial crops, potatoes, vegetables and cereals is very common a long 

the Flemish-Walloon border, especially in the Flemish part, as well as in West Flanders. The cultivation 

of fodder plants correlates geographically with cattle farming. The largest area of cultivation of 

legumes is in southern Limburg, Luxembourg, Liège and Namur. Fallows are found in Hainaut, Namur 

and Walloon Brabant. 

 

Fig. 2.4:   Municipalities of the regions Flanders and Brussels-Capital. 
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The data about Flanders suggest that potatoes, vegetables, herbs and horticultural plants are 

cultivated mainly in West Flanders, but fruits and nuts are found especially around Sint Truiden. 

Cereals, seeds and legumes have their main focus in the north-eastern part of West Flanders and in 

the southern part of Limburg, grassland and maize in the northern and western part of Flanders. 

 

Fig. 2.5:   Municipalities of the region Wallonia.  

2.2   (Geo-)Statistical Analysis 

2.2.1   Preliminary Notes 

All statistical analyses were carried out using the free statistics package R, version 3.3.1 (64-bit) (R Core 

Team 2016) and with the help of the also freely available integrated development environment 

RStudio, version 1.044 (RStudio Team 2016). An R script was created that, except for a few points, 

automatically performs the statistical analyses after selecting a desired data set. The code of this R 

script, together with the necessary auxiliary scripts, is available in the Appendix. All analyses were 

carried out for two budget years. In this way, contingencies or outliers can be mitigated. It was not 

possible to analyze any further years since only the last two subsidy periods are available on the web. 

Unless otherwise stated, the common significance level of α < 0.05 was used for all significance tests. 
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The modifiable areal unit problem (MAUP) explained by Openshaw (1984) describes the 

dependence of the results of spatial analyses on the form of the aggregation of the initial data. Though 

using the very same data for an analysis, depending on the subdivision of the investigated area, 

completely different results can be obtained. In order to deal with this problem, all analyses were 

carried out at the municipal level as well as at the arrondissement level. Originally, it was also planned 

to carry out the analyses at provincial and regional level. However, this plan was abandoned because 

the number of units (ten provinces or two regions) simply would have been too small for a meaningful 

analysis. 

Table 2.2:   Aggregation levels for the analysis of the entire country of Belgium (abbrevations in brackets).  

Aggregation  
level 1 

Aggregation  
level 2 

Aggregation  
level 3 

Businesses (bus) 

Agricultural  
area (aar) 

Arable  
land (arl) 

Cereals (cer) 

Industrial crops (ind) 

Potatoes (pot) 

Legumes (leg) 

Fodder plants (fod) 

Vegetables (veg) 

Horticultural plants (hor) 

Fallows (fal) 

Perennial  
plants (ppl) 

Tree nurseries (nur) 

Orchards (orc) 

Small fruits (sfr) 

Perennial grassland (pgr) 

Greenhouse  
crops (gcr) 

Greenhouse vegetables (gvg) 

Horticultural plants in greenhouses (hrg) 

Cattle (cat) 

Calves < 1 yr. (cal) 

Cattle 1 - < 2 yr. (c12) 

Cattle ≥ 2 yr. (c>2) 

Pigs (pig) 

Piglets (pgl) 

Breeding sows > 50 kg (sow) 

Pigs 20 - 50 kg and porkers (por) 

Poultry (pou) 
Laying hens (lay) 

Broilers (bro) 

Note: All variables about plants and crops are given in ares whereas “Businesses” and variables about livestock are count 
data. 

Table 2.3:   Predictors used in the exclusive analysis of Flanders (abbrevations in brackets).  

Potatoes (pot) Woody plants (woo) Flax and hemp (flh) 

Fruits and nuts (frn) Agricultural  infrastructure (inf) Fodder plants (fod) 

Cereals, seeds and legumes (csl) Maize (mai) No information (nin) 

Grassland (gra) Other plants (oth) 
 

Vegetables, herbs and horticultural plants (vhh) Sugar beets (sug) 
 

Note: All variables are given in ares. 
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As already mentioned, the investigation is carried out at three levels of aggregation. At the highest 

level all variables on cultivated areas or livestock are combined into one variable each, at the second 

level a simple disaggregation of these variables takes place and at the third level an enhanced one 

(Table 2.2). Experimentally, at the highest aggregation level, the analysis was also carried out using a 

hexagonal grid (Fig. 2.6) whose parallel edges have a distance of five kilometers. The grid was 

intersected with the agricultural areas fitted to the municipal boundaries and the areas obtained were 

then analyzed. For this analysis, the variable sums were divided proportionally between the individual 

areas. Parallel to this, an analysis limited to the region of Flanders was performed, in which, as already 

mentioned, other data and predictors were used (Table 2.3). Overall, the analysis was conducted at 16 

different levels. For the sake of clarity, each of these levels has been given a code (Table 2.4.) where 

the letter “m” denotes municipalities, “a” arrondissements, “g” grid, “f” Flanders, the number after 

the letter “a” or “m” the aggregation level, and the numbers “14” and “15” the years 2014 and 2015 

respectively. 

Table 2.4:   Analysis levels. 

m1 14 Municipalities of Belgium at aggregation level 1 2014 

m1 15 Municipalities of Belgium at aggregation level 1 2015 

m2 14 Municipalities of Belgium at aggregation level 2 2014 

m2 15 Municipalities of Belgium at aggregation level 2 2015 

m3 14 Municipalities of Belgium at aggregation level 3 2014 

m3 15 Municipalities of Belgium at aggregation level 3 2015 

a1 14 Arrondissements of Belgium at aggregation level 1 2014 

a1 15 Arrondissements of Belgium at aggregation level 1 2015 

a2 14 Arrondissements of Belgium at aggregation level 2 2014 

a2 15 Arrondissements of Belgium at aggregation level 2 2015 

a3 14 Arrondissements of Belgium at aggregation level 3 2014 

a3 15 Arrondissements of Belgium at aggregation level 3 2015 

g14 Municipalities of Belgium rasterd by a hexagon grid at aggregation level 1 2014 

g15 Municipalities of Belgium rastered by a hexagon grid at aggregation level 1 2015 

f14 Municipalities of Flanders 2014 

f15 Municipalities of Flanders 2015 

Note: m, municipality; a, arrondissement; g, grid; f, Flanders; 1, aggregation level 1; 2, aggregation level 2; 3, aggregation 
level 3; 14, 2014; 15, 2015. 

2.2.2   Global Linear Regression 

In order to numerically identify correlations between predictors and to remove redundant variables 

prior to the analysis, correlation matrices were created. There is no universally valid limit from which 

variables are regarded as actually correlated. However, it can be assumed that a significant correlation 

exists from a correlation coefficient after Pearson (1895) of about r ≥ 0.8. Combinations of variables 
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whose correlation coefficient exceeded this value were declared inadmissible and removed from the 

potential regression models. 

The beginning of the actual analysis was the calculation of a (multiple) global linear regression 

model. The model selection for the global linear regression was carried out using the R package glmulti, 

version 1.0.7 (Calcagno & de Mazancourt 2010), which calculates all possible models and their 

respective corrected Akaike information criterion (AICc) (Akaike 1973; Sugiura 1978). The general view 

is that models whose AICc deviate less than the value of 2 of each other (Raftery 1995; Burnham & 

Anderson 2004) bear the same information content and thus are equal. 

All regression models, whose AICc were up to a maximum of the value 2 above the model with the 

lowest AICc (M), were subjected to a more detailed analysis. Models, in which not all predictors were 

significant, were deleted, with the intercept perceived not of any importance. The model, which had 

the lowest AICc value and at the same time had all predictors significant, was finally selected. If there 

was no model within the interval M + 2 in which all predictors were significant, non-significant 

predictors were taken from the model with the lowest AICc value, and the calculation was performed 

again until finally the best possible model was found, subjected to a deeper analysis. For the purpose 

of verifying the goodness-of-fit of the regression model, the adjusted measure of determination R² was 

used. β-coefficients were calculated to study the relative magnitude of the influence of the respective 

predictors. The variables were standardized so that their variances s² have the value 1. The 

standardized β-coefficients thus give information about how many standard deviations s the 

dependent variable changes with the respective predictor. 

The regression models selected for each analysis run were subsequently subjected to regression 

diagnostics. For this purpose, the variance inflation factors (VIF) of the predictors were calculated first. 

The VIF is a measure of the multicollinearity of the variables. A somewhat arbitrary, but generally 

accepted approach is that, from a VIF of 10 multicollinearity is given (Pardoe 2006) and therefore the 

redundant variables must be removed. 

Diagnostic plots (Fox 1991) were prepared for visual inspection. The plot “Residuals vs Fitted” 

indicates whether the relationship between the predictors and the dependent variable is linear. The 

diagram, which plots the square root of the standardized residuals against the fitted values, indicates 

whether heteroscedasticity is given. In case of a completely random pattern, or when the y-values 

have the same spread at each point of the x-axis, the residuals are homoscedastic. The quantile-

quantile plot indicates whether the residuals are normally distributed. The plot “Residuals vs Leverage” 

indicates influential points or outliers that could distort the result. Points that lie outside the lines 

marked as “Cook's Distance” are such leverage points. Outliers can be detected with all four plots. In 
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addition, the studentized residuals were examined for outliers too. Values larger than 3 and less than 

-3 were displayed in the map of Belgium or Flanders explicitly in red. 

The residuals were then examined for first order autocorrelation by conducting a Durbin-Watson 

test (Durbin & Watson 1950; 1951). The global spatial autocorrelation was analyzed with the Moran's 

I index (Moran 1950). For visual analysis, Moran scatter plots (Anselin 1996) were generated which 

also provide evidence of outliers. The studentized Breusch-Pagan test proposed by Koenker (Breusch 

& Pagan 1979; Koenker 1981) was employed to numerically test the residuals for heteroscedasticity. 

The Jarque-Bera test (Bera & Jarque 1980) and the Shapiro-Wilk test (Shapiro & Wilk 1965) served as 

numerical verification of the normal distribution of the residuals. With the standard deviation being 

used as scaling, the residuals were mapped to determine in which regions they take on high values. 

2.2.3   Geographically Weighted Regression 

The global linear regression implies a constant linear relationship for the entire study area. Frequently, 

however, this assumption does not apply at all. For geographical analyses the geographically weighted 

regression (GWR) (Brunsdon et al. 1996) is therefore appropriate. For the GWR, a separate, local 

regression model is calculated for each point of the investigation area. In order to accomplish this, a 

so-called “moving window” approach is followed in which only a portion of the examination area 

around the respective point of interest is included in the calculation. The points surrounding the 

respective point of interest are weighted in dependence of their distance from the point of interest. 

Nearer points gain greater weight, with increasing distance the weighting factor decreases. The 

weighting of the points depends on the selected weighting function. The range that is taken into 

account for each local regression is limited by the bandwidth, the larger it is, the larger the considered 

space (kernel (Fig. 2.7)) becomes. The bandwidth can be defined either subjectively by the user or by 

objective criteria such as the cross-validation or the AICc. The bandwidth can also be chosen in such a 

way that the kernel always has the same size (fixed distance or fixed kernel (Fig. 2.8)) or a fixed number 

of points are used for the calculation (adaptive distance or adaptive kernel (Fig. 2.9)). 

Table 2.5:   Weighting functions for spatial kernels used in GWR analysis.   

Weighting function Formula continuous/disontinuous used 

Gaussian (= normal) wij = exp(-0.5 * dij / h)²) continuous yes 

Bisquare if dij < h: wij = (1 - (dij / h)²)², otherwise: wij = 0 discontinuous yes 

Exponential wij = exp(-dij / h) continuous no 

Tricube if dij < h: wij = (1 - (dij / h)³)³, otherwise: wij = 0 discontinuous no 

Boxcar if dij < h: wij = 1, otherwise: wij = 0 discontinuous yes 

Note: wij, weight of point j around point i; dij, Euclidian distance between location i and location j ; h, bandwith;  
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Fig. 2.6:   Municipalities intersected with a hexagon raster whose parallel edges have a distance of 5 km. 

Since the selection of a weighting function by the user always contains a subjective element, which 

is what I wanted to avoid, no specific weighting function was defined for this work, but three of the 

five functions of the R package GWmodel version 1.2.5 (Gollini et al. 2015) used for the implementation 

of geographically weighted regressions were used both for determining the optimal bandwidth as well 

as for the actual GWR itself. These are the weighting functions Gaussian, bisquare, boxcar, tricube and 

exponential. The Gaussian and exponential function are continuous which means that despite prior 

determination of bandwidth all points are included in the calculation, but points which are outside the 

specified bandwidth are extremely downweighted. On the other hand, the functions bisquare, boxcar 

and tricube are discontinuous, points which are outside the bandwidth are completely excluded from 

the calculation. Due to pretests, I could see that the Gaussian and exponential functions yielded nearly 

the same bandwidths as well as GWR results which is why I only considered the Gaussian function and 

eliminated the exponential function. This was also the case with the functions bisquare and tricube, so 
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I discarded the second one. In the end, the three functions Gaussian, bisquare and boxcar were used. 

Although, the use of several weighting functions has the disadvantage that one does not receive one 

but several results, at the same time it has the advantage that they can be matched with one another 

which results in a higher degree of safety. The Euclidean distance pre-set by the program was 

employed as distance measure, also being used for all subsequent steps. 

In order to determine the bandwidths to be used, the global regression models were applied, using 

the AICc approach and choosing an adaptive kernel because the regression points to be examined are 

not regularly distributed across space. The finally selected bandwidths determined with the respective 

weighting function were then used together with the corresponding weighting function for the GWR 

model selection. 

 

Fig. 2.7:   Spatial kernel (from Fotheringham et al. 2002).  

 

Fig. 2.8:   Fixed kernel (from Fotheringham et al. 2002). 
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Fig. 2.9:   Adaptive kernel (from Fotheringham et al. 2002).  

The AICc approach was also applied for the GWR model selection. Here, an adaptive kernel was 

calculated again. From all possible models, for each weighting factor and the associated bandwidth 

the model with the lowest AICc value was chosen. With these selected GWR models, the actual 

geographically weighted regressions along with the adjusted coefficient of determination were 

calculated. 

Subsequently, the GWR models were checked for validity. For the numerical investigation of the 

spatial variability of the predictors and thus, the justification of using a GWR, Monte Carlo 

randomization tests (Brunsdon et al. 1996) with 999 randomizations were performed. Once again, the 

intercept, which is checked by default, was considered to be irrelevant. The local correlation 

coefficients (r) and the local condition numbers (CN) (Brunsdon et al. 2012) were calculated for the 

diagnosis of potential collinearity between the predictors, again using an adaptive kernel. Local r > 0.8 

as well as local CN > 30 indicate multicollinearity, whereby these thresholds are merely indicative 

values. As in the case of global regression, the studentized residuals of the GWR were also examined 

for outliers. Studentized residuals, whose value exceeded 3 or fell below -3 were mapped in red. The 

residuals were also checked for autocorrelation with the Moran's I statistic and the results again 

presented as Moran scatter plots. The residuals were finally depicted as maps using the standard 

deviation as scaling. Maps of the regression values with the same scaling were also generated. Since 

the regression values themselves have very little informative value, the t-values of the local regressions 

were used to derive p-values from them. Using the p-values, it was now possible to remove those 

regression values which were not significant. However, only those regression values are of ultimate 

importance that differ significantly from the others. Therefore, those regression values which do not 

deviate at least two standard deviations from the arithmetic mean of all regression values were 

deleted. The remaining regression values now depicted those points, which actually differed 

significantly from all the points with usual values and were again displayed in map form. 
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Not always all predictors are either just stationary or nonstationary. In such cases, neither a global 

regression nor an ordinary GWR is the adequate solution. The mixed GWR (Fotheringham et al. 2002) 

allows the combined use of geographically variable and stationary predictors. Therefore, the results of 

the Monte Carlo randomization tests were used to investigate the spatial variability of the predictors, 

so that the stationary predictors could be selected for the mixed GWR. As an exception, here, the level 

of significance was raised to α ≥ 0.075, for a too strict handling seemed to me not to be very useful in 

this case. Afterwards, the models from the ordinary GWR were used for the calculation of mixed GWR 

models, this time employing the previously determined stationary predictors. Regrettably, there is no 

computation of adjusted R², local correlation values, local condition numbers, Moran's I and p values 

available for the mixed GWR, so I decided to use the values of the ordinary GWR as an orientation. As 

in the case of the ordinary GWR, the regression values of the mixed GWR were graphically displayed 

in maps. 

The OLS, GWR and, in case of local and global variables occurring together, also MGWR models, 

were compared by their respective AICc values. If the AICc of the GWR or MGWR model was at least 

the value of 2 below that of the OLS model, the GWR or MGWR model was considered superior. In 

order to reduce the number of graphics, only maps and diagrams of those models are shown that were 

superior to the models of the other analysis approaches on their respective analysis level. 
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3   Results 

Table 3.1 shows the results of the model selection for the OLS regression. In four cases (a1 15, a3 14, 

a3 15 and g14), the regression model with the lowest AICc value was not selected for further 

investigation because at least one predictor was not significant or had a negative regression value. The 

adjusted coefficient of determination of the models ultimately chosen at the municipal level (0.25 

(m1 14) - 0.37 (m2 14 and m3 14)) is lower than at the arrondissement level (0.6 (a1 15) - 0.84 (a3 14)). 

With 0.42 (g14), 0.32 (g15), 0.34 (f14) and 0.29 (f15), the R² values of the analyses with the hexagon 

grid and of Flanders are similarly low as in the analyses of the municipalities. Table 3.1 shows that the 

highest β-coefficients are that of the predictor “agricultural area” at the first aggregation level and in 

the analysis approach with the grid and that of “arable land” at the second aggregation level. The β-

coefficients at the municipal level are always lower than those at the level of the arrondissements. The 

variance inflation factors show that multicollinearity does neither occur at the municipal nor at the 

arrondissement level. At both the municipal and arrondissement level, all Durbin-Watson tests negate 

the existence of autocorrelation. This also applies to the Moran's I statistics. According to the Breusch-

Pagan tests, in the analysis of municipalities and arrondissements heteroscedasticity occurs in four 

cases (a2 14, a2 15, a3 14, a3 15). All Jarque-Bera and Shapiro-Wilk tests for normality of the residuals 

were negative. No OLS model that fulfills all conditions could be found at the analysis levels g14, g15, 

f14 and f15. According to the Durbin-Watson test as well as Moran's I, in all of those models 

autocorrelation is present. Additionally, the Breusch-Pagan test shows heteroscedasticity is a problem 

at analysis level f15. 

Table 3.1:   Results of the best OLS regression models.  

Analysis  
level 

AICc / Adjusted R² / 
Durbin-Watson 

autocorrelation / 

Global Moran’s I 

Koenker’s Breusch-Pagan / 
Jarque-Bera / 
Shapiro-Wilk 

Variable  
(VIF) 

Estimate  
(β-coefficient) 

Standard 
error 

t-value 

m1 14 
 

16,955 / 0.34 / 
-0.02 / 
0 

0.05 / 
3,845,700*** / 

0.11*** 

int 25,830 99,800 0.26 

aar 
(N/A) 

5.42*** 
(0.58) 

0.33 16.69 

m1 15 
 

17,275.6 / 0.25 / 
-0.01 / 
0 

0.24 / 
2,483,100*** / 

0.12*** 

int -24,870 135,200 -0.18 

bus 
(2.31) 

4,491* 
(0.12) 

2,131 2.11 

aar 

(2.31)  

4.70*** 

(0.41) 

0.65 7.23 



22 

 

Analysis  
level 

AICc / Adjusted R² / 
Durbin-Watson 

autocorrelation / 
Global Moran’s I 

Koenker’s Breusch-Pagan / 
Jarque-Bera / 
Shapiro-Wilk 

Variable  
(VIF) 

Estimate  
(β-coefficient) 

Standard 
error 

t-value 

m2 14 
 

16,930.9 / 0.37 / 
-0.02 / 
0 

0.55 / 
4,653,000*** / 

0.14*** 

int -9,690.76 97,727.48 -0.10 

arl 
(1.07) 

5.19*** 
(0.41) 

0.45 11.60 

ppl 
(1.01) 

25.05*** 
(0.23) 

3.69 6.79 

pgr 
(1.07) 

5.33*** 
(0.29) 

0.64 8.32 

m2 15 
 

17,215.1  int -38,880   

arl 5.22***   

ppl 44.88***   

pgr 4.83***   

pig 4.79   

 Model with 2nd lowest AICc 

 17,215.8 / 0.33 / 
0 / 
0.01 

1.21 / 
3,531,900*** / 

0.16*** 

int -45,760 126,100 -0.36 

arl 
(1.2) 

5.55*** 
(0.36) 

0.59 9.50 

ppl 
(1.01) 

45.14*** 
(0.34) 

4.70 9.61 

pgr 
(1.2) 

4.93*** 
(0.18) 

1.08 4.57 

m3 14 
 

16,931.1 / 0.37 / 
-0.03 / 
-0.01 

1.27 / 
4,388,600*** / 

0.16*** 

int -2,244.88 99,580.07 -0.02 

bus 
(1.6) 

5,342.48*** 
(0.18) 

1,272.13 4.20 

cer 
(1.29) 

8.05*** 
(0.3) 

1.04 7.75 

leg 
(1.39) 

182.50* 
(0.09) 

81.27 2.25 

orc 
(1.17) 

19.51*** 
(0.18) 

4.05 4.81 

pgr 

(1.59) 

4.10*** 

(0.23) 

0.78 5.25 

m3 15 
 

17,213.2 / 0.34 / 
-0.01 / 
0 

1.84 / 
3,579,200*** / 

0.17*** 

int -8,440.76 125,779.99 -0.07 

cer 
(1.16) 

8.94*** 
(0.27) 

1.24 7.21 

fod 
(3.24) 

4.90* 
(0.13) 

2.42 2.02 

orc 
(1.02) 

46.16*** 
(0.34) 

4.82 9.57 

pgr 
(2.58) 

4.43** 
(0.16) 

1.58 2.81 

por 
(1.27) 

12.82** 
(0.11) 

4.58 2.81 

a1 14 
 

1,417.4 / 0.73 / 
-0.22 / 
0.04 

1.53 / 
890.9*** / 

0.53*** 

int -774,700 1,881,000 -0.41 

aar 
(N/A) 

5.77*** 
(0.86) 

0.54 10.59 

a1 15 
 

1,440.9  int -1,502,000   

bus 5,172   
 

aar 4.88***   

 Model with 2nd lowest AICc 
 

1,441.8 / 0.6 / 

-0.18 / 
0.11 

1.25 / 

540.2*** / 
0.54*** 

int 521,700 2,513,000 0.21 

aar 
(N/A) 

5.67*** 
(0.78) 

0.72 7.88 

a2 14 
 

1,400.1 / 0.83 / 
-0.19 / 
-0.03 

17.22*** / 
268.3*** / 

0.74*** 

int -1,817,000 1,500,000 -1.21 

arl 
(1.02) 

5.69*** 
(0.65) 

0.56 10.09 

ppl 
(1.03) 

32.47*** 
(0.4) 

5.30 6.13 

pgr 
(1.03) 

5.62*** 
(0.6) 

0.61 9.22 
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Analysis  
level 

AICc / Adjusted R² / 
Durbin-Watson 

autocorrelation / 
Global Moran’s I 

Koenker’s Breusch-Pagan / 
Jarque-Bera / 
Shapiro-Wilk 

Variable  
(VIF) 

Estimate  
(β-coefficient) 

Standard 
error 

t-value 

a2 15 
 

1,416.1 / 0.8 / 
-0.13 / 
0.03 

17.91*** / 
156.1*** / 

0.75*** 

int -1,311,000 1,790,000 -0.73 

arl 
(1.02) 

5.83*** 
(0.61) 

0.67 8.76 

ppl 
(1.02) 

45.46*** 
(0.51) 

6.25 7.27 

pgr 
(1.03) 

5.03*** 
(0.39) 

0.91 5.52 

a3 14  
 

1,398.1  int -586,500   

cer 10.17***   
 

orc 30.58***   
 

pgr 5.27***   
 

cal 73.07   
 

por 13.36**   

 Model with 2nd lowest AICc 
 

1,399.1 / 0.84 / 
-0.3 / 
0.04 

19.16*** / 
56.1*** / 

0.88*** 

int -692,100 1,461,000 -0.47 

cer 
(1.09) 

10.43*** 
(0.67) 

1.03 10.15 

orc 
(1.05) 

30.53*** 
(0.36) 

5.46 5.60 

pgr 
(1.05) 

5.85*** 
(0.62) 

0.61 9.57 

por 
(1.08) 

18.43*** 
(0.28) 

4.31 4.27 

a3 15 
 

1,403.3  int -2,807,000   

cer 11.03***   
 

leg 274.4*   
 

nur 68.39*   
 

orc 62.25***   
 

sfr -1,657***   
 

pgr 6.20***   
 

por 28.58***   

 Alternative model because no model from interval M + 2 is free from concern  
 

1,415.3 / 0.81 / 
-0.27 / 
0.07 

19.1*** / 
35.1*** / 

0.9*** 

int -1,015,000 1,741,000 -0.58 

cer 
(1.09) 

10.68*** 
(0.63) 

1.19 8.96 

orc 
(1.04) 

42.82*** 
(0.47) 

6.30 6.80 

pgr 
(1.04) 

7.02*** 
(0.55) 

0.89 7.92 

por 

(1.07) 

23.60*** 

(0.32) 

5.17 4.57 

g14 110,055.6  int 7,155.69   
 

aar 5.63***   
 

cat -22.42*   
 

pou 0.38*   
 

int 6,792.41   
 

aar 5.28***   
 

pou 0.15   

 Model with 2nd lowest AICc 
 

110,057.5 / 0.42 / 

0.59*** / 
0.35*** 

0.17 / 

87,650,000*** / 
0.1*** 

int 6,689 4,865 1.38 

  aar 
(N/A) 

5.33*** 
(0.65) 

0.10 53.95 

g15 95,654.3 / 0.32 / 
0.03 / 

0.36*** 

1.68 / 
64,297,000*** / 

0.09*** 

int 10,340 6,453 1.60 
 

aar 

(1.22) 

5.18*** 

(0.52) 

0.14 36.26 
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Analysis  
level 

AICc / Adjusted R² / 
Durbin-Watson 

autocorrelation / 
Global Moran’s I 

Koenker’s Breusch-Pagan / 
Jarque-Bera / 
Shapiro-Wilk 

Variable  
(VIF) 

Estimate  
(β-coefficient) 

Standard 
error 

t-value 

 
pig 

(1.22) 
7.29*** 

(0.1) 
1.06 6.86 

f14 88,490 / 0.34 / 

 0.42*** / 
0.17*** 

4.79 / 

81,205,000*** / 
0.11*** 

int 10,870 5,755 1.89 
 

pot 
(1.01) 

0.04*** 
(0.1) 

0.0064 6.98 

 
frn 
(1) 

0.19*** 
(0.22) 

0.0080 14.88 

 
csl 

(1.01) 
0.05*** 

(0.23) 
0.0033 15.55 

 
gra 

(1.01) 
0.05*** 

(0.41) 
0.0016 28.33 

 
vhh 

(1.01) 
0.05*** 

(0.09) 
0.0076 5.99 

 
mai 

(1.01) 
0.05*** 

(0.35) 
0.0020 23.83 

  sug 
(1.01) 

0.05*** 
(0.07) 

0.01 4.58 

f15 95,654.3 / 0.29 / 
0.42*** / 
0.15*** 

19.57*** / 
69,826,000*** / 

0.12*** 

int 9,536 7,098 1.34 
 

pot 
(1.01) 

0.05*** 
(0.09) 

0.0084 6.21 

 
frn 
(1) 

0.20*** 
(0.28) 

0.01 19.37 

 
csl 

(1.01) 
0.06*** 

(0.21) 
0.0039 14.27 

 
gra 

(1.01) 
0.05*** 

(0.35) 
0.0020 24.17 

 
vhh 

(1.01) 
0.06*** 

(0.08) 
0.0099 5.76 

 
mai 

(1.01) 
0.05*** 

(0.28) 
0.0027 19.46 

  sug 
(1.01) 

0.06*** 
(0.05) 

0.02 3.70 

Note: ***, significant at 0.1 % level; **, significant at 1 % level; * significant at 5 % level; N (= number of observations) = 544 
at analysis levels m1 14, m1 15, m2 14, m2 15, m3 14 and m3 15; N = 42 at analysis levels a1 14, a1 15, a2 14, a2 15, a3 14 
and a3 15; N = 4,001 at analysis levels g14 and g15; N = 3,166 at analysis level f14; N = 3,363 at analysis level f15; int, Intercept; 
for abbrevations of other variables see Table 2.2 and Table 2.3. 

Table 3.2 shows the results of the GWR model selection. The calculated bandwidths do not show 

any recognizable pattern, the majority of them either encompasses between 40 and 60 percent or 

approximately 90 to almost 100 percent of all data points. According to Moran’s I, apart from the 

analysis levels g14, g15, f14 and f15, no significant autocorrelation occurs in any GWR model. However, 

due to too high local correlation values or local condition numbers several models (bisquare: m1 15, 

m3 14, m3 15, a2 14, a2 15, a3 14, a3 15; boxcar: m3 15, a3 14, a3 15; Gaussian a3 15) had to be 

corrected by removing affected variables in order to prevent multicollinearity. In some cases, few local 

correlation values > 0.8 (bisquare m3 14) or local condition numbers > 10 (bisquare: a2 14, a3 15; 

boxcar a3 15) still remained even after the correction, but compared to the total number of data points 

their number was insignificant and the values only marginally above the threshold. In cases where the 

AICc of the global regression model was not significantly different from that of the GWR model, the 

correction of the latter was dispensed with since it only would have caused an increase in the AICc 

value (Gaussian: m1 14, m3 14, m3 15; bisquare: m1 15, m2 15, a1 15; boxcar: m1 14, m1 15, m3 14). 
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A GWR model, in which the kernel applied has a clearly better result with respect to the AICc than the 

other kernels exists at the analysis levels m1 15, m3 14, a2 14, a2 15, a3 14 and a3 15. In all the other 

cases, the AICc of the three or at least two models are too close together to be able to speak of a 

superior model. As in the case of the global regression models, the adjusted coefficient of 

determination at the municipal level is always lower than the one at the arrondissement level. At the 

municipal level, its value is between 0.27 and 0.47, whereas it is between 0.62 and 0.94 at the 

arrondissement level. As in the case of the global regression, no satisfactory model could be found for 

the GWR at the analysis levels g14, g15, f14 and f15. At all these four analysis levels, Moran's I reveals 

significant spatial autocorrelation, and what is more, multicollinearity is present in the analysis 

approach with the hexagon grid. Nevertheless, a correction was tried, but brought no improvement. 

Table 3.2:   Results of the best GWR models. 

Analysis 
level 

Ker- 
nel  
func 
tion 

AICc / Ad-
justed R² / 
Adaptive 
bandwidth / 

Global 
Moran's I 

Local 
condition 
numbers 
(n > 10) 

Variable 
(Monte 
Carlo-
test for 

spatial 
variabil-
ity 

Local correlation values (n > 0.8) 

m1 14 gau 16,953.8 / 
0.34 / 266 /  
-0.01 

5.8 - 8 int  
(0.43) 

                

     
bus cat 

      

    
aar 
(0.78) 

0.73 -  
0.8 

0.72 - 
0.83 
(199) 

      

    
bus 
(0.06) 

 
0.7 -  
0.82  
(86) 

      

 
      cat (0.82)                 

 
bis 16,955.2 / 

0.34 /536 /  
-0.01 

N/A int  
(0.71) 

        

 
      aar 

(0.03) 
                

 
box 16,954 /  

0.34 / 307 / 
-0.01 

4.7 - 7.2 int  
(0.27) 

        

     
bus 

       

    
aar (0) 0.68 - 

0.85 
(193) 

       

    
bus (0) 

        

m1 15 gau 17,199.5 / 
0.38 /29 / 
-0.04 

6 - 25.3  
(470) 

int (0.6)                 

     
pig pou aar 

     

    
bus (0) 0.27 - 

0.88  
(65) 

0.21 - 

0.84  
(16) 

0.71 - 

0.97 
(462) 
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Analysis 
level 

Ker- 
nel  
func 
tion 

AICc / Ad-
justed R² / 
Adaptive 
bandwidth / 
Global 
Moran's I 

Local 
condition 
numbers 
(n > 10) 

Variable 
(Monte 
Carlo-
test for 
spatial 
variabil-
ity 

Local correlation values (n > 0.8) 

    
pig (0) 

 
0.2 -  
0.89  
(64) 

0.09 -  
0.8 

     

    
pou (0) 

  
0.11 - 

0.82  
(6) 

     

  
    aar (0)                   
corrected model  

         

  
17,231.9 / 
0.33 / 29 / 
-0.03 

2.9 - 5.9 int (0.33) 
        

     
aar 

       

    
pig (0) 0.09 - 

0.8 

       

    
aar (0) 

        

 
bis 17,248.9 / 

0.31 /266 / 
-0.02 

6.5 - 18.5 
(365) 

int (0.51)                 

     
pig aar pou 

     

    
bus (0) 0.34 - 

0.81  
(8) 

0.72 - 
0.95 
(392) 

0.24 - 
0.76 

     

    
pig (0) 

 
0.11 - 
0.73 

0.2 -  
0.86  
(84) 

     

    
aar (0) 

  
0.11 - 

0.72 

     

    
pou (0) 

        

 
box 17,266.8 / 

0.27 /240 / 

-0.01 

4.6 - 8.6 int (0.13)                 

     
aar 

       

    
bus (0) 0.66 - 

0.89 

(236) 

       

    
aar (0) 

        

m2 14 gau 16,931.3 / 

0.37 / 542 / 
0 

3.1 - 3.2 int (0.68)                 

     
pgr ppl 

      

    
arl (0.03) 0.21 - 

0.29 
0.06 - 
0.08 

      

    
pgr 
(0.14) 

 
-0.07 - 
-0.05 

      

    
ppl (1) 

        

 
bis 16,933 /  

0.37 / 542 / 0 
3.2 - 4.5 int (0.74)                 

     
pgr ppl 

      

    
arl (0.14) 0.1 -  

0.57 

0.03 - 

0.12 

      

    
pgr (0) 

 
-0.1 -  

0 

      

    
ppl (1) 
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Analysis 
level 

Ker- 
nel  
func 
tion 

AICc / Ad-
justed R² / 
Adaptive 
bandwidth / 
Global 
Moran's I 

Local 
condition 
numbers 
(n > 10) 

Variable 
(Monte 
Carlo-
test for 
spatial 
variabil-
ity 

Local correlation values (n > 0.8) 

 
box 16,930.5 / 

0.37 / 476 / 0 
3.1 - 3.6 int (0.56)                 

     
pgr ppl 

      

    
arl (0.13) 0.18 - 

0.54 
0.05 -  
0.1 

      

    
pgr 
(0.02) 

 
-0.07 -  
-0.01 

      

    
ppl (1) 

        

m2 15 gau 17,215.4 / 
0.33 / 539 / 0 

3.5 - 3.7 int (0.52)                 

     
ppl pgr pig 

     

    
arl (0.45) 0.04 - 

0.06 
0.38 - 
0.43 

0.33 - 
0.38 

     

    
ppl (1) 

 
-0.05 -  

-0.03 

0.04 - 

0.05 

     

    
pgr 
(0.02) 

  
0.15 - 
0.23 

     

    
pig (0.92) 

        

 
bis 17,218.4 / 

0.33 / 542 / 0 
7.6 - 10.9  
(84) 

int (0.73)                 

     
ppl arl pgr pig 

    

    
bus 
(0.45) 

0.17 - 
0.33 

0.63 - 
0.72 

0.48 -  
0.7 

0.53 - 
0.79 

    

    
ppl (1) 

 
0.01 -  
0.1 

-0.08 - 
0.02 

0.04 - 
0.11 

    

    
arl (0.47) 

  
0.31 -  
0.6 

0.13 - 
0.42 

    

    
pgr (0) 

   
0.02 - 
0.44 

    

    
pig (0.55) 

        

 
box 17,213.5 / 

0.34 / 480 / 0 
3.3 - 3.9  int (0.51)                 

     
ppl pgr pig 

     

    
arl (0.54) 0.04 - 

0.06 
0.34 - 
0.56 

0.14 -
0.37 

     

    
ppl (1) 

 
-0.05 - 
0.01 

0.03 - 
0.13 

     

    
pgr (0) 

  
0.05 - 
0.42 

     

    
pig (0.07) 

        

m3 14 gau 16,922.2 / 
0.39 / 275 / 
-0.02 

13.4 - 18.9 
(544) 

int (0.92)                 

     
cer leg pgr orc sow pgl cal 

 

    
bus 
(0.04) 

0.41 - 
0.46 

0.15 - 
0.26 

0.42 - 
0.64 

0.13 - 
0.31 

0.6 - 
0.76 

0.59 - 
0.76 

0.52 - 
0.59 

 

    
cer (0.65) 

 
0.14 - 
0.29 

0.06 -  
0.4 

0.08 - 
0.14 

0.01 - 
0.16 

0.01 - 
0.18 

0.29 - 
0.27 
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Analysis 
level 

Ker- 
nel  
func 
tion 

AICc / Ad-
justed R² / 
Adaptive 
bandwidth / 
Global 
Moran's I 

Local 
condition 
numbers 
(n > 10) 

Variable 
(Monte 
Carlo-
test for 
spatial 
variabil-
ity 

Local correlation values (n > 0.8) 

    
leg (0.03) 

  
0.31 - 
0.46 

0.21 - 
0.38 

-0.06 - 
0.03 

-0.06 - 
0.03 

0.07 - 
0.22 

 

    
pgr (0) 

   
-0.08 -  
-0.01 

0.02 - 
0.35 

0.02 - 
0.35 

0.37 - 
0.55 

 

    
orc 
(0.87) 

    
0 -  
0.04 

-0.01 - 
0.05 

-0.03 -  
-0.01 

 

    
sow (0) 

     
0.98 
(544) 

0.34 - 
0.45 

 

    
pgl (0) 

      
0.32 - 
0.43 

 

    
cal (0.76) 

        

 
bis 16,292.1 / 

0.83 / 100 / 
-0.14 

9 - 52.1  
(539) 

int (0.53)                 

     
bus pgl leg c>2 cer orc veg 

 

    
sow (0) 0.03 - 

0.91  
(64) 

0.85 -  
1  
(544) 

-0.25 - 
0.69 

-0.07 - 
0.87  
(30) 

-0.15 - 
0.81 

- 0.13 - 
0.78 

-0.24 - 
0.75 

 

    
bus 
(0.04) 

 
0 -  
0.88  

(69) 

-0.1 - 
0.71 

0.47 - 
0.96 

(379) 

0.27 - 
0.93 

(72) 

-0.11 - 
0.83  

(8) 

-0.05 - 
0.88 

(19) 

 

    
pgl (0) 

  
-0.26 - 
0.62 

-0.07 - 
0.82  
(9) 

-0.16 - 
0.76 

-0.11 - 
0.73 

-0.25 - 
0.79 

 

    
leg (0) 

   
-0.08 - 
0.66 

-0.07 - 
0.83 

(11) 

-0.11 - 
0.91 

(30) 

-0.22 - 
0.59 

 

    
c>2 
(0.06) 

    
-0.14 - 
0.94 
(54) 

-0.16 - 
0.54 

-0.17 - 
0.78 

 

    
cer (0.17) 

     
-0.05 - 
0.78 

0.13 - 
0.83 
(20) 

 

    
orc 

(0.02) 

      
-0.08 - 

0.68 

 

    
veg 
(0.03) 

        

  
corrected model                      
16,875.8 / 
0.47 / 100 /  
-0.05 

2.8 - 10 int (0) 
        

     
leg cer veg 

     

    
pgl (0) -0.26 - 

0.62 
-0.16 - 
0.76 

-0.25 - 
0.79 

     

    
leg (0) 

 
-0.07 - 
0.83 
(11) 

-0.22 - 
0.59 

     

    
cer (0) 

  
0.13 - 
0.83 
(20) 

     

    
veg (0) 

        

 
box 16,896.4 / 

0.43 / 236 / 
-0.03 

8.6 - 20.2 

(517) 

int (0.4)                 
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Analysis 
level 

Ker- 
nel  
func 
tion 

AICc / Ad-
justed R² / 
Adaptive 
bandwidth / 
Global 
Moran's I 

Local 
condition 
numbers 
(n > 10) 

Variable 
(Monte 
Carlo-
test for 
spatial 
variabil-
ity 

Local correlation values (n > 0.8) 

     
cer leg sow por pgl hor pgr orc     

bus 
(0.02) 

0.33 - 
0.68 

0.09 - 
0.47 

0.13 - 
0.78 

0.42 - 
0.78 

0.12 - 
0.78 

-0.04 - 
0.53 

0.35 - 
0.89 
(228) 

0.13 - 
0.55 

    
cer (0.24) 

 
0 - 0.45 -0.12 - 

0.28 
-0.08 - 
0.4 

-0.12 - 
0.3 

-0.18 - 
0.11 

-0.1 - 
0.65 

0.03 - 
0.28 

    
leg (0) 

  
-0.12 - 
0.32 

-0.1 - 
0.25 

-0.12 - 
0.32 

-0.12 - 
0.04 

0.02 - 
0.56 

-0.03 - 
0.76 

    
sow (0) 

   
0.41 - 
0.97 
(351) 

0.92 - 
0.98 
(544) 

-0.05 - 
0.66 

-0.14 - 
0.67 

-0.01 - 
0.46 

    
por (0) 

    
0.42 - 
0.97 
(362) 

-0.1 - 
0.62 

-0.09 - 
0.66 

0 -  
0.41 

    
pgl (0) 

     
-0.04 - 
0.62 

-0.14 - 
0.63 

-0.01 - 
0.49 

    
hor (0) 

      
-0.09 - 
0.43 

-0.06 - 
0.12 

    
pgr (0) 

       
-0.13 -
0.19 

    
orc (0) 

        

m3 15 gau 17,209.7 / 
0.34 / 542 / 

0 

16.2 - 17.7 
(544) 

int (0.76)                 

     
orc cer c>2 sow pgl pgr 

  

    
bus 

(0.28) 

0.16 -  

0.2 

0.44 - 

0.46 

0.74 - 

0.78 

0.71 - 

0.75 

0.71 - 

0.74 

0.48 - 

0.52 

  

    
orc 
(0.99) 

 
0.09 - 
0.11 

-0.06 - 
-0.05 

0 -  
0.01 

0.01 - 
0.02 

-0.05 - 
-0.04 

  

    
cer (0.53) 

  
0.35 - 

0.41 

0.11 - 

0.16 

0.11 - 

0.16 

0.14 - 

0.21 

  

    
c>2 
(0.66) 

   
0.4 -  
0.48 

0.41 - 
0.48 

0.85 - 
0.86 
(544) 

  

    
sow 
(0.46) 

    
0.98 
(544) 

0.14 - 
0.22 

  

    
pgl (0.65) 

     
0.15 - 
0.23 

  

    
pgr 
(0.36) 

        

 
bis 17,205.8 / 

0.35 / 542 / 
0.01 

8.4 - 12.1 
(171) 

int (0.7)                 

     
orc cer c>2 sow por 

   

    
bus 
(0.14) 

0.12 -  
0.3 

0.39 - 
0.51 

0.69 - 
0.85 
(206) 

0.48 - 
0.77 

0.53 - 
0.78 

   

    
orc 
(0.99) 

 
0.05 - 
0.15 

-0.08 -  
-0.03 

0 -  
0.08 

-0.01 - 
0.08 

   

    
cer (0.46) 

  
0.22 - 

0.52 

-0.03 - 

0.19 

0.01 - 

0.15 

   

    
c>2 (0) 

   
0.14 - 

0.58 

0.21 - 

0.58 
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Analysis 
level 

Ker- 
nel  
func 
tion 

AICc / Ad-
justed R² / 
Adaptive 
bandwidth / 
Global 
Moran's I 

Local 
condition 
numbers 
(n > 10) 

Variable 
(Monte 
Carlo-
test for 
spatial 
variabil-
ity 

Local correlation values (n > 0.8) 

    
sow (0) 

    
0.91 - 
0.94 
(544) 

   

    
por (0) 

        

  
corrected model                      
17,214.2 / 
0.34 / 542 / 0 

3.2 - 4.8 int (0.52) 
        

     
cer c>2 por 

     

    
orc (1) 0.05 - 

0.15 
-0.08 -  
-0.03 

-0.01 - 
0.08 

     

    
cer (0.23) 

 
0.22 - 
0.52 

0.01 - 
0.15 

     

    
c>2 (0) 

  
0.21 - 
0.58 

     

    
por 
(0.01) 

        

 
box 17,206.3 / 

0.35 / 462 / 

0.01 

8.4 - 10.14 
(182) 

int (0.7)                 

     
orc cer c>2 sow por 

   

    
bus 
(0.07) 

0.17 -  
0.3 

0.38 - 
0.52 

0.68 - 
0.84 

0.46 - 
0.76 

0.56 - 
0.77 

   

    
orc 
(0.74) 

 
0.08 - 
0.12 

-0.05 -  
-0.04 

-0.01 - 
0.14 

-0.01 - 
0.16 

   

    
cer (0.38) 

  
0.27 - 
0.47 

-0.04 - 
0.15 

-0.03 - 
0.12 

   

    
c>2 (0) 

   
0.17 - 
0.59 

0.24 - 
0.6 

   

    
sow (0) 

    
0.83 - 
0.95 
(544) 

   

    
por (0) 

        

  
corrected model                      
17210.7 / 
0.34 / 462 / 0 

3.1 - 4.2 int (0.63) 
        

     
cer c>2 por 

     

    
orc 
(0.98) 

0.08 - 
0.12 

-0.05 - 
-0.04 

-0.01 - 
0.16 

     

    
cer (0.05) 

 
0.27 - 
0.47 

-0.03 - 
0.12 

     

    
c>2 (0) 

  
0.24 - 
0.6 

     

    
por (0) 

        

a1 14 gau 1,417.8 /  
0.72 / 39 / 
0.03 

N/A int (0.45)                 

    
aar 

(0.81) 

        

 
bis 1,414.9 /  

0.78 / 39 / 
0 

7.6 - 12.9  
(15) 

int (0.44)     
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Analysis 
level 

Ker- 
nel  
func 
tion 

AICc / Ad-
justed R² / 
Adaptive 
bandwidth / 
Global 
Moran's I 

Local 
condition 
numbers 
(n > 10) 

Variable 
(Monte 
Carlo-
test for 
spatial 
variabil-
ity 

Local correlation values (n > 0.8) 

     
bus cat 

      

    
aar 
(0.81) 

0.43 - 
0.73 

0.5 -  
0.73 

      

    
bus 

(0.66) 

 
0.32 - 

0.75 

      

    
cat (0.92) 

        

 
box 1,417.7 /  

0.73 / 36 / 

0.04 

N/A int (0.79)                 

    
aar 
(0.73) 

        

a1 15 gau 1,440.3 /  
0.64 / 39 / 
0.1 

7.9 - 8.2 int (0.54)                 

     
bus cat 

      

    
aar 
(0.89) 

0.48 - 
0.52 

0.6 -  
0.66 

      

    
bus 
(0.76) 

 
0.61 - 
0.65 

      

    
cat (0.98) 

        

 
bis 1,438.4 /  

0.68 / 39 / 

0.01 

7.6 - 13.7  
(14) 

int (0.37)                 

     
bus cat 

      

    
aar 
(0.79) 

0.4 -  
0.74 

0.46 - 
0.74 

      

    
bus 
(0.62) 

 
0.33 - 
0.74 

      

    
cat (0.95) 

        

 
box 1,441.8 /  

0.62 / 38 / 
0.05 

5.8 - 6.3 int (0.37)                 

     
bus 

       

    
aar 
(0.17) 

0.41 - 
0.52 

       

    
bus 
(0.71) 

        

a2 14 gau 1,393.1 /  
0.86 / 22 / 
-0.04 

5.2 - 6.2 int (0.51)                 

     
pgr ppl 

      

    
arl (0.79) -0.21 - 

0.35 
0.05 - 
0.15 

      

    
pgr (0) 

 
-0.23 - 

0.01 

      

    
ppl (0.32) 

        

 
bis 1,382.2 /  

0.94 / 22 / 

-0.12 

8.8 - 41  
(38) 

int (0.53)                 

     
ppl arl pgr 

     

    
bus 
(0.01) 

0.14 - 
0.73 

0.11 - 
0.83  

(3) 

0.16 -  
0.9  

(11) 

     



32 

 

Analysis 
level 

Ker- 
nel  
func 
tion 

AICc / Ad-
justed R² / 
Adaptive 
bandwidth / 
Global 
Moran's I 

Local 
condition 
numbers 
(n > 10) 

Variable 
(Monte 
Carlo-
test for 
spatial 
variabil-
ity 

Local correlation values (n > 0.8) 

    
ppl (0.08) 

 
-0.2 - 
0.43 

-0.39 - 
0.52 

     

    
arl (0.62) 

  
-0.41 - 
0.76 

     

    
pgr (0) 

        

  
corrected model                      
1,376.9 / 
0.94 / 22 /  

-0.07 

4.7 - 15.7 
(8) 

int (0.53) 
        

     
arl pgr 

      

    
ppl (0.38) -0.2 - 

0.43 
-0.39 - 
0.52 

      

    
arl (0.6) 

 
-0.41 - 
0.76 

      

    
pgr 
(0.01) 

        

 
box 1,400.2 /  

0.83 / 40 / 
-0.03 

5.2 - 5.6 int (0.26)                 

     
pgr ppl 

      

    
arl (0.31) -0.14 - 

0.06 
0.08 -  
0.1 

      

    
pgr 
(0.11) 

 
-0.18 -  
-0.16 

      

    
ppl (0.58) 

        

a2 15 gau 1,411.5 /  

0.82 / 22 / 
0.03 

5.3 - 5.9 int (0.37)                 

     
ppl pgr 

      

    
arl (0.74) -0.03 - 

0.11 
0 -  
0.37 

      

    
ppl (0.42) 

 
-0.2 - 
0.04 

      

    
pgr 
(0.01) 

        

 
bis 1,410 /  

0.89 / 24 / 

-0.08 

8.8 - 30.8  
(38) 

int (0.33)                 

     
ppl arl pgr 

     

    
bus 
(0.01) 

0.14 - 
0.68 

0.26 - 
0.76 

0.21 - 
0.89  

(14) 

     

    
ppl (0.21) 

 
-0.27 - 
0.37 

-0.32 - 
0.44 

     

    
arl (0.4) 

  
-0.17 - 

0.63 

     

  
    pgr (0)                 

  
corrected model  

         

  
1,405.5 / 

0.89 / 24 / -
0.02 

4.8 - 14.6 

(4) 

int (0.24) 
        

     
arl pgr 

      

    
ppl (0.63) -0.27 - 

0.37 
-0.32 - 
0.44 
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Analysis 
level 

Ker- 
nel  
func 
tion 

AICc / Ad-
justed R² / 
Adaptive 
bandwidth / 
Global 
Moran's I 

Local 
condition 
numbers 
(n > 10) 

Variable 
(Monte 
Carlo-
test for 
spatial 
variabil-
ity 

Local correlation values (n > 0.8) 

    
arl (0.78) 

 
-0.17 - 
0.63 

      

    
pgr (0) 

        

 
box 1,416.3 /  

0.81 / 40 / 
-0.03 

5.7 - 6.1 int (0.29)                 

     
ppl pgr pig 

     

    
arl (0.37) 0.01 - 

0.03 

0.06 - 

0.22 

-0.02 - 

0.04 

     

    
ppl (0.59) 

 
-0.15 -  
-0.13 

0.01 - 
0.05 

     

    
pgr 
(0.12) 

  
-0.09 -  
-0.05 

     

    
pig (0.75) 

        

a3 14 gau 1,396.5 /  
0.86 / 22 / 
0.01 

7.8 - 9.9 int (0.62)                 

     
cer pgr orc bro 

    

    
bus 

(0.29) 

0.09 -  

0.2 

0.19 - 

0.42 

0.16 - 

0.27 

0.53 - 

0.61 

    

    
cer (0.79) 

 
-0.2 - 
0.25 

0.12 - 
0.26 

-0.2 -  
-0.06 

    

    
pgr 
(0.01) 

  
-0.21 -  
-0.02 

-0.12 - 
0.18 

    

    
orc 
(0.36) 

   
-0.04 - 
0.05 

    

    
bro 

(0.58) 

        

 
bis 1,395.8 /  

0.93 / 29 / 
-0.21 

13.3 - 30.4 
(42) 

int (0.62)                 

     
sfr cer orc cal hor pot 

  

    
bus (0.1) 0.17 - 

0.71 
0.06 - 
0.57 

0.07 - 
0.62 

0.35 - 
0.84  
(4) 

0.37 - 
0.75 

0.11 - 
0.6 

  

    
sfr (0.45) 

 
-0.02 - 
0.71 

0.25 -  
0.8 

-0.18 - 
0.45 

-0.35 - 
0.76 

-0.05 - 
0.36 

  

    
cer (0.17) 

  
-0.01 - 
0.51 

-0.17 - 
0.44 

-0.35 - 
0.28 

0.52 - 
0.86 
(15) 

  

    
orc (0.2) 

   
-0.26 - 

0.21 

-0.26 - 

0.54 

-0.17 - 

0.13 

  

    
cal (0.51) 

    
-0.16 - 
0.77 

-0.4 - 
0.53 

  

    
hor (0) 

     
-0.13 - 

0.29 

  

  
    pot 

(0.03) 
                

  
corrected model  

         

  
1,421.1 / 
0.82 / 29 / -

0.17 

5.4 - 13.1 
(8) 

int (0.8)  
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Analysis 
level 

Ker- 
nel  
func 
tion 

AICc / Ad-
justed R² / 
Adaptive 
bandwidth / 
Global 
Moran's I 

Local 
condition 
numbers 
(n > 10) 

Variable 
(Monte 
Carlo-
test for 
spatial 
variabil-
ity 

Local correlation values (n > 0.8) 

     
orc cal hor pot 

    

    
sfr  
(0.59) 

0.25 - 
0.8 

-0.18 - 
0.45 

-0.35 - 
0.76 

-0.05 - 
0.36 

    

    
orc 

(0.41) 

 
-0.26 - 

0.21 

-0.26 - 

0.54 

-0.17 - 

0.13 

    

    
cal (0.48) 

  
-0.16 - 
0.77 

-0.4 - 
0.53 

    

    
hor (0) 

   
-0.13 - 

0.29 

    

    
pot 
(0.76) 

        

 
box 1,394 / 0.9 / 

26 / 0.01 
16.1 - 45.8 
(42) 

int (0.28)                 

     
cer hor orc c12 veg cal 

  

    
bus 
(0.12) 

-0.01 - 
0.5 

0.3 -  
0.72 

0.12 - 
0.47 

0.22 - 
0.86  
(6) 

0.06 - 
0.45 

0.25 - 
0.77 

  

    
cer (0.89) 

 
-0.4 - 
0.06 

0.06 - 
0.56 

-0.07 - 
0.25 

-0.01 - 
0.72 

-0.15 - 
0.31 

  

    
hor (0) 

  
-0.16 - 

0.15 

-0.27 - 

0.71 

-0.18 - 

0.21 

-0.29 - 

0.74 

  

    
orc 

(0.09) 

   
-0.33 - 

0.03 

-0.16 - 

0.16 

-0.19 - 

0.15 

  

    
c12 
(0.71) 

    
-0.24 - 
0.27 

0.66 - 
0.97 
(19) 

  

    
veg 
(0.02) 

     
-0.26 - 
0.22 

  

  
    cal (0.25)                 

  
corrected model  

         

  
1,415.5 / 
 0.8 / 26 /  
-0.2 

4.9 - 8.8 int (0.59) 
        

     
hor orc veg cal 

    

    
cer (0.65) -0.4 - 

0.06 
0.06 - 
0.56 

-0.01 - 
0.72 

-0.15 - 
0.31 

    

    
hor (0) 

 
-0.16 - 
0.15 

-0.18 - 
0.21 

-0.29 - 
0.74 

    

    
orc 
(0.27) 

  
-0.16 - 
0.16 

-0.19 - 
0.15 

    

    
veg 
(0.02) 

   
-0.26 - 
0.22 

    

    
cal (0.62) 

        

a3 15 gau 1401.3 /  
0.89 / 20 /  
-0.09 

11.2 - 16.9 
(42) 

int (0.17)                 

     
cer orc c>2 sfr leg 

   

    
bus 
(0.57) 

0.07 -  
0.2 

0.15 - 
0.27 

0.49 - 
0.76 

0.2 -  
0.4 

-0.31 -  
-0.04 

   

    
cer (0.26) 

 
0.09 - 
0.26 

-0.14 - 
0.2 

0.16 - 
0.23 

0.09 - 
0.57 

   

    
orc 
(0.79) 

  
-0.29 -  
-0.08 

0.41 - 
0.67 

-0.29 -  
-0.02 
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Analysis 
level 

Ker- 
nel  
func 
tion 

AICc / Ad-
justed R² / 
Adaptive 
bandwidth / 
Global 
Moran's I 

Local 
condition 
numbers 
(n > 10) 

Variable 
(Monte 
Carlo-
test for 
spatial 
variabil-
ity 

Local correlation values (n > 0.8) 

    
c>2 
(0.01) 

   
-0.17 - 
0.18 

0.28 - 
0.43 

   

    
sfr (0.09) 

    
-0.17 - 
0.15 

   

    
leg (0.15) 

        

  
corrected model                      
1,407.6 / 
0.86 / 20 / 

0.02 

6.4 - 8.6 int (0.17) 
        

     
orc c>2 sfr leg 

    

    
cer (0.27) 0.09 - 

0.26 
-0.14 - 
0.2 

0.16 - 
0.23 

0.09 - 
0.57 

    

    
orc 
(0.88) 

 
-0.29 -  
-0.08 

0.41 - 
0.67 

-0.29 - 
-0.02 

    

    
c>2 
(0.03) 

  
0.41 - 
0.67 

-0.29 -  
-0.02 

    

    
sfr (0.07) 

   
-0.17 - 
0.18 

    

    
leg (0.85) 

        

 
bis 1,402 /  

0.91 / 39 / 
-0.04 

19.3 - 33.7 
(42) 

int (0.26)                 

     
cer orc c>2 sfr leg por fal 

 

    
bus 
(0.46) 

0.06 - 
0.48 

0.12 - 
0.51 

0.27 - 
0.77 

0.13 - 
0.47 

-0.31 - 
0.04 

0.56 - 
0.74 

-0.09 - 
0.25 

 

    
cer (0.39) 

 
0.06 - 

0.31 

-0.21 - 

0.22 

0.11 - 

0.51 

-0.1 - 

0.64 

-0.36 - 

0.06 

0.81 - 

0.88 
(42) 

 

    
orc 
(0.69) 

  
-0.35 -  
-0.06 

0.36 -  
0.7 

-0.4 -  
-0.01 

-0.13 - 
0.38 

-0.12 - 
0.08 

 

    
c>2 
(0.03) 

   
-0.23 - 
0.25 

0.19 - 
0.56 

0.15 - 
0.67 

0 -  
0.34 

 

    
sfr (0.42) 

    
-0.27 - 
0.43 

0 -  
0.49 

-0.02 - 
0.51 

 

    
leg (0.01) 

     
-0.26 -  
-0.05 

0.19 - 
0.9  
(26) 

 

    
por 
(0.54) 

      
-0.36 - 
0.02 

 

    
fal (0.03) 

        

  
corrected model                      
1,400 /  
0.89 / 39 / 
-0.12 

6 - 11.8 (2) int (0.39) 
        

     
orc sfr c>2 por 

    

    
cer (0.69) 0.06 - 

0.31 
0.11 - 
0.51 

-0.21 - 
0.22 

-0.36 - 
0.06 

    

    
orc 0.9) 

 
0.36 - 

0.7 

-0.35 - 

-0.06 

-0.13 - 

0.38 

    

    
sfr (0.35) 

  
-0.23 - 
0.25 

0 - 0.49 
    

    
c>2 (0) 

   
0.15 - 

0.67 
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Analysis 
level 

Ker- 
nel  
func 
tion 

AICc / Ad-
justed R² / 
Adaptive 
bandwidth / 
Global 
Moran's I 

Local 
condition 
numbers 
(n > 10) 

Variable 
(Monte 
Carlo-
test for 
spatial 
variabil-
ity 

Local correlation values (n > 0.8) 

    
por 
(0.34) 

        

 
box 1,398.8 /  

0.91 / 28 / 

-0.17 

15.7 - 23.6 
(42) 

int (0.05) 
        

     
cer hor orc sfr leg c12 

  

    
bus 
(0.19) 

-0.02 - 
0.51 

0.27 - 
0.71 

0.12 - 
0.45 

0.14 - 
0.51 

-0.3 - 
0.03 

0.33 - 
0.83 

  

    
cer (0.65) 

 
-0.36 -  
-0.11 

0.05 - 
0.35 

0.06 - 
0.37 

0.1 - 
0.69 

-0.08 - 
0.29 

  

    
hor (0) 

  
-0.13 - 
0.12 

-0.11 - 
0.34 

-0.45 -  
-0.13 

-0.26 - 
0.63 

  

    
orc 
(0.51) 

   
0.33 - 
0.69 

-0.3 - 
0.04 

-0.31 - 
0.01 

  

    
sfr (0.03) 

    
-0.16 - 
0.31 

-0.2 - 
0.28 

  

    
leg (0.3) 

     
0.29 - 
0.59 

  

    
c12 
(0.57) 

        

  
corrected model                      
1,412.4 / 
0.86 / 28 /  
-0.08 

6.9 - 11.6 
(4) 

int (0.01) 
        

     
hor orc sfr leg c12 

   

    
cer (0.32) -0.36 - 

-0.11  

0.05 - 

0.35 

0.06 - 

0.37 

0.1 - 

0.69 

-0.08 - 

0.29 

   

    
hor 

(0.18) 

 
-0.13 - 

0.12 

-0.11 - 

0.34 

-0.45 -  

-0.13 

-0.26 - 

0.63 

   

    
orc 

(0.75) 

  
0.33 - 

0.69 

-0.3 - 

0.04 

-0.31 - 

0.01 

   

    
sfr (0.02) 

   
-0.16 - 
0.31 

-0.2 - 
0.28 

   

    
leg (0.27) 

    
0.29 - 

0.59 

   

    
c12 (0) 

        

g14 gau 105,710.6 / 
0.82 / 17 / 
0.19*** 

6.9 -  
1,709.5 
(3,982) 

int (0.73)                 

     
bus aar cat pou 

    

    
pig (0) 0.12 - 

0.99 
(1,069) 

0.09 - 
0.98 
(878) 

0.03 - 
0.97 
(706) 

-0.17 - 
0.98 
(412) 

    

    
bus (0) 

 
0.79 -  
1  
(3,999) 

0.62 -  
1  
(3,772) 

0.01 -
0.96 
(405) 

    

    
aar (0) 

  
0.63 -  
1  
(3,847) 

-0.02 - 
0.97 
(392) 

    

    
cat (0) 

   
-0.04 - 
0.97 
(516) 

    

    
pou (0) 
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Analysis 
level 

Ker- 
nel  
func 
tion 

AICc / Ad-
justed R² / 
Adaptive 
bandwidth / 
Global 
Moran's I 

Local 
condition 
numbers 
(n > 10) 

Variable 
(Monte 
Carlo-
test for 
spatial 
variabil-
ity 

Local correlation values (n > 0.8) 

 
bis Computation not successful  
box 110,012.2 / 

0.43 / 887 / 
0.34*** 

6 - 17  
(1,717) 

int (0.01)                 

     
bus cat 

      

    
aar (0) 0.83 - 

0.98 
(4,001) 

0.58 - 
0.97 
(3,159) 

      

    
bus (0) 

 
0.65 - 
0.95 
(2,457) 

      

    
cat (0) 

        

g15 gau 106,693.5 / 

0.85 / 19 / 
0.18*** 

6 -  

1,782.1 
(3,976) 

int (0.85)                 

     
bus aar pou cat 

    

    
pig (0) 0.11 - 

0.98 
(985) 

0.12 - 
0.98 
(858) 

-0.14 -  
1  
(440) 

0.1 -  
0.98 
(625) 

    

    
bus (0) 

 
0.75 -  
1  
(3,977) 

0.02 - 
0.95 
(454) 

0.62 - 
0.99 
(3,712) 

    

    
aar (0) 

  
-0.01 - 
0.96 
(421) 

0.63 -  
1  
(3,797) 

    

    
pou (0) 

   
0.01 - 

0.96 
(412) 

    

    
cat (0) 

        

 
bis Computation not successful 

 
box Computation not successful 

f14 gau 88,489.8 / 
0.34 /  
1,911 / 
0.17*** 

1.8 - 1.9 int (0.61) 
        

     
mai csl frn pot vhh sug inf 

 

    
gra 
(0.79) 

-0.06 -0.05 -  
-0.04 

-0.03 -  
-0.02 

-0.05 -0.05 -  
-0.04 

-0.04 -  
-0.03 

-0.06 
 

    
mai 
(0.56) 

 
-0.04 -0.02 -0.05 -  

-0.04 
-0.04 -0.04 -  

-0.03 
-0.06 -  
-0.05 

 

    
csl (0) 

  
-0.02 -  
-0.01 

-0.04 -  
-0.03 

-0.03 -0.03 -  
-0.02 

-0.04 
 

    
frn (1) 

   
-0.02 -  
-0.01 

-0.02 -  
-0.01 

-0.01 -0.02 
 

    
pot 
(0.44) 

    
-0.04 -  
-0.03 

-0.03 -0.05 -  
-0.04 

 

    
vhh 
(0.73) 

     
-0.03 -  
-0.02 

-0.04 
 

    
sug 
(0.01) 

      
-0.03 

 

    
inf (0.7) 
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Analysis 
level 

Ker- 
nel  
func 
tion 

AICc / Ad-
justed R² / 
Adaptive 
bandwidth / 
Global 
Moran's I 

Local 
condition 
numbers 
(n > 10) 

Variable 
(Monte 
Carlo-
test for 
spatial 
variabil-
ity 

Local correlation values (n > 0.8) 

 
bis 88,492.9 / 

0.34 /  
3,165 / 
0.17*** 

1.8 - 1.9 int (0.47)                 

     
mai csl frn pot vhh sug inf 

 

    
gra 
(0.74) 

-0.06 -0.05 -  
-0.04 

-0.03 -  
-0.02 

-0.05 -0.05 -  
-0.04 

-0.04 -  
-0.03 

-0.06 
 

    
mai 

(0.53) 

 
-0.05 -  

-0.04 

-0.03 -  

-0.02 

-0.05 -0.05 -  

-0.04 

-0.04 -  

-0.03 

-0.06 -  

-0.05 

 

    
csl (0) 

  
-0.02 -  
-0.01 

-0.04 -  
-0.03 

-0.04 -  
-0.03 

-0.03 -  
-0.02 

-0.04 
 

    
frn (0.98) 

   
-0.02 -  
-0.01 

-0.02 -  
-0.01 

-0.01 -0.02 
 

    
pot 
(0.25) 

    
-0.04 -  
-0.03 

-0.03 -0.05 -  
-0.04 

 

    
vhh 
(0.76) 

     
-0.03 -  
-0.02 

-0.04 
 

    
sug 
(0.01) 

      
-0.04 -  
-0.03 

 

    
inf (0.56) 

        

 
box 88,488.9 / 

0.34 /  
2,559 / 
0.17*** 

1.8 - 1.9 int (0.05)                 

     
mai csl frn pot vhh sug inf 

 

    
gra 

(0.39) 

-0.06 -0.05 -  

-0.04 

-0.03 -  

-0.02 

-0.05 -0.06 -  

-0.04 

-0.04 -  

-0.03 

-0.06 
 

    
mai 
(0.41) 

 
-0.05 -  
-0.04 

-0.03 -  
-0.02 

-0.05 -  
-0.04 

-0.05 -  
-0.04 

-0.04 -  
-0.03 

-0.06 -  
-0.05 

 

    
csl (0) 

  
-0.02 -  

-0.01 

-0.04 -  

-0.03 

-0.04 -  

-0.03 

-0.03 -  

-0.02 

-0.05 -  

-0.04 

 

    
frn (0.34) 

   
-0.02 -0.02 -  

-0.01 
-0.02 -  
-0.01 

-0.02 
 

    
pot 

(0.02) 

    
-0.04 -  

-0.03 

-0.03 -0.05 -  

-0.04 

 

    
vhh 
(0.02) 

     
-0.03 -  
-0.02 

-0.05 -  
-0.04 

 

    
sug (0) 

      
-0.04 -  
-0.03 

 

    
inf (0.06) 

        

f15 gau 95,650.7 /  
0.3 / 1,795 / 
0.15*** 

1.8 int (0.46)                 

     
frn mai csl pot vhh sug inf 

 

    
gra 
(0.75) 

-0.03 -  
-0.02 

-0.06 -0.05 -  
-0.04 

-0.05 -0.05 -  
-0.04 

-0.03 -0.06 -  
-0.05 

 

    
frn (1) 

 
-0.02 -0.02 -  

-0.01 
-0.02 -  
-0.01 

-0.02 -  
-0.01 

-0.01 -0.02 
 

    
mai 
(0.55) 

  
-0.04 -0.05 -  

-0.04 
-0.04 -0.03 -0.05 

 

    
csl (0) 

   
-0.04 -  
-0.03 

-0.03 -0.03 -  
-0.02 

-0.04 
 

    
pot 
(0.13) 

    
-0.03 -0.03 -  

-0.02 
-0.04 
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Analysis 
level 

Ker- 
nel  
func 
tion 

AICc / Ad-
justed R² / 
Adaptive 
bandwidth / 
Global 
Moran's I 

Local 
condition 
numbers 
(n > 10) 

Variable 
(Monte 
Carlo-
test for 
spatial 
variabil-
ity 

Local correlation values (n > 0.8) 

    
vhh 
(0.76) 

     
-0.03 -  
-0.02 

-0.04 
 

    
sug 
(0.01) 

      
-0.03 

 

    
inf (0.51) 

        

 
bis 95,651.9 /  

0.3 / 2,946 / 
0.15*** 

1.7 - 1.8 int (0.34)                 

     
frn mai csl pot vhh sug 

  

    
gra 
(0.56) 

-0.03 -  
-0.02 

-0.06 -0.05 -  
-0.04 

-0.05 -0.05 -  
-0.04 

-0.04 -  
-0.03 

  

    
frn (0.43) 

 
-0.03 -  
-0.02 

-0.02 -  
-0.01 

-0.02 -0.02 -  
-0.01 

-0.02 -  
-0.01 

  

    
mai 
(0.46) 

  
-0.05 -  
-0.04 

-0.05 -  
-0.04 

-0.05 -  
-0.04 

-0.04 -  
-0.03 

  

    
csl (0) 

   
-0.04 -  
-0.03 

-0.04 -  
-0.03 

-0.03 -  
-0.02 

  

    
pot 
(0.07) 

    
-0.04 -  
-0.03 

-0.03 -  
-0.02 

  

    
vhh 
(0.17) 

     
-0.03 -  
-0.02 

  

    
sug 
(0.01) 

        

 
box 95,648.8 /  

0.3 / 2,341 / 
0.15*** 

1.7 int (0.03)                 

     
frn mai csl pot vhh sug 

  

    
gra 
(0.43) 

-0.03 -  
-0.02 

-0.06 -  
-0.05 

-0.05 -  
-0.04 

-0.05 -  
-0.04 

-0.05 -  
-0.04 

-0.04 -  
-0.03 

  

    
frn (0.51) 

 
-0.03 -  

-0.02 

-0.02 -  

-0.01 

-0.02 -0.02 -  

-0.01 

-0.02 -  

-0.01 

  

    
mai 
(0.37) 

  
-0.05 -  
-0.04 

-0.05 -  
-0.04 

-0.05 -  
-0.04 

-0.04 -  
-0.03 

  

    
csl (0) 

   
-0.04 -  

-0.03 

-0.04 -  

-0.03 

-0.03 -  

-0.02 

  

    
pot 
(0.07) 

    
-0.04 -  
-0.03 

-0.03 -  
-0.02 

  

    
vhh 
(0.02) 

     
-0.03 -  
-0.02 

  

        sug (0)                 

Note: ***, significant at 0.1 % level; N (= number of observations) = 544 at analysis levels m1 14, m1 15, m2 14, m2 15, m3 
14 and m3 15; N = 42 at analysis levels a1 14, a1 15, a2 14, a2 15, a3 14 and a3 15; N = 4,001 at analysis levels g14 and g15; 
N = 3,166 at analysis level f14; N = 3,363 at analysis level f15; gau, Gaussian; bis, bisquare; box, boxcar; int, intercept; n, 
number of observations beyond threshold value; for abbrevations of variables see Table 2.2 and Table 2.3. 

Table 3.3 shows the results of the MGWR. At the analysis levels m1 14, m1 15, m3 14, a1 14 and 

a1 15 no mixed GWR was calculated at all since either all predictors were exclusively global or local 

respectively, or the GWR models already had an approximately equal or higher AICc than that of the 

global regression model. For the same reason, no MGWR model was generated with the Gaussian 
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kernel at analysis level m3 15, with the bisquare kernel at the analysis levels m2 15, m3 15 and a3 14 

as well as with the boxcar kernel at the analysis levels a2 14, a2 15 and a3 14. At the analysis levels 

g14, g15, f14, and f15, an MGWR appeared to be not of any usefulness because of the spatial 

autocorrelation of the GWR models. In addition, the calculation of such a model simply took too much 

time and could not be completed. For these reasons, an MGWR was abandoned for these analysis 

levels. 

Table 3.3:   Results of the MGWR models.  

Analysis 
level 

Kernel  
function 
(Adaptive 
bandwidth) 

AICc Global 
Variables 

Local 
Variables 

m2 14 gau 
(542) 

16,931 pgr int 

 
  

 
ppl arl  

bis  
(542) 

16,932 arl int 
  

ppl pgr  
box 
(467) 

16,930 arl int 

  
 

ppl pgr 

m2 15 gau 
(539) 

17,215 arl int 

   
ppl pgr 

   
pig 

 

 
box 
(480) 

17,213 arl int 
  

ppl pgr  
  

  
pig 

m3 15 box 
(462) 

17,211 orc int 

    
cer     
c>2 

    
por 

a2 14 gau 
(22) 

1,401 arl int 

   
ppl pgr 

 
bis 
(22) 

1,410 ppl int   
arl pgr 

a2 15 gau 
(22) 

1,418 arl int 

   
ppl pgr  

bis 
(24) 

1,424 ppl int 
  

arl pgr 

a3 14 gau 
(22) 

1,402 bus int 

   
cer pgr    

orch 
 

   
bro 

 

a3 15 gau 
(20) 

1,412 cer int 

   
orc c>2  

  
 

leg sfr 
 

bis 
(39) 

1,406 cer int   
orc c>2    
sfr 

 

   
por 
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Analysis 
level 

Kernel  
function 
(Adaptive 
bandwidth) 

AICc Global 
Variables 

Local 
Variables 

 
box 
(28) 

1,412 cer int   
hor sfr    
orc c12 

    
 

leg 
 

Note: N (= number of observations) = 544 at analysis levels m2 14, m2 15 and m3 15; N = 42 at analysis levels a2 14, a2 15, 
a3 14 and a3 15; gau, Gaussian; bis, bisquare; box, boxcar; int, intercept; for abbrevations of variables see Table 2.2 and 
Table 2.3. 

Table 3.4:   Regression models for the interpretation of equity of the distribution of the subsidies. 

Analysis 
level 

Model  
type 

Ad- 
just- 

Global  
variable 

Global  
Coefficient 

Local  
variable 

Local estimates 

ed R² Minimum 1st  
Quantile 

Median 3rd  
Quantile 

Maximum 

m1 14 OLS 0.34 int 25,830               
 aar 5.42 

      

m1 15 GWR 0.33     int -1,488,000 -157,300 -37,700 100,700 545,400  
(gau)  

  
pig -50.26 8.23 11.36 40.70 396.90   

 
  

aar 2.98 4.56 5.32 6.26 14.93 

m2 14 OLS 0.37 int -9,690.76               
 arl 5.19 

      

  
 ppl 25.05 

      

  
 pgr 5.33 

      

m2 15 MGWR 0.34 arl 5.46 int -95,400 -91,540 -58,170 -29,540 -3,667 
 

(box)  ppl 45.08 pgr 2.98 3.68 4.23 5.07 5.08   
 

  
pig 2.99 3.77 5.30 5.45 10.90 

m3 14 GWR 0.47     int -340,300 146,200 323,000 524,500 971,300  
(bis)  

  
pgl -149.30 31.15 66.50 140.30 3,849.00   

 
  

leg -146.50 51.54 262.80 659.50 27,270.00   
 

  
cer -5.14 8.97 11.53 13.71 33.53   

 
  

veg -305.80 -9.36 0.13 5.37 93.02 

m3 15 MGWR 0.34 orc 47.34 int 2,979 16,490 53,860 73,690 88,720 
 

(box)  
  

cer 7.75 7.94 8.58 8.87 9.36   
 

  
c>2 184.60 220.50 245.00 319.90 327.60   

 
  

por -12.67 2.39 11.13 11.80 16.78 

a1 14 OLS 0.73 int -774,700               
 aar 5.77 

      

a1 15 OLS 0.60 int 521,700               
 aar 5.67 

      

a2 14 OLS 0.83 int -1,817,000               
 arl 5.69 

      

  
 ppl 32.47 

      

  
 pgr 5.62 

      

a2 15 OLS 0.80 int -1,311,000               
 arl 5.83 

      

  
 ppl 45.46 

      

  
 pgr 5.03 

      

a3 14 OLS 0.84 int -692,100               
 cer 10.43 

      

  
 orc 30.53 

      

  
 pgr 5.85 

      

  
 por 18.43 

      

a3 15 MGWR 0.86 cer 8.80 int -2,141,000 -1,834,000 -1,718,000 -1,261,000 -638,200  
(gau)  orc 65.33 c>2 287.50 320.10 352.00 360.10 375.70 

  
 leg 158.61 sfr -1,556.00 -1,448.00 -1,037.00 -3.10 620.80 
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Analysis 
level 

Model  
type 

Ad- 
just- 

Global  
variable 

Global  
Coefficient 

Local  
variable 

Local estimates 

ed R² Minimum 1st  
Quantile 

Median 3rd  
Quantile 

Maximum 

g14  no model free from concern             

g15  no model free from concern             

f14  no model free from concern             

f15  no model free from concern             

Note: gau, Gaussian; bis, bisquare; box, boxcar; int, intercept; values of adjusted R² for MGWR models are taken from the 
corresponding GWR models; for abbrevations of variables see Table 2.2 and Table 2.3. 

Table 3.4 shows which regression models were ultimately used to interpret the equity of the 

distribution of the agricultural subsidies. At seven analysis levels, including five of the six at the 

arrondissement level, the global model is superior or at least equal to the GWR and MGWR model. In 

two cases, the GWR model has been selected, at level m1 15 the one with the Gaussian kernel and at 

level m3 14 the one with the bisquare kernel. Both models are clearly superior to the other models, 

although, at level m3 14, some local correlation values between “legumes” and “cereals” or 

“vegetables” and “cereals” respectively are slightly above the threshold of 0.8. However, as mentioned 

above, this is not important because of the small number of points above the threshold value 

compared to the total number of data points. In three cases, the MGWR model proved to be superior, 

at analysis level m2 15 and m3 15 with the boxcar kernel and at analysis level a3 15 with the Gaussian 

kernel. For the analysis levels g14, g15, f14 and f15 no satisfactory model was found at all, neither the 

OLS model nor the GWR models passed the diagnostic tests.  

Among the diagnostic plots of the OLS regression models selected for interpretation (Fig. 3.1) the 

diagrams “Residuals vs Fitted” in all cases show a more or less linear relationship. The Q-Q plots show 

a normal distribution of the residuals, albeit outliers cause a slight S-curvature. At the analysis levels 

m1 14 and m2 14 the plots “Scale-Location” indicate moderate heteroscedasticity although both 

studentized Breusch-Pagan tests have been negative. At the analysis level m2 14 the plot “Residuals 

vs Leverage” show that there is a point (Sint Truiden) that slightly distorts or could distort the result. 

The diagnosis plots reveal that in the case of the municipalities Sint Truiden, Leuven and often 

Roeselare too are almost always outliers, in the case of the arrondissements Leuven, Tongeren, Hasselt 

and Halle-Vilvoorde. The outliers of the OLS models are shown in Fig. 3.2 and confirm the findings of 

the diagnostic plots. In all cases, the municipality of Leuven and the arrondissement Leuven are among 

the outliers. For both OLS regression models, this also applies to the municipality of Sint Truiden at the 

municipal level and in two cases of the GWR models also to the arrondissement Tongeren at the 

arrondissement level. The Moran plots (Fig. 3.3) of the OLS regressions show that not a single model 

suffers from significant autocorrelation, even though the decision at the analysis level a1 15 is narrow, 

recognizable by the slope of the regression line. Again, the Moran plots can be used to identify the 
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same outliers as in the previous graphics. However, in three of the five arrondissement level plots, the 

arrondissement of Leuven has a high value compared to the neighboring arrondissements, while the 

arrondissement of Tongeren is mainly surrounded by low values, which, nevertheless, are higher than 

the value of Tongeren itself. The residual maps (Fig. 3.4) also confirm this picture. They very much 

resemble the maps of the outliers. Almost always the residuals of the municipalities of Sint Truiden, 

Leuven and Roeselare or the arrondissement of Leuven are much higher than those of the other 

municipalities or arrondissements and lower in the case of the arrondissement of Tongeren. The 

residual maps of the analysis levels a1 14 and a1 15 also show the high residuals of the arrondissement 

Hasselt. 
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Fig. 3.1:   Diagnostic plots for those analysis levels where the OLS model is superior.  
Note: The three outermost outliers are indicated by their names. 
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Fig. 3.2:   OLS outliers for those analysis levels where the OLS model is superior. 
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Fig.3.3:   OLS Moran plots for those analysis levels where the OLS model is superior. 
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Fig. 3.4:   OLS residuals for those analysis levels where the OLS model is superior. 

The Moran plots of the two GWR models (Fig. 3.5) are similar to those of the global regressions and 

also the two respective residual maps show the same picture, which is known from the OLS regressions 
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already. The GWR estimates of the variables are given in Fig. 3.7, the ultimately significant regions in 

Fig. 3.8. At analysis level m1 15, the predictor “agricultural area” has significantly high values in the 

province of Limburg and the predictor “pigs” in an area from the municipality of Leuven in the north 

to Namur in the southeast and Nivelles in the west. At analysis level m3 14 high values exist in the 

predictor “piglets” in central Belgium near the capital region of Brussels. In the predictor “legumes” 

there is such an area north of Brussels, which extends in an elongated form to the north-east as far as 

Herentals. The predictor “cereals” has high values in an area along the border with Luxembourg and 

Germany, while the predictor “vegetables” has low values in the very same region. 

 

 

Fig. 3.5:   GWR Moran plots for those analysis levels where a GWR model is superior. 
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Fig. 3.6:   GWR residuals for those analysis levels where a GWR model is superior. 
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Fig. 3.7:   GWR estimates for those analysis levels where a GWR model is superior.  
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Fig. 3.8:   Relevant GWR estimates for those analysis levels where a GWR model is superior. 

Fig. 3.9 shows the Moran plots for those analysis levels where an MGWR model has the lowest AICc. 

Since the calculation of the Moran's I value for mixed GWR models is not available in any R package, 
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the values of the ordinary GWR have been used instead, for the sake of simplicity. With respect to the 

great similarity of the results between GWR and MGWR in terms of the estimates (Fig. 3.11), this step 

is thoroughly justifiable. The Moran plots express the picture already known at the municipal level: 

There is no significant autocorrelation and the municipalities Leuven, Sint Truiden and Roeselare form 

the outliers. The same applies to the analysis level a3 15, in which the arrondissements of Leuven, 

Hasselt and Roeselare can be identified as outliers. For the residual maps, the values of the GWR again 

were used as a substitute. Of course, all three maps confirm the findings of the Moran plots. Fig. 3.11 

pictures the GWR and MGWR estimates side by side and demonstrates the almost complete 

consistency of the results of the local variables of the MGWR and its corresponding GWR counterparts. 

Most likely, the differences at analysis level a3 15 could be criticized, but they, too, are too small to 

justify the refusal of this approach. Therefore, the GWR estimates were also used for the 

representation of the relevant MGWR estimates shown in Fig. 3.12. No significant estimates exist at 

analysis level m2 15 for the variable “perennial grassland”, at analysis level m3 15 for the variables 

“cereals”, “cattle more than 2 years” and “pigs 20 to 50 kg and porkers” and at analysis level m3 15 for 

“small fruits”. Significantly high values are only present at level m2 15 for the predictor “pigs” on a 

narrow strip reaching from the municipality of Couvin in the south to Retie in the north east, whereas 

significantly low values occur at level a3 15 for the predictor “cattle more than 2 years” in the 

arrondissement of Kortrijk. 
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Fig. 3.9:   GWR Moran plots for those analysis levels where an MGWR model is superior. 
Note: Moran plots have been taken from the corresponding GWR models due to the almost identical results of GWR and  
MGWR. 
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Fig. 3.10:   GWR residuals for those analysis levels where an MGWR model has the lowest AICc. 
Note: Residual maps have been taken from the corresponding GWR models due to the almost identical results of GWR and 
MGWR. 
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Fig. 3.11:   Comparison of MGWR and GWR estimates for all those analysis levels where an MGWR model is superior.  
Note: The MGWR models are pictured on the left whereas the GWR models can be found on the right side. 
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Fig. 3.12:   Relevant GWR estimates for those analysis levels where an MGWR model is superior. 
Note: Maps of the relevant estimates have been taken from the corresponding GWR models due to the almost identical 
results of GWR and MGWR.  
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4   Discussion 

4.1   Interpretation and Conclusions 

The purpose of this work is to investigate whether the agricultural subsidies of the European Union for 

Belgium in 2014 and 2015 have been distributed geographically equally. However, the variety of results 

and maps makes an interpretation quite difficult. There is no uniform pattern for identifying certain 

financially disadvantaged or privileged regions. In seven cases, the global regression brought the best 

result which means that there are no significant differences in the distribution of the subsidies at all. 

Where the GWR or MGWR provides the best model, particularly high or low regression values occur 

only among a few predictors and their geographical distribution is not limited to specific regions, but 

rather a result by chance. 

According to the Scale-Location plots (Fig. 3.1), moderate heteroscedasticity occurs in the two OLS 

models at the municipal level (m1 14 and m2 14) which is, however, less problematic since the OLS 

regression is relatively robust with regard to the violation of the condition of homoscedasticity. 

Moreover, the models only describe existing data and will not be used for predicting future events. If 

we look at the quantile-quantile plots (Fig. 3.1) of the OLS regression models, it is not surprising that 

all Jarque-Bera- and Shapiro-Wilk tests for normal distribution of the regression residuals are positive. 

The curvature at the ends of the line is caused by those outliers which have already been identified as 

such by the residual maps and the maps of the outliers of both the global and the local regression 

models. Both test methods react very sensitively to outliers, which is why these results are not 

surprising. As the graphical tests prove, there is not really any problem. In the case of outliers and / or 

significantly high residuals, these are above all the municipalities of Leuven, Sint Truiden and 

Roeselare, which are home to large agricultural cooperatives, which regularly receive very high EU 

agricultural subsidies. In these cases, however, it can’t be assumed that the farms of these 

municipalities benefit excessively from the subsidies, since many agricultural businesses and farmers 

are organized in those cooperatives who often don’t even come from one of these municipalities 

themselves. Of course, those municipalities have a big influence on the results at the arrondissement 

level: The arrondissement of Leuven, in all cases, is an upper outlier, just as is the arrondissement of 
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Hasselt in two cases, which the municipality of Sint Truiden belongs to. On the other hand, the 

significantly low residuals of the arrondissement Tongeren, which is adjacent to the arrondissement 

Hasselt, are likely to be a random product or statistical artefact at the analysis levels a2 14, a2 15 and 

a3 14. At least, no obvious reason for this can be found and the maps of the significant GWR or MGWR 

estimates do not indicate any abnormalities in this area. 

The results of the analysis at the municipal level are to be interpreted with caution since the 

adjusted coefficient of determination is usually only about 0.35 which means that only about 35 

percent of the variation in the data is explained by the respective model. Nonetheless, the present 

study does not allow the conclusion of a significantly unequal geographical distribution of the EU’s 

agricultural subsidies among the Belgian municipalities. At the arrondissement level, the adjusted 

coefficient of determination is markedly higher. Here, with only one exception, the global regression 

models achieved the best results, indicating that there are no significant differences between the 

arrondissements. Therefore, the assertion can be made that there is distributive justice at the 

arrondissement level. 

The occurrence of significant autocorrelation in the analysis approach with the hexagon grid is not 

surprising and shows that it is not suitable for the calculation of a GWR. The way the spatial 

disaggregation has been carried out automatically results in spatial autocorrelation of the residuals 

since many adjacent areas that are used for the calculation have been given the very same value. 

Autocorrelation also occurs in the analysis, which is exclusively restricted to the region of Flanders, 

which is why these models are not trustworthy. This is also due to the analysis design, because the 

respective amounts of the subsidies and predictors of each municipality were simply allocated 

proportionately to the agricultural areas. Thus, this approach is also not suitable. 

4.2   Shortcomings 

An even more interesting task surely would have been to answer the question as to whether there is 

a balance between small and medium-sized enterprises with regards to the EU’s agricultural subsidies. 

However, since, except for the subsidies, there were no data freely available on the businesses 

themselves, only the equity of the geographical distribution could be investigated. The fact that all the 

cultivation areas and livestock animals of a municipality have been allocated to all the farms regardless 

of their actual size of course leads to statistical superposition or mutual elimination. Thus, assuming 

that the ratio of large to small agricultural businesses is approximately the same in each municipality, 

an actual existence of unequal distribution can’t be detected with this analysis approach. Moreover, a 
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long-term investigation would be of interest. Although the parallel investigation of two budget years 

can catch random outliers of a year, it can’t make any statement about the development within several 

years or decades. In addition, this work only provides information about the situation in Belgium, a 

country with a small agricultural sector. It does not provide any information on the transferability of 

the results to large countries such as Germany or the United Kingdom or to countries with a larger 

agricultural sector such as Portugal, Spain, France, Italy, Greece, Romania or Poland. Yet, an analysis 

of the whole European Union would have clearly exceeded the limits of what was possible for me in 

terms of time, and, what is more, I would not have had the necessary computer resources and data at 

my disposal. A further drawback is that only the total subsidy sum was analyzed. A much more detailed 

analysis would have examined the subsidies broken down by fund and purpose. These data would have 

been available, but again, unfortunately, no detailed data of the individual enterprises were present. 

Finally, it must also be mentioned that an interpretation of the results of a multiple GWR is always 

difficult. If it indicates differences, it is not always certain whether they are existent in reality, or 

whether the model is only specified insufficiently. 
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Appendix 

A   R-Code 

A.1   Main Script 

########################################################################### 

####################### PREPARATION OF ENVIRONMENT ######################## 

########################################################################### 

 

# load packages 

 library(rgdal); library(sfsmisc); library(MASS); library(spdep); library(tseries); library(GWmodel);  

library(car); library(lmtest); library(glmulti); library(QuantPsyc); library(plyr); library(rgeos); 

library(stringr); library(maptools); library(GISTools) 

# source scripts 

 source("R scripts/gwr.mixed (corrected).R") 

 source("R scripts/plot.glmulti2.R") 

 source("R scripts/moran.plot2.R") 

 source("R scripts/Scalebar2.R") 

 source("http://www.math.mcmaster.ca/bolker/R/misc/legendx.R")  

# create lists with strings and numbers 

 listLayersAgric <- c(rep(c("m14", "m15"), 3), "g14", "g15", rep(c("a14", "a15"), 3), "f14", "f15") 

 listLayersAdmin <- c(rep("mun", 8), rep("arr", 6), rep("f_mun", 2)) 

 listVarNrs.1 <- rep(as.data.frame(c(10, 11, 42, 54, 58, 61)), 2) 

 listVarNrs.2 <- rep(as.data.frame(c(10, 12, 32, 38, 39, 42, 54, 58, 61)), 2) 

 listVarNrs.3 <- rep(as.data.frame(c(10, 13, 18, 23:25, 29:31, 33:34, 37:38, 40:41, 43, 46:47, 55:57, 

59:61)), 2) 

 listVarNrs.4 <- rep(as.data.frame(c(10, 11, 42, 54, 58, 61) + 2), 2) 

 listVarNrs.5 <- rep(as.data.frame(c(10, 11, 42, 54, 58, 61) - 6), 2) 

 listVarNrs.6 <- rep(as.data.frame(c(10, 12, 32, 38, 39, 42, 54, 58, 61) - 6), 2) 

 listVarNrs.7 <- rep(as.data.frame(c(10, 13, 18, 23:25, 29:31, 33:34, 37:38, 40:41, 43, 46:47, 55:57, 

59:61) - 6), 2) 

 listVarNrs.8 <- rep(as.data.frame(c(3:16)), 2) 

 listVarNrs <- c(listVarNrs.1, listVarNrs.2, listVarNrs.3, listVarNrs.4, listVarNrs.5, listVarNrs.6, 

listVarNrs.7, listVarNrs.8) 

 listVarNames.1 <- rep(as.data.frame(c("businesses", "agricultural_area", "cattle", "pigs", "poultry", 

"subsidies")), 2) 

 listVarNames.2 <- rep(as.data.frame(c("businesses", "arable_land", "perennial_plants", 

"perennial_grassland", "greenhouse_crops", "cattle", "pigs", "poultry", "subsidies")), 2) 
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 listVarNames.3 <- rep(as.data.frame(c("businesses", "cereals", "industrial_crops", "potatoes", 

"legumes", "fodder_plants", "vegetables", "horticultural_plants", "fallows", "plant_nurseries", 

"orchards", "small_fruits", "perennial_grassland", "greenhouse_vegetables", 

"horticultural_plants_in_greenhouses", "calves", "cattle_1_to_2_yr.", "cattle_more_than_2_yr.", 

"piglets", "breeding_sows_more_than_50_kg", "pigs_20_to_50_kg_and_porkers", "laying_hens", 

"broilers", "subsidies")), 2) 

 listVarNames.4 <- rep(as.data.frame(c("potatoes", "fruits_and_nuts", "cereals_seeds_and_legumes", 

"grassland", "vegetables_herbs_and_horticultural_plants", "woody_plants", 

"agricultural_infrastructure", "maize", "other_plants", "sugar_beets", "flax_and_hemp", 

"fodder_plants", "no_information", "subsidies")), 2) 

 listVarNames <- c(listVarNames.1, listVarNames.2, listVarNames.3, listVarNames.1, listVarNames.1, 

listVarNames.2, listVarNames.3, listVarNames.4) 

 listVarLabels.1 <- rep(as.data.frame(c("businesses", "agricultural area", "cattle", "pigs", "poultry", 

"subsidies", "intercept")), 2) 

 listVarLabels.2 <- rep(as.data.frame(c("businesses", "arable land", "perennial plants", "perennial 

grassland", "greenhouse crops", "cattle", "pigs", "poultry", "subsidies", "intercept")), 2) 

 listVarLabels.3 <- rep(as.data.frame(c("businesses", "cereals", "industrial crops", "potatoes", 

"legumes", "fodder plants", "vegetables", "horticultural plants", "fallows", "plant nurseries", 

"orchards", "small fruits", "perennial grassland", "greenhouse vegetables", "horticultural plants 

in greenhouses", "calves", "cattle 1 to 2 yr.", "cattle more than 2 yr.", "piglets", "breeding  sows 

more than 50 kg", "pigs 20 to 50 kg and porkers", "laying hens", "broilers", "subsidies", 

"intercept")), 2) 

 listVarLabels.4 <- rep(as.data.frame(c("potatoes", "fruits and nuts", "cereals, seeds and legumes", 

"grassland", "vegetables, herbs and horticultural plants", "woody plants", "agricultural 

infrastructure", "maize", "other plants", "sugar beets", "flax and hemp", "fodder plants", "no 

information", "subsidies", "intercept")), 2) 

 listVarLabels <- c(listVarLabels.1, listVarLabels.2, listVarLabels.3, listVarLabels.1, 

listVarLabels.1, listVarLabels.2, listVarLabels.3, listVarLabels.4) 

 listUnit.1 <- rep(as.data.frame(c("", " (a)", "", "", "", " (€)", "")), 2) 

 listUnit.2 <- rep(as.data.frame(c("", " (a)", " (a)", " (a)", " (a)", "", "", "", " (€)", "")), 2) 

 listUnit.3 <- rep(as.data.frame(c("", " (a)", " (a)", " (a)", " (a)", " (a)", " (a)", " (a)", " (a)", 

" (a)", " (a)", " (a)", " (a)", " (a)", " (a)", "", "", "", "", "", "", "", "", " (€)", "")), 2) 

 listUnit.4 <- rep(as.data.frame(c(" (a)", " (a)", " (a)", " (a)", " (a)", " (a)", " (a)", " (a)", " 

(a)", " (a)", " (a)", " (a)", " (a)", " (€)", "")), 2) 

 listUnit <- c(listUnit.1, listUnit.2, listUnit.3, listUnit.1, listUnit.1, listUnit.2, listUnit.3, 

listUnit.4) 

 listTags <- c("m1 14", "m1 15", "m2 14", "m2 15", "m3 14", "m3 15", "g14", "g15", "a1 14", "a1 15", 

"a2 14", "a2 15", "a3 14", "a3 15", "f14", "f15") 

 

########################################################################### 

######################### CREATION OF FUNCTIONS ########################### 

########################################################################### 

 

# fetch strings and numbers from data 

 fetchData <- function(x) { 

   assign("layerAgric", listLayersAgric[x], envir = .GlobalEnv) 

   assign("layerAdmin", listLayersAdmin[x], envir = .GlobalEnv) 

   assign("varNrs", listVarNrs[[x]], envir = .GlobalEnv) 
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   assign("varNames", as.character(listVarNames[[x]]), envir = .GlobalEnv) 

   assign("varLabels", as.character(listVarLabels[[x]]), envir = .GlobalEnv) 

   assign("unit", as.character(listUnit[[x]]), envir = .GlobalEnv) 

   assign("tag", listTags[x], envir = .GlobalEnv) 

 } 

# prompt to enter a number to choose a dataset 

 chooseData <- function() { 

   dataSet <- readline(prompt = "enter a number from 1 - 16 to choose a dataset for the statistical 

analysis: ") 

 fetchData(as.integer(dataSet)) 

 } 

# create list with predictors that should participate in model selection 

 fetchPreds <- function(x) { 

   if (length(x) == 0) 

     assign("xr", names(preds), envir = .GlobalEnv) 

   else 

     assign("xr", names(subset(preds, select = -x)), envir = .GlobalEnv) 

 } 

# prompt to enter variable numbers to be excluded from model selection  

 choosePreds <- function() { 

   cat("enter the number(s) (corMatNr) of the variable(s) you want to exclude from the analysis (comma-

separated, press ENTER if you want to keep all variables): ") 

   choice <- scan("", sep = ",", quiet = T, nlines = 1) 

   fetchPreds(choice) 

 } 

# select user-defined basic regression model 

 fetchLmModel <- function(x) { 

   assign("lmNr", x, envir = .GlobalEnv) 

   assign("lmModel", lm(lmSelect@formulas[[lmNr]]), envir = .GlobalEnv) 

 } 

# prompt to enter a number to choose a basic regression model 

 chooseLmModel <- function() { 

   lmChoice <- readline(prompt = "enter the number of the basic regression model you want to use for 

further analysis: ") 

   fetchLmModel(as.integer(lmChoice)) 

 } 

# draw coplot 

 panLm <- function(x, y, ...) { 

   points(x, y, pch = 20, cex = 0.7) 

   abline(lm(y ~ x)) 

 } 

# calculate interval limits 

 sdInt <- function(x) { 

   nr <- c(-1000, -5, -2, -0.5, 0.5, 2, 5, 1000) 

   regSd <- sd(x) 

   regMean <- mean(x) 

   regIv <- list() 

   regIv <- lapply(nr, function(x) regMean + (x * regSd)) 
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   regIv <- unlist(regIv) 

   return(regIv) 

 } 

# draw choropleth map from standard intervals 

 sdMap <- function(data, shp, ...) { 

   int <- sdInt(data) 

   cat <- findInterval(data, int) 

   look <- palDiv[cat] 

   plot(shp, col = look, border = NA, ...) 

 } 

# create vector with class limits for p-values 

 pVal <- c(0, 0.001, 0.01, 0.05, 0.1, 1) 

# draw choropleth map from p-values 

 pMap <- function(data, shp, ...) { 

   cat <- findInterval(data, pVal) 

   look <- palP[cat] 

   plot(shp, col = look, border = NA, ...) 

 } 

# draw choropleth map from standard intervals for significant estimates and relative predictors 

 sdMapSig <- function(cat, shp, ...) { 

   look <- palDiv[cat] 

   plot(shp, col = look, border = NA, ...) 

 } 

 

# check if a value is inside a range  

 isBetween <- function(x, a, b) { 

   x > a & x < b 

 }  

# calculate standardized residuals 

 stand <- function(x) { 

   mn <- mean(x) 

   std <- sd(x) 

   (x - mn) / std 

 } 

 

########################################################################### 

######################### LOAD AND PREPARE DATA ########################### 

########################################################################### 

 

# choose dataset  

 chooseData() 

# load shapefiles and transform them to data frames 

 agric <- readOGR(dsn = "C:/master/analysis/shapes", layer = layerAgric, stringsAsFactors = F, encoding 

= "UTF-8", use_iconv = T) 

 names(agric@data)[varNrs] <- varNames 

 agricDf <- data.frame(agric) 

 agricRows <- seq.int(nrow(agricDf)) 
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 admin <- readOGR(dsn = "C:/master/analysis/shapes", layer = layerAdmin, stringsAsFactors = F, encoding 

= "UTF-8", use_iconv = T) 

# append sequential numbers to the spatial data frame "agric" and create a new one 

 nrAgric <- 1:length(agric) 

 agricNr <- spCbind(agric, nrAgric) 

# create datasets with potential predictors 

 vars <- agricDf[varNrs] 

 preds <- subset(vars, select = -subsidies) 

# calculate polygon centroids 

 cents <- gCentroid(agric, byid = T) 

# create topological lists of the polygons 

 topoList <- poly2nb(agric) 

# calculate spatial weights for the polygons 

 spatWgts <- nb2listw(topoList, zero.policy = T) 

# create vector with probability values 

 probs <- c(0, seq(0.2, 0.5, 0.15), seq(0.6, 1, 0.1)) 

# create vector with names of kernel functions for the GWR 

 kernels <- c("gaussian", "bisquare", "boxcar")  

# create color palettes 

 palDiv <- c("#8c510a", "#d8b365", "#f6e8c3", "#f5f5f5", "#c7eae5", "#5ab4ac", "#01665e") 

 palDivSig <- c("#8c510a", "#d8b365", "#5ab4ac", "#01665e") 

 palP <- c("#006d2c", "#2ca25f", "#66c2a4", "#b2e2e2", "#edf8fb") 

# create labels for legends 

 sdMapLegLab <- c("< -5", "< -2", "< -0.5", "\u00B10.5", "> 0.5", "> 2", "> 5") 

 sdMapSigLegLab <- c("< -5", "< -2", "> 2", "> 5") 

 pMapLegLab <- c("\u2264 0.001", "\u2264 0.01", "\u2264 0.05", "\u2264 0.1", "> 0.1") 

 

########################################################################### 

####################### GLOBAL LINEAR REGRESSION ########################## 

########################################################################### 

 

################ LINEAR REGRESSION MODEL SELECTION ################## 

 

 attach(vars) 

 

# correlation matrix of all potential predictors 

 symnum(corMat <- round(cor(preds), 2)) 

 corMat[upper.tri(corMat, diag = T)] <- NA 

 corMatId <- seq.int(nrow(corMat)) 

 (corMatNr <- cbind(corMatId, corMat)) 

  

# choose predictors to be excluded from model selection (press enter ) 

 choosePreds() 

# calculate possible models 

 lmSelect <- glmulti("subsidies", xr = xr, level = 1, crit = "aicc", plotty  = F, data = vars) 

 (lmTable <- weightable(lmSelect)) 

 img <- file.path(paste0(tag, ". OLS - 1. model selection plot.tif")) 

 tiff(img, width = 1280, height = 850) 
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 par(mar = c(5, 5, 4, 2)) 

 plot.glmulti2(lmSelect, main = tag, cex.main = 3.5, font.main = 1, xaxt = "n", cex.axis = 2, cex.lab = 

2.5) 

 title(ylab = "AICc", cex.lab = 2.5, line = 3) 

 axis(side = 1, at = c(1, seq(5, length(lmSelect@formulas), 5)), cex.axis = 2) 

 abline(v = c(1, seq(5, length(lmSelect@formulas), 5)), col = "light grey") 

 dev.off() 

 (lmTableBest <- lmTable[lmTable$aicc <= min(lmTable$aicc) + 2, ]) 

 lmBest <- lapply(lmSelect@objects, function(x) summary(x)) 

 (lmBest[1:nrow(lmTableBest)]) 

# choose model for further analysis  

 chooseLmModel() 

 summary(lmModel) 

# calculate beta coefficients 

 lm.beta(lmModel) 

 

################## LINEAR REGRESSION DIAGNOSTICS #################### 

 

# test predictors for multicollinearity (redundancy) (x > 10 => multicollinearity) 

 vif(lmModel) 

# diagnostic plots 

 img <- file.path(paste0(tag, ". OLS - 2. diagnostic plots.tif")) 

 tiff(img, width = 1000, height = 1000) 

 par(mfrow = c(2, 2), oma = c(0, 1, 2, 1), mgp = c(2.5, 1, 0)) 

 if (layerAdmin == "arr") { 

   plot(lmModel, cex.caption = 2, sub.caption = NA, labels.id = paste0(nrAgric, ". ", agric$ARRNAM), 

label.pos = c(1, 3, 2), cex.id = 1.6, cex.lab = 1.5, cex.axis = 1.5) 

   title(tag, cex.main = 3.5, font.main = 1, outer = T, line = -1) 

 } else { 

   plot(lmModel, cex.caption = 2, sub.caption = NA, labels.id = paste0(nrAgric, ". ", agric$MUN), 

label.pos = c(1, 3, 2), cex.id = 1.6, cex.lab = 1.5, cex.axis = 1.5) 

   title(tag, cex.main = 3.5, font.main = 1, outer = T, line = -1) 

 } 

 dev.off() 

# check studentized residuals for outliers  

 lmModelStdRes <- rstandard(lmModel) 

 nrStdRes <- 1:length(lmModelStdRes) 

 lmModelStdResNr <- cbind(lmModelStdRes, nrStdRes) 

 lmModelStdResOutl <- subset(lmModelStdResNr, (lmModelStdResNr[, 1] > 3 | lmModelStdResNr[, 1] < -3)) 

 lmModelStdResOutlDf <- as.data.frame(lmModelStdResOutl) 

 lmOutlierNames <- agric[[2]][lmModelStdResOutl[, 2]] 

 lmOutlierNames[duplicated(lmOutlierNames)] <- "" 

 lmOutlierNrsPre <- lmModelStdResOutlDf$nrStdRes 

 lmOutlierNrsAux <- list() 

 j <- 1 

 for (i in lmOutlierNrsPre) { 

   if (lmOutlierNames[j] == "") 

     lmOutlierNrsAux[j] <- "" 
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   else 

     lmOutlierNrsAux[j] <- lmOutlierNrsPre[j] 

   j <- j + 1 

 } 

 lmOutlierNrs <- lmOutlierNrsAux 

 lmOutlierLabs <- list() 

 j <- 1 

 for (i in lmOutlierNrs) { 

   if (nchar(i) != 0) 

     lmOutlierLabs[j] <- paste0(lmOutlierNrs[j], ". ", lmOutlierNames[j]) 

   else 

     lmOutlierLabs[j] <- "" 

   j <- j + 1 

 } 

 lmOutlier <- subset(agricNr, agricNr$nrAgric %in% lmModelStdResOutl[nrStdRes]) 

 lmOutlierCents <- gCentroid(lmOutlier, byid = T) 

 img <- file.path(paste0(tag, ". OLS - 3. outliers standardized residuals.tif")) 

 if (layerAdmin == "f_mun") { 

   tiff(img, width = 1000, height = 550) 

   par(mar = c(0, 0, 3, 0)) 

   plot(admin, border = "light grey") 

   plot(lmOutlier, col = "red", border = NA, add = T) 

   pointLabel(lmOutlierCents@coords, unlist(lmOutlierLabs), cex = 2) 

   north.arrow(250000, 250000, 2500, lab = "N", cex.lab = 2) 

   Scalebar2(18000, 140000, distance = 100000, scale = 0.001, t.cex = 1.3) 

   title(tag, line = 0, cex.main = 3, font.main = 1) 

 } else { 

   tiff(img, width = 1000, height = 850) 

   par(mar = c(0, 0, 3, 0)) 

   plot(admin, border = "light grey") 

   plot(lmOutlier, col = "red", border = NA, add = T) 

   pointLabel(lmOutlierCents@coords, unlist(lmOutlierLabs), cex = 2) 

   north.arrow(290000, 235000, 2500, lab = "N", cex.lab = 2) 

   Scalebar2(28000, 30000, distance = 100000, scale = 0.001, t.cex = 1.3) 

   title(tag, line = 0, cex.main = 3, font.main = 1) 

 } 

 dev.off() 

  

## --- test residuals for autocorrelation --- 

# Durbin-Watson test 

 dwt(lmModel) 

# global Moran's I (H0: no autocorrelation) 

 (moranLm <- lm.morantest(lmModel, spatWgts, zero.policy = T)) 

# Moran scatter plot 

 img <- file.path(paste0(tag, ". OLS - 4. Moran plot.tif")) 

 tiff(img, width = 1280, height = 850) 

 par(mar = c(5, 5, 4, 2)) 
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 moran.plot2(lmModel$residuals, spatWgts, zero.policy = T, labels = paste0(agricRows, ". ", 

agric[[2]]), main = tag, cex.main = 3.5, font.main = 1, xlab = "residuals", ylab = "spatially 

lagged residuals", cex = 0.8, cex.lab = 2, cex.axis = 1.4) 

 mtext(paste0("Moran's I: ", round(moranLm$estimate[1], 3), "\np-value: ", round(moranLm$p.value[[1]], 

3)), side = 4, cex = 2, las = 1, adj = 1, padj = -6.4, line = -1.3) 

 dev.off() 

 

# Breusch-Pagan test against heteroscedasticity (H0: residuals homoskedastic) 

 bptest(lmModel, studentize = T) 

 

## --- test residuals for normality --- 

# Jarque-Bera test 

 jarque.bera.test(lmModel$residuals) 

# Shapiro-Wilk test 

 shapiro.test(lmModel$residuals) 

 

## --- map residuals --- 

 img <- file.path(paste0(tag, ". OLS - 5. residuals.tif")) 

 if (layerAdmin == "f_mun") { 

   tiff(img, width = 1000, height = 550) 

   par(mar = c(0, 0, 3, 0)) 

   sdMap(lmModel$residuals, agricS) 

   plot(admin, border = "light grey", add = T) 

   north.arrow(250000, 250000, 2500, lab = "N", cex.lab = 2) 

   Scalebar2(18000, 140000, distance = 100000, scale = 0.001, t.cex = 1.3) 

   title(tag, line = 0, cex.main = 3, font.main = 1) 

   par(lheight = 0.8) 

   text(15000, 252000, "OLS residuals", pos = 4, cex = 2) 

   text(15000, 246000, "(SD from mean)", pos = 4, cex = 1.5) 

   legend("topleft", inset = c(0, 0.15), fill = palDiv, legend = sdMapLegLab, y.intersp = 0.8, border = 

"light grey", bty = "n", cex = 1.5, box.cex = c(1.5, 0.8)) 

 } else { 

   tiff(img, width = 1000, height = 850) 

   par(mar = c(0, 0, 3, 0)) 

   sdMap(lmModel$residuals, agricS) 

   plot(admin, border = "light grey", add = T) 

   north.arrow(290000, 235000, 2500, lab = "N", cex.lab = 2) 

   Scalebar2(28000, 30000, distance = 100000, scale = 0.001, t.cex = 1.3) 

   title(tag, line = 0, cex.main = 3, font.main = 1) 

   par(lheight = 0.8) 

   text(25000, 97000, "OLS residuals", pos = 4, cex = 2) 

   text(25000, 91000, "(SD from mean)", pos = 4, cex = 1.5) 

   legend("bottomleft", inset = c(0.04, 0.14), fill = palDiv, legend = sdMapLegLab, y.intersp = 0.8, 

border = "light grey", bty = "n", cex = 1.5, box.cex = c(1.5, 0.8)) 

 } 

 dev.off() 
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########################################################################### 

################## GEOGRAPHICALLY WEIGHTED REGRESSION ##################### 

########################################################################### 

 

###########===================== BASIC GWR =====================########### 

########################################################################### 

 

# determine optimal bandwidth for GWR 

 bandw <- list() 

 j <- 1 

 for (i in kernels) { 

   bw <- bw.gwr(lmModel, data = agric, approach = "AIC", kernel = i, adaptive = T) 

   bandw[[j]] <- bw 

   j <- j + 1 

 } 

 bandw 

  

## --- GWR model selection --- 

 gwrList <- list() 

 j <- 1 

 for (i in bandw) { 

   gwrList[[j]] <- model.selection.gwr(DeVar = "subsidies", InDeVars = names(preds), data = agric, bw = 

i, kernel = kernels[j], adaptive = T, approach = "AIC")  

   j <- j + 1 

 } 

# choose rows with lowest AICc 

 gwrListNr <- list() 

 j <- 1 

 for (i in gwrList) { 

   gwrListNr[[j]] <- which(i[[2]][, 3] == min(i[[2]][, 3]), arr.ind = T) 

   j <- j + 1 

 } 

# extract models with lowest AICc 

 gwrListBest <- list() 

 j <- 1 

 for (i in gwrListNr) { 

   k <- as.integer(i[[1]][1]) 

   gwrListBest[[j]] <- gwrList[[j]][[1]][[k]][[1]] 

   j <- j + 1 

 } 

 

## --- perform basic GWR --- 

 gwrModel <- list() 

 j <- 1 

 for (i in bandw) { 

   gwrModel[[j]] <- gwr.basic(gwrListBest[[j]], data = agric, bw = i, adaptive = T, kernel = 

kernels[[j]]) 

   print(gwrModel[[j]]) 
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   j <- j + 1 

 } 

 

########################## BASIC GWR DIAGNOSTICS ########################## 

 

# test spatial variability of predictors (H0: no variability) 

 gwrMCNames <- lapply(gwrModel, function(x) names(x$lm$model[-1])) 

 gwrMCVars <- lapply(gwrMCNames, function(x) append(x, "(Intercept)", 0)) 

 gwrMC <- list(); gwrMCList <- list() 

 set.seed(25042011) 

 j <- 1 

 for (i in bandw) { 

   gwrMC[[j]] <- montecarlo.gwr(gwrListBest[[j]], data = agric, nsims = 999, bw = i, kernel = 

kernels[j], adaptive = T) 

   gwrMCList[[j]]  <- cbind(gwrMC[[j]], gwrMCVars[[j]]) 

   j <- j + 1 

 } 

 

## --- local collinearity diagnostics --- 

 gwrColDiag <- list(); gwrLocCor <- list(); gwrVif <- list(); gwrLocCon <- list() 

 j <- 1 

 for (i in bandw) { 

   tryCatch( { 

     gwrColDiag[[j]] <- gwr.collin.diagno(gwrListBest[[j]], data = agric, bw = i, adaptive = T, kernel 

= kernels[j]) 

     gwrLocCor[[j]] <- round(gwrColDiag[[j]]$corr.mat, 2) 

     gwrVif[[j]] <- round(gwrColDiag[[j]]$VIF, 1) 

     gwrLocCon[[j]] <- round(gwrColDiag[[j]]$local_CN, 1) 

   } 

   , error = function(e) cat("ERROR: ", conditionMessage(e), "\n")) 

   j <- j + 1 

 } 

 j <- 1 

 for (i in gwrColDiag) { 

   tryCatch( { 

     if (layerAdmin == "arr") { 

       gwrLocCorCol <- gsub("Corr_", "", names(i$SDF)[startsWith(names(i$SDF), "Corr_")]) 

       colnames(gwrLocCor[[j]]) <- gwrLocCorCol 

       rownames(gwrLocCor[[j]]) <- paste0(agric$ARRNIS, " ", agric$ARRNAM) 

       gwrVifCol <- gsub("_VIF", "", names(i$SDF)[endsWith(names(i$SDF), "_VIF")]) 

       colnames(gwrVif[[j]]) <- gwrVifCol 

       rownames(gwrVif[[j]]) <- paste0(agric$ARRNIS, " ", agric$ARRNAM) 

       gwrLocCon[[j]] <- cbind(paste0(agric$ARRNIS, " ", agric$ARRNAM), gwrLocCon[[j]]) 

       write.table(gwrLocCor[[j]], paste0(tag, " GWR local correlation values ", kernels[[j]], ".csv"), 

sep = ";") 

       write.table(gwrVif[[j]], paste0(tag, " GWR local VIF ", kernels[[j]], ".csv"), sep = ";") 

       write.table(gwrLocCon[[j]], paste0(tag, " GWR local condition numbers ", kernels[[j]], ".csv"), 

sep = ";") 
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     } 

     else { 

       gwrLocCorCol <- gsub("Corr_", "", names(i$SDF)[startsWith(names(i$SDF), "Corr_")]) 

       colnames(gwrLocCor[[j]]) <- gwrLocCorCol 

       rownames(gwrLocCor[[j]]) <- paste0(agric$NIS, " ", agric$MUN) 

       gwrVifCol <- gsub("_VIF", "", names(i$SDF)[endsWith(names(i$SDF), "_VIF")]) 

       colnames(gwrVif[[j]]) <- gwrVifCol 

       rownames(gwrVif[[j]]) <- paste0(agric$NIS, " ", agric$MUN) 

       gwrLocCon[[j]] <- cbind(paste0(agric$NIS, " ", agric$MUN), gwrLocCon[[j]]) 

       write.table(gwrLocCor[[j]], paste0(tag, " GWR local correlation values ", kernels[[j]], ".csv"), 

sep = ";")   

       write.table(gwrVif[[j]], paste0(tag, " GWR local VIF ", kernels[[j]], ".csv"), sep = ";") 

       write.table(gwrLocCon[[j]], paste0(tag, " GWR local condition numbers ", kernels[[j]], ".csv"), 

sep = ";") 

     } 

   } 

   , error = function(e) cat("ERROR:", conditionMessage(e), "\n")) 

   j <- j + 1 

 } 

 

# check studentized residuals for outliers  

 gwrOutl <- list() 

 j <- 1 

 for (i in gwrModel) { 

   gwrOutl[[j]] <- count(i$SDF$Stud_residual > 3 | i$SDF$Stud_residual < -3) 

   j <- j + 1 

 } 

 gwrOutl 

 

## --- test residuals for autocorrelation --- 

# Moran's I (H0: no autocorrelation) 

 (moranBasGwr <- lapply(gwrModel, function(x) moran.test(x$SDF$residual, spatWgts, zero.policy = T))) 

# Moran scatter plot 

 j <- 1 

 morplotlist <- list() 

 for (i in gwrModel) { 

   img <- file.path(paste0(tag, ". GWR - 1. Moran plot, ", kernels[j], ".tif")) 

   tiff(img, width = 1280, height = 850) 

   par(mar = c(5, 5, 4, 2)) 

   moran.plot2(i$SDF$residual, spatWgts, zero.policy = T, labels = paste0(agricRows, ". ", agric[[2]]), 

main = paste0(tag, ", ", kernels[j]), cex.main = 3.5, font.main = 1, xlab = "residuals", ylab = 

"spatially lagged residuals", cex = 0.8, cex.lab = 2, cex.axis = 1.4) 

   mtext(paste0("Moran's I: ", round(moranBasGwr[[j]]$estimate[1], 3), "\np-value: ", 

round(moranBasGwr[[j]]$p.value[[1]], 3)), side = 4, cex = 2, las = 1, adj = 1, padj = -6.4, line = 

-1.3) 

   dev.off() 

   j <- j + 1 

 } 
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## --- map residuals --- 

 j <- 1 

 for (i in gwrModel) { 

   img <- file.path(paste0(tag, ". GWR - 2. residuals, ", kernels[j], ".tif")) 

   if (layerAdmin == "f_mun") { 

     tiff(img, width = 1000, height = 550) 

     par(mar = c(0, 0, 3, 0)) 

     sdMap(i$SDF$residual, agricS) 

     plot(admin, border = "light grey", add = T) 

     north.arrow(250000, 250000, 2500, lab = "N", cex.lab = 2) 

     Scalebar2(18000, 140000, distance = 100000, scale = 0.001, t.cex = 1.3) 

     title(tag, line = 0, cex.main = 3, font.main = 1) 

     mtext(paste0("kernel: ", kernels[j]), side = 3, line = 0, adj = 0, at = 17000, cex = 2) 

     par(lheight = 0.8) 

     text(15000, 252000, "GWR residuals", pos = 4, cex = 2) 

     text(15000, 246000, "(SD from mean)", pos = 4, cex = 1.5) 

     legend("topleft", inset = c(0, 0.15), fill = palDiv, legend = sdMapLegLab, y.intersp = 0.8, border 

= "light g  rey", bty = "n", cex = 1.5, box.cex = c(1.5, 0.8)) 

   } else { 

     tiff(img, width = 1000, height = 850) 

     par(mar = c(0, 0, 3, 0)) 

     sdMap(i$SDF$residual, agricS) 

     plot(admin, border = "light grey", add = T) 

     north.arrow(290000, 235000, 2500, lab = "N", cex.lab = 2) 

     Scalebar2(28000, 30000, distance = 100000, scale = 0.001, t.cex = 1.3) 

     title(tag, line = 0, cex.main = 3, font.main = 1) 

     mtext(paste0("kernel: ", kernels[j]), side = 3, line = 0, adj = 0, at = 20000, cex = 2) 

     par(lheight = 0.8) 

     text(25000, 97000, "GWR residuals", pos = 4, cex = 2) 

     text(25000, 91000, "(SD from mean)", pos = 4, cex = 1.5) 

     legend("bottomleft", inset = c(0.04, 0.14), fill = palDiv, legend = sdMapLegLab, y.intersp = 0.8, 

border = "  light grey", bty = "n", cex = 1.5, box.cex = c(1.5, 0.8)) 

   } 

   dev.off() 

   j <- j + 1 

 } 

  

############################ BASIC GWR RESULTS ############################ 

 

 gwrVars <- list() 

 gwrT <- list() 

 gwrKernel <- list() 

 j <- 1 

 for (i in gwrModel) { 

   gwrVars[[j]] <- names(i$lm$model[2:length(i$lm$model)]) 

   gwrVars[[j]] <- append(gwrVars[[j]], "intercept", after = 0) 

   gwrT[[j]] <- paste0(gwrVars[[j]], "_TV") 
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   gwrKernel[[j]] <- rep(kernels[j], length(gwrVars[[j]])) 

   j <- j + 1 

 } 

# show ranges of estimates  

 gwrEst <- list() 

 j <- 1 

 for (i in gwrModel) { 

   gwrEst[[j]] <- cbind(i$SDF@data[names(i$SDF@data) %in% gwrVars[[j]] | names(i$SDF@data) %in% 

"Intercept"]) 

   j <- j + 1 

 } 

 gwrEstRngAux <- list() 

 gwrEstRng <- list() 

 j <- 1 

 for (i in gwrEst) { 

   l <- 1 

   for (k in i) { 

     gwrEstRngAux[[l]] <- range(k) 

     gwrEstRngAux[[l]] <- append(gwrEstRngAux[[l]], c(gwrVars[[j]][l], gwrKernel[[j]][l])) 

     l <- l + 1 

   } 

   gwrEstRng[[j]] <- gwrEstRngAux 

   gwrEstRngAux <- list() 

   j <- j + 1 

 } 

 gwrEstRng 

# show ranges of t-values  

 gwrT <- list() 

 j <- 1 

 for (i in gwrModel) { 

   gwrT[[j]] <- cbind(i$SDF@data[names(i$SDF@data) %in% paste0(gwrVars[[j]], "_TV") | names(i$SDF@data) 

%in% paste0("Intercept", "_TV")]) 

   j <- j + 1 

 } 

 gwrTRngAux <- list() 

 gwrTRng <- list() 

 j <- 1 

 for (i in gwrT) { 

   l <- 1 

   for (k in i) { 

     gwrTRngAux[[l]] <- range(k) 

     gwrTRngAux[[l]] <- append(gwrTRngAux[[l]], c(gwrVars[[j]][l], gwrKernel[[j]][l])) 

     l <- l + 1 

   } 

   gwrTRng[[j]] <- gwrTRngAux 

   gwrTRngAux <- list() 

   j <- j + 1 

 } 
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 gwrTRng 

# create labels 

 varGwrLabAux <- list() 

 varGwrLab <- list() 

 j <- 1 

 for (i in gwrEst) { 

   k <- 1 

   for (l in (names(i))) { 

     pattern <- l 

     pattReplace <- agrep(pattern, varLabels, max.distance = 0.2, ignore.case = T) 

     for (m in varLabels[pattReplace]) { 

       if (isBetween((nchar(m) / nchar(pattern)), 0.9, 1.1)) { 

         varGwrLabAux[[k]] <- m 

         k <- k + 1 

       } 

     } 

   } 

   varGwrLab[[j]] <- varGwrLabAux 

   varGwrLabAux <- list() 

   j <- j + 1 

 } 

# map estimates 

 j <- 1 

 for (i in gwrEst) { 

   l <- 1 

   for (k in i) { 

     img <- file.path(paste0(tag, ". GWR - 3. estimates, ", kernels[j], ", ", varGwrLab[[j]][l], 

".tif")) 

     if (layerAdmin == "f_mun") { 

       tiff(img, width = 1000, height = 550) 

       par(mar = c(0, 0, 3, 0)) 

       sdMap(k, agricS) 

       plot(admin, border = "light grey", add = T) 

       north.arrow(250000, 250000, 2500, lab = "N", cex.lab = 2) 

       Scalebar2(18000, 140000, distance = 100000, scale = 0.001, t.cex = 1.3) 

       title(tag, line = 0, cex.main = 3, font.main = 1) 

       mtext(paste0("kernel: ", kernels[j]), side = 3, line = 0, adj = 0, at = 17000, cex = 2) 

       par(lheight = 0.8) 

       text(15000, 254000, paste0("GWR estimates\n", varGwrLab[[j]][l]), pos = 4, cex = 2) 

       text(15000, 246000, "(SD from mean)", pos = 4, cex = 1.5) 

       legend("topleft", inset = c(0, 0.15), fill = palDiv, legend = sdMapLegLab, y.intersp = 0.8, 

border = "light grey", bty = "n", cex = 1.5, box.cex = c(1.5, 0.8)) 

     } else { 

       tiff(img, width = 1000, height = 850) 

       par(mar = c(0, 0, 3, 0)) 

       sdMap(k, agricS) 

       plot(admin, border = "light grey", add = T) 

       north.arrow(290000, 235000, 2500, lab = "N", cex.lab = 2) 
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       Scalebar2(28000, 30000, distance = 100000, scale = 0.001, t.cex = 1.3) 

       title(tag, line = 0, cex.main = 3, font.main = 1) 

       mtext(paste0("kernel: ", kernels[j]), side = 3, line = 0, adj = 0, at = 20000, cex = 2) 

       par(lheight = 0.8) 

       text(25000, 100000, paste0("GWR estimates\n", varGwrLab[[j]][l]), pos = 4, cex = 2) 

       text(25000, 91000, "(SD from mean)", pos = 4, cex = 1.5) 

       legend("bottomleft", inset = c(0.04, 0.14), fill = palDiv, legend = sdMapLegLab, y.intersp = 

0.8, border = "  light grey", bty = "n", cex = 1.5, box.cex = c(1.5, 0.8)) 

     } 

     dev.off() 

     l <- l + 1 

   } 

   j <- j + 1 

 } 

# calculate p-values from t-values  

 gwrPPre <- list() 

 gwrPAux <- list() 

 gwrP <- list() 

 j <- 1 

 for (i in gwrT) { 

   m <- 1 

   for (k in i) { 

     l <- 1 

     for (t in k) { 

       gwrPPre[[l]] <- 2 * pt(abs(t), unlist(bandw[j]), lower = F) 

       l <- l + 1 

     } 

     gwrPAux[[m]] <- unlist(gwrPPre) 

    gwrPPre <- list() 

     m <- m + 1 

   } 

   gwrP[[j]] <- gwrPAux 

   gwrPAux <- list() 

   j <- j + 1 

 } 

# map p-values 

 j <- 1 

 for (i in gwrP) { 

   l <- 1 

   for (k in i) { 

     img <- file.path(paste0(tag, ". GWR - 4. p-values, ", kernels[j], ", ", varGwrLab[[j]][l], 

".tif")) 

     if (layerAdmin == "f_mun") { 

       tiff(img, width = 1000, height = 550) 

       par(mar = c(0, 0, 3, 0)) 

       pMap(k, agricS) 

       plot(admin, border = "light grey", add = T) 

       north.arrow(250000, 250000, 2500, lab = "N", cex.lab = 2) 
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       Scalebar2(18000, 140000, distance = 100000, scale = 0.001, t.cex = 1.3) 

       title(tag, line = 0, cex.main = 3, font.main = 1) 

       mtext(paste0("kernel: ", kernels[j]), side = 3, line = 0, adj = 0, at = 17000, cex = 2) 

       par(lheight = 0.8) 

       text(15000, 249000, paste0("GWR p-values\n", varGwrLab[[j]][l]), pos = 4, cex = 2) 

       legend("topleft", inset = c(0, 0.15), fill = palP, legend = pMapLegLab, y.intersp = 0.8, border 

= "light grey", bty = "n", cex = 1.5, box.cex = c(1.5, 0.8)) 

     } else { 

       tiff(img, width = 1000, height = 850) 

       par(mar = c(0, 0, 3, 0)) 

       pMap(k, agricS) 

       plot(admin, border = "light grey", add = T) 

       north.arrow(290000, 235000, 2500, lab = "N", cex.lab = 2) 

       Scalebar2(28000, 30000, distance = 100000, scale = 0.001, t.cex = 1.3) 

       title(tag, line = 0, cex.main = 3, font.main = 1) 

       mtext(paste0("kernel: ", kernels[j]), side = 3, line = 0, adj = 0, at = 20000, cex = 2) 

       par(lheight = 0.8) 

       text(25000, 84000, paste0("GWR p-values\n", varGwrLab[[j]][l]), pos = 4, cex = 2) 

       legend("bottomleft", inset = c(0.04, 0.14), fill = palP, legend = pMapLegLab, y.intersp = 0.8, 

border = "  light grey", bty = "n", cex = 1.5, box.cex = c(1.5, 0.8)) 

     } 

     dev.off() 

     l <- l + 1 

   } 

   j <- j + 1 

 }  

# calculate interval limits 

 gwrEstInt <- list() 

 gwrEstIntAux <- list() 

 k <- 1 

 for (i in gwrEst) { 

   l <- 1 

   for (j in i) { 

     gwrEstIntAux[[l]] <- sdInt(j) 

     l <- l + 1 

   } 

   gwrEstInt[[k]] <- gwrEstIntAux 

   gwrEstIntAux <- list() 

   k <- k + 1 

 } 

# assign estimates to intervals  

 gwrCat <- list() 

 gwrCatPre <- list() 

 gwrCatAux <- list() 

 l <- 1 

 for (i in gwrEst) { 

   m <- 1 

   for (j in i) { 
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     n <- 1 

     for (k in j) { 

       gwrCatPre[[n]] <- findInterval(k, gwrEstInt[[l]][[m]]) 

       n <- n + 1 

     } 

     gwrCatAux[[m]] <- unlist(gwrCatPre) 

     gwrCatPre <- list() 

     m <- m + 1 

   } 

   gwrCat[[l]] <- gwrCatAux 

   gwrCatAux <- list() 

   l <- l + 1 

 } 

# set non-significant estimates NA 

 gwrCatSig <- gwrCat 

 gwrEstSig <- gwrEst 

 l <- 1 

 for (i in gwrP) { 

   m <- 1 

   for (j in i) { 

     n <- 1 

     for (k in j) { 

       if (k > 0.05) { 

         gwrCatSig[[l]][[m]][n] <- NA 

         gwrEstSig[[l]][[m]][n] <- NA 

       } 

       n <- n + 1 

     } 

     m <- m + 1 

   } 

   l <- l + 1 

 } 

# map significant estimates 

 j <- 1 

 for (i in gwrCatSig) { 

   l <- 1 

   for (k in i) { 

     img <- file.path(paste0(tag, ". GWR - 5. significant estimates, ", kernels[j], ", ", 

varGwrLab[[j]][l], ".tif")) 

     if (layerAdmin == "f_mun") { 

       tiff(img, width = 1000, height = 550) 

       par(mar = c(0, 0, 3, 0)) 

       sdMapSig(k, agricS) 

       plot(admin, border = "light grey", add = T) 

       north.arrow(250000, 250000, 2500, lab = "N", cex.lab = 2) 

       Scalebar2(18000, 140000, distance = 100000, scale = 0.001, t.cex = 1.3) 

       title(tag, line = 0, cex.main = 3, font.main = 1) 

       mtext(paste0("kernel: ", kernels[j]), side = 3, line = 0, adj = 0, at = 17000, cex = 2) 
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       par(lheight = 0.8) 

       text(15000, 254000, paste0("GWR significant estimates\n", varGwrLab[[j]][l]), pos = 4, cex = 2) 

       text(15000, 246000, "(SD from mean)", pos = 4, cex = 1.5) 

       legend("topleft", inset = c(0, 0.15), fill = palDiv, legend = sdMapLegLab, y.intersp = 0.8, 

border = "light grey", bty = "n", cex = 1.5, box.cex = c(1.5, 0.8)) 

     } else { 

       tiff(img, width = 1000, height = 850) 

       par(mar = c(0, 0, 3, 0)) 

       sdMapSig(k, agricS) 

       plot(admin, border = "light grey", add = T) 

       north.arrow(290000, 235000, 2500, lab = "N", cex.lab = 2) 

       Scalebar2(28000, 30000, distance = 100000, scale = 0.001, t.cex = 1.3) 

       title(tag, line = 0, cex.main = 3, font.main = 1) 

       mtext(paste0("kernel: ", kernels[j]), side = 3, line = 0, adj = 0, at = 20000, cex = 2) 

       par(lheight = 0.8) 

       text(25000, 100000, paste0("GWR significant estimates\n", varGwrLab[[j]][l]), pos = 4, cex = 2) 

       text(25000, 91000, "(SD from mean)", pos = 4, cex = 1.5) 

       legend("bottomleft", inset = c(0.04, 0.14), fill = palDiv, legend = sdMapLegLab, y.intersp = 

0.8, border = "  light grey", bty = "n", cex = 1.5, box.cex = c(1.5, 0.8)) 

     } 

     dev.off() 

     l <- l + 1 

   } 

   j <- j + 1 

 } 

# filter out estimates with standard deviation < +/-2 

 gwrCatSigFil <- gwrCatSig 

 l <- 1 

 for (i in gwrCatSigFil) { 

   m <- 1 

   for (j in i) { 

     n <- 1 

     for (k in j) { 

       if (isBetween(k, 2, 6) || is.na(k) == T) { 

         gwrCatSigFil[[l]][[m]][n] <- NA 

       } 

       n <- n + 1 

     } 

     m <- m + 1 

   } 

   l <- l + 1 

 } 

# map filtered significant estimates 

 j <- 1 

 for (i in gwrCatSigFil) { 

   l <- 1 

   for (k in i) { 
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     img <- file.path(paste0(tag, ". GWR - 6. filtered significant estimates, ", kernels[j], ", ", 

varGwrLab[[j]][l], ".tif")) 

     if (layerAdmin == "f_mun") { 

       tiff(img, width = 1000, height = 550) 

       par(mar = c(0, 0, 3, 0)) 

       sdMapSig(k, agricS) 

       plot(admin, border = "light grey", add = T) 

       north.arrow(250000, 250000, 2500, lab = "N", cex.lab = 2) 

       Scalebar2(18000, 140000, distance = 100000, scale = 0.001, t.cex = 1.3) 

       title(tag, line = 0, cex.main = 3, font.main = 1) 

       mtext(paste0("kernel: ", kernels[j]), side = 3, line = 0, adj = 0, at = 17000, cex = 2) 

       par(lheight = 0.8) 

       text(15000, 254000, paste0("GWR relevant estimates\n", varGwrLab[[j]][l]), pos = 4, cex = 2) 

       text(15000, 246000, "(SD from mean)", pos = 4, cex = 1.5) 

       legend("topleft", inset = c(0, 0.15), fill = palDivSig, legend = sdMapSigLegLab, y.intersp = 

0.8, border = "light grey", bty = "n", cex = 1.5, box.cex = c(1.5, 0.8)) 

     } else { 

       tiff(img, width = 1000, height = 850) 

       par(mar = c(0, 0, 3, 0)) 

       sdMapSig(k, agricS) 

       plot(admin, border = "light grey", add = T) 

       north.arrow(290000, 235000, 2500, lab = "N", cex.lab = 2) 

       Scalebar2(28000, 30000, distance = 100000, scale = 0.001, t.cex = 1.3) 

       title(tag, line = 0, cex.main = 3, font.main = 1) 

       mtext(paste0("kernel: ", kernels[j]), side = 3, line = 0, adj = 0, at = 20000, cex = 2) 

       par(lheight = 0.8) 

       text(25000, 100000, paste0("GWR relevant estimates\n", varGwrLab[[j]][l]), pos = 4, cex = 2) 

       text(25000, 91000, "(SD from mean)", pos = 4, cex = 1.5) 

       legend("bottomleft", inset = c(0.04, 0.14), fill = palDivSig, legend = sdMapSigLegLab, y.intersp 

= 0.8, border = "  light grey", bty = "n", cex = 1.5, box.cex = c(1.5, 0.8)) 

     } 

     dev.off() 

     l <- l + 1 

   } 

   j <- j + 1 

 } 

 

###########===================== MIXED GWR =====================########### 

########################################################################### 

 

# determine global variables 

 (varsFixed <- lapply(gwrMCList, function(x) x[-1, 2][x[-1, 1] >= 0.075])) 

 

## --- perform mixed GWR --- 

 mgwrModel <- list() 

 j <- 1 

 for (i in bandw) { 

   tryCatch( { 
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     mgwrModel[[j]] <- gwr.mixed(gwrListBest[[j]], data = agric, bw = i, adaptive = T, kernel = 

kernels[[j]], fixed.vars = varsFixed[[j]]) 

     print(mgwrModel[[j]]) 

   } 

   , error = function(e) cat("ERROR: ", conditionMessage(e), "\n")) 

   j <- j + 1 

} 

 

############################ MIXED GWR RESULTS ############################ 

 

# show ranges of estimates  

 mgwrEst <- list() 

 j <- 1 

 for (i in mgwrModel) { 

   mgwrEst[[j]] <- cbind(i$SDF@data[!names(i$SDF@data) %in% paste0(varsFixed[[j]], "_F")]) 

   j <- j + 1 

 } 

 mgwrEstRngAux <- list() 

 mgwrEstRng <- list() 

 j <- 1 

 for (i in mgwrEst) { 

   l <- 1 

   for (k in i) { 

     mgwrEstRngAux[[l]] <- range(k) 

     mgwrEstRngAux[[l]] <- append(mgwrEstRngAux[[l]], c(gwrVars[[j]][l], gwrKernel[[j]][l])) 

     l <- l + 1 

   } 

   mgwrEstRng[[j]] <- mgwrEstRngAux 

   mgwrEstRngAux <- list() 

   j <- j + 1 

 } 

 mgwrEstRng 

# create labels 

 mgwrEstMod <- list() 

 j <- 1 

 for (i in mgwrEst) { 

   mgwrEstMod[[j]] <- substr(names(i), 1, nchar(names(i)) - 2) 

   j <- j + 1 

 } 

 varMgwrLabAux <- list() 

 varMgwrLab <- list() 

 j <- 1 

 for (i in mgwrEstMod) { 

   k <- 1 

   for (l in i) { 

     pattern <- l 

     pattReplace <- agrep(pattern, varLabels, max.distance = 0.2, ignore.case = T) 

     for (m in varLabels[pattReplace]) { 
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       if (isBetween((nchar(m) / nchar(pattern)), 0.9, 1.1)) { 

         varMgwrLabAux[[k]] <- m 

         k <- k + 1 

       } 

     } 

   } 

   varMgwrLab[[j]] <- varMgwrLabAux 

   varMgwrLabAux <- list() 

   j <- j + 1 

 } 

# map estimates 

 j <- 1 

 for (i in mgwrEst) { 

   l <- 1 

   for (k in i) { 

     img <- file.path(paste0(tag, ". MGWR - estimates, ", kernels[j], ", ", varMgwrLab[[j]][l], 

".tif")) 

     if (layerAdmin == "f_mun") { 

       tiff(img, width = 1000, height = 550) 

       par(mar = c(0, 0, 3, 0)) 

       sdMap(k, agricS) 

       plot(admin, border = "light grey", add = T) 

       north.arrow(250000, 250000, 2500, lab = "N", cex.lab = 2) 

       Scalebar2(18000, 140000, distance = 100000, scale = 0.001, t.cex = 1.3) 

       title(tag, line = 0, cex.main = 3, font.main = 1) 

       mtext(paste0("kernel: ", kernels[j]), side = 3, line = 0, adj = 0, at = 17000, cex = 2) 

       par(lheight = 0.8) 

       text(15000, 254000, paste0("MGWR estimates\n", varMgwrLab[[j]][l]), pos = 4, cex = 2) 

       text(15000, 246000, "(SD from mean)", pos = 4, cex = 1.5) 

       legend("topleft", inset = c(0, 0.15), fill = palDiv, legend = sdMapLegLab, y.intersp = 0.8, 

border = "light grey", bty = "n", cex = 1.5, box.cex = c(1.5, 0.8)) 

     } else { 

       tiff(img, width = 1000, height = 850) 

       par(mar = c(0, 0, 3, 0)) 

       sdMap(k, agricS) 

       plot(admin, border = "light grey", add = T) 

       north.arrow(290000, 235000, 2500, lab = "N", cex.lab = 2) 

       Scalebar2(28000, 30000, distance = 100000, scale = 0.001, t.cex = 1.3) 

       title(tag, line = 0, cex.main = 3, font.main = 1) 

       mtext(paste0("kernel: ", kernels[j]), side = 3, line = 0, adj = 0, at = 20000, cex = 2) 

       par(lheight = 0.8) 

       text(25000, 100000, paste0("MGWR estimates\n", varMgwrLab[[j]][l]), pos = 4, cex = 2) 

       text(25000, 91000, "(SD from mean)", pos = 4, cex = 1.5) 

       legend("bottomleft", inset = c(0.04, 0.14), fill = palDiv, legend = sdMapLegLab, y.intersp = 

0.8, border = "  light grey", bty = "n", cex = 1.5, box.cex = c(1.5, 0.8)) 

     } 

     dev.off() 

     l <- l + 1 
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   } 

   j <- j + 1 

 }  

A.2   Mixed GWR 

gwr.mixed <- function(formula, data, regression.points, fixed.vars, intercept.fixed = F, bw, diagnostic 

= T, kernel = "bisquare", adaptive = F, p = 2, theta = 0, longlat = F, dMat) { 

   timings <- list() 

   timings[["start"]] <- Sys.time() 

   this.call <- match.call() 

   p4s <- as.character(NA) 

   if (missing(regression.points)) { 

     rp.given <- F 

     regression.points <- data 

     rp.locat <- coordinates(data) 

     hatmatrix <- T 

   } 

   else { 

     rp.given <- T 

     hatmatrix <- F 

     if (is(regression.points, "Spatial")) { 

       rp.locat <- coordinates(regression.points) 

     } 

     else if (is.numeric(regression.points) && dim(regression.points)[2] == 2)  

       rp.locat <- regression.points 

     else { 

       warning("Output locations are not packed in a Spatial object, and it has to be a two-column 

numeric vector") 

       rp.locat <- dp.locat 

     } 

   } 

   if (is(data, "Spatial")) { 

     p4s <- proj4string(data) 

     dp.locat <- coordinates(data) 

     data <- as(data, "data.frame") 

   } 

   else { 

     stop("Given regression data must be Spatial*DataFrame") 

   } 

   dp.n <- nrow(dp.locat) 

   rp.n <- nrow(rp.locat) 

   if (missing(dMat)) { 

     DM.given <- F 

     DM1.given <- F 

     if (dp.n + rp.n <= 10000) { 

       dMat <- gw.dist(dp.locat = dp.locat, rp.locat = rp.locat, p = p, theta = theta, longlat = 

longlat) 
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       DM.given <- T 

     } 

   } 

   else { 

     DM.given <- T 

     DM1.given <- T 

     dim.dMat <- dim(dMat) 

     if (dim.dMat[1] != dp.n || dim.dMat[2] != rp.n)  

       stop("Dimensions of dMat are not correct") 

   } 

   mf <- match.call(expand.dots = F) 

     m <- match(c("formula", "data"), names(mf), 0L) 

     mf <- mf[c(1L, m)] 

     mf$drop.unused.levels <- T 

     mf[[1L]] <- as.name("model.frame") 

     mf <- eval(mf, parent.frame()) 

     mt <- attr(mf, "terms") 

     y <- model.extract(mf, "response") 

     x <- model.matrix(mt, mf) 

     idx1 <- match("(Intercept)", colnames(x)) 

     if (!is.na(idx1)) 

       colnames(x)[idx1] <- "Intercept" 

   if (missing(fixed.vars)) { 

     warning("No independent variables in the formula is specified as fixed terms!") 

     if (!intercept.fixed) 

       stop("Please use basic GWR function to calibrate this model") 

   } 

   else { 

     if (intercept.fixed) 

       fixed.vars <- c("Intercept", fixed.vars) 

   } 

   idx.fixed <- match(fixed.vars, colnames(x)) 

   x1 <- x[, -idx.fixed] 

   x2 <- x[, idx.fixed] 

   if (!is.null(x1)) x1 <- as.matrix(x1, nrow = dp.n) 

   if (!is.null(x2)) x2 <- as.matrix(x2, nrow = dp.n) 

   colnames(x1) <- colnames(x)[-idx.fixed] 

   colnames(x2) <- colnames(x)[idx.fixed] 

   y <- as.matrix(y, nrow = dp.n) 

   model <- gwr.mixed.2(x1, x2, y, dp.locat, out.loc = rp.locat, adaptive = adaptive, bw = bw, kernel = 

kernel, p = p, theta = theta, longlat = longlat, dMat) 

   res <- list() 

    res$local <- model$local 

    res$global <- apply(model$global, 2, mean, na.rm = T) 

    mgwr.df <- data.frame(model$local, model$global) 

    colnames(mgwr.df) <- c(paste(colnames(x1), "L", sep = "_"), paste(colnames(x2), "F", sep = "_")) 

    rownames(rp.locat) <- rownames(mgwr.df) 

   griddedObj <- F 
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     if (is(regression.points, "Spatial")) { 

       if (is(regression.points, "SpatialPolygonsDataFrame")) { 

         polygons <- polygons(regression.points) 

         SDF <- SpatialPolygonsDataFrame(Sr = polygons, data = mgwr.df, match.ID = F) 

       } 

       else { 

         griddedObj <- gridded(regression.points) 

         SDF <- SpatialPointsDataFrame(coords = rp.locat, data = mgwr.df, proj4string = CRS(p4s), 

match.ID = F) 

         gridded(SDF) <- griddedObj 

       } 

     } 

     else 

       SDF <- SpatialPointsDataFrame(coords = rp.locat, data = mgwr.df, proj4string = CRS(p4s), 

match.ID = F) 

  

    res$SDF <- SDF 

    if (diagnostic) { 

      gwr.fitted <- function(x, b) apply(x * b, 1, sum) 

      edf <- gwr.mixed.trace(x1, x2, y, dp.locat, adaptive = adaptive, bw = bw, kernel = kernel, p = p, 

theta = theta, longlat = longlat,dMat = dMat) 

      model2 <- gwr.mixed.2(x1, x2, y, dp.locat, adaptive = adaptive, bw = bw, kernel = kernel, p = p, 

theta = theta, longlat = longlat, dMat = dMat) 

      rss <- sum((y - gwr.fitted(model2$global, x2) - gwr.fitted(model2$local, x1))^2) 

      n1 <- length(y) 

      sigma.aic <- rss / n1 

      aic <- log(sigma.aic * 2 * pi) + 1 + 2 * (edf + 1) / (n1 - edf - 2) 

      aic <- n1 * aic 

      res$aic <- aic 

      res$df.used <- edf 

      res$rss <- rss 

    } 

    GW.arguments <- list(formula = formula, rp.given = rp.given, hatmatrix = hatmatrix, bw = bw, kernel 

= kernel, adaptive = adaptive, p = p, theta = theta, longlat = longlat, DM.given = DM1.given, 

diagnostic = diagnostic) 

    res$GW.arguments <- GW.arguments 

    res$this.call <- this.call 

    timings[["stop"]] <- Sys.time() 

    res$timings <- timings 

    class(res) <- "mgwr" 

    res 

 } 

A.3   Moran Scatter Plot 

 moran.plot2 <- function(x, listw, zero.policy = NULL, spChk = NULL, labels = NULL, xlab = NULL, ylab = 

NULL, quiet = NULL, ...) { 

   if (!inherits(listw, "listw"))  
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     stop(paste(deparse(substitute(listw)), "is not a listw object")) 

   if (is.null(quiet))  

     quiet <- !get("verbose", envir = spdep:::.spdepOptions) 

   stopifnot(is.vector(x)) 

   stopifnot(is.logical(quiet)) 

   if (is.null(zero.policy))  

     zero.policy <- get("zeroPolicy", envir = spdep:::.spdepOptions) 

   stopifnot(is.logical(zero.policy)) 

   xname <- deparse(substitute(x)) 

   if (!is.numeric(x))  

     stop(paste(xname, "is not a numeric vector")) 

   if (any(is.na(x)))  

     stop("NA in X") 

   n <- length(listw$neighbours) 

   if (n != length(x))  

     stop("objects of different length") 

   if (is.null(spChk))  

     spChk <- get.spChkOption() 

   if (spChk && !chkIDs(x, listw))  

     stop("Check of data and weights ID integrity failed") 

   labs <- T 

   if (is.logical(labels) && !labels)  

     labs <- F 

   if (is.null(labels) || length(labels) != n)  

     labels <- as.character(attr(listw, "region.id")) 

   wx <- lag.listw(listw, x, zero.policy = zero.policy) 

   if (is.null(xlab))  

     xlab <- xname 

   if (is.null(ylab))  

     ylab <- paste("spatially lagged", xname) 

   plot(x, wx, xlab = xlab, ylab = ylab, ...) 

   if (zero.policy) { 

     n0 <- wx == 0 

     if (any(n0))  

       symbols(x[n0], wx[n0], inches = F, circles = rep(diff(range(x)) / 50, length(which(n0))), bg = 

"grey", add = T) 

   } 

   xwx.lm <- lm(wx ~ x) 

   abline(xwx.lm) 

   abline(h = mean(wx), lty = 2) 

   abline(v = mean(x), lty = 2) 

   infl.xwx <- influence.measures(xwx.lm) 

   is.inf <- which(apply(infl.xwx$is.inf, 1, any)) 

   points(x[is.inf], wx[is.inf], pch = 9, cex = 1.2) 

   if (labs)  

     pointLabel(x[is.inf], wx[is.inf], labels = labels[is.inf], cex = 1.5) 

   rownames(infl.xwx$infmat) <- labels 

   if (!quiet)  
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     summary(infl.xwx) 

   invisible(infl.xwx) 

 } 

A.4   Model Selection Plot 

 plot.glmulti2 <- function(x, type = "p", ...) { 

   if (type == "p") { 

     plot(x@crits, xlab = "model no.", ylab = "", pch = 19, cex = 2, ...) 

     abline(h = x@crits[1] + 2, col = "red") 

   }   else if (type == "w") { 

     ww <- exp(-(x@crits - x@crits[1]) / 2) 

     ww <- ww / sum(ww) 

     plot(ww, xlab = "model no.", ylab = paste("evidence weight (", x@params$crit, ")"), pch = 19, ...)  

     cucu <- function(i) sum(ww[1:i]) 

     wwc <- lapply(1:length(ww), cucu) 

     abline(v = min(which(wwc >= 0.95)), col = "red") 

   } 

   else if (type == "r") { 

     if (length(x@objects)) { 

       windows(21, 7) 

       par(mfrow = c(2, min(length(x@crits), 5))) 

       for (k in 1:min(length(x@crits), 5)) plot(x@objects[[k]], which = c(1), main = 

deparse(x@formulas[[k]]), ...) 

       for (k in 1:min(length(x@crits), 5)) plot(x@objects[[k]], which = c(2), ...) 

     } 

     else warning("unavailable: use includeobjects = T when calling glmulti.") 

   } 

   else if (type == "s") { 

     ww <- exp(-(x@crits - x@crits[1]) / 2) 

     ww <- ww / sum(ww) 

     clartou = function(x) { 

       pieces <- sort(strsplit(x, ":")[[1]]) 

       if (length(pieces) > 1)  

         paste(pieces[1], ":", pieces[2], sep = "") 

       else x 

     } 

     tet <- lapply(x@formulas, function(x) sapply(attr(delete.response(terms(x)), "term.labels"), 

clartou)) 

     allt <- unique(unlist(tet)) 

     imp <- sapply(allt, function(x) sum(ww[sapply(tet, function(t) x %in% t)])) 

     par(oma = c(0, 3, 0, 0)) 

     barplot(sort(imp), xlab = "", xlim = c(0, 1), ylab = "", horiz = T, las = 2, names.arg = 

allt[order(imp)], main = "model-averaged importance of terms", ...) 

     abline(v = 0.8, col = "red") 

   } 

   else warning("plot: invalid type argument for plotting glmulti objects.") 

 } 
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A.5   Scale Bar 

Scalebar2 <- function(x, y, distance, unit = "km", scale = 1, t.cex = 0.8)  

 { 

   xvals = distance * c(0, 0.25, 0.5, 0.75, 1) + x 

   yvals = c(0, distance / c(50, 40, 15)) + y 

   cols <- c("black", "white", "black", "white") 

   for (i in 1:4) rect(xvals[i], yvals[1], xvals[i + 1], yvals[2], col = cols[i]) 

   for (i in 1:5) segments(xvals[i], yvals[2], xvals[i], yvals[3]) 

   labels <- c((xvals[c(1, 3)] - xvals[1]) * scale, paste((xvals[5] - xvals[1]) * scale, unit)) 

   text(xvals[c(1, 3, 5)], yvals[4], labels = labels, adj = 0.5, cex = t.cex) 

 } 


