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Abstract 

Since 2015, the Botanical Garden Graz has been part of the Alpine Seed 

Conservation and Research Network initialized by the Millennium Seedbank 

(Botanical Gardens, Kew). The overarching aim of the project is to use the European 

Alpine Seed Conservation Network to improve the conservation status of endangered 

plant species and communities in their habitats in the European Alps. Therefore, all 

project partners agreed to collect seeds from at least 100 vascular plant species from 

different regions of the Alps to reach the goal of 500 species for ex-situ conservation. 

Using the example of six species distribution models from alpine vascular plants, this 

thesis investigates whether models can be helpful in finding suitable collection areas. 

Two different and widely used approaches were compared; the proven generalized 

linear model (GLM) and the machine learning algorithm MaxEnt.  

Both modelling approaches were able to predict the distribution of the six vascular 

plant species across the Styrian Alps. The models were able to make plausible 

predictions and comply with known distributions provided by the Styrian distribution 

atlas. The prediction maps of both approaches show very similar results for one 

species, whereby GLM models tend to make less restrictive estimations. This means 

that the latter method deemed more regions as suitable for collection.  

With regard to the Alpine Seed Conservation and Research Network, species 

distribution models can assist in localizing special areas of interest. With the help of 

the prediction maps it is possible to restrict field surveys to particular areas that show 

higher probability values. And this could contribute significantly to the collection 

success.  
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Zusammenfassung 

Seit 2015 ist der Botanische Garten Graz Teil des Alpine Seed Conservation and 

Research Network, das von der Millennium Seedbank (Botanical Gardens, Kew) 

initialisiert wurde. Das übergeordnete Ziel des Projektes ist es, das europäische 

Alpine Seed Conservation Network zu nutzen, um den Erhaltungszustand von 

gefährdeten Pflanzenarten und Pflanzengesellschaften in ihren Lebensräumen in 

den europäischen Alpen zu verbessern. Deshalb haben sich alle Projektpartner 

darauf geeinigt, Saatgut von mindestens 100 Gefäßpflanzenarten aus verschiedenen 

Alpenregionen zu sammeln, um das gemeinsame Ziel von 500 Arten für die ex-situ-

Erhaltung zu erreichen. 

Am Beispiel von sechs Artverteilungsmodellen alpiner Gefäßpflanzen untersucht 

diese Arbeit, ob Modellierungen bei der Suche nach geeigneten Sammelgebieten 

hilfreich sein können. Dazu wurden zwei verschiedene und weit verbreitete Ansätze 

verglichen; Das bewährte generalisierte lineare Modell (GLM) und der machine-

learning Algorithmus MaxEnt. 

Beide Modellierungsansätze konnten die Verteilung der sechs Gefäßpflanzenarten in 

den steirischen Alpen vorhersagen. Die Modelle konnten plausible Vorhersagen 

machen und entsprechen weitgehend den Verbreitungsangaben aus dem 

Verbreitungsatlas der steirischen Farn- und Blütenpflanzen. Die Prognosekarten 

beider Ansätze zeigen für ein und dieselbe Art sehr ähnliche Ergebnisse, wobei 

GLM-Modelle dazu neigen, weniger restriktiv zu schätzen. Das heißt, die Methode 

identifiziert mehr Regionen als geeignete Gebiete. 

Im Hinblick auf das Alpine Seed Conservation and Research Network können 

Artverbreitungsmodellierungen dazu beitragen, spezielle Gebiete zu lokalisieren. Mit 

Hilfe der Prognosekarten ist es möglich, Sammelexkursionen auf bestimmte Bereiche 

zu beschränken, welche höhere Vorkommenswahrscheinlichkeiten aufweisen. Und 

das könnte wesentlich zum Sammlungserfolg beitragen. 
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1 INTRODUCTION 

The vascular plant flora of the Alps has never been so endangered nor has it been 

as insufficiently protected as it is today. In addition to anthropogenic interferences, 

global warming is one of the main threats to the alpine flora. However, the Alps are 

of particular importance due to their endemic wealth. High levels of endemism are 

found by Tribsch (2004) in the southern, southwestern, easternmost and north 

eastern Eastern Alps. Above the tree line, zonal alpine grassland and azonal 

vegetation (screes, rocks, snowbeds) are essential to the endemic flora and a 

clear preference was observed for calcareous bedrock (Essl et al. 2009).  

The Global Strategy of Plant Conservation (GSPC) is a legally binding component 

of the Convention on Biological Diversity (CBD). The long-term objective of the 16-

point-program is to preserve the current and continuing loss of plant diversity 

(Jackson & Kennedy 2009) 

The preferred method of species conservation is in-situ conservation, enabling 

species to fulfil their ecological roles in an optimal manner (Oldfield 2009). On the 

other hand, ex-situ conservation is of particular importance in addition to in-situ 

measures. Item 8 of the GSPC is of crucial relevance for botanical gardens, 

herbaria and botanical institutions. It is formulated with the intention of securing at 

least 75 % of threatened plant species in ex situ collections, preferably in the 

countries of origin, and to make at least 20 % available for recovery and 

restoration programmes.  

It was for those reasons that the Botanical Garden of Graz (GZU, Institute for plant 

science, Karl-Franzens-University) established the first long-term seed bank for 

wild vascular plants growing within the Austrian province of Styria (Steiermark) in 

2008. The project’s main objective is to collect and store diaspores from all of 

Styria’s wild vascular plants including herbarium voucher specimens, 

accompanied by location and habitat data (Gosch & Berg 2010).  
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Since 2013, the Botanical Garden of Graz has been collaborating with the 

Millennium Seed Bank (MSB, Royal Botanic Gardens, Kew) on several projects 

and our activities have taken place within an international context. Since 2015, the 

Botanical Garden Graz has been part of the Alpine Seed Conservation and 

Research Network (Müller et al. 2017). The overarching aim of the project is to use 

the European Alpine Seed Conservation Network to improve the conservation 

status of endangered plant species and communities in their habitats in the 

European Alps. Therefore all project partners agreed to collect seeds from at least 

100 vascular plant species from different regions of the Alps to reach the goal of 

500 species for ex-situ conservation. This contributes to the aim of safeguarding 

seeds from 25 % of the world flora by 2020, in a network of seed banks throughout 

the Millennium Seed Bank Partnership.  

1.1 SPECIES DISTRIBUTION MODELS IN CONTEXT OF NATURE 

CONSERVATION 

In order to protect species it is important to understand the connections between 

species and their abiotic and biotic environment. Species distribution Models 

(SDM), also called ecological niche models or habitat suitability models, utilize 

relationships between environmental variables and species observations to find 

environmental conditions where these populations could potentially occur. SDMs 

are beneficial for ecologists with regard to wildlife and resource management, 

conservation management or restoration ecology. These models are often used to 

locate occurrences of species or to identify the areas that are most important for 

conservation actions. Parolo et al. (2008) modelled the niche of Arnica montana in 

a Site of Community Importance (SCI) in the Italian Alps (Val Viola Bormina-

Ghiacciaio di Cima dei Piazzi). The work contributes to the conservation 

management plan of the Natura 2000 area. In a project similar to the Alpine Seed 

Conservation and Research Network, they collected seeds for ex-situ conservation 

in collaboration with the Millennium Seed Bank. Williams et al. (2009) identified 

SDM approaches using presence-only data, like random forest and MaxEnt, as 

effective tools for discovering new populations of rare plant species in the Shasta-
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Trinity National Forest in northern California. They also realized that a maximum 

observation number is necessary to achieve suitable models. 

SDMs are based on ecological or evolutionary theories and thus provide a 

practical framework for answering questions concerning applied ecology or 

conservation biology and are extremely relevant to fundamental science like 

biogeography and phylogeography (Guisan & Thuiller 2005) as well as to 

environmental and climate change. Sérgio et al. (2007) show the importance of 

geographical range in the context of evaluating IUCN status of endangerment by 

modelling four bryophyte species. Lomba et al. (2010) overcome the “rare species 

modelling paradox” and provide a solution that includes a large number of 

predictors ensuring that the models are not over fitted. The proposed modelling 

framework provides a basis for adaptive conservation, management and 

monitoring of rare species at distinct spatio-temporal scales.  

In times of rapidly changing environmental conditions, SDM is gaining in 

importance. In order to forecast the climate-driven spatio-temporal dynamic of high 

mountain plants Dullinger et al. (2012) utilized static geographic projections of 

species’ habitat shift in combination with demography simulations and seed 

dispersal in a hybrid model. The results are alarming as they predict a loss of 

habitat range size of 44-50 % by the end of the twenty-first century. Endemic 

species are the ones most affected by this habitat loss. A dynamic eco-

evolutionary forecasting framework with regard to climate change was recently 

presented by Cotto et al. (2017) for four endemic perennial plant species in the 

Austrian Alps. The models combine niche modelling with individual-based 

demographic and genetic simulations and demonstrate how perennial species 

persist in unsuited habitats (due to climate change) longer than predicted by niche 

modelling.  

SDMs are also applicable to the investigation of dispersal of invasive species. 

Václavík et al. (2012) modelled the distribution of the invasive forest pathogen 

Phytophthora ramorum and accounted for different scales of spatial 

autocorrelation. They assume that accounting for spatial patterns at multiple 
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scales enhanced the understanding of processes that explain ecological 

mechanisms of invasion while improving predictive performance in static 

modelling.  

Finally, SDM can support decision makers with regard to environmental impact 

assessment and land use planning or to determine suitable locations for habitat 

restoration and species reintroduction and thus are a volatile field of research 

1.2 MOTIVATION AND RESEARCH QUESTION 

Within the project framework of the Alpine Seed Conservation & Research 

Network the task is to collect seeds from 100 vascular plant species of high 

conservation value. Some of these species are particularly rare while others are 

quite common. It often proves difficult to find species populations of sufficient size 

that yield enough seed material (10,000 seeds per species) although access to the 

unpublished distribution atlas of the Styrian flora (Niklfeld & Englisch 2004) is 

available. The atlas is partially incomplete but contributes to the floristic mapping 

of Central Europe. 

The focus is set on six species from our target list, especially Eastern Alps 

endemics but also some others. This thesis is a feasibility study to assess the 

opportunities of SDMs to support research in Graz.  

Species location data from different localities within the Styrian Alps combined with 

environmental data will build the basis for the distribution models. 

A wide range of statistical and algorithmic tools for species distribution modelling 

are available today. While all of these methods have their advantages and 

disadvantages, this study utilizes generalized linear models (GLM) and the 

machine learning maximum entropy algorithm (MaxEnt) because they are 

frequently used in modelling species distribution.  

The overall concern of this thesis is to identify an optimal approach (GLM, MaxEnt) 

to predict the distribution of six species scheduled on the project target list with 

regard to endangerment in the Styrian Alp region. Additionally, this study attempts 
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to generate distribution maps for the selected vascular plant species which will 

help to refine field surveys. 

By developing these distribution models from species occurrence data and digital 

environmental maps this study aims to answer the following research questions: 

 Using two different modelling approaches (GLM and MaxEnt) and existing 

environmental maps, is it possible to model the recent distribution of six 

target species and are the results comparable? 

 Can the local conditions be represented optimally by the model’s 

parameters?  

 How can the use of species distribution models improve success in 

collecting seed material for the Alpine Seed Conservation & Research 

Network? 

 Is one approach preferable? 
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2 THEORETICAL BACKGROUND 

Analysing species-environmental relationships has always been a central issue in 

ecology (Guisan & Zimmermann 2000) and most of the modelling approaches 

developed for predicting species distribution are rooted in quantifying species-

environmental relationships (Guisan & Thuiller 2005). Elith & Franklin (2013) 

define SDMs as quantitative, empirical models of species-environment 

relationships that are typically developed using species location data (abundance, 

occurrence) and those environmental variables thought to influence species 

distributions. 

Species distribution models are based on biogeographical and ecological theory 

and concepts (Franklin 2010) and several decisions (Figure 1) have to be made in 

advance. The theoretical concept formulates which abiotic and biotic factors are 

relevant for the species’ distribution and on which model assumptions the model is 

based. Independent sets of species occurrence data are needed to both calibrate 

and evaluate the distribution model. Environmental variables are usually derived 

from digital maps and represent the factors that are considered to control species’ 

distribution. The modelling framework addresses different model approaches that 

link occurrence data to environmental predictors. Finally Data and criteria are 

needed to evaluate the prediction.  
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Figure 1: Components of species distribution modelling (Franklin 2010).  

Ideally species distribution models are based upon five major steps (Guisan & 

Zimmermann 2000) that involve (1) conceptual model formulation, (2) statistical 

model formulation, (3) model calibration, (4) model prediction and (5) model 

evaluation.  

2.1 CONCEPTUAL MODEL FORMULATION 

One characteristic of SDM is that they are based on niche concepts (Guisan & 

Zimmermann 2000; Guisan & Thuiller 2005) or rather niche theory and gradient 

analysis (Franklin 1995). Concerning the theory and the assumptions behind 

species distribution models many authors (e.g. Guisan & Thuiller 2005) highlight 

the importance of the ecological theory that underpins the decisions made at all 

stages of model development.  

In this context, consideration of the main ecological drivers is of particular 

importance. The causal ecological parameters can either be classified as proximal 

(direct) or distal (indirect). Direct variables (temperature) directly affects species 

distribution while indirect variables (elevation, aspect) have no physiological 

impact on, e.g. plant growth but are linked with causal factors (Austin 2002). 

Resource gradients are related to matter and energy (water, nutrients, light) 

consumable by plants and animals (Guisan & Zimmermann 2000). Moser et al. 

(2005) have shown that energy-driven processes are the primary determinants of 
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vascular plant species richness in temperate mountains. The simplified conceptual 

model in Figure 2 is adopted from (Franklin 2010) and shows how indirect 

predictors influence direct and resource gradients which in turn act as main drivers 

for plant growth. The environmental regime form the fundamental niche 

(Hutchinson 1957) which results in the realized niche due to biotic interactions 

(competition) and disturbance (e.g. land use). 

 

Figure 2: Conceptual model of environmental factors (Franklin 2010). 

The assumption that species are in pseudo-equilibrium with their environment is a 

convenient postulate in species distribution modelling. Static modelling is a valid 

and powerful approach when species distribution should be modelled with high 

precision at a large spatial scale under present environmental conditions (Guisan 

& Zimmermann 2000). These limitations are less restrictive for species, or 

communities, which are relatively persistent or react slowly to variability in 

environmental conditions (e.g. arctic and alpine) (Guisan & Zimmermann 2000). 

However, dynamic modelling approaches were already proposed by (Guisan & 

Thuiller 2005) and will become increasingly important in the future with regard to 

global change. Also the simplification, that SDMs quantify Hutchinson’s realised 

niche (Hutchinson 1957) due to the fact that the observed distributions is already 
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constrained by biotic interactions and limiting resources, is common in SDM 

literature (Guisan & Thuiller 2005). 

2.2 STATISTICAL MODEL FORMULATION 

Guisan & Zimmermann (2000) stated that the model formulation process 

addresses two major goals. That is, (1) the choice of a suited algorithm for 

predicting a particular type of response variable and estimating the model 

coefficient, and (2) to find an optimal statistical approach with regard to the 

modelling context. 

Today ecologists rely on a diverse range of analytical approaches due to 

increasing availability of software to implement these methods and a greater 

computational ability of hardware to run them (Hegel et al. 2010).  

The methods pursue different approaches and can roughly be divided into three 

categories (Elith et al. 2006; Franklin 2010). 

 Regression models, like the generalized linear models (GLM) use 

relationships between presence or absence and environmental 

variables. Absences can be simulated using pseudo-absences. They 

have widely been used in species distribution modelling since the 

1980s and the early 1990s (Franklin 2010) and are still common in 

this field.  

 Envelope models, like BIOCLIM or DOMAIN only use presence 

information and characterize sites that are located within the 

environmental hyper-space occupied by the species and predict their 

distribution based on similarity of occurrences. 

 Machine learning or statistical learning methods produce rules based 

on observations and environmental conditions to predict species 

distribution. MaxEnt compares probability densities from background 

and presence locations to derive the probability of occurrence. 
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However, a detailed methodological review is given e.g. in Franklin (1995), Guisan 

& Zimmermann (2000), Franklin (2010a) or Hegel et al. (2010). 

This study utilizes generalized linear models as well as the machine learning 

maximum entropy algorithm to model the geographical distribution of vascular 

plant species. Thus the next two sections have a closer look to these methods. 

2.2.1 GENERALIZED LINEAR MODEL (GLM) 

The logistic regression is the most commonly used form of generalised linear 

model (GLM), and is well suited and widely used in SDM, because it deals with 

multiple predictors, non-linear response functions and binary response variables 

(Franklin 2010). GLMs are suitable for distributions such as Gaussian, Poisson, 

Binomial or Gamma according to the appropriate link function identity, logarithm, 

logit or inverse (Guisan & Zimmermann 2000). In logistic regression, the 

dependent variables were subjected to a logit transformation (Hastie et al. 2009). 

Thus the response variable can only take values between 0 and 1. The response 

variable for the modelling approach is binary (presence/absence) and the 

response function binomial, thus the logistic regression has been chosen.  

Generalized Linear Models are parametric models. The regression models relate a 

response variable (species occurrence) to a single (simple) or a combination 

(multiple) of environmental predictor variables (explanatory variables) (Guisan & 

Zimmermann 2000; Dormann 2012). Link-functions describe the way in which 

response variable and the explanatory variables are connected (Dormann & Kühn 

2009). The GLM can be expresses as: 

𝑔(𝑦𝑖) = 𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 +⋯+ 𝜀 

where 𝑦𝑖 is the predicted value at data point 𝑖, 𝑋1𝑖 etc. the values of the 

explanatory variables at data point 𝑖, 𝛽 the vector to estimate for every model 

parameter. The link-function 𝑔( ) describes how the mean of 𝑦 depends on the 

linear predictor (Franklin 2010). For binomial distributed data the logit-link is the 

standard setting and is defined as followed. 



Theoretical Background 

 

 

23 

𝑔(𝑦) = 𝑙𝑛(
𝑦

1 − 𝑦
) 

For minimum/maximum parameter values this equation is approximately 0 or 1. 

The ideal set of parameters is determined by the Maximum Likelihood (Dormann & 

Kühn, 2009). 

2.2.2 MAXIMUM ENTROPY (MAXENT)  

MaxEnt is a machine learning method for making predictions or inferences from 

incomplete information (Phillips et al. 2006) and has been developed in the field of 

statistical mechanics. The algorithm is suitable for presence only (PO) data and 

can deal with problems of small samples that have not been designed (sample 

bias) (Phillips et al. 2006; Franklin 2010).  

The principle of maximum-entropy states, that a probability distribution, subject to 

known constraints is the best approximation of an unknown distribution because it 

agrees with everything that is known (close to uniform) but avoids everything that 

is not known (Phillips et al. 2006; Franklin 2010). The unconstrained distribution is 

that of all factors in the study area, and the constraint is that the expected value is 

approximated by an empirical set of observations of species presence.  

From a statistical viewpoint, MaxEnt minimizes the relative entropy between two 

probability densities (estimated from presence data and from landscape) defined 

in feature (covariate) space (Elith et al. 2011). That is, that the algorithm extracts 

background data from landscape and contrasts them against the presence 

locations. 

Pr(𝑦 = 1|𝑧) = 𝑓1(𝑧) Pr(𝑦 = 1) /𝑓(𝑧) 

The equation above shows that, if the conditional density of the covariates is 

known at the presence sites, 𝑓1(𝑧), and the density of covariates across the study 

area 𝑓(𝑧) are also known, then only the prevalence Pr(y=1) is needed to calculate 

the conditional probability of occurrence (Elith et al. 2011).  
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The logistic output format in MaxEnt is a post-transformation of MaxEnt’s raw 

output (Elith et al. 2011) and gives the probability of occurrence (Phillips & Dudík 

2008) which is the easiest to conceptualize format. The logistic output format gives 

values between 0 and 1 of probability of presence. Typical presence locations 

have a probability of presence of about 0.5 (Phillips 2008).  

MaxEnt deals with sample selection bias by using target-group background 

(Phillips & Dudík 2008). The uniform background data is replaced by a random 

sample of the biased sampling distribution. The result is that both background and 

species presence is biased in the same manner and that MaxEnt has much better 

predictive performance. 

Although MaxEnt is similar to GLM (Phillips et al. 2006), an important distinction 

between MaxEnt and logistic regression models is that MaxEnt does not interpret 

locations without species occurrences records as absence, but rather as 

representing the background environment (Franklin 2010). This means that 

background locations are not interpreted as absences.  

The MaxEnt modelling framework is very functional because it offers several 

thresholds, statistics for model evaluation and is able to compute the importance 

of specific environmental variables.  

2.3 MODEL CALIBRATION 

The process of deciding on and selecting the explanatory variables or combination 

of variables that should be included in the model is called model calibration 

(Guisan & Zimmermann 2000). The choice of appropriate environmental predictor 

variables is a crucial step in species distribution modelling to ensure accuracy and 

model realism (Mod et al. 2016). The challenge is to identify the environmental 

predictors (usually derived from digital maps) that represent the resource gradient 

or other factors that determine the species distribution at an appropriate scale 

(Franklin 2010). Ecological parameters that are believed to be the causal driving 

forces for the distribution (and abundance) of a species (Guisan & Zimmermann 

2000) have to be identified. Neglecting ecological knowledge or ecophysiologically 
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meaningful predictors limit the predictive power of statistical species distribution 

models and results in incomplete niche quantification (Austin 2002; Mod et al. 

2016). On the other hand, reducing the number of predictors to a reasonable 

quantity enhances the accuracy and the predictive power of a model (Guisan & 

Zimmermann 2000), therefore available environmental variables need to be 

evaluated with regard to ecological realism. 

The variable selection can either be done arbitrarily or automatically using 

stepwise selection (Guisan & Zimmermann 2000) or other approaches suggested 

e.g. by Guisan & Thuiller (2005) like multi-model inference, boosting and model 

averaging, shrinking methods or hierarchical partitioning.  

In multiple regressions, like GLM, multicollinearity can weaken significance or 

reverse the sign of proximal variables due to the fact that a correlated variable is 

already present in the model (Franklin 2010). Thus, multicollinearity is omnipresent 

throughout the entire model selection process. Strongly correlated variables 

usually are excluded with preference to the ecological meaningful one. 

The fitting of a model usually goes hand in hand with a reduction of variance 

(Guisan & Zimmermann 2000) or deviance in GLMs. For GLMs the adjusted D2 or 

R2 is an ideal measure for model comparison (Guisan & Zimmermann 2000).  

The Akaike Information Criterion (AIC) is also frequently used in the model 

selection process (Franklin 2010). The criterion is a measure of goodness of fit 

and accounts for the number of parameters. A smaller AIC (lower unexplained 

deviance) indicates a better model. 

2.3.1 COLLINEARITY AND SPATIAL AUTOCORRELATION 

Environmental factors often act in similar ways that is that they are not 

independent of each other (Dormann et al. 2013). This causes two major problems 

(Dormann 2012). Firstly, the important variable could not be determined because 

of similar acting variables overlap. Secondly, collinear predictors lead to unstable 

estimates. Unfortunately there is no specification given in statistic literature 
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describing a definition of “highly correlated” (Dormann 2012). A threshold of 0.7 is 

commonly used but has also been chosen more (0.4) and less restrictive (0.85) 

(Dormann et al. 2013). In fact, this problem can hardly be removed, but the higher 

the correlation is, the harder is the parameter estimation and the standard error 

increases. This effect is called variance inflation and could be quantified via the 

variance inflation factor (VIF). A VIF score greater than 10, indicates problems in 

the regression (Dormann 2012). VIF is a valid diagnostic for GLM distribution 

models (Guisan & Zimmermann 2000). 

Because species distribution models are dealing with spatial data they are 

complicated by spatial autocorrelation (SAC). Spatial autocorrelation means 

locations close to each other exhibit more similar values than those further apart 

and this refers directly to what Tobler (1970) calls “The First Law of Geography”. 

One of the key assumptions of standard statistical analyses, namely, that the 

model residuals are independent and identically distributed, is violated if SAC 

remains in the residuals of a species distribution model (Dormann et al. 2007). 

This may bias parameter estimates and can increase type I error rates (false 

rejecting the null hypothesis of no effect). Even if it is easy to prove spatial 

autocorrelation, its elimination is complex especially in a predictive setting 

(Dormann et al. 2007).  

One possible opportunity is to exclude observations within a certain minimum 

distance as Parolo et al. (2008) did to minimize SAC through the use of a 

constrained random split of sampling data.  

However, Dormann et al. (2007) reviewed six statistical methods for different types 

of distribution that account for spatial autocorrelation in model residuals. Assuming 

the state of spatial stationarity and isotropic spatial autocorrelation, they found out, 

that most of these spatial modelling techniques showed good type I error control 

and precise parameter estimation using simulated data with known autocorrelation 

in the model residuals. Generalized linear mixed models (GLMM) together with 

spatial generalized estimating equation (GEE) and spatial eigenvector mapping 

(SVEM) are the most flexible methods used for addressing SAC for various error 
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distributions (Dormann et al. 2007). Geographically Weighted Regression (GWR) 

is another geostatistical approach that accounts for spatial autocorrelation. GWR 

has limited use for hypothesis testing (Dormann et al. 2007; Franklin 2010) and is 

not designed for removing SAC (Dormann et al. 2007). Spatial eigenvector 

mapping and the autocovariate (AC) method are examples of two of the methods 

that are suitable for both MaxEnt and GLM because they can easily be added as 

an additional covariate into the model. However, the problem of model prediction 

is still complex.  

2.4 DATA USED FOR MODELLING SPECIES DISTRIBUTION 

Model development involves both biological data and environmental data. In 

SDMs species observational data forms the response (dependent variable). For 

species this can be counts, cover-abundance estimates, presence-absence or 

presence-only records (Elith & Franklin 2013). If it is possible to undertake 

extensive field surveys one can identify real absences as well. However, in many 

cases one is confronted with presence only data, for example when the data 

comes from atlases, databases or herbarium material. If that is the case pseudo-

absences are needed to simulate species’ absence. These are randomly 

generated points within the study area that are considered to be absence but have 

not actually been visited. But there is some uncertainty because pseudo-absences 

can be located in regions where the species is present.  

Species distribution models use variables that are related to the primary 

environmental regimes of heat, light, moisture and nutrients (Franklin 2010). 

Microclimatic features seem to be the key-factors for the understanding of the 

relation between alpine species and global warming (Scherrer & Körner 2011; 

Patsiou et al. 2014; Maclean et al. 2015). Thus species distribution models 

optimally include both broad scale climate variables and fine scale terrain 

information, which results in local variation in water, energy and nutrient availability 

also being added to the model (Franklin 2010).  
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Environmental data is typically gathered from digital maps. In many cases, digital 

environmental maps are derived from interpolations, calculations or combinations 

and thus are less precise than the maps from which they originate (Guisan & 

Zimmermann 2000). Digital elevation models (DEM) and its derivatives are among 

the most accurate environmental predictors, but not always in ecological sense.  

Another essential aspect concerning species data is sampling design. The number 

and geographic distribution of samples is important in order to model the response 

to environment in its complexity (Elith & Franklin 2013). Sampling design might be 

of particular relevance to cover the whole ecological gradients in the study area 

(Guisan & Zimmermann 2000). It ensures a set of unbiased and representative 

data. Because of several reasons sample data is not independent and unevenly 

distributed (Elith & Franklin 2013). For example presence points are more often 

located closer to hiking paths. 

2.5 MODEL PREDICTION 

Since the ecological profile was modelled with any of the available techniques it is 

possible to predict the species’ potential distribution (Guisan & Zimmermann 2000) 

for GIS-implementation.  

2.6 MODEL EVALUATION – AUC 

The model validation verifies whether the model meets certain criteria and whether 

it is acceptable for its purposes. A number of methods and criteria have been 

developed. 

The threshold-independent area under the receiver operating characteristic (ROC) 

curve, known as AUC, is a standard method used to assess the accuracy of 

predictive distribution models. It offers an appropriate measure to quantify model 

performance in particular when comparing different models, predictor 

combinations or species.  
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In a ROC plot (Figure 3), the true positive proportion (sensitivity) is plotted against 

the false positive proportion (1 - specificity) (Fielding & Bell 1997). Sensitivity and 

specificity are measures of classification accuracy derived from a confusion matrix.  

The AUC (area under the curve) is calculated by adding the area under the ROC 

curve and is often considered an important index because it provides a single 

measure for overall accuracy (Fielding & Bell 1997).  

 

Figure 3: ROC curve for Campanula pulla. 

The AUC has been criticized i.a. because it is dependent on the geographical 

extent of the study area and does not account for the spatial error distribution 

(Lobo et al. 2007). 

However, the AUC score is still an appropriate measure for overall accuracy in the 

model evaluation process. 

2.7 THRESHOLD METRICS 

Thresholds are needed to convert continuous prediction maps into binary maps 

that are used in many practical applications (Lobo et al. 2007; Franklin 2010). 

However, threshold dependent metrics are often considered to be subjective 

(arbitrary). 
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Lobo et al. (2007) suggested a threshold which sensitivity and specificity are 

equal. The rate of true positives decreases while the rate of true negatives 

increases when the threshold changes from 0 to 1. The crossing point of both 

curves is the optimal threshold. This intersection is optimally located in the north-

western most point of the ROC curve (Figure 4). In MaxEnt this threshold is called 

“Equal training sensitivity and specificity”.  

 

Figure 4: ROC curve showing the most north-western point (arrow), where specificity=sensitivity (Lobo et al. 
2007). 
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3 MATERIAL & METHODS 

This study uses the framework of the above mentioned theoretical background 

and utilizes static, empirical distribution models that assume pseudo-equilibrium 

without taking competition and interactions into account. Two different modelling 

approaches (GLM and MaxEnt) were utilized to derive predictive distribution maps 

of six vascular plant species. The models were calibrated with a set of topo-

climatic predictor variables and stepwise model selection for GLM models using 

AIC scores.  

MaxEnt used a jackknife test to specify variable importance.  

For GIS implementation probabilistic prediction maps were created and evaluated 

using AUC-score. Based on the threshold where sensitivity and specificity is equal, 

binary maps were produced. To quantify the results the area of occupancy was 

calculated for each species. 

This section details the methodological procedure and the raw data. 

3.1 STUDY AREA 

This thesis refers to the distribution of alpine vascular plant species in Styria. The 

study therefore is restricted to the elevated regions of Styria (Eastern Alps). The 

physiogeographic and climatic (Harlfinger 2010) conditions within the Styrian Alps 

is heterogeneous and thus only a brief overview is provided to highlight the 

important parameters for plant growth. 

The Alps stretch over an arc of more than 1,200 km from the Mediterranean cost 

to the Vienna basin covering an estimated area of 200,000 km2 (Ozenda & Borel 

2003). Styria is located in the eastern region of the Alps. The highest summit is 

Hoher Dachstein (2995 m) located at the border to Upper Austria.  

Geological and climatic pattern are fundamental determinants of species 

distribution, including the alpine belt (Ozenda & Borel 2003). Geological bedrock 
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and climatic conditions show remarkable differences which results in a specific 

flora between the central and the limestone Alps.  

Higher altitudes in the northern Alps are directly affected by northern and western 

weather events. This causes a mountain climate with high precipitation and snow 

rich winters. Contrastingly, the northern slope of the Niederen Tauern is shielded 

by the northern Alps and the conditions are slightly weakened in terms of levels of 

precipitation (summer and winter), but not in terms of frequency. The main ridge of 

the Styrian central Alps often act like a climatic divide between the northern and 

the southern side. Higher altitudes of the central Alps display a strong central 

alpine climate with relative low precipitation and snowfall. The eastern edge of the 

Styrian Alps is strongly affected by south and south-eastern weather events. This 

results in a higher rate of thunder storms with hail.  

Hypsometric temperature reduction is reduced in the central alpine part of Styria 

due to greater mountain massifs. Thus the altitudinal zones (tree line, snow line) 

are shifted upwards. However, most Alp regions (including Styria) this natural 

zonation is absent due to anthropogenic impact. The tree line has been depressed 

by estimated 200–300 m and closed alpine grasslands (the alpine altitudinal belt 

covers nearly 15,000 km2 within the whole Alps) are best developed in the Alps 

(Ozenda & Borel 2003).  

3.2 MODEL INPUT DATA 

Species data 

This study uses existing field data from the Austrian Vegetation Database. The 

aim of this database is to gather phytosociological information (vegetation relevés) 

from the territory of Austria (Willner et al. 2012). The database contains a large 

part of entries between the years 1997 and 1999 and between 2001 and 2003 and 

is still relevant for current studies.  

Species data is managed in the non-commercial software package JUICE which is 

widely used for editing and analysing of phytosociological data (Tichý 2002). 
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Unfortunately, the data collected within this database is fairly heterogeneous in 

regard to plot size and completeness. Therefore, only the geographic location has 

been selected for the species distribution models. Each relevé that contains the 

species of interest is supposed to be a presence location, regardless of plot size or 

date of the relevé. Unfortunately, a certain positional error must also be accounted 

for because this has not always been documented.  

Sample size must be large enough to make meaningful statistical inferences. 

While MaxEnt is suitable for low sample sizes GLM needs a higher number of 

observations. 

As a primer criterion for species selection, the frequency within the database has 

been chosen. Only a sufficient number of presence locations yield good model 

results. A second criterion held certain level of relevance in nature conservation. 

The following species have been modelled for this study: 

 
Figure 5: Primula clusiana  

Code: priclus 

Primula clusiana is an endemic vascular plant species of the 
north eastern limestone Alps and could be found from the 
montane to the alpine zone. The calcicole species could rarely 
be found in the central Alps. Preferred habitats are moist and 
rocky grassland and snow bed communities. Photo: C.Berg 

 

 
Figure 6: Primula minima 

Code: primini 

Primula minima is a species from siliceous neglected grassland 
(Caricetum curvulae) in the subalpine to alpine zone and can 
also be found in snow bed communities. The calcifuge species is 
rather common in the central alps but could also be found on 
low-lime humus soils in the northern limestone Alps. Photo: 
C.Berg 
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Figure 7: Heracleum austriacum 

Code: heraust 

Heracleum austriacum is frequent from the subalpine zones of 
the limestone Alps. It is an eastern Alps endemic species that 
grows in tall forb communities, scree, stony subalpine meadows 
and krummholz. Photo: C.Berg 

 

 
Figure 8: Campanula pulla 

Code: campull 

Campanula pulla is a calcicole eastern Alps endemic plant 
species. It is common in the northern limestone Alps but is rare in 
the central Alps. The altitudinal distribution ranges from the 
subalpine to the alpine zone. It grows in moist scree habitats and 
snowbed communities. Photo: P. Schwager 

 

 
Figure 9: Valeriana celtica 

Code: valcelt 

As a calcifuge species Valeriana celtica is mainly distributed 
within the subalpine and alpine zones of the central Alps but 
extends its range of occurrence  to the northern limestone Alps 
where it present but sparse. Photo: C.Berg 

 

 

Figure 10: Galium noricum 

Code: galnori 

Galium noricum is a common, sub endemic species in the north 
eastern limestone Alps. From the subalpine to alpine zones the 
calcicole species grows in rocky meadows, scree and could often 
be found near the summit regions. Photo: C.Berg 
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Floristic and location specific details as well as information of endemic status is 

taken form Maurer et al. (1989), Maurer (1996), Maurer (2006), Aeschimann et al. 

(2005) and Fischer et al. (2008). 

Environmental Data 

Environmental data used in this study is freely available at the Austrian open data 

portal (www.data.gv.at).  

The “Klimaatlas Steiermark” (Harlfinger 2010) provides climate data for the period 

1971 to 2000 which is available in a resolution of 50 meters for the whole Styrian 

area in Asci format.  

Geological data has been gathered from a shape file (1:200 000) that was 

originally provided from the Geologischen Bundesanstalt Austria.  

The available digital elevation model (DEM) in Asci format has a resolution of 10 m 

and was resampled to a coarser resolution of 50 m. 

A preselection of the entire set of environmental predictor variables (more than 

100) was conducted in order to exclude variables without ecological relevance and 

variables that were highly correlated. Table 1 show the variables used for the 

models. 

There is some evidence of collinearity between average annual temperature 

(t_jahr_k) and average summer precipitation (rrsum_somm) (Figure 11). However, 

both variables are important for plant growth and were used for the models. During 

the model calibration process in section 3.4.3, the variance inflation factor (VIF) for 

each final GLM model was calculated using the vif() function in the “car” package 

(John et al. 2015).  

Table 1: The environmental data used for the models.  

Name  Description Range [unit] origin 

slope Slope 0,004 – 0,729 [rad] DEM www.data.gv.at 

northing cos(aspect) -1 – +1 DEM www.data.gv.at 

easting sin(aspect) -1 – +1 DEM www.data.gv.at 
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gesteine 

Geology, classified 

into calcareous or not 

calcareous 

0 / 1 ESRI Shapefile www.data.gv.at 

rrsum_somm 

Average sum of 

precipitation in 

summer  

318 – 598 [mm/Monat] 
Klimaatlas Steiermark www.data.gv.at 

Interpolation 

globre_jr 

Average annual 

global radiation at 

real surface. 

563 – 1310 [kWh/m
2
] 

Klimaatlas Steiermark www.data.gv.at 

Interpolation 

t_jahr_k 
Average annual 

temperature. 
274.2 to 282.34 [K] 

Klimaatlas Steiermark www.data.gv.at 

Interpolation 

 

Figure 11: Correlation matrix. Significance codes 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Description of the variables used: 

 Slope (slope): The steepness of slope is related to overland and subsurface 

flow of water and affects soil characteristics like moisture, texture or 
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development (Franklin 2010). Slope was calculated from the DEM using the 

terrain analysis tool “Slope, aspect, curvature” (SAGA 2.3.2) implemented 

in QGIS. The algorithm uses a “9 parameter second order polynom” and is 

described at Zevenbergen & Thorne (1987).  

 Aspect (northing, easting): The direction the slope is facing, affects the 

amount of solar radiation received on the slope and the seasonal and 

annual patterns of solar insolation (Franklin 2010). This in turn affects soil 

moisture availability. The variable is an indirect proxy for evapotranspiration 

because on southern facing slopes there is greater insolation. Aspect was 

calculated simultaneous with the SAGA tool “Slope, aspect and curvature”. 

For the statistical analysis “aspect” was converted to the circular variables 

“northing” and “easting”. “Northing” is calculated as cos(aspect) and 

“easting” as sin(aspect). 

 Geology (gesteine): Geology (and soil) are indirect proxies for nutrient and 

water availability as well as for chemical properties of the substrate (e.g. 

pH). To integrate the factor geology in the models the detailed geological 

entities were assigned to the classes calcareous and non-calcareous. The 

geological data is categorical information and is optimally be aggregated 

into the smallest number of classes that are ecologically relevant (Franklin 

2010). Finally the vector data set has been rasterized. 

 Average sum of precipitation in summer (rrsum_somm): Although 

precipitation is a relatively poor surrogate for plant water availability (Mod et 

al. 2016) average annual or some seasonally average have been used in 

most of the SDM studies (Franklin 2010). 

 Average annual global radiation at real surface (globre_jr): Global radiation 

is the sum of diffuse and direct radiation. Solar radiation represents heat 

rather than photosynthetically active radiation and acts similar than 

temperature (Mod et al. 2016). 
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 Average annual temperature (t_jahr_k): Temperature is one of the most 

frequently used predictors in SDM research and is of particular importance 

for plant growth. The average annual temperature, however, does not 

represent the growing season or over-winter conditions, which are essential 

in plat distribution (Mod et al. 2016). Seasonal averages (e.g. winter 

temperature) are complicated by multicollinearity.  

3.3 SOFTWARE 

Data manipulation and management was primarily completed using QGIS (version 

2.18.7) and R (version 3.3.1) in combination with R-Studios (version 1-0-136). The 

statistical modelling made use of R and MaxEnt. 

QGIS 

QGIS is a user friendly Open Source Geographic Information System (GIS) 

licensed under the GNU General Public License and is an official project of the 

Open Source Geospatial Foundation (OSGeo). It is platform independent and can 

be run on Linux, Unix, Mac OSX Windows and Android. It supports a variety of 

vector, raster and database formats and the functionality can be extended by a 

variety of toolboxes (e.g. GRASS GIS, SAGA GIS, R). 

QGIS is freely available at http://www.qgis.org  

MaxEnt 

MaxEnt is an open source stand-alone Java application for geographic species 

distribution modelling. MaxEnt can also be used in combination with R. It is 

implemented through the R packages “maxnet” and is also available in the “dismo” 

package. 

It is freely available from the Website of the American Museum of Natural History 

http://biodiversityinformatics.amnh.org/open_source/maxent 
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R-Project 

R is the open source version of S, a script language and environment for statistical 

computing and graphics.  

R provides a large library for statistical techniques like linear- and nonlinear 

modelling and classical statistical tests and is highly extensible.  

R runs on a variety of platforms and is freely available at https://www.r-project.org/  

3.4 WORKFLOW 

The Workflow can be separated into four major steps (Figure 12). In a first step the 

raw data was pre-processed to get a consistent set of species and environmental 

data. In the second step the training and testing data set was generated. The third 

step encompasses the creation of the model as such and the fourth step includes 

creating a prediction that generates the prediction maps. Finally the distribution 

map was evaluated. 

 

Figure 12: Workflow for model building. 
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3.4.1 PRE-PROCESSING 

Presence / Absence data 

The species data was stored in a Juice table and has been exported into the data 

exchange format comma separated values (*.csv). This file contains all site 

information that was noted in the field (e.g. coordinates, or cover of different plant 

layers).  

For this study only the coordinates of each presence location were used and thus 

the raw data set was cleaned in Excel.  

The presence points are mostly clustered within some parts of the study area, thus 

a grid of 500 m resolution was used to randomly select one point per grid cell. 

Moreover independent training and testing data sets are necessary for model 

evaluation so the remaining presence points were used to evaluate the models.  

The generalized linear models (GLM) need additional pseudo-absence 

information. Pseudo-absence points (500 points) were randomly generated within 

the whole Styrian area. These pseudo-absence points were then subdivided by 

grouping them randomly to either testing or training absence points. 

Finally, three different data sets are necessary for training and evaluating the GLM 

model (Figure 13). The first data set contains both presence and pseudo-absence 

points and was used to train the model. Presences were coded with 1, absences 

as 0. 

Another data set contains the remaining presence points that were not selected 

with the 500 m grid. The last data set contains the pseudo-absence points that 

were not used for the training data set. 
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Figure 13: Pre-processing of presence/absence data. 

Environmental data 

In R raster layers can be organized in a raster Stack. A raster stack is a collection 

of “RasterLayer” objects with the same spatial extent and resolution. To build a 

raster stack of predictor variables it was necessary to convert all environmental 

raster layers to same spatial resolution, extent and coordinate reference system.  

This step was automated with a R-script by using functions of the “raster” package 

(Cheng et al. 2016), the “sp” package (Hijmans et al. 2016) and the “rgdal” 

package (Pebesma et al. 2017).  

The script iterates the folder that contains the environmental raster layers. It 

initially uses a digital elevation model as a template, then crops and resamples all 

other raster layers to the same extent and resolution. Finally the new 

environmental raster layers are saved to an output folder either as Tiff-File (GLM-

input) or ASCII-File (MaxEnt-input). 
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Figure 14: Pre-processing of environmental raster layers to build a raster stack. 

3.4.2 DATA EXTRACTION FOR TRAINING THE MODELS 

For each point of the three data sets (generated as described in section 3.4.1) the 

values of the environmental raster layers were extracted to a data frame. Duplicate 

records and records with NAs were preliminarily excluded. . 

The training dataset is subsequently used to train the GLM-model. MaxEnt can 

use presence-only data so only the presence training locations are needed. 

The test and the test-pseudo-absence data set are used to evaluate model 

accuracy (section 2.6).  

3.4.3 MODEL CALIBRATION – GLM 

The pre-processing of the data is described in section 3.4.1. 

The GLM models were fitted with the pre-processed training data set in R using 

the R package “dismo” (Hijmans et al. 2017). First all potential useful predictors 

(full model) were included to model each of the six species. The predictors were 

linked in the models with the following code. 
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model.full<- glm(formula = pb_train ~ gesteine + globre_jr + northing + rrsum_somm + slope + 

t_jahr_k, family = binomial(link = "logit"), data = env) 

step.model<- stepAIC(model.full, direction=c("both")) 

A stepwise approach based on Akaike Information Criterion (AIC) was chosen to 

find the final model with the lowest AIC-score. The “Mass” package (Ripley 2017) 

offers the stepAIC() function that systematically drops on predictor variable and 

calculates a model with the remaining variables. The stepwise selection was done 

in both directions. 

The model with the lowest AIC value (low unexplained deviance) is considered to 

be the best model. The process also includes an “anova” component 

corresponding to the steps taken by the algorithm. Appendix 7.1 shows the output 

of the stepwise model selection and Table 4 shows the variables (and 

significances) that were chosen from the stepwise selection for each final model.  

The final models were taken as they were generated by the stepAIC() function. 

That is, no further reduction of possible insignificant variables was done. Thus the 

selection remains comprehensible. 

The GLM models were tested on collinearity using the VIF-scores. Table 2 details 

the scores for each variable in the final model that was used for prediction. All 

predictor variables have low VIF values (Table 2), which indicate that collinearity 

between the predictor variables is low. 

Table 2: VIF scores calculated for used variables in the each GLM model. 

Art gesteine globre_jr rrsum_somm slope northing easting t_jahr_k 

campull 1.475 8.548 1.236 2.284 5.876  2.284 

galnori 1.343 1.215  1.115   1.496 

primini 1.951  2.921 1.142   2.689 

priclus 1.255  1.183    1.281 

heraust 1.608  1.388 1.095   1.599 

valcelt 2.933  3.559 1.136   2.065 
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3.4.4 MODEL CALIBRATION – MAXENT 

MaxEnt offers a graphical user interface where specific settings can be selected 

(Figure 15). To create a model in MaxEnt the path to training and testing data 

needs to be set. Training and testing localities comply with the presence and 

testing points that were used for the GLM models.  

The logistic output format gives the probability of occurrence. To obtain this output, 

the format was set to “Logistic” in MaxEnts user interface. 

The directory for the environmental predictors is specified at “Environmental 

layers”. It is possible to set the type of variable for each variable. All variables are 

continuous, except the geological predictor (gesteine), which is a categorical 

variable. 

Finally, an output directory is needed where the output data is to be stored. 

The default settings have been applied for all other settings. Reduction of 

variables was not performed. 

 

 

Figure 15: MaxEnt graphical user interface. 
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MaxEnt tracks the variable contribution while training the model (Table 3). The 

percent contribution (“c” in Table 3, respective Figure 16) of a variable indicates 

the degree to which the variable affects the model. But the values should be 

interpreted with caution because they depend on the path that the algorithm takes 

to find the optimal solution. Additionally, the permutation importance (“i” in Table 3) 

indicate which variable largely decreases AUC.  

A subsequent jackknife test was performed to determine variable importance. The 

test indicates both which variable has the most useful information by itself and 

which variable has the most information that is not present in other variables 

(Phillips 2008).  

The process is comparable to a stepwise model selection and is based on “gain” in 

MaxEnt. Gain is closely related to deviance which is a measure of goodness of fit 

in GLMs (Phillips 2008).  

A number of models were generated using the jackknife test. Each variable is 

excluded in turn and a model is created with the remaining variables. Then models 

were created using each predictor in isolation. Finally, a model is created using all 

variables. The result of the jackknife test is shown in three bar charts. Figure 17 

shows the variable importance obtained from the jackknife test in MaxEnt with 

regard to AUC. 

Table 3: Relative contribution of the environmental variables to the MaxEnt model. C: % contribution; I: 
permutation importance. 

Species gesteine globre_jr rrsum_somm slope northing easting t_jahr_k 

 c i c i c i c i c i c i c i 

campull 47.4 21.7 0.5 2.7 11.9 12.8 1.5 2.4 0.7 1 0.6 0.5 37.3 58.9 

galnori 35.4 13 0.2 0.7 7.5 11 2.1 1.4 0.6 0.5 0.4 0.3 53.8 73 

primini 0.1 0.1 0.1 0.1 0.4 0.2 0.6 0.2 0.2 0.1 0.2 0.1 98.4 99.1 

priclus 47 31.7 0.1 0.7 9.1 27.3 0.3 0.5 0.4 0.6 0.6 0.2 42.5 36.1 

heraust 48.1 19.7 0.2 0.2 21.3 25.6 0.6 1 0.9 0.4 0.4 0.2 28.6 52.7 

valcelt 0.4 0.1 0.1 0.1 0.7 0.4 1.7 0.8 0.3 0.1 0.3 0.2 96.5 98.2 
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Figure 16: Variable contribution [%] in the MaxEnt models for each species. 
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Table 4: Variable significance of the final GLM model for each species. Significance: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 campull galnori heraust priclus primini valcelt 

Estimate * *** * *** " " * ** *** ** *** * *** . " " * *** " " 

(Intercept)  5.074  7.271  1.984    3.342  6.589    6.224  

gesteine1  5.259  6.565    6.325  6.992   1.75  2.044   

globre_jr  -3.322   -1.441             

northing -2.105                 

rrsum_somm 1.971      3.081  2.982  -2.388    -2.146   

slope  -4.069 -2.414   1.976        -1.42   -1.495 

t_jahr_k  -5.239  -7.307  -2.284    -3.618  -6.73    -6.311  

 

      
Figure 17: Barplots of the jackknife test on AUC. 
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3.4.5 MODEL EVALUATION 

For both, GLM and MaxEnt the same presence data set was used for evaluation. The 

pre-processing of the test data set is described in section 3.4.1.  

For the GLMs the model evaluation was performed in R. The “dismo” package 

provides cross-validation using a set of presence and absence locations. The 

function generates a “ModelEvaluation” object that contains evaluation measures, 

like AUC, and thresholds which can be used to create the binary maps.  

MaxEnt automatically cross-validates the result. Evaluation measures and thresholds 

were stored in the file “maxentResults.csv” in the output directory that was specified 

within the modelling process. Binary maps can be created by specifying an 

appropriate threshold at the “advanced settings” (Figure 18).  

 

Figure 18: Advanced settings in MaxEnt to specify a threshold rule for binary maps. 
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4 RESULTS 

4.1 DISTRIBUTION MAPS 

The following section shows the resulting prediction maps. The Figures are 

structured in the following way: 

 Upper left: GLM – continuous prediction map  

 Upper right: MaxEnt – continuous distribution map  

The maps use the same colour ramp for all species and all modelling methods. The 

threshold of 0.01 was chosen arbitrarily to distinguish between background and 

prediction. Values lower than 0.01 are set to transparent.  

 Centre left: GLM – binary presences / absence map  

 Centre right: MaxEnt – binary presence / absence map 

The binary maps only show presence and absence. The threshold for being 

presence or absence is the value where specificity = sensitivity. Again the same 

colour was chosen. 

 Lower left: atlas map from Niklfeld & Englisch (2004) to compare with known 

distributions. 

 Lower right: Map with the training data showing their distribution within the 

study area. 
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4.1.1 CAMPANULA PULLA 

  

  

 
 

Figure 19: Distribution maps of Campanula pulla. Higher probabilities of occurrence are predicted for the northern 
limestone Alps. This is also consistent with the known distribution of the species. Furthermore, there are some 
higher prediction values in the central Alps. The binary maps show larger areas of potential occurrence for GLM 
compared with MaxEnt. The training data set does not seem to be well distributed throughout the known 
geographical range. However an east-west distribution is present.  
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4.1.2 GALIUM NORICUM 

  

  

 
 

Figure 20: Distribution maps of Galium noricum. The main distribution patterns are similar for both modelling 
approaches. Again higher probability values were identified mainly in the northern limestone Alps which complies 
with the atlas map. Several regions within the central Alps could be identified as presence locations. The main 
east-west distribution of the training record is complemented with some occurrences in the central Alps. 
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4.1.3 HERACLEUM AUSTRIACUM 

  

  

 
 

Figure 21: Distribution maps of Heracleum austriacum. The predicted distribution of GLM and MaxEnt identified 
similar geographic ranges. Higher probability values are concentrated in the northern limestone Alps whereby 
GLM seems to predict less restrictivly compared with MaxEnt. The binary GLM map shows wide ranges classified 
as presence location. Within the known geographic range of the species, the training data set is primary restricted 
to an east-west axis.  
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4.1.4 PRIMULA CLUSIANA 

  

  

 
 

Figure 22: Distribution maps of Primula clusiana. The GLM prediction of Primula clusiana shows high probabilities 
within the limestone Alps and interestingly a number of regions with medium high values within the central Alps. 
Accordingly the presence area of the binary map is much larger than the one of the MaxEnt model. The training 
data set again is concentrated at some areas following an east-west line. 
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4.1.5 PRIMULA MINIMA 

  

  

 
 

Figure 23: Distribution maps of Primula minima. The prediction maps show a relatively uniform distribution pattern 
and comply with the known species range. Also the binary maps for both model approaches look similar. The 
training data set is well distributed across the species geographical range.  
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4.1.6 VALERIANA CELTICA 

  

  

 
 

Figure 24: Distribution maps of Valeriana celtica. The predicted distribution looks similar for both modelling 
approaches. High probability values are concentrated within the known geographic range of Valeriana celtica. 
Here again, the training data set is well distributed. 
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4.2 MODEL COMPARISON 

The AUC scores for each species distribution model are shown in Table 5. 

Particularly high values for both modelling approaches and across all species are 

notable.  

AUC values ranges from 0.5 to 1.0 where 0.5 can be interpreted as a random 

prediction. A value above 0.5 indicates performances that are deemed to be better 

than random. AUC values of 0.5—0.7 are considered low (poor model 

performance), values ranging from 0.7—0.9 moderate and above 0.9 high 

performance (Swets 1988; Franklin 2010). 

The AUC scores of both modelling approaches do not vary significantly across the 

six modelled species. Thus, it is not possible to make a clear ranking between 

GLM and MaxEnt with the AUC values in Table 5.  

Table 5: AUC scores for the species distribution models. 

 campull galnori primini priclus heraust valcelt 

GLM 0.984 0.992 0.995 0.934 0.951 0.991 
       
MaxEnt 0.986 0.988 0.990 0.985 0.967 0.986 
       

Interestingly, the prediction maps have a different appearance in some parts even 

though they have similar high AUC scores. Compared with MaxEnt models, GLM 

seems to be less restrictive with predictions and show more regions with higher 

values of probability.  

Based on a given threshold, the binary maps only distinguish between presence 

and absence. From these maps it was possible to calculate the total area of 

presence (area of occupancy). Figure 25 juxtaposes the total area of presence 

based on the threshold.  
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Figure 25: Area of occupancy for all six species derived from the binary maps. 

With exception of Primula minima and Valeriana celtica, the GLM models identified 

larger areas for species presence than MaxEnt. In the case of Primula clusiana the 

presence area is four times higher compared with MaxEnt. 

4.3 SPECIES RESPONSE CURVES 

MaxEnt automatically produces species response curves which show how each 

environmental variable affects the prediction. The following curves show the 

species response in the model to a specific environmental variable by disregarding 

all other variables. The influence that each environmental variable has on the 

occurrence of a species, as well as possible correlations between different 

variables, can be read from this.  

The following figures show the response curves for the three main driving 

predictors (annual mean temperature, mean summer precipitation and geology) in 

the MaxEnt models for each of the six species. 
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Figure 26: Species response curves to mean annual temperature [Kelvin]. All curves show higher occurrence probabilities at low temperatures. 
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Figure 27: Species response curves to geology. The categorical geological variable is coded with calcareous “1” and non-calcareous”0”. Interestingly, the distribution of Valeriana 
celtica also appears to be explained by calcareous geology. 
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Figure 28: Species response curves to mean summer precipitation. In general, higher occurrence probabilities are correlated with larger values of summer precipitation. 
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5 DISCUSSION 

5.1 POTENTIAL DISTRIBUTION  

Both modelling approaches were able to predict the distribution of the six vascular 

plant species across the Styrian Alps. The models were able to make plausible 

predictions and comply with known distributions provided by the Styrian 

distribution atlas. The prediction maps of both approaches show very similar 

results for one species, whereby GLM models tend to estimate less restrictively. 

That is, that the method identified more regions to be suitable.  

“Completeness” (Kadmon et al. 2003) is a measure of how well the species 

occurrence data covers the environmental space that a species occupies. 

Especially for extrapolating species in space and time it is important to incorporate 

well distributed species occurrence data throughout the species’ geographical 

range and the extent of the environmental gradient within the study area (Franklin 

2010). It is only in this way that the observations define the range limits. However, 

it is possible to predict the habitat suitability of surveyed locations within the study 

area using only a subset of the species range (Franklin 2010). A set of well 

distributed (designed) occurrence data would have increased the predictive power 

of the models. For example, the training samples of Primula clusiana, Heracleum 

austriacum and Campanula pulla mainly follow an east west axis across the 

northern limestone Alps. The points are concentrated on a few excursion 

destinations (e.g. Hochschwab, Rax, Grimming) but are not oriented on 

geographical ranges of the particular species. Thus, the training data probably do 

not cover the whole environmental space. 

In the case of the calicole alpine species, Primula clusiana, Campanula pulla and 

Heracleum austriacum it is especially apparent that several new regions within the 

siliceous central Alps were identified as suitable habitats. These areas are 

characterized by limestone inclusions that are sparsely distributed over the central 



Discussion 

 

 

62 

Alps. This pattern can also be seen in the geological layer. Whether this particular 

species is actually present in the region has yet to be proven in the field.  

However, some findings are documented in floristic literature. Occurrences of 

Primula clusiana have been proven to exist at Koralpe, Grebenzen, or 

Hochlantsch (Maurer et al. 1989) and Gumpeneck (Wözer Tauern) (Schneeweiss 

& Schönswetter 1999). Campanula pulla can be found at mount Hochreichart, at 

Hochlantsch or Gumpeneck (Maurer et al. 1989). Heracleum austriacum is known 

from “Steirische Kalkspitze” (Maurer 1996). 

The environmental variables used provided good results but the ecological 

relevance should be interpreted with caution. Table 4 shows the significance of 

each variable in the GLMs and Figure 17 shows the bar plots of the jackknife test 

on AUC of MaxEnt. Long blue bars indicate higher explaining contribution. 

Decreasing green bars indicate loss of high explaining values if this variable is left 

out. Figure 26 to Figure 28 show the response curves to the main driving 

predictors (average annual temperature, geology, and average summer 

precipitation) produced in MaxEnt for each species. 

Average annual temperature is the variable that contributes most to the models. It 

has high significances in the GLMs and seems to hold the most information that is 

not present in other variables. The response curves show higher response at low 

temperature values. In fact, average annual temperature is not a particularly 

relevant variable in ecological sense. The high significance in the models may be 

explained by the fact that temperatures depend on altitude and the model 

indicates an optimum range of altitude. 

In most cases, the geological factor seems to play a central role (except Primula 

minima and Valeriana celtica). It is apparent that this variable has a high 

explanatory value for all calcicole species. In contrast, Primula minima and 

Valeriana celtica are similarily distributed within the central Alps and partially 

immigrate into the limestone Alps. However, this variable is strongly generalized 

and only allows for indirect inferences about the substrate conditions. Both species 

are considered to be pure silicate species and only sparsely occurred on acidified 
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humus deposits. This was the case, for example, with Valeriana celtica at 

Hochschwab plateau (Maurer et al. 1989). Interestingly the response of Valeriana 

celtica is slightly shifted to calcareous geology (Figure 27), but comparing the “log 

output” (y-axis) this shift is quite low. 

The optimal water availability for plants during their active time appears to be 

relevant for their distribution from an ecological point of view. The species 

response curves show that higher probabilities of occurrence are associated with 

higher precipitation in the summer months. From a certain value, the curve drops 

again. However, as already stated in section 3.2, precipitation is a relatively poor 

proxy for plant water availability. Moreover, precipitation increases with altitude in 

the Alps and thus may also reflect an altitudinal gradient. 

5.2 ARE THE RESULTS COMPARABLE? 

To quantify the results a simple method compares the areas of occupancy from 

the binary maps of both modelling approaches. The threshold was chosen at the 

values where sensitivity and specificity were equal to one another (equal training 

sensitivity and specificity). The result is shown in the binary maps in Figure 19 to 

Figure 24 respectively in Figure 25.  

It could be shown that different model approaches (GLM, MaxEnt) have similar 

distribution patterns, but the same threshold value identifies different areas as 

potential occurrences. Generally GLM tend to identify larger areas as potential 

occurrences. However, it is not possible to recommend one approach as “the best 

method” but it was possible to quantify the differences between the GLM and the 

MaxEnt results. In the individual case, the choice of the threshold will depend on 

the question. For ex-situ conservation, the area of occupancy is better defined with 

a threshold that maximizes the area. Resettlement attempts in restoration ecology, 

on the other hand, are more likely to be made in areas which are particularly 

suitable for the respective species. The threshold value is then selected in such a 

way that the area is reduced to the best regions.  
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5.3 IS ONE APPROACH PREFERABLE? 

GLMs are scientifically proven and have a long tradition in ecological modelling. 

The application in R requires a little overcoming at the beginning. After a short 

training the possibilities are very comprehensive. 

MaxEnt is very popular these days due to its easy applicability and because it 

offers a graphical user interface. MaxEnt is also implemented in the “dismo” and 

“maxnet” package and becomes a more powerful and flexible modelling framework 

in combination with R.  

The MaxEnt algorithm is particularly robust relating to irregular distributed small 

sample sizes and this makes it especially interesting for modelling rare species.  

5.4 PROJECT IMPLEMENTATION  

SDMs are of particular importance for a variety of fields in conservation planning. 

The primer goal is in-situ conservation and thus it is necessary to know where the 

“hotspots” of a particular species are. Ex-situ conservation can be seen as a 

supporting measure.  

The results have shown that SDMs can assist in localizing special areas of 

interest. The comparison with available atlas maps seems to coincide with this 

method. With the help of the prediction maps it is possible to restrict field surveys 

to particular areas that show higher probability values. And this could contribute 

significantly to collection success.  

However, it is not possible to make a clear statement about population size and 

thus the expected quantity of a collection. The maps only provide information 

about how likely it is to find a species within a region based on suitable 

environmental conditions. The prediction-maps will thus help to find new 

populations where we can gather seed material for our research and ex-situ 

collections. In turn, with the new findings of future field surveys it will be possible to 

improve the models. 
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7 APPENDIX 

7.1 STEPAIC – OUTPUT FOR GLM MODELS 

Campabula pulla 

Start:  AIC=141.23 
pb_train ~ easting + gesteine + globre_jr + northing + rrsum_somm +  
    slope + t_jahr_k 
 
             Df Deviance    AIC 
- easting     1   125.25 139.25 
<none>            125.23 141.23 
- rrsum_somm  1   129.25 143.25 
- northing    1   130.06 144.06 
- globre_jr   1   138.58 152.58 
- slope       1   145.40 159.40 
- t_jahr_k    1   168.33 182.33 
- gesteine    1   188.15 202.15 
 
Step:  AIC=139.25 
pb_train ~ gesteine + globre_jr + northing + rrsum_somm + slope +  
    t_jahr_k 
 
             Df Deviance    AIC 
<none>            125.25 139.25 
+ easting     1   125.23 141.23 
- rrsum_somm  1   129.45 141.45 
- northing    1   130.08 142.08 
- globre_jr   1   138.64 150.64 
- slope       1   145.53 157.53 
- t_jahr_k    1   168.57 180.57 
- gesteine    1   188.27 200.27 

Galium Noricum 

Start:  AIC=147.65 
pb_train ~ easting + gesteine + globre_jr + northing + rrsum_somm +  
    slope + t_jahr_k 
 
             Df Deviance    AIC 
- easting     1   131.79 145.79 
- northing    1   132.43 146.43 
- rrsum_somm  1   133.08 147.08 
<none>            131.65 147.65 
- globre_jr   1   133.68 147.68 
- slope       1   138.77 152.77 
- gesteine    1   169.37 183.37 
- t_jahr_k    1   191.62 205.62 
 
Step:  AIC=145.79 
pb_train ~ gesteine + globre_jr + northing + rrsum_somm + slope +  
    t_jahr_k 
 
             Df Deviance    AIC 
- northing    1   132.58 144.58 
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- rrsum_somm  1   133.23 145.23 
<none>            131.79 145.79 
- globre_jr   1   133.81 145.81 
+ easting     1   131.65 147.65 
- slope       1   138.78 150.78 
- gesteine    1   169.37 181.37 
- t_jahr_k    1   191.71 203.71 
 
Step:  AIC=144.58 
pb_train ~ gesteine + globre_jr + rrsum_somm + slope + t_jahr_k 
 
             Df Deviance    AIC 
- rrsum_somm  1   134.36 144.36 
- globre_jr   1   134.47 144.47 
<none>            132.58 144.58 
+ northing    1   131.79 145.79 
+ easting     1   132.43 146.43 
- slope       1   138.88 148.88 
- gesteine    1   171.48 181.48 
- t_jahr_k    1   194.44 204.44 
 
Step:  AIC=144.36 
pb_train ~ gesteine + globre_jr + slope + t_jahr_k 
 
             Df Deviance    AIC 
<none>            134.36 144.36 
- globre_jr   1   136.49 144.49 
+ rrsum_somm  1   132.58 144.58 
+ northing    1   133.23 145.23 
+ easting     1   134.20 146.20 
- slope       1   140.50 148.50 
- gesteine    1   211.47 219.47 
- t_jahr_k    1   256.47 264.47 

Heracleum austriacum 

Start:  AIC=242.34 
pb_train ~ easting + gesteine + globre_jr + northing + rrsum_somm +  
    slope + t_jahr_k 
 
             Df Deviance    AIC 
- globre_jr   1   226.34 240.34 
- northing    1   226.35 240.35 
- easting     1   226.39 240.39 
<none>            226.34 242.34 
- slope       1   228.91 242.91 
- t_jahr_k    1   230.23 244.23 
- rrsum_somm  1   235.97 249.97 
- gesteine    1   283.87 297.87 
 
Step:  AIC=240.34 
pb_train ~ easting + gesteine + northing + rrsum_somm + slope +  
    t_jahr_k 
 
             Df Deviance    AIC 
- northing    1   226.35 238.35 
- easting     1   226.39 238.39 
<none>            226.34 240.34 
+ globre_jr   1   226.34 242.34 
- slope       1   230.36 242.36 
- t_jahr_k    1   231.70 243.70 
- rrsum_somm  1   236.38 248.38 
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- gesteine    1   283.87 295.87 
 
Step:  AIC=238.35 
pb_train ~ easting + gesteine + rrsum_somm + slope + t_jahr_k 
 
             Df Deviance    AIC 
- easting     1   226.39 236.39 
<none>            226.35 238.35 
+ northing    1   226.34 240.34 
+ globre_jr   1   226.35 240.35 
- slope       1   230.36 240.36 
- t_jahr_k    1   231.73 241.73 
- rrsum_somm  1   236.89 246.89 
- gesteine    1   284.20 294.20 
 
Step:  AIC=236.39 
pb_train ~ gesteine + rrsum_somm + slope + t_jahr_k 
 
             Df Deviance    AIC 
<none>            226.39 236.39 
+ easting     1   226.35 238.35 
- slope       1   230.37 238.37 
+ northing    1   226.39 238.39 
+ globre_jr   1   226.39 238.39 
- t_jahr_k    1   231.74 239.74 
- rrsum_somm  1   236.89 244.89 
- gesteine    1   284.51 292.51 

Primula clusiana 

Start:  AIC=218.55 
pb_train ~ easting + gesteine + globre_jr + northing + rrsum_somm +  
    slope + t_jahr_k 
 
             Df Deviance    AIC 
- slope       1   202.57 216.57 
- easting     1   202.58 216.58 
- northing    1   203.19 217.19 
- globre_jr   1   203.33 217.33 
<none>            202.55 218.55 
- rrsum_somm  1   211.88 225.88 
- t_jahr_k    1   214.66 228.66 
- gesteine    1   268.84 282.84 
 
Step:  AIC=216.57 
pb_train ~ easting + gesteine + globre_jr + northing + rrsum_somm +  
    t_jahr_k 
 
             Df Deviance    AIC 
- easting     1   202.60 214.60 
- northing    1   203.68 215.68 
- globre_jr   1   204.07 216.07 
<none>            202.57 216.57 
+ slope       1   202.55 218.55 
- rrsum_somm  1   211.89 223.89 
- t_jahr_k    1   217.88 229.88 
- gesteine    1   270.37 282.37 
 
Step:  AIC=214.6 
pb_train ~ gesteine + globre_jr + northing + rrsum_somm + t_jahr_k 
 
             Df Deviance    AIC 
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- northing    1   203.69 213.69 
- globre_jr   1   204.09 214.09 
<none>            202.60 214.60 
+ easting     1   202.57 216.57 
+ slope       1   202.58 216.58 
- rrsum_somm  1   211.90 221.90 
- t_jahr_k    1   218.15 228.15 
- gesteine    1   270.39 280.39 
 
Step:  AIC=213.69 
pb_train ~ gesteine + globre_jr + rrsum_somm + t_jahr_k 
 
             Df Deviance    AIC 
- globre_jr   1   204.09 212.09 
<none>            203.69 213.69 
+ northing    1   202.60 214.60 
+ slope       1   203.22 215.22 
+ easting     1   203.68 215.68 
- rrsum_somm  1   212.36 220.36 
- t_jahr_k    1   218.48 226.48 
- gesteine    1   276.97 284.97 
 
Step:  AIC=212.09 
pb_train ~ gesteine + rrsum_somm + t_jahr_k 
 
             Df Deviance    AIC 
<none>            204.09 212.09 
+ slope       1   203.37 213.37 
+ globre_jr   1   203.69 213.69 
+ easting     1   204.07 214.07 
+ northing    1   204.09 214.09 
- rrsum_somm  1   213.55 219.55 
- t_jahr_k    1   218.56 224.56 
- gesteine    1   277.10 283.10 

Primula minima 

Start:  AIC=127.66 
pb_train ~ easting + gesteine + globre_jr + northing + rrsum_somm +  
    slope + t_jahr_k 
 
             Df Deviance    AIC 
- northing    1   111.79 125.79 
- globre_jr   1   111.83 125.83 
- easting     1   112.42 126.42 
- slope       1   113.60 127.60 
<none>            111.66 127.66 
- gesteine    1   114.63 128.63 
- rrsum_somm  1   117.93 131.93 
- t_jahr_k    1   248.06 262.06 
 
Step:  AIC=125.79 
pb_train ~ easting + gesteine + globre_jr + rrsum_somm + slope +  
    t_jahr_k 
 
             Df Deviance    AIC 
- globre_jr   1   111.84 123.84 
- easting     1   112.59 124.59 
- slope       1   113.62 125.62 
<none>            111.79 125.79 
- gesteine    1   114.86 126.86 
+ northing    1   111.66 127.66 
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- rrsum_somm  1   117.93 129.93 
- t_jahr_k    1   263.67 275.67 
 
Step:  AIC=123.84 
pb_train ~ easting + gesteine + rrsum_somm + slope + t_jahr_k 
 
             Df Deviance    AIC 
- easting     1   112.70 122.70 
- slope       1   113.68 123.68 
<none>            111.84 123.84 
- gesteine    1   114.94 124.94 
+ globre_jr   1   111.79 125.79 
+ northing    1   111.83 125.83 
- rrsum_somm  1   117.94 127.94 
- t_jahr_k    1   270.46 280.46 

Valeriana celtica 

Start:  AIC=118.29 
pb_train ~ easting + gesteine + globre_jr + northing + rrsum_somm +  
    slope + t_jahr_k 
 
             Df Deviance    AIC 
- easting     1   102.29 116.29 
- northing    1   102.89 116.89 
- globre_jr   1   103.42 117.42 
<none>            102.29 118.29 
- slope       1   105.70 119.70 
- gesteine    1   107.11 121.11 
- rrsum_somm  1   107.70 121.70 
- t_jahr_k    1   274.01 288.01 
 
Step:  AIC=116.29 
pb_train ~ gesteine + globre_jr + northing + rrsum_somm + slope +  
    t_jahr_k 
 
             Df Deviance    AIC 
- northing    1   102.89 114.89 
- globre_jr   1   103.42 115.42 
<none>            102.29 116.29 
- slope       1   105.75 117.75 
+ easting     1   102.29 118.29 
- gesteine    1   107.12 119.12 
- rrsum_somm  1   107.75 119.75 
- t_jahr_k    1   275.24 287.24 
 
Step:  AIC=114.89 
pb_train ~ gesteine + globre_jr + rrsum_somm + slope + t_jahr_k 
 
             Df Deviance    AIC 
- globre_jr   1   103.54 113.54 
<none>            102.89 114.89 
- slope       1   105.77 115.77 
+ northing    1   102.29 116.29 
+ easting     1   102.89 116.89 
- gesteine    1   107.79 117.79 
- rrsum_somm  1   108.30 118.30 
- t_jahr_k    1   284.48 294.48 
 
Step:  AIC=113.54 
pb_train ~ gesteine + rrsum_somm + slope + t_jahr_k 
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             Df Deviance    AIC 
<none>            103.54 113.54 
- slope       1   105.81 113.81 
+ globre_jr   1   102.89 114.89 
+ northing    1   103.42 115.42 
+ easting     1   103.54 115.54 
- gesteine    1   107.96 115.96 
- rrsum_somm  1   108.41 116.41 
- t_jahr_k    1   306.06 314.06 

 

 


