

## Master Thesis

im Rahmen des
Universitätslehrganges „Geographical Information Science \& Systems" (UNIGIS MSc) am Interfakultären Fachbereich für Geolnformatik (Z_GIS) der Paris Lodron-Universität Salzburg

# "Calculating timber harvest costs based solely on spatial predictors exemplified by the Colorado State Forest" 

vorgelegt von

## BSc Ulrich Strötz

102778, UNIGIS MSc Jahrgang 2012

Zur Erlangung des Grades
„Master of Science (Geographical Information Science \& Systems) - MSc(GIS)"

Gutachter:
Ao. Univ. Prof. Dr. Josef Strobl

## Acknowledgements

I would like to thank the entire UNIGIS Team for their support during my studies and to Prof. Joseph Strobl for the supervision of this thesis.
In addition, a big thank you to the Colorado State Forest Service for providing me with useful data, which was essential for this research. In particular I wish to thank Hunter Townsend (State Forest Manager) and Russ Gross (Forester).
A very special thanks is dedicated to Ecotrust, which was inspirational in the finding of my research question and which guided me throughout the research process. In particular I would like to thank Matt Perry (Senior Applications Developer) for his technical advice and Mike Mertens (Director of Spatial Analysis) for his patience, creativity and curiosity as we discussed the thesis.

## Statement of Authorship

Hereby I, Ulrich Strötz, declare that this master thesis was written without the help of a third party and without the use of sources other than the ones cited in this paper. In addition, I certify that everything in this paper that is not of my own, including; writing, images, figures and tables, are appropriately referenced.

Berlin, 20.10.2014


#### Abstract

Optimization models for ecological forestry approaches require consideration of a variety of spatial features, including Harvest Costs, in order to maximize triple bottom line returns. The models require a pre-generated dataset with the potential Harvest Costs for the entire landscape in order to iterate through millions of potential solutions and compare results in terms of an objective function. Since the composition and the structure of the forest systems are usually not available for an entire landscape, a model is required that calculates Harvest Costs solely based on Spatial Predictors. Spatial Predictors can be determined via Geographic Information Systems. Currently no existing study investigates the significance of Spatial Predictors on Timber Harvest Cost. Therefore it is also not known if the significance of Spatial Predictors on Harvest Cost is high enough to calculate Timber Harvest Costs solely based on Spatial Predictors. This study answers these research questions with the following method:

A dataset containing 160,000 test units based on existing harvest data of the Colorado Sate Forest is created. The dataset contains for each unit the Spatial and Non-Spatial Predictors of Timber Harvest Costs. Each unit is run through a created Harvest Cost Model, which is based on existing literature and equations. The Harvest Cost Model returns for each unit a Harvest Cost per ton. The spatial and non-spatial input data are then used as independent variables in a multiple linear regression model, with the resulting Harvest Cost from the model as the dependent variable. From the created regression model, a spatially explicit regression model is derived by excluding the nonspatial variables. The spatially explicit regression model calculates Harvest Costs solely based on Spatial Predictors. Finally, based on the spatially explicit regression model, a Cost Surface is created. The Cost Surface contains the Harvest Cost for any given location throughout the landscape. The created spatially explicit regression model has an R-squared of 0.42. Therefore Spatial Predictors predict $42 \%$ of Timber Harvest Costs. Calculating Timber Harvest Costs with an accuracy of $42 \%$ is not enough to calculate absolute Harvest Costs solely based on Spatial Predictors. But for optimization models relative Harvest Costs are sufficient, since relative Harvest Cost allows the comparison of Costs of different stands and scenarios. An accuracy of $42 \%$ is then enough to estimate relative Harvest Costs.

Therefore the results of this research make it possible to include Harvest Costs in optimization models for ecological forestry approaches. With their inclusion optimization models are significantly improved.


## Table of Contents

Acknowledgements ..... 2
Statement of Authorship ..... 3
Abstract ..... 4
Table of Contents .....  5
List of Figures ..... 7
List of Tables ..... 9
List of Equations ..... 9

1. Introduction ..... 10
Research Problem ..... 10
Structure of the Paper ..... 14
2. Model Development ..... 15
3. Data Creation ..... 18
3.1. Independent Variables (Input Data) ..... 18
3.2. Dependent Variable (Cost Data) ..... 27
4. Statistical Analysis ..... 28
4.1. Descriptive Statistics of the Independent Variables ..... 28
4.1.1. Individual Variable Description ..... 28
4.1.2. Correlation of the Independent Variables ..... 30
4.2. Regression Model. ..... 36
4.2.1. Fitting the Model ..... 36
4.2.2. Validating the Model ..... 44
4.3. Spatial Regression Model ..... 48
4.3.1. Fitting the Model ..... 48
4.3.2. Validating the Model ..... 49
4.4. Comparing the Two Models ..... 52
5. Cost Surface ..... 53
5.1. Data Overview ..... 53
5.2. Spatially explicit Cost Equation ..... 53
5.3. Cost Surface ..... 53
6. Results ..... 57
6.1. Statistical Results ..... 57
6.2. Colorado State Forest Harvest Costs Results ..... 58
6.3. Cost Surface Results ..... 60
7. Application Example ..... 61
7.1. Need of Application ..... 61
7.2. Application Description ..... 61
7.2.1. Application Front-End ..... 62
7.2.2. Application Back-End ..... 66
8. Discussion ..... 71
8.1. Discussion of the Statistical Analysis ..... 71
8.2. Discussion of the CSF Harvest Costs ..... 72
9. Conclusion ..... 74
Bibliography ..... 75
Appendix ..... 80
Appendix I ..... 80
Appendix II ..... 81
Appendix III ..... 89
Appendix IV ..... 96
Appendix V ..... 98
Appendix VI ..... 100
Appendix VII ..... 108
List of Figures
Figure 1: Map of CSF ..... 12
Figure 2: Harvest Process CSF ..... 13
Figure 3: Map of timber sales in the CSF ..... 19
Figure 4: Sample stand ..... 20
Figure 5: Sample stand with sub units ..... 20
Figure 6: Sample stand with input data values ..... 21
Figure 7: Schema concatenated sub units ..... 21
Figure 8: Sample stand with value for VPT ..... 22
Figure 9: Sample stand with value for VPT, TPA ..... 23
Figure 10: Schema createQuaterCentroids function ..... 23
Figure 11: Schema downloadOSMroad function ..... 24
Figure 12: Schema landing function ..... 24
Figure 13: Schema Skidding Distance calculation. ..... 24
Figure 14: Sample stand with values for VPT, TPA, SD ..... 25
Figure 15: Sample stand with all input values ..... 25
Figure 16: Schema cost_func function ..... 27
Figure 17: Schema concatenated sub units ..... 27
Figure 18: Histogram Slope ..... 28
Figure 19: Normal Q-Q Plot Slope ..... 28
Figure 20: Histogram Volume per Tree ..... 29
Figure 21: Normal Q-Q Plot Volume per Tree ..... 29
Figure 22: Histogram Slope ..... 29
Figure 23: Normal Q-Q Plot Slope ..... 29
Figure 24: Histogram Skidding Distance ..... 30
Figure 25: Normal Q-Q Plot Skidding Distance ..... 30
Figure 26: Plot Trees per Acre and Volume per Tree ..... 31
Figure 27: Plot Trees per Acre and Slope ..... 32
Figure 28: Plot Trees per Acre and Skidding Distance ..... 32
Figure 29: Plot Volume per Tree and Slope ..... 33
Figure 30: Plot Volume per Tree and Skidding Distance ..... 34
Figure 31: Plot Slope and Skidding Distance ..... 34
Figure 32: Plot Cost and Volume per Tree ..... 37
Figure 33: Plot Cost and Trees per Acre ..... 37
Figure 34: Plot Cost and Slope ..... 37
Figure 35: Plot Cost and Skidding Distance ..... 37
Figure 36: Plot Cost and transformed Volume per Tree ..... 39
Figure 37: Regression Model Residuals vs Fitted Plot ..... 47
Figure 38: Regression Model Normal Q-Q Plot ..... 47
Figure 39: Regression Model Residuals vs Leverage Plot ..... 48
Figure 40: Regression Model Scale Location Plot ..... 48
Figure 41: Spatial Regression Model Residuals vs Fitted Plot ..... 51
Figure 42: Spatial Regression Model Normal Q-Q Plot ..... 51
Figure 43: Spatial Regression Model Residuals vs Leverage Plot ..... 52
Figure 44: Spatial Regression Model Scale-Location Plot ..... 52
Figure 45: Schema rasterize roads ..... 54
Figure 46: Slope sample ..... 55
Figure 47: Cost Surface sample ..... 56
Figure 48: Sample Harvest Cost CSF Comaparison ..... 59
Figure 49: Cost Surface Southern Part of CSF ..... 60
Figure 50: Schema Application ..... 62
Figure 51: Front-End Overview ..... 63
Figure 52: Front-End Workflow ..... 65
Figure 53: Back-End Overview ..... 66
Figure 54: Schema cost_func function ..... 68
Figure 55: Schema createQuaterCentroids function ..... 69
Figure 56: Schema landing function ..... 69
Figure 57: Schema Skidding Distance Calculation ..... 70
List of Tables
Table 1: Harvest Machine and referring Study ..... 16
Table 2: Machine Cost per productive machine hour ..... 17
Table 3: Harvest Costs CSF ..... 59
Table 4: Harvest Cost Statistics CSF ..... 60
List of Equations
Equation 1: Regression Model with all predictors ..... 36
Equation 2: Regression Model with all predictors and power transformation. ..... 40
Equation 3: Regression Model with all predictors, power transformation, and interaction terms ..... 43
Equation 4: Spatially explicit Regression Model ..... 48
Equation 5: Spatially explicit Regression Model ..... 53
Equation 6: Final Regression Model with all Predicotrs ..... 58
Equation 7: Final spatially explicit Regression Model ..... 58

## 1. Introduction

The returns from forest management vary dramatically across geographic space. This is to some degree because of the variability in the composition and structure of the forest systems, but also because costs of logging operations vary. Ecological approaches to forestry can be competitive, however such approaches require consideration of a variety of spatial features, making this type of management far more complex than standard industrial approaches (e.g. harvesting 40 acres in a 40 year rotation cycle). There exist tools that facilitate this understanding and help landowners maximize triple bottom line returns on ecological forestry approaches (Ecotrust 2014, Zuuring, Wood and Jones 1995). There also exist models for estimating Timber Harvest Costs for specific locations (Tufts, et al. 1985, Hartsough, Zhang and Fight 2001, Loeffler, Calkin and Silverstein 2006, Smidt, Tufts and Gallagher 2009, Becker, et al. 2008). However, when planning operations across even relatively small size woodlots (<100 acres), the optimization of returns requires pre-existing knowledge of the potential Costs for the entire landscape. Optimization models require iterating through millions of potential solutions and comparing results in terms of an objective function. Harvest Cost is a crucial factor in optimization models. But calculating Harvest Costs during the iteration process would slow down the optimization significantly. Therefore a pre-generated dataset with the potential Harvest Costs for the entire landscape is required. This dataset is named Cost Surface throughout this paper.

## Research Problem

As stated, there exist models for estimating Timber Harvest Costs for specific locations. These models are based on time-and-motion-studies as well as on the opinion of experts (Keegan III, Fiedler and Stewart 1995, Conner, Adams and Johnson 2009, Hartsough, et al. 1997). Based on these models, research has been conducted to investigate what predictors influence Harvest Costs and what their significance in predicting Cost is:
Silverstein, et al. (2006) researched the influence of tree variables (volume and number of trees) on Timber Harvest Costs, but assumed fixed values for Slope and Skidding Distance. Arriagada et al. (2008) researched the influence of Slope, Volume per Tree and Trees per Acre on Harvest Costs, but ignored Skidding Distance as a variable by keeping it constant. Keegan et al. (2002) and Loeffler et al. (2006) researched the influence of Volume per Tree, Trees per Acre and Skidding Distance on Timber Harvest Costs, but kept Slope constant.
Therefore no currently existing study, including the above, investigates the influence of all predictors on Timber Harvest Costs including all Spatial Predictors. Spatial Predictors, which are Slope and Skidding Distance, are predictors that can be determined through Geographic Information Systems. Non-spatial Predictors, which
are Volume per Tree and Trees per Acre, require fieldwork or other methods of determining their value.
Since no research has been conducted on the influence of all predictors on Timber Harvest Costs, the significance of Spatial Predictors on Timber Harvest Costs is unknown. Therefore it is unknown if it is possible to calculate Harvest Costs solely based on Spatial Predictors. Two major research questions result:

1. What is the significance of Spatial Predictors on Timber Harvest Costs?
2. Is it possible to calculate Timber Harvest Costs solely based on Spatial Predictors?

The significance of Spatial Predictors on Harvest Costs has never been fully researched. Given that the significance of Spatial Predictors is high enough to exclude the Non-Spatial Predictors, it is possible to calculate Harvest Costs exclusively with Spatial Predictors. Determining Harvest Costs exclusively with Spatial Predictors would bring an enormous advantage to the field of forest planning and management.
Determining Harvest Costs solely with Spatial Predictors would allow determining the Harvest Costs for an entire geographic region at once by using Geographic Information Systems. No knowledge of the composition and structure of the forest systems and therefore no fieldwork is necessary.

Knowing the Harvest Costs for an entire landscape would allow including that knowledge in the above stated optimization models. The models iterate through millions of potential solutions and compare results in terms of an objective function.

## Response to the Problem

This paper will determine the significance of Spatial Predictors on Timber Harvest Costs and will create a cost equation that enables the calculation of Timber Harvest Costs solely based on Spatial Predictors.
This will be accomplished by creating a dataset containing 160,000 test units. The dataset contains for each unit the Spatial and Non-Spatial Predictors of Timber Harvest Costs. Each unit is run through a created Harvest Cost Model, which is based on existing literature and equations. The Harvest Cost Model will return for each unit a Cost per ton. The spatial and non-spatial input data are then used as independent variables in a multiple linear regression model, with the resulting Harvest Cost from the model as the dependent variable. From the created regression model, a spatially explicit regression model is derived by excluding the non-spatial variables. The spatially explicit regression model calculates Harvest Costs based solely on Spatial Predictors. Finally, based on the spatially explicit regression model, a Cost Surface is created. The Cost Surface contains the Harvest Cost for any given location throughout the landscape.

To limit potential influences and variations on the results, e.g. through different terrain or species, an area of interest was determined. Because of the availability of data, the homogeneity of the forest, and a fixed area; the Colorado State Forest (CSF) was selected.

## Study Area

The CSF is located in North Central Colorado approximately 80 road miles west of Fort Collins, near the city of Walden.
The State Forest stretches north to south for 30 miles and east to west for one mile at it's narrowest point, and 9 miles at the widest (Hubbard 1988). 52,000 of its 71,000 acres are forest land (Colorado Parks and Wildlife 2014). The map below shows the boundary of the CSF with a satellite image (MapBox 2012).


Figure 1: Map of CSF
The tree species covering the forest include subalpine fir (Abies lasiocarpa), Englemann spruce (Picea engelmannii), lodgepole pine (Pinus contorta), Douglas fir (Pseudotsuga menziesii), Colorado blue spruce (Picea pungens), ponderosa pine (Pinus ponderosa), and limber pine (Pinus flexilis). About $60 \%$ of all trees are lodgepole pines. Spruce and fir community accounts for $23 \%$ and aspen, the only deciduous tree, accounts for $17 \%$ (Colorado Parks and Wildlife 2014).
With $60 \%$ tree cover, lodgepole pine is the dominating tree species in the forest and also the dominating harvest tree. For purposes of simplification, the study therefore focuses exclusively on harvesting lodgepole pine.

The single used harvest method in the CSF is clearcutting, which essentially removes all trees in a stand in one operation (Society of American Foresters 2010).
Commercial timber harvest at the State Forest is for economical reasons, always conducted with ground-based machines, which can operate at slopes equal or less than $40 \%$. The used harvesting system is a ground-based, mechanized-felling, whole tree system. Which means trees are felled and bunched from drive-to-tree machines (which are assumed for flat ground), or swingboom and self-leveling versions (which are assumed for steeper terrain). The latter is shown in the first image of Figure 2 operating in the CSF. Rubber-tired grapple skidders transport bunches to the landing (image 2 of Figure 2). Trees are processed mechanically with stroke or single-grip processors at the landing as shown in image 3 of Figure 2.


Figure 2: Harvest Process CSF

## Structure of the Paper

The Introduction is followed by Chapters 2 through 5, which together serve as the Methods section of this paper. Chapter 2 describes the development of the Cost Model, which is based on existing literature. In Chapter 3 the process of creating the dataset based on existing data of the Colorado State Forest is described. This dataset is statically analyzed in Chapter 4. Based on the analysis two cost equations are created. One expressing Timber Harvest Cost based on all Predictors and the other one expressing Timber Harvest Cost solely based on the Spatial Predictors. The developed spatially explicit cost equation is used in Chapter 5 to create a Cost Surface covering the entire Colorado State Forest. After the Methods chapters, there follows in Chapter 6 the summary of the results of this research. In Chapter 7 an application example of the Cost Surface is given. Finally, in Chapter 8 the research results will be discussed and the conclusion will be drawn in Chapter 9.

All units, unless otherwise stated, are in United States customary units. All financial values are in United States dollars.

## 2. Model Development

A harvest model was developed to estimate relative Harvest Costs per ton (\$/ton). The model is based on the Fuel Reduction Cost Simulator (FRCS) (Fight, Hartsough and Noordijk 2006) software. Relevant formulas for a ground-based mechanized-felling whole tree system were taken from the FRCS and were written up in a Python script. The script allows iterations over the model in order to analyze it.
The model consists of three processing activities: felling, transportation to the landing, and processing at the landing, as described above in the study area section of the Introduction (Chapter 1).

Costs for loading the trees on to a log-truck, moving expenses for the machines, and management overhead costs are not included in the model.
The model makes the following assumptions as fixed variables:

- Hard wood fraction of $0 \%$
- Wood density of $39 \mathrm{lb} . / \mathrm{ft}^{3}$ (lodgepole pine)
- Average log length measures 32 ft .
- Costs for machine and labor reflect Western Colorado standards (Appendix I)

For each of the three activities (felling, transporting, and processing), a cost per cubic foot $\left(\$ / t^{3}\right)$ is calculated. The costs are dependent on the following input variables:

- Slope (in \%)
- Skidding Distance (in ft.)
- Trees per Acre removed
- Volume per Tree (in ft ${ }^{3}$ )

The calculated costs per cubic foot of each step are added together, result in a total Harvest Cost per cubic foot, and are converted to a Harvest Cost per ton.
The code showing the individual cost calculations can be seen in Appendix II (script CostFunc.py), and is summarized in the following paragraphs.
The FRCS software uses more than 100 productivity equations drawn from the literature for machines doing various operations (Fight, Hartsough and Noordijk 2006). Nine studies for felling, seven studies for skidding and seven studies for processing, are relevant for the ground-based harvesting system discussed in this research. Table 1 shows the discussed machine and its citation in the study.

| Felling | Skidding | Processing |
| :---: | :---: | :---: |
| Melroe Bobcat <br> (Johnson 1979) | Grapple Skidders <br> (Johnson 1988) | Hahn Stroke Processor <br> (Gonsier and Mandzak 1987) |
| Chainsaw Heads <br> (Greene and McNeel 1991) | Grapple Skidders <br> (Tufts et. al. 1988) | Stroke Processor <br> (MacDonald 1990) |
| Intermittent Circular Sawheads <br> (Greene and McNeel 1991) | John Deere 748E <br> (Kosicki 2000) | Roger Stroke Processor <br> (Johnson 1988) |
| Hydro-Ax 211 <br> (Hartsough 2001) | Cat D5H TSK Custom Track <br> (Henderson 2001) | Harricana Stroke Processor <br> (Johnson 1988) |
| Timbco 2520 and Cat 227 <br> (Johnson 1988) | JD 748_G-II \& TJ 560 <br> (Kosicki 2002) | Hitachi EX150/Keto 500 <br> (Schroder and Johnson 1997) |
| JD 693B\&TJ Timbco 2518 <br> (Gingras 1988) | Tigercat 635 <br> (Boswell 1998) | FERIC Generic <br> (Gingras 1996) |
| Timbco <br> (Gonsier and Mandzak 1987) | Tigercat 635 <br> (Kosicki 2002) | Valmet 546 Woodstar Processor <br> (Holtzscher and Lanford 1997) |
| FERIC Generic <br> (Gingras 1996, Plamondon <br> 1998) |  |  |
| Timbco 420 <br> (Hartsough, et. al. 1997) |  |  |

Table 1: Harvest Machine and referring Study

## Calculation Steps

The following four calculation steps are done to calculate the cost per cubic foot for each activity.

## 1. Cost per productive machine hour

For each machine a cost per productive machine hour (PMH) is calculated based on the before-tax machine cost approach (Miyata 1980). The assumptions for the machine purchase prices can be found in Appendix I.
The machines used and the associated costs per PMH (\$/PMH) are shown in Table 2.

| Machine | Costs <br> $(\$ /$ PMH) |
| :---: | :---: |
| Feller-Buncher DriveToTree | 181.62 |
| Feller-Buncher SwingBoom | 233.61 |
| Feller-Buncher SelfLeveling | 238.35 |
| Skidder small | 134.24 |
| Skidder big | 189.93 |
| Processor small | 209.96 |
| Processor big | 265.78 |

Table 2: Machine Cost per productive machine hour
Which Feller-Buncher machine is used depends on the Slope and the associated study.

The two skidder and processor types are each combined by using the approach described in (Hartsough, Zhang and Fight 2001). Final costs per PMH for each of the three depend on tree volume. The bigger the trees are, the less the hourly cost of the machines.

## 2. Relevance weighting

To prevent excessive extrapolation beyond the range of data for a given study, a relevance weighting function is applied to the estimated cost per unit volume (Hartsough, Zhang and Fight 2001). These relevance weights vary from 1.0, where the study is considered to be highly relevant, to 0.0 in portions of the range where the relationships are not likely to be valid (Fight, Hartsough and Noordijk 2006).

## 3. Production rate per productive machine hour

For each activity a production rate in cubic feet per $\mathrm{PMH}\left(\mathrm{ft}^{3} / \mathrm{PMH}\right)$ is calculated for each pertinent study (Hartsough et al. 2001).

## 4. Final costs for each activity

The costs per PMH (\$/PMH) are divided by the production rates ( $\left(\mathrm{tt}^{3} / \mathrm{PMH}\right)$ to give costs per cubic feet ( $\$ / \mathrm{tt}^{3}$ ) for each pertinent study (Hartsough, Zhang and Fight 2001). These are multiplied by their respective relevance weights, totaled and then divided by the sum of the weights to give the weighted average cost for the activity (Hartsough, Zhang and Fight 2001). Finally the three costs are added together and converted to $\$ / t o n$ based on the wood density.

## 3. Data Creation

For the statistical analysis, that will be done in Chapter 4, dependent and independent variables need to be defined and created. In the following the creation of the dataset is explained. The dataset contains the independent variables, which are the input data to the cost model and the dependent variable, which is the actual Harvest Cost calculated by the cost model.
The described data creation process is done by a Python script, which can be seen in Appendix III (script Data.py).

### 3.1. Independent Variables (Input Data)

The model takes in four input variables per timber stand, which are the independent variables of the analysis:

- Slope (S)

Slope represents the incline or steepness of the timber stand. The unit of Slope is percent.

- Skidding Distance (SD)

Skidding Distance is the distance from the location where the tree is felled, to the landing. The landing is located at the closest road from where a log truck picks up the logs. The unit of Skidding Distance is feet.

- Trees per Acre (TPA)

Trees per Acre are the number of trees removed from the stand. Since clear cutting is the dominating harvesting technique in the CSF, all standing trees are assumed to be cut.

- Volume per Tree (VPT)

Volume per Tree represents the average volume per tree, of the stand's trees. The unit of Volume per Tree is cubic foot.

In order to investigate the influence of each variable on the Harvest Cost, an input dataset is produced. To make sure the created data are reasonable and represent realistic values for stands in the CSF, the input variables are derived from past timber sales of the Colorado State Forest Service (CSFS). Data for 74 timber sales ranging from the years 2005 to 2014 are available from the CSFS as a shapefile in the projection NAD83/ UTM zone 13N (EPSG:26913) (Townsend 2014). The black polygons in the map below show the timber sales stands across the CSF. The majority of the stands are located in the southern part of the state forest. Initial forest stand conditions were identified through inventory cruises by staff of the CSFS (Townsend 2014). The Forest Vegetation Simulator (FVS) (Dixon 2002) was then applied by the CSFS staff to simulate stand growth and development and estimated removed volumes. The results were added to the shapefile as the attributes TPA and VPT.


Figure 3: Map of timber sales in the CSF

To demonstrate the process of the data production based on the forest service's data, a sample stand shown in the graphic below is used.


Figure 4: Sample stand

Since Slope and Skidding Distance vary heavily across the stand, taking average values for the entire stand might bias the results. Therefore the stands are split up into sub units of 10 m by 10 m .


Figure 5: Sample stand with sub units
For each sub unit a value for each of the four variables will be produced and added to the dataset. The shown numbers in the demonstration stand are arbitrary and for visualization purposes only.


Figure 6: Sample stand with input data values
Overall 161,204 sub units were created with the described procedure covering the 74 stands. The data of the sub units were concatenated and saved to a CSV file. The schema below illustrated the concatenated sub units with its values (5 of the 74 stands are illustrated). The different shades of grey symbolize the different stands, however this is only for visualization purposes. To which stand which sub unit belongs will no longer be relevant, since each sub unit has the relevant data for the analysis assigned.


Figure 7: Schema concatenated sub units

In the following, the production process of the values for each input variable is explained based on the sample stand. The relating functions in the Data.py script can be found in parentheses behind the variable heading.

## Volume per Tree (createVPTarray)

For each timber stand the average Volume per Tree is available from the CSFS data. Since the volume of each tree varies across the stand, a function which produces random normally distributed data around the average value of the stand, is run to produce for each sub unit a value for VPT that imitates the natural distribution of the volume across the stand. The numpy.random.normal function of the NumPy package is used to create these data. The function draws random samples from a normal (Gaussian) distribution (Bressert 2012). The function takes in a mean value and a standard deviation to create the distribution. The stand's VPT value is taken as the mean value and four standard deviations are used to produce the normal distribution $\left(\frac{V P T}{4}\right)$. In this way each sub unit is assigned a Volume per Tree.


Figure 8: Sample stand with value for VPT

## Trees per Acre (createTPAarray)

Also the amount of Trees per Acre for each timber sale is available from the CSFS data. Like with the variable Volume per Tree, the amount of Trees per Acre varies across the stand. Therefore the same numpy.random.normal function is used to produce for each sub unit a value for TPA. Also here the stand's TPA value is taken as the mean value and also four standard deviations are used to produce the normal distribution $\left(\frac{T P A}{4}\right)$. In this way, in addition to the previously assigned Volume per Tree, a Trees per Acre value is assigned to each sub unit.


Figure 9: Sample stand with value for VPT, TPA

## Skidding Distance (createSDarray)

Skidding Distance is the third value that needs to be added to the dataset. As stated above, Skidding Distance is the distance from where a tree is felled to the landing. The location of the landing is crucial to determine a reasonable distance. Depending on the size of a stand, usually several landings are created per stand (USDA Forest Service Northern Research Station Right 2014). In the following the process to determine the average Skidding Distance is explained:

1. To imitate the common practice of creating several landings per stand, the stands are divided into four parts. To accomplish this the function createQuaterCentroids is applied. First a bounding box around the stand is created. Second the bounding box is split half way north-south and halfway east-west. Third, the four created squares are intersected with the stand, which divides the stand into four parts. Fourth, for each of the four parts of the stand, the centroid is calculated.


Figure 10: Schema createQuaterCentroids function
2. Next the function downloadOSMroad queries the OpenStreetMap (OSM) Overpass API (OpenStreetMap Wiki contributors 2014) for the road segments surrounding the timber stands. The query is based on the bounding box of the stand. The bounding box is reprojected from NAD83/ UTM zone 13 N (EPSG:26913) to WGS 84 (EPSG:4326) in order to query the API. If the queries returns no road segments, the bounding box will be increased and the query is run again.


Figure 11: Schema downloadOSMroad function
3. For each of the four stand centroids, the Euclidean distance is calculated to each OSM road layer vertices. For this the function landing reprojects the downloaded OSM road layer back to NAD83/ UTM zone 13N (EPSG:26913), loops through each vertex, calculates the distance to the stand centroid, and finally returns the geometry of the closest vertex to the stand centroid. In this way four landings on the road are created. In the example below the closest landings for the two eastern centroids are located on the same vertex.


Figure 12: Schema landing function
4. Last the sub units' centroids are created. The distance to each landing from each centroid is calculated and the shortest distance is assigned as the Skidding Distance to the sub unit.


Figure 13: Schema Skidding Distance calculation

In this way, in addition to the previously assigned Volume per Tree and Trees per Acre value, a Skidding Distance value is assigned to each sub unit.


Figure 14: Sample stand with values for VPT, TPA, SD

## Slope (createSarray)

Last, a value for Slope is added to the dataset. The National Elevation Dataset, a digital elevation raster, is available as a 10 m raster from the U.S. Geological Survey (Gesch 2007), which is the same scale the sub units are in. A slope raster in percent is derived from the digital elevation raster. For each sub unit the zonal statistic of the Slope is calculated and added to the dataset. Finally the dataset has a value for all four independent variables: Trees per Acre, Volume per Tree, Skidding Distance and Slope.


Figure 15: Sample stand with all input values

## Input data post-processing (removeLimits)

Since TPA and VPT are created with a function that draws random samples from a normal (Gaussian) distribution (Bressert 2012), it is possible that the generated values are negative, though the values for TPA and VPT can by nature only be positive.

Therefore sub units containing negative numbers for TPA or VPT are removed from the dataset. Within the 161,204 sub units this applied to only 14 rows.

### 3.2. Dependent Variable (Cost Data)

The last step in creating the dataset for the statistical analysis is to add to the independent variables the corresponding dependent variable. The CostData function loops through each of the 160,000 sub units and reads its values. Each sub unit's values are then fed into the costfunc function of the CostFunc.py script (see Appendix II). The function returns a Harvest Cost per ton. A full description on how the costfunc operates can be found in Chapter 2 (Model Development).


Figure 16: Schema cost_func function

The returned Cost values for each of the sub units are then saved into a separate CSV file with the corresponding input values.


Figure 17: Schema concatenated sub units

## 4. Statistical Analysis

In Chapter 3, the dataset with the 160,000 sample units with values for each of the four input variables and the associated values for Cost, was created. In Chapter 4 the sample units are statistically analyzed. First, in Chapter 4.1 the independent variables are explored. Next, two regression models, one with all four predictors (Chapter 4.2) and the other one with only the two spatial predictors (Chapter 4.3), are developed and validated. Last, both models are compared in Chapter 4.4.

### 4.1. Descriptive Statistics of the Independent Variables

First, each independent variable is explored in Chapter 4.1.1. This is followed by the investigation of the correlation between them in Chapter 4.1.2.

### 4.1.1. Individual Variable Description

## Trees per Acre

The histogram below shows the distribution of the variable Trees per Acre. In average, 305.53 trees per acre with a standard deviation of 109.76 trees per acre cover the stands. The Normal Q-Q plot below shows a straight line, indicating that the Trees per Acre are normally distributed across the Colorado State Forest.
The minimum amount of trees is 0.78 per acre and a maximum amount of trees is 1002.79 per acre.


Figure 18: Histogram Slope


Figure 19: Normal Q-Q Plot Slope

## Volume per Tree

The graphic below shows the histogram of the average Volume per Tree. An average tree in the given study area has a volume of $9.98 \mathrm{ft}^{3}$ with a standard deviation of 3.68 $\mathrm{ft}^{3}$. The tree with the least volume has a volume of $0.04 \mathrm{ft}^{3}$ and the tree with the highest volume has a volume of $49.74 \mathrm{ft}^{3}$. The Normal Q-Q plot below shows a straight line, indicating that the variable Volume per Tree is normally distributed across the Colorado State Forest.


Figure 20: Histogram Volume per Tree

## Slope

The graphic below shows the histogram of the variable Slope. The majority of the Slope values are spread out across the range between the minimum value of $0 \%$ and the maximum value of $40 \%$, which is the operable slope for ground based harvesting machines. The high standard deviation of $10.55 \%$ indicates that Slope is spread out across this range. Though an accumulation of the values is visible around the mean of $14.75 \%$. Some values can also be found past the $40 \%$ threshold, going up to a maximum value of $81.10 \%$. The Normal Q-Q plot below confirms the histogram's view, that the data is not normally distributed.


Figure 22: Histogram Slope


Figure 23: Normal Q-Q Plot Slope

## Skidding Distance

The histogram below shows Skidding Distance is distributed normally, though at the end of the curve the data varies from a normal distribution. It has a mean of 1303.4 ft . and a standard deviation of 798.8 ft . Also the Normal Q-Q plot below confirms that the data is normally distributed. The minimum Skidding Distance is 2.78 ft ., which is when the harvest unit is right at the road. The maximum distance is 4919.78 ft .


Figure 24: Histogram Skidding Distance

### 4.1.2. Correlation of the Independent Variables

In the following the correlation of the independent variables will be investigated. This will be of relevance for the regression model in Chapter 4.2.

The matrix below shows all possible correlations and the correlation coefficients between the variables. Afterwards the correlations are investigated in detail.

|  | TPA | VPT | S |  |
| :--- | ---: | ---: | ---: | ---: |
| TPA | 1.00000000 | -0.36923440 | 0.034081725 | 0.056944884 |
| VPT | -0.36923440 | 1.00000000 | -0.003575950 | -0.037725313 |
| S | 0.03408173 | -0.00357595 | 1.000000000 | 0.0056265638 |
| SD | 0.05694488 | -0.03772531 | 0.005626563 | 1.000000000 |

## Trees per Acre and Volume per Tree

The correlation coefficient between Trees per Acre and Volume per Tree is -0.37 with a $p$-value of less than 0.05 . The coefficient of -0.37 indicates a moderate negative linear relationship. The plot of the two variables also supports this. This means the more trees per acre there are, the less the average volume per tree. The $p$-value is below the conventional threshold of 0.05 . This indicates that it is likely that the relationship between the two independent variables is significant. The confidence interval is between -0.373 and -0.365 , so the interval excludes zero, which is another indicator that the correlation is significant.

Pearson's product-moment correlation

```
data: costData$TPA and costData$VPT
t = -159.5138, df = 161185, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
    -0.3734430 -0.3650106
sample estimates:
    cor
-0.3692344
```



Figure 26: Plot Trees per Acre and Volume per Tree

## Trees per Acre and Slope

The correlation coefficient between Trees per Acre and Slope of 0.03 indicates a weak positive linear relationship. The p-value of less than 0.05 indicates a statistically significant correlation. However the graph does not support a linear relationship, which supports again the low magnitude of the correlation coefficient.

```
Pearson's product-moment correlation
data: costData$TPA and costData$S
t = 13.6912, df = 161185, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
    0.02920482 0.03895701
sample estimates:
    cor
0.03408173
```



Figure 27: Plot Trees per Acre and Slope

## Trees per Acre and Skidding Distance

Also the correlation between Trees per Acre and Skidding Distance with the correlation coefficient of 0.06 , indicates a weak positive linear relationship. The $p$-value of less than 0.05 indicates a statistically significant correlation. However, the graph does not necessary support a linear relationship.

```
Pearson's product-moment correlation
data: costData$TPA and costData$SD
t = 22.8997, df = 161185, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
    0.05207760 0.06180947
sample estimates:
    cor
0.05694488
```



Figure 28: Plot Trees per Acre and Skidding Distance

## Volume per Tree and Slope

The correlation coefficient of -0.004 between Volume per Tree and Slope indicates a weak negative linear relationship. The $p$-value of less than 0.05 indicates a statistically
significant correlation. However, the graph does not show a linear relation. Also the confidence interval of -0.009 to 0.001 includes zero. Therefore it is possible that the correlation is zero, in which case there would be no correlation.

```
Pearson's product-moment correlation
data: costData$VPT and costData$S
t = -1.4357, df = 161185, p-value = 0.1511
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
    -0.008457568 0.001305838
sample estimates:
    cor
-0.00357595
```



Figure 29: Plot Volume per Tree and Slope

## Volume per Tree and Skidding Distance

Also the correlation between Volume per Tree and Skidding Distance is a weak negative linear relationship. The p-value of less than 0.05 indicates a statistically significant correlation. However, the graph does not indicate a linear relationship.

```
Pearson's product-moment correlation
data: costData$VPT and costData$SD
t = -15.1569, df = 161185, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
    -0.04259923-0.03284960
sample estimates:
    cor
-0.03772531
```



Figure 30: Plot Volume per Tree and Skidding Distance

## Slope and Skidding Distance

The correlation coefficient of 0.006 between the two spatial variables Slope and Skidding Distance indicates a weak positive linear relationship. The p-value of less than 0.05 indicates a statistically significant correlation. However, the graph does not indicate a linear relationship.

```
Pearson's product-moment correlation
data: costData$SD and costData$S
t = 2.259, df = 161185, p-value = 0.02388
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
    0.0007448175 0.0105080400
sample estimates:
    cor
0.005626563
```

Slope ~ Skidding Distance


Figure 31: Plot Slope and Skidding Distance

## Summary

Overall, it can be said a strong correlation exists between the Trees per Acre variable and the Volume per Tree variable. Meaning the more trees per acre there are, the less the average volume per tree. Or the other way around; the higher the volume of the trees, the lower the amount Trees per Acre
The analysis showed there is a weak correlation between the tree variables and the spatial variables. Also a weak correlation was found among the spatial variables itself. The results from the correlation analysis will be taken into account in building the regression model.

### 4.2. Regression Model

A multiple linear regression model is used to model the relationship between the dependent variable Cost and the independent input variables. In Chapter 4.2.1 the model is first fitted and then validated in Chapter 4.2.2.

### 4.2.1. Fitting the Model

The regression respecting all four independent variables as a linear relationship with Cost, is the following four-variable-regression:

```
m <- lm(formula = C ~ VPT + TPA + S + SD, data = costData)
```

With the ordinary least-square algorithm (OLS) the following linear model is fitted:

```
C = 42.46 + -1.893 x VPT + -0.001010 x TPA + 0.3252 x S +
    0.007242 x SD + &i
```

Equation 1: Regression Model with all predictors
Since the model is a linear model, the relationships between the independent variables and the dependent variable need to be tested for linearity. Also the model needs to be tested for possible interaction among the independent variables.

### 4.2.1.1. Testing for Linearity

To better understand if the relationships are linear each independent variable is plotted against Cost.


Figure 32: Plot Cost and Volume per Tree


Figure 34: Plot Cost and Slope


Figure 33: Plot Cost and Trees per Acre

Skidding Distance


Figure 35: Plot Cost and Skidding Distance

The plots show that Skidding Distance, Slope and Trees per Acre have linear correlation with Cost, since a straight line can be created through the plotted values. However, the plot plotting the relationship between Volume per Tree and Cost, shows that Volume per Tree does not have a linear correlation with Cost. The plotted values rather show a curve than a line. Since the model is a linear model, all variables need to be linear though. Therefore the variable Volume per Tree will be transformed in order to have a linear relationship with Cost.

## Finding the best power transformation for Volume per Tree

Volume per Tree and Cost show a non-linear, exponential relationship. Cost decreases rapidly as the volume per tree increases. Or in other words, it is more expensive to
harvest small volume trees, than to harvest high volume trees. The curve seems to show a negative exponential correlation.

Several regressions are created to investigate the plotted relationship. To express the exponential relationship between the two variables, exponents between the ranges -2 and 2 are investigated for Volume per Tree:

```
R1 <- lm(formula = C ~ VPT, data = costData)
R2 <- lm(formula = C ~ I (VPT^(-1)), data = costData)
R3 <- lm(formula = C ~ I(VPT^(2)), data = costData)
R4 <- lm(formula = C ~ I(VPT^(-2)), data = costData)
R5 <- lm(formula = C ~ I(VPT^(-0.5)), data = costData)
R6 <- lm(formula = C ~ I(VPT^(0.5)), data = costData)
```

Next the Akaike Information Criterion (AIC) is used as a way to select the best fitting model from the set of models ( $\mathrm{R} 1-\mathrm{R} 6$ ). The model with the lowest AIC score is the best fit in the set of models (Burnham and Anderson, 2002).

|  | df | AIC |
| :--- | ---: | ---: |
| R1 | 3 | 1135405 |
| R2 | 3 | 1093085 |
| R3 | 3 | 1168439 |
| R4 | 3 | 1209585 |
| R5 | 3 | 1085233 |
| R6 | 3 | 1118508 |

R5 has the lowest AIC score, followed by R2. Therefore the exponent between -1 and -0.5 will be further investigated with additional regressions:

```
R1 <- lm(formula = C ~ I(VPT^(-1)), data = costData)
R2 <- lm(formula = C ~ I(VPT^(-0.9)), data = costData)
R3 <- lm(formula = C ~ I(VPT^(-0.8)), data = costData)
R4 <- lm(formula = C ~ I(VPT^(-0.7)), data = costData)
R5 <- lm(formula = C ~ I(VPT^(-0.6)), data = costData)
R6 <- lm(formula = C ~ I(VPT^(-0.5)), data = costData)
```

Again the Akaike Information Criterion (AIC) is used to select the best fitting models:

|  | $d f$ | AIC |
| :--- | ---: | ---: |
| R1 | 3 | 1093085 |
| R2 | 3 | 1085690 |
| R3 | 3 | 1082203 |
| R4 | 3 | 1081603 |
| R5 | 3 | 1082871 |
| R6 | 3 | 1085233 |

R4 has the lowest AIC score followed by R3. Therefore the exponent between -0.8 and -0.7 will be further investigated with additional regressions.

```
R1 <- lm(formula = C ~ I(VPT^(-0.8)), data = costData)
R2 <- lm(formula = C ~ I(VPT^(-0.79)), data = costData)
R3 <- lm(formula = C ~ I(VPT^(-0.78)), data = costData)
R4 <- lm(formula = C ~ I(VPT^(-0.77)), data = costData)
```

```
R5 <- lm(formula = C ~ I(VPT^(-0.76)), data = costData)
R6 <- lm(formula = C ~ I(VPT^(-0.75)), data = costData)
R7 <- lm(formula = C ~ I(VPT^(-0.74)), data = costData)
R8 <- lm(formula = C ~ I(VPT^(-0.73)), data = costData)
R9 <- lm(formula = C ~ I(VPT^(-0.72)), data = costData)
R10 <- lm(formula = C ~ I(VPT^(-0.71)), data = costData)
R11 <- lm(formula = C ~ I(VPT^(-0.7)), data = costData)
```

Again the Akaike Information Criterion (AIC) is used to select the best fitting models:

|  | df | AIC |
| :--- | ---: | ---: |
| R1 | 3 | 1082203 |
| R2 | 3 | 1082032 |
| R3 | 3 | 1081888 |
| R4 | 3 | 1081770 |
| R5 | 3 | 1081678 |
| R6 | 3 | 1081610 |
| R7 | 3 | 1081566 |
| R8 | 3 | 1081545 |
| R9 | 3 | 1081544 |
| R10 | 3 | 1081564 |
| R11 | 3 | 1081603 |

R9 has the lowest AIC score. Therefore the variable Volume per Tree needs to be transformed with the exponent of -0.72 in order to have a linear relationship with Cost.

To test the assumption the transformed values of Volume per Tree will be plotted again against Cost.


Figure 36: Plot Cost and transformed Volume per Tree
From the plotted values a straight line can be created. Therefore the relationship can now to be considered as a linear relationship. Also the correlation coefficient between Cost and Volume per Tree went up from - 0.66 without the transformation, to 0.77 with the transformation.

To the original regression the exponent of -0.72 will be added to the Volume per Tree variable, which results in the new regression:

```
m <- lm(formula = C ~ I(VPT^(-0.72)) + TPA + S + SD, data =
costData)
```

The new regression also results in a new model:

```
C = -3.667098572 + 133.515209875 x VPT (-0.72) + -0.003088015 x TPA
    + 0.305091203 x S + 0.007587668 x SD + &i
```

Equation 2: Regression Model with all predictors and power transformation
By using a power transformation for Volume per Tree, all four independent variables have a linear correlation to Cost. Therefore a linear regression can be used.

### 4.2.1.2. Testing for Interaction

When two or more independent variables in combination have an effect on the dependent variable Cost, and the effect of these two together differs from the effect of them individually on the dependent Cost variable, an interaction effect is occurring in the regression (Jaccard, 2003). The investigated correlations in Chapter 4.1.2 will be used to explore possible interactions within the model for each independent variable. In Chapter 4.1.2 it was shown that the two tree variables Volume per Tree and Tree per Acre interact the most out of all the interactions among the independent variables. Therefore the two will be investigated for possible interaction within the model. Since this report is ultimately interested in the spatial variables, the interaction between the two spatial variables is investigated. But also the correlation between the spatial variables and the tree data will be investigated. A stepwise forward selection is used for the process.

## Volume per Tree and Trees per Acre

Two regression models, one with and one without the interaction term between Volume per Tree and Trees per Acre are created:

```
R1 <- lm(C ~ I(VPT^(-0.72)) + TPA + S + SD, costData)
R2 <- lm(C ~ I (VPT^(-0.72)) + TPA + S + SD + TPA:VPT,
costData)
R3 <- lm(C ~ I(VPT^(-0.72)) + TPA + S + SD + TPA:I(VPT^(-
0.72)), costData)
```

The Akaike Information Criterion (AIC) is also used here as a way to select the best fitting model from the set of models (R1 - R3). The model with the lowest AIC score is the best fit of the set of models:

|  | df | AIC |
| ---: | ---: | ---: |
| R1 | 6 | 574442.8 |
| R2 | 7 | 573580.8 |
| R3 | 7 | 574442.9 |

The regression R2 with an interaction between Volume per Tree and Trees per Acre has the lowest AIC score. Therefore the interaction between the two will be included in the regression.

## Slope and Skidding Distance

Also two regressions to identify possible interactions between Skidding Distance and Slope are created. Again one regression with and one without the interaction are created:

```
R1 <- lm(C ~ I(VPT^(-0.72)) + TPA + S + SD + TPA:VPT,
costData)
R2 <- lm(C ~ I(VPT^(-0.72)) + TPA + S + SD + TPA:VPT +
S:SD, costData)
```

The AIC is used again to select the better fitting model between the two:

|  | df | AIC |
| :--- | ---: | ---: |
| R1 | 7 | 573580.8 |
| R2 | 8 | 538015.7 |

The regression R2 with the interaction term between the two spatial variables has a lower AIC score than without the interaction. Therefore the interaction term will be included in the regression.

## Trees per Acre and Slope

Also two regression models, one with and one without the interaction term between Trees per Acre and Slope are created:

```
R1 <- lm(C ~ I(VPT^(-0.72)) + TPA + S + SD + TPA:VPT +
S:SD, costData)
R2 <- lm(C ~ I(VPT^(-0.72)) + TPA + S + SD + TPA:VPT +
S:SD + S:TPA, costData)
```

The AIC is used again to select the best fitting model:

|  | df | AIC |
| ---: | ---: | ---: |
| R1 | 8 | 538015.7 |
| R2 | 9 | 534846.3 |

The regression with the interaction term between Trees per Acre and Slope has the lower AIC score. Therefore the interaction term will be included in the regression.

## Trees per Acre and Skidding Distance

In addition interaction between Trees per Acre and Skidding Distance will be explored.
Two models, one with the interaction and one without the interaction term are created:

```
R1 <- lm(C ~ I(VPT^(-0.72)) + TPA + S + SD + TPA:VPT +
S:SD, costData)
R2 <- lm(C ~ I (VPT^(-0.72)) + TPA + S + SD + TPA:VPT +
S:SD + SD:TPA, costData)
```

AIC is used again to select the best fitting model:

|  | df | AIC |
| ---: | ---: | ---: |
| R1 | 8 | 538015.7 |
| R2 | 9 | 537683.6 |

The regression R2 with the interaction between the Trees per Acre and Skidding Distance has a lower AIC score. Therefore in the regression the interaction will be included.

## Volume per Tree and Slope

Also Volume per Tree and Slope are investigated. Two models are created to compare the possible interaction:

```
R1 <- lm(C ~ I(VPT^(-0.72)) + TPA + S + SD + TPA:VPT +
S:SD + SD:TPA + S:TPA, costData)
R2 <- lm(C ~ I(VPT^(-0.72)) + TPA + S + SD + TPA:VPT +
S:SD + SD:TPA + S:TPA + S:VPT, costData)
```

AIC is used again to select the best fitting model:

|  | Df | AIC |
| :--- | :--- | :--- |
| R1 | 10 | 534538.7 |
| R2 | 11 | 502358.0 |

Regression model R2 with the interaction term has the lower AIC score. Therefore, here the interaction term will also be included in the regression.

## Volume per Tree and Skidding Distance

Last, the interaction between Volume per Tree and Skidding Distance will be explored.
Two models are created, one with and one without the interaction term:

```
R1 <- lm(C ~ I(VPT^(-0.72)) + TPA + S + SD + TPA:VPT +
S:SD + SD:TPA + S:TPA, costData)
R2 <- lm(C ~ I(VPT^(-0.72)) + TPA + S + SD + TPA:VPT +
S:SD + SD:TPA + S:TPA + SD:VPT, costData)
```

The AIC is used again to select the best fitting model:

|  | Df | AIC |
| :--- | :--- | :--- |
| R1 | 10 | 534538.7 |
| R2 | 11 | 524472.9 |

R2, the regression with the interaction term, has the lower AIC score. Therefore, here the interaction term will also be included in the regression.

The new regression including all the interaction terms is the following:

```
lm(C ~ I(VPT^}(-0.72)) + TPA + S + SD + TPA:VPT + S:SD +
SD:TPA + S:TPA + SD:VPT, costData)
```

The new regression also results in a new model:

```
\(\mathrm{C}=-3.556+133.6 \mathrm{x} \mathrm{VPT}^{(-0.72)}+-0.013 \mathrm{x} \mathrm{TPA}+0.1626 \mathrm{x} \mathrm{S}+\)
    \(0.007395 \mathrm{x} \mathrm{SD}+0.0005438 \mathrm{x} \mathrm{TPA:VPT}+0.00008 .250 \mathrm{x} \mathrm{S:SD}+-\)
    0.0000004 .963 x SD:TPA \(+0.0001 .673 \mathrm{x} \mathrm{S:TPA}+-0.00009 .460 \mathrm{x}\)
        \(S D: V P T+S: V P T+\varepsilon_{i}\)
```

Equation 3: Regression Model with all predictors, power transformation, and interaction terms

## Summary

Due to the minimal increase of the R -squared due to adding interaction terms, threeway interactions will not be tested. Also the minimal increase of the R-squared value of 0.0041 ( R -squared of 0.9828 without the interaction terms and 0.9869 with the interaction terms) is reason enough to not include the interaction terms, in order to keep the model simple and understandable.

### 4.2.2. Validating the Model

After the model is fitted it needs to be validated. The model needs to be tested to assure that it is reasonable and that it is statistically significant. Several indicators are investigated for that. First, the statistical significance of the model is verified. Next, the significances of the coefficients are tested. Then the usefulness of the model and how well the data fits the model is explored. The last step is to explore how well the data satisfies the assumptions of a linear regression.

## Statistical significance of the model

The statistical significance of the model can be tested by investigating its F-statistics. The model is significant if any of its coefficients are nonzero (Teetor and Loukide 2011). Or in other words, if all its coefficients are zero; it is not significant. A p-value of less than 0.05 indicates that the model is likely to be significant (Teetor and Loukide 2011). The model in this research has a p-value of smaller than $<2.2 e-16$, which indicates that the model is likely to be significant. Or in other words the probability is $2.2 \mathrm{e}-16$ that the model is insignificant.
F-statistic: 2.309e+06 on 4 and $161185 \mathrm{DF}, \mathrm{p}$-value: $<2.2 \mathrm{e}-16$

## Significances of the coefficients

Next, the significances of the coefficients are tested. To check whether the coefficients are significant or not their $t$-statistics and $p$-values are investigated. The column estimate shows the estimated regression coefficients. Since they are only estimates, they will never be zero. If they were zero, the variable would have no effect on the dependent variable. To understand statistically, how likely it is that the coefficients are zero; the $t$-statistics and the $p$-values need to be explored. The $p$-value indicates the likelihood that the coefficient is not significant (Teetor und Loukide 2011). Since all the values are below the significance level of $\alpha=0.05$ ( $<2 e-16$ ), it is very likely that all the coefficients are significant. The column $t$ value shows in addition the $t$-statistic from which the $p$-value was calculated.

```
Coefficients:
```



## Usefulness of the model

The R-squared value of the model tells if the model is useful, or what the quality of the model is (Teetor und Loukide 2011). It is the fraction of the variance of Cost that is explained by the regression model. The model explains 0.9828 ( $98.28 \%$ ) of the variance of Cost. The remaining $1.72 \%$ is unexplained. This will be discussed in Chapter 8. The adjusted value accounts for the number of variables in the model and is therefore a more realistic assessment of its effectiveness. Since both values are the same here, it is again of no relevance, which one is chosen.
The four predictors and the high sample size of 161185, results in a narrow $95 \%$ confidence interval of 0.98259 to 0.98301 .
Multiple R-squared: 0.9828, Adjusted R-squared: 0.9828

## Fitness of the model to the data

Two things are explored in order to understand how well the model fits the data. First the residuals are explored and second possible outliers of the model are investigated.
The residuals are a means to test if the model fits the data well. They are defined as the difference between the observation and the fitted value (Teetor and Loukide 2011). If the residuals have a normal distribution, it suggests that the model fits the data well. The positive median sign of the below stated residuals indicates a skew to the right. The magnitude of 0.042 indicates a low extent, meaning the majority of the residuals are around zero.
The first quartile (1Q) and third quartile (3Q) have about the same magnitude. The first quartile has a magnitude of 0.649 , which is only slightly larger then the third quartiles magnitude of 0.626 . Considering the residual standard error of 1.422 , the distribution can still be considered as a normal distribution, even though the median is not exactly zero. The minimum and maximum values show outliers. The maximum value of 77.691 is a high outlier and will be discussed in Chapter 8.

```
Residuals:
Min 1Q Median 3Q Max
-7.842 -0.649 0.042 0.626 77.691
Residual standard error: 1.422 on 161185 degrees of freedom
```

To explore the outliers is another way to test how well the model fits the data. Hawkings (1980) defines an outlier as an observation which differs so much from the other observations as to assume that it was generated by a different mechanism. The ten rows below show the ten most extreme observations:

| ID | rstudent unadjusted p-value | Bonferonni p |  |
| :--- | ---: | ---: | ---: |
| 18815 | 55.52978 | $0.0000 \mathrm{e}+00$ | $0.0000 \mathrm{e}+00$ |
| 31306 | 29.68524 | $3.9645 \mathrm{e}-193$ | $6.3904 \mathrm{e}-188$ |
| 80871 | 27.80937 | $8.4454 \mathrm{e}-170$ | $1.3613 \mathrm{e}-164$ |
| 72155 | 22.37970 | $9.1652 \mathrm{e}-111$ | $1.4773 \mathrm{e}-105$ |
| 31337 | 20.97268 | $1.5741 \mathrm{e}-97$ | $2.5373 \mathrm{e}-92$ |
| 147578 | 19.79797 | $3.9368 e-87$ | $6.3457 \mathrm{e}-82$ |
| 42986 | 19.60107 | $1.9051 e-85$ | $3.0709 \mathrm{e}-80$ |
| 43157 | 19.10295 | $2.9361 e-81$ | $4.7326 e-76$ |
| 81735 | 17.70312 | $4.6233 e-70$ | $7.4523 e-65$ |
| 4184 | 17.53552 | $8.8929 e-69$ | $1.4334 e-63$ |

To get a better understanding of them, the first five of the above listed outliers are further explored. The dependent variables and the independent variables are listed:

| ID | TPA | VPT | S | SD | $C$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 18815 | 313.7197 | 0.2207899 | 0 | 195.9101 | 470.6974 |
| 31306 | 153.6567 | 18.98797 | 81.10564 | 883.7568 | 85.4359 |
| 80871 | 465.7265 | 6.923552 | 67.1984 | 2492.431 | 106.9077 |
| 72155 | 290.1743 | 8.03457 | 71.63274 | 1517.892 | 90.3641 |
| 31337 | 97.83661 | 13.03708 | 80.70007 | 516.5303 | 75.36923 |

Investigating the input variables and the resulting Cost variable shows two outlier patterns.
The first pattern is the following: An extremely high Cost is created when the stand is extremely densely stocked (high Trees per Acre value), while at the same time the volume of the trees is very low (low Volume per Tree value). This pattern matches the outlier with the ID 18815.

The second pattern is the following: High Costs arise when the unit has a high Slope value. Though the Costs are relatively not as high as with the first pattern. The second pattern matches the other four outliers.
Both patterns will be further discussed in Chapter 8.

## Linearity of data

The last point that needs to be checked is whether the data satisfies the assumptions behind a linear regression. The linearity was already investigated in Chapter 4.2.1.1. Now that the model is created, this will be further investigated.
To get a better understanding for that problem, the residuals are plotted below. The plots show few high outliers, but also shows that the majority of the values are located around the zero line, which suggests that the assumption that the data is linear is
reasonable. Also the residuals roughly form a "horizontal band" around the 0 line. This suggests that the variances of the error terms are equal (Teetor and Loukide 2011).


Figure 37: Regression Model Residuals vs Fitted Plot
Next the Normal Q-Q plot will be explored. The points in the Normal Q-Q plot are roughly on the line, indicating that the residuals follow a normal distribution. The graph seems to follow a normal distribution reasonably well, except in the extreme tails. It is a curved pattern with slope increasing from left to right, which indicates the data distribution is skewed to the right (Teetor and Loukide 2011). The individual points on the far end are the above-investigated outliers.


Figure 38: Regression Model Normal Q-Q Plot

The last two plots that are explored are the Residuals vs Leverage plot and the ScaleLocation plot. They are explored in order to prove that the data fits the assumption of a linear regression (Teetor and Loukide 2011). In both plots, the majority of the points are in a group with none too far from the center. Some outliers are visible and were already discussed above.


Figure 39: Regression Model Residuals vs Leverage Plot


Figure 40: Regression Model Scale Location Plot

After investigating the four plots, it can be said that the data satisfies the assumption of a linear model. Outliers do exist. They will be discussed in Chapter 8.

### 4.3. Spatial Regression Model

From the developed multiple linear regression model in Chapter 4.2, a multiple-linearspatially explicit regression model was derived by using a backward selection. The non-spatial tree variables Trees per Acre and Volume per Tree were removed from the original model. In Chapter 4.3.1 the new model is fitted and thereafter validated in Chapter 4.3.2

### 4.3.1. Fitting the Model

The regression respecting only the two independent spatial variables as a linear relationship with Cost, is the following two-variable-regression:

```
m <-lm(formula = C ~ S + SD, data = costData)
```

With the ordinary least-square algorithm (OLS) the following linear model is fitted:

$$
C=22.8038+0.3272 \times S+0.007578 \times S D+\varepsilon_{i}
$$

Equation 4: Spatially explicit Regression Model
Possible correlation between the two variables, as well as Nonlinearity, has already been tested in Chapter 4.2.1.1. The two independent variables have a linear correlation to Cost. Adding an interaction term between the independent variable Slope and Skidding Distance, adds no further explanatory value to the model.

### 4.3.2. Validating the Model

Also, the spatially explicit model needs to be validated. The same indicators as used for the original model are used to test if the spatially explicit model is reasonable and if it is statistically significant.

## Statistical significance of the model

The spatially explicit model has a p-value of smaller than $<2.2 e-16$, which indicates that the model is likely significant.

```
F-statistic: 5.475e+04 on 2 and 161187 DF, p-value: < 2.2e-16
```


## Significance of the coefficients

All $p$-values of the two coefficients listed below are under the significance level of $\alpha=$ 0.05 (<2e-16). Therefore it is very likely that all the coefficients are significant. The column $t$ value shows in addition the $t$-statistic from which the $p$-value was calculated.
Coefficients:
Estimate Std. Error $t$ value $\operatorname{Pr}(>|t|)$
(Intercept) $2.280 \mathrm{e}+014.950 \mathrm{e}-02460.7<2 e-16 * * *$
S $3.272 \mathrm{e}-01 \quad 1.979 \mathrm{e}-03165.3<2 e-16$ ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## Usefulness of the model

The spatially explicit model explains 0.4045 ( $40.45 \%$ ) of the variance of Cost. The remaining $59.55 \%$ are unexplained.
The two predictors and the high sample size of 161187 results in a narrow 95\% confidence interval of 0.39981 to 0.40919 .
Multiple R-squared: 0.4045, Adjusted R-squared: 0.4045

## Fitness of the model to the data

Also for the spatially explicit model the residuals and outliers are explored to understand how well the model fits the data.
The negative median sign of the below stated residuals indicates a skew to the left. The magnitude is 1.19 , meaning that not necessary all residuals are around 0 .

The first quartile (1Q) and third quartile (3Q) have roughly the same magnitude. The first quartiles magnitude of 4.94 is larger then the third quartiles magnitude of 3.42 . Considering the residual standard error of 8.379 , the distribution can still be considered as a normal distribution, even though the median is not zero. This will be further discussed in Chapter 8. The minimum value of -24.01 and the maximum value of 446.41 are high outliers and will also be discussed in Chapter 8.

Residuals:

```
    Min 1Q Median 3Q Max
-24.01 -4.94 -1.19 3.42 446.41
```

Next, the outliers are explored to get a better understanding how well the spatially explicit model fits the data. The ten rows below show the ten most extreme observations:

|  | rstudent unadjusted p-value | Bonferonni p |  |
| :--- | :--- | ---: | ---: |
| 4324 | 39.03909 | $0.0000 e+00$ | $0.0000 e+00$ |
| 18815 | 53.75025 | $0.0000 e+00$ | $0.0000 e+00$ |
| 115797 | 52.47481 | $0.0000 e+00$ | $0.0000 e+00$ |
| 90805 | 38.07370 | $8.9501 e-316$ | $1.4427 e-310$ |
| 129763 | 35.26860 | $1.9448 e-271$ | $3.1349 e-266$ |
| 6350 | 34.37709 | $4.8062 e-258$ | $7.7471 e-253$ |
| 18850 | 26.30496 | $3.5366 e-152$ | $5.7006 e-147$ |
| 100984 | 20.06558 | $1.8991 e-89$ | $3.0612 e-84$ |
| 27331 | 18.07054 | $6.4213 e-73$ | $1.0350 e-67$ |
| 65002 | 17.65406 | $1.1018 e-69$ | $1.7760 e-64$ |

To get a better understanding of them, the first five of the above listed outliers are further explored. The dependent variables and the independent variables are listed:

| ID | TPA | VPT | S | SD |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 4324 | 399.0791 | 0.265897 | 12.86954 | 960.2507 | 359.8821 |
| 18815 | 313.7197 | 0.2207899 | 0 | 195.9101 | 470.6974 |
| 115797 | 262.62 | 0.1754692 | 22.15006 | 1550.183 | 477.8 |
| 90805 | 417.0828 | 0.294277 | 7.28869 | 235.7349 | 344.5846 |
| 129763 | 279.9218 | 0.2988943 | 15.10381 | 867.5535 | 328.7179 |

Investigating the input variables and the resulting Cost variable shows the same outlier pattern observed in the regression model with all four variables.

The pattern is, that an extremely high Cost is created when the stand is extremely densely stoked (high Trees per Acre value), while at the same time the volume of the trees is very low (low Volume per Tree value). This pattern will be further discussed in Chapter 8.

## Linearity of data

As in the regression model with all four predictors, the residuals plotted below of the spatially explicit model, show a couple of high outliers, but the majority of the values are located around the 0 line. This suggests that the assumption that the relationship is linear is reasonable. As in the original model the residuals form a "horizontal band" around the 0 line. It suggests also that the variances of the error terms are equal (Teetor and Loukide 2011).


Figure 41: Spatial Regression Model Residuals vs Fitted Plot
The same applies for the Normal Q-Q plot. As in the original model, the points in the Normal Q-Q plot are more-or-less on the line, indicating that the residuals follow a normal distribution (Teetor and Loukide 2011). The graph seems to follow a normal distribution reasonably well, except in the extreme tails. It is a curved pattern and is skewed to the right. The individual points on the far end are also outliers.


Figure 42: Spatial Regression Model Normal Q-Q Plot

The Scale-Location plot and the Residuals vs Leverage plot are similar to the plot from the four-variable regression model. Again the majority of the points are in a group, with none too far from the center. As in the four-variable regression model, some outliers are visible and were already discussed above.


$$
\begin{gathered}
\text { Leverage } \\
\operatorname{Im}(C \sim S+S D)
\end{gathered}
$$



Figure 44: Spatial Regression Model ScaleLocation Plot

Figure 43: Spatial Regression Model Residuals vs Leverage Plot

After investigating the four plots, it can be said that the data satisfies the assumption of a linear model. Outliers do exist. They will be discussed in Chapter 8.

### 4.4. Comparing the Two Models

The Analysis of variance (ANOVA) function is used to compare the two models. The ANOVA analysis performs an F test between the two models.

```
Model 1: C ~ I(VPT^(-0.72)) + TPA + S + SD
Model 2: C ~ S + SD
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 161185 325961
2 161187 11317766 -2 -10991806 2717681< 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 `*' 0.05 '.' 0.1 ' ' 1
```

Comparing the two models yields a p-value of < 2.2e-16 (less than 0.05 ). This indicates that the two models are significantly different. A detailed discussion of the two models and a detailed comparison can be found in Chapter 8.

## 5. Cost Surface

Based on the developed spatially explicit linear cost model, a raster Cost Surface was generated. The Cost Surface describes, for any given location within the Colorado State Forest, the Harvest Cost per ton. First an overview of the data that goes into the Cost Surface will be given in Chapter 5.1. Next, the spatially explicit equation derived from the model will be discussed in Chapter 5.2. Last, in Chapter 5.3, the production of the Cost Surface itself will be described by explaining how the data and the equation are combined.

### 5.1. Data Overview

Two datasets are crucial for creating the Cost Surface. One is a slope raster, and the other a dataset containing the existing roads covering the area of interest.

## Slope Dataset

As mentioned in the Data Creation Chapter (Chapter 3), the National Elevation Dataset, a digital elevation raster, is available as a 10 m raster from the U.S. Geological Survey (Gesch 2007). The file is in the projection NAD83/ UTM zone 13N (EPSG:26913). A slope raster in percentages is derived from the digital elevation raster. The raster will be used to derive the values for Slope.

## Road Dataset

Knowing the location of the roads in the CSF will be necessary in order to calculate the Skidding Distance. Roads covering the entire state of Colorado are available from the OSM database via Geofabrik GmbH (2013) as a shapefile. The file is in the projection WGS 84 (EPSG:4326).

### 5.2. Spatially explicit Cost Equation

From the regression analysis in Chapter 4.3 there follows the following spatially explicit equation:

```
C = 22.8038 + 0.3272 x S + 0.007578
```

Equation 5: Spatially explicit Regression Model
The two independent variables of the regression are Slope, with a coefficient of 0.3272 $\$ / \%$, and Skidding Distance with a coefficient of $0.007578 \$ / \mathrm{tt}$. The intercept is 22.8038 \$/ton. Slope will simply be derived from the slope raster. Skidding Distance will be calculated based on the road dataset, with a function explained in the next chapter. The equation results in a Harvest Cost per ton in \$.

### 5.3. Cost Surface

In the following, the process of creating a raster Cost Surface is explained. The detailed script of the calculation can be found in Appendix IV (script CostRaster.py). The creation of the Cost Surface is done in NumPy arrays (Bressert 2012). Arrays enable calculations for Big Data at a reasonable rate.

Four steps are necessary to create the Cost Surface: For the two independent variables, Slope and Skidding Distance, two separate arrays are created. The Skidding Distance array contains the values for the variable Skidding Distance (Step 1). The Slope array contains the values for the variable Slope (Step 2). After the arrays are created, they are placed into the equation, which results in a Cost array (Step 3). Last, the Cost array is written to a raster file (Step 4). A small sample extract of the State Forest is used to illustrate the process below.

## 1. Skidding Distance Array

The first step in creating a Skidding Distance array is to convert the OSM vector roads to raster.


Figure 45: Schema rasterize roads

Next, the created raster is read as an array with the raster2array function and results in the array below. The value 0 represents the existence of a road, and the NoData value of 255 represents no existing road at the location.

```
[[255 255 255 255 0]
[255 255 255 255 0]
[255 255 255 0 255]
[255 255 255 0 255]]
```

The shp2array function of the script performs the two described steps above. Next the function roadArray2coordDict converts the array to a dictionary containing the coordinates of all array values of zero. This means the dictionary contains the coordinates of the pixels' upper-left corner where a road exists.

```
[(417615.43606907444, 4489053.83774992), (417615.43606907444,
4489043.838467314), (417605.4369691394, 4489033.839184708),
(417605.4369691394, 4489023.839902102)]
```

Last, the function nonRoadArray2coord returns the final Skidding Distance array. Each array value represents the distance to the closest road segment. The function calculates the Euclidian distance for each pixel in the original slope raster, which is the reference raster, to each coordinate pair in the above dictionary. The shortest distance
results in the Skidding Distance for each array element. The distances are calculated in meters and converted to feet. For the array below, 0 feet is where a road is located.

```
[[ 118.28238627 92.78866378 65.61089406 32.80544703 0.] ]
    [ 103.7401218 73.35547762 46.39433189 32.80544703 0. ]
    [ 98.41634109 65.61089406 32.80544703 0. 32.80544703]
    [ 98.41634109 65.61089406 32.80544703 0. 32.80544703]]
```


## 2. Slope Array

Since the Cost Surface raster will have the same extent and pixel size as the Slope raster, the Slope raster can simply be read as an array. This is done with the raster2array function.


Figure 46: Slope sample
For the sample raster the following array results:
$\left.\begin{array}{rlllll}{\left[\begin{array}{llll}{[30.87272263} & 33.02461243 & 26.57536507 & 28.77716064 \\ \hline\end{array} \quad 27.6699295\right.}\end{array}\right]$

## 3. Cost Array

The two created arrays, the Slope array and the Skidding Distance array, are put into the Cost equation from Chapter 5.2:

```
CArray = 22.8038+ SArray x 0.3272+ SDArray x 0.007578
```

This results in the final Cost array. Each array element represents a Harvest Cost per ton for the pixel in the Cost Surface:

| 33.80170128 | 34.31260379 | 31.9964593 | 32.46828809 | 31.8574028 ] |
| :---: | :---: | :---: | :---: | :---: |
| [ 33.47387534 | 32.89912664 | 30.87237398 | 32.62684217 | $34.72809601]$ |
| [ 33.65115639 | 32.57367259 | 30.36881414 | 29.86423492 | $31.72859922]$ |
| [ 34.53945443 | 33.77651149 | 31.65113416 | 29.54920197 | $29.82255521]]$ |

## 4. Cost Raster

Last, the Cost Array from Step 3 is written to a raster file by using the function array2raster, which results in the final Cost Surface. The Cost for the sample raster ranges from between 29.55 \$/ton to 34.47 \$/ton. The color range from green to red symbolizes the price range. Red colors symbolize more expensive Harvest Costs, while green colors symbolize less expensive Harvest Costs.


Figure 47: Cost Surface sample

## 6. Results

After the data was created (Chapter 3) and statistically analyzed (Chapter 4), and based on the analysis a Cost Surface was created (Chapter 5), the following results can be presented. First, the statistical results are discussed. This includes the influence of each variable on timber Harvest Costs as well as the two developed regression models. Second, the specific Harvest Costs for the Colorado State Forest are shown. Third, the created Cost Surface based on the spatially explicit regression is shown.

### 6.1. Statistical Results

Three things result from the statistical analysis: (1) a better understanding of the influence of the input variables on the Harvest Cost, (2) the cost equation which enables calculation of the Harvest Cost based on all four predictors and (3) the cost equation which enables calculation of the Harvest Cost solely based on the spatial predictors.

## Input Variables

The generated input variables are all normally distributed except for the variable Volume per Tree as outlined in Chapter 4.1.1. Only the two tree variables Trees per Acre and Volume per Tree have a relevant correlation. The other variables have no significant correlation.
Overall the four variables explain $98.28 \%$ of the Harvest Cost using the given model.
All of them have an importance in predicting Cost. The Trees per Acre variable, with $3.2 \%$ explanatory value, has the least importance, followed by Slope with $9.5 \%$. Skidding Distance is the most important spatial variable with $29.9 \%$ explanatory value. And Volume per Tree is the most important variable out of the four, with 55.7\% explanatory value. The two spatial variables taken together explain $39.4 \%$ of the Cost. Below is again overview of the relative importance of each predictor on Cost:

```
Proportion of variance explained by model: 98.28%
Metrics are not normalized (rela=FALSE).
Relative importance metrics:
```

lmg
I (VPT^(-0.72)) 0.55669591
TPA 0.03239262
S 0.09457912
SD 0.29918160

## Cost equation based on all four variables

The created equation was validated in Chapter 4.2.2. The model and its coefficients are both statistically significant. The model is useful since it has a multiple R-squared
of 0.9828 . With the exception of some outliers, the model fits the data well and satisfies the assumptions of a linear regression. The outliers are created when the stands are extremely densely stocked (high Trees per Acre values), with a low timber volume (low Volume per Tree value), or when the Slope variable exceeds the operable slope of ground based harvesting machines of $40 \%$.
The linear equation with the all four variables is the following:

```
C = -6.418+ 129.5 x VPT (-0.72) + -0.003348 x TPA + 0.3089 x S +
    0.007537 x SD + &i
```

Equation 6: Final Regression Model with all Predicotrs
The individual coefficients of the equation are listed below:

| Intercept | -6.418326223 |
| :--- | :--- |
| $\mathrm{VPT}^{(-0.72)}$ | 129.509646540 |
| TPA | -0.003347710 |
| S | 0.308924486 |
| SD | 0.007536668 |

## Cost equation based solely on the spatial variables

From the original equation with all the predictors, a spatially explicit equation with only the spatial predicators was derived. The model was validated in Chapter 4.3.2. It is statistically significant and its coefficients are also statistically significant. The model is useful since it has a multiple R-squared of 0.4212 . The degree to which it is useful, will be discussed in Chapter 8. The spatially explicit equation has a similar outlier pattern as the original model. The outliers are created when the stands are extremely densely stocked (high Trees per Acre values), with a low timber volume (low Volume per Tree value). Also the model fits the data well and satisfies the assumptions of a linear regression.
The linear equation with the two variables is the following:

```
C = 22.83 + 0.3306 x S + 0.007526 x SD + &i
```

Equation 7: Final spatially explicit Regression Model
The individual coefficients of the equation are listed below:

| Intercept | 22.827810392 |
| :--- | :--- |
| S | 0.330640364 |
| SD | 0.007526195 |

### 6.2. Colorado State Forest Harvest Costs Results

The Table below gives an exemplary overview comparison of the calculated Harvest Cost for 10 stands of the Colorado State Forest. The full Table can be found in Appendix V. The Table shows for each stand the input variables and in addition the calculated Harvest Costs. It shows the Harvest Costs from the full model (Chapter 2), from the full cost equation, and from the spatially explicit cost equation.

| ID | TPA | VPT | S | SD | Full <br> Model | Full <br> Equation | Spatial <br> Equation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 460.43 | 6.00 | 19.57 | 982.11 | 47.37 | 45.17 | 36.69 |
| $\mathbf{2}$ | 249.05 | 10.02 | 8.11 | 1273.00 | 34.59 | 33.15 | 35.09 |
| $\mathbf{3}$ | 134.77 | 13.98 | 15.24 | 617.87 | 26.49 | 25.21 | 32.52 |
| $\mathbf{4}$ | 465.84 | 4.04 | 26.99 | 267.52 | 55.49 | 53.95 | 33.77 |
| $\mathbf{5}$ | 156.87 | 21.79 | 35.38 | 341.41 | 21.60 | 23.50 | 37.09 |
| $\mathbf{6}$ | 210.14 | 13.79 | 20.11 | 324.26 | 24.27 | 24.45 | 31.92 |
| $\mathbf{7}$ | 357.85 | 8.00 | 12.23 | 1658.22 | 42.66 | 41.48 | 39.35 |
| $\mathbf{8}$ | 219.54 | 13.96 | 1.48 | 442.08 | 22.34 | 19.37 | 26.65 |
| $\mathbf{9}$ | 367.15 | 9.04 | 16.08 | 2039.09 | 44.27 | 42.96 | 43.49 |
| $\mathbf{1 0}$ | 328.22 | 6.07 | 23.11 | 396.65 | 42.52 | 41.99 | 33.45 |
|  |  |  |  | Table 3. Harvest Costs CSF |  |  |  |

Table 3: Harvest Costs CSF
In addition, the three calculated Harvest Costs are displayed for the ten stands of the CSF in the bar chart below, in order to compare them:


Figure 48: Sample Harvest Cost CSF Comaparison
The mean Harvest Cost of all stands is $36.38 \$ /$ ton from the full model, $35.62 \$ /$ ton from the full equation, and 39.3 /ton from the spatially explicit equation. In addition, Table 4 below gives an overview of the minimum and maximum values of the calculations and of the standard deviations. The full model and the full equation have roughly the same standard deviations, while the spatially explicit equation's standard deviation is significantly lower.

|  | Full model | Full equation | Spatial <br> equation |
| :---: | :---: | :---: | :---: |
| MEAN | 36.3799 | 35.6203 | 39.2976 |
| MIN | 16.6285 | 15.3259 | 26.2431 |
| MAX | 61.5810 | 60.7428 | 63.9345 |
| STDEV | 10.2949 | 10.1817 | 8.6541 |

Table 4: Harvest Cost Statistics CSF

### 6.3. Cost Surface Results

Based on the spatially explicit equation produced in Chapter 4.3 a raster Cost Surface was produced in Chapter 5. The image below shows the Cost Surface. It shows for each pixel ( $10 \mathrm{~m} \times 10 \mathrm{~m}$ ); the potential Harvest Cost for the southern part of the Colorado State Forest. The mean Harvest Cost is 46.14 \$/ton with a standard deviation of 17.51 \$ ton. The lowest Harvest Cost is $23.38 \$ /$ ton and the maximum Harvest Cost is 16816 \$ /ton. The color range from green to red symbolizes the price range. The colors range from green (<25\$/ton), to light green (< $40 \$ /$ ton), to orange (<50 \$/ton), to red ( $>50.01 \$ /$ ton). The black lines are roads covering the State Forest.


Figure 49: Cost Surface Southern Part of CSF

## 7. Application Example

The research and the results of this paper were put into practice by developing a forest management web application. It can be accessed via the URL www.wald.io.

First the need of the application will be explained in Chapter 7.1. Followed by Chapter 7.2 where the application itself will be described.

### 7.1. Need of Application

As outlined in the introduction of this paper, being able to calculate Timber Harvest Costs solely with spatial variables brings various advantages. One of the main points is that it helps forest planners to better manger their forests by having the ability to see the potential Harvest Costs for an entire area. The application realizes that by providing mainly two functionalities:

1. It visualizes the Cost Surface of the CSF (produced in Chapter 5) as a web map. The Cost Surface is based on the regression model with the spatial variables. In this way the forester gets a complete overview of the forest's potential Harvest Cost. Also the application allows the user to digitize a forest stand and then reports the potential Harvest Costs for the digitized stand. The user gets immediate feedback since the Cost Surface is pre-generated.
2. In addition, if the user has inventory data of the stand, they can enter these information and the application returns the exact Harvest Cost based on the full harvest model.

Besides supporting the user in better decision making by providing crucial Harvest Cost information, this application is also a tool to evaluate the quality of this research, since the user can compare the estimated cost (based on the Cost Surface and the regression) and the detailed calculated cost (based on the full harvest model).

### 7.2. Application Description

The application consists of a Front-End and Back-End part. The Front-End shows the map interface as a single web page and is described in Chapter 7.2.1. The Back-End application consists of (1) a Python Flask web application framework, which communicates with the Front-End and runs the Python scripts to calculate the Harvest Costs. In addition it consists of (2) a GeoServer, which serves the data as OGC Web Map Services (WMS) and OGC Web Feature Services (WFS). The Back-End application is described in Chapter 7.2.2. The chart schema below gives an overview of the Front-End and Back-End application with its various components.


Figure 50: Schema Application

### 7.2.1. Application Front-End

The Application Front-End is laid out in the following. First the user interface, including the visual appearance and the application workflow, is explained. This is followed by the technical specifications of the application.

### 7.2.1.1. User Interface

The Front-End consists of a single web page. The individual elements of the page are described below, followed by Figure 51 which shows the Front-End user experience after a stand was digitized and all the cost information are shown in the info container. Last the workflow of the Front-End Application is explained.

## Web Page Elements

## Map

Besides basic map elements like zooming and panning, the map contains several layers:

- Two base maps are served as OGC Web Map Services (WMS). The base maps are a terrain layer (MapBox 2013) and a satellite layer (MapBox 2012). The two layers can be toggled with a layer switcher.
- In addition to the base maps the Cost Surface is served as WMS. The Cost Surface can be turned on and off.
- The boundary of the CSF (Colorado Parks and Wildlife 2013) is served as an OGC Web Feature Service (WFS) in GeoJSON format, which can also be turned on and off.
- A draw layer which saves the polygon the user digitizes, is part of the map as well.


## Stand Digitizer

The site has a draw control which enables the user to draw, edit and delete a polygon.

## Info Sign

The Info Sign informs the user to first digitize a timber stand. The sign disappears after the first stand is drawn.

## Info Container

The Info Container informs the user about the application. The top contains the application name, contact information and the legend for the Cost Surface. After the user starts digitizing a stand it displays the calculation results and lets the user specify further settings.

## Web Page Overview



Figure 51: Front-End Overview

## Web Page Workflow

In the following the workflow of the application is expounded. The boxes on the right side are the aforementioned Info Containers which show the results of the calculations to the user.

1. The user starts out by digitizing the stand.
2. A Cost estimate based on the generated Cost Surface is shown to the user. The user can get a detailed calculation by clicking the "Detailed Calculation" button. If the user edits the stand during any of these steps, they will always return to this screen.
3. Next the user can specify the Trees per Acre and the Volume per Acre values, or leave the default values of 300 Trees per Acre with a Volume of $4000 \mathrm{ft}^{2} / \mathrm{ac}$.
4. After clicking the "Calculate" button in the previous screen, the Skidding Distance to the closest road is determined by the application, as well as the Slope. Based on the four variables the actual Harvest Cost is calculated from the application and returned to the user.

5. If the user thinks Slope, Skidding Distance, or the earlier specified tree data need adjustment; they can adjust the values and recalculate the Harvest Cost by clicking the "Recalculate" button.


Figure 52: Front-End Workflow

### 7.2.1.2. Technical Specifications

The web application is shown by a single HTML page (Appendix VI index.html) with an associated style sheet (Appendix VI style.css).
The map element is created with the open source web mapping library Leaflet (Agafonkin 2014) and adapted with JavaScript (Appendix VI site.js). The Leaflet draw plugin is used to digitize the stand (Toye 2014). The Terraformer plugin (ESRI 2013) is used to convert the Leaflet GeoJSON data format to Well-known text (WKT) format in order to send it to the Back-End application.
JavaScript with jQuery (jQuery Foundation 2014) is used to make the dynamic web elements (e.g. disappearance of Info Sign) and to communicate with the Back-End Python Flask Application via AJAX requests.

### 7.2.2. Application Back-End

The Back-End of the application consists of two parts; the GeoServer and a Python Flask Application, which is the core part of the application. The Python Flask Application is explained in Chapter 7.2.2.1 and the GeoServer is explained in Chapter 7.2.2.2. The chart below illustrates again the major parts of the application.


Figure 53: Back-End Overview

### 7.2.2.1. Flask Application

As a web framework Flask is used. It is a lightweight web application framework written in Python and based on the WSGI toolkit and Jinja2 template engine (Ronacher 2013). The run.py (Appendix VII) script communicates with the Front-End application. The script consists of three functions: (1) It serves the index.html file, (2) it calculates the cost estimate, and (3) it calculates the cost detailed based on the cost model. The latter two are explained in the following.

## Estimated Cost

The application gets the stand coordinates in Well-known text (WKT) format in the projection WGS 84 (EPSG:4326) as a JSON string from the Front-End application. Next it calls from the script estimatedCost.py the function get_zonal_stats and passes the stand coordinates to the function. The function returns a Harvest Cost per ton estimate for the given stand. It does that by calculating the zonal statistics for the stand of the Cost Surface, by utilizing the Python library rasterstats (Perry 2014). The Flask application returns the cost estimate value as a JSON to the Front-End application.

## Calculated Cost

The application receives the stand coordinates in Well-known text (WKT) format in the projection WGS 84 (EPSG:4326), as well as the values for Slope, Skidding Distance,

Trees per Acre and Volume per Acre from the Front-End application. The values are also transmitted as a JSON string. After receiving the data, the run.py script calls from the calculatedCost.py script the function cost_func, which is explained below, and passes into that function all the above-mentioned values. The function returns Slope, Skidding Distance, Harvest Cost per ton and Total Harvest Cost. These four variables are then again returned to the Front-End application as a JSON string.

The function cost_func goes through the following steps:

1. First it reprojects the stand geometry from WGS 84 (EPSG:4326) to NAD83/ UTM zone 13N (EPSG:26913) by using the OSR package from the GDAL library (Rouault 2011). The Front-End application uses the projection WGS 84. In order to do various calculations (e.g. distance calculation) a projection that fits the study area and uses meters as units needs to be used.
2. The area covering the stand is calculated with the OGR package of GDAL.

3. If the Slope was not specified from the FrontEnd application, the script calculates the zonal statistics of the Slope for the stand with the rasterstats library.

4. Also if the Skidding Distance was not specified from the Front-End application, the script calls the function skidDist from the skidding.py script, which takes in the stand geometry and returns the Skidding Distance. See the flow chart below to see how the

function works.
5. Next the Total Volume of the stand is calculated. The calculation is based on the Volume per Acre and the Total Acreage. Also the Total Weight is calculated. This is based on the Total Volume and the weight for lodgepole pine (Engineering Toolbox 2014).
6. The function harvestcost is called from the script harvesting.py. It does exactly what is described in the model development section in Chapter 2. It takes in the four arguments Slope, Skidding Distance, Volume per Acre, and Trees per Acre. After processing it returns a Harvest Cost per ton.
7. Finally the script calculates the Total Harvest Cost and returns to the Front-End application the following calculated variables: Slope, Skidding Distance, Harvest Cost per ton, and the Total Harvest Cost.


Figure 55: Schema createQuaterCentroids function
2. The second part differs already from the process of the Data Creation Chapter. For each of the four points, the function landing is called. Landing reprojects the points from NAD83/ UTM zone 13N (EPSG:26913) to WGS 84 (EPSG:4326). This is necessary to call in the next step the OSRM API nearest function (Luxen 2014). The API call returns the nearest point on an OpenStreetMap street segment. For each centroid an individual call is made. Based on these four calls, four landings on an existing street are created.
Instead of making an API call as described here, the process described in Chapter 3 downloads the surround road segments in order to determine the closest landing. By downloading the road segment, landings could only be created on vertices of the OSM road, while by making an API call to the OSRM server, landings can be created anywhere on the road segment. Though this process requires four API calls per stand, while the process in Chapter 3 only requires one API call. Since this process is only done for one stand, this is justifiable, while the other process has to do it for 160,000 sub units.


Figure 56: Schema landing function
3. Next the stand and the landings are converted to a raster. For each raster cell in the stand, the Euclidean distance to each of the four landings is calculated. The shortest distance is stored in a list. The conversion to raster is necessary to do the distance calculations in an array, which brings great speed performance benefits. Finally the mean of that list is calculated which results in the final average Skidding Distance of that stand.

distance from each raster cell of stand (black cell) to closest landing (grey cell)
mean(List)
$\rightarrow$ average Skidding Distance
Figure 57: Schema Skidding Distance Calculation

### 7.2.2.2. GeoServer

Besides the Flask Application a GeoServer (GeoServer 2014) runs and stores three layers; the satellite imagery covering the state forest as a GeoTIFF, the Cost Surface produced in Chapter 5 as a GeoTIFF, and the CSF boundary as a Shapefile. The two raster layers are served as an OGC Web Map Services (WMS) and the CSF boundary is served as an OGC Web Features Service (WFS). These services are called from the Front-End Application via an AJAX request.

## 8. Discussion

In the following the results from the Statistical Analysis are discussed (Chapter 8.1). This is followed by the discussion of the Harvest Costs for the Colorado State Forest, which serves as a validation of this research (Chapter 8.2).

### 8.1. Discussion of the Statistical Analysis

The created multiple linear regression model explains $98.28 \%$ of the Harvest Cost. $1.72 \%$ of the Harvest Cost is unexplained. A possible reason for the unexplained Cost is that the input variables are not perfectly normally distributed, as outlined in Chapter 4.1.1. This causes outliers and will be discussed as below.

The spatially explicit regression model without the Non-Spatial Predictors explains $40.45 \%$ of the Harvest Cost. The remaining unexplained variance is explained by the tree variables, which are not part of this regression model. Outliers also occurred in this model, and are discussed below.

## Outliers

Two outlier patterns were detected and stated in Chapter 4.2.2 and in Chapter 4.3.2. The first pattern, that high Harvest Costs occur in extremely densely stocked stands with a low volume of the trees, is a realistic real world condition and an expected silvicultural behavior. If stands are extremely densely stocked the Volume per Tree value is low. Therefore the outliers were not removed from the dataset. But from a practical point of view these stands are not likely to be harvested.
The second pattern is that high Harvest Costs arise in stands with a high Slope value. This is also an expected behavior; the steeper the slope, the more expensive it is to harvest. But in real world conditions slopes steeper than $40 \%$ are not harvested with ground based machinery. Yet the given stands of the CSF are located in this terrain and are assigned by the CSF as harvestable areas. Therefore these outliers were also not removed from the dataset.
Even though both patterns can occur in real world situations, it is likely that they caused the unexplained variance in Cost. Future studies should take into account the exclusion of stands that show these outlier patterns.

## Interpretation Regression Models

The intercept of the regression with all predictors is $-3.66 \$ / t o n$. This means the basic Cost to harvest starts out with -3.66 \$/ton. The intercept of the spatially explicit regression is $22.80 \$ /$ ton. This is the Cost if the stand is in an absolute flat ground (Slope of $0 \%$ ), and the stand is located at the road (Skidding Distance of 0 ft .).

The coefficient for the transformed variable, Volume per Tree (exponent of -0.72) is $133.51 \$ / \mathrm{ft}^{3}$ and for the variable Trees per Acre it is $-0.0031 \$ /$ tree. This means that if
the tree variables Volume per Tree or Trees per Acre increase, the Cost will decrease. For each additional harvested tree per acre the Cost will decrease by 0.3 cent/tree ( $0.0031 \$ /$ tree). In the case of the variable Volume per Tree this is different. Since the variable is transformed with the exponent -0.72 the Cost for Volume per Tree will never be below $0 \$ / \mathrm{ft}^{3}$. Though the higher the variable Volume per Tree is, the closer the value gets to $0 \$ / \mathrm{ft}^{3}$. For instance, with a Volume per Tree of $1 \mathrm{ft}^{3}$, the Cost would increase by 133.51 \$/ton. But with a Volume per Tree of $100 \mathrm{ft}^{3}$, the Cost will increase by only $4.84 \$ /$ ton. The higher the variable Volume per Tree is, the less expensive it is to harvest.
The following example illustrates this behavior. If 1 tree per acre with a volume of $1 \mathrm{ft}^{3}$ is harvested on a flat ground (Slope of 0\%) and harvested directly at the road (Skidding Distance of 0 ft .), the Cost to harvest this single tree will be $129.84 \$ / \mathrm{t}$.
Another more realistic example based on the mean values of the input data is the following: To harvest 305.53 trees per acre with a Volume per Tree of $9.98 \mathrm{ft}^{3}$ directly at the road with a flat ground costs $20.86 \$ /$ ton.

In the regression with all predictors, the coefficient for Slope is $0.31 \$ / \%$ and for Skidding Distance it is $0.0076 \$ / \mathrm{ft}$. The value for the coefficient for the variable Skidding Distance is in the spatially explicit regression the same. The value for the Slope coefficient is $0.33 \$ / \%$. Since both coefficients are positive, Harvest Cost will increase if Slope increases or the distance to the road increases. For each percent increase in Slope, the Harvest Cost will increase by $0.31 \$ /$ ton for the regression with all predictors and $0.33 \$ /$ ton for the spatially explicit regression. The Harvest Cost will also increase by $0.0076 \$$ /ton for each foot increase of the Skidding Distance in both models. Or expressed in other units, the Harvest Cost will increase by $7.58 \$ / t o n$ for each additional 100 feet to skid.
Increasing the Slope by $1 \%$ in the above stated example (average values for the tree data, Slope of 0\%, Skidding Distance of 0 ft .) will increase the Harvest Cost from 20.86 \$/ton to 21.17 \$/ton. In addition Harvest Cost will increase to 21.93 \$/ton if the tree needs to be skidded by 100 ft .
The lower coefficient of Skidding Distance compared to Slope does not contradict the relative importance of the predictors (Skidding Distance 29.9\%, Slope 9.5\%), since the range of Skidding Distance is between 2.78 ft . and 4919.78 ft . and the range of Slope is only between $0 \%$ and $81.10 \%$

### 8.2. Discussion of the CSF Harvest Costs

The calculated Harvest Costs for the specific stands of the Colorado State Forest based on the full harvest model, the regression model, and the spatially explicit regression model, serve as a validation of this research and its methods. The regression with all four predictors is useful since it produced almost the identical results
as were produced with the full model. The mean of all stand's Harvest Costs differed only by $0.75 \$ /$ ton and the standard deviation differed by $0.11 \$ /$ ton. This confirms again the high R-squared of 0.98 , but also confirms the unexplained $1.72 \%$ variance of the regression. The spatially explicit regression differs more from these results. The mean of the regression with all predictors to the mean of the spatially explicit regression differs by 3.69 \$/ton. The standard deviation of the spatially explicit regression is with $8.6 \$ /$ ton significantly lower than the full regression model's standard deviation of $10.18 \$ / t o n$. This is because the spatially explicit regression is missing the two Non-Spatial Predictors, and assumes therefore a fixed value for the variables. Therefore the variance in Cost is smaller.
The produced Cost Surface for the southern part of the Colorado State Forest with a mean Harvest Cost of 40.83 \$/ton and a standard deviation of $15.75 \$ /$ ton are higher than the other calculations means and standard deviations. The high mean value and the high standard deviation, result from the fact that many stands, or in the case of the Cost Surface pixels, are not connected to roads. Also the map (Figure 49) clearly shows that stands close to the road are in the lower price range (green color). Therefore extreme high Skidding Distance values result. Therefore the Cost Surface is only useful in areas where roads already exist, though usually roads are not created until a stand is to be harvested. This makes planning and cost calculation very difficult. Therefore a way that estimates where potential logging roads will be located, is needed to calculate meaningful Harvest Costs for areas without road access.

## 9. Conclusion

The research showed that Spatial Predictors predict 40\% of Timber Harvest Costs. The remaining $60 \%$ are predicted by the variables Trees per Acre and Volume per Tree. Therefore the research question, which asks what the significance of Spatial Predictors on Timber Harvest Costs is, can be answered as follows: Spatial Predictors have a significance of $40 \%$ on Timber Harvest Costs.
The gap in literature, which is caused by the lack of studies investigating the influence of all predictors on Timber Harvest Costs, including all Spatial Predictors, can be closed with the developed methodology and results of this paper.

The second research question, which asks if it is possible to calculate Timber Harvest Costs solely based on Spatial Predictors, depends on the use case:
It is not possible to calculate with this method an absolute Harvest Cost, because an Rsquared of 0.4045 of the spatially explicit regression model is too low to calculate Harvest Costs solely based on Spatial Predictors.
But this study was conducted in order to answer if it is possible to calculate Timber Harvest Costs for use in optimization models. Optimization models require iterating through millions of potential solutions and comparing results in terms of an objective function. For this kind of optimization a R-squared of 0.4045 is sufficient because it gives relative Harvest Costs. This allows optimization models to compare the Costs of different stands and scenarios. These models do not require absolute Harvest Cost. Therefore the results of this research make it possible to include Harvest Costs in optimization models for ecological forestry approaches. With their inclusion optimization models are significantly improved.

The study also showed that Skidding Distance is a major factor in calculating Harvest Cost (29.9\%). Skidding Distance heavily relies on the location of roads. As stated, roads usually are not created until a stand is harvested; which makes it very difficult to estimate the Skidding Distance properly. Therefore further research should be conducted on ways to determine Skidding Distance precisely.
Also this research is restricted to a limited study area. The method of this study should be repeated in other areas and the results compared via further analysis.

While the famous myth in GIS, that $80 \%$ of all data have a spatial component (Franklin and Hane 1992), remains unverified, this study proves that $40 \%$ of all timber harvest data have a spatial component.

## Bibliography

Agafonkin, Vladimir. Leaflet. 01 08, 2014.
https://github.com/Leaflet/Leaflet/blob/master/LICENSE (accessed 02 02, 2014).
Arriagada, Rodrigo A., Frederick W. Cubbage, Karen Lee Abt, and Robert J. Huggett Jr. "Estimating harvest costs for fuel treatments in the west." Forest Products Journal 58 (7/8) (2008): 24-30.

Becker, Dennis R., Debra Larson, Eini C. Lowell, and Robert, B. Rummer. User Guide for HCR Estimator 2.0: Software to Calculate Cost and Revenue Thresholds for Harvesting Small- Diameter Ponderosa Pine . General Technical Report, Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station., 2008.

Boswell, B. 1998. Vancouver Island mechanized thinning trials. Technical Note TN271, Forest Engineering Res. Inst. of Canada, Pointe Claire, PQ.

Bressert, Eli. SciPy and NumPy. Beijing Sebastopol: O'Reilly, 2012. Bruce Ratner, Ph.D. The Correlation Coefficient: Definition . 03 02, 2012. http://www.dmstat1.com/res/TheCorrelationCoefficientDefined.html (accessed 08 01, 2014).

Bruce R. Hartsough, Erik S. Drews, Joseph F. McNeel, Thomas A. Durston, and Bryce J. Stokes. "Comparison of mechanized systems for thinning ponderosa pine stands and mixed conifer stands." Forest Products Journal 47(11/12) (1997): 5968.

Burnham, Kenneth P., and David R. Anderson. Model selection and multimodel inference : a practical information-theoretic approach. New York, NY: Springer, 2010.

Colorado Parks and Wildlife . "Colorado Parks and Wildlife property boundaries." Colorado Parks and Wildlife, 10 30, 2013.

Colorado Parks and Wildlife . Colorado Parks and Wildlife State Forest. 01 01, 2014. http://cpw.state.co.us/placestogo/parks/StateForest/Pages/default.aspx (accessed 10 06,2014 ).

Conner, Roger C., Tim O. Adams, and Tony G. Johnson. "Assessing the potential for biomass energy development in South Carolina." Res. Pap. SRS-46 (U.S. Department of Agriculture Forest Service, Southern Research Station), 2009: 19.

Dixon, Gary E. Essential FVS: A User's Guide to the Forest Vegetation Simulator. Fort Collins, CO: United States Department of Agriculture Forest Service, 2002.

Ecotrust. Forest Planner . 05 01, 2014. http://forestplanner.ecotrust.org/trees/about-the-forest-planner\#about (accessed 10 10, 2014).

Engineering Toolbox. Wood Species - Weight at various Moisture Contents. 05 15, 2014. http://www.engineeringtoolbox.com/weigt-wood-d_821.html (accessed 10 10, 2014).

ESRI. ESRI Terraformer. 08 15, 2013.
https://github.com/Esri/Terraformer/blob/master/LICENSE (accessed 09 02, 2014).

Fight, Roger D., Bruce R. Hartsough, and Peter Noordijk. Users Guide for FRCS: Fuel Reduction Cost Simulator Software. General Technical Report, Portland, OR: Paciic Northwest Research Station, 2006.

Franklin, Carl, and Paula Hane. "An introduction to GIS: linking maps to databases." Database 15 (2) (1992): 17-22.

Geofabrik GmbH . "GeoFabrik OpenStreetMap Colorado." GeoFabrik. 2013. http://download.geofabrik.de/north-america/us/colorado.html (accessed 07 23, 2014). GeoServer. About - GeoServer. 01 01, 2014. http://geoserver.org/about/ (accessed 06 02, 2014).

Gesch, D.B. "The National Elevation Dataset." Digital Elevation Model Technologies and Applications: The DEM Users Manual (American Society for Photogrammetry and Remote Sensing) 2 (2007): 99-118.

Goodchild, Michael F., Bradley O. Parks, and L. T. Steyae. Environmental modeling with GIS. New York, NY: Oxford University Press, 1993.

Greene, W.D. and J.F. McNeel. 1991. Productivity and cost of sawhead feller-bunchers in the South. Forest Products Journal 41(3): 21-36.

Gingras, J.F. 1988. The effect of site and stand factors on feller-buncher performance. Technical Report TR-84, Forest Engineering Res. Inst. of Canada, Pointe Claire, PQ.

Gingras, J.F. 1996. The cost of product sorting during harvesting. FERIC Technical Note TN-245, Forest Engineering Res. Inst. of Canada, Pointe Claire, PQ.

Gonsior, M.J. and J.M. Mandzak. 1987. Mechanized systems for harvesting small-stem lodgepole pine in mountainous terrain. IN: R.L. Barger (comp.) Management of SmallStem Stands of Lodgepole Pine-Workshop Proceedings. General Technical Report INT-237. USDA Forest Service, Intermountain Research Station, Ogden, UT: 53-66.

Hartsough, B.R. 2001. Productivity and cost of harvesting to maintain high structural diversity, and resulting damage to residual trees. Final report to the USDA Forest Service Pacific Southwest Research Station on Cooperative Agreement USDA-PSW-95-0028CA. University of California, Davis. 29 pages + appendices.

Hartsough, Bruce R., Xiaoshan Zhang, and Roger D. Fight. "Harvesting cost model for small trees in natural stands in the interior northwest." Forest Products Journal 51(4) (2001): 54-61.

Hartsough, Bruce R., Erik S. Drews, Joseph F. McNeel, Thomas A. Durston, and Bryce J. Stokes. Forest Products Journal 47(11/12) (1997): 59-68.

Henderson, B. 2001. Roadside harvesting with low ground-pressure skidders in northwestern British Columbia. FERIC Advantage 2(54), Forest Engineering Res. Inst. of Canada, Pointe Claire, PQ.

Holtzscher, M. and B. Lanford 1997. Tree diameter effects on costs and productivity of cut-to-length systems. For. Prod. J. 47(3):25-30.

Hubbard, James E. Colorado State Forest Forest Managment Plan. Managment Plan, Walden, CO: Colorado State Forest, 1988.

Jaccard, James, and Robert Turris. Interaction effects in multiple regression. Oaks, CA: Sage Publications, 2003.

Johnson, L.R. 1988. Summary of production and time studies of mechanized harvesting equipment in the intermountain west. Forest Products Department, University of Idaho, Moscow.

Johnson, L.R. 1979. Production of wood from small diameter stands: a cost assessment. Transactions of the American Society of Agricultural Engineers 22(3): 487-493.
jQuery Foundation. License / jQuery Foundation. 07 02, 2014.
https://jquery.org/license/ (accessed 10 01, 2014).
Keegan III, Charles E., Carl E. Fiedler, and Fred J. Stewart. " <p> Cost of Timber Harvest Under Traditional and "New Forestry" Silvicultural Prescriptions." Western Journal of Applied Forestry (Society of American Foresters) 10, no. 1 (01 1995): 3642(7).

Keegan, Charles E., III, Michael J. Niccolucci, Carl E. Fiedler, J. Greg Jones, and Roy W. Regel. "Harvest cost collection approaches and associated equations for restoration treatments on national forests. (Management)." Forest Products Journal, 2002.

Kellogga, L.D., and P. P. Bettingera. " Highlight the Article title - Start CrossMark Snippet v1.3 abstract content Thinning Productivity and Cost for a Mechanized Cut-toLength System in the Northwest Pacific Coast Region of the USA." Journal of Forest Engineering /abstract content 5, no. 2 (1994): 43-54.

Kosicki, K. 2000. Productivities and costs of two harvesting trials in a western Alberta riparian zone. FERIC Advantage 1(19), Forest Engineering Res. Inst. of Canada, Pointe Claire, PQ.

Kosicki, K. 2002. Evaluation of Trans-Gesco TG88C and Tigercat 635 grapple skidders working in central Alberta. FERIC Advantage 3(37), Forest Engineering Res. Inst. of Canada, Pointe Claire, PQ.

Kosicki, K. 2002. Productivity and cost of summer harvesting in a central Alberta mixedwood stand. FERIC Advantage 3(6), Forest Engineering Res. Inst. of Canada, Pointe Claire, PQ.

Loeffler, Dan, David E. Calkin, and Robin P. Silverstein. "Estimating volumes and costs of forest biomass in western Montana using forest inventory and geospatial data." Forest products journal 56(6) (2006): 31-37.

Luxen, Dennis. Server API Project OSRM. 08 13, 2014. https://github.com/Project-OSRM/osrm-backend/wiki/Server-api\#nearest-point-on-a-street (accessed 09 06, 2014).

MacDonald, A.J. 1990. A case study of roadside logging in the northern interior of British Columbia. Technical Report TR-97, Forest Engineering Res. Inst. of Canada, Vancouver, BC.

MapBox. Introducing MapBox Satellite. 12 04, 2012.
https://www.mapbox.com/blog/mapbox-satellite/ (accessed 09 05, 2014).
MapBox. Mapbox Terrai . 01 01, 2013. https://www.mapbox.com/developers/vector-tiles/mapbox-terrain/ (accessed 1001,2014 ).

Miyata, E.S. 1980. Determining fixed and operating costs of logging equipment. Gen. Tech. Rep. NC-55. St. Paul, MN: U.S. Department of Agriculture, Forest Service, North Central Forest Experiment Station.

OpenStreetMap Wiki contributors. Overpass API. OpenStreetMap Wiki. 09 16, 2014. http://wiki.openstreetmap.org/w/index.php?title=Overpass_API\&oldid=1085574 (accessed 10 10, 2014).

Perry, Matthew. Rasterstats. 10 01, 2014. https://github.com/perrygeo/python-rasterstats (accessed 10 10, 2014).

Peter J. Ince, John W. Henley, John B. Grantham, and Douglas L. Hunt. Costs of harvesting beetle-milled lodgepole pine in eastern Oregon. General Technical Report PNW-GTR-165, Portland, OR: USDA Forest Service, Pacific Northwest Research Station, 1984.

Plamondon, J. 1998. Trials of mechanized tree-length harvesting in eastern Canada. Technical Note TN-273, Forest Engineering Res. Inst. of Canada, Pointe Claire, PQ.

Ronacher, Armin. Flask. 01 01, 2013. http://flask.pocoo.org/docs/0.10/ (accessed 07 02, 2014).

Rouault, Even. GDAL - Geospatial Data Abstraction Library . 12 10, 2011. http://www.gdal.org/python/ (accessed 10 04, 2014).

Schroder, P.C. and L.R. Johnson. 1997. Production functions for cut-to-length harvesting in bunched and unbunched material. IN: J.J. Ball and L.W. Starnes (eds.) Proceedings, Forest Operations for Sustainable Forests and Healthy Economies, 20th COFE Annual Meeting. COFE, Corvallis, OR: 52-61.

Silverstein, Robin P., Dan Loeffler, J. Greg Jones, Dave E. Calkin, Hans R. Zuuring, and Martin Twer. "Biomass utilization modeling on the Bitterroot National Forest." Fuels Management-How to Measure Success: Conference Proceedings. Portland, OR: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2006. 673-688.

Smidt, M. F, R. A. Tufts, and T. V. Gallagher. Stump to Mill Cost Program (STOMP). 2009. http://www.auburn.edu/academic/forestry_wildlife/forestops//stomp/ (accessed 10 15, 2014).

Society of American Foresters. SAFnet Dictionary Definition for [clearcut]. 06 11, 2010. http://dictionaryofforestry.org/dict/term/clearcut (accessed 10 03, 2014).

Teetor, Paul, and Michael K. Loukide. R cookbook. Sebastopol, CA: O'Reilly Media, 2011.

Thompson, Jason. Forest Residue Trucking Simulator (FoRTS). 03 14, 2014. https://www.frames.gov/rcs/7000/7652.html (accessed 10 10, 2014).

Townsend, Hunter. "Colorado State Forest Timber Sales." Shapefile. Walden, CO: Colorado State Forest Service, 01 01, 2014.

Toye, Jacob. Leaflet Draw. 10 03, 2014. https://github.com/Leaflet/Leaflet.draw (accessed 10 10, 2014).

Tufts, R.A., B.L. Lanford, W.D. Greene, and J.O. Burrows. "Auburn harvesting analyzer." The Compiler 3 (2) (1985): 14-15.

Tufts, R.A., B.J. Stokes and B.L Lanford. 1988. Productivity of grapple skidders in southern pine. Forest Products Journal 38(10): 24-30.

USDA Forest Service - Northern Research Station Right. "Timber Harvesting." USDA Forest Service - Northern Research Station. 01 01, 2014. http://www.nrs.fs.fed.us/fmg/nfmg/docs/mn/harvesting.pdf (accessed 09 01, 2014).

Yhat. Fitting \& Interpreting Linear Models in R 05 18, 2013. http://blog.yhathq.com/posts/r-Im-summary.html (accessed 09 23, 2014).

Zuuring, H R, W L Wood, and J G Jones. OVERVIEW OF MAGIS: A MULTIRESOURCE ANALYSIS AND GEOGRAPHIC INFORMATION SYSTEM. FSRN-INT427, Ogden, UT: USForest Service, 1995.

## Appendix

## Appendix I

Costs for machine and labor for Western Colorado (Fight, Hartsough and Noordijk 2006)

|  | Faller or Bucker | All Others |
| :--- | :--- | :--- |
| Wage and benefit rates (\$/person-SH)= | 32.22 | 25.56 |


| Machine description: | FBunch er | FBun cher | FBuncher | Skidder | Skidd er | Proce ssor | Proces sor |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. Input Data: | DriveTo Tree | Swing Boom | SelfLeveli ng | small | big | small | big |
| Purchase price as of Dec $02(\mathrm{P}, \$)=$ | 176,670 | $\begin{aligned} & 365,11 \\ & 9 \end{aligned}$ | 365,119 | 164,892 | $\begin{aligned} & 235,56 \\ & 1 \end{aligned}$ | $353,34$ | 471,121 |
| Machine Horsepower rating (hp) = | 150 | 200 | 240 | 120 | 200 | 120 | 200 |
| Machine life ( n , years) = | 3 | 5 | 5 | 5 | 4 | 5 | 5 |
| Salvage value, percent of purchase price (sv\%) | 20\% | 15\% | 15\% | 20\% | 20\% | 20\% | 20\% |
| Utilization rate, ph/sh (ut\%) = | 65\% | 60\% | 60\% | 65\% | 65\% | 65\% | 65\% |
| Repair and maintenance, percent of depreciation (rm\%) = | 100\% | 75\% | 75\% | 90\% | 90\% | 100\% | 100\% |
| Interest rate, percent of avg yearly investment (in\%) = | 8\% | 8\% | 8\% | 8\% | 8\% | 8\% | 8\% |
| Insurance and tax rate, percent of avg yearly investment (it\%) = | 7\% | 7\% | 7\% | 7\% | 7\% | 7\% | 7\% |
| Fuel consumption rate (fcr, gal/hpph) $=$ | 0.026 | 0.026 | 0.026 | 0.028 | 0.028 | 0.022 | 0.022 |
| Fuel cost per gallon (fcg, \$/gal) = | 3.327 | 3.327 | 3.327 | 3.327 | 3.327 | 3.327 | 3.327 |
| Lube and oil, percent of fuel cost (lo\%) = | 37\% | 37\% | 37\% | 37\% | 37\% | 37\% | 37\% |
| Crew size (persons) = | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Crew wage and benefits (WB, \$/SH) = | 35.46 | 35.46 | 35.46 | 35.46 | 35.46 | 35.46 | 35.46 |
| Scheduled machine hours (SMH, sh/year) = | 1600 | 1600 | 1600 | 1600 | 1600 | 1600 | 1600 |

## Appendix II

## Script CostFunc.py

```
import math
import operator
def costfunc(Slope, SkidDist, TPA, VPT):
```


TreeVol $=$ VPT
\# Buncher \$/PMH
costPMHFBDTT $=181.62$ \# FbuncherDriveToTree $\$ / \mathrm{PMH}$
costPMHFBSB $=233.61$ \# FbuncherSwingBoom \$/PMH
costPMHFBSL $=238.35 \quad$ \# FbuncherSelfLeveling \$/PMH
\# Skidder \$/PMH
costPMHSS $=134.24$ \# Skiddersmall \$/PMH
costPMHSB $=189.93 \quad \#$ Skidderbig $\$ / \mathrm{PMH}$
ManualMachineSize $=\min (1.0$, TreeVol/150.0)
SkidderHourlyCost $=$ round (costPMHSS* (1-
ManualMachineSize) +costPMHSB*ManualMachineSize)
\# Processor \$/PMH
costPMHPS $=209.96$ \# Processorsmall \$/PMH
costPMHPB $=265.78 \quad \#$ Processorbig \$/PMH
MechMachineSize $=\min (1.0$, TreeVol/80.0)
ProcessorHourlyCost $=$ round (costPMHPS*(1-
MechMachineSize) +costPMHPB*MechMachineSize)
\# Loader \$/PMH
costPMHLS = 147.07 \# Loadersmall \$/PMH
costPMHLB $=180.5 \quad \#$ Loaderbig $\$ / \mathrm{PMH}$
LoaderHourlyCost $=$ round (costPMHLS*(1-
ManualMachineSize) +costPMHLB*ManualMachineSize)
WoodDensity $=39.0$ \# http://www.engineeringtoolbox.com/weigt-wood-d 821.html

```
DBH = ((TreeVol+3.675)/0.216)**0.5
ButtDiam = DBH+3.0
LogLength = 32.0
LogsPerTree = max(1.0,(32.0/LogLength)*(-0.43+0.678*(DBH)**0.5))
# General Functions
def relevancefunction(cost, relevances, volumes):
    sum_map = sum(map( operator.mul, relevances, volumes))
    if sum map == 0:
        sum_map = 0.000001
    return cost*sum(relevances)/sum_map
def volumePMH (vol, ti): # Volume per PMH (Volumte, Time) Function
    return (vol/(ti/60.0))
```

```
################################################
# Fell and Bunch
#
################################################
def fellbunch():
    # General Calculations
    if Slope<15:
            NonSelfLevelCabDummy = 1.0
            elif Slope<35:
                NonSelfLevelCabDummy = 1.75-0.05*Slope
            else :
                NonSelfLevelCabDummy = 0.0
```

CSlopeFB_Harv $=0.00015 *$ Slope**2.0+0.00359*NonSelfLevelCabDummy*Slope CRemovalsFB_Harv $=\max (0,(0.66-0.001193 * T P A * 2.47+5.357 * 10.0 * *(-$
7.0)* (TPA*2.47)**2.0))
costPMHFBSw=costPMHFBSB*NonSelfLevelCabDummy+costPMHFBSL*(1NonSelfLevelCabDummy)

DistBetweenTrees $=(43560.0 /(\max (T P A, 1))) * * 0.5$
\# Relevance
\# Drive-to-Tree
\# Melroe Bobcat (Johnson, 79)
if $\mathrm{DBH}<10$ : relevanceFBDJohnson79 $=1.0$
elif DBH<15: relevanceFBDJohnson79 $=3.0-$ DBH/5.0
else: relevanceFBDJohnson79 $=0$
if Slope<10: relevanceFBDJohnson79 = relevanceFBDJohnson79
elif Slope<20: relevanceFBDJohnson79 = relevanceFBDJohnson79*(2.0-Slope/10.0)
else: relevanceFBDJohnson79 = 0
\# Chainsaw Heads (Greene\&McNeel, 91)
if $\mathrm{DBH}<15$ : relevanceFBDGreene911 = 1.0
elif DBH<20: relevanceFBDGreene911 $=4.0-$ DBH $/ 5.0$
else: relevanceFBDGreene911 $=0$
if Slope<10: relevanceFBDGreene911 = relevanceFBDGreene911
elif Slope<20: relevanceFBDGreene911 = relevanceFBDGreene911*(2.0-Slope/10.0) else: relevanceFBDGreene911 $=0$
\# Intermittent Circular Sawheads (Greene\&McNeel, 91)
relevanceFBDGreene912 = relevanceFBDGreene911
\# Hydro-Ax 211 (Hartsough, 01)
if $\mathrm{DBH}<10$ :
relevanceFBDHartsough01 = 1.0
elif DBH<15: relevanceFBDHartsough01 = 3.0-DBH/5.0
else: relevanceFBDHartsough01= 0
if Slope<10: relevanceFBDHartsough01 = relevanceFBDHartsough01
elif Slope<20: relevanceFBDHartsough01 = relevanceFBDHartsough01*(2.0-
Slope/10.0) else: relevanceFBDHartsough01 $=0$
\# Swing Boom
\# Timbco 2520\&Cat 227 (Johnson, 88)
if $\mathrm{DBH}<15:$
relevanceFBSJohnson88 $=1.0$
elif DBH<20: relevanceFBSJohnson88 = 4.0-DBH/5.0
else: relevanceFBSJohnson88 $=0$

```
    if Slope<5:
        relevanceFBSJohnson88=0
    elif Slope<20:
        relevanceFBSJohnson88 = relevanceFBSJohnson88*(-
    1.0/3.0+Slope/15.0)
    else:
        relevanceFBSJohnson88 = relevanceFBSJohnson88
    # JD 693B&TJ Timbco 2518 (Gingras, 88)
    if DBH<12:
        relevanceFBSGingras88=1.0
    elif DBH<18:
                relevanceFBSGingras88=3.0-DBH/6.0
    else:
        relevanceFBSGingras88=0
    if Slope<5:
                relevanceFBSGingras88=0
    elif Slope<20:
        relevanceFBSGingras88 = relevanceFBSGingras88*(-
1.0/3.0+Slope/15.0)
    else:
        relevanceFBSGingras88 = relevanceFBSGingras88
    # Timbco (Gonsier&Mandzak, 87)
    if DBH<15:
        relevanceFBSGonsier87 = 1.0
    elif DBH<20:
                                    relevanceFBSGonsier87=4.0-DBH/5.0
    else:
        relevanceFBSGonsier87 = 0
    if Slope<15:
                relevanceFBSGonsier87 = 0
    elif Slope<35:
                relevanceFBSGonsier87 = relevanceFBSGonsier87*((-
3.0/4.0)+(Slope/20))
    else:
        relevanceFBSGonsier87 = relevanceFBSGonsier87
    # FERIC Generic (Gingras, J.F., 96. The cost of product sorting during
harvesting. FERIC Technical Note TN-245)
    if Slope<5:
                relevanceFBSGingras96 = 0
    elif Slope<20:
                relevanceFBSGingras96=-1.0/3.0+Slope/15.0
    else:
        relevanceFBSGingras96 = 1.0
    # Plamondon, J. 1998. Trials of mechanized tree-length harvesting in
eastern Canada. FERIC Technical Note TN-273)
    if TreeVol<20:
        relevanceFBSPlamondon98=1.0
    elif TreeVol<50:
                relevanceFBSPlamondon98 = 5.0/3.0-TreeVol/30.0
    else:
        relevanceFBSPlamondon98 = 0
    if Slope<5:
                relevanceFBSPlamondon98=0
    elif Slope<20:
        relevanceFBSPlamondon98 = relevanceFBSPlamondon98*(-
1.0/3.0+Slope/15.0)
    else:
        relevanceFBSPlamondon98 = relevanceFBSPlamondon98
    # Timbco 420 (Hartsough, B., E. Drews, J. McNeel, T. Durston and B.
Stokes. 97.
    if DBH<15:
```

```
        relevanceFBSHartsough97 = 1.0
        elif DBH<20:
        relevanceFBSHartsough97 = 4.0-DBH/5.0
    else:
        relevanceFBSHartsough97 = 0
        if Slope<5:
        relevanceFBSHartsough97 = 0
    elif Slope<20:
        relevanceFBSHartsough97 = relevanceFBSHartsough97*(-
1.0/3.0+Slope/15.0)
    else:
        relevanceFBSHartsough97 = relevanceFBSHartsough97
    # Time per Tree
    TPTJohnson79 = 0.204+0.00822*DistBetweenTrees+0.02002*DBH+0.00244*Slope
    TPTGreene911 =(-
0.0368+0.02914*DBH+0.00289*DistBetweenTrees+0.2134*1.1)*(1+CSlopeFB_Harv)
    TPTGreene912 =(-
0.4197+0.01345*DBH+0.001245*DistBetweenTrees+0.7271*1.01)*(1+CSlopeFB_Harv)
    TPAccumHartsough01 = max(1,14.2-2.18*DBH+0.0799*DBH**2)
    TimeAccumHartsough01 =
0.114+0.266+0.073*TPAccumHartsough01+0.00999*TPAccumHartsough01*DBH
        TPPMHHartsough01 = 60*TPAccumHartsough01/TimeAccumHartsough01
        BoomReachJohnson88 = 24
        TreesInReachJohnson88 = TPA*math.pi*BoomReachJohnson88**2/43560
        TreesPCJohsnon88 = max(1,TreesInReachJohnson88)
        TPCJohnson88 =
(0.242+0.1295*TreesPCJohsnon88+0.0295*DBH*TreesPCJohsnon88)*(1+CSlopeFB_Harv)
        TPTJohnson88 = TPCJohnson88/TreesPCJohsnon88
        TPTGonsier87 = (0.324+0.00138*DBH**2)*(1+CSlopeFB_Harv+CRemovalsFB_Harv)
        UnmerchMerchGingras88 = min(1.5,(285/(2.47*TPA)))
        TreesInReachGingras88 = TPA*math.pi*24**2/43560
        ObsTreesPerCycleGingras88 =(4.36+9-(0.12+0.34)*DBH+0.00084*2.47*TPA)/2
        TPCGingras88 =
max(1,min(TreesInReachGingras88,ObsTreesPerCycleGingras88))
        TPPMHGingras88 = (127.8+21.2*TPCGingras88-
63.1*UnmerchMerchGingras88+0.033*285)/(1+CSlopeFB_Harv)
        TreesInReachHartsough97 = TPA*math.pi*24**2/43560
        TreesPAccumHartsough97 = max(1,1.81-0.0664*DBH+3.64/DBH-0.0058*20.0)
        MoveFracHartsough97 =
0.5/(math.trunc(TreesInReachHartsough97/TreesPAccumHartsough97) +1)
        MoveHartsough97 = 0.192+0.00779*(24+DistBetweenTrees)
        TimeFellHartsough97 =
0.285+0.126*TreesPAccumHartsough97+0.0176*DBH*TreesPAccumHartsough97
    TPAccumHartsough97 =
MoveFracHartsough97*MoveHartsough97+TimeFellHartsough97
    TPTHartsough97 =
(TPAccumHartsough97*(1+0.0963)/TreesPAccumHartsough97)*(1+CSlopeFB_Harv)
    # Calculate Volume per PMH
    FBDVolumePMHJohnson79 = volumePMH (TreeVol, TPTJohnson79)
    FBDVolumePMHGreene911 = volumePMH (TreeVol, TPTGreene911)
    FBDVolumePMHGreene912 = volumePMH (TreeVol, TPTGreene912)
    FBDVolumePMHHartsough01 = TreeVol * TPPMHHartsough01
    FBSVolumePMHJohnson88 = volumePMH (TreeVol, TPTJohnson88)
    FBSVolumePMHGingras88 = TreeVol*TPPMHGingras88
    FBSVolumePMHGonsier87 = volumePMH (TreeVol, TPTGonsier87)
    FBSVolumePMHGingras96 =
(50.338/0.028317*(TreeVol*0.028317)**0.3011)/(1+CSlopeFB_Harv+CRemovalsFB_Harv)
    FBSVolumePMHPlamondon98
=(5.0/0.028317+57.7*TreeVol)/(1.0+CSlopeFB_Harv+CRemovalsFB_Harv)
    FBSVolumePMHHartsough97 = volumePMH (TreeVol, TPTHartsough97)
```

```
# Felling Cost ($/ ccf)
CostFellBunch = round((
    (costPMHFBDTT*relevanceFBDJohnson79
    +costPMHFBDTT*relevanceFBDGreene911
    +costPMHFBDTT*relevanceFBDGreene912
    +costPMHFBDTT*relevanceFBDHartsough01
    +costPMHFBSw*relevanceFBSJohnson88
    +costPMHFBSW*relevanceFBSGingras88
    +costPMHFBSL*relevanceFBSGonsier87
    +costPMHFBSw*relevanceFBSGingras96
    +costPMHFBSw*relevanceFBSPlamondon98
    +costPMHFBSw*relevanceFBSHartsough97)/
    (relevanceFBDJohnson79*FBDVolumePMHJohnson79
    +relevanceFBDGreene911*FBDVolumePMHGreene911
    +relevanceFBDGreene912*FBDVolumePMHGreene912
    +relevanceFBDHartsough01*FBDVolumePMHHartsough01
    +relevanceFBSJohnson88*FBSVolumePMHJohnson88
    +relevanceFBSGingras88*FBSVolumePMHGingras88
    +relevanceFBSGonsier87*FBSVolumePMHGonsier87
    +relevanceFBSGingras96*FBSVolumePMHGingras96
    +relevanceFBSPlamondon98*FBSVolumePMHPlamondon98
    +relevanceFBSHartsough97*FBSVolumePMHHartsough97)), 4)
    return CostFellBunch
```


## \#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

\# Skidding \#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\# def skidding():
\# General Calcualtions
CSlopeSkidForwLoadSize $=1.0-0.000127 *$ Slope**2.0
TurnVol $=44.87 *$ TreeVol**0.282*CSlopeSkidForwLoadSize
\# Relevance
\# Grapple Skidders (Johnson, 88)
if ButtDiam < 15:
relevanceSBJohnson88 $=1$
elif ButtDiam < 20:
relevanceSBJohnson88 = 4 - ButtDiam/5
else:
relevanceSBJohnson88 $=0$
\# Grapple Skidders (Tufts et al, 88)
relevanceSBTufts $88=0.5$
\# John Deere 748E (Kosicki, K. 00. Productivities and costs of two harvesting trials in a western Alberta riparian zone. FERIC Advantage 1(19))
if TreeVol < 5 :
relevanceSBKosicki00 $=0$
elif TreeVol < 10:
relevanceSBKosicki00 $=-1+$ TreeVol/5
elif TreeVol < 50:
relevanceSBKosicki00 = 1
elif TreeVol < 100:
relevanceSBKosicki00 = 2 - TreeVol/50
else: relevanceSBKosicki00 $=0$
\# Cat D5H TSK Custom Track (Henderson, B. 01. Roadside harvesting with
low ground-presssure skidders in northwestern British Columbia. FERIC Advantage 2(54))
if TreeVol < 5:
relevanceSBHenderson01 $=0$
elif TreeVol < 10: relevanceSBHenderson01 $=-1+$ TreeVol/5
elif TreeVol < 50: relevanceSBHenderson01 = 1
elif TreeVol < 100:

```
        relevanceSBHenderson01 = 2 - TreeVol/50
    else:
        relevanceSBHenderson01 = 0
    # JD 748_G-II & TJ 560 (Kosicki, K. 02. Productivity and cost of summer
    harvesting in a central A}\mathrm{ Alberta mixedwood stand. FERIC Advantage 3(6))
    if TreeVol < 30:
        relevanceSBKosicki021 = 1
    elif TreeVol < 60:
        relevanceSBKosicki021 = 2 - TreeVol/30
    else:
        relevanceSBKosicki021 = 0
    # Tigercat 635 (Boswell, B. 98. Vancouver Island mechanized thinning
trials. FERIC Technical Note TN-271)
    if TreeVol < 5:
        relevanceSBBoswell98 = 0
    elif TreeVol < 10:
        relevanceSBBoswell98 = -1 + TreeVol/5
    elif TreeVol < 100:
                relevanceSBBoswell98 = 1
    elif TreeVol < 150:
                relevanceSBBoswell98 = 3 - TreeVol/50
    else:
        relevanceSBBoswell98 = 0
    # Tigercat 635 (Kosicki, K. 02. Evaluation of Trans-Gesco TG88C and
    Tigercat 635 grapple skidders working in central Alberta. FERIC Advantage 3(37))
    if TreeVol < 40:
                relevanceSBKosicki022 = 1
    elif TreeVol < 80:
        relevanceSBKosicki022 = 2 - TreeVol/40
    else:
        relevanceSBKosicki022 = 0
    relevanceSkidB = []
    relevanceSkidB.extend(value for name, value in sorted(locals().items(),
key=lambda item: item[0]) if name.startswith('relevanceSB'))
    # Trees per Turn
    TreesPerTurnS = TurnVol/TreeVol
    # Turn relevance (lb)
    Turnrelevance = TurnVol*WoodDensity
    # Turn Time Johnson 88
    TravelEmpty = -2.179+0.0362*Slope+0.711*math.log(SkidDist)
    TravelLoaded = -
0.919+0.00081*SkidDist+0.000062*Slope**3+0.353*math.log(SkidDist)
    LoadTime = max (0,0.882+0.0042*Slope**2-0.000048*(TreesPerTurnS)**3)
    DeckTime = 0.063+0.55*math.log(3)+0.0076*3*TreesPerTurnS
    turnTimeJohnson88 = TravelEmpty + TravelLoaded + LoadTime + DeckTime
    # Turn Time Tufts 88
    skidderHP=50.5+5.74*(TreeVol**0.5)
    treesPerBunch = 6 # F44 ='Fell&Bunch'!E28 just temporary
    bunchVolume = TreeVol*treesPerBunch
    bunchesPerTurn = max(1,TurnVol/bunchVolume)
    travelEmpty = (0.1905*SkidDist+0.3557*skidderHP-
0.0003336*SkidDist*skidderHP)/100
    grapple = min(5,(-38.36+161.6*bunchesPerTurn-
0.5599*bunchesPerTurn*skidderHP+1.398*bunchesPerTurn*treesPerBunch)/100)
    travelLoaded =(-34.52+0.2634*SkidDist+0.7634*skidderHP-
0.00122*SkidDist*skidderHP+0.03782*SkidDist*bunchesPerTurn)/100
    ungrapple = max(0,(5.177*bunchesPerTurn+0.002508*Turnrelevance-
0.00007944*Turnrelevance*bunchesPerTurn*treesPerBunch*bunchesPerTurn)/100)
    turnTimeTufts88 = 1.3*(travelEmpty+grapple+travelLoaded+ungrapple)
    # Turn Time Kosicki 00
```

```
    turnTimeKosicki00 = 0.65+0.0054*SkidDist+0.244*2.1
    # Turn Time Henderson 01
    turnTimeHenderson01 = 2.818+0.0109*SkidDist
    # Turn Time Kosicki 02-1
    turnTimeKosicki021 = 0.649+0.0058*SkidDist+0.581*bunchesPerTurn
    # Turn Time Boswell 98
    turnTimeBoswell98 = 5.77 + 0.007 * SkidDist
    # Turn Time Kosicki 02-2
    turnTimeKosicki022 = 2.98+0.006*SkidDist+0.27*TreesPerTurnS
    # Skidding Volume/ PMH (ccf)
    BSkidVolPMHJohnson88 = volumePMH (TurnVol, turnTimeJohnson88)
    BSkidVolPMHTufts88 = volumePMH (TurnVol, turnTimeTufts88)
    BSkidVolPMHKosickiOO = volumePMH (TurnVol, turnTimeKosickiOO)
    BSkidVolPMHHenderson01 = volumePMH (TurnVol, turnTimeHenderson01)
    BSkidVolPMHKosickiO21 = volumePMH (TurnVol, turnTimeKosickiO21)
    BSkidVolPMHBoswell98 = volumePMH (TurnVol, turnTimeBoswell98)
    BSkidVolPMHKosicki022 = volumePMH (TurnVol, turnTimeKosickiO22)
    volumeSkidB = []
    volumeSkidB.extend(value for name, value in sorted(locals().items(),
key=lambda item: item[0]) if name.startswith('BSkidVolPMH'))
    # Skidding cost ($/ ccf)
    CostSkidBun = round (relevancefunction(SkidderHourlyCost,
relevanceSkidB, volumeSkidB), 4)
    return CostSkidBun
```

```
################################################
# Process
                                    #
################################################
def process():
    # Relevance
    # Hahn Stroke Processor (Gonsier&Mandzak, 87)
    if DBH<15:
            relevanceProGonsier87= 1.0
    elif DBH<20:
        relevanceProGonsier87 = 4.0-DBH/5.0
    else:
        relevanceProGonsier87 = 0
    # Stroke Processor (MacDonald, 90)
    if ButtDiam<20:
        relevanceProMacDonald90 = 1.0
    elif ButtDiam<30:
        relevanceProMacDonald90 = 3.0-ButtDiam/10.0
    else:
        relevanceProMacDonald90 = 0
    # Roger Stroke Processor (Johnson, 88)
    relevanceProJohnson881 = 1
    # Harricana Stroke Processor (Johnson, 88)
    relevanceProJohnson882 = 1
    # Hitachi EX150/Keto 500 (Schroder&Johnson, 97)
    if TreeVol<50:
        relevanceProSchroder97 = 1
    elif TreeVol<100:
        relevanceProSchroder97 = 2-TreeVol/50
    else:
        relevanceProSchroder97 = 0
```

```
    # FERIC Generic (Gingras, J.F. 96)
    relevanceProGingras96 = 1
    # Valmet 546 Woodstar Processor (Holtzscher, M. and B. Lanford 1997)
    if TreeVol<20:
        relevanceProHoltzscher97 = 1
    elif TreeVol<40:
        relevanceProHoltzscher97 = 2-TreeVol/20
    else:
        relevanceProHoltzscher97 = 0
    relevanceP = []
    relevanceP.extend(value for name, value in sorted(locals().items(),
key=lambda item: item[0]) if name.startswith('relevancePro'))
    # Time per Tree
    TPTGonsier87 = 1.26*(0.232+0.0494*DBH)
    TPTMacDonald90 = 0.153+0.0145*ButtDiam
    TPTJohnson881 = -0.05+0.6844*LogsPerTree+5*10**(-8)*TreeVol**2
    TPTJohnson882 = -0.13+0.001*ButtDiam**2+0.5942*LogsPerTree
    TPTSchroder97 = (0.67+0.0116*TreeVol)**2
    TPTHoltzscher97 = -0.341+0.1243*DBH
    # Skidding Volume/ PMH (ccf)
    ProVolPMHGonsier87 = volumePMH (TreeVol, TPTGonsier87)
    ProVolPMHMacDonald90 = volumePMH (TreeVol, TPTMacDonald90)
    ProVolPMHJohnson881 = volumePMH (TreeVol, TPTJohnson881)
    ProVolPMHJohnson882 = volumePMH (TreeVol, TPTJohnson882)
    ProVolPMHSchroder97 = volumePMH (TreeVol, TPTSchroder97)
    ProVolPMHGingras96 = (41.16/0.02832)*(TreeVol/35.31)**0.4902
    ProVolPMHHoltzscher97 = volumePMH (TreeVol, TPTHoltzscher97)
    volumeP = []
    volumeP.extend(value for name, value in sorted(locals().items(),
key=lambda item: item[0]) if name.startswith('ProVolPMH'))
    # Processing cost ($/ ccf)
    CostProcess = round(relevancefunction(ProcessorHourlyCost, relevanceP,
volumeP),4)
                    return CostProcess
        ################################################
        # Results #
        ################################################
        CostFellBunch = fellbunch() # in $/CF
        CostSkid = skidding() # in $/CF
        CostProcess = process() # in $/CF
        Cost = (CostFellBunch + CostSkid + CostProcess)/WoodDensity*2000 # Convert $/CF
to $/ton
    return Cost
```


## Appendix III <br> Script Data.py

```
import ogr, gdal, osr, os
import numpy as np
import requests
import json
```

def coord2pixeloffset(rasterfn, $x, y)$ :
raster $=$ gdal.Open(rasterfn)
geotransform = raster.GetGeoTransform()
originX $=$ geotransform[0]
originY $=$ geotransform[3]
pixelWidth $=$ geotransform[1]
pixelHeight $=$ geotransform[5]
xOffset $=$ int( $(x-$ originX)/pixelWidth)
yOffset $=$ int( (y - originY)/pixelHeight)
return xOffset,yOffset
def pixeloffset2coord(rasterfn,xOffset,yOffset):
raster $=$ gdal.Open(rasterfn)
geotransform $=$ raster.GetGeoTransform()
originX $=$ geotransform[0]
originY $=$ geotransform[3]
pixelWidth = geotransform[1]
pixelHeight $=$ geotransform[5]
coordX = originX+pixelWidth*xOffset
coordY $=$ originY+pixelHeight*yOffset
return coordX, coordY
def stand2standArray(stand_wkt,rasterfn,pixel_size):
\#Define pNoData value of new raster
NoData value $=255$
\# Write stand_wkt to temp file to read extent
stand geom $=$ ogr.CreateGeometryFromWkt (stand wkt)
shpDriver $=$ ogr.GetDriverByName('ESRI Shapefile')
if os.path.exists('temp.shp'):
shpDriver. DeleteDataSource('temp.shp')
outDataSource $=$ shpDriver.CreateDataSource('temp.shp')
tempLayer $=$ outDataSource.CreateLayer('temp.shp', geom_type=ogr.wkbPolygon )
featureDefn $=$ tempLayer.GetLayerDefn()
outFeature $=$ ogr.Feature(featureDefn)
outFeature.SetGeometry (stand_geom)
tempLayer. CreateFeature (outFeature)
spatialRef $=$ osr.SpatialReference()
spatialRef.ImportFromEPSG (26913)
spatialRef.MorphToESRI()
file $=$ open('temp.prj', 'w')
file.write (spatialRef.ExportToWkt())
file.close()
x_min, x_max, y_min, y_max = tempLayer. GetExtent()
$x O f f s e t, y O f f s e t=c o o r d 2 p i x e l O f f s e t\left(r a s t e r f n, x \_m i n, y \_m a x\right)$
$x$ min, y_max $=$ pixeloffset $2 c o o r d(r a s t e r f n, x O f f s e t, y O f f s e t)$
outDataSource $=$ None
tempLayer $=$ None
outFeature $=$ None
tempFile $=$ ogr.Open('temp.shp')
lyr = tempFile.GetLayer()
\# Create temporary raster file and rasterize stand wkt
x_res $=$ int ((x_max $\left.-x \_m i n\right) /$ pixel_size)

target_ds = gdal.GetDriverByName('MEM'). Create('', x_res, y_res, 1, gdal.GDT_Byte)
target_ds. SetGeoTransform((x_min, pixel_size, 0, y_max, 0, -pixel_size))

```
    band = target_ds.GetRasterBand(1)
    band.SetNoDataValue (NoData_value)
    gdal.RasterizeLayer(target_ds, [1], lyr, burn_values=[1])
    # remove temp files
    shpDriver.DeleteDataSource('temp.shp')
    # Read as array
    standArray = band.ReadAsArray()
    return standArray, x_min, y_max, y_min
def createTPAarray(standArray, TPA):
    TPAarray = standArray.astype(float)
    TPAarray[TPAarray==1] = np.random.normal(loc=TPA, scale=TPA/4,
size=(TPAarray==1).sum())
    return TPAarray[TPAarray != 0].flatten()
def createVPTarray(standArray, VPT):
    VPTarray = standArray.astype(float)
    VPTarray[VPTarray==1] = np.random.normal(loc=VPT, scale=VPT/4,
size=(VPTarray==1).sum())
    return VPTarray[VPTarray != 0].flatten()
def createSarray(standArray, slopefn, x_min, y_max):
    xOffset,yOffset = coord2pixelOffset(slopefn,x_min,y_max)
    raster = gdal.Open(slopefn)
    band = raster.GetRasterBand(1)
    slopeArray = band.ReadAsArray()
    Sarray = slopeArray[yOffset:(yOffset+standArray.shape[0]),
xOffset:(xOffset+standArray.shape [1])]
    return Sarray[standArray == 1].flatten()
def createSDarray(stand_wkt, standArray,pixel_size,x_min, y_max, y_min):
    def createBBOX(stand_wkt,offsetBbox):
        stand_geom = ogr.CreateGeometryFromWkt(stand_wkt)
        bbox = stand_geom.GetEnvelope()
        xmin,xmax,ymin,ymax = bbox
        xmin -= offsetBbox
        xmax += offsetBbox
        ymin -= offsetBbox
        ymax += offsetBbox
        bbox = xmin, xmax,ymin,ymax
        leftbottom = ogr.Geometry(ogr.wkbPoint)
        leftbottom.AddPoint(bbox[0], bbox[2])
        righttop = ogr.Geometry(ogr.wkbPoint)
        righttop.AddPoint(bbox[1], bbox[3])
        inSpatialRef = osr.SpatialReference()
        inSpatialRef.ImportFromEPSG (26913)
        outSpatialRef = osr.SpatialReference()
        outSpatialRef.ImportFromEPSG(4326)
        coordTransform = osr.CoordinateTransformation(inSpatialRef, outSpatialRef)
        leftbottom.Transform(coordTransform)
        righttop.Transform(coordTransform)
        bboxWGS84 = (leftbottom.GetX(), righttop.GetX(), leftbottom.GetY(),
righttop.GetY())
            return bboxWGS84
    def osmRoadsAPI(bboxWGS84):
    bboxCoords = str(bboxWGS84[0]) + ',' + str(bboxWGS84[2]) + ',' +
str(bboxWGS84[1]) + ',' + str(bboxWGS84[3])
    url = 'http://www.overpass-api.de/api/xapi?way[highway=*][bbox=%s]' % bboxCoords
    osm = requests.get(url)
    file = open(r'OSMroads.osm', 'w')
    file.write(osm.text)
    file.close()
```

```
    roadsDs = ogr.Open('OSMroads.osm')
    roadsLayer = roadsDs.GetLayer(1) # layer 1 for ways
    feature = False
    if roadsLayer.GetNextFeature():
        feature = True
    return feature
def downloadOSMroad(stand_wkt):
    offsetBbox = 0
    bboxWGS84 = createBBOX(stand_wkt,offsetBbox)
    feature = osmRoadsAPI(bboxWGS84) # creates 'roads.osm'
    while feature == False:
        offsetBbox += 100
        bboxWGS84 = createBBOX(stand wkt,offsetBbox)
        feature = osmRoadsAPI(bboxWGS84)
def createQuaterCentroids(stand_wkt):
    '''
    This function splits the stand in four quater and returns the centroids of the
four split quaters
    ''
geom_poly = ogr.CreateGeometryFromWkt(stand_wkt)
# Create 4 squares polygons
geom_poly_envelope = geom_poly.GetEnvelope()
minX = geom_poly_envelope[0]
minY = geom_poly_envelope[2]
maxX = geom_poly_envelope[1]
maxY = geom_poly_envelope[3]
'''
coord0----coord1----coord2
| | |
| | |
coord3----coord4----coord5
| | |
| | |
coord6----coord7----coord8
'''
coord0 = minX, maxY
coord1 = minX+(maxX-minX)/2, maxY
coord2 = maxX, maxY
coord3 = minX, minY+(maxY-minY)/2
coord4 = minX+(maxX-minX)/2, minY+(maxY-minY)/2
coord5 = maxX, minY+(maxY-minY)/2
coord6 = minX, minY
coord7 = minX+(maxX-minX)/2, minY
coord8 = maxX, minY
ringTopLeft = ogr.Geometry(ogr.wkbLinearRing)
ringTopLeft.AddPoint_2D(*coord0)
ringTopLeft.AddPoint_2D(*coord1)
ringTopLeft.AddPoint_2D(*coord4)
ringTopLeft.AddPoint_2D(*coord3)
ringTopLeft.AddPoint_2D(*coord0)
polyTopLeft = ogr.Geometry(ogr.wkbPolygon)
polyTopLeft.AddGeometry(ringTopLeft)
ringTopRight = ogr.Geometry(ogr.wkbLinearRing)
ringTopRight.AddPoint_2D(*coord1)
ringTopRight.AddPoint_2D(*coord2)
ringTopRight.AddPoint_2D(*coord5)
ringTopRight.AddPoint_2D(*coord4)
ringTopRight.AddPoint_2D(*coord1)
polyTopRight = ogr.Geometry(ogr.wkbPolygon)
polyTopRight.AddGeometry(ringTopRight)
```

```
ringBottomLeft = ogr.Geometry(ogr.wkbLinearRing)
ringBottomLeft.AddPoint_2D(*coord3)
ringBottomLeft.AddPoint_2D(*coord4)
ringBottomLeft.AddPoint_2D(*coord7)
ringBottomLeft.AddPoint_2D(*coord6)
ringBottomLeft.AddPoint_2D(*coord3)
polyBottomLeft = ogr.Geometry(ogr.wkbPolygon)
polyBottomLeft.AddGeometry(ringBottomLeft)
ringBottomRight = ogr.Geometry(ogr.wkbLinearRing)
ringBottomRight.AddPoint_2D(*coord4)
ringBottomRight.AddPoint_2D(*coord5)
ringBottomRight.AddPoint_2D(*coord8)
ringBottomRight.AddPoint 2D(*coord7)
ringBottomRight.AddPoint_2D(*coord4)
polyBottomRight = ogr.Geometry(ogr.wkbPolygon)
polyBottomRight.AddGeometry(ringBottomRight)
# Intersect 4 squares polygons with test polygon
quaterPolyTopLeft = polyTopLeft.Intersection(geom_poly)
quaterPolyTopRight = polyTopRight.Intersection(geom_poly)
quaterPolyBottomLeft = polyBottomLeft.Intersection(geom_poly)
quaterPolyBottomRight = polyBottomRight.Intersection(geom_poly)
# Create centroids of each intersected polygon
centroidTopLeft = quaterPolyTopLeft.Centroid()
centroidTopRight = quaterPolyTopRight.Centroid()
centroidBottomLeft = quaterPolyBottomLeft.Centroid()
centroidBottomRight = quaterPolyBottomRight.Centroid()
return centroidTopLeft, centroidTopRight,centroidBottomLeft,centroidBottomRight
```

def landing(point_geom) :

```
roadsDs = ogr.Open('OSMroads.osm')
inLayer = roadsDs.GetLayer(1) # layer 1 for ways
# create the input SpatialReference
sourceSR = osr.SpatialReference()
sourceSR.ImportFromEPSG(4326)
# create the output SpatialReference
targetSR = osr.SpatialReference()
targetSR.ImportFromEPSG (26913)
# create transform
coordTrans = osr.CoordinateTransformation(sourceSR,targetSR)
# loop through the input features
inFeature = inLayer.GetNextFeature()
distMin = 9999999
while inFeature:
# get the input geometry
road_geom = inFeature.GetGeometryRef()
# reproject the geometry
road geom.Transform(coordTrans)
for point_road in road_geom.GetPoints():
    point_road_geom = ogr.Geometry(ogr.wkbPoint)
    point_road_geom.AddPoint_2D(point_road[0],point_road[1])
    dist = point road geom.Distance(point geom)
    if dist < distMin:
            distMin = dist
            landing_geom = point_road_geom
```

```
        # destroy the features and get the next input feature
        inFeature = inLayer.GetNextFeature()
    return landing_geom
    # Create four stand centroids
    centroids = createQuaterCentroids(stand_wkt)
    # Downloads OSM road data around stand
    downloadOSMroad(stand_wkt)
    # Get four landing coordiantes
    landing geom0 = landing(centroids[0])
    landing_geom1 = landing(centroids[1])
    landing_geom2 = landing(centroids[2])
    landing_geom3 = landing(centroids[3])
    # array2skidDistList
    count = 0
    reversed_standArray = standArray[::-1] # reverse array
    standPointArray = np.where(reversed_standArray == 1)
    SDarray = reversed standArray.astype(float)
    for indexY in standPointArray[0]:
        indexX = standPointArray[1][count]
        Xcoord = x min+pixel size*indexX+pixel size/2
        Ycoord = Y_min+pixel_size*indexY+pixel_size/2
        point_geom = ogr.Geometry(ogr.wkbPoint)
        point_geom.AddPoint_2D(Xcoord, Ycoord)
        distList = []
        distList.append(landing_geom0.Distance (point_geom))
        distList.append(landing_geom1.Distance (point_geom))
        distList.append(landing geom2.Distance(point geom))
        distList.append(landing_geom3.Distance (point_geom))
        SDarray[indexY,indexX] = (min(distList)*3.28084)
        # # Create array with coordinates
        # source = osr.SpatialReference()
        # source.ImportFromEPSG(26913)
        # target = osr.SpatialReference()
        # target.ImportFromEPSG(4326)
        # transform = osr.CoordinateTransformation(source, target)
        # point.Transform(transform)
        count += 1
    return SDarray[SDarray != 0].flatten()
def removeLimits(inputfn, inputfn_NoLimit):
    import csv
    input_data_NoLimit = csv.writer(open(inputfn_NoLimit,'wb'))
    data = ['TPA', 'VPT', 'S', 'SD']
    input_data_NoLimit.writerow(data)
    input_data = csv.reader(open(inputfn))
    next(input_data, None) # skip the headers
    for row in input data:
        TPA = float(row[0])
        VPT = float(row[1])
        S = float(row[2])
        SD = float(row[3])
        if TPA > 0 and VPT > 0:
            input_data_NoLimit.writerow(row)
        else:
```

```
print 'LIMIT'
print TPA, VPT, S, SD
def CostData(inputfn_NoLimit, outputfn):
    '''
    Open CSV input file and reads input data arguments.
    Runs harvest cost function with input arguments.
    Writes input arguments and returned cost to a new CSV file.
    '''
    import CostFunc as CF
    import csv
    cost data = csv.writer(open(outputfn,'wb'))
    data = ['TPA', 'VPT', 'S', 'SD', 'C']
    cost_data.writerow(data)
    input_data = Csv.reader(open(inputfn_NoLimit))
    next(input data, None) # skip the headers
    for row in input_data:
        TPA = round(float(row[0]), 7)
        VPT = round(float(row[1]), 7)
        S = round(float(row[2]), 7)
        SD = round(float(row[3]), 7)
        C = CF.costfunc(S, SD, TPA, VPT)
        data = [TPA, VPT, S, SD, C]
        cost_data.writerow(data)
if name == ' main ':
    inputfn = 'data/producedData/inputData.csv'
    inputfn_NoLimit = 'data/producedData/inputData_NoLimit.csv'
    outputfn = 'data/producedData/costData_NoLimit.csv'
    standfn = 'data/CSFS/timber_sales.shp'
    slopefn = 'data/CSFS/Slope.tif'
    stand_shp = ogr.Open(standfn)
    stand_lyr = stand_shp.GetLayer()
    pixel_size = 10.0
    TPAarrayALL = np.array([])
    VPTarrayALL = np.array([])
    SDarrayALL = np.array([])
    SarrayALL = np.array([])
    count = 0
    for stand in stand_lyr:
        print "Stand ", count
        count +=1
        stand_geom = stand.GetGeometryRef()
        TPA = stand.GetField("TPA")
        VPT = stand.GetField("VPT")
        stand_wkt = stand_geom.ExportToWkt()
        standArray, x_min, y_max, y_min = stand2standArray(stand_wkt, slopefn,
pixel_size)
        TPAarray = createTPAarray(standArray, TPA)
        print "TPA array created"
        VPTarray = createVPTarray(standArray, VPT)
        print "VPT array created"
        Sarray = createSarray(standArray, slopefn, x_min, y_max)
        print "S array created"
        SDarray = createSDarray(stand_wkt,standArray, pixel_size, x_min, y_max, y_min)
```

print "SD array created"

```
    TPAarrayALL = np.concatenate((TPAarrayALL,TPAarray),1)
    VPTarrayALL = np.concatenate((VPTarrayALL, VPTarray),1)
    SarrayALL = np.concatenate((SarrayALL, Sarray),1)
    SDarrayALL = np.concatenate((SDarrayALL, SDarray),1)
    print "Arrays concatenated"
    output = np.column stack((TPAarrayALL,VPTarrayALL,SarrayALL,SDarrayALL))
    np.savetxt(inputfn,output,delimiter=',')
    print "Array writen to CSV"
removeLimits(inputfn, inputfn_NoLimit)
print "Limits removed"
CostData(inputfn_NoLimit,outputfn)
print "Cost Data created"
```


## Appendix IV

## Script CostRaster.py

```
from osgeo import ogr, gdal, osr
import numpy as np
from math import sqrt
def shp2array(inputfn,baseRasterfn):
    outputfn = 'rasterized.tif'
    source_ds = ogr.Open(inputfn)
    source_layer = source_ds.GetLayer()
    raster = gdal.Open(baseRasterfn)
    geotransform = raster.GetGeoTransform()
    originX = geotransform[0]
    originY = geotransform[3]
    pixelWidth = geotransform[1]
    pixelHeight = geotransform[5]
    cols = raster.RasterXSize
    rows = raster.RasterYSize
    target ds = gdal.GetDriverByName('GTiff').Create(outputfn, cols, rows, 1,
gdal.GDT_Byte)
    target_ds.SetGeoTransform((originX, pixelWidth, 0, originY, 0, pixelHeight))
    band = target_ds.GetRasterBand(1)
    NoData_value = 255
    band.SetNoDataValue (NoData_value)
    gdal.RasterizeLayer(target_ds, [1], source_layer, burn_values=[0])
    # Read as array
    array = band.ReadAsArray()
    return array
def pixelOffset2coord(xOffset,yOffset):
    raster = gdal.Open('rasterized.tif')
    geotransform = raster.GetGeoTransform()
    originX = geotransform[0]
    originY = geotransform[3]
    pixelWidth = geotransform[1]
    pixelHeight = geotransform[5]
    coordX = originX+pixelWidth*xOffset
    coordY = originY+pixelHeight*yOffset
    return coordX, coordY
def roadArray2coordDict(array):
    count = 0
    roadList = np.where(array == 0)
    roadListCoord = []
    for indexY in roadList[0]:
        indexX = roadList[1][count]
        Xcoord, Ycoord = pixelOffset2coord(indexX,indexY)
        coords = (Xcoord, Ycoord)
        roadListCoord.append(coords)
        count += 1
    return roadListCoord
def distance(coord0X, coord0Y,coord1):
    return sqrt((coord0X-coord1[0])**2+(coord0Y-coord1[1])**2)
def nonRoadArray2coord(array, roadListCoord):
    distArray = (np.copy(array)).astype(float)
    count = 0
    nonRoadList = np.where(array != 0)
    total = len(nonRoadList[0])
    for indexY in nonRoadList[0]:
        indexX = nonRoadList[1][count]
        nonRoadXcoord, nonRoadYcoord = pixelOffset2coord(indexX,indexY)
```

minDist $=\min ([d i s t a n c e(n o n R o a d X c o o r d$, nonRoadYcoord, roadPoint) for roadPoint in roadListCoord])
distArray[indexY,indexX] = minDist*3. 28084
count $+=1$
print str(count) + "of" + str(total)
return distArray
def raster2array(rasterfn):
raster $=$ gdal.Open(rasterfn)
band = raster.GetRasterBand (1)
array $=$ band.ReadAsArray()
return array
def array2raster(newRasterfn, distArray):
raster $=$ gdal.Open('rasterized.tif')
geotransform = raster.GetGeoTransform()
originX = geotransform[0]
originY = geotransform[3]
pixelWidth $=$ geotransform[1]
pixelHeight = geotransform[5]
cols = raster. RasterXSize
rows = raster.RasterYSize
driver = gdal.GetDriverByName('GTiff')
outRaster $=$ driver.Create (newRasterfn, cols, rows, 1, gdal.GDT_Float32)
outRaster.SetGeoTransform((originX, pixelWidth, 0, originY, 0, pixelHeight))
outband = outRaster.GetRasterBand(1)
outband.WriteArray (distArray)
outRasterSRS = osr.SpatialReference()
outRasterSRS.ImportFromEPSG (26913)
outRaster.SetProjection (outRasterSRS.ExportToWkt())
if __name___ == '__main__':
roads_fn = 'data/CSFS/roads.shp'
slope_fn = 'data/CSFS/slope_south.tif'
newRasterfn = 'CostSurface_south.tif'
roadArray $=$ shp2array(roads_fn, slope_fn)
print "road array generated"
roadListCoord = roadArray 2 coordDict (roadArray)
print "road list coord generated"
skidDistArray $=$ nonRoadArray 2 coord (roadArray, roadListCoord)
print "skid dist array generated"
slopeArray $=$ raster2array (slope_fn)
print "slope array generated"
costArray $=22.8038+$ slopeArray*0.3272 + skidDistArray*0.007578
print "cost array generated"
array2raster(newRasterfn, costArray)

## Appendix V

Colorado State Forest Harvest Cost Results

| ID | TPA | VPT | Slope | SD | Full Model | Full Equation | Spatial Equation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 460.4302 | 6.0021 | 19.5747 | 982.1135 | 47.3699 | 45.1708 | 36.6928 |
| 2 | 249.0462 | 10.0159 | 8.1138 | 1273.0037 | 34.5947 | 33.151 | 35.093 |
| 3 | 134.7744 | 13.9785 | 15.2379 | 617.8667 | 26.4947 | 25.2071 | 32.5177 |
| 4 | 465.8444 | 4.0354 | 26.9939 | 267.516 | 55.4851 | 53.9459 | 33.7675 |
| 5 | 156.8697 | 21.7927 | 35.3757 | 341.4081 | 21.5972 | 23.5003 | 37.0946 |
| 6 | 210.1354 | 13.7892 | 20.1087 | 324.2566 | 24.267 | 24.4518 | 31.9183 |
| 7 | 357.8478 | 8.0028 | 12.2345 | 1658.2219 | 42.6641 | 41.4805 | 39.3545 |
| 8 | 219.535 | 13.9574 | 1.4765 | 442.0764 | 22.3381 | 19.3702 | 26.6452 |
| 9 | 367.1487 | 9.0445 | 16.0848 | 2039.0886 | 44.269 | 42.963 | 43.4938 |
| 10 | 328.2211 | 6.071 | 23.1076 | 396.646 | 42.5173 | 41.9945 | 33.4545 |
| 11 | 268.7183 | 8.9891 | 29.995 | 1561.5041 | 46.414 | 44.1129 | 44.4982 |
| 12 | 240.9274 | 13.0258 | 17.1856 | 583.5776 | 27.0456 | 26.2781 | 32.9036 |
| 13 | 329.8612 | 8.9679 | 25.9175 | 1065.6616 | 40.3035 | 38.9588 | 39.4185 |
| 14 | 366.2662 | 9.9897 | 17.6739 | 1190.7813 | 36.4473 | 35.1409 | 37.6348 |
| 15 | 310.3833 | 9.9573 | 19.7382 | 676.1159 | 32.6863 | 32.1475 | 34.4439 |
| 16 | 205.0352 | 14.9937 | 11.8569 | 950.1592 | 26.827 | 25.405 | 33.9008 |
| 17 | 268.9091 | 10.012 | 19.7002 | 1628.8996 | 40.771 | 39.3531 | 41.602 |
| 18 | 284.1831 | 11.0182 | 9.3434 | 1268.0393 | 32.9281 | 31.6492 | 35.4622 |
| 19 | 275.2289 | 12.9752 | 7.673 | 1550.5676 | 31.9889 | 30.5743 | 37.0363 |
| 20 | 231.313 | 12.0606 | 7.7653 | 933.0576 | 28.778 | 27.2748 | 32.4194 |
| 21 | 213.1377 | 11.9937 | 14.5148 | 1877.2061 | 37.6894 | 36.6287 | 41.7564 |
| 22 | 290.0898 | 9.0178 | 18.397 | 867.1463 | 36.2387 | 35.1616 | 35.4382 |
| 23 | 249.6302 | 12.0393 | 9.2603 | 810.4319 | 28.2535 | 26.7803 | 31.9908 |
| 24 | 369.5147 | 10.9977 | 15.9406 | 3127.0334 | 47.6201 | 47.4452 | 51.634 |
| 25 | 340.3085 | 14.0709 | 16.9818 | 2319.9239 | 38.3913 | 37.7876 | 45.9039 |
| 26 | 389.1626 | 13.0006 | 12.0124 | 1564.9038 | 32.8474 | 31.6106 | 38.5788 |
| 27 | 395.6521 | 13.1869 | 14.6395 | 912.2441 | 28.723 | 27.2585 | 34.5354 |
| 28 | 467.515 | 6.0087 | 1.4163 | 416.282 | 36.4561 | 35.2448 | 26.4312 |
| 29 | 466.7978 | 6.1219 | 3.7758 | 320.2846 | 35.3682 | 34.7669 | 26.4888 |
| 30 | 462.3807 | 6.0034 | 2.6832 | 841.3395 | 40.2762 | 38.88 | 30.049 |
| 31 | 368.3827 | 8.8897 | 17.7637 | 1007.3935 | 37.4023 | 36.0485 | 36.2843 |
| 32 | 377.6028 | 8.955 | 8.7725 | 466.7301 | 29.8899 | 29.0177 | 29.2428 |
| 33 | 378.7436 | 9.0416 | 9.4032 | 212.4343 | 27.5798 | 27.0992 | 27.5375 |
| 34 | 377.5154 | 9.018 | 11.9678 | 547.2131 | 31.5073 | 30.4709 | 30.9049 |
| 35 | 365.087 | 10.2362 | 19.892 | 1663.7448 | 40.1586 | 38.9423 | 41.9276 |
| 36 | 375.6711 | 8.0542 | 16.9706 | 2418.3021 | 49.7651 | 48.4741 | 46.6406 |
| 37 | 264.4257 | 14.7383 | 16.017 | 2229.2954 | 36.7182 | 36.3793 | 44.9029 |
| 38 | 284.8405 | 12.7595 | 5.6513 | 2905.4813 | 40.3443 | 40.3951 | 46.565 |
| 39 | 298.1482 | 14.1431 | 6.1054 | 3090.1121 | 39.8123 | 40.2977 | 48.1046 |
| 40 | 272.6465 | 15.0177 | 24.914 | 2616.0733 | 42.4105 | 41.7451 | 50.7551 |
| 41 | 318.8978 | 12.9316 | 11.5865 | 1969.6663 | 35.9629 | 34.8488 | 41.4842 |


| 42 | 360.0588 | 12.8798 | 20.9698 | 3009.2692 | 46.1904 | 45.5083 | 52.4104 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 43 | 164.6568 | 10.0072 | 20.0355 | 2807.9652 | 50.416 | 48.7014 | 50.5865 |
| 44 | 418.7322 | 8.8327 | 28.8557 | 709.0142 | 37.1972 | 37.1876 | 37.7057 |
| 45 | 424.6443 | 7.2216 | 40.5827 | 904.8995 | 48.4367 | 46.6379 | 43.0569 |
| 46 | 465.0691 | 8.1892 | 43.1524 | 1008.5612 | 47.0112 | 45.2805 | 44.6866 |
| 47 | 303.2732 | 8.9141 | 18.483 | 2601.6283 | 49.8831 | 48.4492 | 48.5203 |
| 48 | 436.2883 | 8.0035 | 25.5152 | 2023.2858 | 50.8914 | 48.0699 | 46.4926 |
| 49 | 458.9958 | 10.2234 | 14.4782 | 1861.0478 | 40.0056 | 38.4657 | 41.6227 |
| 50 | 337.6554 | 13.7931 | 20.6337 | 2399.4014 | 40.657 | 39.8231 | 47.7094 |
| 51 | 377.2391 | 10.06 | 17.8586 | 1786.3063 | 40.9827 | 39.5188 | 42.1778 |
| 52 | 147.8706 | 15.794 | 33.6006 | 193.6608 | 23.6962 | 25.8797 | 35.3959 |
| 53 | 155.0838 | 21.19 | 38.2203 | 222.4634 | 21.0854 | 23.8051 | 37.1399 |
| 54 | 163.7545 | 19.9884 | 33.3269 | 128.3577 | 19.8648 | 22.2331 | 34.8139 |
| 55 | 203.5498 | 11.9849 | 33.1437 | 362.4282 | 29.697 | 31.0106 | 36.515 |
| 56 | 233.3125 | 9.004 | 34.6886 | 554.9203 | 37.5025 | 38.0615 | 38.4744 |
| 57 | 218.5937 | 8.1508 | 34.472 | 870.9738 | 44.7743 | 42.4878 | 40.7814 |
| 58 | 227.6901 | 9.024 | 31.0235 | 900.8206 | 40.4221 | 39.5109 | 39.866 |
| 59 | 370.0029 | 8.6694 | 28.4167 | 203.7875 | 31.6439 | 33.7884 | 33.7583 |
| 60 | 250.7138 | 17.2409 | 6.847 | 275.9937 | 18.9835 | 16.7139 | 27.1708 |
| 61 | 615.5792 | 9.9626 | 19.1 | 828.5485 | 33.7299 | 32.0675 | 35.3801 |
| 62 | 358.7774 | 16.102 | 15.5778 | 235.8327 | 20.5451 | 19.6588 | 29.7549 |
| 63 | 159.1713 | 17.1818 | 14.3966 | 348.4863 | 21.1689 | 19.9437 | 30.2122 |
| 64 | 242.5258 | 17.8642 | 8.1197 | 96.8224 | 17.2353 | 15.3259 | 26.2431 |
| 65 | 231.2231 | 13.7364 | 12.3181 | 198.5613 | 22.143 | 21.0854 | 28.3967 |
| 66 | 117.4448 | 26.6085 | 18.7192 | 236.3785 | 16.6285 | 15.6038 | 30.7975 |
| 67 | 248.5987 | 19.2803 | 12.8925 | 1366.2114 | 26.565 | 25.3987 | 37.3744 |
| 68 | 253.7426 | 14.874 | 17.9682 | 1298.4068 | 30.9036 | 29.8695 | 38.5421 |
| 69 | 259.6056 | 18.3695 | 18.129 | 4224.4505 | 45.8264 | 49.1181 | 60.6167 |
| 70 | 218.0891 | 18.2884 | 11.1505 | 3025.3654 | 37.6017 | 38.1194 | 49.2853 |
| 71 | 195.7548 | 14.1239 | 17.5114 | 3474.5579 | 46.3793 | 47.0815 | 54.7688 |
| 72 | 284.3003 | 12.3205 | 22.3098 | 4481.6502 | 57.1009 | 57.986 | 63.9345 |
| 73 | 564.1467 | 6.938 | 17.0042 | 3679.7857 | 61.581 | 60.7428 | 56.1457 |
| 74 | 386.9017 | 11.9356 | 24.7562 | 4008.2231 | 56.165 | 55.3526 | 61.1803 |

## Appendix VI <br> index.html

```
<!DOCTYPE html>
<html>
<head>
    <meta charset=utf-8 />
    <meta name='viewport' content='width=device-width, initial-scale=1.0, maximum-
scale=1.0, user-scalable=no' />
    <!-- Title -->
    <title>CSFS Harvest Costs</title>
    <!-- Stylesheet -->
    <link rel='stylesheet' href='static/style/style.css' />
    <!-- Libraries -->
    <script src="//ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js"></script>
    <script src="./static/libraries/simple-expand.min.js"></script>
    <script src="./static/libraries/leaflet.js"></script>
    <link rel='stylesheet' href="./static/libraries/leaflet.css" />
    <script src="./static/libraries/leaflet.draw.js"></script>
    <link rel='stylesheet' href="./static/libraries/leaflet.draw.css" />
    <script src="./static/libraries/terraformer.min.js" type="text/javascript"></script>
    <script src="./static/libraries/terraformer-wkt-parser.min.js"
type="text/javascript"></script>
    <!-- Data -->
    <script src="/static/data/csf.geojson"></script>
</head>
<body>
    <div id="container">
        <div id="map"></div>
        <div id="infoSign" class="the-box arrow box">Start digitizing a stand</div>
        <div id="infoContainer">
            <h3>CSFS Harvest Costs</h3>
            <a style="color:#636363;text-decoration:
none;position:absolute;top:20px;right:25px"
href="mailto:ustroetz@gmail.com?Subject=CSFS%20Harvest%20Costs">Contact</a>
    <div id='legend'>
                                    <h4>Harvest Cost ($/ton) </h4>
    <nav class='legend clearfix'>
        <span style='background:#1a9641;'></span>
        <span style='background:#c3e586;'></span>
        <span style='background:#fdc980;'></span>
        <span style='background:#d7191c;'></span>
        <label>< 30.0 </label>
        <label>30.0 - 39.9 </label>
        <label>40.0 - 49.9 </label>
        <label>>= 50.0</label>
</div>
        <div id="estimate">
                                <h4 id="text_estimated_cost"></h4>
                                <table style="margin-left:30px">
                                <tr>
                        <td style="width:143px">Cost</td>
                        <td id="estimated cost"></td>
                </tr>
```

```
            </table>
            <br>
            <button onclick="this.style.visibility = 'hidden';" id="expander"
href="#">&#9660; Detailed Calculation</a>
    </div>
        <div class="content">
            <h4>Harvest Cost Calculation</h4>
            <table style="margin-left:30px">
                <tr>
                    <td style="width:143px">Trees per Acre</td>
                    <td>
                            <input type="range" min="10" max="1000" step="10"
value="300" onchange="TPA.value=value"></input>
                                    <output id="TPA">300</output>
                                    </td>
            </tr>
            <tr>
                    <td style="width:143px">Volume per Acre</td>
                    <td>
                            <input type="range" min="1000" max="10000" step="100"
value="4000" onchange="VPA.value=value"></input>
                                    <output id="VPA">4000</output>
                                    <output>ft3}</output>
                    </td>
                </tr>
            </table>
            <br/>
                            <button id="calculate" onclick="calculate();"
style="display:block;">Calculate</button>
                            <table id="spatial_var" style="margin-left:30px"></table>
                    <br/>
                            <button id="recalculate" onclick="calculate();"
style="display:none;">Recalculate</button>
            </div>
            </div>
    </div>
    <script src="/static/scripts/site.js"></script>
</body>
</html>
```

```
style.css
html, body, #map, #container {
    height: 100%;
    width: 100%;
    margin: 0px;
    padding: 0px;
    font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;
    font-size: 15px;
    color: #666666;
}
h3 {
    font-size: 20px;
    font-weight: 200;
    color: #666666;
}
h4 {
    color: rgb(45, 45, 45);
    font-size: 16px;
    font-weight: bold;
    color: #666666;
    margin: 10px 0px 10px 10px;
}
#infoContainer {
    position: absolute;
    padding: 20px;
    background-color: rgba(255, 255, 255, 1)
    top: 10px;
    right: 10px;
    height: 120px;
    width: 400px;
}
#estimate {
    position: absolute;
    top: 160px;
    right: 0px;
    padding: 0px 20px 20px 20px;
    background-color: rgba(255, 255, 255, 1);
    height: 80pt;
    width: 400px;
    visibility: hidden;
}
.content {
    position: absolute;
    top: 230px;
    right: 0px;
    padding: 0px 20px 20px 20px;
    background-color: rgba(255, 255, 255, 1);
    height: 200pt;
    width: 400px;
}
.advanced {
    cursor: pointer;
    font-size: 10px;
}
p {
    padding: 5px 0;
}
button {
    background-color: #80c757;
    text-align: center;
    color: #fff;
```

```
    display: inline-block;
    height: 40px;
    width: 150px;
    margin-left: 140px;
    padding: 10px;
    border: none;
    cursor: pointer;
    border-radius: 3px;
    white-space: nowrap;
    text-overflow: ellipsis;
    font-family: 'Open Sans Bold', sans-serif;
    line-height: 20px;
    font-size: 12px;
    text-decoration: none;
}
button:hover {
    background-color: #598b3c;
}
.the-box {
    background: #fabfab;
    padding: 10px;
    width: 200px;
    height: 50px;
    line-height: 50px;
    text-align: center;
}
.arrow_box {
    position: absolute;
    top: 87px;
    left: 74px;
    height: 50px;
    background: rgba(255, 255, 255, 0.9);
}
.arrow_box:after, .arrow_box:before {
    right: 100%;
    top: 50%;
    border: solid transparent;
    content: " ";
    height: 0;
    width: 0;
    position: absolute;
    pointer-events: none;
}
.arrow_box:before {
    border-right-color: rgba(255, 255, 255, 0.9);
    border-width: 20px;
    margin-top: -20px;
}
.legend {
    padding-top: 5px;
}
.legend label,
.legend span {
    display:block;
    float:left;
    height:15px;
    width:25%;
    text-align:center;
    font-size:9px;
    color:#808080;
    }
```


## site.js

```
// Create map elements
var map = L.map('map').setView([40.545, -105.965], 14);
var csf = L.geoJson(csf, {
    style: {
        opacity: 1.0,
        fill: 0.0,
        color: '#FFF'
    }
});
var satelliteTileLayer = L.tileLayer('https://{s}.tiles.mapbox.com/v3/tmcw.map-
j5fsp01s/{z}/{x}/{y}.png');
var terrainTileLayer = L.tileLayer('https://{s}.tiles.mapbox.com/v3/tmcw.map-
7s15q36b/{z}/{x}/{y}.png');
var costSurfaceTileLayer =
L.tileLayer('https://{s}.tiles.mapbox.com/v3/csfsfc.h/{z}/{x}/{y}.png', {
    opacity: 0.5
    });
baseLayers = {
    "Satellite": satelliteTileLayer,
    "Terrain": terrainTileLayer
};
overlays = {
    'Cost Surface': costSurfaceTileLayer,
};
var layerControl = L.control.layers(baseLayers, overlays, {
    position: 'topleft'
});
var drawnItems = new L.FeatureGroup();
var drawControl = new L.Control.Draw({
    draw: {
        polyline: false,
        rectangle: false,
            circle: false,
            marker: false,
            polygon: {
                shapeOptions:
                    color: '#fffffff'
                }
            }
    },
    edit: {
            featureGroup: drawnItems
    }
});
terrainTileLayer.addTo(map);
costSurfaceTileLayer.addTo(map);
csf.addTo(map);
layerControl.addTo(map);
drawControl.addTo(map);
drawnItems.addTo(map)
// Create event listener
map.on('draw:edited', function(e) {
    // after stand is edited: recalcualte estimate, remove detailed calculation
    drawnItems.eachLayer(function(layer) {
        getEstimate(layer);
    });
```

```
    if ($('#spatial_var tbody').children().length != 0) {
        $('#spatial_var').empty();
        $("#calculate").css("display", "block");
        $("#recalculate").css("display", "none");
    };
});
map.on('draw:drawstart', function(e) {
    map.removeLayer(terrainTileLayer);
    satelliteTileLayer.addTo(map);
    // after stand drawing started: remove info start box, empty cost estimate, remove
previous stand layers, remove detailed caluclation
    $("#infoSign").remove();
    $("#estimated_cost").empty();
    drawnItems.eachLayer(function(layer) {
        map.removeLayer(layer)
    }) ;
    if ($('#spatial_var tbody').children().length != 0) {
        $('#spatial_var').empty();
        $("#calculate").css("display", "block");
        $("#recalculate").css("display", "none");
    };
});
map.on('draw:created', function(e) {
    // after stand is drawn: calculate estimate
    getEstimate(e.layer)
});
var getEstimate = function(layer) {
    // add layer to map and add 'No Data' defautl to info box
    drawnItems.addLayer(layer);
    document.getElementById('estimated_cost').innerHTML = 'No Data';
    // convert layer to wkt
    var standGeojson = layer.toGeoJSON();
    var standWKT = Terraformer.WKT.convert(standGeojson.geometry);
    // send wkt to Python App to get cost estimate
    $(function() {
        $.getJSON('/_estimatedCost', {
            data: standWKT
            },
            function(data) {
                        $(data.result);
                        // Update cost estimate in info box
                var cost = data.result + '$/ton';
                            document.getElementById('text_estimated_cost').innerHTML = 'Harvest Cost
Estimate';
            document.getElementById('estimated_cost').innerHTML = cost;
            document.getElementById('estimate').style.visibility = 'visible';
            }) ;
    });
};
var calculate = function() {
    // Get Input Variables
```

```
var TPA = document.getElementById('TPA').value;
if (!TPA) {
        TPA = 300
    } else {
        TPA = parseFloat(TPA);
};
var VPA = document.getElementById('VPA').value;
if (!VPA) {
        VPA = 4000
} else {
        VPA = parseFloat(VPA);
};
var SD = document.getElementById('SD');
if (!SD) {
        SD = null
} else {
        SD = parseFloat(SD.value);
};
var S = document.getElementById('S');
if (!S) {
        S = null
} else {
        S = parseFloat(S.value);
};
// get stand layer
var standWKT;
if ((drawnItems.getLayers().length) != 0) {
    drawnItems.eachLayer(function(layer) {
        standWKT = Terraformer.WKT.convert((layer.toGeoJSON()).geometry);
        });
        var harvestData = {
            TPA: TPA,
            VPA: VPA,
            SD: SD,
            S: S,
            stand_wkt: standWKT
        };
        var harvestDataStr = JSON.stringify(harvestData);
        // send harvest data string to Python App to get cost calculation
        $(function() {
        $.getJSON('/_calculatedCost', {
            harvest_Data: harvestDataStr
                },
            function(data) {
                $(data.result);
                // Update spatial variables and detailed cost
                var tableSpatialData = document.getElementById('spatial_var');
                if ($('#spatial_var tbody').children().length == 0) {
                // Skidding Distance
                var row = tableSpatialData.insertRow(0);
                var cellSD = row.insertCell(0);
                var cellSDvalue = row.insertCell(1);
                var SDvalue = String(parseFloat(data.result[1]));
                cellSD.innerHTML = "Skidding Distance";
                cellSDvalue.innerHTML = "<input type='range' min='0' max='10000'
step='100' value='" + SDvalue + "' onchange='SD.value=value'></input><output id='SD'>" +
SDvalue + "</output><output> ft</output></td>";
                // Slope
                var row = tableSpatialData.insertRow(1);
                var cellS = row.insertCell(0);
```

```
    var cellSvalue = row.insertCell(1);
    var Svalue = String(parseFloat(data.result[0]));
    cellS.style.width = "143px";
    cellS.innerHTML = "Slope";
    cellSvalue.innerHTML = "<input type='range' min='0' max='40'
step='1' value='" + Svalue + "' onchange='S.value=value'></input><output id='S'>" +
Svalue + "</output><output> %</output></td>";
    // Cost
    var row = tableSpatialData.insertRow(2);
    var cell1 = row.insertCell(O);
    cell1.innerHTML = "&nbsp;"
    var row = tableSpatialData.insertRow(3);
    var cellC = row.insertCell(O);
    var cellCvalue = row.insertCell(1);
    cellCvalue.innerHTML = String(parseFloat(data.result[2])) + "
$/ton";
    cellC.innerHTML = "Cost";
    // Buttons
    document.getElementById("calculate").style.display = "none";
    document.getElementById("recalculate").style.display = "block";
    }
    // Recalculate
    else {
    document.getElementById("SD").value =
parseFloat(data.result[1]);
                                    document.getElementById("S").value = parseFloat(data.result[0]);
                    tableSpatialData.rows[3].cells[1].innerHTML =
String(parseFloat(data.result[2])) + " $/ton";
                        };
                    });
            });
        } else {
            alert('Please digitize a stand first!')
    };
};
// Expand info box
$('#expander').simpleexpand();
```


## Appendix VII

## run.py

```
from flask import Flask, render_template, request, jsonify
import estimatedCost as eCost
import calculatedCost as cCost
import json
app = Flask(__name__)
app.config['DEBUG'] = True
@app.route('/')
@app.route('/index')
def index():
    return render_template("index.html")
@app.route('/_estimatedCost')
def get cost estimate():
    standWKT = request.args.get('data')
    costStats = eCost.get_zonal_stats(standWKT)
    cost = round(costStats[0]['mean'],2)
    return jsonify(result = cost)
@app.route('/_calculatedCost')
def get_cost_detailed():
    harvestData = json.loads(request.args.get('harvest_Data'))
    slope, SkidDist, harvestCostTon,totalHarvestCost =
cCost.cost_func(str(harvestData['stand_wkt']), harvestData['TPA'], harvestData['VPA'],
harvestData['SD'], harvestData['S'])
    totalHarvestCost = round(totalHarvestCost,2)
    harvestCostTon = round(harvestCostTon,2)
    SkidDist = round(SkidDist,2)
    slope = round(slope,2)
    resultData = [slope, SkidDist, harvestCostTon, totalHarvestCost]
    return jsonify(result = resultData)
if __name___ == "___main__":
    app.run()
```

